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I, Introduction

[1]

In an earlier paper- an approximate theory was developed which
contains the relationship between the frequency and propagation con-
stant (or wave length) for axisymmetric motions of transversely iso-
tropic rods, The rods are circular and solid, and the material of
the rod is arranged so that axes of isotropy are parallel to the axis
of the rod. It is a three-mode theory, and for those three modes the
relationship between frequency and wave length corresponds accurately
to the relationship given by the exact three dimensional theory of
transversely isotropic rods. The approximate theory is given in
terms of differential equations governing three ''generalized
displacements, "

In an appendix of the same paper, trial solutions for the gen-
eralized displacements representing steady state vibrations were
assumed, particularly as they apply to finite rods with homogeneous
end boundary conditions. Space dependent functions were established
using these trial solutions which, because they satisfy both the
governing differential equations and homogeneous end boundary condi-
tions represent mode shapes for finite rods vibrating freely. It
was then established that these space functions form an orthogonal
set and the orthogonality condition was derived, It is the ortho-
gonality property of the normal or free-mode functions that permits
finding the response of finite rods to an arbitrary forcing function,.

In this paper the general forced vibration problem of finite,
transversely isotropic rods is studied, The solution is given first

in terms of an arbitrary input and following this a specific problem 1is



described and solved, The specific problem is one of finding the
response, expressed as the radial displacement, of an isotropic
rod of specified length when a normal force at one end of the rod
vibrates at two freéuencies: one a resonant frequency of the rod,
and one betWeen resonant frequencies,

The paper begins with a very brief outline of the approximate
theory which allowg the paper to be self containedﬁ. In the third
section the mode shapes for freely vibrating finite rods are
developed in more detail than was possible in the previous
treatment[l] and the orthogonality condition for these mode shapes
is restated.

The nature of the mode shapes resembles closely those derived
for finite, isotropic rods by McNiven and Perry[2]. For a rod of
a particular geometry (length-to-radius ratio), the mode shapes for
successive resonant frequencies alternate between "symmetric' and
"antisymmetric' displacement distributions., As in reference 2, a
symmetric mode is defined as one in which the radial displacement is
symmetrical about the mid-length of the rod and the axial displace-
ment is antisymmetrical. An antisyﬁmetric mode has the opposite
distributions. For any particular frequency there will theoreti-
cally be contributions from all modes, so it follows that the
total motion must be described in terms of both symmetric and anti-
symmetric mode shapes,

In the fourth section an arbitrary forcing function is intro-

duced and the system is subjected to arbitrary initial conditions.

The solution to the problem involving inhomogeneous differential



equations is established by taking the trial functions for the
generalized displacements as infinite series of normal modes both
symmetrical and antisymmetrical, The coefficients of the normal
modes are unknown functions of time which are established by ex-
ploiting the orthogonality property of the normal modes,

In the fifth section a particular problem is chosen which, it
is hoped, is realistic, A finite, isotropically elastic rod is

N

subjected to a normal force on its left end which is applied with a
specified frequency; the right end is free of traction, The solu-
tion, though complicated, is found and in the last section the re-

sults of the numerical analysis of the particular problem are dis-

closed and discussed,




11, The Approximate Theory

The approximate theory governing the axisymmetric motions in
transversely isotropic rods was derived in a previous paper[lJ, In
this section, we review its content briefly,

The rod is circular and of radius "a', It is referred to a
cylindrical coordinate system (r, ©, z) within which the "z" axis
coincides with the axis of the rod. The material is arranged so
that axes of isotropy are parallel to the axis of the rod,

In the development which follows, when it is appropriate, we
use indicial notation and all the rules that apply to its use.

The theory is based on the constitutive equation
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Tij’ Eij’buing stress and strain tensors respectively, and C@B the

elastic coefficient matrix,



The theory is described in terms of generalized displacements

u, w and ¥ that are related to the radial and axial displacements

ur and uZ according to

u, = Tu(x,T)
—2 (3)
u, = w(x,T) + (1-2 T §(x,T),
where
T = r/a, a dimensionless radial distance
bz . . . .
X = PR dimensionless axial distance
1
6t (C4q\?
T = j;-<—%é> , a dimensionless time
b : a constant defined as the first nonzero root of
. [3] . ;
Jl(bm) = 0-"-, J1 being the Bessel function of

the first kind

P : the mass density.

The constitutive

ments and generalized
N\

(&) e,
4

4

where the generalized

equations relating these generalized displace-

forces are

y
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forces are defined by
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P B T T dT
r J ( rr * 99) rar
o]
a1l
P = ('T rdr
z o ZZ
o]
(5)
21 9
P = T r dr
rz  J rz
o]
51
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Using the notation of Reference 3,
1
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13 44 , 11 12
YB = c ; VS - c !
44 11
and the Ki's (i = 1-4) are adjustment factors introduced in the
theory to make the three spectral lines of the theory match more
closely the lowest three branches of the exact theory.
The three mode approximate theory is contained in the three
equations
y
2 2 3 \ 4da
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R=1 (a,z,t) ; Z=17_(a,z,t).
rro rz



III. Free Vibrations

In this section free vibrations of a finite rod, having zero
stress end boundary conditions, are discussed and tbe mole skepes
of the rod established, This knowledge, together with the
information about the orthogonality conditions for mode shapes, which

[1]

were derived in a previous paper , wWill be used in Section IV to
study forced vibrations of a finite rod by means of a mode superposi-
tion technique,

We consider a finite rod of length 2L bounded by free surfaces

at r = a and at z =T L., For this problem the governing equations,

Egqs., (7) with R = Z = 0, can be put into the following form

A . u + B, ., u, + C,.u, - D, u, = 0, (8)
ij J,xx i J,x ij J ij 3,77 :
where
3K 0 0
2 2
=8 :
(Aij) 0 6Y2 0
2
0 0 2v,,
— -
0 -1 . s
12K1(Y3 1) 12K§
= § -1 0 : 0
(Bij) 12K1(Y3 ) (9)
2
12K, 0 0
P Y o
2 '3
~12Q_7—(2—v§ 0 0
4
c.)) = 0 0 0
ij
2
N 0 0 —48K2_




SKé 0 0
cont,
L, ) = 521 o 6 0 )
iJ
0 0 2K

and

(ui) = (u, w, ¥

Using Eqs. (4,5), the free stress end boundary conditions can

be written in terms of generalized displacements as

p w,x($£,T)4-qu(¢£,T) =0
& u,x(:Fuﬁ,'T)— 49y (FL,7) = O (10)
\V}X(:F‘LI’T) =0
where
2 OL A
= i 5 M = K - N == ——
P=309Y,; 4 Kl(Y3 ;£ pll (11)
For free vibrations we let the solution be in the form
10T
u, (x,T) = v, (x) et R (12)
i i
where the normalized angular frequency {1 is defined by
0-=2 (13)
WS
1
< oG
In Eq. (13) : w is the angular frequency, wl = 2;5 is the first
c 1
44\" [3]

axial shear cut-off frequency and Gns = <~6—) , the shear velocity .
Substitution of the trial solution, Eg. (12), into the governing

equations of motion, Eq. (8) gives

A, v, 4+ B,. v, + C v, + “2 D,, v, =0, (11)
1} J,xXX L) J,X 1y J LS RN |



The boundary conditions, Eq, (10), in terms of Vi become

p W, (LT + qF FL,T)

1}
O

H
(@

& ﬁ;x(¢£,¢) -4V (FL, ™) (15)

¥, GFL,m) =0

where
v)=@Q,w, D
i
We now seek the solution of Eq. (14), subject to the houndary

conditions, Eq. (15),

The general solution of Eg., (14) is

oo —
~ - - 7]
u o i 8
u(x) ; p SiD an B ©os an
W Y>{ B i } (16)
wix) | = /. 1 tn o, cos an +h_|B  sin Cnx ,
. n=1
| o os 8 i X
~ﬂ(x{J in c QH%J Pin sin En
L K
where the dimensionless wave propagation constant Qn = 6n (n=1-3)

(kn is the wave propagation constant) is governed by the equation

1 12 13

2, 20 0 =0 , (17)
%13 0 433
and
— = e —_ —
CYUI’I 1 F‘Bun 1
a a
[»}
Q’W fed -—-——-—12 , Bwn = bt - 1@ . (18)
n 892 299
413 ‘ a33
o, — By — - =]
~— = — "y

1

sy}
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The fn’s and hn’s (n = 1-3) are six arbitrary constants to be deter—
mined from the boundary conditions.

In Egs, (17-18):

Y
2.2 .2 2 '3 2.2 2
: = 316 = -Y.) - &
a, 3{ K, C o+ 4K Y, (2 - v K, Q7
2,2 .2 2
:'b“ -
a4, 6 (y2 C a7
2.2 .9 2 2.2 2
= 2(8 - 8
asq ( Y2 7o+ 24K2 K4 o) (19)
= 120K =
a1, 1zwhl(w3 ¢
2
a4 = 126K2 C .

For a given (I, each aij has three values derived from the three
values of Qn’ the roots of Hq. (17).

We now proceed to apply boundary conditions, Eqs, (15), to the

-

general solution, Eg. (16). We find

¢ r | 2 r -
s \ - o . ‘. | } ! B
Téifq%n p%mén)mnbf]ﬁ{+Zqu%n+p@an)mh %}}% = 0
n=1 n=1
3 3
' *'\“ r— “ g f‘\-l" . " . .
4‘ /) L(éuun Qn - 4(:1/‘1'n ' cos Crfﬁ] £E) L(OBunCn + 4B\bn) sin Qnéi:\hn =0 (20)
: ne=l n=1
3 3
b e Y .
: + Lﬂ(a¢ngn sin § £) £ + /. (BWH Gy €08 G &) h =0,
n=1 ' n=1

After manipulation Egs, (20) can be put into two sets of equa—

tions in which f and hn are uncoupled;

T o

M f =0
. mn n

n=1
(m=1 - 3) (21)

3

=

/_.N h =0 ,
mn n

n=1
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where
M1n = (qdun - pdwn Qn) sin Cn£
M2n = (6aun Qn - 4d¢n) cos Cn£ {(n=1-3) (223
M3n = aWn Cn sin Qd£

and
Nln - (qaun + pBwn gn) cos Cn£
N2n = (5Bun Qn +'4Bwn) sin Cn£ (n=1-3) (23)
NSn = B¢; gn cos gn£

There are two ways to satisfy Egs. (21) nontrivially:

(1) For the first case we have
det (M ) =0 , x (24)
mn

Eq. (24) will give the relation between the length of the rod

b
L = :% and the frequency (). Then, from Eqs. (21) we find

hnzO
(n=1-3)
f = ¢ t*
n n
. 1 -
M,, M., - M.. M
3 3
(f;)= 1 21A 11 2 , (25)
M
My Myo - Mo Moy
u By A
where
b= M M - M M_ (26)

and ¢ is an arbitrary constant,
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? Substitution of Egs. (25) into Eq. (16) gives
v, =c¢d, | (27)
i i
where
f @ sin C x|
un - n
3
Y og (28)
(@i) = fn @ . cos an
n=1
o 3
| %y 08 61
From Eqs. (27) and (28) we see that the radial displacement (u) is

antisymmetrical and the
about. the mid~length of the rod

as antisymmetric modes,

such modes,

axial displacements (w, {) are symmetrical

These modes will be referred to

.

Eq. (24) is the frequency equation for

(ii) VFor this case we let
det (N ) =0 , (29)
mn
Then from Eq, (21) we find
f =0
n
(n=1-3)
h = dn*
n n
B 1 ] (30)
% Nz Moy 7 Ny N
(hn) = A )
N
Ny Nog = Ny Ny
e AN —
where
A — —
°n T Mg Npz 7 Nyg Moy (1)
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and d is an arbitrary constant,

Substitution of Egs. (30) into Eq., (16) gives

where

- a

cos X
Bun g]Cl

3
5y = ) nt -
( i) ZJ h Bwn sin an . (33)

Bwn sin an‘

From Eqs, (32) and (33) we see that the radial displacement (u)

is symmetrical and the axial displacements (w, {) are antisymmetri-
cal about the mid-length of the rod, These modes will he referred
to as symmetrical modes, Equation (29) is the frequency equation
for such modes, which governs the relation between the length of the

6
rod £ = :? and the frequency (),

Orthogonality Conditions

The orthogonality conditions of mode shapes were studied in a
1
previous paper[ ], Since we will make use of these conditions when

we study forced vibrations of a rod of a finite length in the next

section, we restate the orthogonality conditions here, They are

m P
3 =
( @l s Dij ) 0 for m # p
Sk , D, 5? Y = 0 for m # p (34)
1 LA A |
= b
o D ® = 0 and
{ i Vi ) for all m and p,



where

D, . " &P dx
i 3

and @? is the mode shape corresponding to the

- —n
resonant frequency (Um)y and Qi is the mode

to the "m''th symmetric resonant frequency (ﬁﬁ

...€tc,,
"m"th antisymmetric
shape corresponding

).

14
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‘IV; Forced Vibrations

A general forced vibration'problem, with non homogeneous stress
end boundary conditions, can be reduced to finding the solution of
the equation

R + B, . u, +C,.,u, - D, u, + G, =0 (35)
1J  J.xx 13 J,% 1J 3 3 3,77 1

subject to the initial conditions

ui(x,o) = wi(x)
(38)

ui’T(x,o) = ei(x) ,
and zero stress end boundary conditions, 1In Eq. (35) the Gi are,
in general, functions of x and T,
In what follows we seek the solution for the above problem by
means of a mode superposition technique, We start by letting the

solution have the form

o [+<]
_ Y P P Vb TP
u, = ZJ " () @i(X) + LJ ¢ (1) Qi(x) R (37)
p=1 p=1
where @? and '§p are the "p'th antisymmetric and symmetric mode

shapes of free vibrations respectively, which satisfy
S L S L PN c ST L o LI L B
i J,x%xx 3 o J,X 13 3 p 13 J

A, &, + B, . ¢, +C..% +0Q D % =0,
1) J,,XX 1j _J:X 13 J P 13 J

respectively, cp(T), Ep(T) are functions of T to be determined,

We now let



G (x,T) = b g’¢(t) b, . 3P (x) +
i L ij i

p=1
-
.60 = 9" 300 ¢
p=1
S N
ei(X) =/ 0 oL+
p=1

16

(39)

Since Gi(X,T), @i(x) and Gi(x) are specified functions, the coeffi-

cients in Egs. (39) can be determined using the orthogonality

conditions, Eqs, (34), The coefficients are

; (o @) . (e &)
g (m = oog (1) = — =
®, b, &) (¥, b, )

i' Tig R

(&%, p.. @)
o _ g Ui i P
(&®, p . & )

SR E S

P
<@j, Djiei> o

gP =
(8%, p &P
3 i

Substituting Eq. (37) and the first of Eqgs.

equation, Eq. (35), and making use of Eqgs.

18

P 0% P
. .

=P
T D9 )

=P 3P
éj, Djiéi )

=D
éj, Djiei N

g®) b

W, p.
J Jll

(38), we find

(40)

(39) into the governing

(41)
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By again using the orthogonality conditions one can show that Eq. (41)

will be satisfied if and only if

¢ o ¢’ =g
. 42
c +0Q ¢ =g .
T p

The initial conditions for cp(T) and Ep(T) can be obtained from
Eq. (37) and the second and third of Egs. (39). They are

P =P ; ) =3 ;

_ (43)
C?T(o) - 6P . E?T(O) - g°

The solutions of Eqs. (42) subject to the initial conditions, Eqs, (43),

are

T
p
. 5!
Pery =P cos QT4 & sin QT + —LJ g’ (1°) sin Q_(1-7")at’
P Py |
- (44)
P e = g° = 1 [ -p, = ’ ’
c(n =q cos@"r+=—sinﬁw+:—j g (1) sin O _(1-7)ar
p Qp p Q p
P O

Thus, the solution given by Egq., (37) is complete,
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V. A Particular Problem

In this section we study the following problem: We seek the
response of a rod of finite length, initially at rest, suhjected to
a uniform normal stress on the left end of the rod that has a sinus-
oidal dependence in time, while its right end is free of traction.

Mathematically, we seek the solution of Eq. (8) subject to the

boundary conditions

T (- £, =P sin Qv ; 7 (£,T) =0
Z7 o zz
(45)

T =L, =0 ,

zZr

and the initial conditions

u(x,o) = u,T(x,o) =0
w(x,0) =w, (x,0) =0 , 46)
Y(x,0) = ¢, . (x,0) =0

In Egs. (45), Q is the frequency of the input, which is specified,
and PO is a known constant.
Using Egqs. (4,5), the boundary conditions can be written in terms

of the kinematic variables, They are

h]

PWix (- £, +qu(= £,7) = A sin Q7

pw,X(S,T) + qu(g£, 7 =0

47)
6U3X(i £,‘T) - 4‘b(i £7'r) =0
\lhx(i £m =0,
where
aPO
A = . (48)



First, we wish to make the boundary conditions homogeneous.

To this end we let the solution be

u, = ui + mi , 49)
where
2
m) =10, A<éx - ?%—) sin Qt, 0/, (50)
and
@) = @, w, ¢ . (51)
in Eq. (50):
Ay
A= 3Tp (52)

Then the problem reduces to the following one: We seek the solution

of the equation

sk % k
A u. + B, .u, o u, D, .u,. +G, =0, (53)
ij J.xx ij Jj.x ij J ij 3,77 i

subject to the boundary conditions

&
pw,x(i L, + qu*(i £, T =0

af (xg,m =0 (54)

*
6u,x(i £, T

v«-:“x (£ £,T)

1
o

and the initial conditions

* *
u (x,0) u T(x,o) =0
y

il

% 2
0w (x,0) = A(slx + 5.X ) (55)

*
w X,0
(x50) . T 2

Q!*(X;O) = \u*



where

2 .
(Gi) = A(GlO + G,.%X, G + Gl X + GyoX s 0)sin QT

11 20 21

Gip = Byaf
611 =7 By
Ygp T 7 Ay
2
Og1 = D22Q <
2
G22 DZZQ /2
51 = - B0
Q
Sy T 3%

20

(56)

(57)

As outlined in section IV, the solution of this particular problem can

be obtained explicitly. It is

[vel

=y PP+ POBw

p=1 p=1
0w =]
=S P P Y@ ) Q
wo o= L_ c (T 2(x) + / c (1) 2(x) + Al fx -~ 5 sin QT
p=1 p=1
o] [+2]

p=) PP s EJ P (T o
p=l p=1

(59)



In Egs.

cp(T)

It

P ()

(1)

P (1)

It

where

(59) :

.sin

9p sin Q

o®

sin

sin

T

T

gp
o =
2 [Q + 0
X
- Q
P
P
fo (1,
5 5 sin
P
-p
fe) { 1
2 O+ 0
Q0 b
1
o= 7 (sin
P
go QL sin
2 E%
3
* *
2 fnpfmp
m=1
3
* *
)3 fnpfp
m=
3 %k
I O
=1 7 m

21

(sin OT + sin C%T)

(sin QT - sin C%TJ (for Q * Qp)

QT1T~- T cos £ T)} (for Q = )
p P P

(60)

(sin QT + sin E%T)

Q1 - sin (O T)] (for O % D)
P p

p

QT- 1cos
P

T) (for Q = Q)
P

(61)



3 3 o x
D, 2 T PP
n=1 m=1 un
3 *
D.. S % n2nPgP
22 m wn
n=1 m=1

/ lsin(l‘;}; - gfl)s s:m((;i + C]i)x
@ - @+

—
sin(Cﬁ - C_E)S siu(Qi + Qﬁ)aﬁ
+

r—

£+

p P
L &g

P . b
4_
(Qn l;m)
sin (225
R L
T
& = Y118117F Gyp%g0 T Gop?
-p _ p p
&, = G10P10 * G271 Pa3
p p
of = -
o = DagSytay
P
0. =D _s bp

2271721

P D
Bum nn
D p
me nm
D p
B\ym Som

for
for
for
for
P
22

22

cont,
(61)

(62)

(63)

(64)

(65)
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. D
3 sin ¢ £
DX f*p U L - £ cos l;np.ﬁ
- n D rp
n=l %1 "n
3 * O@n D
> f p_vn sin [ £
n D n
n=1 Qn
P . P
3 oP cos [ & sin (£
3 f*p _wn Lzsin Qpﬁ + 28 L 2
__l n gp n Qp p
n= n n (Qn)
. p
3 sin %
z h*p Bp —n
n un b
n=1 er
*p A
3 h Bp sin £
PN n_wn Qn - £ cos C§£
n=1 Qp Qn

23

(66)
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VI, Numerical Analysis

Our choice is to calculate and exhibit the radial displacement,
Even though the theory is developed for transversely isotronic rods,
numericalrcomputations are carried out for an isotropic rod having a
Poisson's ratio of v = 0,29, This is possible because transversely
isotropic materials contain isotropic materials as a special case.
For the ratio of the length of the rod to its radius we choose
2 L = 26,

a .
Computations are carried out for two different input frequencies:

(1) First the input frequency is choéen equal to the frequency

of the second antisymmetric mode, i.e.,

Q= Qz = 0,20132, The
variations of the radial displacement (along the rod at fixed times,
and in time at a fixed station) are shown in Figs. (1-6).

The significant point about the response of the rod to a forcing
frequency Qp which is a particular resonant frequency (in this case
QQ), is that the second term of the first infinite series solutions
for "u" (CZ(T)) contains the term T cos QZ.T (see the second Egs,
(60)). The influence of these terms can be seen by examining Figs.
(2-6), First bylcomparing Figs. (2, 3, 4) the influence of T in the
cos QZ T parf of the term can be seen, When 7 = 311.80 cos Q2 T
is close to one allowing the second mode to predominate, whereas when
T = 307.80 and 305,80, even though T is large, the cos Qz T is
small reducing the influence of the term and therefore the influence
of the second mode, This influence can also be seen in Fig., 1. By
examining Figs. (2, 5, 6), the influence of the T preceding cos Qz T

is recognized., For T = 311,80 the displacement amplitude is large
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and the second mode accounts for practically all of the motion whereas
for the short times T = 44 and 79 the amplitudes are much smaller and
the second mode no longer has such a predominant influence. We also
note that at 7 = 44 the wave has not as yet reached the right end of
the rod, thus a portion of the rod at the right end remains undis-
turbed (Fig. 5), At the later time T = 79 the disturbance has

reached the end of the rod and the distribution shown in Fig. (6)
contains the influence of the wave reflection from the right end,

(ii) The second input frequency is §) = 0.2250 which is between
the frequency of the sccond antisymmetric mode, QZ = 0,20132, and that
of the third symmetric mode, 53 = 0,25067, The radial displacement
distribution for the time T = 300 is shown in Fig, (7). Study of the
figure shows that the distribution is neither symmetric nor anti-
symmetric and that the values of "u" are small compared to those of
Fig. (2). It is important to note from Fig., (7) which modes are
contributing to the motion, If only the modes below the forcing
frequency are accounted for (i,e,, four modes), the actual distribu-
tion is poorly described. However, when the contribution of the mode
whose resonant frequency is immediately above the forcing frequency
(the fifth mode) is added to the four lower order contributions, the
distribution is quite accurate., This conclusion can be reached when
it is noted that adding the influences of the seven modes above this

fifth mode alters the five-mode distribution very little,
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Captions for Figures

Fig. 1 Radial digplacement for the frequency Q = 0,20132
the station =x = ~ 14.943,

Fig, 2 Radial displacement distribution for the frequency
(2= 0.20132 at the time T = 311.80.

Fig. 3 Radial displacement distribution for the frequency
0 = 0.20132 at the time T = 307.80.

Fig. 4 Radial displacement distribution for the frequency
(0 = 0.20132 at the time T = 305.80,

Fig, 5 Radial displacement distribution for the frequency
2= 0.20132 at the time T = 44,

Fig. 6 Radial displacement distribution for the frequency
(1= 0,20132 at the time T = 79,

Fig., 7 Radial displacement distribution for the Irequency
(¢ = 0,2250 at the time 7T = 300,
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