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ABSTRACT

Because of strong and spatially highly variable interstellar extinction and ex-

treme source crowding, the faint (K≥15) stellar population in the Milky Way’s

nuclear cluster is still poorly studied. RR Lyrae stars provide us with a tool

to estimate the mass of the oldest, relative dim stellar population. Recently,

we analyzed HST/WFC3/IR observations of the central 2.3′×2.3′ of the Milky

Way and found 21 variable stars with periods between 0.2 and 1d. Here, we

present a further comprehensive analysis of these stars. The period-luminosity

relationship of RR Lyrae is used to derive their extinctions and distances. Using

multiple approaches, we classify our sample as four RRc, four RRab and three

candidates, ten binaries. Especially, the four RRabs show sawtooth light curves

and fall exactly onto the Oosterhoff I division in the Bailey diagram. Compared

to the RRabs reported by Minniti et al, 2016, our new RRabs have higher extinc-

tion (AK>1.8) and should be closer to the Galactic Centre. The extinction and

distance of one RRab match those for the nuclear star cluster given in previous

works. We perform simulations and find that after correcting for incompleteness,

there could be no more than 40 RRabs within the nuclear star cluster and in our

field-of-view. Through comparing with the known globular clusters of the Milky

http://arxiv.org/abs/1706.03299v2
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Way, we estimate that if there exists an old, metal-poor (-1.5<[Fe/H]<-1) stellar

population in the Milky Way nuclear star cluster on a scale of 5×5pc, then it

contributes at most 4.7×105 M⊙, i.e., ∼18% of the stellar mass.

Keywords: infrared: stars < Resolved and unresolved sources as a function of wave-

length, stars: variables: RR Lyrae < Stars, Galaxy: centre < The Galaxy

1. Introduction

Nuclear star clusters (NSCs) have been discovered in 60-70% of all types of local galax-

ies. NSCs typically have sizes similar to globular clusters, but are 1-2 orders of magnitude

brighter. Thus, they are the most massive and dense stellar systems in the present-day

Universe. The masses of NSCs are correlated with the masses of their host galaxies. NSCs,

normally characterized by complex stellar populations, often show signs of recurrent and very

recent star formation (see Böker et al. 2002, 2004; Walcher et al. 2005, 2006; Carson et al.

2015; Georgiev et al. 2016, and references therein).

Two mechanisms have been proposed for the formation of NSCs: (1) NSCs could grow

largely in-situ through gas infall followed by star formation or by accretion of clusters formed

in their close environment (Agarwal & Milosavljevi 2011; Neumayer et al. 2011; Bekki et al.

2006). These scenarios are supported by, among other forms of evidence, the flattening and

rotation observed in NSCs of edge-on galaxies and by the presence of young (≤ 100Myr)

stellar populations in some NSCs (Walcher et al. 2006). In particular, in-situ star formation

occurred a few Myr ago in the centre of the Milky Way and may still be ongoing (Genzel et al.

2010; Lu et al. 2013; Yusef-Zadeh et al. 2015, and references therein). (2) NSCs may also

have acquired a significant fraction of their masses through the infall and dissolution of glob-

ular clusters due to dynamical friction and tidal forces (e.g. Tremaine et al. 1975; Lotz et al.

2001; Antonini et al. 2012). Globular clusters could thus have contributed to the popu-

lation of the oldest stars. Around 5% of the stars in the NSC have been found to have

[Fe/H]≤ −0.5 and may have been contributed by old metal-poor globular clusters (Do et al.

2015; Feldmeier-Krause et al. 2017; Schultheis et al. 2016; Ryde & Schultheis 2015, Rich et

al. 2017, in preparation). It is also possible that both in-situ star formation and globular

cluster infall may have contributed to the growth of NSCs (e.g. Hartmann et al. 2011). De-

tailed stellar population studies of NSCs are required to assess the relative importance of

these two scenarios.

The large distances to extragalactic nuclei limit us to the study of only their integrated

light, which is averaged over scales between a parsec and tens of parsecs, is dominated by
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the brightest stars, and may even be contaminated by nuclear activity. In contrast, the

GC is located only ∼8 kpc from us (Ghez et al. 2008; Gillessen et al. 2009; Boehle et al.

2016), or about a hundred times closer than the second nearest, comparable NSC in the

Andromeda galaxy. Because of this proximity, the GC is the only nucleus where we can

conduct spatially resolved population studies (e.g., Schödel et al. 2009; Buchholz et al. 2009;

Genzel et al. 2010).

The Milky Way’s NSC (MWNSC hereafter) has a half-light radius of approximately 4

pc and a total mass of roughly 2.5×107 M⊙ (Schödel et al. 2014; Fritz et al. 2016). The clus-

ter’s rotation axis is parallel to that of the Galactic Disk (Feldmeier et al. 2014; Fritz et al.

2016). The cluster is also known to have a quasi-continuous, complex star formation his-

tory (see Pfuhl et al. 2011, and references therein). The most recent burst of star formation

in the MWNSC happened ∼3-6Myr ago (e.g., Paumard et al. 2006; Lu et al. 2013). The

combination of MWNSC, large Nuclear Stellar Disk and Nuclear Molecular Disk is called

the Nuclear Bulge, which, in projection, appears to be a flat bar with an outer radius of 230

pc and a scale height of 45 pc (Launhardt et al. 2002).

While the most recently formed stars are generally believed to have formed in situ

(see, e.g., discussions in Genzel et al. 2010 or Lu et al. 2013), there is still no compelling

evidence for the presence of a stellar population that may have been contributed by globular

cluster infall. As a first step, finding such evidence requires identifying ∼ 10Gyr old stars.

Subsequently, one could study the distribution and dynamics of such a population to see

whether it can result from the infall scenario. Because of the extreme interstellar extinction

and strong source crowding toward the GC, current imaging studies with adaptive optics

(AO) assisted 8m-class telescopes can achieve only a ∼ 50% completeness limit of Ks ≈ 18.5

(Schödel et al. 2014b, 2017; Gallego-Cano et al. 2017). Spectroscopic studies are generally

limited to Ks ≤ 16 (Pfuhl et al. 2011). The mean mass of the spectroscopically accessible,

Ks = 15− 16 Red Clump (RC) giants is > 1M⊙ (see Fig. 16 in Schödel et al. 2007), which

means that they may not be old enough to serve as potential tracers of ancient globular

cluster infall.

RR Lyrae (RRL) stars provide us with a method to study the old stellar populations

(> 10 Gyr old, Walker 1989; Lee 1992; Pietrukowicz et al. 2016). RRL stars are low-mass

core-helium-burning stars with oscillation amplitudes in the 0.1< δKs <0.5 mag range and

period range between about 0.2 and 1 d. Although there are metal-rich RRLs observed in

the Galactic Disk (see Chadid et al. 2016, and references therein), the majority of RRLs

are found in metal-poor globular clusters (Catelan 2009). Based on the amplitude-period

diagram of such RRLs (also known as a Bailey diagram), the globular clusters in the Milky

Way can be divided into two types: Oosterhoff type I and II (OoI and OoII, hereafter).
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In general, the OoI clusters ([Fe/H]∼[-1.0,-1.5]) seem to be more metal-rich than the OoII

clusters ([Fe/H]∼[-1.5,-2.5]) (Fig. 5 in Catelan 2009). Therefore, by finding RRL stars and

determining their distribution between these two types, we can provide new constraints on

the formation history of the MWNSC.

RRL stars can be classified into three groups: Fundamental-mode RRLs (Type ab,

RRab hereafter), first-overtone RRLs (type c, RRc hereafter), and the rare double-mode

RRLs (type d). The light curve of an RRab star is very unique, with a broad maximum, a

sharp minimum, and a steep ascending branch. In contrast, the light curve of an RRc star

is typically rather symmetric and can be fitted with a single sine function. Also, the periods

of RRab stars are longer than those of RRc stars; they can be distinguished at a period of

0.4 d (Gran et al. 2015).

The biggest challenge to detecting RRL stars in the MWNSC is their intrinsic faintness.

Accounting for the appropriate extinction and distance modulus of the GC, their observed

magnitudes are K ≈ 17 mag and H ≈ 18.5 mag, below the detection threshold of the seeing-

limited (FWHM≈ 0.7′′) VISTA Variables in the Via Lactea Survey (VVV) that consists of

multi-epoch near-infrared (near-IR) imaging observations of the Galactic Bulge and south-

ern Disk since 2010 (Minniti et al. 2010). Although Minniti et al. (2016) recently reported

the detection of RRL stars in the Galactic Nuclear Bulge, the locations and relatively low

extinctions of these stars suggest that they are in the foreground of the Galactic Bulge (see

discussion in §4.1).

We follow up here on our recent analysis of the Hubble Space Telescope (HST) Wide

Field Camera 3 (WFC3) IR observations covering the central 2.3′×2.3′ (∼5×5 pc2) of the

MWNSC. Thanks to the high angular resolution (∼0.2′′), sensitivity, and stability of these

observations we have identified 3894 variable sources (Dong et al. 2017, Paper I) and have

further derived the periods for 36 of these sources. The periods, as well as observed magni-

tudes and colours of several of the sources, indicate that they are RRL candidates probably

located in the Nuclear Bulge or even in the MWNSC.

The rest of this paper is organized as follows. We briefly describe our observations,

data analysis, and steps to calculate the extinction and distance using the near-IR period-

luminosity (PL) relationship of our RRL candidates in §2. We classify the types of candidates

on the basis of their periods/magnitudes/colors and estimate the contamination from eclips-

ing binaries in §3. In §4, we discuss the relationship of our identified RRL stars to the

Nuclear Bulge and the MWNSC and explore the limits that the detection of these stars

places on the oldest stellar population in the GC and on the globular cluster infall scenario.

We summarize our results in §5.
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2. Observations, data reduction and analysis

2.1. HST dataset and variable source catalog

Observations, data reduction, and identification of variable sources have already been

described in Paper I. Here, we only briefly summarize the key points.

The HST/WFC3 IR observations in the F127M (1.27 µm) and F153M (1.53 µm) bands

that we used were from programs GO-11671, GO-12318, GO-12667, GO-12182, GO-13049,

GO-13116, and GO-13403 (Hosek et al. 2015; Støstad et al. 2015; Mossoux et al. 2016). In

terms of their effective wavelengths, F127M and F153M are the analogs of the the Johnson-

Glass J band (1.22 µm) and H band (1.63 µm) filters. The observations in the F153M band,

acquired between 2010 and 2014, include 290 dithered exposures, ranging from 250 to 350

seconds each. The total length of the exposures in the first three years is less than 6 hours,

but the observation blocks in 2014 are long: 10 hours on Feb 28, 10 hours on Mar 10, 15

hours on April 2, and 5.5 hours on April 3. These blocks are critical in our identification

of RRL stars, because of the significant coverage of their periods. We use the observations

in the F127M band to determine F127M-F153M colours of the stars, which helps to locate

them in the foreground/background or in the MWNSC proper. The total duration of the

F127M observations is less than 2 hours. Therefore, they can only cover a small fraction of

the periods of the RRL stars.

We used ‘DOLPHOT’ (Dolphin 2000) to detect sources, extract photometry from in-

dividual dithered exposures, and empirically determine the photometric variations among

exposures. We further used the least χ2 method to identify variable stars and then the

Lomb-Scargle periodogram analysis (Lomb 1976; Scargle 1982) to calculate the periods of

36 sources with well-covered light curves within the individual observation blocks in 2014.

We found that 21 sources have periods between 0.2 and 1 d, and therefore could be RRL

stars. Table 1 lists their IDs in Dong et al. (2017, Paper I), celestial coordinates, periods,

as well as F127M and F153M magnitudes and the corresponding uncertainties. To simplify

the presentation in this paper, we label RRL candidates as R1 to R21.

Fig 1 shows a mosaic image from the HST/WFC3 IR F153M observations overlaid with

the positions of the 21 sources and Fig. 2 gives their finding charts. Fig. 3 presents the colour

magnitude diagram (CMD, F127M-F153M vs. F153M) of detected sources within 2′′ of each

RRL candidate. The folded light curves are shown in Fig. 4.
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2.2. Fourier fitting of folded light curves

We used the direct Fourier fitting (DFF) method given in Kovács & Kupi (2007) to

analyze the folded light curves of these 21 variable stars. This method fit the data with the

following equation:

F153M(φ) = A0 +
N∑

i=1

Ai sin(2πiφ+ Φi) (1)

where φ is the phase of the individual observation, and Φ is the reference phase, and N is the

maximum order, which is always ≤ 6 to prevent over-fitting the light curves. The definition

of the Fourier coefficients in Table 2 are given below

Ai1 =
Ai

A1

(2)

Φi1 = Φi − iΦ1 (3)

The routine also outputs the 〈F153M〉 (A0), the mean F153M magnitude. From the fitting

parameters, we also derived the peak-to-peak amplitude, i.e., the difference between the

maximum and the minimum magnitudes.

2.3. Extinctions and distances

We derived foreground extinctions and distances of the RRL candidates from their

apparent F127M/F153M magnitudes, with the help of the PL relationship of RRL stars.

Since the observations in the F127M and F153M bands probably cover different phases of

the light curves, the observed F127M-F153M colours are biased. For each star, we calculated

first its average F127M magnitude, 〈F127M〉 and then its colour 〈F127M〉-〈F153M〉. We

estimated 〈F127M〉 using the F127M magnitude from the observations of Program GO-

11671, and, if unavailable, Program GO-12182. The estimate assumed that the light curves in

the F127M band are similar to those in the F153M band, but may have different amplitudes,

used Equations (B3) and (B4) in Feast et al. (2008)1:

∆F127M = −0.015 + 2.18447× (∆F153M − 0.111) (4)

This procedure introduces a ∼0.1 mag systematic uncertainty into the F127M magnitude ac-

cording to Feast et al. (2008) and Gran et al. (2015). From the artificial F127M light curves

1Feast et al. (2008) use J and H in their Equations (B3) and (B4). Considering the closeness of the

effective wavelengths between J/H and F127M/F153M (§2.1), we assume ∆F127M=∆J and ∆F153M=∆H .



– 7 –

and the phases of the F127M observations, we then calculated the difference between the

observed F127M magnitude and 〈F127M〉, which could be up to 0.27mag. The diamonds

and crosses in Fig. 5 represent the colors, F127M − 〈F153M〉 (diamonds) and 〈F127M〉-

〈F153M〉 (pluses). Most of the candidates, have 〈F127M〉-〈F153M〉 > 1.5, except for R1

(〈F127M〉-〈F153M〉=0.58), which we therefore conclude is a foreground object.

Subsequently, we derived the absolute magnitudes (MF127M and MF153M) of our RRL

candidates. Unlike in the ultraviolet and optical bands, the PL relation for RRL stars in

the near-IR is tight (Longmore et al. 1990) and is not sensitive to metallicity. Catelan et al.

(2004) give the following dependence:

MJ = −0.141− 1.773× logP + 0.190× logZ (5)

MH = −0.551− 2.313× logP + 0.178× logZ (6)

where P and Z are the period and metallicity, while MJ andMH are the absolute magnitudes

in the Johnson-Cousins-Glass system. Catelan et al. (2004) give the following conversion

between Z and [Fe/H]: log Z = [Fe/H]-1.765, with the assumption that the solar metallicity

is 0.01716. In Appendix A, we derive conversions from MJ and MH to F127M and F153M

for RRL stars, with uncertainties of only 0.003mag and 0.006mag, respectively. In principle,

the metallicity of RRL stars can be estimated from their periods and phases (such as Φ31;

Jurcsik & Kovacs 1996; Smolec 2005). Unfortunately, the empirical relationship for such

estimation is available only in the V and I bands. Therefore, we adopted values 〈[Fe/H ]〉=-

1.02 with a dispersion of 0.25 dex from Pietrukowicz et al. (2012), who studied ∼17,000

RRL stars in the Galactic Bulge from the OGLE survey. A similar value, 〈[Fe/H ]〉=-1.0

with a dispersion of 0.16 dex, is reported by Walker & Terndrup (1991) for RRLs in Baade’s

window (l=1.0317, b=-03.9097), not far from the GC, but with substantially lower foreground

extinction. The derived MF127M and MF153M are given in Table 3. The uncertainties of

MF127M and MF153M , which are also included in Table 3, account for both the uncertainty

of the metallicity (0.25 dex) and that of the conversions from MJ and MH to F127M and

F153M given above.

Next, we calculated the interstellar extinction AK from the observed magnitudes and

the absolute magnitudes:

AK =
(〈mF127m〉 − 〈mF153m〉)− (MF127M −MF153M)

AF127M

AK
− AF153M

AK

(7)

where AF127M

AK
and AF153M

AK
are the relative extinctions, determined by the extinction law,

Aλ ∝ λα (Draine 1989). Appendix B gives the method to translate different α to AF127M

AK

and AF153M

AK
for the RRL stars. This step could introduce the largest systematic uncertainty



– 8 –

into our analysis. For example, Dékány et al. (2015) and Matsunaga et al. (2016) show that

the different values of α given in the literature can result in systematic uncertainties of 0.2-

0.4 mag in the calculated distance modulus of Classical Cepheids in the inner part of the

Galaxy. The α towards the GC is known to be different from that of the solar neighborhood (-

1.75, Draine 1989), but its exact value is still uncertain. For example, while Nishiyama et al.

(2006) find α = −1.99±0.02, Gosling et al. (2009) claim that α varies from one line-of-sight

to another, with a mean value and standard deviation of −2.64 ± 0.52. The two most

relevant works on α related to the MWNSC are Fritz et al. (2011) and Schödel et al. (2010),

because they analyze specifically the extinction curves toward the central parsec of the Milky

Way. Fritz et al. (2011) use hydrogen emission lines to derive α=-2.11±0.06 and A2.166=-

2.62±0.11 in the inner 14′′×20′′. Schödel et al. (2010) use the RC stars detected within the

central 40′′×40′′ to obtain α=-2.21±0.24 and AK=2.54±0.12. These results agree well within

the uncertainties. For our analysis here, we use three different values of α = −2.0,−2.1,−2.2

to obtain AKs values of the RRL candidates (Table 3). The less negative α is, the larger

is AKs. Nevertheless, AKs values obtained from assuming α = −2.1 overlap with those

obtained from the other two values within their uncertainties.

Finally, we estimate the distance moduli (DM) of the RRL stars from the following

equations:

DM = 〈F153M〉 −MF153M − AF153M (8)

= 〈F153M〉 −MF153M −
AF153M

AK

AK (9)

From the DM, we then infer the distances, as well as their uncertainties (Table 3).

3. Classification

Based on these properties of the variables, we make classifications of them, in particular,

separating between W UMa and RRL candidates. W UMa stars are eclipsing low-mass

overcontact binaries and have periods between 0.2 to 1 d, in the same range as RRL stars.

They are intrinsically less luminous than RRL stars. Like RRc stars, their light curves are

sine-shaped. Meanwhile, the light curves of RRab stars could be more sinusoidal in the near-

IR and have a significantly lower amplitude than in the visible regime (Catelan et al. 2013).

Therefore, the shape of the observed light curves by themselves may in some cases not be

sufficient to distinguish between RRab stars with sinusoidal light curves (RRab?, hereafter)

and W UMa binaries. In the following, we will therefore use three steps to distinguish

between RRab, RRc and W UMa binaries.
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3.1. Periods and light curves

Of our 21 sources, 8 have periods shorter than 0.4 d and are thus possibly RRc candi-

dates. The remaining 13 could be of type RRab. Especially, in the latter group, R3, R5,

R15 and R16 show very typical asymmetric RRab light curves (see Fig. 4). Instead, the light

curve of R4 increases too slowly from the minimum to the maximum, which is somewhat

unusual for a RRab star. The folded light curves of R19 and R20 are too noisy for a reliable

classification. The other light curves are symmetric (sinusoidal), which makes it difficult to

decide whether they are RRL stars or eclipsing binaries.

3.2. Extinction

Comparing the extinctions derived in §2.3 with an extinction map derived from the RC

stars provides us with another tool to distinguish between W UMa and RRL stars. The

intrinsic luminosity – and thus also the distance – of potential W UMa stars would have

been overestimated by our use of the PL relationship of RL stars in §2.3. Nogueras-Lara

et al. (in preparation) use the RC stars detected in JHK VLT/HAWK-I observations of a

field of about 7.5′ × 3′ centered on SgrA* to construct an extinction map with an angular

resolution of ∼2′′, assuming α=-2.2. If our sample stars are foreground (background) RRL

stars in the Galactic Bulge with distances smaller (larger) than the GC distance of 7.86±0.18

kpc (Boehle et al. 2016, see also Gillessen et al. 2016), the extinctions derived in §2.3 should

be significantly smaller (larger) than the values of this extinction map at their corresponding

locations. These extinction values are also listed in Table 3.

A plot of the differences between the extinction values estimated in §2.3 and those from

the extinction map of Nogueras-Lara et al. (in preparation) plotted over the calculated

distances in §2.3 is shown in Fig 6. The calculated extinction values of all our sample are

smaller than those from the extinction map. This is because 1) stars in front of the GC

with higher extinction than those from the extinction map are not expected and 2) the

dense molecular clouds in the circumnuclear ring (Lau et al. 2013, and references therein)

dim background RRL stars and W UMa binaries, which causes them to be undetected or be

unclassified as variable stars due to larger photometric uncertainties.

All stars in our field behind the GC have to suffer at least the interstellar extinction

toward the GC. It is unphysical for a star to lie at a greater distance while at the same time

suffer a lower interstellar extinction, in particular, because we can reasonably assume the

presence of interstellar dust on the far side of the GC, too. We therefore assume that stars

that show this discrepancy are W UMa binaries misclassified as RRLs. We therefore classify
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eight stars (R1, R4, R10, R12, R17, R18, R20, R21) with distances derived in §2.3 with

α=-2.2 larger than 8 kpc by more than three times the corresponding distance uncertainties

as potential eclipsing binaries. Fig. 3 shows that their F127M-F153M colours are similar

or bluer than the majority of nearby sources, which should be within the Galactic Nuclear

Bulge, and are inconsistent with the possibility that they are background RRLs.

3.3. Bailey diagram

Fig. 7 is the Ks band Bailey diagram for our sources along with the data for a reference

sample of RRab (Gran et al. 2016) and RRc stars (Gran et al. 2015), derived from the VVV

survey. Equations (B4) and (B5) in Feast et al. (2008) show how to translate the F153M

amplitudes into the Ks-band for the RRL stars.

∆Ks = 0.176 + 0.606796× (∆F153M − 0.111) (10)

We can see that 1) the RRc and RRab stars from our sample lie perfectly within the range

for these RRL stars from the VVV survey. Especially, the seven RRab stars and candidates

are located very close to the OoI line. 2) Probable W UMa binaries as identified in §3.2 are

widely distributed throughout the Bailey diagram. 3) Finally, two stars, R6 and R14 (open

boxes), are located near the edge of the cloud of RRab stars. Therefore, they may be RRabs

or eclipsing candidates.

To summarise, our 21 sources include four RRc stars, four RRab stars, three RRab?s,

as well as ten probable eclipsing binaries.

4. Discussion

Here, we discuss the physical relationship between RRL stars in our sample and the

MWNSC, estimate the total number of RRab stars in the MWNSC and constrain the fraction

of the old stellar population.

4.1. Physical locations of the detected RRL stars

In order to obtain constraints on the old stellar population in the MWNSC, we need

to identify which of our identified RRL stars are part of the MWNSC. We first use the

extinctions and distances determined in §2.3 to constrain the line-of-sight locations of our

RRL stars with respect to the MWNSC.
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Within our sample, three RRL stars lie close to Sgr A* along the line of sight within

less than the distance uncertainties derived in §2.3 and have AK>2: R13, R15 and R19,

according to their distances with α=-2.2 (see Table 3). The AK values of R13 and R15 are

smaller than the corresponding values from the extinction map of Nogueras-Lara et al. (in

preparation), by at least five sigma, while the AK of R19 is consistent with the extinction

map within two sigma. On the other hand, the F127M-F153M colours of these stars are

similar to those of the majority of nearby sources in Fig. 3. Therefore, as suggested by their

distance, R13 and R19 could be naturally explained by an RRc star and an RRab? in the

foreground and near background of the Galactic Bulge, respectively. For R15, an RRab, its

AK is still within the uncertainty range of the mean extinction of the central parsec (∼25′′),

2.54±0.12 mag (Schödel et al. 2010). Therefore, R15 could lie in the Nuclear Bulge, close to

Sgr A*, but we cannot say with certainty whether it belongs to the MWNSC.

On the other hand, we notice that R3 and R5, two RRabs, appear to be located at

the GC within their respective distance uncertainties, but with AK smaller than the cor-

responding values in the extinction map of Nogueras-Lara et al. (in preparation) by more

than 14 sigma. From Fig. 1 and Fig. 2, we can see that R3 and R5 fall into the low stellar

number density regions, which suggest the existence of dense molecular clouds in front of the

MWNSC. Therefore, the extinction of R3 and R5 indicate that they should be in front of the

dense molecular clouds, and then the MWNSC. In order to further investigate this dilemma,

we give the relationship between DM, AKs and α in Fig. 8 for the four RRab stars, R3, R5,

R15 and R16. The DM is anti-correlated with the slope and AK . Therefore, one possible

solution is that the R3 and R5 are indeed foreground and the extinction which they suffer

follows a law more similar to that of the solar neighborhood rather than a steep extinction

law with α=-2.2. From Table 3 and Fig. 8, we can see that for α less negative than -2.0,

R3 and R5 could still have extinctions smaller than the values given in Schödel et al. (2010)

and be closer to us than the MWNSC.

The distances of the other six RRL stars indicate that they are at the foreground

or background of the MWNSC. R2 and R8, having extinctions smaller than those in the

extinction map, are RRcs in front of the MWNSC. R7, R9, R11 and R16 are behind the

MWNSC, but have smaller extinction than indicate by the extinction map. In particular,

R16 is a typical RRab star. A possible explanation is the clumpiness of the molecular gas

in the circumnuclear ring.

Minniti et al. (2016) found 14 RRL stars within the central 36′ (86 pc) from the VVV

survey in the J , H and K bands. Assuming that the intrinsic color of RRL stars is (J-

K)o=0.15 mag, they derived the extinction (E(J-K)). Then they used different versions

of extinction curves and PL relationships for RRL stars to derive their distances. They
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claimed that 12 of the RRL stars lie within the Nuclear Bulge. However, we notice that the

extinction values of their RRLs range between AKs
= 1.06 and 1.8, which are significantly

smaller than what we expect for the Nuclear Bulge. For example, Dong et al. (2011) produce

an extinction map with 4′′ resolution from HST/NICMOS observations covering the central

39′×15′. The median and 68th percentile of AK derived from this map are 2.3 and [2.0,

2.75]. Also, the extinction map of the Nuclear Bulge presented by Schödel et al. (2014)

suggests values AK > 2.0 for most of the Nuclear Bulge. According to Tables 1 and 2 of

Minniti et al. (2016), only five of their RRLs fall in projection onto the region of the Nuclear

Stellar Disk and only two of them (IDs, 37068 and 33007) are within 500 pc of Sgr A* along

the line-of-sight. The AK values of these two stars are 1.23 and 1.44 mag. Therefore, it is

more likely that these RRL stars are part of the foreground Galactic Bulge, instead of the

MWNSC.

4.2. RRL population in the MWNSC?

Although we have identified only one well-defined RRab, R15, that could plausibly

belong to the MWNSC, we expect that the MWNSC potentially contains a much larger

number of such stars that are not detected in our study. In Paper I, we divided our field-of-

view into ten regions, according to the local surface brightness. R15 falls into the #5 region

(the larger the number, the higher the surface brightness) with a 50% completeness limit of

F153M = 19.2 mag. RRL stars with similar magnitudes would not be detected in regions

#7-10, with 50% completeness limits < 18 mag. In addition to the source confusion, the

strong extinction is another limiting factor for the detection. On average, the lower surface

brightness represents regions with greater foreground extinction. This will make it extreme

difficult to detect RRLs that are located in the MWNSC and are behind the clouds that are

responsible for the high extinction. Of course, our estimate of the RRL population in the

MWNSC also needs to consider the stellar spatial distribution of the cluster, relative to the

foreground and background across the field.

We performed simulations to estimate the detection fraction of RRab stars in the

MWNSC. We assumed that the distribution of RRL stars follows the surface brightness

distribution as described by Eqn. 1 of Fritz et al. (2016) with their Model No 4 parameters

in their Table 12. Then, we added the distance modulus to the absolute magnitude of R15

and applied the appropriate extinction. We adopted the R15’s light curve as a template. In

2This equation includes also the contribution from the Galactic Nuclear Disk, but which is small in our

field-of-view.
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order to simulate the observations, we randomly chose starting phases of the light curve and

assigned the photometric errors by using the information giving in §2.1. The completeness

as a function of input magnitude from the artificial star tests applied to the ten regions

(Fig. 5 of Paper I) was used to determine whether the RRL stars can be detected or not.

We then applied the least-chi-square method described in Paper I to check whether each

detected source may be identified as a variable. We performed 10,000 such simulations for

each of total ‘N tot’ RRab stars. Fig. 9 shows the median fraction of the recovered variable

stars, as well as its 65%, 90%, 99% percentiles. From this plot, we conclude that the median

detection fraction is ∼0.1 and exclude N tot>40 with 90% confidence.

4.3. Old stellar population in the MWNSC?

Finally, we use the number of RRab stars to estimate the potential contribution of an

old, metal poor population to the MWNSC, which could have been brought into the GC by

the infall of globular clusters. Mateu et al. (2009) show that the numbers of RRab stars in

dSph satellite galaxies of the Milky Way and M31 are strongly correlated with the galaxies’

absolute magnitudes. For a constant mass-to-light ratio, we also expect a tight correlation

between the number of RRab stars and the total stellar mass of dSph galaxies.

We tested this relation on Milky Way globular clusters. We used the variable star catalog

for globular clusters given by Clement et al. (2001)3. We only selected sources with variable

types equal to ‘R0’, ‘RR0’, ‘RR0?’ (all are RRab stars, according to the draft classification for

the 2006 version of General Catalog of Variable Stars). The total masses and metallicities of

globular clusters were taken from Gnedin & Ostriker (1997) and Harris (1996), respectively.

We divide the globular clusters into OoI and OoII clusters according to their metallicities.

For these two groups, we found 30 and 41 globular clusters in Clement et al. (2001) with

measured total stellar masses and detected RRab star(s)4. Fig. 10 shows the correlation

between the total cluster masses and the numbers of RRab stars for these two groups of

clusters, although the scatters are large. Based on these star clusters, we obtained the

3online catalogs: http://www.astro.utoronto.ca/∼cclement/read.html. The catalogs have been continu-

ously updated by the authors. We used the data updated on March 22, 2017.

4Four and six clusters in these two groups do not have detected RRab star for two reasons: 1) small

total masses: NGC 6325 (9.6×104 M⊙), Palomar 4 (5.4×104 M⊙) and NGC 6287 (1.0×105 M⊙) and 2) no

available high-quality time-domain studies: NGC 6218, NGC 6517, NGC 4372, NGC 5694, NGC 6144, NGC

6254 and NGC 6752.

http://www.astro.utoronto.ca/~cclement/read.html
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following relationship:

log(cluster mass(M⊙)) = 5.13± 0.12 + (0.33± 0.09)× log(number of RRab); forOoI(11)

log(cluster mass(M⊙)) = 5.05± 0.15 + (0.34± 0.14)× log(number of RRab); forOoII(12)

with a standard deviation of 0.29 dex and 0.48 dex, respectively.

By using the relations above, we could estimate the contribution of infall globular clus-

ters in the MWNSC. The Bailey diagram in Fig. 7 shows that the four likely RRab stars and

three RRab candidates lie close to the OoI line, like most of the RRab stars in the Galactic

Bulge (Gran et al. 2016). This means that our newly identified RRL stars probably have

metallicities -1.5<[Fe/H]<-1. Therefore, using the relationship above for the OoI clusters,

we could estimate that 10 and 40 RRab stars – our best estimated number and the 90%

upper limit for the MWNSC, respectively – correspond to globular clusters with masses of

2.9×105 [2.1×105, 4.1×105] M⊙ and 4.7×105 [3.1×105, 7.2×105] M⊙ (68% uncertainty inter-

vals). We can compare this value with the stellar mass of the MWNSC in our field-of-view,

∼2.6×106 M⊙, as estimated from Table 8 of Fritz et al. (2016). We conclude that the old

metal-poor population contributed by the OoI cluster occupies at most 18% of the total mass

of the MWNSC in this region, because both infall globular cluster and ancient in situ star

formation could provide these old metal-poor stars. This is consistent with the low fraction

(∼5%) of metal-poor stars (-1.5<[Fe/H]<-0.5) in the MWNSC found by Do et al. (2015)

and Feldmeier-Krause et al. (2017).

On the other hand, we do not detect any RRab stars, which fall into the OoII region

in the Bailey diagram. These RRab stars have slightly longer periods (the average period is

∼0.65 d, Catelan 2009) than the ones in OoI clusters (the average period is ∼0.65 d). There-

fore, if they existed in the MWNSC and were detected in our dataset, their periods could be

accurately determined. The existence of OoII clusters in the MWNSC is also inconsistent

with the minimum stellar abundance reported by Do et al. (2015) and Feldmeier-Krause et al.

(2017): -1.27 dex and -1.25 dex. According to Fig. 9 and the relationship above for the OoII

cluster, the 90% upper limit for the total mass of the OoII clusters is 3.3×105 M⊙ , i.e. 13%

of the total mass of the MWNSC.

5. Summary

In this paper, we have performed a study of 21 variable stars with periods between

0.2 and 1 d identified in HST WFC3/IR F153M observations of the Milky Way nuclear

star cluster (Dong et al. 2017, Paper I). We have analyzed their light curves and studied

their extinctions and distances. Based on these analyses, we have typed the variable stars,
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estimated their physical locations, and discussed the implications of the results, focusing on

the RRL stars in the MWNSC. Our findings are the following:

• The 21 sources are classified as: four RRc stars, four RRab stars, three RRab candi-

dates and ten eclipsing binaries. In particular, our RRab stars are ∼ 2 mag dimmer and

should be closer to the Galactic Nuclear Bulge than those identified in Minniti et al.

(2016).

• Using the well-defined period-luminosity function from the literature, we calculate the

line-of-sight distances of our 11 RRL stars to be ∼4 kpc to 11 kpc away from us.

• All four well defined RRab stars and three RRab candidates fall onto the Oosterhoff I

division, which suggests that the old stellar population near the GC is relatively metal-

rich with -1.5<[Fe/H]<-1 and could have the same origin as the old stellar population

in the Galactic Bulge.

• We have found that only one out of our four well-defined RRab stars may actually

belong to the MWNSC or lie in the inner Nuclear Bulge. With simulations, we estimate

that there could be at most 40 RRab stars in the MWNSC. From the observed RRL

star population per unit mass in globular clusters, we conclude that an old, metal poor

(with -1.5<[Fe/H]<-1) population, possibly contributed to the MWNSC by globular

cluster infall, cannot make up more than about 18% of its mass. The non-detection

of RRab stars from OoII clusters puts an even stronger constraint on the fraction of

stars with even lower (-2.5<[Fe/H]<-1.5) metallicities: They can contribute at most

13% of the total mass of the MWNSC. Of course, old metal poor stars may also have

formed in the MWNSC in situ. This would reduce the contribution to this population

from globular cluster infall even further.
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A. Transformation from the Johnson-Cousins-Glass to HST WFC3/IR

Magnitudes

Catelan et al. (2004) give the MJ and MH of RR Lyrae stars in the Johnson-Cousins-

Glass system. In order to derive the absolute extinctions and the distance moduli for the

RRL stars in § 2.3, we need to translate MJ and MH into the HST WFC3/IR MF127M and

MF153M magnitudes.

We used the stellar atmosphere models by Castelli & Kurucz (2004), the transmission

curves of J and H bands of the Johnson-Cousins-Glass system and the F127M and F153M

bands of HST WFC3/IR distributed in SYNPHOT package provided by STScI to derive the

relationship. According to Marconi et al. (2015), the surface temperature of RR Lyrae stars

is between 5500 K to 8000 K. Therefore, we only used the stellar atmosphere models with

this temperature range and also metallicity ≤ 0.02 (solar metallicity) and surface gravity, log

g ≤3. The SYNPHOT package is used to derive the intensities of these stellar atmosphere

models in units of Jy at these four bands. Then, we derived the zero-points in units of

Jy from the Vega spectrum also provided in the SYNPHOT package, which are used to

convert the intensities of the stellar atmosphere models into magnitudes. We used the least

chi-square method to derive the following translation:

MF127M = MJ − 0.0059− 0.1678× (MJ −MH) (A1)

MF153M = MH + 0.0208 + 0.0793× (MJ −MH) (A2)

(A3)

The difference between MF127M (MF153M ) and the ones derived from the equations above

from MJ and MH are less than 0.008 (0.014) mag for the entire range of stellar parameters

of RRL stars.

B. Converting α to the relative extinction

We used the same method given in Appendix A to derive the relative extinction AF127M/AKs

and AF153M/AKs for different α. We assumed that the temperature and the logarithm sur-

face gravity of RRL stars are 6500 K and 2.5 and used the corresponding atmosphere models
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from Castelli & Kurucz (2004). We first red the spectrum by the extinction curves with dif-

ferent slopes and absolute extinctions. Then the ‘SYNPHOT’ package is used to derive the

magnitudes at the F127M and F153M magnitude, as well as VLT/NACO Ks band. After

that, by subtracting the magnitudes at these three bands without foreground extinction,

respectively, we derive the AF127M , AF153M and AKs. Finally, we can calculate the mean of

AF127M/AKs and AF153M/AKs for various foreground extinctions with different α.
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Table 1. Source Catalog

〈F127M〉

Name IDa RA Dec F127Mb,c 〈F127M〉 F153Mc,d 〈F153M〉 -〈F153M〉e Periodf Type

R1 2495 266.41349 -29.00661 17.2+0.01
−0.01

17.2 16.6+0.07
−0.07

16.6 0.56+0.01
−0.03

0.542 Ecl?

R2 7831 266.42698 -28.99449 20.6+0.04
−0.03

20.6 17.7+0.10
−0.09

18.1 2.51+0.02
−0.02

0.299 RRc

R3 8735 266.42807 -29.00793 20.3+0.07
−0.06

20.2 18.0+0.13
−0.11

18.1 2.09+0.04
−0.05

0.559 RRab

R4 9074 266.42224 -28.99591 20.2+0.02
−0.02

20.0 18.1+0.11
−0.09

18.1 1.85+0.02
−0.02

0.838 Ecl?

R5 10520 266.43683 -29.00501 20.3+0.06
−0.05

20.4 18.2+0.12
−0.11

18.3 2.12+0.06
−0.07

0.542 RRab

R6 12097 266.42163 -28.99880 21.3+0.04
−0.03

21.3 18.4+0.12
−0.10

18.5 2.78+0.03
−0.03

0.489 RRab?/Ecl?

R7 13950 266.39578 -29.00507 21.2+0.11
−0.10

21.2 18.6+0.16
−0.14

18.8 2.39+0.06
−0.07

0.686 RRab?

R8 14123 266.43548 -29.01042 21.3+0.06
−0.05

21.3 18.6+0.15
−0.13

18.8 2.53+0.05
−0.05

0.384 RRc

R9 14583 266.43086 -28.99710 21.3+0.10
−0.09

21.3 18.8+0.15
−0.12

18.9 2.37+0.06
−0.06

0.677 RRab?

R10 15242 266.41267 -29.01958 20.7+0.08
−0.07

20.7 18.8+0.17
−0.14

19.0 1.74+0.04
−0.04

0.329 Ecl?

R11 19440 266.41636 -28.99466 21.5+0.12
−0.11

21.5 18.9+0.19
−0.15

19.4 2.02+0.07
−0.08

0.294 RRc

R12 20993 266.40610 -28.99370 21.7+0.05
−0.04

21.8 18.9+0.17
−0.14

19.7 2.17+0.06
−0.06

0.368 Ecl?

R13 21740 266.41443 -28.99120 22.0+0.09
−0.08

22.0 19.5+0.21
−0.17

19.6 2.40+0.07
−0.09

0.244 RRc

R14 22081 266.42041 -28.99793 22.4+0.08
−0.07

22.3 19.6+0.17
−0.14

19.7 2.62+0.07
−0.08

0.495 RRab?/Ecl?

R15 22197 266.41891 -28.99733 22.8+0.08
−0.07

22.7 19.7+0.16
−0.14

19.8 2.96+0.07
−0.08

0.593 RRab

R16 22312 266.40715 -29.02182 22.4+0.15
−0.13

22.5 19.8+0.26
−0.20

19.8 2.63+0.08
−0.09

0.573 RRab

R17 23037 266.40810 -28.99731 22.2+0.21
−0.18

22.1 19.8+0.30
−0.22

20.0 2.13+0.11
−0.12

0.469 Ecl?

R18 25542 266.42178 -29.01424 22.2+0.24
−0.20

22.3 19.8+0.30
−0.22

20.4 1.93+0.14
−0.16

0.258 Ecl?

R19 25912 266.42983 -29.00620 23.7+0.19
−0.16

23.7 19.9+0.31
−0.22

20.5 3.27+0.09
−0.11

0.644 RRab?

R20 26822 266.42686 -29.01960 22.9+0.11
−0.10

22.8 20.0+0.19
−0.16

20.5 2.28+0.08
−0.09

0.722 Ecl?

R21 28701 266.40033 -28.99777 22.7
+0.23
−0.19

23.0 20.0
+0.29
−0.21

20.9 2.10
+0.11
−0.13

0.235 Ecl?

Note. — a ID from the Table 3 of Paper I; b the F127M magnitudes could be different from Table 3 of Paper I, because Table 3 of Paper I

gives the mean F127M magnitudes of Program GO-11671 and GO-12182, while in this table, we primary used the magnitudes from Program

11671, if not, then GO-12182; c The photometric uncertainties are from Table 3 of Paper I, which includes both systematic and statistic errors.

The former is the bias introduced by crowding, which makes the stars artificially brighter; d from Table 3 of Paper I, the average magnitude

of the observations from 2010 to 2014; e Because the stellar number density in the F153M band is higher than that in the F127M band due

to the extinction, the bias introduced by the crowding makes the detected color systematically redder; f in units of days
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Table 2. Results of Direct Fourier Fitting

Name Amplitudea A1 φ1 A21 φ21 A31 φ31 A41 φ41 A51 φ51 A61 φ61

R1 0.05 0.024 4.869 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R2 0.07 0.049 3.970 0.353 4.786 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R3 0.10 0.112 0.411 0.337 4.169 0.194 1.823 0.102 5.680 0.029 2.481 0.000 0.000

R4 0.26 0.141 2.689 0.304 4.691 0.114 3.472 0.056 2.300 0.063 0.615 0.000 0.000

R5 0.33 0.128 4.852 0.392 3.962 0.250 1.505 0.189 5.271 0.101 2.539 0.097 6.196

R6 0.33 0.054 2.373 0.205 4.569 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R7 0.11 0.063 3.714 0.153 4.057 0.062 2.468 0.000 0.000 0.000 0.000 0.000 0.000

R8 0.12 0.049 1.847 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R9 0.13 0.047 5.282 0.245 4.270 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R10 0.10 0.073 3.807 0.082 4.283 0.049 4.648 0.038 0.060 0.000 0.000 0.000 0.000

R11 0.10 0.086 4.356 0.168 4.650 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R12 0.15 0.100 0.498 0.184 4.554 0.037 3.352 0.000 0.000 0.000 0.000 0.000 0.000

R13 0.17 0.079 4.928 0.208 5.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R14 0.22 0.081 4.399 0.145 5.316 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R15 0.21 0.095 0.802 0.369 4.367 0.169 2.029 0.096 6.114 0.000 0.000 0.000 0.000

R16 0.16 0.128 4.139 0.447 4.054 0.282 1.552 0.202 5.255 0.129 3.061 0.088 0.306

R17 0.16 0.132 1.811 0.206 4.778 0.090 2.787 0.041 1.039 0.000 0.000 0.000 0.000

R18 0.22 0.161 5.156 0.185 4.799 0.060 3.970 0.000 0.000 0.000 0.000 0.000 0.000

R19 0.34 0.071 3.387 0.339 3.450 0.277 0.767 0.133 3.370 0.000 0.000 0.000 0.000

R20 0.29 0.067 0.244 0.417 5.058 0.329 3.074 0.375 1.481 0.372 0.379 0.275 5.803

R21 0.25 0.229 2.877 0.252 4.800 0.101 3.215 0.092 1.348 0.046 6.030 0.000 0.000

Note. — a in units of mag
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Fig. 1.— HST WFC3/IR F153M observations of the MWNSC. The blue plus marks the

central massive black hole, Sgr A*. The green circles are the four variables with typical

RRab light curves. The cyan circles mark RRc candidates, magenta ones RRab candidates,

and white ones eclipsing binary candidates.
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Fig. 2.— Detailed images of the surroundings of each star in our sample. The size of each

map is 10′′×10′′.
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Fig. 3.— The colour magnitude diagram (F127M-F153M vs. F153M) of the detected sources

(pluses) within 2′′ of the 21 RRL candidates (red diamonds). The green diamonds represent

the location of the RC giants in the MWNSC with surface temperature Teff=4750K, gravity

log g=2.5 (Puzeras et al. 2010), solar metallicity, MK=-1.54 mag (Groenewegen 2008) and

AK=2.5 (Schödel et al. 2010).
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Fig. 4.— The folded F153M light curves for 21 sources. In the title of each figure, we give

the source IDs and periods. The black pluses in the left bottom corner of the individual

panels show the average photometric variation among dithered exposures derived from the

artificial star tests, plus 0.01 mag systematic uncertainty (see Paper I for more details). The

black solid lines are from the DFF fitting.
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Fig. 5.— The (F127M-〈F153M〉) vs. 〈F153M〉) CMD for the 21 RRL candidates. The

diamond and cross symbols represent the observed F127M magnitude and the mean F127M

magnitude, 〈F127M〉, after the phase correction with the light curves from the F153M band

(see more details in §2.3).
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Fig. 6.— The distances derived in §2.3 vs the differences between the AK derived in §2.3 and

those from the extinction map given in Nogueras-Lara et al. (in preparation). The diamonds

represent potential eclipsing binaries due to their large distances. The vertical line marks

the location of the MWNSC (Boehle et al. 2016).
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Fig. 7.— Bailey Diagram: K-band amplitude plotted against the logarithm of the period (d)

of RRL stars. The small red and blue stars represent the RRab and RRc stars detected in

the Galactic Bulge by the VVV survey (Gran et al. 2015, 2016). The large symbols are our

variable stars with periods between 0.2 and 1 d: Stars for RRc candidates, filled triangles

for identified RRab stars, open triangles for RRab candidates, filled circles for identified

eclipsing binary candidates, and two open boxes for stars that may be RRab or eclipsing

binaries. The black solid and dashed lines are the OoI and Oo II lines from Navarrete et al.

(2015).
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Fig. 8.— The correlation between distance modulus, absolute extinction AKs and the slope

of the extinction law (α) for four candidate RRab stars (R3: black solid curve, R5: blue

dotted curve, R15: green dashed curve, R16: red dot-dashed curve.) The horizontal and

vertical solid and dashed lines in the three panels are the mean and 1 sigma uncertainty of

the distance modulus, AKs and α of MWNSC given in Boehle et al. (2016) and Schödel et al.

(2010).
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Fig. 9.— The recovered number (left) and fraction (right) of simulated RRab stars in the

MWNSC. The black solid, blue dotted, green dashed and red dot-dashed lines represent the

median, 68%, 90% and 99% percentile.
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Fig. 10.— The relationship between the number of RRab stars and the logarithm of cluster

mass in units of solar mass for the OoI (diamonds) and OoII (squares) clusters. The solid

(OoI) and dashed (OoII) lines represents the Eqns. 11 and 12, respectively.
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Table 3. Properties of probable RR Lyrae stars

MF127M - A
a
Ks Slope=-2.2 Slope=-2.1 Slope=-2.0

Name MF127M MF153M MF153M Red Clump A
a
Ks Distanceb A

a
Ks Distanceb A

a
Ks Distanceb

R1 -0.24±0.05 -0.39±0.04 0.15±0.01 3.27 0.40+0.10
−0.14

17.0+1.80
−1.31

0.44+0.11
−0.16

16.6+1.86
−1.36

0.48+0.12
−0.17

16.3+1.94
−1.41

R2 0.24±0.05 0.19±0.04 0.04±0.01 2.85 2.41+0.10
−0.14

3.8+0.44
−0.33

2.63+0.11
−0.15

3.4+0.41
−0.30

2.87+0.12
−0.17

2.9+0.37
−0.28

R3 -0.27±0.05 -0.42±0.04 0.15±0.01 3.42 1.89+0.10
−0.14

8.4+0.92
−0.68

2.06+0.11
−0.15

7.7+0.88
−0.65

2.25+0.12
−0.17

6.9+0.83
−0.61

R4 -0.60±0.05 -0.82±0.04 0.23±0.01 2.77 1.59+0.10
−0.14

13.6+1.57
−1.19

1.73+0.11
−0.16

12.5+1.52
−1.14

1.89+0.12
−0.17

11.5+1.46
−1.09

R5 -0.24±0.05 -0.39±0.04 0.15±0.01 3.37 1.93
+0.10
−0.14

8.6
+0.97
−0.72

2.11
+0.11
−0.15

7.8
+0.92
−0.69

2.30
+0.12
−0.17

7.0
+0.87
−0.64

R6 -0.16±0.05 -0.29±0.04 0.13±0.01 3.00 2.59+0.10
−0.14

4.8+0.60
−0.46

2.83+0.11
−0.16

4.2+0.55
−0.41

3.09+0.12
−0.17

3.6+0.49
−0.37

R7 -0.43±0.05 -0.62±0.04 0.19±0.01 2.73 2.15+0.10
−0.15

9.8+1.21
−0.90

2.34+0.11
−0.16

8.8+1.13
−0.84

2.56+0.12
−0.17

7.8+1.05
−0.77

R8 0.04±0.05 -0.05±0.04 0.09±0.01 3.34 2.39+0.10
−0.14

5.9+0.74
−0.56

2.61+0.11
−0.15

5.3+0.68
−0.51

2.85+0.12
−0.17

4.6+0.62
−0.46

R9 -0.42±0.05 -0.61±0.04 0.19±0.01 2.42 2.13+0.11
−0.15

10.4+1.40
−1.05

2.32+0.12
−0.16

9.3+1.31
−0.97

2.54+0.13
−0.18

8.2+1.21
−0.90

R10 0.16±0.05 0.10±0.04 0.06±0.01 3.54 1.65+0.10
−0.14

12.3+1.56
−1.16

1.79+0.11
−0.16

11.3+1.50
−1.11

1.96+0.12
−0.17

10.3+1.42
−1.05

R11 0.25±0.05 0.21±0.04 0.04±0.01 3.35 1.94+0.11
−0.15

11.0+1.58
−1.18

2.11+0.12
−0.17

10.0+1.49
−1.11

2.31+0.13
−0.18

8.9+1.38
−1.03

R12 0.07±0.05 -0.01±0.04 0.08±0.01 3.61 2.05
+0.11
−0.15

12.1
+1.54
−1.17

2.23
+0.12
−0.16

10.9
+1.45
−1.09

2.44
+0.13
−0.18

9.7
+1.35
−1.01

R13 0.40±0.05 0.40±0.04 0.01±0.01 3.38 2.34+0.11
−0.16

7.5+1.21
−0.89

2.55+0.12
−0.17

6.6+1.10
−0.81

2.79+0.13
−0.18

5.8+1.00
−0.73

R14 -0.17±0.05 -0.30±0.04 0.13±0.01 2.86 2.43+0.11
−0.15

9.9+1.73
−1.26

2.65+0.12
−0.16

8.8+1.57
−1.13

2.89+0.13
−0.18

7.6+1.40
−1.01

R15 -0.32±0.05 -0.48±0.04 0.16±0.01 3.33 2.73+0.12
−0.17

8.2+1.46
−1.05

2.98+0.13
−0.18

7.1+1.30
−0.94

3.25+0.14
−0.20

6.1+1.15
−0.83

R16 -0.29±0.05 -0.45±0.04 0.16±0.01 2.92 2.42+0.11
−0.16

11.2+2.04
−1.45

2.64+0.12
−0.17

9.9+1.85
−1.31

2.88+0.13
−0.19

8.7+1.66
−1.17

R17 -0.13±0.05 -0.25±0.04 0.12±0.01 3.24 1.97+0.11
−0.15

16.7+2.30
−1.77

2.14+0.12
−0.17

15.1+2.17
−1.66

2.34+0.13
−0.18

13.5+2.02
−1.54

R18 0.36±0.05 0.34±0.04 0.02±0.01 3.13 1.87+0.11
−0.15

16.8+3.04
−2.21

2.04+0.12
−0.17

15.3+2.83
−2.05

2.22+0.13
−0.18

13.8+2.61
−1.89

R19 -0.38±0.05 -0.56±0.04 0.18±0.01 3.22 3.03+0.10
−0.14

8.8+1.67
−1.20

3.30+0.11
−0.16

7.6+1.46
−1.05

3.61+0.12
−0.17

6.4+1.25
−0.90

R20 -0.48±0.05 -0.67±0.04 0.20±0.01 3.29 2.04+0.10
−0.15

24.5+3.72
−2.92

2.22+0.11
−0.16

22.1+3.46
−2.70

2.43+0.12
−0.18

19.7+3.18
−2.47

R21 0.43±0.05 0.43±0.04 0.00±0.01 3.15 2.05+0.13
−0.18

17.1+3.28
−2.51

2.24+0.14
−0.19

15.4+3.03
−2.31

2.44+0.15
−0.21

13.7+2.78
−2.11

Note. — a, in units of mag; b, in units of kpc
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