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This chapter describes the analytical and statistical methods used to develop 
risk-adjustment models for the California Hospital Outcomes Project. The 
discussion here is technical and requires some knowledge of statistics and 
research design. Volume One contains a less technical discussion.

The development of risk-adjustment models followed a series of steps 
beginning with identification of  the outcome of interest (30 -day in-hospital 
mortality for AMI) and potential risk factors.  Detailed definitions of the 
outcome and risk factors are presented in Chapters Five and Seven, 
respectively.

Each of the nine steps in developing risk -adjustment models is described in 
detail below. These steps may be briefly summarized as follows:

1. The lists of potential clinical risk factors were reviewed to identify two key 
subgroups: (a) particularly important factors that should be forced in to all 
risk-adjustment models, and (b) factors that might represent either 
comorbidities or complications, and therefore should be used only in 
selected models.

2. Univariate and bivariate analyses were used to identify and eliminate low -
frequency risk factors, eliminate other risk factors that do not affect or 
have counterintuitive associations with mortality , and summarize multi-
level clinical risk factors as either ordinal predictors or multiple dummy 
variables.

3. Descriptive analyses were performed to select the best method for 
modeling the effects of age and other non -clinical risk factors.

4. Each sample was split into two separate samples for estimating and 
validating risk-adjustment models.

5. Clinical risk factors were selected for the primary risk -adjusted model 
(labeled Model A), using a set of ten random subsamples to choose only 
risk factors with both robust and statistically significant parameter 
estimates.

CHAPTER EIGHT:
PROCEDURE FOR DEVELOPING RISK ADJUSTMENT MODELS
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6. Two-way interactions were selected for the primary risk -adjustment 
model, using a variety of variable selection procedures.

7. Risk-adjusted models were internally validated and refined by applying 
models developed using the estimation sample to the corresponding 
validation sample.

8. Additional non-clinical and clinical risk factors were selected for Model B 
to assess whether hospital outcome statistics were sensitive to including 
these additional variables in the analysis.

9. Each risk model was re-estimated after combining the estimation and 
validation samples, to generate more reliable parameter estimates.

STEP 1: REVIEW OF POTENTIAL CLINICAL RISK FACTORS

The potential clinical risk factors listed in Chapter Seven were reviewed to 
identify two important subsets. These subsets were analyzed in somewhat 
different ways from the remaining risk factors, as described below.

1.1 Particularly important clinical risk factors were identifi ed through 
review of prior literature and discussions with clinical advisors.

These factors were forced into all risk -adjustment models, to 
maximize their face validity to clinicians and health services 
researchers. Risk-adjustment models without these variables would 
have been vulnerable to unidentified interactions. The stepwise 
methods later used to select variables might otherwise have 
eliminated crucial predictors. However, it was important to be very 
selective in choosing which variables to force in to risk models, 
because unnecessary and irrelevant variables can overburden a 
model.  The risk factors forced into the AMI risk -adjustment models 
were female sex, infarct site (e.g., anterior wall, inferior wall, 
subendocardial, other or unspecified) and p rior coronary bypass 
surgery. 

1.2 Clinical risk factors that might represent complications of care 
were identified through review of prior literature and discussions 
with clinical advisors. 

California patient discharge abstracts do not distinguish bet ween 
comorbidities which typically are present at admission, and 
complications that develop during an inpatient stay. In the absence of 
specific information on the abstract, judgments were made as to 
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whether various conditions were more likely to have been  present at 
admission or to have developed later.

This distinction was important because two risk -adjustment models 
were developed to predict AMI mortality.  Model A is a conservative 
model that includes fewer risk factors; Model B is a more 
comprehensive model that includes important but potentially biased 
risk factors.  Conditions that almost certainly were present at 
admission were candidates for inclusion in both Model A and Model B.  
Conditions likely to have developed later were candidates only for 
Model B.  Model B thereby gives hospitals the benefit of the doubt 
related to associated conditions that have unclear timing.

AMI risk factors considered for Model B but not for Model A were 
shock, hypotension, pulmonary edema, complete atrioventricular 
block, pleural effusion, urinary tract infection, syncope, acidosis, 
alkalosis, sepsis, paroxysmal ventricular tachycardia, hyponatremia or 
hyposmolality, hypernatremia or hyperosmolality, gastrointestinal 
hemorrhage, pneumonia, aspiration pneumonitis, and u nstable 
angina.

Diagnoses from prior hospitalizations were available for 8.1% of AMI 
cases. Several risk factors were considered for Model A only if they 
appeared on the discharge abstract from a prior hospitalization, but 
were considered for Model B no m atter which discharge abstract 
listed the diagnosis. These AMI risk factors included epilepsy, bundle 
branch block, atrial fibrillation, cerebrovascular disease, skin ulcer, 
coagulopathy, supraventricular tachycardia, premature beats, arterial 
emboli or thromboses, acute renal failure, acute peptic ulcer, and 
other atrioventricular block.

STEP 2: PRELIMINARY ANALYSES OF CLINICAL RISK FACTORS

These analyses were designed to describe the frequency distributions of all 
clinical risk factors, detect covariates and covariate patterns with very few 
observations, evaluate the unadjusted bivariate association between each 
covariate and death, and summarize multi -level clinical risk factors in a 
manner appropriate for regression modelling.

2.1 The frequency dist ribution of each clinical risk factor was 
determined and very low -frequency risk factors were eliminated 
or aggregated.

Binary risk factors present in less than 1% of all cases were examined 
carefully. Whenever possible, these risk factors were combined w ith 
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physiologically related risk factors that were similarly associated with 
death. If aggregation along clinical lines was impractical, risk factors 
present in fewer than 20 patients who died were eliminated. Twenty 
was chosen as the cutoff because it cor responds to the minimum 
number (n = 6) needed to estimate effect sizes in risk models based 
on 30% bootstrap samples (see Step 5 for a detailed description of 
these bootstrap samples).

No AMI risk factors were eliminated because of low frequency among 
cases without  prior hospitalizations.  However, the following risk 
factors failed to qualify in the sample of cases with  prior 
hospitalizations: chronic peptic ulcer, acute peptic ulcer, chronic liver 
disease, coagulopathy (from prior hospitalization). In bot h samples, 
high risk primary malignancy and secondary malignancy were 
aggregated into one risk factor that qualified for retention.

2.2 Clinical risk factors not associated with mortality were identified 
and eliminated, to improve the efficiency of subse quent 
modeling.

The unadjusted bivariate association between each clinical risk factor 
and death was summarized using relative risk estimates with 95% 
confidence limits and p-values derived from a continuity-adjusted chi-
square distribution (with k-1 degrees of freedom, where k equals the 
number of risk categories). 

Risk factors that were not associated with death at a p < 0.10 level 
were eliminated from further consideration. This cutoff was selected to 
screen out risk factors least likely to contribute  significantly to a 
multivariate model.

The following AMI risk factors were eliminated because they were not 
significantly related to mortality among cases without  prior 
hospitalizations: collagen vascular disease, chronic obstructive 
pulmonary disease, psychosis, specified or unspecified anemia, 
cardiomegaly, urinary tract infection, low-risk primary malignancy, 
mitral valve disease, other valve disease, and personal history of 
malignancy.  Among cases with  prior hospitalizations, all of these risk 
factors except collagen vascular disease, low -risk primary 
malignancy, mitral valve disease, and other valve disease also failed 
to qualify.  The following additional risk factors were eliminated 
because they were not associated significantly with mortality amon g 
cases with prior hospitalizations: complicated diabetes, coagulopathy, 
neurologic disorders, hypertensive heart failure, chronic pulmonary 
heart disease, other atrioventricular block, supraventricular 
tachycardia, premature beats, chronic glomerulonephri tis, 
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osteoarthritis, prior pacemaker insertion, hyposmolality or 
hyponatremia, pleural effusion, gastrointestinal hemorrhage, and 
syncope.  In addition, several risk factors based exclusively on prior 
hospitalizations were not related significantly to mort ality (e.g. 
epilepsy, bundle branch block, premature beats, acute renal failure, 
other atrioventricular block).

2.3 Clinical risk factors that had counterintuitive associations with 
mortality were identified and eliminated, if biased coding 
appeared to b e the most likely explanation.

The directions of all statistically significant associations between risk 
factors and mortality were examined. These findings were reviewed 
with the appropriate clinical advisory panel, after considering the 
literature summarized in Chapter Two. Risk factors that appeared to 
lower the risk of AMI death when previous literature and clinical 
experience suggested the opposite relationship, were eliminated from 
the analysis. Studies using reabstraction 1,2,3 or data linkage4 have
demonstrated substantial underreporting of several such conditions. 
Counterintuitive risk-outcome associations could be explained by 
selective underreporting among patients with poor outcomes. 5,6 

The following AMI risk factors were eliminated because the y were 
counterintuitively associated with lower mortality among cases without 
prior hospitalizations: hyperlipidemia, obesity, gout or osteoarthritis, 
unstable angina, old AMI, other atrioventricular block, premature 
beats, asthma, chronic peptic ulcer dis ease, syncope, uncomplicated 

1Fisher ES, Whaley FS, Krushat WM, Malenka DJ, Fleming C, Baron JA, et al. The accuracy of 
Medicare's hospital claims data: Progress has been made, but problems remain. American 
Journal of Public Health 1992; 82:243-248.

2Romano PS, Mark DH. Bias in the coding of hospital discharge data and its implications for 
quality assessment. Medical Care 1994; 32:81-90.

3Romano PS, Luft HS. Getting the most out of messy data: Problems and approaches for 
dealing with large secondary data sets. In Grady ML, Schwartz H, eds. Medical Effectiveness 
Research Data Methods. Rockville, MD: US Department of Health and Human Services; 1992.  
AHCPR Pub. No. 92-0056.

4Jollis JG, Ancukiewicz M, DeLong E, Pryor DB, Muhlbaier L H, Mark DB. Discordance of 
databases designed for claims payment versus clinical information systems: Implications for 
outcomes research. Annals of Internal Medicine  1993; 119:844-850.

5Jencks SF, Williams DK, Kay TL. Assessing hospital -associated deaths from discharge data: 
the role of length of stay and comorbidities. JAMA 1988; 260:2240-2246.

6Iezzoni LI, Foley SM, Daley J, Hughes J, Fisher ES, Heeren T. Comorbidities, complications 
and coding bias: Does the number of diagnosis codes matter in predicting  in-hospital mortality? 
JAMA 1992; 267:2197-2203.
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diabetes, and alcohol or drug use. Further analyses suggested that 
unstable angina patients may have had very small infarcts under 
inpatient observation; ICD-9-CM coding guidelines state that AMI may 
be coded as the principal d iagnosis in this situation.7 Among cases 
with prior hospitalizations, all of the same risk factors failed to qualify.

2.4 Multi -level clinical risk factors were summarized as either ordinal 
predictors or multiple dummy (dichotomous) variables, as 
appropr iate.

Several clinical risk factors could be divided readily into two or more 
severity categories, based on the fourth or fifth digit of the ICD -9-CM 
code or the presence or absence of certain associated diagnoses. For 
example, diabetes may be classified as complicated if it is associated 
with ketoacidosis, coma, or end-organ disease (e.g., neuropathy, 
retinopathy, nephropathy).

To determine how to model the effect of multi -level clinical risk factors, 
the unadjusted association between each such factor a nd death was 
summarized using relative risk estimates with 95% confidence limits 
and p-values derived from a Mantel -Haenszel chi-square for trend. 
The Kruskal-Wallis test was used instead of analysis of variance when 
the equal variance assumption was not s atisfied. If the relationship 
between a multi-level predictor and the risk of an adverse outcome 
was monotonic (and approximately linear on a logit scale), then the 
predictor was treated as an ordinal variable in regression models. 
Otherwise, multiple dummy (dichotomous) variables were created to 
capture the independent effect of each level. Two adjacent levels 
were combined into one dummy variable if they were associated with 
the same risk.

The AMI risk factors with multiple levels were diabetes and 
hypertension; neither displayed a monotonic relationship with the risk 
of death. Separate dummy variables were created, but only 
complicated diabetes and uncomplicated hypertension otherwise 
qualified for inclusion in the risk -adjustment models (as described 
above).

STEP 3: PRELIMINARY ANALYSES OF NON -CLINICAL RISK FACTORS

These analyses were designed to describe the distributions of all non -clinical 
risk factors, to evaluate the unadjusted association between each covariate 

7Sequencing of angina and coronary heart disease. Coding Clinic 1990; 7(3):6-10.
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and death, and to select the appro priate analytic specification of each non -
clinical variable.

3.1 The distribution of age (and other continuous predictors) and the 
associations between these predictors and mortality were 
evaluated.

Smoothed scatter plots of the logit outcome (log[p/(1 -p)]) as a function 
of age were used to determine the best -fitting form of the relationship 
between mortality and age. Age was categorized in increments of one 
to five years, so that each age group had a sufficient number of 
observations for analysis. Specific components of the age-mortality 
relationship, such as linear and quadratic terms, were tested using a 
likelihood ratio statistic. 

This analysis led to a change in the specification of age in the study of 
AMI mortality. In 1993, five dummy variables w ere used to specify the 
relationship between age and mortality. In the current study, age was 
truncated at 100 years and specified as a linear predictor. Truncation 
was important to minimize the influence of patients erroneously 
reported as being over 100 years of age and to preserve linearity in 
the association with the logit risk of death. By treating age as a 
continuous variable instead of multiple dummy variables, it was easier 
to evaluate interactions involving other risk factors.

The same approach was applied to examine the relationship between 
the month of discharge  (ordered sequentially from the beginning to 
the end of the study period) and mortality. The month of discharge did 
not appear to be related to the death rate after AMI.

3.2 The distribu tion of categorical non -clinical variables and the 
associations between these variables and each outcome of 
interest were evaluated.

Contingency tables were used to evaluate the relationship between 
each categorical demographic (e.g., gender, race) and ho spitalization 
characteristic (e.g., expected principal source of payment, source of 
admission, type of admission, day of week of admission) variable and 
mortality. This made it possible to combine low -frequency categories 
that were conceptually similar or had similar death rates.

Race was aggregated into four categories: white, African -American, 
Hispanic, and other. The "other" category included Asian -Americans, 
Native Americans, and other groups.
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Four categories of expected payment source  were used: Medicare, 
MediCal, uninsured (including self -pay, no charge, and section 17000 
indigent services), and insured (including Blue Cross/Blue Shield, 
insurance company, health maintenance organization, Worker's 
Compensation, Title V, and other government or non -government 
insurance). Although there were enough HMO cases to create a 
separate category, this was not done because HMO cases tend to be 
concentrated at certain hospitals. Adjusting for an HMO insurance 
effect would have made it difficult to evaluate the pe rformance of 
these hospitals.

Source of admission  was grouped into two categories: (1) routine or 
home health service, and (2) emergency room (ER), inpatient facility 
(skilled nursing, intermediate care, acute care), other facility, or other 
source. Transfers from inpatient facilities were excluded from the AMI 
analysis, for the reasons described in Chapter Three. Admissions 
from other facilities and other sources were combined with ER 
admissions because OSHPD's reabstracting study showed that 52% 
of these cases should have been reported as ER admissions, and 
because their risk of death was closer to that of ER admissions than 
to that of routine admissions. 

Type of admission  was grouped into two categories: elective or 
urgent versus emergent. This classif ication was chosen because AMI 
death rates were very similar between elective and urgent 
admissions. 

3.3 One category of each demographic variable was designated as 
the reference group. 

The most frequent category of each non -clinical variable was 
generally chosen as the reference group for regression modelling. 
Males were selected as the reference group in all models. In all 
models that included race, white was the reference group. In all AMI 
models that included source of payment, insurance other than
Medicare and MediCal was the reference group. In all AMI models 
that used source of admission, routine or home health service was the 
reference group. Elective or urgent admissions were the reference 
group in models that used admission type.

STEP 4: DIVISION OF DATA INTO SEPARATE SAMPLES FOR 
ESTIMATION AND VALIDATION

The data set was split into an estimation sample and a validation sample, by 
randomly selecting 60% of the original cases (without replacement) for the 
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estimation sample and setting aside t he remaining 40% for the validation 
sample. This procedure made it possible to develop risk -adjustment models 
on the estimation samples and then assess these models on separate 
validation samples. Such a test of model fit is more rigorous than one that 
uses the same sample for both estimation and validation. A 60%/40% split 
was chosen because a larger estimation sample is more likely to contain 
cases from sparse cells (rare risk factor combinations), and therefore may 
allow better assessment of interactions.

Sampling was stratified by outcome status (death) to ensure that the overall 
probability of the outcome was the same in both the estimation and validation 
samples.

STEP 5: SELECTION OF MAIN EFFECTS RISK FACTORS FOR MODEL A

As described in Step 1, two  different models (A and B) were used to adjust 
for patient differences across hospitals. The demographic and clinical risk 
factors in Model A were almost certainly present when the patient entered the 
hospital and therefore reflect his or her health on ad mission. Model B 
contains all of the risk factors in Model A as well as others that may reflect 
either health on admission or quality of care.

The goal of Step 5 was to identify a single best set of "main effects" risk 
factors for Model A, using a procedu re that would be robust in a variety of 
circumstances. To this end, subsamples of the estimation sample were 
randomly generated, and covariate selection procedures (described below) 
were completed for each subsample. The results of this process were 
reviewed to determine the best set of risk factors. This procedure minimized 
the risk of overfitting a risk -adjustment model to the peculiarities of a 
particular sample.

5.1 Ten independent random subsamples were generated, without 
replacement and a sampling f raction of 50%, from the 60% 
estimation sample.

Sampling without replacement means that the same case would not 
have been selected more than once for a single subsample. Sampling 
with replacement has the theoretical advantage of allowing a 
subsample to contain more cases with a rare risk factor than the 
population from which that sample was drawn.

5.2 The best risk factor set for each subsample was determined. 

For each subsample, a multivariate regression model was fit using 
stepwise forward selection with the significance level tolerance set to 
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0.10, forcing in the important clinical risk factors identified in Step 1. 
Probability values to enter and remove variables were based on the 
likelihood ratio statistic in logistic models with dichotomous outcom es.

5.3 The subsample results were combined to determine the final 
Model A risk factor set. 

All risk factors that were significant at p < 0.10 in five or more of the 
ten subsamples were retained in the construction of Model A. The 
following AMI risk factors were eliminated from the "no prior 
hospitalization"  model because they were significant in fewer than 
five subsamples: hereditary, degenerative, or demyelinating disorders 
of the nervous system; hypertensive heart failure; dementia or 
Alzheimer's disease; malnutrition; chronic pulmonary heart disease; 
systemic atherosclerosis; chronic glomerulonephritis; and prior 
pacemaker insertion. The following AMI risk factors were eliminated 
from the "one or more prior hospitalizations"  model for the same 
reason: low-risk primary malignancy; malnutrition; other valve disease 
or prior valve replacement; late cerebrovascular disease; dementia; 
collagen vascular disease; atrial fibrillation; arterial embolism or 
thrombosis; unspecified anemia; supraventricular tachycardia; 
cardiomegaly; and other cerebrovascular disease. The last six of 
these risk factors were coded as present in Model A only if noted in a 
prior record.

5.4 The variables confirmed as robust predictors of adverse 
outcomes were tested in a stepwise r egression model on the 
entire 60% sample.

One limitation of the multiple subsample method described above is 
that when several predictors are highly colinear, stepwise models 
from different subsamples may include different predictors. The 
contribution of one variable may be fully explained by another variable 
or combination of variables that did not enter that particular model. 
Alternatively, competing variables may drop out of a model based on 
a small (bootstrap) sample, whereas they would stay in a model
based on a larger sample. To address these concerns, all risk factors 
that met the five-sample bootstrap criterion were tested in a stepwise 
regression using the full 60% estimation sample, with a p -to-enter of p 
< 0.01.

This procedure eliminated no pred ictors from the analysis of AMI 
cases without  prior hospitalizations. However, it resulted in dropping 
hypothyroidism and atherosclerosis from the analysis of AMI cases 
with  prior hospitalizations.
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STEP 6: SELECTION OF RISK FACTOR INTERACTIONS FOR MODEL A

The number of Model A risk factors was too large to consider all two -way 
interactions, let alone three-way and higher order interactions. The choice of 
approach in the analysis reflects the difficult balance between optimizing 
model performance and computational efficiency.

6.1 Clinically plausible interactions involving important main effects 
were identified and tested.

This approach was based on the premise that only interactions 
involving the most important main effects would contribute 
substantially to risk-adjustment models. In the AMI analyses, only 
interactions involving age or infarct site (e.g., anterior wall, inferior 
wall, other or unspecified) were tested. 

All of these interactions were tested using the ten randomly generated 
subsamples described above. For each subsample, a multivariate 
regression model was fit using stepwise forward selection with the 
significance level tolerance set to 0.10, forcing in all of the important 
main effects identified in Steps 1 and 5. Probability values to enter 
and remove variables were based on the likelihood ratio statistic in 
logistic models with dichotomous outcomes and on the F statistic in 
linear models with continuous outcomes. All interactions that were 
significant at p < 0.10 in five or more of the  ten subsamples were 
retained in the construction of Model A.

All risk factors that met the five -sample bootstrap criterion then were 
tested in a stepwise regression using the full 60% estimation sample, 
with a p-to-enter of p < 0.01. This procedure elimi nated several 
interactions from each analysis.

STEP 7: INTERNAL VALIDATION AND REFINEMENT OF RISK 
ADJUSTMENT MODELS

To internally validate the final covariate set in each risk -adjustment model, 
the parameter estimates from the 60% estimation sample were  compared to 
the corresponding parameter estimates derived by fitting the same model to 
the 40% validation sample. Model specification was considered adequate if a 
parameter estimate from the 60% estimation sample fell within the 
corresponding 95% confidence intervals from the 40% validation sample.

Nearly all main effects parameter estimates based on the 60% estimation 
samples were within the corresponding 95% confidence intervals based on 
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the 40% validation samples. Lack of overlap in parameter estimates  was 
noted for a larger number of interaction variables. Some of these variables 
were statistically significant in the estimation sample, but not in the validation 
sample. A few even had opposite signs in the two samples (e.g., an adverse 
effect in the est imation sample and a protective effect in the validation 
sample). All of these variables were examined individually.

The calibration of each risk -adjustment model was assessed with the 
Hosmer- Lemeshow goodness of fit test (further described in Chapter Ten ). 
Specifically, the risk-adjustment model developed on the 60% estimation 
sample was applied to the 40% validation sample. This was important to 
ascertain whether the model would fit as well in an independent sample as in 
the sample used for estimation. T his comparison generally demonstrated 
similar goodness-of-fit across risk strata in the two samples, but some 
calibration problems were identified and addressed.

As a result of these procedures, two interaction terms were removed from the 
risk-adjustment model for AMI patients with  prior hospitalizations. These 
terms had non-overlapping parameter estimates with opposite signs in the 
estimation and validation samples. Although the models for AMI patients 
without  prior hospitalizations also had several non -overlapping parameter 
estimates, these variables were not removed because they had strong 
adverse effects in both samples.

STEP 8: SELECTION OF ADDITIONAL RISK FACTORS FOR MODEL B

To select the additional risk factors for Model B, a procedure was applied
similar to that used to select Model A risk factors in Step 5. Ten independent 
random subsamples were generated, without replacement and a sampling 
fraction of 50%, from the 60% analytic sample.

Two sets of variables were considered for Model B that were  not considered 
for Model A: clinical characteristics that could represent either comorbidities 
or complications, and non-clinical characteristics that could be associated 
with mortality but could also represent confounded or unreliable measures. 
The clinical characteristics were identified in Step 1.2. The non -clinical 
characteristics included race, expected principal source of payment, source 
of admission, and type of admission.

Race and expected payment source were not considered in Model A because 
they might be associated with differences in the quality of care. They were 
considered in Model B because they might reflect differences in the severity 
of illness at admission, perhaps due to delays in seeking care or inadequate 
outpatient care. Type of admission was not considered in Model A because 
OSHPD's 1988 reabstracting study noted a 36% error rate for this variable. It 
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was considered in Model B because physicians may label patients as 
"emergency" or "urgent" based on clinical features that otherwise wo uld not 
be captured in risk-adjustment models. Source of admission was not 
considered in Model A because it may reflect market characteristics, such as 
proximity to long-term care facilities, rather than patient characteristics. It was 
considered in Model B because patients transferred from other inpatient 
facilities may be sicker than average at admission. This difference might not 
otherwise be captured in risk -adjustment models.

Stepwise forward selection procedures, forcing in all of the main effect and
interaction variables from Model A, were used to select covariates. Model A 
covariates were forced into this model to ascertain the independent effects of 
additional demographic and clinical factors, controlling for those included in 
Model A. Candidate risk factors that were significantly associated with 
mortality at the p < 0.10 level in five or more of the ten subsamples were 
retained in Model B, except that race and at least one category of expected 
payment source were always included in Model B. This w as done to adjust 
for the effects of socioeconomic variables, even if those effects were 
statistically insignificant.

The following Model B risk factors for AMI mortality were eliminated from the 
"no prior hospitalization"  model because they were signific ant in fewer 
than five subsamples: sepsis; hyponatremia or hyposmolality; alkalosis; 
pneumonia; aspiration pneumonia; gastrointestinal hemorrhage; 
coagulopathy; bundle branch block; atrial fibrillation; supraventricular 
tachycardia; arterial thrombosis or embolism; acute peptic ulcer; skin ulcer; 
nonroutine source of admission; other nonwhite race; and Medicare 
insurance. The following AMI risk factors were eliminated from the "one or 
more prior hospitalizations"  model for the same reason: sepsis; alkalosis ; 
complete atrioventricular block; hypotension; pneumonia; aspiration 
pneumonia; bundle branch block; atrial fibrillation; arterial thrombosis or 
embolism; epilepsy; mitral valve disease; skin ulcer; nonroutine source of 
admission; emergent admission type; other nonwhite race; and Medicare 
insurance.

As in Model A, all risk factors that met the five -sample bootstrap criterion 
were tested in a stepwise regression using the full 60% estimation sample, 
with a p-to-enter of p < 0.01. This procedure eliminated no predictors from the 
AMI analyses; however, pleural effusion was dropped from the "no prior 
hospitalization"  model because it had a counterintuitive negative coefficient 
(perhaps because the diagnosis is not reported in patients with severe 
pulmonary edema).
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STEP 9: RE-ESTIMATION OF MODEL PARAMETERS USING ALL CASES

The 60% estimation sample and the 40% validation sample were re -
combined into the full dataset. Model A and Model B were re -estimated by 
fitting the models developed in Steps 1 through 8 to  the complete (100%) 
data set. The purpose of this step was to generate the most reliable possible 
estimate of each parameter, using all available data. As described in Step 7, 
a few interaction variables with questionable clinical significance and 
inconsistent parameter estimates based on internal validation were dropped 
at this stage.

AMI Model B demonstrated a serious problem with model fit in both the 
estimation and validation samples. Although Model B was intended to 
emphasize discrimination over calibration, it was found to overpredict death 
among high-risk patients to an unacceptable degree. This problem was 
attributable primarily to interactions involving the additional clinical risk factors 
included in Model B. Such interactions were not generally sought, but 
additional efforts to improve the calibration of AMI Model B were deemed 
necessary. Interactions were created between shock and related high -risk 
variables (e.g., anterior wall site, other or unspecified site, CHF, acidosis, 
hypotension, pulmonary edema, other cerebrovascular disease, acute renal 
failure). These interactions were tested in a stepwise logistic regression using 
the complete 100% sample, with a p -to-enter of p < 0.01 and all Model A 
variables and Model B main effects forced in. Thi s effort ameliorated but did 
not entirely resolve the problem (see Chapter Ten).

The final models re-estimated in this step were used to calculate the 
predicted probability of an death for each case in the analysis. These 
predicted probabilities were used in all subsequent analyses of hospital 
mortality rates.




