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Abstract 

Hyperpolarized carbon-13 (HP-13C) is emerging as a powerful new molecular 

imaging technique utilizing specialized instrumentation and dynamic nuclear 

polarization (DNP) to provide a signal enhancement of over 5 orders of magnitude. 

HP-13C MRI has made possible quantitative detection of metabolism and perfusion 

in vivo with 13C-labelled biomarkers, which are safe, non-radioactive and nontoxic. 

Prostate cancer is the second deadliest cancer in US men, and has become a 

healthcare problem worldwide. A major challenge in the clinical management of 

prostate cancer is to determine its aggressiveness. 

Through this dissertation project, a 3D dynamic compressed sensing MRSI 

technique was advanced from preclinical imaging to phase II clinical trial prostate 

cancer research. I conducted simultaneous metabolic and perfusion imaging on a 

transgenic mouse model of prostate cancer (TRAMP) using co-polarized 13C 

pyruvate and urea. Pyruvate to lactate flux (kPL) was significantly higher (p<0.001, 

0.056 ± 0.005 versus 0.019 ±0.001 sec-1) for high- versus low-grade TRAMP tumors, 

urea AUC significantly reduced (p<0.01, 640 ± 94 versus 1407 ± 221 AU), while ktrans 

significantly increased (p<0.01, 358 ± 38 versus 180 ± 24 ml/dL/min). The HP-13C 

MRI outcomes strongly correlates with histological, gene expression and LDHA 

activity findings. 

Translation from mice to humans requires overcoming challenges of larger 

imaging volume, reduce peak RF power, and decreased sensitivity. These challenges 



vii 
 

were addressed by designing new RF pulses that reduced 67% peak power, and 

transitioning from DSE to FID acquisitions without SNR loss. The improved 

sequence allows 0.5cm3 spatial and 2s temporal resolution, and enables 

reproducible human prostate acquisitions. “Goodness” of dynamic models was 

compared using Akaike’s information criteria. Quantitative accuracy was improved 

using a B1-insensitive variable flip angle scheme. Also investigated was the impact of 

pulse sequence design and parameter on kPL estimation.  

New sampling patterns are proposed for larger coverage or finer resolution, 

and an SVD-based algorithm was applied to allow parallel reconstruction of 

multichannel brain data. Finally, I investigated the response of androgen 

deprivation therapy from a prostate cancer patient, and found substantial decrease 

in kPL , which indicates the clinical potential of quantitative 3D dynamic HP-13C MRI 

for the detection of early treatment response. 

 

  



viii 
 

Table of Contents 
Chapter 1 Introduction........................................................................................................... 1 

Chapter 2 Background ............................................................................................................ 5 

2.1 Introduction to Hyperpolarized 13C MRI ........................................................................... 5 

2.1.1 Introduction to Nuclear Magnetic Resonance ......................................................... 5 

2.1.2 Physics Concepts of Dynamic Nuclear Polarization .............................................. 6 

2.1.3 Polarizer Instruments for Clinical and Preclinical DNP ...................................... 9 

2.1.4 Hyperpolarized 13C Imaging ........................................................................................ 11 

2.1.5 Imaging Methods for HP-13C MRI .............................................................................. 14 

2.1.6 Randomly-undersampled Acquisition and Compressed-sensing 

Reconstruction for Accelerated HP-13C MRI .................................................................... 18 

2.2 Prostate cancer ......................................................................................................................... 22 

2.2.1 Introduction to prostate cancer ................................................................................. 22 

2.2.2 Screening and diagnosis of prostate cancer .......................................................... 23 

2.2.3 Clinical management of prostate cancer ................................................................ 24 

2.2.4 Staging and Pathology of prostate cancer .............................................................. 25 

2.3 Multi-parametric Imaging of Prostate Cancer .............................................................. 29 

2.3.1 Proton Imaging ................................................................................................................. 30 

2.3.2 Proton Spectroscopy ...................................................................................................... 31 

2.3.3 HP-13C Spectroscopy ...................................................................................................... 32 

Chapter 3 Assessment of Prostate Cancer Aggressiveness with Hyperpolarized 

Dual-Agent 3D Dynamic Imaging of Metabolism and Perfusion ........................... 34 

3.1 Abstract ....................................................................................................................................... 34 



ix 
 

3.2 Introduction ............................................................................................................................... 35 

3.3 Materials and Methods .......................................................................................................... 40 

3.3.1 Animal protocol and handling .................................................................................... 40 

3.3.2 MR Imaging ........................................................................................................................ 40 

3.3.3 Histopathologic analysis ............................................................................................... 41 

3.3.4 Data Processing ................................................................................................................ 42 

3.3.5 Modeling of kPL and ktrans .............................................................................................. 43 

3.3.6 Statistical Analyses ......................................................................................................... 45 

3.4 Results .......................................................................................................................................... 46 

3.5 Discussion and Conclusions ................................................................................................ 54 

Chapter 4 Translational 3D Dynamic Hyperpolarized 13C-MR Metabolic 

Imaging - From Mice to Patients ....................................................................................... 62 

4.1 Introduction ............................................................................................................................... 62 

4.2 Materials and Methods .......................................................................................................... 66 

4.2.1 Pulse sequences ............................................................................................................... 66 

4.2.2 3D Imaging Coverage ..................................................................................................... 68 

4.2.3 Dynamic Modeling .......................................................................................................... 70 

4.2.4 MRI Experiments ............................................................................................................. 71 

4.3 Results .......................................................................................................................................... 73 

4.3.1 Preclinical studies ........................................................................................................... 73 

4.3.2 Translation and Patient Acquisition Results ........................................................ 77 

4.4 Discussion ................................................................................................................................... 81 

4.5 Conclusions ................................................................................................................................ 86 



x 
 

Chapter 5 Quantitative Methods for Estimation of Metabolism and Perfusion

 ...................................................................................................................................................... 87 

5.1 Metabolic Modeling ................................................................................................................ 87 

5.1.1 Introduction to tumor metabolism ........................................................................... 87 

5.1.2 Overview of HP 13C metabolism models ................................................................. 88 

5.1.3 The two-site exchange model ..................................................................................... 93 

5.1.4 The two-compartment three-site exchange model ............................................ 95 

5.2 Perfusion Modeling ................................................................................................................. 98 

5.2.1 Application of Tofts models on HP-13C perfusion imaging .............................. 98 

5.2.2 Model-based AIF ............................................................................................................ 100 

5.2.3 In vivo measurement of AIF ...................................................................................... 101 

5.2.4 Quantitative analysis of perfusion and pharmacokinetic parameters ..... 104 

5.3 Assessing Goodness of Models and Fit .......................................................................... 106 

5.3.1 The Akaike Information Theorem .......................................................................... 106 

5.3.2 Goodness of models in TRAMP prostate cancer ................................................ 109 

5.3.3 Selection of Models in Human Prostate Cancer ................................................. 112 

5.3.4 Summary of model selection ..................................................................................... 115 

5.4 Comparison of HP-13C Urea Perfusion and DCE Imaging ....................................... 117 

5.4.1 Basics of dynamic contrast enhanced imaging .................................................. 117 

5.4.2 DCE imaging on transgenic mouse prostate tumor at 3 Tesla – Methods

 ......................................................................................................................................................... 118 

5.4.3 Results ............................................................................................................................... 120 

5.4.4 Comparison between urea perfusion/distribution volume and DCE ....... 121 



xi 
 

5.5 B1-insensitive Variable Flip Angle Design ................................................................... 123 

5.5.1 Introduction and Purpose .......................................................................................... 123 

5.5.2 Methods ............................................................................................................................. 125 

5.5.3 Results/Discussions ..................................................................................................... 128 

5.5.4 Conclusions ...................................................................................................................... 133 

5.6 Practical Considerations of Quantitative kPL Estimation in Hyperpolarized 13C 

Imaging in Response to Pulse Sequence Design and Parameters .............................. 133 

5.6.1 Introduction and Purpose .......................................................................................... 133 

5.6.2 Methods ............................................................................................................................. 134 

5.6.3 Results and Discussions .............................................................................................. 136 

5.6.4 Conclusions ...................................................................................................................... 139 

Chapter 6 Extension, Current and Future Work....................................................... 140 

6.1 New sampling patterns for 3D CS-EPSI sequence .................................................... 140 

6.1.1 The need for new sampling patterns ..................................................................... 140 

6.1.2 Strategy for sampling pattern design .................................................................... 142 

6.1.3 Examples of new sampling pattern ........................................................................ 143 

6.1.4 Discussions ...................................................................................................................... 146 

6.2 SAKE-like reconstruction for multichannel 3D MRSI data .................................... 147 

6.2.1 Introduction to SVD-based parallel reconstruction ......................................... 148 

6.2.2 Application of SVD-based reconstruction to 3D CS-EPSI ............................... 150 

6.2.3 SVD parallel reconstruction versus channel-by-channel L1-minimization

 ......................................................................................................................................................... 152 



xii 
 

6.2.4 Human brain 3D dynamic HP-13C imaging – from phase II clinical study

 ......................................................................................................................................................... 158 

6.3 Longitudinal Imaging of Prostate Cancer Patients using Hyperpolarized-13C 3D 

Dynamic MRSI Techniques ........................................................................................................ 161 

6.3.1 Introduction..................................................................................................................... 162 

6.3.2 Materials and Methods ................................................................................................ 162 

6.3.3 Results and Discussions .............................................................................................. 164 

6.3.4 Conclusions ...................................................................................................................... 165 

Chapter 7 Conclusions ....................................................................................................... 165 

References ............................................................................................................................. 168 

 
  



xiii 
 

Table of Figures 

Figure 2.1 Physics of DNP .................................................................................................................... 6 

Figure 2.2 Instruments of DNP .......................................................................................................... 9 

Figure 2.3 HP-13C Images from Prior Studies ........................................................................... 13 

Figure 2.4 HP-13C Pulse Sequences from Literature. ............................................................. 15 

Figure 2.5 The 3D Dynamic CS-EPSI Sequence ........................................................................ 18 

Figure 2.6 Prostate Cancer Epidemology ................................................................................... 22 

Figure 2.7 The Gleason Grading System ..................................................................................... 27 

Figure 2.8 Examples of Multiparametric Proton Imaging of Prostate Cancer ............. 31 

Figure 3.1 In vivo 3D Dynamic HP-13C MR Images of TRAMP Mouse .............................. 46 

Figure 3.2 Dynamics of Metabolism and Perfusion ................................................................ 47 

Figure 3.3 Tissue Immunochemical Assays ............................................................................... 49 

Figure 3.4 Pyruvate Metabolism and Associated Activity Assay ....................................... 50 

Figure 3.5 Urea Distribution and Associated Histochemical Analysis ............................ 51 

Figure 3.6 mRNA expression Assays. ........................................................................................... 52 

Figure 3.7 Mean urea AUC in High- vs Low-Grade. ................................................................. 53 

Figure 4.1 DSE vs FID sequence mode......................................................................................... 63 

Figure 4.2 kPL error versus SNR ..................................................................................................... 64 

Figure 4.3 HP dynamics in a healthy rat ..................................................................................... 67 

Figure 4.4 HP dynamics and fit in rat and TRAMP.................................................................. 68 

Figure 4.5 Comparison of DSE vs FID reconstruction and SNR ......................................... 69 

Figure 4.6 New RF pulses for clinical study .............................................................................. 75 

Figure 4.7 Spatial distribution of pyruvate and lactate in human prostate .................. 77 



xiv 
 

Figure 4.8 Dynamics of pyruvate and lactate in human prostate ..................................... 78 

Figure 4.9 Biopsy, spectroscopy and dynamics of HP-13C biomarkers ........................... 79 

Figure 4.10 Estimation of kPL in biopsy-confirmed prostate cancer ............................... 81 

Figure 5.1 TCA Cycle and the Aerobic Glycolysis .................................................................... 87 

Figure 5.2 Generalized Metabolism Model Architecture ...................................................... 89 

Figure 5.3 Summary of Dynamic Models in Literature ......................................................... 90 

Figure 5.4 Model-based and Measured AIF ............................................................................. 101 

Figure 5.5 Selection of Models for TRAMP Tumor Metabolism ....................................... 109 

Figure 5.6 Selection of Models for Human Prostate Cancer .............................................. 113 

Figure 5.7 DCE Signal vs Concentration Curve ....................................................................... 118 

Figure 5.8 Model Fit of ktrans from Urea and DCE .................................................................. 120 

Figure 5.9 Comparison of ktrans from Urea and DCE ............................................................. 121 

Figure 5.10 B1 Sensitivity as a Function of T1,design. .............................................................. 124 

Figure 5.11 Simulation of kPL Errors from B1 Sensitivity. .................................................. 126 

Figure 5.12 Comparison of Original vs B1-insensitive Flip Angles in Rat ................... 127 

Figure 5.13. Human Prostate Cancer Imaging using B1-insensitive Flips ................... 129 

Figure 5.14 Dynamics and kPL Estimates Using B1-insensitive Flips. ........................... 130 

Figure 5.15 DSE vs FID Mode of 3D CS-EPSI ........................................................................... 134 

Figure 5.16 Simulated DSE Spoiling Effect on kPL Estimates ............................................ 135 

Figure 5.17 Crusher Gradient Effect on kPL Estimates - TRAMP Study ......................... 136 

Figure 5.18 T2* Effect on kPL Estimates - TRAMP Study ..................................................... 137 

Figure 5.19 Comparison of TRAMP kPL Estimates in DSE vs FID Mode ........................ 139 

Figure 6.1 Brain Imaging Setup .................................................................................................... 141 



xv 
 

Figure 6.2 Original 12x12 Sampling Pattern for 3D CS-EPSI ............................................ 143 

Figure 6.3 New 16x16 Sampling Pattern for Brain ............................................................... 144 

Figure 6.4 Another 16x16 Sampling Pattern Design ........................................................... 145 

Figure 6.5 SVD-based Parallel Reconstruction ....................................................................... 149 

Figure 6.6 Simulated Multichannel 3D Dynamic Spectroscopic Data ........................... 152 

Figure 6.7 Reconstructed Data Using SVD vs L1 Algorithms ............................................ 153 

Figure 6.8 RMSE for SVD vs L1 Reconstruction.. ................................................................... 155 

Figure 6.9 Dynamics for SVD vs L1 Reconstruction ............................................................. 156 

Figure 6.10 kPL Errors for SVD vs L1 Reconstruction. ......................................................... 157 

Figure 6.11 Human Brain 3D Dynamic MRSI Reconstructed using SVD ...................... 158 

Figure 6.12 Dynamics and kPL Map of Human Brain ............................................................ 160 

Figure 6.13 A Human Prostate Cancer HP-13C MRSI Before and After Treatment ... 163 

 

 



 
 

 

Chapter 1 Introduction 
 

This dissertation describes my research developing new bioengineering 

techniques, and applying such new technique to biomedically-relevant preclinical 

and clinical patient imaging research studies.  

Hyperpolarized 13C (HP-13C) is emerging as a powerful new imaging 

technique that utilizes specialized instrumentation and an approach called dynamic 

nuclear polarization (DNP) to provide a signal enhancement of over 5 orders of 

magnitude (1,2). Meanwhile, the HP-13C-labelled molecular probes are safe, 

endogenous and nonradioactive. The Warburg effect, as described by Otto Warburg 

half a century ago, states that high LDH isoenzyme activity drives high lactate 

production in cancers (3,4). Particularly, prior studies suggest that the pyruvate-to-

lactate conversion in prostate cancer is strongly correlated to the aggressiveness of 

prostate cancer (5,6). By injecting HP-13C pyruvate and observing its conversion to 

lactate, such change of metabolism can be observed with high SNR, which translates 

to good spatial, spectral and temporal resolutions. Overall in these graduate studied, 

I sought to develop new bioengineering techniques using HP-13C MRI in order to 

establish a non-invasive way of assessing prostate cancer aggressiveness in patients. 

The background for this dissertation research, including the hyperpolarized 13C 

techniques and prostate cancer, is outlined in Chapter 2. 

I applied this new technique to prostate cancer, which has become the 

second deadliest cancer in men in the US, and is a major healthcare problem 



2 
 

worldwide. In 2015, approximately 220,000 cases were diagnosed in the US (that is 

1 out of 6 men), and more than 27,000 men died of prostate cancer(7). A 

tremendous challenge for the clinical management lies in the diversity of prostate 

cancer, which leads to a wide variety of treatment options – from the aggressive 

surgical and focal therapies to the so-called “active surveillance” used for indolent 

disease(8-10). 

The main contribution of this work was to develop and test 3D dynamic HP-

13C acquisition methods for quantitative assessment of prostate cancer in preclinical 

models, and to translate such methods for robust clinical prostate cancer imaging 

with high spatiotemporal resolution. My dissertation includes in chapters 3-6, 

research reports consisting of published manuscripts, those under review process, 

or in preparation for submission. 

In Chapter 3, I applied the 3D dynamic HP-13C MRSI(11,12) in order to assess 

the prostate cancer aggressiveness in transgenic mouse with prostate cancer 

(TRAMP). Previously, high lactate production has been reported in TRAMP models, 

and the lactate/pyruvate ratio correlated to the histological grading data(5).  

However, no prior HP-13C study dynamically imaged cancer metabolism and 

perfusion in 3D. This chapter described the first study that injected co-polarized HP 

1-[13C] pyruvate and [13C] urea, in order to simultaneously image metabolism and 

perfusion in five-dimensions (3 spatial, 1 temporal and 1 spectral). The technical 

advancement on the acquisition side was an inclusion of many previous efforts into 

one final, complete pulse-sequence. These designs include the RF excitation pulse 

that features multiband spectral-spatial profile for independent excitation of each 
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metabolic compound (12), and a variable flip angle scheme that ensured efficient 

usage of magnetization (13). The adiabatic double spin-echo pulses were applied to 

refocus off-resonance effects and regulate phase for reconstruction (14). The 

readout was a compressed-sensing EPSI with random blips encoding in the phase 

encode (x-y) direction to achieve rapid 3D dynamic acquisition (15). I imaged 

(N=20) TRAMP mice with high- or low-grade tumor and found high correlation 

between the HP-13C metabolism and the histochemical, gene expression and enzyme 

activity assays. Significantly higher pyruvate-to-lactate conversion rates (kPL) were 

found in high-grade tumors, which correlated well with the high LDH expression 

and activity. Significantly reduced urea distribution was also found in high-grade, in 

agreement with the highly hypoxic IHC assay. Metabolism-perfusion mismatch in 

high-grade tumor can be an indication of more aggressive cancer phenotype and 

thus poor prognosis. The animal data showed great potential of this 3D dynamic 

imaging method for clinical translation. 

In the project descried in Chapter 4, I investigated the improvements needed 

on experimental setup, sequence design, acquisition and reconstruction to translate 

the 3D dynamic method for clinical prostate cancer imaging. The key translational 

challenges were larger imaging volume, reduced peak RF power for the human RF 

exciter, and increased B1 field inhomogeneity. First, new spectral-spatial pulses 

were designed that significantly decreased the required peak RF power. FID 

acquisition mode was applied, DSE refocusing pulses were removed, and spatial 

resolution was optimized to fit human prostate. Secondly, phantom testing and 

animal studies were conducted to investigate SNR and quantitation in the context of 
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clinical setup and modified 3D CS-EPSI sequence. I found that the FID acquisition 

mode was not only less susceptible to reduced transmit power and B1 

inhomogeneities, but provided comparable SNR performance to the DSE acquisition. 

Moreover, increasing the imaging volume did not deteriorate, and even improved, 

the in vivo image quality and SNR from animal studies, suggesting that the 3D CS-

EPSI acquisition was robust to clinical translation with modification of sequence 

design and parameters. It also demonstrated the scalability in acquisition, 

reconstruction and quantitative analysis. 

For the research in Chapter 5, I focused on quantitative methods for 

estimation of cancer metabolism and perfusion. As is evident from human and 

animal HP-13C studies, quantitation of in vivo pathophysiology and pharmacokinetic 

parameters provide invaluable information on cancer aggressiveness and likely 

clinical outcomes. Here I proposed a design strategy for variable flip angle schedule 

that, as compared to prior methods, is substantially less sensitive to B1 field 

inhomogeneities, while retaining the desirable characteristics of previous designs 

such as SNR. This scheme was validated through simulations, animal studies, and 

finally applied on patient exams with excellent SNR performance. Secondly, good 

kinetic models and fitting are also crucial to optimally extract information from the 

temporal evolution of HP-13C signal. I compared the “goodness” of different kinetic 

modeling strategies for kPL using datasets from clinical and preclinical studies. 

Lastly, MR acquisition methods may also introduce systematic factors into 

quantitation. Here I identified and investigated several sequence components and 

design parameters that can impact kPL estimation on the acquisition end. These 
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factors are especially important in the context of clinical translation, where 

sequence modification are commonly needed for transmit power and B1 

homogeneity considerations. 

 

Chapter 2 Background 
 

2.1 Introduction to Hyperpolarized 13C MRI 

2.1.1 Introduction to Nuclear Magnetic Resonance 

Many atoms with odd numbers of protons possess an intrinsic quantum 

property called nuclear spin(16,17).  Atom nuclei, such as 1H, 13C, 31P and 35Cl, that 

have an angular momentum I, enable observation via nuclear magnetic resonance 

(NMR) absorption spectra.  First I use proton(1H), the most commonly used nucleus 

for NMR, as an example. Proton has two spin states, which are 1/2(spin-up) and -

1/2(spin-down).  When no external magnetic field present, the spin population are 

aligned randomly, making the net magnetic moment  zero. However, when an 

external magnetic field B0 is present, the two spin states no longer have a same 

energy and the resulting energy difference causes more spins to align parallel with 

B0, creating a net magnetic moment vector. These spins “resonate” at a specific 

frequency called Larmor frequency , which is defined as 

 = B0.  

where  is the gyromagnetic ratio of the nucleus. In another word, when a 

radiofrequency pulse B1 is applied right at the Larmor frequency, the spins will be 

excited by the pulse, and emit a radiofrequency wave that can be picked up by NMR 
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detectors. Such magnetic resonance phenomenon forms the basis of modern NMR 

spectroscopy and MRI imaging. The most commonly used nucleus is proton, since 

humans consist of 70% water, and so do many other living organisms. The 

abundance of proton provides a strong signal for NMR detection.  

MRI has become a standard diagnostic modality that is widely available in 

medical center and institutions around the world. MRI has excellent soft tissue 

contrast and can be advantageous for imaging regions such as brain, abdomen and 

pelvis. Many specialized techniques and applications have been developed for MRI. 

For example, MR angiography(18,19), functional MRI(20,21), MR-guided 

ultrasound(22,23), MR spectroscopy(24,25) and diffusion MRI are some advances 

used clinically and/or for scientific research. 

 

2.1.2 Physics Concepts of Dynamic Nuclear Polarization 

 

Figure 2.1 A) The DNP technique transiently transforms the nuclear spin into an 
excited state, giving more than 10,000x SNR enhancement compared to thermal 
equilibrium. B) Illustration of electron and 13C nuclear polarization as a function of 

A) C) 

B) 
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temperature. The DNP process is most efficient with subkelvin temperature. (26) C) 
DNP utilizes Nuclear Overhauser Effect to transfer polarization from free radical 
electrons to the 13C nuclei. 

 
Carbon is the fourth abundant chemical atom in the universe. A fundamental 

element that composed all organic molecules, it is said to be the basis of life. The 

capability to image carbon using magnetic resonance is a gateway to understanding 

organic phenomena of living systems, for instance, physiology, metabolism, 

biochemical processes, and even diseases such as cancer. Approximately ~20% of 

weight in human body is carbon. Also, 99% of the carbon is the MR-inactive 12C 

nucleus due to its natural abundance, and only 1% of the carbon is the detectable 

13C. Moreover, the gyromagnetic ratio of carbon is about 1/4 compared to proton, 

further limiting the sensitivity of 13C MRI.  

Recently, the emerging technique of dissolution dynamic nuclear polarization 

(DNP) has enabled the new molecular imaging approach known as hyperpolarized 

13C(HP-13C) NMR spectroscopy and HP-13C MRI.  DNP is a nuclear-physics process 

which increases the nuclear spin polarization by up to 50,000 fold or more 

compared to that of thermal state (Figure 2.1A)(1,2). Back in 1953, Albert 

Overhauser proposed the theoretical phenomena where nuclear polarization can be 

transferred from one spin species to another via cross-relaxation(27,28). More 

specifically, he hypothesized that the nuclear spin can be enhanced when the 

conducting electrons are irradiated by a microwave source in some metals, which is 

now known as the Nuclear Overhauser Effect. 

The modern DNP process is build off the concepts of Nuclear Overhauser 

Effect. First, the subject solid-state compound is “doped” with free radicals with 
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their unpaired electron spins. The electrons are driven to high polarization state 

when irradiated by a microwave source under an external magnetic field, and the 

polarization was transferred from radicals to the subject compound. Such 

polarization and transfer process is most efficient under very low temperature, 

typically below 1K, where the electron polarization can reach ~100%, and a long 

relaxation T1 for both electrons (10-100s) and the solid-state compound (>1000s), 

as illustrated in Figure 2.1(B). Another factor that affects the polarization level is the 

magnetic field strength, and it is shown that 4.6-5T field optimizes the 

polarization(1,26,29).  

The second step of dissolution DNP is dissolving the solid-state compound 

using superheated water. The dissolution process yields a solution of the 

hyperpolarized compound at body temperature, and is available for direct injection 

into preclinical or clinical subjects. The dissolution DNP process was first 

demonstrated by Ardenkjaer-Larsen et al in 2003(1). Since then, several models of 

polarizers has been developed for HP-13C MRI studies, and strong polarization level 

has been demonstrated on many 13C-labelled compounds by optimizing the 

polarizer design and polarization conditions. 
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2.1.3 Polarizer Instruments for Clinical and Preclinical DNP 

 
Figure 2.2 Here some DNP polarizer instruments are depicted A) The prototype alpha 
polarizer is the pioneer dissolution DNP instrument. Its design combined ease-of-use 
and reliability, and was and still is a workhorse for both in vitro and in vivo animal 
studies. B) The Clinical Spinlab polarizer features paralleled polarization. With the 
sterile fluid path and QC system, it was designed for human injection. 

 

Several models of polarizers have been developed since the advent of 

dissolution DNP. The aim of each design had been to reach higher polarization, 

paralleled polarization of multiple samples, larger quantity per sample, sterilization 

of the DNP process, and the ability to produce HP-13C tracers with robustness. 

Ultimately, the biomedical goal of this research is to perform HP-13C MR studies 

using dissolution DNP on human subjects in the clinical setting to benefit patient 

care. 

The earliest version of the dissolution DNP polarizer was described by 

Ardenkjaer-Larsen et al(1), as shown in Figure 2.2(A). The “alpha” system consists 

A) B) 
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of a cryostat, a narrow-bore high field magnet, a variable temperature insert (VTI), 

and a microwave source. The HP-13C prep was first loaded into a sample cup, which 

was lowered into the VTI, to the center of the magnet bore. The cryogenic 

temperature in VTI was maintained at ~1.3 K by the supply of liquid helium at low 

pressure to achieve high polarization efficiency. The sample was constantly 

irradiated by the microwave source during the buildup process, and a small NMR 

coil allows monitoring of polarization process. Prior to dissolution, the sample was 

lifted out of the helium bath. Subsequently, boiling-hot solvent was rapidly 

discharged into the solid-state sample to quickly dissolve and mix, and the HP-13C 

solution was dispensed into a receiver flask. 

Since the first models built, the “alpha” polarizer was made into a commercial 

product (HyperSense, Oxford Instruments, UK) and has been used globally by many 

research sites for HP-13C studies. While the HyperSense polarizer is a workhorse for 

in vitro NMR studies and preclinical animal scans, the demand for clinical translation 

of the HP-13C MRI calls for a new instrument design that can produce clinical dose 

HP-13C boluses that is safe for human injection. 

A prototype polarizer for clinical HP-13C studies was developed by GE 

healthcare (Waukesha, WI) (30,31). The polarizer, named SpinLab, has 4 channels 

for simultaneous buildup of multiple samples (Figure 2.2B). The solid-state sample 

and dissolution media were packaged into a “fluid path” system, which essentially 

forms a semi-closed system that is isolated from the polarizer instrument. This 

allows the fluid path to be prepared in a clean room environment, in order to meet 

the sterility and safety requirements of investigational new drug (IND) program of 
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the FDA. While the overall system design is drastically different from the “alpha” 

polarizer, the Spinlab instrument retains the essential elements of a hyperpolarizer, 

namely a cryostat, a high-field magnet, a microwave source and a NMR buildup 

monitor. 

Another essential compartment for clinical studies is the quality control (QC) 

system. Upon dissolution, the QC system measures key parameters including the 

polarization level, solution pH, concentration, temperature and radical 

concentration. This allows a pharmacist to determine whether the solution is to be 

accepted or rejected for human injection. 

The SpinLab polarizer operates on an “airlock” system, which is similar to the 

DNP insert on HyperSense. After loading the fluid path into the Spinlab, the cryo vial 

that holds solid-state sample was lowered through the airlock into the cryostat for 

buildup. The dissolution media, on the other hand, stays in a syringe inside a heater-

pressure chamber, where the liquid is superheated to 130° C. When the dissolution 

commences, the cryo vial was lifted from the cryostat, and superheated media was 

discharged into the solid-state sample through the inner tube of the fluid path. The 

dissolved sample is then chased out via the outer tube to the receiver assembly. 

 

2.1.4 Hyperpolarized 13C Imaging 

The development of the dissolution DNP technique provides more than 

10,000 fold increase of polarization on 13C-based tracers. The high polarization, 

combined with the ease to label 13C onto biochemical molecules, has created a new 

field in MRI that previously had not been possible using natural abundance, 
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thermally-polarized 13C imaging. HP-13C imaging has since become a powerful tool 

that finds applications as an in vivo probe for a wide range of physiological and 

pathological phenomenon. 

One key application of HP-13C MRI is to detect cancer metabolism safely and 

noninvasively with high spatiotemporal resolution. The Warburg effect, as proposed 

by Otto Warburg et al. half a century ago, states a biochemical process where cancer 

cells exhibits high LDH enzymatic activity, which drives highly accelerated 

conversion of pyruvate to lactate(3,32). Injecting HP [1-13C] pyruvate and imaging 

the HP lactate production enables the visualization of such cancer metabolism. 

Nowadays it is widely accepted that cancer metabolism is strongly associated with 

the survival, growth, progression and metastasis of many types of cancer, and can be 

a good predictor of cancer aggressiveness (33-35). 

Another important physiological parameter in cancer is perfusion. Poor 

perfusion and hypoxia was known to associate with aggressive tumor phenotypes 

and poor clinical outcomes (36-38). In high-grade tumor, the rapid cellular export of 

lactate, in addition to poor perfusion, give rise to an acidic tumor 

microenvironment. The acidification promotes cancer aggressiveness and 

metastasis by degradation of extracellular matrix, increasing angiogenesis and 

inhibiting immune responses.  
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Figure 2.3 Examples of HP-13C images from prior studies. A) Lactate map overlaid on 
T2-w references on a TRAMP tumor (5) . B) pH imaging of TRAMP tumor using HP-13C 
bicarbonate buffer suggested acidification of tumor microenvironment. (39) C) 
Imaging of in vivo redox potential using HP-13C dehydroascorbate and vitamin C. (40) 
D) Perfusion imaging of mouse brain using tripolarized HP-001, t-butanol and urea 
can be used to differentiated perfusion versus permeability. (41)  E) Lac/pyr map of 
treated xenograft tumor in rat brain showed significantly altered metabolism. (42) 

 

A good perfusion tracer has to be metabolically inactive and has low toxicity. 

Compared to proton perfusion imaging, signals generated by HP 13C tracers is 

relatively proportional to tracer concentration, with the SNR enhancement by 

hyperpolarization. Beyond cancer, HP 13C has been applied to renal functional 

imaging(43,44), brain perfusion(42,45) and cardiac imaging(46,47). Several HP 13C 

tracers have been investigated for perfusion imaging, such as 13C urea, [13C]HMCP 

and [13C]t-butanol(41). 

A) C) B) 

D) E) 
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The microenvironment has a pivotal role in cancer progression and 

invasiveness. Several works has reported HP 13C-based pH probe, such as 13C-

bicarbonate(39,48,49). The chemical equilibrium between bicarbonate and carbon 

dioxide is dictated by in vivo pH, and the exchange is very rapidly driven by carbonic 

anhydrase. 

HCO3- + H+ ↔ CO2 + H2O 

pH value offers invaluable information about changes in tumor 

microenvironment. The high lactate production and rapid excretion of lactate, 

combined with poor perfusion creates an acidic microenvironment. Such 

environment promotes cancer invasiveness by degradation of tumor extracellular 

matrix, and may induce its chemo-resistance. 

Other than its significance in cancer microenvironment, pH is also an 

important in reflecting pathologic conditions such as ischemia, inflammation and 

infection. HP-13C probes provide the high SNR for in vivo pH imaging which enabled 

high resolving power. 

 

2.1.5 Imaging Methods for HP-13C MRI 

Imaging of HP-13C species is inherently limited by the spin-lattice relaxation 

(T1) rate of the 13C-labelled biochemical molecules. For many commonly used 

molecules in HP-13C MRI, such as pyruvate and lactate, T1 is primarily limited by 

chemical shift anisotropy (CSA), and is approximately ~60 seconds ex vivo in a 3T 

magnet. CSA is proportional to the square of main field (B02)(50). While dipolar 

coupling is arguably the most important factor that affects T1 of 13C compounds, 
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those molecules with strong dipolar coupling, such as a direct C-H bond on the 

labelled carbon, will have a very short T1, and render them unsuitable for HP-13C 

imaging. 

 

 
Figure 2.4 A few types of pulse sequences for rapid HP-13C acquisition as examples. A) 
2D multislice EPI sequence. B) balanced SSFP sequence. C) Spiral CSI sequence. D) 2D 
EPSI sequence. 

 

A variety of acquisition strategies have been proposed for HP-13C MRI used in 

different applications. One family is the purely imaging-based sequence, such as 

single-shot or multi-shot echo-planar imaging (EPI, Figure 2.4A) (51,52), multislice 

spiral sequence (Figure 2.4C) (47), and balanced steady-state free precession 

A) 

C) 

B) 

D) 
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(bSSFP, Figure 2.4B) sequences (53,54). Another family is the spectroscopic-imaging 

sequences, also known as chemical shift imaging (CSI), that acquire spatially-

resolved spectroscopy data. Examples of CSI-based sequence include the 

conventional phase-encode CSI, the 2D and 3D echo-planar spectroscopic imaging 

(EPSI, Figure 2.4D)(55,56), spiral CSI(57,58) and concentric acquisition(59). A 

group of specialized acquisition strategy has also been reported, such as 

IDEAL(60,61) and k-t spiral sequences (62).  

The imaging-based sequences are fast and relatively robust to motion. These 

sequences utilize a spectral-spatial excitation followed by readout imaging 

gradients. Imaging each metabolite separately means that flip angle scheme can be 

designed and optimized individually for each resonance. For the 2D multislice EPI 

sequence, the Nyquist ghosting can be reduced by applying a phase correction 

derived from a reference 1H scan using the same EPI readout trajectory (52). The 

EPI sequence is also relatively robust to off-resonance and gradient trajectory 

distortions. The 2D multislice EPI sequence shows excellent performance on both 

human and animal trials. The spiral sequence is SNR efficient and less sensitive to 

flow and motion (63), making it particular suitable for cardiac imaging. Several 

studies have demonstrated imaging of pyruvate, lactate and bicarbonate in porcine 

and human heart using the multislice spiral sequence(46,64). The bSSFP sequence, 

on the other hand, takes advantage of the long T2 relaxation times of 13C species to 

effectively use magnetization. Just like its proton counterpart, HP-13C bSSFP 

sequence achieves high SNR efficiency and provides good spatial resolution. 
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Preclinical rat and tumor mice imaging has been demonstrated using bSSFP with 

high spatiotemporal resolution (44,53). 

The spectroscopic imaging technique acquires spectral information for each 

spatial voxel. Such spectral information reduces the need for a priori knowledge or 

assumptions about the spectral resonances of hyperpolarized compounds. It makes 

the CSI sequences relatively robust to off-resonances, and the amplitude and shape 

of each peak can spatially reveal information about the chemical behavior and spin 

coupling of each compound (65). Moreover, it enables detection of all 13C 

resonances across the spectral bandwidth, which can potentially reveal secondary 

or new metabolic pathways. The conventional CSI encodes for each spatial k-space 

location, which allows for good spectral bandwidth. However, such method requires 

numerous phase encodes, making it challenging to image dynamically. 

One basic way of accelerating spectroscopic imaging can be achieved by 

interleaving spectral and spatial encoding using techniques such as EPSI and spiral 

CSI (62). This type of sequence has reduced bandwidth compared to conventional 

phase-encoded CSI due to the shortened echo-spacing, or effectively a coherent 

undersampling in the spectral dimension. Fortunately, the sparsity of HP-13C 

spectrum and a priori knowledge of resonances can be utilized to resolve the peaks 

even in the presence of spectral aliasing. 

An interesting acceleration strategy fully utilizes the a priori knowledge 

about 13C chemical species to design the undersampling parameters and 

reconstruction methods. The IDEAL method (61), similar to fat-water DIXON 

imaging (66), uses spiral readouts with carefully-designed echo time shifting to 
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encode in the spectral dimension. An FID acquisition was applied separately to 

extract the spectral prior knowledge. With the predefined HP-13C resonances 

frequencies, the reconstruction reduces to a matrix inversion problem. A k-t spiral 

acquisition trajectory further eliminates the need for interleaves, enabling 

extraction of spatial and spectral information within a single-shot excitation. 

Reconstruction was performed by jointly solving for spatial and spectral encoding 

using a similar mathematical theory. 

 

2.1.6 Randomly-undersampled Acquisition and Compressed-sensing 

Reconstruction for Accelerated HP-13C MRI   

 
Figure 2.5 A) The 3D dynamic compressed sensing EPSI (3D CS-EPSI) sequence offers 
5D acquisition (3 spatial, 1 spectral and 1 temporal ) with high spatiotemporal 
resolution. The sequence features a spectral-spatial RF pulses using variable flip angle 
scheme and multiband excitation. It was followed by double spin-echo refocusing and 

A) 

B) 

C) 

Lustig et al, MRM, 2007 
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compressed sensing readout using random blips encoding. B) An illustration of k-space 
trajectory demonstrates the undersampling method by random walk in the kx-ky 
space. C) Illustration of under-sampled reconstruction, reproduced here from Lustig’s 
work. (67) 

 

Since the first paper of sparsely-sampled MRI by Lustig et al.(67), 

compressed sensing (CS) has been implemented as a built-in feature for the proton 

sequences on almost all the commercial MRI scanners. Accelerated acquisition not 

only means less patient discomfort, but reduces the total cost of scan considering 

the high MRI operation cost per hour. This fast imaging technique can be 

particularly advantageous to HP-13C MRI sequence (12,15), where the imaging 

window is restricted by the inherent hyperpolarized T1 to about one minute.  

Compressed sensing exploits the sparsity in some MR image domains. There 

are several key requirements to apply the CS, excerpted as follows. 1) The data must 

be sparse in some domains. 2) Undersampling pattern has to create incoherent 

aliasing in the sparse-transform domain. 3) A non-linear reconstruction algorithm 

that enforces both sparsity and data consistency. 4) Sufficient data SNR.  

Lustig et al provided an excellent illustration how CS works in their seminal 

paper(67), which is reproduced here in Figure 2.5(C). A equispaced undersampling 

creates artifact of wrapped-around and repeated signal peaks. Incoherent 

undersampling, on the other hand, creates an interference pattern that contains the 

both the signal and interference component. If the signal is of sparse nature in some 

domains, the stronger signal peaks can be “detected” using a thresholding. The 

detected peaks are then applied to back-calculate the interference pattern. The 

interference pattern can be subtracted from the signal, exposing the weaker signal 
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peaks (equivalently enforcing data consistency). After a given numbers of iterations, 

both the strong and weak components can be picked up by CS.  

Lustig mathematically formulated the reconstruction algorithm as follows. 

minimize ‖Ψ𝑚‖1 s.t. ‖𝐹𝑢𝑚 − 𝑦‖2 < 𝜖 

where m is the image of interest,  is the sparsifying transform, Fu is the 

undersampled Fourier transform, and y is the measured k-space signal with 

undersampling. 

A 3D compressed-sensing EPSI sequence (3D CS-EPSI), originally developed 

by Hu et al. (11,15), was used throughout this dissertation(Figure 2.5A). The 

sparsity criterion is fulfilled by the sparse nature of HP-13C spectrum. Moreover, the 

continuity in time domain can be converted into sparsity using a wavelet-in-time 

transform. The incoherent undersampling criterion is fulfilled by a randomly-

blipped sampling pattern in the kx and ky direction (Figure 2.5B), paired with the 

flyback EPSI readout that fully samples the kz-kf dimensions. An iterative nonlinear 

sparsity/consistency algorithm enforces L1-minimization on the undersampled 

dataset. The final criteria call for the SNR, which is consistently at the order of 30 for 

pyruvate and lactate in TRAMP prostate tumor, compared to the minimum 

requirement of 3. 

A recently published work (68,69) utilizes undersampled phase-encoding, 

coupled with rapid 2D EPI readout to create a highly accelerated 3D EPI sequence. It 

was further integrated with multichannel imaging using a SAKE-type calibration-

less reconstruction algorithm. A 4 fold undersampled 3D image with FOV = 3.2 x 3.2 

x 3.2 (cm), matrix size = 48x48x48 (spatial resolution = 6.7mm isotropic) was 
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reported using the 3D EPI. Another recent work (53) develops a HP-13C bSSFP 

sequence that undersamples in the two phase-encode dimensions. An FOV = 

3x3x2.5(cm), matrix size = 20x20x17 dynamic acquisition was reported with 2 fold 

undersampling, giving 1.4 s temporal resolution. 

Yet another recent work (70) further extended the 2D EPSI sampling pattern 

to incorporate a stochastic time delay in addition to the random-blipped 

undersampling in kx-ky for incoherent undersampling in k-t space. The stochastic 

time delay creates a pseudo-long readout time, which effectively increases the 

spectral bandwidth. A 3.8x undersampled 2D EPSI was reported with FOV = 24x24 

(mm) and matrix size = 8x8 and spectral bandwidth = 5kHz, giving 3 s temporal 

resolution.  

In general, distributing the random undersampling along more numbers of 

dimensions creates higher incoherence. For example, 2 fold undersampling along 3 

dimensions creates higher incoherence than 8 fold undersampling in a single 

dimension. As incoherence aliasing is a requirement for CS reconstruction scheme, 

designing for multiple-dimension undersampling improves CS performance, and 

potentially allows for higher undersampling ratio. In the stochastically-delayed 2D 

EPSI sequence, the random undersampling was across 4 dimensions (kx, ky, kf, 

dynamic). The 3D CS-EPSI sequence has 3 dimensions (kx, ky, dynamic), and 3D 

bSSFP (kx, ky, dynamic) and 3D EPI (kx, dynamic) each have 3 and 2 dimensions of 

undersampling, respectively. 
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2.2 Prostate cancer 

2.2.1 Introduction to prostate cancer 

Since the first diagnosis of prostate cancer in the early 1850s, the disease has 

developed into a serious health clinical management problem facing the US male 

population, as well as a global healthcare burden. In 2016, an estimated 180,000 

new cases of prostate cancer have been diagnosed, and 26,000 men died of the 

malignancy in the United States(7). Prostate cancer is prevalent in older men, with 6 

out of 10 incidences among population over age 65.  

Looking at the epidemiology, the incidence of prostate cancer also differs 

among regions of the world(8). For instance, high incidence is found in North 

America, Northern and Western Europe, Australia and New Zealand. Lowest 

incidence is found in Asian regions such as China and Japan. A part of such variation 

can be accounted for by the difference in population age structure between 

developed and developing countries. Nevertheless, variation still exists after age 

standardization. 

 

Figure 2.6 A) Prostate cancer is the 2nd most deadly cancer in men. B) Global 
incidence of prostate cancer by country. 

 

A) B) 
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2.2.2 Screening and diagnosis of prostate cancer 

Screening of prostate cancer was designed with the goal to improve the 

clinical outcome by early detection and diagnosis of the malignancy at an early, 

asymptomatic stage for the population at risk (8,71). The most common measures of 

prostate cancer screening are serum prostate-specific antigen (PSA) and digital 

rectal exam (DRE)(72). PSA is a glycoprotein produced by prostate epithelial cells. 

Elevation of PSA can suggest pathological conditions, where tissue barrier between 

lumen and capillary is disrupted, allowing higher PSA to be released into the blood. 

DRE remains a standard clinical practice for prostate cancer diagnosis due to its 

easy accessibility and usefulness to detect nodules, fibrosis or abnormal masses and 

asymmetry in prostate. Although DRE detection is limited to posterior and lateral 

aspects of the prostate gland due to anatomical restrictions, the fact that 85% of 

prostate malignancy arise from the peripheral zone (PZ) ensures that DRE is still an 

effective tool. While serum PSA test have lower positive predictive value (PPV) and 

DRE is low in sensitivity, combination of the two methods has suggested 

improvements in early detection rate. 

The effectiveness of prostate cancer screening remains controversial. Some 

randomized, multi-site studies found improvement in patient survival at follow-up 

in subsequent years (73,74); however, some similar studies did not find any 

significance between the screened and control groups. In general, there is no 

definitive evidence so far that screening and early treatment reduces mortality. 

Despite the controversies, prostate cancer screening programs are 

implemented in many regions worldwide as a healthcare measure, especially in 
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developed countries such as US and in Europe, as the incidence rate in these regions 

are higher than developing countries. The practice and sub-population subjected to 

screening, however, differs based on the healthcare policies in each country. 

 

2.2.3 Clinical management of prostate cancer 

Prostate cancer demonstrates a tremendous biodiversity, and the result is a 

broad range of clinical management options accordingly. For more indolent 

diseases, the “active surveillance” or “watchful waiting” approach has been the 

standard of care, where patients, who do not need active therapy, are closely 

monitored using measures such as PSA, DRE, and imaging (24,75,76). The 

monitoring approaches and frequencies depend on symptoms that the patient 

presents with, and also accounts for other health conditions and chronic diseases, 

especially among older patients, in order to improve overall life quality and life 

expectancy. A variety of treatment options are available for more aggressive 

cancers, including androgen-deprivation therapy (ADT), prostatectomy, focal 

therapy, radiation therapy, chemotherapy and many more.  

ADT is a standard-of-care therapy for metastatic and recurrent prostate 

cancer. The growth and progression of prostate cancer can be heavily driven by 

androgens. A variety of strategies has been developed, including inhibiting the 

production of androgen precursors, inhibition of androgen, androgen receptors, or 

combination of the above. One common form of chemotherapy targets the 

luteinizing hormone-releasing hormone (LHRH). This type of drugs works by either 

serving as a LHRH homolog or antagonist, and in turn inhibits testosterone 
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production. The anti-androgens, on the other hand, blockade androgens from 

binding to the androgen receptors on prostate cells (77) . The likelihood of 

developing castration-resistant prostate cancer (CRPC) is high for patients treating 

with ADT (78). 

Radical prostatectomy is the surgical approach to treat localized or locally-

advanced prostate cancer. Some common ways for radical prostatectomy includes 

retropubic prostatectomy, radical perineal prostatectomy, and robotic-assisted 

laparoscopic prostatectomy (RALP) (79,80). RALP is currently the most common 

surgical approach in USA, which features significantly less blood loss and pain 

compared to other types of prostatectomy. Advantage of the surgical approach is the 

availability of tumor tissue for a comprehensive pathological analysis which is can 

significantly improve evaluation, staging and prediction of prognosis. 

Many more options, such as external beam radiation therapy, chemotherapy 

and brachytherapy are also often chosen either as a primary treatment or in the 

context of adjuvant therapy depending on the stage, extent and Gleason score in the 

clinic (8,76). 

 

2.2.4 Staging and Pathology of prostate cancer 

Early diagnosis is an important, if not the most important factor to clinical 

management of prostate cancer. Following a confirmed diagnosis, assignment of 

prostate cancer stages on individual patients is the key not only to find out the 

extent of cancer to predict prognosis, but to evaluate and formulate a most 

appropriate treatment plan for the patient.  
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The TNM classification system, developed by Union for International Cancer 

Control (UICC), has been globally accepted as a standard for staging cancer (81). The 

TNM staging is assigned based on the extent of primary tumor site (T), the regional 

lymph node involvement (N), and the presence and extent of distant metastatic 

sites. The information leading toward TNM classification is based on finding from 

previous clinical exams, physical exam (e.g DRE), lab tests (e.g PSA), biopsy, 

pathology and imaging, which are used to better define the location, extent and 

metastasis of prostate cancer.  

The Gleason grading system is the most common way to assign pathological 

grades of prostate cancer (82). The Gleason grade, which provides valuable 

information regarding cancer prognosis and guiding therapy, was integrated into 

the classification of cancer stages. The Gleason score consists of the addition of two 

numbers. The first number represents the differentiation level of the most common 

pattern (primary) found in tissue biopsy, and the second number being the second 

most common (secondary) pattern. The differentiation level for each pattern ranges 

from 1-5, with 1 being the most well- differentiated and 5 being the most poorly-

differentiated tissue. For instance, Gleason score 4+3 means the primary pattern is 

4, and secondary pattern is 3. The criteria for Gleason score assignment is 

summarized in Table I (82,83). 
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Figure 2.7 Gleason pattern was defined by the differentiation level of the prostate 
tumor pathology, with 1 being the most well-differentiated and 5 the most poorly-
differentiated pattern. Gleason score is assigned as the addition of most common 
pattern and second most common pattern. 
https://training.seer.cancer.gov/prostate/abstract-code-stage/morphology.html 

 
Table I. 
Gleason pattern Description 
1 Very well-differentiated growth of closely 

packed but separate, uniform, rounded to 
oval, medium-sized acini. 

2 Circumscribed nodule of small acini, with 
some variation in size, which are less 
tightly packed than in pattern 1 and may 
show minimal peripheral invasion into 
stroma but never into benign lobules. 

3 Glands infiltrating benign lobules and 
stroma. These glands are discreet 
microacinar and occasionally macroacinar 
structures, frequently with irregular 
contours. 

4 High-grade and poorly differentiated 
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carcinoma growth, with raggedly 
infiltrative masses, or chains or cords of 
malignant epithelial cells. The cellular 
arrangements can be fused microacinar, 
cribriform, or papillary. 

5 The highest grade, constituting an 
essentially undifferentiated 
adenocarcinoma. Glandular architecture 
is completely lost, and the tumor cells 
grow in single file, nests, and sheets. 

 
The current clinical practice of prostate biopsy is done using MR-guided 

transrectal ultrasound (TRUS) (84,85). It consists of transrectal sampling of 10-14 

bilateral biopsy cores of prostate tumor tissue. However, the predictive value of 

biopsy Gleason score still remains controversial. While some studies found high 

correlations between the biopsy Gleason score and that from radical prostatectomy 

(RP), others suggest a high percentage of discrepancy between the two (86-88). The 

discrepancies were more commonly found in low- and moderate- grade patients. 

Several reasons can possibly account for the discrepancies, including sampling bias, 

inter-pathologist variability, the borderline features and regions of transition 

between two grades. Upgrades (46%) were found to be more usual than downgrade 

(18%) in one study. (87)  

Even with the abundance of diagnostic information we can gather on 

individual patients, including DRE, PSA, biopsy/pathological and imaging data, 

there’s still substantial debate over the accuracy of diagnosis due to the relative high 

variation and hence the low predictive value. Controversies also exist with the 

prostate cancer management. The debates partly translate from the limited 

diagnostic abilities. More important issues stems from the efficacy of treatments, in 



29 
 

addition to side effects and the advances in new type of therapy, such as immune 

therapy and personalized medicine (89,90). Therefore, in this dissertation research 

I aimed to advance the clinical HP-13C imaging of prostate cancer, especially the 

acquisition techniques and quantitation methods. The overall goal of this 

bioengineering research is to develop non-invasive diagnostic tools for evaluating 

prostate cancer aggressiveness, in order to help both the clinical process of 

diagnosis and outlining a treatment plan for individual patients. 

 

2.3 Multi-parametric Imaging of Prostate Cancer 

MRI is becoming a standard clinical tool in diagnosis and grading of prostate 

cancer (76,91). Integrated with other diagnostic tool such as DRE, PSA and TRUS-

guided multi-core biopsy, MRI offers visualization of the entire prostate gland, 

including the central zone (CZ), transition zone (TZ) and peripheral zone (PZ). In 

this sense, MRI complements other imaging modalities in resolving intra- and 

periprostatic anatomy. The standard MRI protocol for prostate cancer consists of T2-

weighted imaging (Figure 2.8 A,B), diffusion-weighted imaging (DWI, Figure 2.8 D,E) 

and dynamic contrast-enhanced (DCE, Figure 2.8 F,G) scans. At UCSF, proton 

spectroscopy (Figure 2.8C) is also a standard imaging practice for prostate patients. 

This dissertation will focus on the hyperpolarized 13C spectroscopy and imaging, 

which is shown to be promising for both preclinical and clinical prostate cancer MRI.  
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2.3.1 Proton Imaging 

T2-weighted sequence provides detailed anatomical information, such as 

zonal anatomy, prostate capsule, periprostatic soft tissue, and urethra (24,76). 

Importantly, it also highlights prostatic abnormalities at the same time. Normal 

prostate PZ tends to have high signal intensity due to its high ductal volume, while 

the tumor in those regions tend to have lower signal due to higher cellularity and 

reduced free-water. The low signal is most likely due to the loss of ductal structure 

of the normal prostate gland. PZ prostate cancer nodules often appears as a round-

shaped low signal region; however, central gland tumors tend to be more 

amorphous with ill-defined margins, and are therefore more challenging to diagnose 

using T2-weighted images alone. Moreover, benign prostate hyperplasia (BPH) can 

exhibit a loss of ductal structure and hypointensity on T2w images, thereby limiting 

the sensitivity. Nevertheless, T2w is still a center piece of prostate cancer imaging, 

especially for detection of cancer invasion beyond the prostate. One T2-weighted 

MRI sequence commonly used in the clinic is T2-FSE. 

DWI detects the microscopic diffusion motion of water molecules. Pathologic 

conditions may change the normal ductal structure and cellularity in the prostate, 

thereby changing the diffusion phenomena (76,92). The DWI acquisition is normally 

done using a single-shot EPI or single-shot FSE sequence in the presence of diffusion 

gradients. Diffusion is quantified using apparent diffusion coefficient (ADC), with 

higher ADC indicating higher freely-diffusible water or less dense tissue component.  

DCE is a common imaging sequence to detect blood flow, perfusion and 

permeability (91,93). Gadolinium is a contrast agent that is typically only 
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extracellular. The injection of Gadolinium-based contrast agents (e.g. Gd-DTPA) 

enhances the signal intensity in the vasculature and perfused tissue.  

Pharmacokinetic parameters, such as ktrans, can be calculated based on the 

difference between pre-contrast (without Gd) and post-contrast images. 

 

Figure 2.8 Examples of multiparametric proton imaging of prostate cancer. A) and B) 
depicts T2-weighted images of cancer at left apex. C) Proton spectroscopy suggest 
higher choline+creatine/citrate ratio in cancer versus contralateral. D) and E) are 
ADC and high b-values images, showing low ADC and high intensity in high-b maps, 
respectively. F) and G) shows DCE uptake and washout images.  Figures excerpted 
from Kurhanewicz’s review article. (76) 

 

 

2.3.2 Proton Spectroscopy 

Changes of proton spectroscopic information from benign prostate tissue to 

cancer involves alteration of both ductal morphology and cellular function. Healthy 

prostate epithelial cells are known to synthesize and secrete citrate, while the high 

choline content is associated with prostate cancer. This is due to the high expression 
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of zinc transporters in the epithelial cells, and zinc in turn suppresses the citrate-

degradation enzymes. In cancer, loss of zinc and increased oxidation of citrate 

elevate the energy production (76,91). 

Choline and its derivatives are important for the synthesis of phospholipid 

membranes, which is strongly linked to tumor growth and metastasis (76). The 

(Choline+Creatine)/Citrate ratio has been widely accepted as a proton 

spectroscopic biomarker for prostate cancer, as strong link was found with high 

CC/C ratio and prostate malignancies (76,91). The acquisition typically utilizes the 

PRESS + 3D CSI sequence (94,95), where a spatially-resolved spectroscopy is 

obtained, and the 3D coverage is important to cover the zonal anatomy of the 

prostate gland, including both the central gland and peripheral zone. Technical 

challenges of 1H MRSI include air-tissue interface and lipid suppression that 

requires accurate voxel-selection and magnet shimming. 

 

2.3.3 HP-13C Spectroscopy 

Hyperpolarized-13C has found a wide range of interest in prostate cancer 

imaging in both scientific research and potential clinical applications. Ex-vivo 

bioreactor studies found high lactate production in human prostate tissue, which 

was driven by high LDH enzymatic activity and increased expression of 

monocarboxylate transporters MCT1 and MCT4 (6). TRAMP prostate tumor mimics 

human prostate cancer both pathologically and metabolically. In vivo HP-13C MRSI 

of TRAMP prostate cancer was able to detect high lactate/pyruvate ratio and high-

grade versus low-grade tumor (5).  
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Furthermore, in 2013, Nelson et al. conducted the first-in-human HP-13C 

MRSI using new RF coils, improved pulses sequences and clinically-safe polarizer 

(96). A range of acquisition strategies has been applied, including 1D dynamic MRSI, 

2D dynamic MRSI and 3D time-averaged MRSI. Regions of high lactate/pyruvate 

ratio agrees with findings of multi-parametric proton MRI data and biopsy results. 

These promising results suggest that the translational HP-13C MRI may be 

clinically significant and highlights the need to integrate HP-13C imaging in multi-

parametric MRI of prostate cancer. With new multi-element coil design, accelerated 

pulse sequences, and a multi-channel clinical polarizer, it is now the time to advance 

HP-13C MRI as a powerful diagnostic tool. 
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Chapter 3 Assessment of Prostate Cancer Aggressiveness 
with Hyperpolarized Dual-Agent 3D Dynamic Imaging of 

Metabolism and Perfusion 
3.1 Abstract 

This study applied a 3D dynamic dual-agent hyperpolarized 13C magnetic 

resonance spectroscopic imaging (MRSI) approach with 13C-pyruvate and 13C-urea 

to investigate differences in urea AUC and metabolism between low and high grade 

tumors in the TRAMP transgenic mouse model of prostate cancer. Dynamic MR data 

were corrected for T1 relaxation and RF excitation and modeled to provide 

quantitative measures of pyruvate-to-lactate flux (kPL), urea ktrans and urea area 

under the curve (AUC) and correlated these parameters with TRAMP tumor 

histologic grade. Significantly higher kPL values were measured for high-grade 

TRAMP tumors. The increase in kPL flux correlated significantly with higher lactate 

dehydrogenase activity and mRNA expression of Ldha, Mct1 and Mct4 as well as 

with more proliferative disease. There was a significant reduction in urea AUC in 

high-grade tumors that was associated with increased hypoxia and mRNA 

expression of Hif1α and Vegf and increased ktrans. In 90% of the high-grade TRAMP 

tumors, a mismatch in urea AUC and kPL was observed, with low urea AUC being 

associated with increased kPL. This urea AUC-metabolism mismatch was also 

associated with lymph node and liver metastases. These findings set the stage for 

using this new dual hyperpolarized agent imaging approach to investigate the 

ability of urea AUC and kPL to image aggressive prostate cancer in patient studies.  
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3.2 Introduction 

A pressing need facing the clinical management of prostate cancer patients is 

an accurate method for distinguishing aggressive, potentially lethal prostate cancer 

from indolent disease. Prostate cancer (PCa) is the second most prevalent cancer in 

American men, with 1 in 6 being diagnosed, but is fatal in only 12% of these cases 

(97).  Active surveillance has emerged as an appropriate management technique for 

patients in whom disease is likely to be indolent (tumors ≤ 0.5 cc and Gleason grade 

≤ 3+3)(98).  New focal therapy approaches are also being considered for men with 

defined regions of localized intermediate risk PCa (moderate size cancers with 

secondary Gleason 4 pattern) that can be clearly identified on imaging (99,100), 

while patients with more aggressive but localized disease are treated with surgical 

or radiation therapy.  Therefore, the ability to localize and provide a non-invasive 

imaging assessment of cancer aggressiveness has become critically important for 

clinical management of men with prostate cancer. The current state-of-the-art for 

imaging localized prostate cancer, multiparametric 1H MRI, has demonstrated the 

ability to localize tumors for subsequent biopsy and treatment, but cannot 

consistently grade tumor aggressiveness accurately in individual patients (100). 

 Increasing evidence points to prostate cancer being a disease strongly 

linked to abnormal metabolism due to changes in key metabolic enzymes (101). 

Also, tumor microenvironment factors such as perfusion (102) have been associated 

with the presence and aggressiveness of prostate cancer.  In this study a new dual 

agent hyperpolarized (HP) 13C MRI approach was investigated to characterize 

aggressive cancers based on their metabolic and perfusion abnormalities and 
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applied to a preclinical mouse model of prostate cancer. The development and 

progression of prostate cancer in the Transgenic Adenocarcinoma of Mouse Prostate 

(TRAMP) model mimics many aspects of human prostate cancer (103). Specifically, 

cancer development in the TRAMP model is targeted to the prostate and tumors 

progress from primary androgen dependent to large androgen independent tumors 

with metastases. Additionally, most male TRAMP mice develop tumors that are 

pathologically similar to human prostate cancer and are large enough for MRI 

studies (104).  Metabolically, the TRAMP model has demonstrated changes in TCA 

metabolism and glycolysis associated with the evolution and progression of prostate 

cancer in patients (103). 

 Hyperpolarized 13C MRI is a powerful new metabolic imaging method 

which uses specialized instrumentation to provide signal enhancements of over 

10,000-fold for 13C enriched, safe, endogenous, non-radioactive compounds (105). 

While prostate cancer is often inadequately evaluated using FDG-PET (which 

assesses glucose uptake and phosphorylation) (106,107), HP 13C MR detects down-

stream metabolism, specifically the metabolic flux of HP 13C-pyruvate to lactate (kPL) 

catalyzed by lactate dehydrogenase (LDH). This method has shown great potential 

for not only detecting prostate cancer, but for also assessing the aggressiveness 

(pathologic grade) of the cancer (5).  The “Warburg effect”, an elevation in glycolysis 

and lactate production in the presence of oxygen, occurs in prostate cancer and is 

due to multiple factors, including oncogenic modulations, mitochondrial 

dysfunction, as well as an adaptive response to the tumor microenvironment to 

promote proliferation (108).  A prior single time-point 13C MRSI study of 
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hyperpolarized 13C-pyruvate metabolism in the TRAMP model demonstrated a 

significant increase in hyperpolarized 13C-lactate in high- versus low- grade prostate 

tumors (5). The unprecedented gain in sensitivity provided by hyperpolarization 

can be combined with fast spectroscopic 13C MRSI techniques to provide spatially 

resolved dynamic data of hyperpolarized pyruvate metabolism (109).  This dynamic 

data can be fit to kinetic models (110) to obtain the flux of HP 13C-pyruvate to 

lactate catalyzed by lactate dehydrogenase rather than a single-time point 

measurement of hyperpolarized 13C-lactate which is very sensitive to differences in 

the timing of probe delivery and when the imaging data is acquired.  Another 

important feature of HP 13C MRSI is that it encodes chemical as well as spatial 

information, thereby providing the potential for using multiple hyperpolarized 13C-

labeled agents to detect several metabolic and/or physiologic processes 

simultaneously after the injection of a single bolus (111). HP 13C-urea is not taken 

up and metabolized by most tissues and prior publications have demonstrated that 

hyperpolarized 13C-urea provides a reproducible and accurate assessment of blood 

perfusion in animal cancer models (111,112).  Methods for co-polarizing 13C-

pyruvate and 13C-urea have been developed, successfully polarized, and injected in 

pre-clinical models to simultaneously measure perfusion and metabolism (111).  

The goal of this study was to use a 3D dynamic, dual-agent, 13C-pyruvate and 

13C-urea, HP 13C MRSI approach to investigate differences in perfusion and 

metabolism metrics between high- and low-grade tumors in the TRAMP 

model.Increasing evidence points to prostate cancer being a disease strongly linked 

to abnormal metabolism due to changes in key metabolic enzymes (101). Also, 



38 
 

tumor microenvironment factors such as perfusion (102) have been associated with 

the presence and aggressiveness of prostate cancer.  In this study a new dual agent 

hyperpolarized (HP) 13C MRI approach was investigated to characterize aggressive 

cancers based on their metabolic and perfusion abnormalities and applied to a 

preclinical mouse model of prostate cancer. The development and progression of 

prostate cancer in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) 

model mimics many aspects of human prostate cancer (103). Specifically, cancer 

development in the TRAMP model is targeted to the prostate and tumors progress 

from primary androgen dependent to large androgen independent tumors with 

metastases. Additionally, most male TRAMP mice develop tumors that are 

pathologically similar to human prostate cancer and are large enough for MRI 

studies (104).  Metabolically, the TRAMP model has demonstrated changes in TCA 

metabolism and glycolysis associated with the evolution and progression of prostate 

cancer in patients (103). 

Hyperpolarized 13C MRI is a powerful new metabolic imaging method which 

uses specialized instrumentation to provide signal enhancements of over 10,000-

fold for 13C enriched, safe, endogenous, non-radioactive compounds (105). While 

prostate cancer is often inadequately evaluated using FDG-PET (which assesses 

glucose uptake and phosphorylation) (106,107), HP 13C MR detects down-stream 

metabolism, specifically the metabolic flux of HP 13C-pyruvate to lactate catalyzed by 

lactate dehydrogenase (LDH). This method has shown great potential for not only 

detecting prostate cancer, but for also assessing the aggressiveness (pathologic 

grade) of the cancer (5).  The “Warburg effect”, an elevation in glycolysis and lactate 
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production in the presence of oxygen, occurs in prostate cancer and is due to 

multiple factors, including oncogenic modulations, mitochondrial dysfunction, as 

well as an adaptive response to the tumor microenvironment to promote 

proliferation (108).  A prior single time-point 13C MRSI study of hyperpolarized 13C-

pyruvate metabolism in the TRAMP model demonstrated a significant increase in 

hyperpolarized 13C-lactate in high- versus low- grade prostate tumors (5). The 

unprecedented gain in sensitivity provided by hyperpolarization can be combined 

with fast spectroscopic 13C MRSI techniques to provide spatially resolved dynamic 

data of hyperpolarized pyruvate metabolism (109).  This dynamic data can be fit to 

kinetic models (110) to obtain the flux of HP 13C-pyruvate to lactate catalyzed by 

lactate dehydrogenase rather than a single-time point measurement of 

hyperpolarized 13C-lactate which is very sensitive to differences in the timing of 

probe delivery and when the imaging data is acquired.  Another important feature of 

HP 13C MRSI is that it encodes chemical as well as spatial information, thereby 

providing the potential for using multiple hyperpolarized 13C-labeled agents to 

detect several metabolic and/or physiologic processes simultaneously after the 

injection of a single bolus (111). HP 13C-urea is not taken up and metabolized by 

most tissues and prior publications have demonstrated that hyperpolarized 13C-

urea provides a reproducible and accurate assessment of blood perfusion in animal 

cancer models (111,112).  Methods for co-polarizing 13C-pyruvate and 13C-urea have 

been developed, successfully polarized, and injected in pre-clinical models to 

simultaneously measure perfusion and metabolism (111).  
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The goal of this study was to use a 3D dynamic dual-agent, 13C-pyruvate and 

13C-urea, HP 13C MRSI approach to investigate differences in perfusion and 

metabolism metrics between high- and low-grade tumors in the TRAMP model. 

 

3.3 Materials and Methods 

3.3.1 Animal protocol and handling 

All animal studies were conducted in accordance with the policies of 

Institutional Animal Care and Use Committee (IACUC) at University of California, 

San Francisco (UCSF). TRAMP model, supplied by Roswell Park Cancer Institute 

(Buffalo, NY, USA), was generated in a C57BL/6 background utilizing a transgene 

consisting of a 7426/28 bp fragment of the rat probasin (rPB) gene directing the 

tissue-specific expression of simian virus 40 (SV40) early genes (T/t antigens; Tag) 

to the mouse prostate epithelium to abrogate the activity of the p53 and Rb tumor 

suppressors(104). The 19 TRAMP mice utilized in this study were cannulated using 

a 32-gauge IV catheter in the lateral tail vein and anesthetized with 1~1.5% 

isoflurane/100% oxygen at a rate of 1L/min on a heated water bed to maintain 

physiological body temperature.  

3.3.2 MR Imaging 

The imaging studies were performed on a 3T MR scanner (MR750, GE 

Healthcare, Waukesha WI) using a custom built dual-tuned 13C-proton quadrature 

murine coil. Dynamic HP 13C spectral data were acquired after a tail vein injection of 

350μl of co-polarized 80mM [1-13C]pyruvate and 13C urea (details in Supplementary 

Material and Methods) using a 3D HP 13C compressed sensing EPSI sequence (109) 
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with a FOV of 4cm x 4cm x 8.6cm, a spectral BW of 581Hz, with a spatial resolution 

of 3.3mm x 3.3mm x 5.4mm, and a temporal resolution of 2 seconds. Eighteen time 

points were acquired starting immediately after the 15 s injection. Anatomical 

reference images were acquired using a T2-weighted Fast Spin Echo (FSE) sequence 

(spatial resolution: 0.23mm, FOV-6 cm, TE/TR = 102/5821 ms). 

3.3.3 Histopathologic analysis 

TRAMP mice were euthanized and dissected within 6 hours of the MRI study. 

To measure tumor hypoxia, Pimonidazole (PIM) solution was injected 

approximately 45 minutes prior to euthanization. Dissection was performed by an 

experienced uro-oncologist and digital images were taken as a reference for 

localization and registration of tumor specimens. The excised tissue was aliquoted 

for histochemical processing, gene expression and activity analyses (details in 

Supplementary Material and Methods). The histological index, as defined in Albers 

et al. was used to pathologically define high- versus low-grade TRAMP tumors in 

this study (5).  A histologic index was calculated based on the weighted percentages 

of tumor differentiation (normal, well-differentiated, moderately well differentiated 

and poorly differentiated) from standard H&E staining. The histologic index ranged 

between 0 and 3, where 0 indicated that 100% of the tissue was normal and 3 

indicated that 100% of the tissue was poorly differentiated. In the Albers’ 

publication as in this one, the tumors were dichotomized to be either low grade 

(index ≤ 1) or high grade (index ≥ 2) in a manner that reflects the clinical pathologic 

situation in which patients with Gleason score ≤ 3+3 are considered to have low 

versus Gleason ≥ 3+4 high grade tumors. In all cases, the histological assessments 
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were determined from what were considered globally representative sections of the 

tumor masses.  

Metastases were detected and enumerated at the time of primary tumor 

dissection, by careful, systematic, visual inspection and concomitant photography of 

the abdominal and thoracic cavity contents, starting in the pelvic area with 

identification/inspection of pelvic and para-aortic lymph nodes, then moving to the 

mid-abdomen with inspection of the kidneys, peri-renal lymph nodes and 

mesentery, then moving to the upper abdomen, removing the liver and inspecting 

the surfaces of all its lobes, and lastly inspecting the thoracic cavity, particularly the 

lungs for any parenchymal metastases and the mediastinum area for any 

adenopathy. All visually identified metastatic lesions were confirmed by subsequent 

histological examination. 

3.3.4 Data Processing 

The HP MRSI data were reconstructed using a compressed sensing (CS) 

approach (details in Supplementary Materials and Methods)(113). As shown in 

Figure 3.1, this processing resulted in 3D arrays (Figure 3.1A) of dynamic HP 13C 

spectra (Figure 3.1B) demonstrating resonances due to 13C-urea, [1-13C]alanine, [1-

13C]pyruvate and [1-13C]lactate.  Co-registration of the histological sections and HP 

13C MRI data was achieved by cutting multiple sections of tumors in the same axial 

plane as the MRI images and taking care to mark various surfaces of primary tumors 

in situ with surgical dyes.  Where possible, anatomical landmarks, such as urethra 

and bladder were also utilized to help register histological cross sections with the 

MRI sections. Although data were zero filled for display purposes, quantitation of 
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the HP 13C MR data was performed using the native acquisition resolution of the 

data. The ROI’s incorporating the tumor were defined using the anatomical T2w 

images as reference, and only voxels that were > 85% in the tumor were quantified. 

Necrotic regions could be also visualized on the T2w images and these voxels were 

found to have low S/N, so the spectral S/N filter (SNR<4) employed removed 

necrotic voxels from the analysis. All pre-processing of 13C data, including 

reorganizing the k-space and 1-minimization and signal filtering were performed 

using MATLAB (Mathworks, Nattick MA), and the data was displayed using the 

open-source SIVIC package (114). 

3.3.5 Modeling of kPL and ktrans 

HP [1-13C]pyruvate to [1-13C]lactate flux (KPL) was modeled using a 2-

compartment model as shown in Figure 3.2(C), described in the following equation 

𝑑𝑀𝑙𝑎𝑐(𝑡)

𝑑𝑡
= 𝑘𝑃𝐿𝑀𝑝𝑦𝑟(𝑡) − (1 𝑇1,𝑙𝑎𝑐⁄ )𝑀𝑙𝑎𝑐    (i) 

𝑑𝑀𝑝𝑦𝑟(𝑡)

𝑑𝑡
= −(𝑘𝑃𝐿 + 𝑘𝑃𝐴)𝑀𝑝𝑦𝑟(𝑡) − (1 𝑇1,𝑝𝑦𝑟⁄ )𝑀𝑝𝑦𝑟(𝑡)  (ii) 

𝑀𝑥
+[𝑛] = 𝑀𝑥

−[𝑛] ∙ cos 𝜃𝑛      (iii) 

𝑆𝑥[𝑛] = 𝑀𝑥
−[𝑛] ∙ sin 𝜃𝑛      (iv) 

where 𝑀𝑥(𝑡) is the longitudinal magnetization of metabolite x, kPL is the pyruvate-

to-lactate conversion rate constant, kPA is the pyruvate-to-alanine conversion rate 

constant (Alanine was included in modeling), and T1,x is the spin-lattice relaxation 

time. Mx+[n] and Mx-[n] represent the net HP 13C magnetization before and after the 

nth RF excitation (with flip angle 𝜃𝑛), and 𝑆𝑥[𝑛] is the observed metabolite signal. 
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Quantitatively, perfusion and permeability can be reflected by the dynamic 

bio-distribution of HP 13C-urea between blood and tissue in vivo similar to the above 

equation (Figure 3.2F) 

𝑑𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡)

𝑑𝑡
= 𝑘𝑡𝑟𝑎𝑛𝑠𝐶𝑏𝑙𝑜𝑜𝑑(𝑡) − 𝑘2𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡)    (v) 

where Cblood(t) represents the arterial input function (AIF), Ctissue(t) is the time-

resolved concentration in tissue, and ktrans (115) and k2 are modified forward and 

reverse perfusion coefficients, respectively. In the non-linear numerical fitting, the 

reverse perfusion coefficient kep and the relaxation T1 are highly linearly-dependent 

variables. Therefore, we combined kep and T1 into a generalized term k2. The 

coefficient k2 reflects the combined effect of physiology and longitudinal relaxation.  

The summed HP 13C-urea peak area under dynamic curve (AUC), was also calculated 

and normalized to kidney urea AUC.  Normalized urea area-under-curve (AUC) 

provides a measure of tracer distribution in tissue, while ktrans provides combined 

measure of perfusion and permeability (115). For the AUC metric, although a 

rigorous definition of timing requires an offset t0 in the parameter models, the 

definition used should be reasonable given the relatively consistent urea peak 

position (±3 seconds) observed (Figure 3.7). 

Numerical fitting of the in-vivo dynamic data to the two-compartment model 

was performed using non-linear least squares algorithm for both dynamic HP [1-

13C]pyruvate (Figure 3.2B) and HP 13C-urea signals (Figure 3.2E). The multiband 

variable flip excitation scheme (), and spin lattice (T1) relaxation times were taken 

into account as sources of signal loss using a hybrid continuous-discrete time 

dynamical system (110). The reverse flux of HP [1-13C]lactate to HP [1-13C]pyruvate 
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was excluded from the models since it has been determined to be negligible in 

TRAMP tumors (116), and a lower number of free variables improves fitting 

stabilization. The MATLAB-based fitting iterates until a local minimum in object 

function is arrived from the initial values. 

3.3.6 Statistical Analyses 

Average values of kPL, urea AUC, and urea ktrans were calculated from the 

entire TRAMP tumor, excluding regions of necrosis, using the T2 weighted anatomic 

reference image to identify the tumor. Ki-67 and PIM immunohistochemical staining 

were reported as the mean fraction of cells (average ± stdev) staining positive.  

mRNA expression data are reported as relative changes to housekeeping genes. 

Significance was reported using the standard Mann-Whitney-Wilcoxon test 

comparing all measured parameters in low- versus high-grade TRAMP tumors  

(MATLAB) and at 3 significance levels, i.e., p-values of <0.05, p <0.01, p < 0.001.   
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3.4 Results 

 

Figure 3.1 A) In vivo 3D 13C MR spectral arrays shown at a single time point taken 20 
seconds after injection of co-polarized HP 13C-pyruvate in the axial, coronal, and 
sagittal planes overlaid on T2-weighted anatomical references. The spectra have an 
anterior-posterior and right-left resolution of 3.3 mm and a superior-inferior 
resolution of 5.4 mm. The primary tumor is outlined in green. B) Dynamic data (2s 
temporal resolution) shown for a representative 0.059 cm3 voxel in the center of the 
TRAMP tumor (red arrow) demonstrating resonances of 13C-urea,  [1-13C]pyruvate, 
and the metabolic products [1-13C]lactate, [1-13C]alanine. C) Corresponding axial 
pyruvate-to-lactate conversion rate kPL and urea area under curve (AUC) images 
overlaid on T2-FSE anatomical references, respectively. 

 
Hyperpolarized 13C dynamic MRSI data were acquired on a total of 19 

TRAMP mice, 10 with high- and 9 with low-grade tumors.  The FOV of the dynamic 

CS-EPSI sequence (FOV - 4x4x8.6 cm) enabled 3-dimensional detection of 

hyperpolarized 13C spectra throughout the primary tumor and from the majority of 

mouse abdomen.  Figure 3.1A shows representative HP 13C MR spectra in the axial, 

coronal and sagittal planes acquired 21 seconds after the injection of HP [1-
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13C]pyruvate. Figure 3.1B, Figure 3.2A and Figure 3.2D show representative 

dynamic HP 13C spectra (2 sec. temporal resolution) taken from a single voxel from 

the center of the TRAMP tumor shown in Figure 3.1A (red arrow).  The dynamic HP 

13C spectral acquisition started at ~15s from the start of injection of the 

hyperpolarized solution, at which time the HP [1-13C]pyruvate signal was near 

maximum (t≈ 15-20 sec).  Also at this time point, the metabolic products, HP [1-

13C]lactate and [1-13C]alanine, were already observed in the TRAMP tumor and 

reached maximum signal intensity at ≈ 25-30 seconds and 30-35 seconds, 

respectively.   Similar to HP [1-13C]pyruvate, HP-13C urea had a maximal signal 

intensity at ~15-20 seconds.  The timing of the dynamic data acquired for HP [1-

13C]pyruvate,  [1-13C]lactate, [1-13C]alanine and 13C-urea was not different between 

low- and high-grade tumors.   

 

 

Figure 3.2 A) Dynamic hyperpolarized spectral data acquired after injection of HP [1-
13C]pyruvate. B) Plot showing the raw signal intensities of pyruvate, lactate, alanine 
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versus time (solid line) and the corresponding modeled metabolic data (dash line) 
used to determine kPL as shown in the flow diagram C) and described in the Methods. 
D) HP 13C- urea signals were extracted from the tumor and from nearby vessels to 
define an arterial input function (AIF) E) Fitting dynamic models to urea perfusion 
curves, with shaded region showing perfusion area under curve (AUC) F) two-
compartment model for calculating the rate constant ktrans. 

 

Figure 3.2 depicts the analysis of the dynamic spectral data including 

correction for T1 relaxation and flip-angle and modeling to provide quantitative 

measures of pyruvate-to-lactate rate constants (kPL) and ktrans.  Representative fits of 

the dynamic HP [1-13C]pyruvate and HP 13C-urea data to obtain kPL and ktrans are 

shown in Figure 3.2B and E.  Spatially interpolated maps of kPL and urea AUC were 

overlaid on the corresponding anatomic reference image (Figure 3.1C).  The kPL and 

urea overlays were restricted to the region of the tumor as identified on the T2 

weighted anatomic reference image.  In Figure 1C, the mismatch between urea AUC 

and metabolism is clearly seen in comparing the kPL and urea AUC images of the 

high-grade tumor.  Areas of this TRAMP tumor that demonstrated the lowest urea 

AUC (≈ 75-100 units) also showed the highest kPL (0.055 to 0.075 sec-1).  This 

mismatch between metabolism and urea AUC was observed in 9 out of 10 of the 

high-grade TRAMP tumors studied, and this mismatch was not observed in any of 

the low-grade tumors. Additionally, 50% of the high-grade tumors demonstrated 

either lymph node or liver metastases, with mice having low-grade tumors not 

demonstrating any metastases. 
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Figure 3.3 Immunochemical staining of excised representative low- and high-grade 
TRAMP tumors; A) H&E section, B) Ki-67 staining, and C) PIM staining. The 
micrographs in A-C were taken under 200x magnification and D) PIM staining under 
40x magnification 

 

Representative immunochemical stained tissue sections from low- and high- 

grade TRAMP tumors are shown in Figure 3.3.  Similar to the human prostate, 

normal murine prostate histology is highly glandular with secretory epithelial cells 

lining glands and stromal tissue supporting the glands (not shown). The H&E 

histologic sections from the low- and high-grade tumors (Figure 3.3A) depict the 

gradual replacement of the secretory epithelial cells by less differentiated epithelial 

cells until the glands were completely eliminated and only sheets of pleomorphic 

cells with irregular nuclei remained in the high-grade tumors.  High-grade TRAMP 

tumors also demonstrated higher Ki-67 (Figure 3.3B) and PIM (Figure 3.3C) staining 

as compared to low-grade TRAMP tumors. 
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Figure 3.4 A) Representative calculated pyruvate-to-lactate flux (kPL) images overlaid 
on corresponding T2-FSE reference images from a low-grade (left) and a high-grade 
(right) TRAMP tumor. At pathology, a region of necrosis was observed in the anterior 
aspect of the tumor (red arrow). B) Box plots showing individual (diamonds), median 
and standard deviation kPL flux measurements in the 9 low-grade and 10 high-grade 
TRAMP tumors. C) A bar plot showing the fraction of cells staining positive for Ki-67  
(mean ± standard error) and D) LDH activities for the same TRAMP tumors.  
*significantly different.  

 

Pyruvate to lactate flux images overlaid on corresponding T2-FSE anatomical 

reference images from a representative low- and a high-grade TRAMP tumor 

(Figure 3.4A) demonstrated a heterogeneous but higher kPL flux in the high-grade 

tumor.  Also in this high-grade tumor, there was a region of necrosis observed at 

pathology in the anterior aspect of the tumor associated with undetectable kPL (red 

arrow).   Pyruvate to lactate flux (kPL) values (Figure 3.4B) were significantly 

(p<0.001) higher (0.056 ± 0.005 sec-1 versus 0.019 ±0.001 sec-1) for high- versus 

low-grade TRAMP tumors with no overlap of individual kPL values between the 2 
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groups in this study.  The increase in kPL flux significantly correlated with higher 

LDH activity (0.85 ±0.06 vs low-grade: 0.43 ± 0.03, mM/mg protein/min, p<0.001) 

in high- versus low-grade tumors (Figure 3.4D).  Also, the high-grade TRAMP 

tumors were found to be more proliferative with a significantly (p<0.001) larger 

portion of the tumor staining positive for Ki-67 than for low-grade tumors (95 ± 3% 

versus. 30 ± 7%). The alanine conversion was 1-2 orders of magnitude smaller than 

kPL, and there was no difference between high- and low- grade tumors (kPA low-: 

0.002 ± 0.001 sec-1, high-grade: 0.004 ± 0.001 sec-1, P>0.4).

 

Figure 3.5 A) Representative calculated urea perfusion images overlaid on the 
corresponding T2-FSE anatomical reference images from a low-grade (right) and a 
high-grade TRAMP tumor. B) Bar plots showing average ± standard error for urea 
AUC, ktrans, and C) fraction of cells staining positive for PIM in the 9 low-grade and 10 
high-grade TRAMP tumors studied. D) No difference found in representative 
microvascular density (MVD) assessed by CD31 IHC staining. (3 high- vs. 3 low-grade)  
*significantly different. 

 

Figure 3.5A shows urea AUC images overlaid on reference anatomical images 

of the same animals shown in Figure 3.4A, visually demonstrating heterogeneous 
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but higher urea AUC in the low- versus high-grade tumor.  A quantitative 

comparison of urea AUC and ktrans for the low- and high-grade tumors is shown in 

Figure 3.5B.  Urea AUC was significantly reduced (p<0.01, 640 ± 94 as compared to 

the 1407 ± 221 AU), while ktrans significantly increased (p<0.01, 358 ± 38 as 

compared to 180 ± 24 ml/dL/min) in high- versus low- grade tumors.  The hypoxia 

was also significantly (p<0.05) increased in high- relative to low-grade prostate 

cancer (27 ± 6% versus 14 ± 4% of the tumor staining positive for PIM, 

respectively), as measured by PIM immunohistochemical staining (Figure 3.5D).  

Interestingly, no significant difference was found in micro-vessel density between 

high- and low-grade TRAMP tumors (high-grade = 14.3 ± 1.7, low-grade = 14.7 ± 2.1 

vessels/hpf 200x, P > 0.5). 

 

Figure 3.6 A) mRNA expression level ± standard error of Hif-1a, Ldha, Ldhb, Vegf, 
Mct1 and Mct4 for the 9 low-grade and 10 high-grade TRAMP tumors studied; values 
given are relative percent expression normalized to m.Hprt.  B) Ldha/Ldhb ratio for 
the same TRAMP tumors.  *significantly different. 
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Figure 3.6 summarizes the expression of key transporters and enzymes 

associated with pyruvate transport and metabolism (Mct1 and Mct4, Ldha and Ldhb) 

and of factors impacted by the hypoxic tumor microenvironment (Hif1 and Vegf).  

Expression of the monocarboxylate transporters Mct1 and Mct4 were significantly 

upregulated (Mct1: 2.75 ± 0.72 fold, p < 0.05, Mct4: 20.7 ± 7.12 fold, p<0.01) in high- 

versus low-grade TRAMP tumors. Ldha was significantly increased 1.98 ± 0.22 fold 

(p<0.01) and Ldhb significantly decreased to 0.13±0.05 fold (p<0.01) leading to a 

dramatic 15.0 ± 4.8 fold increase (p<0.001) in the Ldha/ Ldhb ratio in high- versus 

low-grade TRAMP tumors.  Due to increased hypoxia in the tumor 

microenvironment (higher PIM staining), there was a significant 3.64 ± 0.55 fold 

(p<0.01) and 6.40 ± 1.82 fold (p<0.01) increase in Hif1and Vegf expression, 

respectively, in high- versus low-grade TRAMP tumors. 

 

Figure 3.7 Mean urea perfusion data (solid lines, blue - AIF, gold - tumor) for A) low-
grade and B) high-grade TRAMP prostate tumors were fitted and ktrans and k2 
parameters calculated (high grade ktrans = 344, k2=4380, low-grade ktrans =163, 
k2=819). The fit curves were extrapolated to the bolus arrival time at t=5(s). In high-
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grade tumors, higher cellularity contributes to more rapid clearance of urea and low 
AUC. 

 

 

3.5 Discussion and Conclusions 

An accurate assessment of the aggressiveness of prostate cancer requires the 

complete coverage of the prostate at high spatial resolution due to the often small, 

multifocal, and biologically diverse nature of this disease.  In this study, a volumetric 

dynamic dual-agent hyperpolarized 13C spectroscopic imaging approach using 13C-

pyruvate and 13C-urea to simultaneously image changes in urea AUC and pyruvate 

metabolism with prostate cancer progression was performed for the first time in a 

transgenic murine model of prostate cancer.  The 20,000 - 40,000 fold enhancement 

in signal-to-noise relative to the respective thermal MR signals at 3T provided by 

the co-polarization of 13C-pyruvate and 13C-urea combined with fast volumetric 13C 

spectroscopic imaging allowed for both high spatial (0.06 cm3) and temporal (2 sec) 

resolution imaging data to be acquired throughout the primary prostate tumor and 

the body of the mouse.  This dynamic metabolic and perfusion data were fit to 

kinetic models (110) to obtain the flux of HP 13C-pyruvate to lactate (kPL) catalyzed 

by lactate dehydrogenase and ktrans, a measure of both perfusion and vascular 

permeability.  In addition, an estimate of tumor urea tissue distribution was 

calculated using the area under curve of hyperpolarized 13C-urea signal (111,112).  

Moreover, the ability to dynamically measure urea delivery, tissue distribution and 

pyruvate metabolism allows for differences in the timing of hyperpolarized probe 

delivery and metabolism that can occur between individual subjects.  While these 
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differences in dynamics were small (2-5 secs), they can add substantially to the 

variability of single time point hyperpolarized 13C-lactate to 13C-pyruvate ratio 

measurements, since the 13C-pyruvate signal is dramatically decreasing due to T1 

relaxation and metabolism during the spectral acquisition (5). 

There is growing evidence that the up-regulation of aerobic glycolysis and 

increased lactate production and efflux is an adaptation of cancer cells that aids in 

survival, growth, metastasis and often leads to poor response to therapy (117,118).  

The results of this study indicate that increased hyperpolarized 13C-pyruvate to 

lactate flux (kPL) is associated with more aggressive prostate cancer.  Specifically, 

the kPL was 3 fold higher in high- relative to low- pathologic grade prostate tumors, 

with no overlap between kPL values from individual high- and low-grade tumors.  

High-grade TRAMP tumors were also more proliferative, having 3 fold higher Ki-67 

staining than low-grade tumors.  In concordance with the HP 13C-pyruvate-to-lactate 

metabolism data, there was a 2 fold increase in tissue LDH activity, as measured ex 

vivo, in the same high- relative to low-grade tumors.  Since the measurement of HP 

lactate signal generation is in non-steady state dynamics, increased LDH activity is a 

major factor contributing to the increase in the observed HP lactate signal in high-

grade TRAMP tumors.  The increased HP 13C-lactate signal observed in high- versus 

low-grade prostate cancer was also associated with increased mRNA expression of 

lactate dehydrogenase-A (Ldha), decreased expression of Ldhb, as well as increased 

monocarboxylate transporters (Mct1 and Mct4) that have a role in both pyruvate 

uptake and lactate export (101).  LDHA and B are responsible for encoding the M 

and H subunits of LDH and the high Ldha/Ldhb expression ratio observed in high-
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grade TRAMP tumors leads to the production of a predominance of the LDH5 

isoenzyme (5M subunits) favoring increased lactate production.  In patient studies, 

a high serum LDH level is associated with aggressive disease and a poor survival for 

a variety of cancers (119,120) including prostate cancer (121), and inhibition of the 

LDH catalyzed production of lactate has become a therapeutic target (122,123). 

Studies using patient biopsies and prostate tissue slices removed at surgery have 

demonstrated increased steady state pools of lactate, HP 13C-lactate production, 

increased LDH activity, and increased mRNA expression of LDHA and MCT1 and 4 in 

prostate cancer tissues similar to what has been observed in the TRAMP model used 

in this study (124).  Moreover, the kPL fluxes observed in this pre-clinical study were 

in line with what was calculated from 2D dynamic HP 13C MRSI studies in a Phase 1 

clinical trial of hyperpolarized [1-13C]pyruvate in patients with prostate cancer 

(0.045 ± 0.025 s-1) (125).   However no correlation of kPL with tumor grade was 

performed in these prior pre-clinical and clinical studies.  

The 6-fold increase in Mct4 observed in high-grade TRAMP tumors results in 

increased export of lactate out of the cells which is important to sustaining a high 

glycolytic flux (126).  Tumor excretion of lactic acid, combined with poor tumor 

perfusion, results in an acidic extracellular pH in tumors compared with normal 

tissue (111,127), and this acidification of the tumor microenvironment has also 

been shown to occur in the TRAMP model (128).  The resulting acidic environment 

promotes cancer aggressiveness and metastasis by facilitating a degradation of the 

extracellular matrix by proteinases (129,130), increasing angiogenesis through the 

release of VEGF (131), and inhibiting the immune response to tumor antigens (132).  



57 
 

Extracellular acidification also may render tumors chemo-resistant (132). Taken 

together, these observations suggest that not only increased lactic acid production, 

but also its efflux are important parameters associated with aggressive prostate 

cancer (133,134). Moreover, tumor-specific metabolic shifts, such as increased 

production and efflux of lactate, can potentially be exploited for cancer therapy with 

minimal impact on normal tissues (127).  

Hypoxia is a feature of many human cancers and has been implicated as an 

important biologically modulator of aggressiveness, clinical behavior, and treatment 

response in prostate cancer (38,135).  This study found a significant reduction in 

urea AUC in high- relative to low-grade TRAMP tumors, and an associated 

significant increase in hypoxia as measured by increased PIM staining. The oxygen-

sensitive HIF-1transcription factor has been found to be up-regulated in regions 

of tumor hypoxia and increases the expression of angiogenesis factors such as VEGF 

to increase oxygen delivery as well as increasing aerobic glycolysis through 

increasing expression and activity of key enzymes in the glycolytic pathway, 

including LDH (133).   Consistent with this scenario, a significant increase was also 

observed in the mRNA expression of Hif1 Vegf, and Ldha, as well as an increase in 

LDH activity in high- versus low-grade TRAMP tumors.  Hypoxic prostate cancers, 

which induce HIF-1 and glycolysis most strongly, tend to be of higher Gleason 

grade, are more invasive and metastatic, and less responsive to therapy than those 

with normal oxygen levels (135,136).    

Fitting the dynamic HP 13C-urea to a Tofts-like 2-compartment model (115) 

demonstrated that ktrans was significantly increased in high- versus low-grade 
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prostate cancer.  The parameter ktrans represents the transfer of the contrast agent, 

hyperpolarized 13C-urea, from the vasculature into the extravascular space and is 

therefore a function of both perfusion and permeability.  Therefore, the observed 

increase in ktrans is presumably due to vascular hyperpermeability in high-grade 

TRAMP tumors, which is also consistent with increased expression of Vegf in high-

grade tumors.  The urea ktrans data is also consistent with prior gadolinium dynamic 

contrast-enhanced MRI studies of prostate cancer patients, in which high-grade 

prostate tumors demonstrated the earliest and greatest rate of enhancement and 

ktrans (137,138).  Although ktrans significantly increases, urea AUC significantly 

decreases in high-grade TRAMP prostate cancer tumors.  The explanation for the 

decrease in urea AUC is the higher clearance of urea from high- versus low-grade 

tumors as observed in Figure 3.7. A and B.  The increased rate of urea clearance (kep) 

was most likely due to a dramatic increase in the cellularity of high grade TRAMP 

tumors and a decrease in Extravascular Extracellular Space (EES) and associated 

urea tissue distribution volume VT (𝑉𝑇 =  𝑘𝑡𝑟𝑎𝑛𝑠 𝑘𝑒𝑝⁄ ). The measurement of kep was 

not directly possible in this study due to the fact that k2 in our modeling was a 

lumped coefficient, that included urea clearance (kep) but was also heavily impacted 

by urea T1 relaxation and other signal loss mechanisms (Figure 3.7)(112). 

Another important finding of this study was that there was significant 

heterogeneity (> 2-fold) of kPL and urea AUC in individual TRAMP tumors, with 90% 

of the high-grade TRAMP tumors demonstrating regions that had areas of the lowest 

urea AUC having the highest kPL. Moreover, 50% of the high-grade TRAMP tumors 

demonstrated either lymph node or liver metastases, while none of the low-grade 



59 
 

tumors demonstrated a urea AUC -kPL mismatch nor any metastases. Although 

perfusion and metabolism are tightly coupled in most normal tissues, mismatches 

have been observed in a variety of tumors including lung, breast, liver, colon, and 

head and neck cancers, and this mismatch was associated with more aggressive 

disease (36,37).  A perfusion-metabolism mismatch, specifically, a high glycolytic 

rate relative to low perfusion, has been imaged in locally advanced breast cancer by 

15O-water and 18F-FDG PET; this was associated with poor response to treatment 

and early relapse or disease progression (36). This study demonstrated that the 

urea AUC - kPL mismatch was similarly associated with aggressive prostate cancer in 

the TRAMP model. However, the relationship between urea AUC - kPL mismatch and 

aggressive prostate cancer needs to be validated and the relationship between urea 

AUC and more conventional measurement of perfusion or blood flow needs to be 

determined in future patient studies.  

The TRAMP murine model used in this pre-clinical study, like all pre-clinical 

models has its limitations.  Most importantly, disease progression in this murine 

model is faster than what is observed in prostate cancer patients, with prostate 

cancer progressing from early stage to late stage disease in a matter of weeks 

instead of years.  While the pathologic progression of disease in this model mimics 

the human situation, it progresses from an admixture of normal glandular tissue and 

cancer to large areas of densely packed malignant cells in a much shorter period of 

time.  Early and late stage disease is more homogenous in the TRAMP model than in 

the human situation due to a lower incidence of coexisting benign prostate tissue, 

early- and late stage cancer.  Additionally, while there are significant lymph node 
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metastases in the TRAMP model and some liver metastases, similar to the human 

situation, there are virtually no bone metastases, unlike the human situation.  The 

data acquisition scheme and the compartmental modeling approach used in this 

study represented a trade-off between several factors.  The dynamic data 

acquisition scheme utilized double spin-echo refocusing (139) in order to provide 

improved SNR for individual images, but at the expense of saturating signals at the 

edges of the RF coil, requiring the acquisition to start at the end, and causing loss of 

the earliest points of the dynamic data. With this acquisition approach, we found 

that a two-site uni-directional pyruvate-to-lactate model provided the most robust 

and reproducible fits. Our approach also did not use information from the AIF. There 

is potential to improve the kinetic modeling of metabolism and perfusion with 

acquisitions capturing the bolus input signal, incorporating the AIF, and by using 

advanced modeling methods such as those presented in Kazan et al (140), Khegai et 

al (141), and Bankson et al (142). 

In summary, the pathologic grade dependence of hyperpolarized pyruvate-

to-lactate flux, urea ktrans and AUC were measured in a single imaging acquisition 

after administration of hyperpolarized 13C-pyruvate and 13C-urea in a transgenic 

mouse model of prostate cancer.  High HP 13C-pyruvate to 13C-lactate flux, low 13C 

urea AUC and high forward perfusion coefficient (ktrans) were found to be 

biomarkers of high-grade prostate cancer in this pre-clinical study.  Additionally, a 

substantial mismatch in urea AUC and a high pyruvate to lactate flux observed in 

this study were associated with highly proliferative disease with increased 

metastases. These hyperpolarized imaging biomarkers of aggressive prostate 
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cancer, and their relationship to the perfusion - metabolism mismatch observed in 

prior studies, will clearly need to be better understood and validated in future 

patient studies. The likelihood of translating this hyperpolarized dual-agent MR 

approach is high since HP 13C-pyruvate is already FDA IND-approved for ongoing 

clinical trials, and 13C-urea has an excellent safety profile and is administered 

clinically at doses even higher than would be used for hyperpolarized MRI. 
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Chapter 4 Translational 3D Dynamic Hyperpolarized 13C-
MR Metabolic Imaging - From Mice to Patients 

 
4.1 Introduction 

Hyperpolarized (HP) 13C MR has been shown in over 100 published animal 

studies to provide unprecedented information on previously-inaccessible aspects of 

biological processes by detecting endogenous, nontoxic 13C-labeled probes that can 

monitor enzymatic conversions through key biochemical pathways (5,29,105,143-

149). Since HP 13C MR encodes chemical as well as spatial information, this new 

molecular imaging technique allows the simultaneous detection of multiple biologic 

compounds and metabolic products with sensitivity enhancements of >10,000 fold 

(1). This extraordinary new technique, therefore presents the fields of oncology and 

medical imaging with an opportunity to dramatically improve our ability to 

investigate human disease and to ultimately translate these techniques into the 

clinic for more individualized patient care. HP-DNP technology is becoming 

increasingly widespread for scientific investigations with over 50 polarizers 

worldwide including a few custom-built DNP polarizers being used in university 

preclinical research and commercial polarizers available from Oxford Instruments 

since 2006 for in vitro and animal studies. Also, our recently completed human 

Phase 1 clinical trial has demonstrated the safety and feasibility of HP 13C-pyruvate 

MRI in prostate cancer patients (96). Initial cost estimates are equal to or less than 

current nuclear medicine imaging methods such as positron emission tomography 

(PET) that is used clinically for other cancers, but has shown limited utility for 

primary prostate cancer. Unlike FDG-PET that detects minimal changes in glucose 
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uptake and phosphorylation with prostate cancer, HP 13C-pyruvate MRI can detect 

dramatically altered conversion to lactate due to genetic mutations in cancer that 

result in greatly increased lactate dehydrogenase (LDH) enzymatic activity that 

correlated with cancer grade in animal models (5). This is complementary but very 

different from 1H MRSI which has emerged as a useful tool for measuring increased 

endogenous choline levels in cancer, but is limited by its coarse spatial resolution 

and long acquisition times (150).  

 

Figure 4.1 The HP-13C 3D CS-EPSI sequence diagram designed in this project. A) The 
double spin-echo enabled (DSE mode) was utilized in small animal imaging such as 
TRAMP prostate tumor studies. B) Another operation mode (FID mode) was applied 
for larger imaging volumes, such as in rat and clinical studies. The DSE refocusing was 
removed in order to account for peak B1 limits and increased field inhomogeneity. 

 

Prostate cancer is a major health concern in the United States with >240,000 

new cases per year and >28,000 deaths (7). Due to increased screening using serum 

prostate specific antigen (PSA) and extended-template transrectal ultrasound 

(TRUS) guided biopsies, patients with prostate cancer are being identified at an 

earlier and potentially more treatable stage. Unfortunately, the aggressiveness of 

A) B) 
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individual tumors cannot be predicted with great confidence in individual patients 

using currently available clinical and imaging prognostic data (151-155). 

Preliminary data strongly indicate that hyperpolarized 13C-pyruvate MRI using 

dynamic nuclear polarization (DNP) has the potential to dramatically improve 

prostate cancer clinical management. In transgenic prostate cancer mouse models, 

this method demonstrated the unprecedented ability to separate early stage (low-

grade) tumors from late-stage high-grade cancer based on this metabolic parameter 

(conversion through the LDH pathway) (5). Higher grade prostate cancers, both in 

transgenic models and human biopsies, have demonstrated several fold increases in 

LDH expression (5,124). No other imaging method has demonstrated this ability to 

differentiate low grade, clinically insignificant prostate cancers which are the 

majority of cases from high-grade disease which kills >28,000 Americans per year.  

 

Figure 4.2 Kinetic modeling for quantitative estimation of key metabolic pathways in 
TRAMP. A) The arterial input function (AIF) using HP-13C urea exhibited high 
consistency between the acquisition using a constant-flip 2D spectral-spatial 
excitation and the 3D dynamic CS-EPSI in this study. The 3D dynamic signal was 
corrected for variable flip angles. A good reference for AIF shape and time course helps 
defining a model-based AIF profile. B) Simulation of error in kPL estimation introduced 
by data noise. Under a conservative SNR=6, the standard deviation for kPL error was 
less than ±0.5% for nominal kPL =0.0300. 

A) B) 
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The ability to reliably image treatment response is also a critically important unmet 

clinical need.  In our preclinical studies, HP 13C MR detected early response in 

murine bone metastasis models by 2 days post chemotherapy (156). These 

preclinical findings are supported by biochemical and gene assays in these models 

and in human prostate cancer biopsies demonstrating higher expression and 

activity of the enzyme LDH which catalyzes the conversion of HP 13C-pyruvate to 

13C-lactate). The Phase 1 clinical trial of HP 13C-pyruvate in prostate cancer patients 

demonstrated feasibility and safety through this first human study of 

hyperpolarized MR metabolic imaging (96) using single-slice 1D dynamic, 2D 

dynamic and 3D single time point acquisitions. This clinical trial was limited but 

indicated the potential to characterize the extent and aggressiveness of prostate 

cancer in individual subjects to ultimately benefit clinical treatment decisions and to 

monitor treatment response. 

The goal of this project was to develop a new dynamic and volumetric 

acquisition to detect HP pyruvate uptake and enzymatic conversion throughout the 

prostate with high spatial and temporal resolution. A new 3D dynamic compressed 

sensing EPSI (3D dynamic CS-EPSI) sequence was developed and comprised of 

spectral-spatial RF excitation with multiband and variable-flip schemes, followed by 

a compressed-sensing EPSI readout using random blip encoding. The 3D dynamic 

imaging protocol was developed and tested in phantoms, transgenic mice of 

prostate cancer (TRAMPs) and rats before translating this approach for human 

studies. The translational challenges, including larger imaging volume, reduced peak 
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RF power and lower B1 inhomogeneity were addressed through the optimization of 

pulse design and sequence parameters. 

 

4.2 Materials and Methods 

4.2.1 Pulse sequences 

A 3D dynamic compressed-sensing EPSI (3D CS-EPSI) sequence was 

designed and optimized to provide more efficient, higher SNR dual-agent metabolic 

and perfusion hyperpolarized 13C MR scans. The backbone of this sequence consists 

of spectral-spatial RF excitation pulses, followed by optional double spin echo (DSE) 

refocusing, and finally the compressed sensing EPSI readout. The RF excitation 

pulse provided multiband excitation to account for the metabolic conversions 

between 13C pyruvate and lactate. Moreover, a “variable flip angle” scheme was 

applied, where the excitation flip angle on each metabolite was progressively 

increased to account for the loss from previous excitations and the intrinsic T1 

relaxation. The flip angles were calculated based on the T1-effective scheme, 

ensuring optimal pyruvate signal-to-noise ratio while maximizing total lactate SNR 

for robust modeling of metabolic conversion and parameter estimation (13).  The 

spectral-spatial pulses were designed using the SS-RF toolbox developed by Larson 

et al (55). In TRAMP studies, the DSE refocusing was enabled for high SNR and sharp 

spectral linewidth (TR = 250ms, TE = 150ms). Nevertheless, the DSE refocusing was 

disabled in the clinical configuration to limit peak power and account for the 

increased B1 inhomogeneity (TR = 150ms, TE = 6.3ms), as shown in Figure 4.1 A) 

and B). 
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The three-dimensional readout scheme utilized pseudorandom “blip” 

encoding in the kx-ky directions and flyback echo-planar spectral-imaging (EPSI) in 

the kz-kt dimensions. A pseudorandom undersampling pattern was created in spatial 

and temporal dimensions, allowing compressed sensing detection to accelerate the 

acquisition by 18 fold. Another 16 fold acceleration was achieved by the EPSI 

readout (11,12). A combined 288x acceleration factor condenses a 10-minute fully-

sampled acquisition into a 2-second undersampled time interval. Such 2-second 

temporal resolution enables robust analysis and modeling of metabolic exchange 

and perfusion dynamics. 

 

Figure 4.3 Hyperpolarized 13C dynamics from a healthy Sprague-Dawley rat using the 
3D dynamic CS-EPSI sequence in the “FID” mode. A) Pyruvate, B) Lactate and C) Urea 
as overlaid on a bSSFP reference scan. All the 13C tracer dynamics can be 
simultaneously acquired within a single injection followed by acquisition with 2s 
temporal resolution and spatial resolution of 6.7mm x 6.7mm x 10.4mm. The dynamic 
image series shows high perfusion in the kidney region, rapid pyruvate uptake and 
conversion to lactate. 

 

A) 

B) 

C) 

Pyruvate 

Lactate 

Urea 
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4.2.2 3D Imaging Coverage 

The 3D CS-EPSI sequence was designed to offer full 3D coverage for the 

regions of interest with high spatiotemporal resolution in both preclinical and 

clinical settings. In TRAMP mice studies, the sequence was configured to cover the 

entire animal, the advantage of which is twofold. First, the arterial input function 

(AIF) is included in the FOV and factored into our dynamic models, since AIF is of 

exceptional importance to estimation of perfusion kinetics. Secondly, it allows not  

 

Figure 4.4 Similar to the “DSE” mode, the in-vivo dynamics of 13C biomarker acquired 
using the 3D dynamic CS-EPSI “FID” mode can be quantitatively analyzed by 
compartmental exchange models. A) Pyruvate to lactate conversion in the kidneys of 
healthy rat is visualized in this 13C image overlaid on bSSFP reference. kPL was 
estimated 0.0058(s-1) B) Pyruvate and lactate dynamics overlaid on T2-FSE scan in a 
low-grade TRAMP tumor.  kPL was estimated 0.0297(s-1). Data from mouse and rat 
agreed well with previous findings. 

 

only imaging the primary tumor, but sites where there’s high likelihood of 

metastasis, such as PA and PR lymph nodes. In addition, it monitors key 

A) 

B) 

TRAMP mouse 

Healthy rat 
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physiological regions such as kidney and liver for possible abnormalities associated 

with prostate cancer. In rat studies, the FOV was chosen to extend through the rat  

 

Figure 4.5 Comparison of the 3D dynamic CS-EPSI “DSE” versus “FID” acquisition 
mode. A) The mean SNR in vivo acquired using DSE and FID mode was comparable 
(P>0.3) in TRAMP tumors (N = 8 for each). Good SNR performance was also observed 
in rat kidney and liver (N = 3). B) This map shows lactate temporal AUC overlaid on 
T2-FSE reference in a low-grade mouse prostate tumor (arrow). Similar HP-13C 
distribution pattern and pyruvate-to-lactate conversion dynamics was observed, when 
acquired with both imaging modes. C) Spectrum in the wavelet-in-time domain 
indicated that the sparsity criteria in compressed sensing was preserved. D) In-vivo 
spectra acquired using DSE vs FID sequence has similar widths for pyruvate (width = 
2.1%). 

 

trunk for similar reasoning. In clinical exams, the sequence covers the full prostate 

gland from base to apex, including the PZ, CZ and TZ. The 581Hz-spectral bandwidth 
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ensures inclusion of the four main biomarkers in this study, namely HP-13C 

pyruvate, lactate, alanine and urea. Aliasing were introduced to lactate and urea 

peaks to conserve spectral bandwidth for improved imaging quality, causing these 

peaks to appear on the opposite edges of the spectrum. 

 

4.2.3 Dynamic Modeling 

Hyperpolarized 13C imaging using a dynamic sequence allows quantitative 

estimation of key metabolic pathways in preclinical TRAMP model of prostate 

tumor. The pyruvate-to-lactate conversion can be characterized as 

 
𝑑𝐶𝑙𝑎𝑐(𝑡)

𝑑𝑡
= 𝑘𝑃𝐿𝐶𝑝𝑦𝑟(𝑡) − 𝑘𝐿𝑃𝐶𝑙𝑎𝑐(𝑡) 

where 𝐶𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝑡) is the metabolite concentration, and kPL and kLP are the forward 

and reverse conversion rate constants, respectively. Similar equation holds for 

interconversion between HP- 13C pyruvate and alanine. 

The signal curves were fitted to the dynamic models using the non-linear 

least squares analysis, returning estimates of kPL and kPA.  RF excitations and 

relaxation T1 were included in the model to account for signal loss, where T1 was 

assumed to be equal for all 13C metabolites. The reverse conversion rate was 

assumed to be zero in the model since it is much lower compared to the forward 

reaction in physiological conditions, and such assumption ensures stability of fitting 

computation. 

Tumor microcirculation can be characterized by perfusion and permeability 

between blood and tissue. Hyperpolarized 13C urea MR provides a quantitative 

measurement that not only reflects tumor angiogenesis patterns, but also illustrates 
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underlying hypoxia and necrosis conditions. Quantitative measures were calculated 

using the equation describing two-compartment model 

𝑑𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡)

𝑑𝑡
= 𝑘𝑡𝑟𝑎𝑛𝑠𝐶𝑏𝑙𝑜𝑜𝑑(𝑡) − 𝑘2𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) 

where Cblood(t) represents the arterial input function (AIF), Ctissue(t) is the time-

resolved concentration in tissue, and ktrans, k2 are modified forward and reverse 

perfusion coefficients, respectively.  A joint fitting scheme was designed to utilize 

both AIF and tissue dynamics as input, an advantage gained from the whole-animal 

coverage of the 3D dynamic datasets. The AIF was corrected for intra-voxel partial 

volume effects. Similar to the metabolic case, perfusion kinetics were fitted to the 

models using nonlinear least-squares method, with corrections for RF excitations 

and T1 decay. 

 

4.2.4 MRI Experiments 

11 sets of imaging studies were conducted on 6 transgenic mice of prostate 

tumor (TRAMP) and 3 healthy Sprague Dawley rats. [1-13C]pyruvate and 13C urea 

were co-polarized by a GE SPINlab clinical polarizer (GE Healthcare, Waukesha WI) 

for 2 hours for 20-30% polarization using the DNP technique. The 13C biomarkers 

were rapidly dissolved and injected into the subject animal through a tail vein 

catheter. For the TRAMP studies, ~350ul bolus was injected over 15(s), whereas the 

rats received ~3ml bolus over 12(s). In both cases, the sequence was initiated at 

t=15 seconds since the beginning of injection. All studies were performed on a 3T 

clinical scanner (GE750, GE Healthcare). The mouse and rat studies were done using 

custom-built, dual-tuned 1H and 13C mouse and rat coils, respectively. In the clinical 
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setup, a clamshell coil was used for 13C transmit, and a dual-tuned endorectal coil 

served as receiver. Dose per unit weight was approximately 10ml/kg for TRAMP 

mouse, 6ml/kg for rat, both injected with 80mM solution. For patient it was 

0.43mL/kg of 250mM solution. 

In the patient study, GMP-grade sterile [1-13C]pyruvate was polarized in 

Spinlab for ~2 hours, yielding 253mM pyruvate solution with 37% polarization. An 

automatic post-dissolution QC reported the key parameters of pH, radical 

concentration, temperature and polarization level, and a pharmacist will determine 

if the bolus meets the safety standards for injection. Dosage was calculated based on 

patient weight, such that one receive 0.43mL/kg of pyruvate solution. The injection 

was conducted using a power injector (Spectris Solaris, Medrad, Saxonburg, PA), 

followed by flush of saline. Total injection time was around 10-15 seconds. 

For TRAMPs, the sequence was chosen to provide a spatial resolution of 

3.3mm x 3.3mm x 5.4mm, a temporal resolution of 2s, a FOV of 4cm x 4cm x 8.6cm, a 

spectral BW of 581Hz, and 18 repetitions in 36 seconds. For rats, the FOV and the 

spatial voxel size were both doubled to provide larger coverage (spatial resolution = 

6.7mm x 6.7mm x 10.8mm, FOV = 8cm x 8cm x 17.2cm), whereas temporal 

resolution and acquisition window remained the same as TRAMP scans. The 

resolution for clinical scans is as follows (spatial resolution = 8mm x 8mm x 8mm 

isotropic, FOV = 9.6cm x 9.6cm x 12.8cm). T2-FSE sequence was prescribed for 

anatomical reference in TRAMP and patient scans, whereas a bSSFP sequence 

served as reference in rat studies. The voxel volume for mouse, rat and clinical scans 

were 0.059, 0.480 and 0.512cm3, respectively. 
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4.3 Results 

4.3.1 Preclinical studies 

Eleven sets of hyperpolarized 13C dynamic MRSI were acquired on a total of 6 

TRAMP mice and 3 healthy rats using the 3D dynamic CS-EPSI in “FID” mode. 3 

TRAMPs had histologically aggressive late stage, and 3 had early stage tumors in 

this study. Datasets from 19 TRAMPs acquired using the 3D CS-EPSI “DSE” mode 

were also retrospectively examined.  

Combination of MATLAB and SIVIC image processing software (114) allows 

examination of the fully-3D spectrum voxel-by-voxel, over a specific slice and 

orientation, or across a given time frame. Overlay of HP-13C images, image-based 

statistics or modeled metabolic and perfusion indices such as kPL and ktrans, with the 

anatomical reference scans was performed for better lesion identification and 

analysis. 

The arterial input function (AIF) was calculated using both the 3D dynamic 

CS-EPSI sequence and a 2D RF excitation sequence with CSI readout immediately at 

the beginning of hyperpolarized 13C urea injection. The AIF curve (Figure 4.2A) 

shows monotonically increase of signal until reaching maximum at approximately 

15 seconds from the beginning of the injection, reflecting the estimated timing of the 

HP-13C bolus arrival.  

For the cancer metabolic studies, the 3D dynamic sequence began at the end 

of each injection, which was at t=15s. The pyruvate signal displayed its maximum 

near the beginning of the sequence, and then decreased over time. The decrease was 
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slightly slowed toward the end of acquisition. The lactate signal, which was present 

since the beginning of acquisition, increased and reached maximum approximately 

between t=25-30 seconds. After that, lactate decreased with relatively constant rate 

until the end of the sequence. HP-13C alanine, which was also excited by the spectral-

spatial RF pulse, showed similar behavior to lactate, but instead approached its 

maximum around t=30-35 seconds. This timeline reflects a physiological process of 

accelerated aerobic glycolysis in cancerous tissue. 

With the 15-second injection period, the bolus arrived at the ROI 

approximately by the end. Lactate dehydrogenase (LDH) conversion was observed 

immediately following the arrival of HP compound and rapidly facilitates the 

reduction reaction from HP-pyruvate to HP-lactate. Pyruvate suffers signal loss from 

the aforementioned conversion, the RF excitation pulses and the T1 relaxation, 

therefore creating the decay in the dynamic profile. The lactate increased at the 

beginning of the sequence due to the addition of converted pyruvate to the pool. 

Inversion of the lactate curve labels the timing where the combined loss from 

progressively increasing flip angle and T1 relaxation exceeds the contribution from 

conversion. Alanine was converted from pyruvate as a key step in gluconeogenesis 

pathway, which is governed by the alanine transaminase. The amount of alanine 

production was only a fraction of lactate in the TRAMP tumor, while higher alanine 

level can be seen in the liver of both cancerous and healthy animals. 

The rate coefficient for pyruvate-to-lactate conversion, kPL, was computed by 

applying the metabolic models to the in vivo HP-13C dynamic profile. The mean was 

taken over the manually-selected tumor ROI for the kPL estimation. Simulation 
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(Figure 4.2B) of the model fitting showed that under a conservative SNR=6, 

standard deviation for kPL error was less than ±0.5% for nominal kPL =0.0300. 

Comparison of kPL values was also done between two studies conducted using the 

same late stage TRAMP on the same day. The interval between the injections was 15 

minutes, and the percentage of polarization was comparable from the HP 

dissolutions. kPL from each study was 0.0389 and 0.0407, respectively, which 

corresponds to 4.4% difference between the two. Such observation demonstrated 

consistency in the quantitative modeling of metabolic conversion in the presence of 

data noise. 

 

Figure 4.6 A) The 6.3ms-long RF pulse excites 13C pyruvate and lactate with 
independent variable flip angles. The peak B1 of 0.597G is a 67% reduction from that 
used for preclinical studies B) Phantom data excited with progressive-increasing flip 
RF showed good agreement with simulated profile. C) Phantom studies using the 
clinical setup and sequence shows good spatial homogeneity in a urea syringe. 

 

In order to investigate the feasibility of imaging larger subjects in vivo, we 

applied the 3D CS-EPSI sequence on 3 healthy rats using the “FID” mode. Rapid urea 
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perfusion and pyruvate uptake into the kidney was observed since the beginning of 

the sequence, namely at around ~3 seconds after the end of a 12s-injection. 

Appreciable amount of lactate exchange was detected there as well (Figure 4.3 and 

Figure 4.4A). Lactate and alanine production was also found in rat liver (data not 

shown). These outcomes were highly consistent with the previous observations on 

HP-13C rat studies. 

From TRAMP studies, the mean SNR of total carbon were typically over 30 

for tumor, ~100 for vena cava and liver, and ~180 for kidneys across time with 

~20-30% polarization on dissolution, as illustrated in Figure 4.5A. Specifically, the 

mean SNR over the TRAMP tumor was comparable (P>0.3) between the “DSE” mode 

(61.6±43.6) and the “FID”mode (69.3±28.4). In the rat scans, both FOV and voxel 

size were doubled from mice. High SNR was found in both rat kidney (172.5±100.3) 

and liver (85.7±50.1). Such SNR was adequate for both direct data visualization and 

dynamic modeling of metabolic interconversion. Figure 4.5B depicts the map of 

lactate temporal AUC overlaid on T2-FSE reference in a low-grade mouse prostate 

tumor. Similar HP-13C distribution pattern and pyruvate-to-lactate conversion 

dynamics was observed from acquisitions using both imaging modes. 

One most discernible artifact moving from the “DSE” to “FID” version of the 

pulse sequence observed was the line-broadening and phasing effect due to the half-

echo readout and the shifted TE. Simulation of the spectrum was done using a 

Lorentzian lineshape. The “FID” mode exhibited a 9.2% wider spectral linewidth 

than the “DSE” mode in simulation (Figure 4.5D). Actual datasets acquired using 

“DSE” and “FID” mode were also compared, where spectral linewidth in “FID” mode 
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was 2.1% wider than that in the “DSE” mode (Figure 4.5E). The sparsity of the 13C 

spectra was preserved by the wavelet-in-time sparsifying transformation, as shown 

by the wavelet decomposition of the simulated data in Figure 4.5C. By satisfying the 

sparsity condition in our compressed-sensing algorithm, it is ensured the 

undersampling and reconstruction scheme used for “DSE” imaging mode is 

applicable in the “FID” scenario. 

 

 

Figure 4.7 Prostate cancer patient 3D dynamic CS-EPSI data with volumetric 
coverage from base to apex of HP pyruvate and its conversion to lactate (AUC through 
time). Spatial resolution=0.5cm3, temporal=2s, 18 timepoints, starting 5s after 
injection of HP (37%) [1-13C]pyruvate. Region of lactate conversion correlated with 
the bilateral biopsy data. 

 

4.3.2 Translation and Patient Acquisition Results 

New spectral-spatial RF pulses were generated to account for the limitation 

on peak power and the increased B1 field inhomogeneity in the clinical setup 

(Figure 4.6A). The new SS-RF pulses has peak B1 of 0.597G and duration of 6.3ms, 

which is a 67% reduction compared to our preclinical designs (peak B1 = 1.796G, 

duration = 8.9ms). The pulse bandwidth was 793Hz. The ripple was set to less than 

1% in both passband and stopband to ensure reasonably homogeneous pulse 

profile.  
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Figure 4.8 18 timepoints for HP 13C-pyruvate and 13C-lactate from a single slice with 
bilateral biopsy-confirmed prostate cancer. The acquisition began ~5s after injection. 
HP-13C pyruvate appears in the prostate at ~10s into the dynamic 3D CS-EPSI 
acquisition. Conversion to lactate in the cancer regions was observed later at ~20 
seconds. 

 

Phantom studies were conducted using the full clinical configuration with 

clamshell and endorectal transceive coils. The phantom setup includes a built-in 13C-

urea phantom on the coil and two 13C-ethelyne glycol phantoms. The excitation 

profile on the urea phantom was found to be notably homogeneous, whereas it was 

less so on ethylene glycol phantoms (Figure 4.6B). Such signal pattern probably 

resulted from the reduced sensitivity in regions away from the endorectal coil. The 

phantom data was acquired with our 3D CS-EPSI sequence in conjunction with the 

RF pulses designed with multiband and variable-flips scheme. On both pyruvate and 

lactate bands, the phantom dynamics showed good fitting agreement with the 

simulated signal profile (Figure 4.6C). The apparent SNR of ethylene glycol phantom 

was 16.1, and of urea phantom was 354 at the final timepoint, where the 13C 



79 
 

compounds were individually excited by the lactate excitation band with a mean flip 

angle ~40°. 

 

Figure 4.9 The biopsy-proven Gleason 4+3 tumor in the peripheral zone (PZ) exhibited 
high lactate conversion following HP pyruvate injection. A) T2-FSE image showing the 
tumor voxel selected for the dynamic spectral plot in B). C) Dynamic curves (corrected 
for variable flip angle) are shown with far higher conversion to lactate in cancer 
compared to normal appearing regions. D) Representative spectra for these regions at 
t = 36 s. 

 

The subject of our first clinical study was a 66 year old male patient with 

bilateral biopsy-confirmed prostate cancer. Patient 3D dynamic CS-EPSI data 

demonstrates volumetric coverage from apex to base, with a spatial resolution of 

8mm x 8mm x 8mm isotropic (volumetric = 0.5cm3), temporal resolution of 2s, and 

36s acquisition window. The sequence was started 5s following the injection of 

sterile [1-13C]pyruvate (hyperpolarized to 37%). Figure 4.7 shows the pyruvate and 

lactate area under curve (AUC) in the prostate region overlaid on T2w reference 
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scan. It demonstrated full gland coverage of this new sequence with a 

FOV=9.6x9.6x12.8cm. While pyruvate intensities outline the prostate gland as well 

as some surrounding vasculatures, map of lactate conversion correlated with the 

bilateral biopsy data of this patient. Areas of increased lactate conversion highlight 

the biopsy-proven multifocal cancer with Gleason 3+4 and 4+3 foci in the PZ. Figure 

4.8 illustrates the temporal dynamics in a single-slice data containing bilateral 

biopsy-confirmed prostate cancer. HP-13C pyruvate is seen to perfuse into the 

vasculature surrounding the prostate, and the bolus entered prostate around ~10 

seconds into the dynamic 3D acquisition. Rapid conversion to lactate in cancerous 

regions was observed to occur later at ~20 seconds. 

The biopsy-proven Gleason 4+3 tumor in the PZ exhibited more than 4x in 

pyruvate-to-lactate conversion kPL than normal-appearing region, as driven by the 

high LDH enzymatic activity. Figure 9C and D showed the HP-13C spectra and 

dynamics in a representative voxel of this tumor versus normal-appearing region. 

The dynamics curve was corrected for progressive flip angles to reflect the true 

metabolic activity for visualization purposes. However, it should be noted that T1 

relaxation was not taken into account in this correction. While the raw signal of both 

pyruvate and lactate appears to monotonically increase until the end of acquisition 

(Figure 4.9C), the corrected signal shows the pyruvate inversion near ~20 seconds 

after injection and that of lactate around ~30 seconds and decrease toward the end 

(Figure 4.9B). The tumor region also corresponds to darker region in T2-weighted 

FSE image (Figure 4.9A, as encircled by the red box), and high intensity in high b-



81 
 

value ADC maps (not shown), both of which exhibited good consistency with biopsy 

and HP-13C findings. 

 

Figure 4.10 Calculated kPL map from pyruvate-lactate dynamic curves. A) A bilateral 
biopsy-proven Gleason 4+3 in the peripheral zone, same region as Figure 7, 8 and 9. B) 
A large volume of biopsy-proven Gleason 4+5, 4+4 and 4+3 cancer involving a majority 
of the left lobe of the prostate and extending into the right peripheral zone. 

 

The calculated SNR for pyruvate was 104, and for lactate was 10.7 at the last 

timepoint. The mean SNR over the acquisition for pyruvate was 45.2, and was 6.1 

for lactate. The mean SNR over all timepoints for total carbon was 51.3. 

4.4 Discussion 

The translation from animal to clinical HP-13C imaging presents the unique 

challenges of larger imaging volume, reduced peak RF power and higher B1 

inhomogeneity. To address these challenges, specialized sequence modifications 

were developed including a low-power spectral spatial RF excitation, "FID" 

acquisition mode, 3d coverage of the entire prostate with 0.5 cm3 spatial and 2-

second temporal resolution for prostate cancer patient imaging. We aimed in this 

study to characterize the sequence properties and signal behavior transitioning 

from small animal to larger animal and, ultimately, to human subjects, with the 
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intent to optimize the performance and robustness of this new 3D dynamic 

acquisition approach for imaging patients. 

One major sequence modification made toward clinical imaging was the new 

RF pulses. The spectral-spatial RF pulses provide 67% savings in peak B1, which 

accounts for the reduced peak RF power from clamshell transmit coils in clinical 

setup compared to preclinical settings. The designed peak B1 was chosen to be 

around 60% the nominal maximum allowable power for the transmit coil. Such 

configuration leaves sufficient headroom in transmit power, to make allowance for 

coil loading factor when scanning different patients. The 1ppm (~30Hz) passband 

for each metabolite in this spectral-spatial pulse was reasonably wide to account for 

off-resonance, and the time-bandwidth of 5 provides good compromise between 

pulse duration, peak power and transition profile sharpness (Figure 4.6A). The 

phantom signal curve agrees well with the simulated signal profile, which suggests 

that the excitation pulses can be confidently generated under clinical configuration. 

 

Another major modification to the sequence was the transition from the 

"DSE" acquisition mode with double spin-echo refocusing pulses to the "FID" mode, 

where RF excitation was directly followed by EPSI readout. The FID mode was 

designed to account for the limited peak RF power and reduced B1 field 

inhomogeneity as offered by the clinical setup. A direct comparison of the signals in 

TRAMP tumor region (N=7) between DSE and FID mode revealed similar 

performance in terms of mean SNR levels for total carbon, as shown in Figure 4.5A. 
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In the mouse study scheme, one main deficiency of the FID mode acquisition 

compared to the DSE mode is the T2* relaxation, since the latter benefits from the 

refocusing of magnetization. In DSE mode, nevertheless, the double-spin echo pulses 

may spoil the HP 13C magnetization at the coil edge, where the RF field rolls off and 

fails to meet the adiabatic threshold required for refocusing (157). As an overall 

effect of these factors, the SNR turns out to be similar between DSE and FID mode in 

the TRAMP mouse acquisition. In human scans, the RF transmit field inhomogeneity 

is likely worse than the mouse scenario due to increased imaging volume and 

loading, which can further induce the undesired spoiling. Taking these factors into 

account, the FID mode should outperform DSE from an SNR standpoint. 

Imaging a larger subject using the 3D dynamic CS-EPSI acquisition protocol 

provides a way to investigate the sequence parameters and signal behavior due to 

increasing FOV. The rat scans in this study utilizes a dual-tuned rat coil which was 

about ~ 5 times the volume of mouse coil. The FOV and voxel size were doubled 

both in the phase encode and EPSI readout direction (in-plane resolution: mouse 

3.3mm and rat 6.7mm, axial resolution: mouse 5.4mm and rat 10.8mm), giving 4x 

voxel volume. The total injection dose also increased by approximately 6 fold. 

Unfortunately, rat received lower HP-13C dose per unit weight (around 60% that of 

TRAMP). In addition, the larger coil volumes inherently leads to decreased 

sensitivity compared to mouse setup. The other sequence parameters (e.g. flip 

angles, temporal resolution and undersampling ratio) remained the same, and "FID" 

mode was applied. Pyruvate metabolism is well represented in rat kidney just like in 

TRAMP mice tumor (Figure 4.4). Also, the SNR did not deteriorate in rat relative to 
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mouse (Figure 4.5A). As such, transitioning to rats scans revealed the key elements 

to scaling up the sequence, and this protocol showed robustness in signal and image 

quality with larger imaging subjects and coils. 

A 2-second temporal resolution was chosen for clinical protocol, identical to 

that in TRAMP studies. In TRAMP scans, this consistently provided >30 (apparent) 

SNR for both pyruvate and lactate (~20-30% polarization), which translates into 

less than 3% error in quantitative metabolism models (Figure 4.2B). For the clinical 

study, the pyruvate SNR was similar to TRAMP (~30), while lactate SNR was 

relatively lower (~6). Two primary sources of error contribute to the apparent SNR 

of this 3D CS-EPSI acquisition, which are the data noise and the inherent error 

contributed by CS reconstruction. Referring to Fig.3 of the paper by Larson et 

al.(12), the reconstruction error was less than 0.001 for SNR of 30, and less than 

0.007 for SNR of 6. Therefore, it can be concluded that the data noise was dominant 

source of error under both clinical and mouse scheme. SNR improvement is 

theoretically possible through a longer temporal resolution, since it results in 

effective signal averaging and decrease of undersampling ratio. Nevertheless, a 

longer temporal resolution also creates temporal blurring, and introduces 

ambiguity on timing of dynamic curve, which can seriously hurt quantitative 

modeling. Under the current clinical settings, 2-second temporal resolution offered 

a good compromise between SNR and timing accuracy. 

In the patient research studies, the acquisition began at 5 seconds after the 

end of injection, compared to the 15 second in mouse studies, while both shares the 

same 2-second temporal resolution. The acquisition time window covered both 
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bolus dynamics and pyruvate-to-lactate conversion in human prostate cancer, while 

the TRAMP scan focuses more on the latter half of the pharmacokinetics that mainly 

reflected pyruvate metabolism. Since the bolus delivery was more rapid in small 

animals, and a reference AIF was relatively easy to estimate using the HP 13C urea 

through arterial voxels, the sequence can be configured to put more focus on net 

metabolism by acquiring at a delayed window for TRAMP. Due to absence of arterial 

coverage or perfusion markers in clinical imaging, it is more challenging to account 

for these pharmacokinetic parameters. Additionally, the circulation and bolus 

delivery is generally slower in human versus small animals. Therefore, acquiring at 

a window that accounts for both pyruvate infusion and conversion may ultimately 

help clinical quantitation of prostate tumor metabolism. 

Translation of 3D dynamic HP 13C MRSI has offered a way to quantitatively 

analyze metabolism in human prostate cancer. But just as importantly, the 

capability to image biochemical processes and visualize diseases with ultra-high 

spatiotemporal resolution has opened the door to many potential HP 13C 

translational and research applications. For instance, high lactate/pyruvate ratios 

were detected in various cancer types such as xenografts of human brain tumor 

(45), renal carcinoma cells (6), and breast tumor xenografts (145). And modulation 

of lactate production were found in tumor subjected to chemo (42) and targeted 

therapy (158). Besides cancer, HP 13C imaging has been used to study kidney urea 

transporters (112), diabetes and gluconeogenesis (159), cardiac diseases (160) and 

neurodevelopment (161). 
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Further improvements of the HP 13C CS-EPSI protocol is possible through 

optimization of acquisition, reconstruction and quantitation processes. For instance, 

optimal flip angle scheme can be designed based on the specific physiological 

parameter of interest (162). Acquisition window and temporal resolution can be 

adjusted according to the SNR performance across a cohort of patient data. 

Investigating different pharmacokinetic models allows one to optimize the 

representation of the underlying physiological parameters (110,162,163). Coil 

correction accounts for inhomogeneous receiver profile (164), and parallel imaging 

technique can be applied in multi-channel receiving scheme (68,165). 

 

4.5 Conclusions 

This new clinical 3D dynamic acquisition method incorporating a novel 

spectral-spatial RF, “FID” readout and modified CS reconstruction addressed the 

challenges of larger imaging volumes, reduced available peak RF power and 

increased B1 inhomogeneity as required for human studies. Scalability in 

acquisition, reconstruction and quantitation methods was demonstrated by the 

satisfactory image quality, SNR and contrast between cancer/normal during the 

transition from mice to clinical studies. In general, the 3D dynamic CS-EPSI 

exhibited excellent performance and robustness in phantom, preclinical, and patient 

exams. 
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Chapter 5 Quantitative Methods for Estimation of 
Metabolism and Perfusion 

5.1 Metabolic Modeling 

5.1.1 Introduction to tumor metabolism 

Otto Warburg proposed the well-known Warburg effect in the 1920s (4). It 

describes findings from his experiments that cancer cells produce much higher 

lactate from pyruvate than normal cells. This elevation of lactate production not 

only increases under hypoxia, but happens even under aerobic conditions. It is thus 

given the name “aerobic glycolysis”. With the advances of molecular biology and 

genetics, the metabolic rationale behind the aerobic glycolysis in cancer has come to 

light. Recent studies suggest that the Warburg effect is fundamental to sustaining 

cancer cell proliferation, production and incorporation of biomass (3,32). Another 

important observation is that oxidative phosphorylation remains unaffected by the 

increase in aerobic glycolysis. 

 

Figure 5.1 The Warburg effect describes a phenomenon where cancer cells undergo 
increased conversion of pyruvate to lactate catalyzed by high LDHA enzymatic 
activity. Recently studies find that Warburg effect is fundamental to cancer survival 
and proliferation. The increase in pyruvate-to-lactate conversion is present even in the 
absence of hypoxia, therefore given the name “aerobic glycolysis.” 
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As further investigations have shown, cancer cells undergo a series of 

oncogenic mutations that promotes unrestricted proliferation and overcomes 

survival stress (32). Some of these mutations alter the cellular metabolism. While 

oxidative phosphorylation maximizes the utilization of energy for ATP production, 

aerobic glycolysis and its related pathways produces essential precursors for fatty 

acids, amino acids, and nucleotides, in addition to cofactors such as NADPH. 

Recycling of acetyl-CoA from TCA cycle is another important reaction for fatty acid 

synthesis. The production of macromolecules and cofactors provides necessary 

building blocks for tumor proliferation (Figure 5.1). 

In terms of the underlying genetics, several oncogenic mutations can 

promote the Warburg effect. Oncogenes like AKT and MYC are known to enhance 

hypoxia-inducible factor (HIF) for increased glycolytic flux under hypoxic conditions 

(166). Under aerobic conditions, the Src and PI3K pathways can also stabilize the 

expression of HIF that increases aerobic glycolysis. This section will investigate 

mathematic models of HP-[1-13C] pyruvate to 13C lactate conversion, which serves as 

the centerpiece to quantification of aerobic glycolysis in cancer. 

 

5.1.2 Overview of HP 13C metabolism models 

The conversion of pyruvate to lactate reflects cellular metabolism in cancer. 

As is explained in Chapter 3, the pyruvate-to-lactate conversion rate kPL is strongly 

correlated to LDHA activity and histological grades in prostate cancer. The clinical 

need to quantitatively interrogating cancer metabolism requires an accurate and 
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robust measurement of kPL from the temporal dynamics of pyruvate and lactate. 

Several types of mathematical models have been proposed to describe in vivo HP-13C 

dynamics. 

 

Figure 5.2 This is a generalized dynamic model that quantitatively describes HP-13C 
pyruvate metabolism. It consists of 3 physical compartments: blood, extracellular 
extravascular space (EES), and intracellular space. Each compartment is divided into 
chemical components (i.e. pools). Many models found in literature, as well as the ones 
proposed in this dissertation, are either a variant or a simplified version of this 
generalized model architecture. 

 

First and foremost, an appropriate model architecture needs to be selected. 

In the generalized form of models found in literature, three physical compartments 

are often included. These include the arterial compartment, the extracellular 

extravascular space (EES) compartment, and the intracellular compartment. Each 

physical component is further divided into chemical components such as pyruvate, 

lactate, alanine based on the metabolites of interest (Figure 5.2). One major 

assumption is that the pyruvate to lactate conversion, catalyzed by LDHA 

isoenzyme, only occurs intracellularly. The transport of pyruvate and lactate across 
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the cell membrane is known to be facilitated by the monocarboxylate transporters 

(MCT), including MCT1 and MCT4. 

 

Figure 5.3 A summary of dynamic models in literature. A) Kazan’s model has blood, 
tissue compartments and pyruvate, lactate pool in both compartments. (140) B) 
Harrison’s model consists of EES and intracellular compartments, with only lactate 
pool in the EES. (167) C) Zierhut’s model consists of uni-directional pyruvate-to-
lactate flux with a pyruvate AIF. (163) D) One of Bankson’s models has all 3 
compartments and both pools in each compartment. It resembles the generalized 
model, but with some fluxes assumed to be uni-directional. (142) 

 

Many models in literature are either a variant or a simplified version of this 

model architecture. A key determinant is the number of compartments included in 

A) 

Kazan et al., MRM, 2013 Harrison et al., NMR Biomed, 2012 

B) 

Zierhut et al., JMR, 2010 

C) D) 

Bankson et al., Cancer Res, 2015 
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the dynamic model. One very commonly seen simplification is to combine the EES 

and intracellular compartment into a “tissue” compartment. Under some specific 

circumstances, the blood compartment, described by the arterial input function 

(AIF), can be omitted. The choice between inclusion or exclusion of blood 

compartment and AIF will be discussed in detail in the following sections. Moreover, 

in the presence of AIF, whether to apply a measured AIF or a model-based AIF is 

another consideration that will also be discussed. One more simplification is to 

neglect reverse reactions such as lactate-to-pyruvate conversion rate kLP, if it can be 

justified that the reverse conversion rate is insignificantly small compared to the 

forward rate. 

For instance, the model proposed by Kazan (140) utilizes the AIF and tissue 

compartment, and included both pyruvate and lactate pool in the two physical 

compartments (Figure 5.3A). Interestingly, Kazan designed a blood chamber to 

detect the AIF dynamics, similar to the arterial blood sampling used in DCE imaging. 

Harrison’s model (167), on the other hand, consists of only the extracellular and 

intracellular components, where arterial compartment was excluded (Figure 5.3B). 

Furthermore, Harrison and colleagues only included lactate in their extracellular 

compartment, arguing that extracellular pyruvate does not benefit modeling of kPL. 

The model proposed by Zierhut (163) is similar to Kazan’s model, except that the 

arterial compartment only consists of pyruvate (Figure 5.3C). This model choice is 

based on the assumption that very little lactate exists in the arterial compartment, 

which is reasonable given that lactate conversion primarily only occurs in 

tissue/tumor, and ignoring the excreted lactate that enters recirculation. Bankson 
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explored a few different types of models and compared the goodness of model and 

fit using the Akaike’s Information Criterion (AIC) (142). They discussed the simplest 

two-site exchange model using only pyruvate-lactate exchange within a single tissue 

compartment, and a two-compartment model with arterial and tissue compartment 

similar to Kazan’s version. Finally, Bankson and colleagues also investigated a 3-

compartment model (Figure 5.3D) similar to the generalized model in Figure 5.2. 

The selection of free versus fixed parameters is also an important 

consideration. The number of free parameters will ultimately affect the condition of 

fit between model and data, and the relative goodness of a model can be determined 

using the AIC, as will be explained in the following section. Some common 

parameters can be set to constant based on assumption or actual measurements if 

the parameter is sufficiently consistent across the datasets of interest. Some 

examples of parameters that can potentially be kept constant include the T1 

relaxation time, the perfusion time delay t0, and reverse perfusion rate kep. Some 

compartment and associated parameters are completely omitted in certain cases, as 

is seen in the abovementioned literature. For example, the AIF, the reverse reaction 

rate kLP, and the clearance of lactate from tissue. The partial voluming within a voxel 

is another factor that tends to be omitted, whereas a few works still incorporate the 

fractional volume ve. 

Recently, Maidens et al. proposed a model-free kPL estimation method that 

also exhibits very promising outcomes (162). However, this class of methods is out 

of scope of this work and will not be discussed here. 
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5.1.3 The two-site exchange model 

In the TRAMP prostate cancer studies in Chapter 4, the two-site exchange 

model was selected as the standard for kPL estimation (110). The two-site model can 

also be viewed as a special form of the generalized model mentioned in 5.1.2. In this 

model, only the tissue compartment was accounted for. All pyruvate and lactate are 

assumed to be confined to the tissue compartment, and the arterial input and 

metabolite clearance are not included in such model architecture. The two-site 

model can be expressed in an elegant and simple mathematical form, written here in 

ODE format. 

𝑑𝑀𝑝𝑦𝑟(𝑡)

𝑑𝑡
= −(𝜌 + 𝑘𝑃𝐿 + 𝑘𝑃𝐴)𝑀𝑝𝑦𝑟(𝑡) 

𝑑𝑀𝑙𝑎𝑐(𝑡)

𝑑𝑡
= 𝑘𝑃𝐿𝑀𝑝𝑦𝑟(𝑡) − 𝜌𝑀𝑙𝑎𝑐(𝑡) 

where Mx is the net longitudinal magnetization of metabolite x, kPL is the rate of 

pyruvate-to-lactate conversion, and  is the intrinsic relaxivity of HP-13C 

metabolites. For the sake of simplicity and model robustness, the relaxivity  is 

assumed equal among metabolites, and reverse conversions are neglected. 

The equations above account for the magnetization evolution in between 

adjacent RF excitations. Jointly solving the ODEs gives 

𝑀𝑝𝑦𝑟(𝑡) = 𝑀𝑝𝑦𝑟(𝑡0) ∙ 𝑒−(𝜌+𝑘𝑃𝐿+𝑘𝑃𝐴)(𝑡−𝑡0) 

𝑀𝑙𝑎𝑐(𝑡) = 𝑀𝑙𝑎𝑐(𝑡0) ∙ 𝑒−𝜌(𝑡−𝑡0) +
𝑘𝑃𝐿 ∙ 𝑀𝑝𝑦𝑟(𝑡0)

𝑘𝑃𝐿 + 𝑘𝑃𝐴
𝑒−𝜌(𝑡−𝑡0)[1 − 𝑒−(𝑘𝑃𝐿+𝑘𝑃𝐴)(𝑡−𝑡0)] 

A similar signal equation holds for alanine as for lactate. 

The RF excitations can be expressed as 
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𝑀𝑥
+[𝑛] = 𝑀𝑥

−[𝑛] ∙ cos 𝜃𝑛 

𝑆𝑥[𝑛] = 𝑀𝑥
−[𝑛] ∙ sin 𝜃𝑛 

A hybrid continuous-discrete model, described in the equations above, was 

applied for the HP-13C TRAMP tumor data. The chosen compartmental modeling 

approach was a trade-off between several factors, and there will be future 

opportunities for modeling improvements.  The first choice was the use of a 

dynamic acquisition based on double spin-echo refocusing, which provides 

improved SNR for individual images, but at the expense of saturating some 

hyperpolarized magnetization at the edges of the RF coil, which is typically at the 

head and tail of the mice studied.  This saturation effect is larger during the 

injection, when all HP magnetization passes through the edges into the sensitive 

volume of the coil.  Therefore the use of double spin-echo refocusing for SNR 

improvements required starting data acquisition at the end of injection of 

hyperpolarized pyruvate resulting in the loss of the initial time points of the 

dynamic curve.  With this acquisition, it was determined that the two-site uni-

directional pyruvate-to-lactate model provided the most robust and reproducible 

fits.  

Realistically, the arterial input function always exists and continuously 

replenishes the pyruvate pool in tissue. The two-site model assumes all pyruvate 

magnetization is present at t=0 and no AIF further contributes to pyruvate pool. The 

replenishment of pyruvate from the blood supply appears as a reduced pyruvate 

loss rate, which is interpreted by the model fit as reduced pyruvate-to-lactate 

conversion. Lactate production would also be calculated as slower since the 
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pyruvate arrival was distributed across time rather than being present at the 

beginning. In addition, disregarding the intra-voxel partial voluming and fractional 

volume ve, will likely also lead to lower kPL estimates, as was explained in a recent 

publication (142). In general, it is important to be aware of these factors that may 

lead to systematic underestimation of kPL using the two-site model. 

There are some other special cases, where the two-site model, with the 

absence of the arterial compartment and AIF, can be a good assumption as well. For 

example, the MAD-STEAM spectroscopy published by Swisher et al. (116) utilized a 

stimulated-echo (STEAM) based pulse sequence. The STEAM sequence features a 

series of 3 /2 pulses, where the crusher gradient in the middle dephases the 

flowing spins. Therefore, the vascular component is suppressed during the 

acquisition time window, and the acquired signal dynamic can be considered as 

purely exchanging. 

There is potential to improve the kinetic modeling of metabolism and 

perfusion by capturing the bolus input signal. In future studies, the tradeoff between 

double spin-echo SNR and kinetic modeling accuracy using modeling methods will 

also be investigated. 

 

5.1.4 The two-compartment three-site exchange model 

In the two-site model from the previous section, pyruvate and lactate 

dynamics are considered to be solely a function of metabolic exchange, RF excitation 

and T1 relaxation (Figure 5.5B). Per the TRAMP mice sequence protocol, the 

acquisition begins at the end of the 15 second-injection, when the main pyruvate 
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bolus has arrived at the tumor. The tumor compartment is assumed to be at a quasi-

equilibrium state where pyruvate inflow and clearance are approximately at the 

same rate. The observed signal in vivo in TRAMP was that pyruvate signal 

monotonically decreases, and lactate signal first increased, and then is followed by a 

decrease. Such signal behavior can therefore be adequately described by the two-

site model. 

Quantification of pyruvate-to-lactate conversion is a unique and very 

important challenge in clinical translation of HP-13C imaging. In patient studies, a 

different type of dynamic model is required to represent the signal, compared to the 

TRAMP two-site exchange model. Such demand comes from several reasons. First of 

all, the human subject presents significantly different pharmacokinetics from that of 

the TRAMP mice. Moreover, the coil setup, the imaging volume, sequence 

prescription and flip angle design for clinical studies all deviate from that of mice 

studies. Specifically, the clinical protocol mandates that the acquisition starts at 5 

seconds after the end of injection, which was administered from antecubital IV. With 

the time delay for the bolus to travel through circulation to prostate, it was found 

that such acquisition scheme captures a Lorentzian shape of pyruvate bolus, with 

both the ascending and descending portions. The 1D and 2D MRSI data presented by 

Nelson et al. suggests that the pyruvate bolus appears at around 10-15 seconds after 

the end of injection, and reached maximum around 20 seconds. Lactate signal, on 

the other hand, peaked at approximately 30 seconds. 

A two-compartment three-site model has been proposed to account for the 

bolus effect. In this case, the blood and tissue compartment were included in the 
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proposed model (Figure 5.5B). However, only the pyruvate pool (AIF) was 

accounted for in the blood compartment, with the assumption that lactate was 

solely produced in the tumor. In order to derive an analytical form of the model, the 

AIF was assumed to be a boxcar function, defined by injection rate r0, similar to the 

three-site model reported by Zierhut et al. (163) 

The proposed model can be written in the following ODE form 

𝑑𝑀𝑝𝑦𝑟(𝑡)

𝑑𝑡
= 𝑟0 ∙ 𝑒−𝜌𝑡 − (𝜌 + 𝑘𝑃𝐿 + 𝑘𝑃𝐴)𝑀𝑝𝑦𝑟(𝑡) 

𝑑𝑀𝑙𝑎𝑐(𝑡)

𝑑𝑡
= 𝑘𝑃𝐿 ∙ 𝑀𝑝𝑦𝑟(𝑡) − 𝜌 ∙ 𝑀𝑙𝑎𝑐(𝑡) 

𝑑𝑀𝑎𝑙𝑎(𝑡)

𝑑𝑡
= 𝑘𝑃𝐿 ∙ 𝑀𝑝𝑦𝑟(𝑡) − 𝜌 ∙ 𝑀𝑎𝑙𝑎(𝑡) 

where Mx is the magnetization of metabolite x, and  is the intrinsic relaxation of 

HP-13C compounds,  =1/T1. 

Solving for the ODEs gives the following analytical form,  

𝑀𝑝𝑦𝑟(𝑡) = 𝑀𝑝𝑦𝑟(𝑡0) ∙ 𝑒−(𝜌+𝑘𝑃𝐿+𝑘𝑃𝐴)(𝑡−𝑡0) +
𝑟0

𝑘𝑃𝐿 + 𝑘𝑃𝐴
𝑒−𝜌(𝑡−𝑡0)[1 − 𝑒−(𝑘𝑃𝐿+𝑘𝑃𝐴)(𝑡−𝑡0)] 

𝑀𝑙𝑎𝑐(𝑡) =
𝑘𝑃𝐿

𝑘𝑃𝐿 + 𝑘𝑃𝐴
{[𝑀𝑝𝑦𝑟(𝑡0) +

𝑘𝑃𝐿 + 𝑘𝑃𝐴

𝑘𝑃𝐿
𝑀𝑙𝑎𝑐(𝑡0) + 𝑟0𝑡 −

𝑟0

𝑘𝑃𝐿 + 𝑘𝑃𝐴
] ∙ 𝑒−𝜌(𝑡−𝑡0) + 

[
𝑟0

𝑘𝑃𝐿 + 𝑘𝑃𝐴
− 𝑀𝑝𝑦𝑟(𝑡0)] 𝑒−(𝜌+𝑘𝑃𝐿+𝑘𝑃𝐴)(𝑡−𝑡0)} 

With this model, we attempted to represent the case in human HP-13C 

injections, where AIF plays an important role in the dynamics given the human 

pharmacokinetics, the acquisition scheme, and time frame. Recently, Cunningham et 

al. published a HP-13C human cardiac study (46). Given the rapid circulation and 



98 
 

perfusion in human heart, the bolus effect would presumably be crucial for 

quantification there as well. 

 

5.2 Perfusion Modeling 

5.2.1 Application of Tofts models on HP-13C perfusion imaging 

Cancer hypoxia is known to be a strong promoter of aggressiveness, and is 

associated with breakdown of extracellular matrix and resistant to chemotherapy. 

Imaging cancer blood flow and perfusion has great clinical value, and could serve as 

a predictor for prognosis and therapeutic response. Tofts formulated a 

mathematical model (115,168) for quantitative measurement of in vivo perfusion. 

To this date, the Tofts model still serves as the “Gold standard” for perfusion, and 

has found extensive usage in different forms of perfusion imaging and 

pharmacokinetics, such as PET and DCE-MRI. This section includes a discussion of 

the application of Tofts model in the context of HP-13C perfusion imaging using HP-

urea. 

The Tofts model considers a single tissue compartment and an arterial input 

function (AIF). Perfusion is described as the tracer diffusion through the 

endothelium of blood vessels and entering the tissue. The forward and backward 

perfusion /permeability coefficients are denoted as ktrans and kep, respectively. The 

perfusion phenomenon can then be formulated as 

𝑑𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡)

𝑑𝑡
= 𝑘𝑡𝑟𝑎𝑛𝑠 ∙ 𝐶𝑏𝑙𝑜𝑜𝑑(𝑡) − 𝑘𝑒𝑝 ∙ 𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) 



99 
 

where Cblood(t) and Ctissue(t) are the tracer concentration in vasculature supplying 

the tissue, and the tissue itself, respectively. Cblood(t) is also known as AIF. ktrans is the 

product of extraction fraction E and flow F, that is ktrans = E·F. The extraction fraction 

𝐸 =  (1 − 𝑒𝑥𝑝(−𝑃𝑆/𝐹)). 

The solution of the concentration equation becomes 

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝑘𝑡𝑟𝑎𝑛𝑠 ∙ 𝐶𝑏𝑙𝑜𝑜𝑑(𝑡) ∗ exp (−𝑘𝑒𝑝 ∙ 𝑡) 

If the fractional volume ve is to be considered, the equation becomes 

𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = (1 − 𝑣𝑒)𝑘𝑡𝑟𝑎𝑛𝑠 ∙ 𝐶𝑏𝑙𝑜𝑜𝑑(𝑡) ∗ exp(−𝑘𝑒𝑝 ∙ 𝑡) + 𝑣𝑒 ∙ 𝐶𝑏𝑙𝑜𝑜𝑑(𝑡) 

The fractional volume, or the fraction of blood volume in tissue is connected to the 

perfusion coefficients as ve = ktrans/kep. For DCE imaging, the signal curve can be 

uniquely mapped to concentration curve, leading to straightforward parameter 

fitting. However, the signal mapping is nonlinear and may induce ambiguity in the 

fit, as will be discussed in Section 5.4 . 

Although positive proportionality exists between the HP-13C signal and 

concentration, the signal equation is not as simple as it appears, since the 

magnetization loss needs to be accounted for due to RF excitation and T1 relaxation. 

The magnetization equation for HP tracers can be written in a similar form to the 

concentration equation 

𝑑𝑀𝑡𝑖𝑠𝑠𝑢𝑒(𝑡)

𝑑𝑡
= 𝑘𝑡𝑟𝑎𝑛𝑠 ∙ 𝑀𝑏𝑙𝑜𝑜𝑑(𝑡) − (𝑘𝑒𝑝 + 1 𝑇1⁄ ) ∙ 𝑀𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) 

generating the solution (169) 

𝑀𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) = 𝑘𝑡𝑟𝑎𝑛𝑠 ∙ 𝑀𝑏𝑙𝑜𝑜𝑑(𝑡) ∗ exp [(−𝑘𝑒𝑝 + 1 𝑇1⁄ ) ∙ 𝑡] 
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Note: it needs to be considered that Mblood(t) = Cblood(t)·exp(-t/T1) when model-

based AIF was used. 

Similar to the metabolic modeling, the perfusion model utilizes a hybrid 

continuous-discrete model to account for the RF excitation loss and magnetization 

evolution in each TR. 

 

5.2.2 Model-based AIF 

A well-defined arterial input function is of great importance to accurate 

quantification of perfusion. One strategy of defining AIF is to use a mathematical 

function that mimics the empirical or population-mean AIF across subject animals 

or humans. 

The simplest form of model-based AIF is probably a boxcar function. The 

boxcar function is defined as 

𝐶𝑏𝑙𝑜𝑜𝑑(𝑡) = {
𝑟0 𝑡0 < 𝑡 < 𝑡0 + 𝑡𝑎

0 elsewhere
 

The associated parameters are the rate of AIF r0, the bolus arrival time t0, and the 

duration of AIF ta. The model parameters can either be fixed to an empirical value, 

or be as a free parameter in the fit. 

For HP-13C urea in mouse cancer model studies, a Gamma-variate based 

model was defined by von Morze et al (41,112), 

𝐶𝑏𝑙𝑜𝑜𝑑(𝑡) = 𝐴0 ∙ (𝑡 − 𝑡0)𝛼 ∙ exp[−(𝑡 − 𝑡0)/𝛽] 

with coefficients  = 3.3 and  = 4.0 (Figure 5.4A). 

A model-based AIF is less susceptible to noise compared to an AIF measured 

during study, and is therefore more likely to provide a stable and reproducible fit. 



101 
 

The downside of the model-based method is that it might be more susceptible to 

study subject variations, different injection protocols, as well as deviations from the 

population mean. That is, the choice of using a power injector versus manual 

injection, and the variability within manual injections from each dataset. Also, for 

those subjects who have an “outlier” AIF that deviates from population mean in 

shape or duration, the model-based AIF might not represent the true AIF effectively. 

 

Figure 5.4 A) Model-based arterial input function using a gamma variate function 
CAIF(t) and a simulated urea concentration curve Ctumor(t) in tumor using ktrans = 120 
and kep = 600 (ml/dL·min-1). B) Actual measurements of urea AIF using two different 
acquisition schemes. The 3D CS-EPSI sequence (11,12) and the 2D-RF pulses (170) give 
very similar AIF profile after signal normalization. Study was conducted on the same 
day and same animal. 

 

5.2.3 In vivo measurement of AIF 

In the quantitative perfusion analysis, another strategy to determine AIF is 

through a direct measurement instead of the model-based AIF. The in vivo 

measurement of AIF can be done by several means, most notably arterial blood 

sampling and image-derived AIF. The arterial blood sampling method applies an I.V. 

catheter that continuously samples blood from subject animal/patient. This strategy 

B) A) 
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is historically known to provide precise AIF measurements in PET imaging 

(168,171). In terms of PET, the arterial blood sampling works either by placing the 

catheter directly inside the imaging FOV and directly calculate it from PET images, 

or use an external Gamma counter. However, arterial blood sampling is invasive and 

not preferred in the clinic. The image-derived AIF, as the name suggests, requires 

manual segmentation of a sufficiently large blood vessel on the PET image, and 

corrections such as hematocrit and partial voluming needs to be applied. 

For in vivo AIF measurement in HP-13C studies, both arterial blood sampling 

and image-derived AIF have been previously reported. In the dynamic studies by 

Kazan et al. (140), they placed an external blood chamber next to their carbon 

surface coil for blood sampling, and fit the measured AIF curve using different 

models.  

In this project, we attempted to estimate an image-derived AIF using both the 

3D dynamic EPSI sequence (11,12) and a 2D-RF excitation sequence (170) on 

TRAMP mice. The 3D dynamic sequence uses the same protocol as our prostate 

tumor studies, as described in Chapter 3. The parameters are briefly summarized 

here, (RF with variable flip angles, multiband excitation, compressed sensing EPSI 

readout, spatial resolution = 3.3 x 3.3 x 5.4mm, temporal resolution = 2s, acquisition 

length = 36s, TR = 250ms, TE=150ms). The 2D-RF sequence consists of a RF pulse 

selective in 2 dimensions, namely x and y, followed by a 1D EPSI readout in the z 

direction. Some parameters of the 2D-RF sequence include: 5° flip angle, 5mm 

excitation diameter in x-y, 5mm EPSI resolution along SI direction, and a temporal 

resolution of 2s. 
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The injection bolus was 350ul of 80mM HP-13C urea over 15 seconds, with 

polarization level 20-30%, done manually by an experienced uro-oncologist. Due to 

the RF spoiling created by DSE refocusing pulses, the 3D dynamic sequence starts at 

15 seconds after the beginning of injection. Therefore, only the latter half of the AIF 

is captured in the acquisition. The 2D-RF sequence, on the other hand, starts at 5 

seconds after the beginning of injection. 

The blood vessel identified was the inferior vena cava, and the diameter was 

estimated based on a 3D TOF flow sequence (TE/TR = 2.5/15ms, 256x256 matrix, 

FOV = 10x10cm, in-plane resolution = 0.39mm, slice thickness = 1.5mm, Flip Angle = 

7°). The vessel diameter was estimated to be around 0.7mm. The AIF curve derived 

from the vena cava of both the 3D EPSI and 2D-RF sequence was shown in Figure 

5.4B. The urea signal curve, after normalization, was strikingly similar between the 

two acquisitions. This is a very interesting finding, since different pulse sequences 

and flip angle schedules were played between the 3D and 2D acquisitions. First, the 

similarity can be attributed to the consistency between injection protocols. 

Moreover, the small variable flip angle at the beginning of the 3D sequence was very 

close to the 5° constant flip angle provided by the 2D RF sequence. With the afore-

mentioned factors in mind, this could suggest that the AIF is relatively consistent 

among different pulses sequences, given similar flip angle scheme. The findings of 

the measured AIF can help reduce the need for arterial blood sampling, and even to 

improve the model-based AIF. 

The AIF between the 3D EPSI and 2D-RF sequences demonstrated close 

similarities. In the future, it may be beneficial to interleave the two sequences, such 
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that a small-flip 2D-RF sequence can begin at t=0 for bolus tracking and AIF 

estimation, and the “main” sequence, such as the 3D EPSI, could wait until the bolus 

arrives (e.g. 15 seconds after beginning of injection) to start. After the start of 3D 

sequence, the 2D-RF can be interleaved in between TR’s for signal normalization. 

 

5.2.4 Quantitative analysis of perfusion and pharmacokinetic parameters 

The kinetic modeling of perfusion was performed using HP-13C urea from the 

co-polarized 3D dynamic pyruvate-urea studies, as described in Chapter 3. The AIF 

and perfusion curves in tumor were jointly fitted, where the AIF curve was fitted to 

Gamma-variate function (i.e. model-based). The relation between AIF and tumor 

perfusion curves gives an estimate of ktrans as well as the lumped “reverse” perfusion 

coefficient k2. Urea area under the curve (AUC), normalized to kidney urea signal, 

was also evaluated for each animal to study the distribution of urea in tumor. 

In a sense, quantitative modeling of HP-13C perfusion pharmacokinetics is 

similar to modeling PET radioactive tracers. As opposed to DCE imaging, the signal 

is relatively “linear” to tracer concentration, barring radioactive decay or T1 

relaxation. One difference is the RF excitation pulses in the HP-13C, used to 

interrogate the tracer, causes additional signal loss in addition to the intrinsic decay 

and has to be accounted for. 

Generally speaking, fitting for perfusion models in TRAMP mice is less 

reproducible or stable than the pyruvate-lactate metabolism fits. This could be 

mainly due to the absence of the first (ascending) lobe of AIF, which was not 

captured for the DSE-based acquisition scheme in TRAMP mice studies. Even with 
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the support of model-based AIF, substantial variations could still arise from 

difference in timing, bolus signal scaling, bolus shape and duration. If an FID 

acquisition scheme is used instead of DSE, the acquisition could begin earlier, and 

capture the first lobe of AIF. Such modification, nevertheless, is at the expense of 

reduced lactate SNR and increase spectral linewidth. 

In patient studies, however, the measurement of perfusion using HP-13C 

tracers can be more challenging. First of all, approval for clinical study using HP-13C 

urea is still a working progress. Moreover, whether the coil and hardware setup 

covers the ascending/descending vena cava is an important question. The sensitive 

region of prostate, brain or liver 13C coils, for instance, does not cover the vena cava 

in most cases. 

Measuring AIF using the existing pyruvate data is certainly an option in the 

absence of HP-urea. It is important, however, to note the assumption that no 

pyruvate is being converted to lactate in the blood vessels. It is known that the 

pyruvate-to-lactate conversion does occur in red blood cells. Also, blood vessels 

surrounding the ROI may have partial voluming with tumor or other tissues, adding 

to the complexity of AIF estimation. In many prostate cancer patients, the reception 

profile of the endorectal coil includes a major artery around the rectal wall, and the 

pyruvate bolus was observed to arrive at this artery first, before it appeared in the 

prostate. The reproducibility of this arterial signal -- and how well it represents AIF, 

may be an interesting subject for future investigation. 
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5.3 Assessing Goodness of Models and Fit 

5.3.1 The Akaike Information Theorem 

Careful selection of kinetic model architecture and free model parameters 

are key to accurate and robust estimate of metabolic and perfusion parameters. 

More often than not we face the situation where several mathematical models have 

been proposed to describe the same dataset.  We’d like to select a model that most 

appropriately represents the dataset, giving reliable and reproducible fitting. 

The Akaike Information Theorem was proposed by Akaike et al back in 1974 

to determine the relative “goodness” of models (172,173). Shannon’s information 

theory tells us that the information content from a given observation is finite and 

limited by observation noise(174). Therefore, when selecting a model, it is an 

important task to minimize the loss of information, such that the model best 

represents the ground truth. According to the principle of parsimony, the selection 

of model is a compromise between model bias and variance. A model with too many 

free parameters will lead to increased variance, while a model with too few 

parameters will cause increase in bias (173). 

Another interpretation approach is that a model with more variables may 

provide a better “fit” (e.g. a high-order polynomial fits an arbitrary curve better than 

a low-order polynomial, likely giving smaller R2). However, higher number of 

variables also means that the values of these variables are more sensitive to small 

perturbations. In another word, a small change in the data curve might create rather 

dramatic variation in the parameter space. A model with too few parameters, on the 

other hand, gives a less than optimal “fit”. That is, the free parameters are biased 
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due to those “missing” parameters required to represent the data. Fortunately, these 

free parameters are less susceptible to a small change in data compared to the high-

variable case, reducing their variation. Therefore, the goodness of model is a 

delicate compromise between variance and bias (Figure 5.5A).  

Akaike established a relationship between the conventional maximum 

likelihood and the Kullback-Liebler information (175). The K-L information 

measures the information loss when approximating the “true” underlying data P 

with a model Q. The K-L divergence given random variable P and Q is defined as 

𝐼(𝑝, 𝑞) = ∫ 𝑝(𝑥)𝑙𝑜𝑔
𝑝(𝑥)

𝑞(𝑥|𝜃)
𝑑𝑥

Ω

 

where p and q are the distribution of P and Q, and  is the parameter vector used in 

model Q.  

Minimizing the expected K-L divergence produces the definition of Akaike’s 

Information Criteria (AIC), with detailed explained in Appendix.  

AIC = −2 log ℒ(𝜃|𝑦) + 2𝑘 

where 𝜃 is the maximum likelihood estimate of , y are the random samples from 

function p(x), and  ℒ(𝜃|𝑦) is the likelihood of 𝜃 with observation y. k denotes the 

number of estimated (free) parameters.  

The model that has the relatively lowest AIC has least information loss 

among all candidate models given observation y. In the AIC formula, the first term 

represents bias, and the second term denotes variance. With higher number of 

parameters in vector , the log likelihood of ML parameter estimate 𝜃 given y would 
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be higher. However, the second term penalizes the higher number of parameters. 

This comprises the trade-off between bias and variation. 

Since the AIC was derived from an unbiased estimated of I(p,q), correction is 

needed facing a small sample size. The rule of thumb is that when n/K<40, the 

corrected AIC formula is required. The corrected AIC formulates as 

AIC𝐶 = −2 log ℒ(𝜃|𝑦) + 2𝑘 + 2
2𝑘(𝑘 + 1)

(𝑛 − 𝑘 + 1)
 

It is important to keep in mind that the AIC only compares and determines 

the relative “goodness” between the candidate models, and cannot be used to 

discover the globally best model. Therefore, system knowledge and prior data is of 

great importance to formulation of models. 



109 
 

 

Figure 5.5 A) The principle of parsimony illustrates the trade-off between number of 
free parameters in a model. While fewer variables increase the bias, more variables 
increase the variation. B) The two candidate models compared for TRAMP. (Top) The 
two-site exchange model (110), and the two-compartment three-site model similar to 
Zierhut’s. (163) C) Both two-site and the two-compartment three-site model provides 
good fit in this set of TRAMP data and similar kPL estimates (0.0373 vs 0.0375) D) 
(N=19) AIC for the two models associated with a given dataset was connected by a 
line. While a blue line represents lower AIC value in two-site model, a green line 
suggest opposite. 

 

5.3.2 Goodness of models in TRAMP prostate cancer 

Goodness of two candidate models (Figure 5.5B), namely a two-site exchange 

model similar to Bahrami’s (Section 5.1.3 ) and the a two-compartment three-site 

model similar to Zierhut’s (Section 5.1.4 ), were compared by retrospectively 

examining HP-13C dynamics from the TRAMP dataset for both low grade and high 

B) A) 

C) D) 
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grade tumor (N=19). These two models seem to produce the most reasonable and 

reproducible fit for TRAMP datasets to our knowledge. The two-site model has 6 

free (fitting) variables, namely Mpyr(t0), Mlac(t0), Mala(t0), kPL, kPA, and T1. The two-

compartment three-site model also has 6, which are kPL, kPA, r0, toffset, Rspoil and T1. 

Rspoil is the RF spoiling factor caused by double spin-echo pulses at the coil edge. 

Rspoil was not accounted for in the two-site model since the two-site model does not 

incorporate the dynamics before t0, the timepoint where acquisition starts.  

Figure 5.5D illustrates AIC pairs for the two models in each TRAMP in vivo 

dynamic dataset. Each line pairs AIC values associated with the two models in a 

given dataset. A blue line represents lower AIC value in two-site model, while a 

green line suggests the opposite. The absolute values of AIC has little meaning, but 

comparing the AIC estimates for dynamic datasets between different models reveals 

the relative “goodness” of the candidate models. Out of the 19 datasets, the two-site 

model has lower AIC value in 10 datasets, while AIC for the three-site model is lower 

in 9 of them. From the fit in Figure 5.5C, both methods performs reasonably well 

and provided similar measures of kPL, the quantitative parameter of question in 

metabolism.  The AIC suggests that the two-site and three-site model have similar 

performance whether in the high-grade or low-grade tumor. Since no significant 

evidence favors either model, the two-site model was empirically chosen as the 

model of use for the TRAMP tumor studies. 

The modeling strategy for TRAMP imaging is heavily dependent on the 

acquisition scheme. In the TRAMP mouse studies we used a dynamic acquisition 

based on double spin-echo refocusing, which provides improved SNR for individual 
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images, but at the expense of saturating some hyperpolarized magnetization at the 

edges of the RF coil, or at the head and tail of the mice studied.  This saturation effect 

is larger during the injection, when all HP magnetization passes through the edges 

into the sensitive volume of the coil.  Therefore the use of double spin-echo 

refocusing for SNR improvements required starting data acquisition at the end of 

injection of hyperpolarized pyruvate resulting in the loss of the initial time points of 

the dynamic curve. 

In this case, the two-site exchange model accounts for the net conversion 

from pyruvate to lactate, and also provides an estimate for relaxation T1. The initial 

magnetization Mx(t0) for each metabolite x is also an estimated parameter, allowing 

no assumption to be made about the dynamics prior to the sequence begins (i.e. 

t<t0). Once the sequence begins, the pyruvate curve will be monotonically 

decreasing due to the assumption that the main pyruvate bolus has arrived at the 

tumor, and the AIF was omitted. This speculation is consistent with the TRAMP 

dynamics that we acquired, some of which can be found in Chapter 3. However, the 

monotonic decreasing pyruvate does not necessary suggest that no pyruvate inflow 

occurs after the acquisition begins. Instead, it is possible that the net pyruvate signal 

loss, as a combination effect of pyruvate-to-lactate conversion and T1 relaxation, is 

higher than the contribution of pyruvate from blood flow. The lactate signal, on the 

other hand, tends to first increase, followed by invert and decrease till the end of 

acquisition. The two-compartment three-site model provides a simplistic boxcar 

input function, a timing offset toffset to account for the timing of bolus arrival, 

conversion rate constant kPL and kPA similar to the two-site model, and also the 
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relaxation T1. One necessary assumption for the three-site model is that no HP-13C is 

present until the beginning of bolus arrival. An additional term is the RF spoiling 

factor Rspoil, which accounts for the extra signal loss after acquisition start due to RF 

spoiling resulting from DSE refocusing pulses. If an FID-based acquisition mode is 

applied without refocusing, the Rspoil term would not be necessary. 

In summary, the three-site model offers higher flexibility on 

pharmacokinetics, including bolus size and timing, while the two-site model focuses 

more on the net metabolic conversion. 

 

5.3.3 Selection of Models in Human Prostate Cancer 

As described in 5.1.4 , the human HP-13C acquisition captures a strong bolus 

profile, which necessitates the inclusion of AIF in the models. Such AIF profile was 

found not only in prostate, but also in the recently published HP brain and cardiac 

data. One option is the two-compartment three-site model (Zierhut-like) we 

proposed as an alternative to the two-site exchange model in TRAMP studies (163). 

Although the three-site versus two-site AIC was not directly compared using the 

clinical data, one can safely assume that a three-site model will outperform a two-

site model. This is due to the strong AIF that can be visually identified, where the 

two-site model omits the existence of such AIF. 
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Figure 5.6 A) This figure summarizes the two candidate models compared for the 
phase II human prostate data acquired using the 3D CS-EPSI sequence. The modified 
Zierhut model is also a candidate for TRAMP mice studies, while the full three site 
model includes a Gamma-variate AIF in blood compartment. B) The modified Zierhut 
model and the full three-site model both provide good fit for human prostate cancer 
with similar kPL estimates. C) AIC comparison from human datasets (N=7). The full 
three-site model has a slight advantage over the modified Zierhut model, but the latter 
still performs reasonably well with good reproducibility. 

 

The free parameters in Zierhut-like model (Figure 5.6A, left) can be 

simplified to kPL, r0, and T1. Since alanine was not considered the human acquisition, 

and RF spoiling is not an issue with the disabling of DSE refocusing kPA and Rspoil are 

omitted along with the alanine compartment. At the first glance, the Zierhut-like 

A) 

B) C) 
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model provides good fits with reasonable kPL numbers. Nevertheless, to investigate 

whether we run the risk of oversimplification, a more complex “full” two-

compartment three-site model was also proposed for comparison. 

First of all, in the “full three-site” model (Figure 5.6A, right), a Gamma-variate 

AIF was applied in place of the boxcar function in the Zierhut-like model. The 

Gamma function is identical to what was discussed in the perfusion section, but with 

coefficient  = 2 and  = 10, chosen empirically based on the clinical data from 

phase I and phase II clinical studies. Moreover, both forward and reverse perfusion 

coefficient was included to model the exchange between blood and tissue 

compartment. 

This model structure leads to three-site exchange equations 

𝑑𝑀𝑝𝑦𝑟,𝑡𝑖𝑠𝑠𝑢𝑒(𝑡)

𝑑𝑡
= 𝑘𝑡𝑟𝑎𝑛𝑠 ∙ 𝑀𝑝𝑦𝑟,𝑏𝑙𝑜𝑜𝑑(𝑡) − (𝜌 + 𝑘𝑃𝐿 + 𝑘𝑒𝑝)𝑀𝑝𝑦𝑟,𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) 

𝑑𝑀𝑙𝑎𝑐(𝑡)

𝑑𝑡
= 𝑘𝑃𝐿 ∙ 𝑀𝑝𝑦𝑟,𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) − 𝜌 ∙ 𝑀𝑙𝑎𝑐(𝑡) 

where Mpyr,blood(t) denotes the AIF, Mpyr,tissue(t) is the tumor pyruvate magnetization, 

and ktrans, kep are forward and reverse perfusion coefficients, respectively. In this 

particular case, an analytical solution cannot be reached due to the gamma-variate 

AIF. Fortunately, a numerical approximation can be evaluated using MATLAB 

methods. Similar to any other type of model fit, the RF excitation has to be 

accounted for in each TR as a signal loss mechanism. 

Figure 5.6C depicts the AIC comparison between “full three-site” and the 

Zierhut-like simplified three-site models using the clinical prostate dynamics we 

acquired so far (N=7). While the green line connects an AIC-estimate pair from a 
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single dataset where the full three-site model has lower AIC, the blue line shows a 

pair where the modified Zierhut model has lower AIC. 

Out of the 7 datasets we have so far, 5 of them favor the full three-site model, 

while 2 favor the Zierhut-like model. Therefore, with the current data it appears that 

the “full” three-site model has a slight edge over the Zierhut-like model. However, 

the AIC difference, AIC, is small between the two models. Moreover, the fits from 

the two models (Figure 5.6B) appear visually similar. Such outcomes suggest that 

their performance is not significantly different. It also suggests that a Zierhut-like 

model, using a boxcar input function and 3 free parameters, is a reasonable model 

structure which does not oversimplify the in vivo dynamics. The full three site 

model, while providing better fit, is penalized by the 5 parameters that lead to 

increased parameter variation. 

At this stage it is still too early to decide on a particular model for clinical 

studies, and there is certainly room for improvements with both model architecture 

as well as choice of free parameters. As importantly, more data points need to be 

collected for clinical model development. 

 

5.3.4 Summary of model selection 

Kinetic modeling lies at the heart of quantitative analysis in HP-13C dynamic 

imaging. Dynamic models incorporate fundamental parameters such as timing 

differences and offsets in bolus injection, tracer delivery, and metabolic conversion 

during the acquisition. Careful selection of a candidate model ensures faithful 
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representation of the underlying information in the dynamic dataset. Flexibility is 

offered through choice of free parameters to enter the fitting operation. 

The Akaike’s Information Criterion provides a statistical method to evaluate 

the “goodness” of candidate models based on real data. Given real-world datasets, a 

model that consistently provides lower AIC estimates than others indicates better 

performance. Bankson and colleagues compared 3 different model architectures 

using a variety of animal tumor models (142). They concluded that the two-

compartment and three-compartment models perform better than a simple two-site 

exchange one, evaluated based on AIC. Nevertheless, the characteristics of dynamic 

data are heavily dependent on the animal model, MRI instruments, the experimental 

setup, the pulse sequence, and the acquisition strategy. Based on our investigation, 

the two-site and Zierhut-like three-site model both work well for the HP-13C TRAMP 

tumor dynamics. For clinical prostate studies, the “full” three-site model seems to 

perform slightly better than the Zierhut-like model, but no significant difference was 

found, and the Zierhut-like model can serve as a reasonable simplification for the 

full model. The model-free estimation method, like the one recently discussed by 

Maidens et al., may also be beneficial (162). 

In general, more data points need to be collected, where the variation over 

population in pharmacokinetics such as AIF shape, perfusion and delivery timing 

can be factored in for model improvements. The HP-13C dynamic modeling in other 

targets such as brain, heart and liver would also need to be investigated; as such 

organs can exhibit different pharmacokinetics and rate of pyruvate-to-lactate 

conversion compared to the prostate. 
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5.4 Comparison of HP-13C Urea Perfusion and DCE Imaging 

5.4.1 Basics of dynamic contrast enhanced imaging 

Dynamic contrast enhanced MRI (DCE-MRI) is a common way to image blood 

flow, perfusion and permeability (91,93). The DCE-MRI uses a T1-weighted imaging 

sequence and the signal enhancement provided by Gadolinium (Gd)-based contrast 

agents. The Gd tracer creates a T1-shortening of protons, and therefore altering the 

native contrast in vivo. The amount of T1-shortening is a function of Gd 

concentration. Since Gd is an extracellular agent and technically no cellular uptake 

takes place, DCE imaging can serve as a good measurement of perfusion and 

vascular permeability in tumor or in a given tissue, in the general sense.  

The T1-shortening given a Gd concentration C can be expressed as 

𝑅1 = 𝑅10 + 𝑟1 ∙ 𝐶 

where R10 and R1 are the intrinsic and the Gd-enhanced relaxation rate, respectively, 

and r1 is the relaxivity. The definition of relaxation rate R1 is simply R1 = 1/T1. The 

signal equation can be expressed as (176) 

𝑆 = 𝑆0 ∙
(1 − 𝐸1) sin 𝜃

1 − 𝐸1 cos 𝜃
 

where S and S0 are the contrasted and intrinsic (uncontrasted) signal from a given 

voxel, respectively. E1 is defined as a function of TR and T1 as E1 = exp(-T1/TR), and 

 is the flip angle played at acquisition. Note that S0 was acquired with = 90° with 

sufficiently long TR for T1 recovery, and has to be back-calculated if a flip angle 

other than 90° was used. 
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Figure 5.7 DCE signal curve illustrates the nonlinear relation between Gd tracer 
concentration and T1 signal enhancement. The nonlinearity is particular an issue with 
AIF measurements, where high Gd concentration is present and the conversion curve is 
almost “flat”. 

 

On the signal modeling end, the canonical Tofts model (as formulated in the 

urea perfusion section) is typically applied, along with the signal-intensity versus 

Gd-concentration curve as characterized above (Figure 5.7). One confounding factor 

of DCE imaging, nevertheless, is that the signal intensity is not directly proportional 

to Gd tracer concentration. Especially in the major arteries, where high 

concentration of Gd is present, the Gd concentration maps onto a plateau region on 

the signal-concentration curve, creating ambiguity in the AIF fit and therefore 

increases overall instability. 

 

5.4.2 DCE imaging on transgenic mouse prostate tumor at 3 Tesla – Methods 

DCE imaging was performed on several TRAMP mice on the same day of HP-

13C studies (N=4). The Gd-tracer used for the DCE study was Magnevist Gd-DTPA 
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(Bayer Pharmaceuticals, Wayne NJ) diluted to 0.17M. 100ul of the diluted tracer was 

injected through the same tail vein catheter as for the HP-13C studies, immediately 

followed by 150ul of saline flush. The injection begins around 30 seconds after the 

acquisition begins, and ends around 45 seconds. The total injection duration for Gd 

and saline was ~15 seconds. The DCE acquisition used a GE 3D LAVA sequence, 

which is essentially a T1-weighted spoiled gradient sequence with fat suppression. 

The sequence parameter includes flip angle = 10°, TR = 8.73(ms), TE = 2.83(ms), 

resolution = 0.23x0.23(mm, in plane) x3(mm, axial slice), matrix size = 256x256x12, 

temporal resolution = 4(s), total acquisition duration = 248(s). 

First of all, it is essential to acquire a T1-mapping for the each voxel in the 

imaging volume. The T1-mapping was done using the multi-angle method described 

by Parker et al (177). A set of 4 imaging series were performed under intrinsic 

contrast using exactly the same GE 3D LAVA sequences as the DCE acquisition and 

same parameters, except for RF flip angles. These series were acquired with 2.5°, 5°, 

7.5° and 10° flip angles, respectively. Having the four LAVA datasets, T1 can be 

estimated using a simple linear regression. The intrinsic signal S0 easily follows 

based on the T1 estimate.  

For all the studies where DCE images were acquired, the Gd injection and 

acquisition followed the end of the final HP-13C shot, so the HP-13C signal 

characteristic would not be affected by the presence of Gd. 
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5.4.3 Results 

 
Figure 5.8 Model fit and maps of ktrans estimates from A) HP-13C urea and B) DCE 
imaging on a pathologically low-grade TRAMP mice with kPL = 0.0155 (s-1). 

 
DCE imaging was performed post-HP-13C on 4 TRAMP mice. 3 TRAMPs were 

histologically categorized as low-grade, whereas 1 TRAMP had high-grade tumor. 

Figure 5.8 shows an example of dynamic curve and fit from HP-urea and DCE on the 

same animal. While the DCE arterial input function may suffer from fitting 

ambiguity, both data curves give reasonable fit. Figure 5.9 summarizes the 

pyruvate-to-lactate conversion kPL and perfusion ktrans in the subject mouse prostate 

tumor. Estimated urea ktrans from the co-polarized HP-13C pyruvate+urea MRSI data 

was ktrans,urea = (high-grade:413 and low-grade:245±184 ml/dL/min-1). Urea ktrans 

from the DCE imaging data was ktrans,DCE =  (high-grade:882 and low-grade:428±125 

ml/dL/min-1). kPL was also estimated from the co-polarized injection, giving kPL  =  

A) B) 
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(high-grade:0.0482 and low-grade:0.0172±0.0056 s-1). The kPL and ktrans values for 

these 4 animals are also reported in Chapter 3, and no overlap in kPL was found 

between high- and low-grade tumors. Higher ktrans was found in high-grade tumor 

using both urea and Gd contrast. There was overlap between high- and low- grade 

tumor in ktrans,urea values, but not in ktrans,DCE. Significance was not reported here due 

to the small sample size. 

 

5.4.4 Comparison between urea perfusion/distribution volume and DCE 

 
Figure 5.9 A) ktrans estimates from HP-13C urea and DCE imaging 4 TRAMP mice (1 
high-grade, 3 low-grade). ktrans,DCE was higher for in 3 animals, while ktrans,urea was 
higher in 1. B) The kPL for the 4 TRAMPs involved in this study was excerpted here, 
showing no overlap in kPL between high- and low-grade tumor. 

 

In the context of tumor microenvironment, ktrans is a combined measure of 

perfusion and permeability. The HP-13C urea and Gd-tracer are similar in a sense 

that they are both extracellular agent, neither crosses the blood brain barrier, and 

both are relatively chemically inert in vivo. One difference is the diffusivity, which is 

related to the properties of tracer molecule, such as molecule size, uptake by 

A) B) 
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tissue/organs, and its affinity to other biomolecules. For instance, urea is rapidly 

transported into red blood cells and kidney medulla (41). 

The higher DCE ktrans in high-grade tumor can be interpreted as the increased 

vascular permeability in high-grade tumor, which is correlated to the high 

expression of Vegf in these advanced tumors. It is consistent with prior DCE data of 

human prostate cancer, where high-grade tumor showed higher and faster signal 

enhancement, reflected by a high ktrans (93). The urea ktrans was higher in high-grade 

tumor as well, where similar explanation applies. The urea molecules should have a 

slightly higher diffusivity than the Gd macromolecule complex. Interestingly, higher 

DCE ktrans was found than urea ktrans in 3 out of 4 cases. This could possibly be 

attributed to the instability in the model fit, due to either limited available 

information about urea AIF, the nonlinearity in the DCE AIF estimation, or to the 

small sample size. 

Combination of HP urea and DCE imaging reveal very interesting behavior of 

tumor perfusion and permeability, as well as the in vivo tracer dynamics. In the 

work of von Morze et al. (41), several other perfusion tracers were investigated. The 

HP-13C HMCP is more permeable than urea, while the HP-13C t-butanol can be 

considered freely diffusible. Including these tracers in the future can potentially add 

valuable information, particularly to understanding of poorly-perfused and hypoxic 

regions in prostate tumors. 

DCE imaging using Gd contrast is a standard protocol in prostate and brain 

imaging at UCSF, and can potentially be applied to other targets as well. While 

currently the clinical translation of HP-13C urea is still a work in progress, it would 
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be very exciting to acquire urea perfusion data in patients. As the DCE data is readily 

available in the imaging protocol, the addition of HP-urea information will open up 

opportunities toward improved quantitative measurement of tumor perfusion and 

permeability. Also, with the knowledge that hypoxia is strongly correlated to highly 

aggressive tumor and poor prognosis (37,38), the ability of urea to detect hypoxia in 

TRAMP tumor is also very valuable in terms of clinical translation. 

 

5.5 B1-insensitive Variable Flip Angle Design 

5.5.1 Introduction and Purpose 

As is discussed in this chapter, the capability to quantitatively estimate 

pyruvate metabolism and urea perfusion using HP-13C MRI is of great importance. 

Especially in the clinical management of cancer, HP-13C MRI has high potential to 

become the solution to the demand of non-invasively evaluate tumor aggressiveness 

and monitor treatment response. The 3D compressed-sensing echo-planar 

spectroscopic imaging (CS-EPSI) sequence enables 5-dimensional (3-spatial, 1-

temporal, 1 spectral) dynamic HP-13C imaging of human prostate cancer with high 

spatiotemporal resolution. The 3D CS-EPSI sequence can be used to collect high-

quality HP-13C data on human brain and prostate cancers. 

The variable flip angle scheme was applied to improve metabolite SNR. In 

particular, it was designed to maximize total lactate SNR while maintaining constant 

pyruvate signal, which provides basis for reliable quantitative estimation of kPL. 

Nevertheless, the quantitative accuracy of pyruvate-to-lactate conversion can 

potentially be affected by B1+ inhomogeneity (B1+) with this scheme. Calibration of 
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B1+ is challenging due to the limited natural abundance of 13C in vivo, and can also 

vary across larger imaging volumes. The B1+ inhomogeneity can be particularly 

serious in imaging targets such as brain and abdomen, where the ROI consists of a 

larger volume, and the RF excitation coil geometry can easily lead to a ~20-30% 

difference in B1+. Therefore, we seek to mitigate the impact of B1+ on quantification 

from a standpoint of sequence design. 

 

Figure 5.10 One way of adjusting the B1 sensitivity profile is changing the effective T1 
used to generate the lactate flip angles (T1 design). A) Longer T1-design reduces the 
early lactate flip angles, and kPL resulting from the range of error B1+ was depicted 
in this simulation. B) Unfortunately, deviating from the “optimal” maximum SNR flip 
angle design parameters comes at the cost of reduced total lactate SNR. This 
simulation shows the impact on lactate tSNR (A.U.) of different T1-designs. While the 
original T1-design =30(s) generates maximum signal, our choice of T1-design =100(s) 
significantly reduces B1-sensitivitiy at the cost of 2.5% lactate tSNR loss. kPL was 
shown for 20% B1+ error. 

 

In this section, a new variable flip angle scheme was developed to reduce the 

sensitivity to B1+ variations across the transmit-coil volume. In vivo HP-13C studies 
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and simulations were conducted to explore the sensitivity of quantitative kPL 

estimation to B1+, as well as changes in total [1-13C]pyruvate and [1-13C]lactate 

SNR. 

 

5.5.2 Methods 

Sequences: 

The 3D CS-ESPI sequence enables 3D dynamic imaging with high 

spatiotemporal resolution1. Spectral-spatial excitation pulses for varying flip angles 

between metabolites were designed using an open-source SS-RF toolbox (55). 

The variable flip angle scheme was designed such that the lactate total SNR 

over time is maximized, and the pyruvate signal remains constant across the 

acquisition. The pyruvate flip angles are generated using the following equation 

(13). 

𝜃𝑛−1 = tan−1(𝐸1 sin 𝜃𝑛) 

where E1 = exp(TR*(R1+kPL)), kPL is an empirical design parameter based on typical 

kPL values found on subjects , and n =1-N assuming there are a total of N phase 

encodes over all time points. 

The lactate flip angles are described by Nagashima (178). 

𝜃𝑛 = cos−1 (√
𝐸1

2 − 𝐸1
2(𝑁−𝑛+1)

1 − 𝐸1
2(𝑁−𝑛+1)

) 

In which E1 = exp(TR*R1). 

Additional sequence parameters include TR = 150ms, TE = (6.3ms for 

original RF pulses, 4.0ms for new RF pulses), spatial resolution: 6.7mm x 6.7mm x 
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8mm (0.36cm3, rats), and 8mm x 8mm x 8mm (0.5cm3, humans), FOV = 8cm x 8cm x 

12.8cm (rats), and 9.6x9.6x12.8cm (humans), temporal resolution = 2s, acquisition 

window = 42s. The variable flip angles were calculated using MATLAB programs. 

 

Figure 5.11 Simulated signal curves and variation of kPL estimates A) between our 
original and the proposed B1-insensitive flip angle schemes subjected to different B1+. 
The impact of B1+ on amplitude of lactate signal is more benign using the new 
scheme. B) A threshold was set to limit the maximum flip angle for improved slice 
profile. kPL Error was simulated for B1+ = -20%. The threshold does not have a 
significant impact on kPL estimation in terms of B1+. 

 

MRI experiments:  

A clamshell volume coil was used for 13C transmit, and a dual-tuned 1H-13C 

endorectal coil was applied for receive. Sterile GMP [1-13C]pyruvic acid was 

polarized in a 5T SpinLab polarizer for 2-3 hours, yielding 42.8±5.6% polarization of 

241±11 mM pyruvate and met all pharmacy specifications prior to injection for the 



127 
 

clinical trial study (N=5) conducted in accordance with the approved IND protocol. 

The injection was conducted using a power injector (Spectris Solaris, Medrad, 

Saxonburg, PA) through an i.v. placed at the antecubital vein, with a dose of 

0.43ml/kg and injection rate of 5ml/s, followed by 20ml saline flush. T2-FSE images 

were acquired for anatomical reference and lesion identification with the following 

parameters, (parameters). The RF power calibration was conducted using a built-in 

13C urea phantom embedded inside the endorectal coil.  

 

Figure 5.12 HP-13C imaging of a healthy Sprague Dawley rat using our original and 
the new B1-insensitive flip angle scheme. The injections were ~15 minutes apart. A) 
Estimated kPL of rat kidney, which is relatively homeostatic during the course of study. 
When subjected to variation B1+= -20%, the new scheme shows less kPL drift than the 
original one. (old- kPL = 63%, new- kPL = 22%). B) Overlaid kPL map on bSSFP 
anatomical reference for the same data as in A). 
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A healthy Sprague Dawley rat (N=1) was used for animal studies. A 

customized dual-tuned 1H-13C rat coil is responsible for transmitting and receiving 

of proton and carbon signals. [1-13C]pyruvic acid was polarized using either 

Hypersense or Spinlab polarizer, yielding 80mM pyruvate solution with the 

following buildup time and polarization level - Hypersense: 1-1.5 hours, 20-25%, 

Spinlab: 2-2.5 hours, 30-35%. A balanced-SSFP 1H scan was used for anatomical 

references. The injection bolus was 3ml over 12 seconds through a tail vein catheter. 

The RF power calibration was done using an 8M urea syringe placed right on top of 

the rat torso. 

 

Simulations and kPL estimation: 

HP-13C pyruvate and lactate signals were generated and fit using a simple 

and robust two-site exchange model, which is described in Section 5.1. B1 

inhomogeneity translates into an effective scaling in a given flip angle scheme, 

denoted by n. Potential variations of B1+= ±20% was assumed for clinical 

environment. All simulations were conducted using MATLAB. For both simulation 

and in vivo data, kPL was estimated using nonlinear least-squares fitting algorithm. 

 

5.5.3 Results/Discussions 

One way of desensitizing the sequence to B1 inhomogeneity is to adjust the 

effective T1 design factor (T1,design) used to generate the lactate flip angles5. At earlier 

timepoints, higher amount of magnetization is present, and is thus more susceptible 

to flip angle variation due to B1+. Increasing T1,design reduces the flip angle for early 



129 
 

timepoints (Figure 5.10), thereby making the design less sensitive to B1+. Deviating 

from the “optimal” design parameters comes at the cost of reduced total lactate SNR. 

Simulations suggest that while the original T1,design =30(s) generates maximum 

signal, a choice of T1,design =100(s) significantly reduces B1-sensitivitiy (Figure 5.11A, 

kPL from 12.5% to 4.3% for B1+= -20%, 13.7% to 7.1% for B1+= 20%) without 

substantially reducing SNR (Figure 5.10B, 2.5% lactate tSNR loss).  

 

Figure 5.13. The new flip angle design enables acquisition of strong pyruvate and 
lactate signal in this patient with biopsy-proven Gleason 4+5, 4+4 and 4+3 cancer 
involving a majority of the left lobe of the prostate and extending into the right 
peripheral zone. A) 3D dynamic CS-EPSI allows spatial coverage of the entire prostate, 
from base to apex for HP-13C biomarkers (AUC through time). High lactate signal 
correlates with location of tumor. B) Spectrum through time for a selected voxel in 
tumor region. Pyruvate signal appears at around 10 s, lactate was observed later at 25 
s, consistent with previous findings. At 41s, pyruvate SNR was 68.5, and lactate SNR 
was 44.4. 
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An interesting finding is the abrupt bump of signal at the last time point 

when B1+ is negative. This is due to the under-utilization of magnetization in the 

earlier TRs, leaving more magnetization than theoretically anticipated. The 

excessive magnetization generates high signal when encountering a high flip-angle 

excitation pulse. Similar signal bump was also observed in another work (179), 

where the excessive magnetization there was caused by RF slice profile. 

 

Figure 5.14 A) Temporal dynamics of HP-13C pyruvate and lactate in a slice that 
contains prostate cancer. B) Signal from clinical prostate tumor and peripheral 
vasculature. The new sequence not only maintains good pyruvate and lactate SNR, but 
preserves the timing characteristics of our previous design. Moreover, it potentially 
enables access to more information by the slightly longer (42s) acquisition window. C) 
Estimated pyruvate to lactate conversion rate kPL map corresponded with a large 
volume of biopsy-proven Gleason 4+5, 4+4 and 4+3 cancer involving a majority of the 
left lobe of the prostate and extending into the right peripheral zone. 
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Additionally, preventing the final flip angle from increasing to 90° helps to 

mitigate slice profile artifacts (179). Such thresholding does not have a significant 

impact on kPL errors in terms of B1 inhomogeneity, and a 60° threshold was selected 

based on past simulations6 (Figure 5.11B). The resulting new spectral-spatial RF 

pulses using this variable flip angle scheme were 4.0 (ms) long with peak B1 of 

0.492(G), 37% shorter and 17% reduced in peak power than our previous clinical 

design (Section 4.2). The improved RF pulses may also provide additional benefit 

beyond B1+ sensitivity. The reduced peak power makes the pulses available for 

different coil setups with limited power output, and the shorter pulse duration may 

improve SNR by shortening TE. 

Four HP-imaging studies were done on a rat during the same session. Two of 

each using the previous (T1,design = 30(s)) or the new ((T1,design =100(s), max = 60°)) 

flip angle scheme. Between the 2 studies using the same flip angle scheme, one is 

done using the calibrated “nominal” RF power, the other has -20% RF power 

prescribed on purpose to simulate the B1+ inhomogeneity in larger coils. Each of the 

4 injections/HP-studies is ~15 minutes apart from one another. Kidneys were 

selected as our ROI since renal metabolism is known to be relatively homeostatic 

during the course of study. Moreover, consistently high SNR was observed in 

kidneys, providing robust kPL estimates. 

As anticipated, the new B1-insensitive flip angle scheme generates a different 

signal time course, with a gradually increasing lactate over time compared to the 

previous scheme, which has a Gamma-like lactate dynamics. This was probably due 

to the reduced lactate flip angles at early time points in the new scheme. Very 
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interestingly, the kPL measured using both the original and the new scheme are very 

similar using the nominal RF power (kPL,new = 0.0076, kPL,old = 0.0075). This suggests 

that where the ROI is small, has relatively homogeneous B1 and careful power 

calibration, both RF flip schedules provide good quantitative power. On the side 

note, these kPL estimates are also consistent with our previous findings. 

The differences became apparent in the presence of power = -20% in order 

to simulate B1+. HP-13C imaging of rat kidney measured substantially lower kPL 

using the new flip angle scheme compared to the previous scheme (Figure 5.12, 

kPL,new = 22% vs kPL,old = 63% with B1+= -20%). The in vivo data agrees well with 

simulations, suggesting that the new flip angle scheme reduced B1 sensitivity, and 

thereby improving reliability of kPL estimates. 

For human studies, the dynamic 3D CS-EPSI acquisition with the improved 

variable flip angle scheme enabled coverage of the entire prostate gland with good 

spatiotemporal resolution and high SNR (Figure 5.13A & Figure 5.14A) with 

spectroscopic information (Figure 5.13B). SNR was 68.5 for pyruvate and 44.4 for 

lactate 41 seconds from injection. The new variable flip angle scheme not only 

retained excellent pyruvate and lactate SNR, but also preserved the signal timing 

characteristics compared to our prior studies1. The location of high kPL (Figure 

5.14C) corresponded with a large volume of biopsy-proven Gleason 4+5, 4+4 and 

4+3 cancer involving a majority of the left lobe of the prostate and extending into 

the right peripheral zone. Mean kPL over the tumor region was 0.0208 for this 

patient. 
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5.5.4 Conclusions 

The 3D CS-EPSI sequence with an improved variable flip angle scheme 

enabled quantitative analysis of pyruvate-to-lactate conversion with far less 

sensitivity to B1+ variations. Moreover, the human research studies demonstrated 

the potential to acquire new information in patient exams while preserving the 

desirable SNR efficiency of the previous design.  Improved B1+ insensitivity is 

beneficial for all HP-13C applications, where calibration of this field is challenging 

due to the limited natural abundance of 13C in vivo.  Furthermore, the proposed 

variable flip angle schemes will be particularly valuable for human studies over 

large volumes, e.g. brain and liver, where substantial B1+ will likely be present 

across the FOV. 

 

5.6 Practical Considerations of Quantitative kPL Estimation in 

Hyperpolarized 13C Imaging in Response to Pulse Sequence Design 

and Parameters 

 
5.6.1 Introduction and Purpose 

Hyperpolarized 13C MRSI has enabled imaging of cancer pathophysiology 

with high spatiotemporal resolution in both human and translational settings1. 

Pyruvate-to-lactate conversion rate (kPL) is a quantitative measure of cancer 

metabolism and LDH activity. For quantitative analysis, it is important to identify 

systematic factors introduced by the MR acquisition. We investigated the impact of 

sequence design and parameters on estimation of kPL through imaging studies of 
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transgenic mice with prostate cancer (TRAMP) using a 3D dynamic compressed-

sensing 13C-EPSI (CS-EPSI) sequence recently applied for human imaging (180) and 

simulations. 

 

5.6.2 Methods 

 
Figure 5.15 The double-spin echo (DSE) and FID mode of 3D dynamic compressed 
sensing EPSI sequence, as well as two modified version of FID mode, are used to 
investigate impact of the sequence design and parameter on quantitative kPL 
estimation. For ongoing clinical studies, the DSE pulses are disabled due to 
considerations of peak RF power and B1 inhomogeneity with patient setup. 

 
Sequences: A 3D dynamic CS-EPSI sequence provides 5-dimension (3 spatial, 1 

temporal, 1 spectral) acquisition with high spatiotemporal resolution. Double spin-

echo2 (DSE, TE=150ms) and FID (TE=6.3ms) acquisition modes (Figure 5.15A), as 

well as 2 modified sequence schemes (Figure 5.17A &Figure 5.18A) based on the 

FID mode were applied in HP-13C scans of TRAMP mice. 

MRI experiments: Twelve TRAMP mice were studied using a clinical 3T scanner 

with a dual-tuned mouse coil for 13C and proton imaging. [1-13C]pyruvate was 
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polarized using a preclinical HyperSense polarizer for 1.5 hours, reaching 

approximately 20-25% percentage polarization. Following dissolution, ~350ul of 

80mM [1-13C] pyruvate was rapidly injected through a tail vein catheter over 15 

seconds. Each 13C MR acquisition began at the end of injection. 

 

Figure 5.16 A) A three-site exchange model that introduces pyruvate vascular input 
was applied for the simulation of DSE spoiling effects. Spoiling was modelled as 
magnetization loss in the input function Mpyr,A(t) with equivalent decay factor RDSE. B) 
With stronger DSE spoiling (i.e. shorter time constant), the pyruvate signal decays 
more rapidly than expected, resulting in higher kPL. 

 

Simulations: A three-site compartmental model was applied to generate the 

simulated DSE-spoiled signal (Figure 5.16A). It consists of a vascular input (AIF) of 

pyruvate, as well as tumor pyruvate and lactate compartments (112,140,142,180). 

The DSE spoiling was modeled as magnetization loss in the input function Mpyr,A(t) 

with equivalent spoiling rate RDSE. Metabolic conversion and signal loss 

mechanisms, such as RF excitations and T1 relaxation, were also included in the 

model. The kPL fit was estimated using the robust two-site exchange model also 

applied in vivo (110,180). All simulations were performed on MATLAB. 
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5.6.3 Results and Discussions 

 
Figure 5.17 Simulated and experimental results testing the impact of crusher 
gradients (applied around DSE refocusing pulses) to suppress flowing spins, which are 
predominately pyruvate. A) A pulse sequence with and without crusher gradients was 
tested. B) Fraction of signal remaining with the given crusher gradient strength in A). 
C) Lower tumor kPL estimates were observed using the “no crusher” sequence, as 
anticipated. D) Map of pyruvate area under curve. Spatially-dependent flow-
suppression can be observed around the major vasculature. 

 
One difference between DSE and FID mode, first observed by Josan (157), is 

that the two adiabatic refocusing pulses may spoil the HP-13C spins near the coil 

edge, which predominantly affects the AIF of pyruvate. In simulations, RF spoiling 

on AIF was modeled as an equivalent spoiling factor RDSE. Increasing RDSE results in 

higher kPL estimates (Fig.2B) since the tumor pyruvate pool, directly supplied by 

AIF, decayed more rapidly than expected by the kinetic model.  

Secondly, the crusher gradients (G=1G/cm on x,y,z,  = 2ms,  = 11.8ms, Venc 

= 0.21m/s, b = 0.02s/mm2) around the DSE refocusing pulses can act as flow-
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suppressing gradients, reducing vascular pyruvate signal and leading to a higher kPL 

estimate (181), similarly to the DSE spoiling. Simulations yielded a ~10% loss for 

typical peak arterial blood velocity of 30(cm/s) in animals. Back-to-back HP-13C 

studies of TRAMP mice on the same day using FID mode scans with and without the 

crusher gradients demonstrated higher prostate tumor kPL estimates with the 

crusher (Figure 5.17C, kPL,crusher/kPL,w/o = 1.22±0.09, n = 3), corroborating the 

simulation results. Moreover, flow-suppression effects were preferentially seen near 

the major vasculature and renal arteries (Figure 5.17D). 

 

Figure 5.18 It is hypothesized that lactate has shorter T2* than pyruvate. A) If lactate 
has shorter T2*, a “delayed” (t = ~13ms) FID sequence will give lower kPL compared to 
regular one. B) Ratio of kPL estimate in the same TRAMP tumor using delayed versus 
regular FID sequences. The delayed sequence gives lower kPL. C) Furthermore, the in 
vivo lactate linewidth was broader than pyruvate, and thus lactate had a shorter T2*. 
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Finally, in vivo T2* is hypothesized to be much shorter for lactate than 

pyruvate due to J-coupling (182,183). A “delayed” FID mode purposely introduced a 

longer echo time (tdelay=13ms) to introduce more T2* decay. As anticipated, lower 

tumor kPL was found using the delayed sequence vs. normal FID (Figure 5.18B, 

kPL,delay/kPL,FID = 0.67±0.09, n = 5), in back-to-back TRAMP tumor injections. 

Additionally, the lactate peak had broader linewidth than pyruvate in TRAMP tumor 

studies (Figure 5.18C), in agreement with the linewidth differences Marjańska (182) 

and Chen (184) observed due to lactate J-coupling that results in T2* weighting. 

When comparing DSE and FID modes, a higher tumor kPL was observed using 

the DSE than FID mode (Figure 5.19A, kPL,FID/kPL,DSE = 0.48±0.20, N=7). This likely is 

a result of the DSE spoiling and crusher flow-suppression in the DSE sequence 

increasing the tumor pyruvate decay rate (Figure 5.16 & Figure 5.17) and FID T2* 

weighting (Figure 5.18). It may also be a result of compartmental T2-weighting at 

the DSE TE=150ms, as pyruvate was measured to have a larger short-T2 component 

compared to lactate in TRAMP tumors (183), which would further reduce the 

pyruvate signal in the DSE. 
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Figure 5.19 A) Lower tumor kPL estimates were found using FID versus DSE 
sequences. For each pair of data, the hyperpolarized study was conducted on the same 
day using the same transgenic mouse with prostate cancer (TRAMP). B) This table 
briefly summarizes all the in vivo comparisons made in TRAMP prostate tumors 
between the different sequences, including kPL and linewidth, in order to investigate 
three major factors that affect kPL estimation. 

 

5.6.4 Conclusions 

We have identified 3 systematic sources that can affect the quantitative kPL 

estimation using 3D dynamic EPSI sequence. These sources are particularly 

important in the context of clinical translation of HP-13C imaging, where use of spin-

echoes is more challenging due to peak RF power and B1 homogeneity 

considerations. It is worth mentioning that while this study provides simulated and 

experimental estimates of these factors, the actual impact largely depends on the 

pathophysiology and pharmacokinetic behavior in vivo. 
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Chapter 6 Extension, Current and Future Work 
 

6.1 New sampling patterns for 3D CS-EPSI sequence 

6.1.1 The need for new sampling patterns 

Transition from animal to clinical  research requires substantial technical 

advancements including hardware, such as 13C coils, MR pulse sequences, imaging 

reconstruction and processing software. On the pulse sequence end, design of new 

sampling patterns is both scientifically interesting and valuable to meet the 

emerging needs in imaging patients. Therefore, new designs of undersampling 

patterns for the 3D CS-EPSI sequence were developed to account for the new 

features and to address new requirements in clinical studies. 

For example, in brain imaging the 2D EPSI sequence has been found to 

reproducibly generate good-quality spectroscopic images in tumor as well and 

contralateral normal brain. Using acquisition parameters (TE/TR = 6.1/130ms, in-

plane resolution = 20x20mm, slice thickness = 20-30mm, matrix size = 10x18, 

temporal resolution = 3s , FOV= 20 x 36 cm, acquisition window = 24, flip angle = 

single-band 10°), peak SNR of 320 for pyruvate and 180 for lactate was observed 

(185). Bicarbonate was also detected. Compared to our prostate acquisition 

protocol, the brain acquisition has a much larger FOV to cover the entire tumor-

containing slice, with coarser spatial resolution (brain:20mm vs prostate:8mm). 

Nevertheless, the physical coverage of the clamshell transmit and the 8-CH phased 

array receiver (~10cm) is larger than the 2D slice thickness (2-3cm) in the SI 

direction, and there is room to acquire 3-dimensionally (Figure 6.1). 
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3D imaging not only enables imaging of normal brain regions, potentially 

covers lesion with larger areas, but also eased the burden of FOV prescription. The 

selection of FOV, which includes choice of slice thickness, and placing the slice right 

on top of the tumor region, can be challenging and often user-dependent. This is 

because frequently the coarse T2-weighted reference scans, acquired before the 13C 

injection, do not reflect lesions very well, and the user has to rely on the resampled 

T2-FLAIR images from previous scans in patient database to prescribe FOV.  

 

Figure 6.1 The coil setup of brain imaging study consists of a clamshell transmit and 
an 8-channel phased array receiver. (Figure from brain imaging manual.) 

 

Transition from 2D to 3D acquisition means that the user only need to ensure 

that the FOV covers the entire brain, and determine an appropriate voxel size for 

sufficient SNR performance. Segmentation of tumor voxel and quantitative analysis 

can be done in processing using open-sourced SIVIC software and voxel-shifting 
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technique. Moreover, the 3D acquisition also enables utilization of the originally out-

of-slice magnetization not accessed by the 2D slice EPSI acquisition scheme. 

 

6.1.2 Strategy for sampling pattern design 

Although the clinical setup, compared with animal study environment, is 

limited by lower relative lower RF power output and reduced coil sensitivity, there 

are some favorable aspects that can be exploited for performance. First of all, the 

transition from the animal DSE sequence with adiabatic refocusing to the FID 

sequence in human leads to a significant reduction in echo time TE. Moreover, the 

multi-channel capabilities (e.g. 8CH phased-array) may provide data redundancy to 

develop parallel imaging reconstruction techniques, as will be explained in the next 

section. 

To accommodate for the length of the flyback EPSI readout and the random 

blip encode, the echo time for DSE sequence is TEDSE = 250ms. For FID sequence, the 

echo time can be reduced to TEDSE = 130ms using the shortened RF pulses and the 

same readout. If keeping the 2-second temporal resolution, the maximum number of 

phase encodes allowed in one timepoint increases from 8 in DSE to 15 in FID. 

Assuming we wanted to keep the undersampling ratio approximately the same, the 

extra phase encodes can be utilized toward a larger matrix size in space. A larger 

matrix can mean larger FOV with the same spatial resolution, or finer resolution 

with the same FOV.  

Even with the additional TRs, the variable flip angle scheme can be 

recalculated accordingly such that the total magnetization usage in one timepoint 
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will remain the same. In this case, the total signal over a given coverage will also 

stay the same, and the theoretical SNR per voxel is only a function of the voxel size. 

 

 

Figure 6.2 Sampling pattern design for the 12x12 matrix used in TRAMP and human 
prostate imaging sequences. Each box represents a phase encode (TR). The central k-
space box was covered 4 times, and the outer k-space box was covered once for each 8-
TR timepoint. Note that the random blip pattern and the order of phase encode was 
different for each timepoint. 

 

 

6.1.3 Examples of new sampling pattern 

First we would like to try designing a 16x16 in-plane matrix size. The 16x16 

matrix translates to 256 encodes in the kx-ky plane. Compared to the original 12x12 

matrix used for prostate imaging, which has 144 encodes (Figure 6.2), the number 

of encodes in the 16x16 matrix is 1.78 times that of 12x12. Now that we have room 
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for 15 TRs per timepoint rather than the original 8, that allows 1.87 times the 

number of encodes while retaining the same undersampling density. Therefore, the 

number of encodes should suffice for a 16x16 undersampling pattern without 

compromising the undersampling ratio and sampling density. 

The original 12x12 undersampling scheme has a variable density sampling 

pattern, with the central k-space more densely sampled and the outer k-space more 

sparsely so (11). Out of the 8 TRs, 4 of them cover the central k-space, while the 

other 4 cover the outer k-space (Figure 6.2). To ensure temporal sparsity, the 

undersampling pattern in each timepoint is designed differently, and the order of 

each TR is also randomized across timepoints (12). 

 

 

Figure 6.3 The first sampling pattern design for the 16x16 matrix designed for brain 
imaging. Each box represents a phase encode (TR). The central k-space box was 
covered 3(blue) and 4(yellow) times, and the outer k-space box was covered once 
(green, red) for each 15-TR timepoint. This ensures that the center k-space received 
higher sampling density just like the prostate case. 

 

A) B) 
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Here 2 new undersampling patterns for 16x16 matrix were presented as 

examples. In the first sampling pattern (Figure 6.3), the centermost 4x4 matrix 

(blue) was sampled in 3 TRs, and the center 8x8 matrix (yellow) in 4 TRs. The outer 

k-space 8x8 matrices (green and red) are each sampled once. Similar to the previous 

12x12 scheme, this pattern ensures that the center k-space, where most HP-13C 

signal is present, receives relatively high sampling density. Therefore, good SNR can 

be achieved. It also makes sure that the outer part of k-space is at least covered in 

one of the TRs for compressed-sensing reconstruction. 

 

Figure 6.4 The second sampling pattern design for the brain imaging 16x16 matrix. 
Each box or circle represents a phase encode (TR). The central k-space box was 
covered 7(blue) times, and the outer k-space box was covered twice (green) for each 
15-TR timepoint. 

 

Sampling pattern 2 has more straightforward approach (Figure 6.4). The 8x8 

outer k-space matrices (green) are each sampled in 2 TRs. The center k-space is 
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covered with a circle of radius 4.5 units, such that the area covered by the circle is 

equivalent to that of an 8x8 square. The circular area is repeatedly sampled in 7 TRs. 

It is important to note that these new sampling pattern are enabled owing to 

the larger FOV for clinical scans versus animal, and the improved maximum gradient 

strength in the new 3T clinical MRI scanner (GE MR750, GE Healthcare, Waukesha 

WI). From the relation between k-space encode step and gradient strength, we have 

k = (/2)·blip area = 1/FOV, and therefore k = 0.58(G/cm) is required for one 

phase encode step given FOV = 4(cm). For the older 3T scanner, the max gradient 

strength of 4(G/cm) allows blip distance of 6 steps (i.e. a 7x7 matrix). Assuming 

same FOV, the max gradient strength of 5(G/cm) is equivalent to 8 steps, enabling a 

9x9 matrix size. Therefore, it is safe to sample an 8x8 area in each TR.  

With the high gradient strength, the new sampling pattern can achieve finer 

resolution with the mouse-sized FOV, assuming that the SNR is sufficiently high. In 

most cases, the head size of a patient is smaller than 24x20 (cm). While a 12x12 

matrix provides spatial resolution of 2 (cm) isotropic, the 16x16 matrix can improve 

the resolution to 1.5(cm) isotropic. Moreover, rectangular matrix with different 

sizes in x and y, such as a 16x14 matrix, can also be designed, which can further 

reduce undersampling ratio compared to the original 12x12 or the new 16x16 

sampling patterns. 

 

6.1.4 Discussions 

The compressed sensing undersampling technique enabled 18x acceleration 

in the 3D CS-EPSI sequence by random blip encoding in the kx-ky direction (11,12). 
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The new 16x16 sampling pattern was enabled by the increase in number of phase 

encodes (TRs) per timepoint in the FID acquisition mode and the shortened RF 

excitation pulses. According to Figure 3 from Larson et al (12), the RMS error that 

originated from compressed sensing reconstruction with an 18x undersampling is 

less than the RMS error with peak SNR of 50-60 (RMSE < 0.001). While the typical 

SNR observed from mouse studies is around 60-80 for both pyruvate and lactate, 

the SNR from human 3D clinical studies was found to be lower, with on average 45 

for pyruvate and less than 10 for lactate. Therefore, the dominant source of 

variation in patients will be data noise rather than CS reconstruction error. The use 

of parallel imaging techniques, as will be discussed in Section 6.2 , can potentially 

further increase the undersampling ratio by utilizing the redundancy across the 

array element dimension. 

The undersampling pattern and matrix design created flexibility in the scan 

parameters such as spatial resolution and FOV size. The new sampling strategy is 

particularly beneficial to HP-13C brain imaging studies. They not only relieve the 

burden of FOV prescription for brain tumor scans, but allow one to go to finer 

spatial resolution. Moreover, these new sampling patterns can be readily applied to 

other imaging targets in human. 

 

6.2 SAKE-like reconstruction for multichannel 3D MRSI data 

In the beginning of this section, I’d like to acknowledge Dr. Peng Cao for 

developing the generalized SVD-based reconstruction algorithm, suggesting the idea 

of parallel imaging reconstruction using 3D CS-EPSI sequence, and generously 
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provided sample code off which this 3D multichannel reconstruction was 

implemented. I’d also like to thank Dr. Ilwoo Park for allowing and helping me 

acquire the world’s first HP-13C 3D dynamic human brain data on one of his 

glioblastoma patients, and for his insightful discussion and knowledge about brain 

tumor imaging in general. I cannot express my gratitude enough for Drs. Cao and 

Park’s help to make this mini-project happen. 

 
6.2.1 Introduction to SVD-based parallel reconstruction 

Parallel imaging is an important sampling and reconstruction technique for 

multichannel MRI imaging. It utilizes the data redundancy across the coil and the 

sensitivity profile for accelerated acquisition and improved SNR. Conventional 

parallel imaging techniques require the a priori knowledge of coil sensitivity profile 

for reconstruction. Besides that, several papers reported auto-calibration 

reconstruction, where the coil sensitivity is jointly estimated with image data. Shin 

et al. proposed a calibration-less parallel imaging reconstruction (165). This 

technique, which they called simultaneous autocalibration and k-space estimation 

(SAKE) method, transforms the data into a block Hankel matrix form, and solve for a 

matrix completion problem. 

Cao et al. further extended the SAKE method to randomized undersampling 

in the time (kf) dimension (70). This enabled reconstruction of high-dimensional CSI 

dataset which includes spatial, spectral and temporal dimensions. The details of 

Cao’s method can be found in their work, but the key theory and equations are 

excerpted here 
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Figure 6.5 A) The SVD-based reconstruction utilized the singular value thresholding 
on the Hankel matrix of the undersampled dataset. The reconstruction is achieved by 
iterative thresholding and enforcing data consistency. (70) B) The UCSF’s high 
performance “Grid” enabled the distribution of reconstruction into paralleled tasks, 
and therefore improves overall efficiency. 

 

The k-space signal sl(kx,ky,kz,t) can be written as a linear combination of 

spectral-spatial peaks with Lorentzian lineshape. Applying a sliding-window block-

Hankel transform on this dataset generates the block-Hankel matrix representation 

of such dataset. 

A) 

B) 

Cao et al., MRM, 2016 
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𝑯 = ∑ 𝑯𝑙

𝐿

𝑙=1

 

Here the block Hankel matrix H is represented as a linear combination of 

spatial-spectral peaks Hl, where L is the total number of spatial-spectral peaks in the 

kx-ky-kz-kf space. By matrix properties, rank of matrix H is smaller than L. 

Reconstructing of the undersampled dataset becomes a matrix completion problem 

for its block-Hankel representation, which can be formulated as follows. 

arg min𝑥‖𝐻(𝑿)‖, s.t. 𝑀(𝑿) = 𝒀 

where M is the k-space undersampling operator, H is the block-Hankel transform 

operator, X and Y are the reconstructed and the undersampled datasets, 

respectively. The matrix completion can be solved by an iterative singular value 

thresholding and data-consistency enforcing algorithm, as described by Cao (70). 

 

6.2.2 Application of SVD-based reconstruction to 3D CS-EPSI 

Cao et al. reported that a matrix of size 8x8x512x20 for an undersampled 2D-

CSI dataset was reconstructed using SVD-based algorithm in approximately 50 

minutes. An undersampled 3D dataset may need extra computational power and 

longer time for reconstruction. The current 3D dynamic sequence for prostate 

imaging presents a 5-dimensional dataset (x,y,z,f,time). The matrix size for an 8-

channel data, for instance, will therefore be 12x12x16x59x18x8(coils), or 

equivalently about 32 times that of Cao’s 2D-CSI dataset. 

In order to improve computational power, we utilized UCSF Radiology’s High 

Performance Computation (HPC), also known as the “Grid.” The idea is similar to the 
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parallel processing toolbox provided by MATLAB. Instead, the Grid is design to 

divide the reconstruction task to several distributed servers on the network, with 

each server assigned one or multiple tasks based on the resource allocation. We 

divide the task along the z (typically SI) direction, on which the 3D CS-EPSI is fully 

sampled by the EPSI readout. Each task is then automatically assigned to a server on 

the Radiology network, while one server can receive multiple tasks at the same time 

if the resources allow. 

Using a retrospectively-undersampled dataset with the matrix size of 

prostate imaging, the total computation time would have been approximately 100 

hours (using 150 iterations). First we run the reconstruction on a single workstation 

using MATLAB’s parallel toolbox, and found that the reconstruction takes 

approximately 3-4 hours, which is shorter than the anticipated time. This could be 

due to the smaller size in the time (FID) dimension, and the acceleration by parallel 

toolbox. The reconstruction routine is than transplanted onto the Grid, where it was 

divided into 16 slices, which may further reduce the total computational time. 

Interestingly, we found that the reconstruction still takes around 3 hours on the 

Grid. A careful examination of the process log revealed that while some servers 

finish the task very efficiently, the overall job has to wait for the slower servers. In 

the future, it might be beneficial to optimize the reconstruction algorithm for speed, 

and to improve resource allocation for higher efficiency. 
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6.2.3 SVD parallel reconstruction versus channel-by-channel L1-minimization 

 
Figure 6.6 A) A simulation dynamic curve for pyruvate, lactate and alanine was 
generated using a three-site exchange model with boxcar input function. B)  The 
simulation dynamics was weighted by sensitivity map for each coil element to generate 
spectra over the head phantom. The Lorentzian linewidth was set to 0.8(ppm). 

 

To compare the SVD reconstruction to the conventional L1-minimization 

algorithm, a “simulation” dataset was created from a 3D phantom dataset using an 

ethylene glycol head phantom, clamshell transmit and 8-channel array receiver. The 

sensitivity profile was extracted from the head phantom dataset. The “dynamic” 

curve of pyruvate metabolism was generated by simulation using a two-  

A) 

B) 
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Figure 6.7 Reconstruction of undersampled dataset using channel-by-channel L1-
minimization CS algorithm versus SVD-based parallel reconstruction for data with 
added Gaussian noise A) 20dB and B) 40dB. Qualitatively the SVD reconstruction gives 
much less “speckle”-like noise at 20dB noise, while the performance of the two is 
comparable at 40dB. 

 

A) 

B) 
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compartment three-site exchange model similar to Zierhut et al (163) and the 

variable flip angle scheme used for TRAMPs (Figure 6.6A). A urea dynamic curve 

was also generated using the standard Tofts signal model (115). The dynamics is 

then weighted by the sensitivity profile to create the simulation dataset. For HP-13C 

pyruvate, lactate and urea, the chemical shift on the spectra was set based on 

average of in vivo datasets acquired on TRAMP mouse (Figure 6.6B). For each 

metabolite peak, the lineshape is Lorentzian with 0.8 ppm FWHM linewidth, 

determined based on what we observed on clinical patients. 

White Gaussian noise was introduced to the originally noiseless 5D dataset, 

and the dataset was undersampled using the standard undersampling pattern for 

clinical HP-13C prostate imaging. This was formulated as, 

Ssimulation(t) = Snoiseless(t) + n(t) 

The noise was set such that peak SNR in the dataset was 10-45dB. Ideally the 

system noise would have been better modelled by a Rician distribution, but 

Gaussian noise model was applied here for the sake of simplicity and easy analysis. 

The original noiseless dataset can be found in Figure 6.6B. The matrix size was 

12x12x16x59x18x8 for this simulation brain dataset. 

Reconstruction using the new SVD-based algorithm and the conventional 

channel-by-channel L1-minimization both takes about 3-4 hours. The SNR=20dB 

dataset was depicted in Figure 6.7A. As can be seen in the spectroscopic dataset, the 

L1-minimization gives more “speckle”-like noise, while the SVD reconstruction 

appears to have much lower noise. The SNR=40dB dataset (Figure 6.7B) sees more 

similar performance between the two reconstruction methods. The SVD 
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reconstruction appears to give some “ghost” voxel artifacts on the opposite end of 

coil sensitive region, especially on Channel 8. This is due to the aliasing in coil 

sensitivity profile. In this case, the simulation-generated dataset needs to have an 

improved sensitivity map that excludes aliasing. 

 

Figure 6.8 The RMS error between simulation dataset with different SNR versus the 
noiseless dataset. The SVD-based reconstruction gives less RMSE in the low-SNR region 
(10-30dB), while the two reconstruction performs similarly at high SNR (>35dB). This 
can be important given reduced sensitivity and relatively low SNR in some clinical 
setups. 

 

The root mean square error (RMSE) between “noiseless” fully-sampled 

simulated dataset and the reconstructed dataset can serve as a benchmark for 

reconstruction error. Figure 6.8 illustrates the RMSE for the two methods under 

different peak noise SNR. With SNR = 10dB, the RMSE of L1-minimization algorithm 

was more than 1.6x that of the SVD parallel reconstruction. As anticipated, in high 
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SNR region (SNR>35dB), no significant difference in RMSE was found between the 

two methods. This is due to the inherent variation and bias that comes from 

reconstructing an undersampled dataset. The differential performance in low-SNR 

regions can be very important, especially with the generally reduced sensitivity in 

clinical setup, and the SNR-limited metabolites such as lactate and bicarbonate in 

some cases. 

 

Figure 6.9 Reconstructed dynamic curve at SNR A) 20dB and B) 40dB. While the 
curves from L1-minimization reconstruction appears slightly smoother, that from SVD 
reconstruction has smaller bias against the noiseless simulation curve. 

 

A closer examination of the temporal dimension was shown in Figure 6.9. 

Compared against the metabolite dynamics of pyruvate and lactate in the “noiseless” 

curves, the SVD-reconstructed dynamics seems to have a smaller bias (thick dashed 

line), while the L1-reconstructed curve is slightly smoother (thin dashed line). 

A) B) 
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Next we investigated the quantitative accuracy of the two reconstruction 

method in terms of kPL estimation. The pyruvate-to-lactate exchange dynamics was 

fit to the same kinetic model that generated the “noiseless” data. In Figure 6.10, The 

kPL  

 

Figure 6.10 The bias in kPL was much smaller in the SVD-reconstructed dataset, while 
L1 and SVD perform similarly in terms of error. 

 

fits from both reconstruction methods were compared to the nominal kPL used to 

generate the data. As it turns out, the bias in kPL was much smaller in the SVD-

reconstructed dataset, while both methods perform similarly in terms of error. Due 

to the computational cost, only 3 simulations were conducted for each SNR. 

Increasing the repetitions of simulation may provide a clearer picture about the 

quantitative performance of the two methods. 
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6.2.4 Human brain 3D dynamic HP-13C imaging – from phase II clinical study 

Introduction:  HP-13C studies on rat with human glioblastoma (GBM) xenograft 

suggested that increased lactate production has great potential to serve as a key 

biomarker for clinical assessment of prognosis and evaluating response to therapy 

(42). A 2D dynamic EPSI sequence is shown to consistently acquire HP-13C 

spectroscopic images of brain tumor with good SNR. Preliminary findings suggested 

that the tumor region had higher lactate/bicarbonate ratio, while the contra-lateral 

brain showed higher lactate/pyruvate ratio. (185) 

 

 

Figure 6.11 This GBM patient was imaged using 3D dynamic CS-EPSI sequence. 
Reconstruction was performed using the SVD-based method. Here the area under time 
curve (AUC) was overlaid over T2-FSE anatomical references. Regions of HP-13C 
pyruvate and lactate distribution were consistent with finding from our 2D EPSI 
images. 

 
As described in Section 6.1, it would ultimately be beneficial to move to a full 

3D acquisition for extra information in the normal brain as control, in addition to 

efficiently usage of magnetization in the whole brain. In this study, a GBM patient 
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was scanned using the 3D dynamic CS-EPSI sequence, and reconstruction was 

conducted by the SVD-based parallel imaging algorithm. 

 
Methods:  The HP-13C clinical brain imaging setup includes a clamshell coil for 

transmit and an 8-channel array coil for receive. GMP [1-13C]pyruvic acid was 

polarized in a 5T SpinLab polarizer for 2.5 hours, yielding 48.6% polarization of 

232mM pyruvate and met all pharmacy specifications prior to injection for the 

clinical trial study conducted in accordance with the approved IND protocol. 32ml of 

pyruvate solution was injected at a rate of 5ml/s, followed by saline flush. 

A patient with GBM was the subject of this study. The parameters for the 3D 

CS-EPSI sequence (11,12) were matrix size = 12x12x16, TR = 150ms, TE = 3.4ms, 

spatial resolution = 2cm isotropic, temporal resolution = 3s, FOV = 24x24x32(cm), 

spectral BW = 581Hz, acquisition window = 72s. A constant 10° flip angle was 

applied to all metabolites.  

All simulations and the SVD parallel reconstruction was realized using 

MATLAB and conducted on UCSF’s Radiology High-Performance Computing 

platform (the “Grid”). A three-site kinetic model with a boxcar input function, 

similar to the one reported by Zierhut et al. (163), was applied for quantitative 

estimation of pyruvate-to-lactate conversion rate kPL. 

Results and Discussions:  For the clinical research glioblastoma imaging, the 

reconstruction on the HPC Grid required approximately 3.2 hours for the 6 

dimensional dataset (x,y,z,f,temporal,coil) with a matrix size of  12x12x16x59x24x8. 

The efficiency of this reconstruction routine is dependent on many factors. First of 

all, a good strategy is essential to breakdown the reconstruction job into paralleled  
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Figure 6.12 A) Pyruvate and lactate dynamics in this patient with GBM. The dynamics 
shows the conversion of pyruvate to lactate. B) Dynamic spectra from a voxel in 
normal brain region shows pyruvate bolus arrival at around 5-15 s from the end of 
injection, and lactate conversion observed beginning from 10s. C) Map of kPL is 
consistent with 2D EPSI findings. 

 

tasks. Moreover, the size of Hankel matrix and the number of singular values 

included will determine allocation of resources, and thereby the computational 

A) 

B) 

C) 
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speed. Also, the number of iterations presents a key trade-off between dataset 

convergence and total reconstruction time. 

The map of HP-13C pyruvate and lactate signal area under time curve was 

depicted in Figure 6.11. The localization of metabolites in the brain is consistent 

with findings from previous 2D-dynamic EPSI images (185), suggesting that the new 

3D dynamic acquisition and reconstruction strategies is able to adequately reflect 

the in vivo distribution of these biomarkers. The dynamic distribution of biomarkers 

are also shown in Figure 6.12A. Temporal dynamics of pyruvate and lactate was 

selected from a highly-perfused voxel in normal regions (Figure 6.12B). Pyruvate 

bolus arrival was observed between 5-20 sec from the end of injection, and lactate 

conversion was seen after 10 sec. The kPL estimated from this voxel was 0.0319, 

consistent with previous human data, and the kPL map (Figure 6.12C) was also 

consistent with 2D-EPSI findings. 

Conclusions:  The 3D dynamic CS-EPSI sequence, combined with SVD-based 

reconstruction on a high-performance computing platform created an efficient way 

of parallel imaging HP-13C metabolism in human brain as an example, and is 

potentially applicable to other imaging targets. 

 

6.3 Longitudinal Imaging of Prostate Cancer Patients using 

Hyperpolarized-13C 3D Dynamic MRSI Techniques 
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6.3.1 Introduction 

Hyperpolarized 13C MRI is a new molecular imaging technology that provides 

more than 50,000x fold increase in signal for detection of pyruvate-lactate 

metabolism in patients (96). The 3D dynamic compressed-sensing EPSI (CS-EPSI) 

sequence was found to reproducibly provide good SNR with high spatiotemporal 

resolution in prostate cancer studies (180). 

 

A pressing need in clinical management of prostate cancer is to non-

invasively detect its aggressiveness, follow progression, and monitor treatment 

response. In Figure 1, a patient with biopsy-confirmed Gleason 4+5, 4+4 and 4+3 

prostate cancer was studied using HP-13C MRI before and after undergoing 

androgen deprivation therapy (ADT), and notable reduction in pyruvate-to-lactate 

metabolism was detected in the follow-up scan. 

 

6.3.2 Materials and Methods 

Pulse Sequences:  The CS-ESPI sequence provided 3D dynamic imaging with high 

spatiotemporal resolution (11,12) including a multiband B1+-insensitive variable flip 

angle scheme (Section 5.5 ). Parameters included TR = 150ms, TE = 4.0ms, spatial 

resolution: 0.5cm3 with FOV=9.6x9.6x12.8cm, temporal resolution = 2s, acquisition 

window = 42s. 
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HP MR experiments:  GMP [1-13C]pyruvic acid was polarized in a 5T Spinlab 

polarizer for 2.5-3 hours (pre-therapy study: 245mM pyruvate, 36% polarization; 

follow-up:226mM, 45%) and met all pharmacy specifications prior to injection for  

 

 

Figure 6.13 A) Patient with biopsy-confirmed Gleason 4+5, 4+4 and 4+3 prostate 
cancer involving a majority of the left lobe of the prostate and extending into the right 
peripheral zone. In the baseline study, the pyruvate-to-lactate conversion rate kPL was 
0.0273 (s-1) over the tumor, and the regions of high kPL, restricted diffusion (ADC=930), 
and low T2w intensity were consistent with biopsy findings. B) Follow-up after patient 
received ADT, the kPL value substantially reduced to 0.0075 (s-1), approximately 1/4 
the baseline study. In tumor region, there was negligible change in tumor size on the 
T2w images, and only modest change in ADC, suggesting that HP-13C can detect early 
treatment response. 
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the clinical trial study conducted in accordance with the approved IND protocol. The 

patient in Figure 6.13 received ADT with LHRH analogue, and underwent follow-up 

study 6 weeks after the baseline scan. 

 

Data Processing:  HP-13C MRSI datasets were reconstructed and processed using 

MATLAB in combination with open-sourced SIVIC for display (114). kPL was 

estimated using a three-site kinetic model with a boxcar input function (163). 

 

6.3.3 Results and Discussions 

Figure 6.13 show data from a patient with biopsy-confirmed Gleason 4+5, 

4+4 and 4+3 prostate cancer involving a majority of the left lobe of the prostate and 

extending into the right peripheral zone. In the baseline study (Figure 6.13A), the 

pyruvate-to-lactate conversion rate kPL was 0.0273 (s-1) over the tumor, and the 

regions of high kPL, restricted diffusion (ADC=930), and low T2w intensity were 

consistent with biopsy findings. The patient underwent ADT and docetaxel therapy, 

and returned for follow-up scan 6 weeks after the baseline. In tumor region (Figure 

6.13B), the kPL value substantially reduced to 0.0075 (s-1), approximately 1/4 that of 

the baseline study. Notably, on the follow-up scan there was negligible change in 

tumor size on the T2w images, and only modest change in ADC was detected in 

tumor region. 

Therefore, this study indicated that the combination HP-13C MRI and kinetic 

models enabled quantitative detection of prostate cancer metabolism in patients. 

More importantly, this outcome supported the role of HP-13C MRI as a means to 
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detect early metabolic response prior to ascertainment of response using RECIST 

criteria (186). 

 

6.3.4 Conclusions 

The 3D dynamic HP-13C MRI enabled non-invasive metabolic monitoring of 

treatment response in clinical prostate cancer, and has great potential to be 

integrated into the multi-parametric MRI of prostate malignancies. 

 

Chapter 7 Conclusions 
 

This dissertation project focused on translation of HP-13C MRI from 

preclinical applications to a phase II clinical study. It consists of both technical 

developments and biomedical HP-13C MRI research of human prostate cancer. 

In Chapter 3, imaging and pathological studies were conducted on 19 

transgenic mice of prostate cancer. Significant differences in pyruvate-to-lactate 

conversion were found between high- and low-grade tumor, which correlates well 

with pathological, gene expression, and isoenzyme activity assays. 

Chapter 4 presents the first prostate patient study in a phase II clinical trial 

using the techniques developed through my dissertation project. This clinical 

research study was an integration of efforts including the preparation of sterile 13C 

pyruvate sample by my pharmacy colleagues, the use of Spinlab polarizer, new coil 

setup for human data acqusisitions, and advanced compressed sensing 3D dynamic 
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MR sequence. Also included are the methods for image reconstruction and 

quantitative analysis used in phase II prostate study. 

In Chapter 5, past quantitative methods were summarized for estimation HP-

13C metabolism and perfusion. HP-13C imaging is a very interesting embodiment of 

Schrodinger’s cat - observation of a state disrupts the state itself. Observation of 

chemical pools by pulse-and-acquire induces loss of HP-13C magnetization. 

Therefore, a good strategy is essential to efficiently use magnetization, and a good 

model is a requisite to minimize the loss of information. Dynamic exchange models 

were proposed for both TRAMP animal imaging and clinical exams, and Akaike’s 

information criterion was applied to select a model with relatively minimal 

information loss. 

Finally, Chapter 6 summarizes some current and future works which 

includes new sampling pattern design for the 3D CS-EPSI sequence, and SVD parallel 

reconstruction for multi-channel MRSI brain data. Longitudinal imaging outcomes 

are also included for a prostate cancer patient before and after androgen 

deprivation therapy, where substantial reduction in kPL can be a marker for early 

response of treatment. 

HP-13C MRI is an emerging molecular imaging that clearly could have wide 

research applications for cancer, diabetes, cardiovascular, inflammation and many 

other diseases that are associated with metabolic changes. Particularly for cancer, 

phase II clinical trial research studies of prostate, brain and liver have demonstrated 

its capabilities to provide high-quality data with reproducible quantitative 

outcomes. Such outcomes indicated the great potential of HP-13C MRI to detect 
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cancer aggressiveness, follow progression, and monitor treatment response and 

metastases.  

In the future, HP-13C MRI of patients can be further advanced by the use of 

array coils for larger coverage, improved sensitivity, and parallel imaging for speed. 

New 3D sequence with improved under-sampling and flip angle design will allow 

even better SNR efficiency and faster acquisition. Moreover, the diversity of HP-13C 

probes can provide wide variety of pathophysiological information ranging from 

metabolism, perfusion, pH, and even genetic and enzymatic pathways at a molecular 

level. Implementation of next-generation polarizers may provide high success rate 

of HP-13C studies, and enable easier translation of experimental probes to clinical 

exams. Lastly, a HP-13C patient database can be established to incorporate all the 

HP-13C exams, multi-parametric MRI, and pathological data to allow correlation 

across a larger group of subjects using advanced analytic tools.  
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