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ABSTRACT 

We study a random particle method for solving the reaction-diffusion equa­
tion Ut = v Uzz + I ( u ) which is a one dimensional analogue of the random vor­
tex method in fluid mechanics. Our method is a fractional step method in which 
Ut = v ua is solved by random walking the particles while Ut = I ( u ) is solved 
by Euler's method. For the case when I ( u ) = u (1- u ), i.e. the Kolmogorov 
equation, we prove that for at = 0 ( W -1) the numerical method converges 
like ln N · W -1 uniformly as the diffusion coefficient v tends to 0. Thus, travel­
ling waves with arbitrarily steep wavefronts may be modeled without an increase 
in the computational cost. We also present numerical results ·that include experi­
ments with second order time discretization and second order operator splitting. 
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1. Introduction 

In this paper we study a random particle method, due to Chorin [15] for approximating 

solutions of the one dimensional reaction-diffusion equation, 

'• u1 =v u:r:r + f ( u ) {l.la) 

{l.lb) 

where the forcing function, f ( u ), satisfies 

! (o) = ! (1) = o, (1.2a) 

f(u)>O for 0 < u < 1 , (1.2b) 

f '(u)::; 1 for 0 ::; u ::; 1. ( 1.2c) 

We call this method the random gradient method. Algorithms based on this method have been 

used by Sherman and Peskin to solve Nagumo's equation [50] and the Hodgkin-Huxley Equa-

tions [51]. We prove the convergence of the random gradient method to solutions of the Kol-

mogorov equation, 

u1 =v U:r:r +u (1-u) ( 1.3a) 

u (x ,O)=u0 (x) (1.3b) 

subject to the constraints 

( 1.3c) 

lim u0 (x )=1 , 
z ...... -00 

( 1.3d) 
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lim u0 (x )=0 . 
z -+ +oo 

(1.3e) 

Our work follows that of Roberts [47] who proved the convergence of a random particle method 

to Burgers' equation, 

Ut + UU:z = VU:zz • 

Related theoretical work includes Brenier [9], Cottet and Gallic [20], Hald [32, 33], Raviart 

[44, 45], and Rosen [48]. A review of particle methods which use random walks to model 

diffusion may be found in Ghoniem and Sherman [26]. 

Our interest in the random gradient method is primarily motivated by the fact that it is a 

one dimensional analogue of Chorin's random vortex method [13] for approximating solutions of 

the Navier-Stokes equations in two and three dimensions. It is hoped that a thorough examina-

tion of the errors obtained when using the random gradient method will yield a greater under-

standing of the error inherent in using the random vortex method, particularly the error due to 

the use of random walks to simulate diffusion. In order to motivate the subsequent discussion it 

seems appropriate to list here the most important characteristics that these two methods have 

m common. 

i) Both are particle method6, with the particles representing point concentrations of 

some derivative of the solution. (Gradients of u with respect to x in the case of the 

random gradient method, vorticity in the case of the random vortex method.) 

ii) Both ·are splitting or fractional step methods. That is, the equation to be solved is 

split into two evolution equations, each of which is solved separately. This process is 

coupled by using the solution obtained after solving one of the evolution equations as 

the initial data for the other. 

iii) In both methods one of the fractional steps is the heat equation, 
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{1.4) 

In each instance the numerical solution to the heat equation is obtained by random 

walking the particles. 

iv ) Finally, in both instances the second of the fractional steps is a nonlinear evolu­

tion equation. In the case of the random gradient method this is simply the ordinary 

differential equation (ODE) 

'-'t = f (u) (1.5) 

whereas for the random vortex method it is the Euler equations. 

Similar analogies may be drawn between the present method and Chorin's vortex sheet method 

[14] for approximating solutions of the Prandtl boundary layer equations. 

Numerical estimates of the convergence rate for the random vortex method were made by 

Roberts [46] while a convergence proof for the method in the absence of boundaries may be 

found in Goodman [27]. Theoretical work on the vortex method solution. of the Euler equations 

include Anderson and Greengard [3], Beale and Majda [5, 6], Cottet [19], Greengard [28], Hald 

and Del Prete [30], and Hald [31, 34]. 

It should be noted that in our treatment of the random gradient method particles are not 

permitted to divide in two when their strengths surpass some critical value as was originally 

proposed by Chorin. This greatly simplifies the convergence proof. In fact, it is interesting to 

note that creation of particles is not necessary for convergence, at least when the approximation 

to the initial data is taken to be monotonically decreasing as we do here. There are, however, 

several good arguments for why the algorithm with particle creation should be more accurate. 

Furthermore, the difficulties which arise in trying to prove convergence for the algorithm with 

particle creation are very similar to those which arise when trying to prove convergence of the 
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random vortex method when boundaries are present. In this case particle creation corresponds 

to the creation of vorticity, an important phenomenon in fluid flow. Hald [33] has successfully 

attacked this problem for a one dimensional diffusion equation with thermal convection. 

The main result of this paper may be stated as follows. 

THEOREM 1.1 Assume v ~ 1. Fix T > 0 and choose a time step At > 0 such that 

T = kAt for some integer k. Let u (z, T) be the solution at time T of equation (1.3) with 

initial data u0 and let ii k (z) be the corresponding 'computed solution' with initial data ii 0 • 

Denote the number of parti_cles used to generate t;k by N and assume that At = 0 (VN-1
). 

Then there exist positive constants C1 and C2, independent of v, At , and N, such that 

and 

Here E denotes expected value and var the variance. 

In order to prove this theorem several assumptions regarding u0 and u 0 have been made. 

In addition to satisfying the constraints ( 1.3c-e) it has been assumed that u0 is continuously 

differentiable on lR and u~ E L 1(R)n£0°(lR). The approximate initial data, u0
, is a step func­

tion approximation to u0 and is required to be monotonically decreasing. This is perhaps the 

only 'unnatural' restriction on the initial data. We discuss this issue at the beginning of §2.3 

and in somewhat greater depth in the remark after the proof of Theorem 4.1. 

One of the most important consequences of Theorem 1.1 is that the error is independent 

of the diffusion coefficient, or vi&co&ity, v. Thus, solutions with arbitrarily steep wavefronts may 

t 
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be modeled without any increase in the computational cost. In contrast, a finite difference cal­

culation would require Ax << 0 ( vv) to accurately resolve wavefronts with viscosity v. In this 

regard see Sherman and Peskin [51]. 

This 'favorable' dependence on v is what makes random walk methods competitive. In 

the absence of some variance reduction technique (for example see Chang [11]) the random walk 

algorithm will converge at a rate of 0 ( .JiiT -1). This is much slower than, say, a finite difference 

method designed to solve the same problem. However, with a finite difference method one must 

take Ax << 0 ( vv) in order to accurately resolve the effects due to viscosity whereas a random 

walk method automatically concentrates the computational elements in regions of interest. 

Furthermore, the random walk introduces no 'numerical diffusion'. (For a discussion of numeri­

cal diffusion see Sod [53].) Unfortunately, the price one pays for being able to compute at small 

v is a convergence rate of .JiiT -I. 

Our approach is to prove the theorem for v = 1 and then use a simple scaling argument 

to demonstrate the validity of the result for arbitrary v $ 1. The second term in the sum on 

the right hand side of (1.6), C1 vv ~t, results from bounding the error due to exact operator 

splitting. That is, the error that results when (1.4) and (1.5) are solved exactly. We remark that 

in [7] Beale and Majda proved that exact operator splitting for the Navier-Stokes equations is 

0 (v ~t) in L2(JRn) for n =2,3. 

The details of the random gradient method are developed in chapter 2; beginning with 

some notation (§2.1) and followed by the algorithm itself (§2.2). In §2.3 the class, S, of permis­

sible starting approximations, u 0 , is defined and several preliminary lemmas are proved. 

Chapter 3 is devoted to outlining the proof of Theorem 1.1. Most of the error analysis is writ­

ten in the language of solution operators. This notation is introduced in §3.1 and §3.2. A brief 

account of the proof may be found in §3.3, together with a description of how the details are 

divided among the chapters 4 t,hrough 7. In chapter 8 we put the various parts together and 
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prove the theorem for v = 1. Then, in §8.3, we remove the restriction v = 1 and prove 

Theorem 1.1 for arbitrary v ~ 1. 

!" 
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2. A Description of the Random Gradient Method 

We begin this chapter with the introduction of some notation and a detailed description of the 

algorithm itself. This is followed by a discussion of the difficulties that are encountered for non-

monotonic initial data and the proof of several basic facts that hold for monotonic initial data. 

2.1 Step Function Notation We will denote the numerical approximation of some func-

tion, intended to be obtained on a computer, by the symbol ' '. Thus, u(x,t) denotes an 

approximation to the solution, u (x ,t ), of equation (l.la,b). We will use the term step function 

to refer to any piecewise constant function of x E lR that has a finite number of discontinuities. 

In the random gradient method u is a step function approximation to u . Consequently, 

knowledge of the position of each discontinuity and of the amount of each jump is all that is 

required in order to know u . It is convenient to think of u at a given time t as being 

represented by N particles, each particle having associated with it a position on the x -axis and 

a strength or weight; the particle's position being a point at which u is discontinuous and its' 

strength being the amount by which u changes at that point. (The terms weight and strength 

will be used interchangeably.) The position of the ith particle at time t = j t::.t will be denoted 

by X/ and its weight by w/ . It is often desirable to write the computed solution after j time 

steps as iii (x) instead of ii(x ,j t::.t ). Thus, the computed solution can be written in the follow-

ing way: 

. N . . 
u 1 

( x ) = E H (X/ - x ) w/ (2.1) 
i=l 

where H ( x ) is the Heaviside function 

{

0, 
H(x) = 

1, 

X < 0, 

X ~ 0. 
(2.2) 
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lt__!Vill often be convenient to assume that the particles have been labeled so that for each 

i, 

X{ < xJ < {2.3) 

Note that this may require a relabeling of the particles at each time step, since random walking 

the particles can result in a different ordering of the particle positions. This is simply a nota-

tiona! convenience and has no effect on the actual details of the convergence proof. 1 Henceforth, 

we will assume that {2.3) holds, usually without comment. 

Let u{ = u1 (X/) denote the value of u1 at the ith particle position. For future refer-

ence we note that, by {2.1) and {2.2), 

-i U; 
N 

E H(X/ -X/) w/ 
r=l 

and, consequently, the strength of the ith particle is given by 

wi 
I E w/- E w/ 

r ~i r_~i +I 

{2.4) 

The variable N will always be used to denote the number of particles present in the flow; with 

N being fixed for a given run of the numerical method. 

2.2 The Algoritlun We begin the random gradient method by determining a step function 

approximati~n, u 0 , to the exact initial data u0 • Given the computed solution, i/, at time j At 

the solution at time (i + 1 ). At is obtained in two distinct steps. 

Step 1: The first step is the numerical solution of ut = f ( u ). For fixed x this is an ODE in t 

1 This is, however, a reflection of the need to keep the particle positions sorted if one wishes to recover the func­
tion values u(z) efficiently. See the paragraph following equation (2.7) for further details. 

' 
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with initial data ?/ ( x ). The solution of this equation can easily be obtained using any explicit 

ODE solver. In the convergence proof that follows we will assume that Euler's method is used. 

It should be noted, however, that the analysis (Chapter 6) carries through for higher order 

Runge-Kutta methods as well. In addition, there are many cases in which 'llt = f ( u ) may be 

solved exactly. We note two such instances that may be of interest: 

1} For equation (1.3a,b) we have Ut = u (1- u) which is the case studied in this paper. 

2) If I (u) =- v (x) u (and so I is also a function of x }, then equation (1.1a,b} is a one 

dimensional Schrodinger equation written in imaginary time, 'llt = Uz:z - v (x} u. This is a one 

dimensional version of the case considered by Alder et al in [1] and [2], although there they 

solve the ODE by creating and annihilating particles with fixed strengths rather than by alter-

ing the weights. 

When the solution of the ODE is obtained using Euler's method the value of the inter-

mediate solution, iJ +I, at the point x is given by 

(2.5) 

Here ~t is the time step and the variable ii has been used to denote the solution after one half 

of a two part fractional step method. Since t;i is a step function, so is vi+l; the height of the 

step above the point x having been increased or decreased by the amount ~t 1 ( u i ( x )). This 

is equivalent to altering the weights w/ so that the new weights, w/+', satisfy 

N 
vi+l(x) = E H(X/ -X) w/+1. (2.6) 

i=l 

A simple formula can be derived for the w/+ 1 Assume that the particles have been 

labeled so that (2.3) holds and define v/+ 1 = vi+1(X/ ). Then, letting ii~+1 = o, we see that for 

each i = 1, . . . , N , 
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j+l -i+l -i+l 
W; = Vj -Vi+! 

(2.7) 

= wi + t~.t [I (u{)- I (u{+l) ]. 

This is the formula that is used in practice to determine the new weights. It is apparent 

from (2.4) that the N new weights can be calculated in 0 (N) operations if the particle posi-

tions are stored in the computer so that (2.3) holds. This necessitates sorting the particles at 

each time step, a task which can, at best, only be done in 0 (N logN) operations. This is the 

only aspect of the algorithm which is not 0 (N ). While it may be possible to design a sort 

which, on the average, takes 0 (N) operations (for example, by using the fact that the particles 

at the previous time step were already sorted), in actual practice one tends to run out of storage 

before time oecomes a crucial factor. 

Boundary Conditions: Note that vi+1 automatically satisfies the boundary condition {1.3e) 

since H (Xi - z) = 0 for all z > X/. Furthermore, by summing over the w/ and using 

(1.2a) it is easy to show that Ew/ = 1 ~ Ew/+1 = 1. Since step II does not alter the par-

ticle strengths (as will be seen below), it follows ·that if ~w? = 1, then the su~ of the particle 

strengths is a conserved quantity in the random gradient method. In other words, ui satisfies 

the boundary condition (1.3d) at each time step if ii 0 does initially. 

Step II: It remains to solve the heat equation u1 =v u:r:r with initial data i/ + 1
• First select N 

random numbers f]
1
, f]

2
, •.• , fJN from a Gaussian distribution with mean 0 and variance 2vt~.t . 

(With regards to generating normally distributed random numbers on a computer see 

[36, 38, 40].) The position of the ith particle, X/, is then altered by the amount '1; to obtain 

X i+1 xi Th i = i + '1i . us, 
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N . N . I 
- i+t( ) "\' H(XJ ) i+t "\' H(X;+ ) i+t U X = LJ j +fl;- X W; = LJ i - X W; • (2.8) 

i=l i=l 

It should be noted that there is an error introduced into the computation which is due to 

our inability to generate truly random numbers (whatever that means! ([40])) on a computer. 

We will neglect this source of error and assume that the q
1
,- ••• , f1N really are independent and 

Gaussian distributed. Since in practice this error is of the same order as computer roundoff 

error, our omission will be of no more consequence than the standard practice of ignoring the 

effect of roundoff error in a convergence proof. 

2.3 Restriction to Monotonic Initial Data In order to prove the convergence of this 

method to solutions of (1.3a-e) we have found it necessary to assume that the initial approxima-

tion, ii 0 , is monotonic. This is due to the fact that if one allows particle weights with different 

signs, then some realizations of the q
1
, ... , '1N will result in iii +I( x ) < 0 for certain x , in spite 

of the fact that iii (and hence vi+l) may satisfy 0 :5 iii :5 1 everywhere. (See fig. 3 of [32].) 

Not only are such negative solutions unphysical (in Chapter 5 we will see that solutions of 

(1.3a-e) always lie in [0,1]) but, as we shall demonstrate in Chapter 4, solutions of u1 = u (1-u) 

with negative initial data blow up in finite time. This can lead to particle strengths which 

increase without bound, further degrading the numerical solution. In [32] Hald encountered pre-

cisely the same problem and also found it necessary to assume that the initial data is mono-

tonic. Given these considerations we start by defining the class S of 'good' starting approxima-

tions, ii 0 • 

DEFINITION 2.1 Let S be the class of all monotonically decreasing step functions, u, which 

satisfy u(-oo) = 1 and u(oo) = 0. Thus, u E S if and only if u can be written in the form 

N 

u (X ) = E H (X;- X ) W; (2.9) 
i=l 
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where the weights w 1, ... , WN satisfy 

0 < W; ~ 1, (2.10a) 

N 
:E W; = 1. (2.10b) 
i=l 

Next, we will show that the random gradient method maps the class S into itself, thereby 

avoiding the difficulties outlined above. 

LEMMA 2.2 Fix at ~ 1 and assume that i/ E S. Let vi+1 and t;i+1 be given by (2.6) and 

(2.8) respectively. Then iii +I E S and u i +
1 E S . 

Assumption: Here and for the remainder of this paper I will always be taken to be the func-

tion I ( u ) = u ( 1 - u ). While many of the theorems that follow continue to hold for more 

general I , this assumption greatly simplifies several of the proofs. 

Proof: To see that iii+! E S, use (2.7) to write 

N N . N . . 
:E wi+1 = :E w/ +at :E (!(til)- I (uf+t)) 
i=l i=l i=l 

= 1 + flt (! ( uJ)- 1 ( u~) ) 

=1. 

Here we have used ul = 1, u~ = o and I (1) = I (o) = o. Furthermore, 

= w/ [1 + !).t (1- (u{ + u{+d)] (2.11) 

>0 

.. 
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smce w/ [1 +At (1- (u{ + ii{+l))] is the product of two positive quantities. This can be seen 

as follows. By assumption, w/ > 0. Since 0 $ u{ < 1 for all i and since u{ = 1 only if 

i = 0, we have 

-1 < 1 - ( u{ + .uf+tl < 1. (2.12) 

Hence, for 0 < At $ 1, 

1 +At (1- (u{ + u{+l)) > o. 

N. 
Finally, w/+1 > 0 and I; w/+1 = 1 together imply w/+1 $ 1 for all '. Thus, vi+! E S as 

i =I 

claimed. 

By using the fact that vi +I E S and noting that an alteration of the particle positions has 

no effect on the weights it follows that u j+t E S as well. 

It follows immediately that if ~ 0 E S , then at all subsequent time steps, vi , u i E S . 

Although this is a trivial consequence of Lemma 2.2 we state it here for future reference. 

COROLLARY 2.3 Fix At $ 1 and assume that u0 E S. Then for all J = 1, 2, ... , we 

have vi E S and ui E S . 

Assumption: From now on, it will be assumed that the time step, At, always satisfies 

At $ 1. 

One final fact will be established in this section; a bound on the particle strengths, w/ . By 

(2.10a) and Corollary 2.3, w/ $ 1 for all i and all j. This is not enough, however, for one 

needs to know that N w/ = 0 (1) as N - oo. If the strengths are initially chosen so that 

w? = 0 (N- 1
), then this a consequence of the following lemma. 
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LEMMA 2.4 For ii 0 E S let u1 = E H (X/ - x) w/ be the computed solution at time 

T = j At which has been derived from ii 0 by the random gradient method. Then for all 

i = 1, . : . , N the particle strengths, w/, satisfy 

w/ < e T w?. (2.13) 

Proof: It is evident from (2.11) and (2.12) that 

~ w/ (1 +At). 

The ineqmility in (2.13) follows immediately. 
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3. Solution Operator Notation and an Outline of the Error Analysis 

The primary purpose of this chapter is to develop a notation with which to discuss the error. 

We shall then present an outline of the convergence proof. We begin by assuming that v = 1. 

This makes the exposition simpler. We will remove this restriction at the end of Chapter 8 and 

show, by a scaling argument, that Theorem 1.1 holds for arbitrary v ~ 1. 

3.1 The Exact Solution Operators The exact solution operator Cor the Kolmogorov equa­

tion, F1 , is defined by 

F1 u0(x)=u(x,t) 

where u (x ,t) is the solution to (1.2a,b) at time t. In other words, F1 is a one parameter family 

of maps, with parameter t, which takes functions on JR. to functions on JR. such that the initial 

value u0 is mapped onto the corresponding solution of the Kolmogorov equation at time t . 

Note that if t = j ~t, then 

The superscript j has been used here to indicate the jth power of the operator F,;:,.1 , a. e. F,;:,.1 

composed with itself j times. 

The reaction operator Rt and the diffusion operator D1 are defined similarly. Thus, R1 u
0 

is the solution at time t to the reaction equation (which is an ODE for fixed x) with initial data 

u1 =u (1-u) (3.la) 

(3.1b) 
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and D 1 u0 is the solution at time t to the heat equation with initial data u0
, 

(3.2a) 

u (x ,O)=u0 (x ). (3.2b) 

3.2 The Approxilnate Solution Operators We now define approximations, RAt and Dt:.t, 

to the operators Rt:.t and DAt. Let u (x) be an arbitrary piecewise continuous function. The 

approximate reaction operator, Rt:.t, is defined by 

RAt u (x) = u (x) + .6-t u (x) (1 - u (x )). (3.3) 

In other words, for each fixed x E JR., Rt:.t u (x) is simply the Euler's method approximation, 

after one time step, to the solution of the reaction equation (3.1a,b) with initial data u (x ). 

To define the approximate diffusion operator, DAt , let u be an arbitrary step function of 

the form, 

Then DAt u is given by 

N 

u (X ) = E H (X; - X ) W; . 
i=l 

N 
DAt u (X ) = E H (X; +q; -X ) W; 

i=l 

(3.4) 

(3.5) 

where '71, 17
2

, ... , '1N are N independent ran.dom numbers chosen from a Gaussian distribution 

with mean 0 and variance 2.6-t . In the notation of Chapter 2, 

-i+l R- -i v = At u 
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- i+t D- -i+t 
U = ~tV • 
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Thus, the computed solution after i time steps, u i , may be written in terms of the initial data, 

u 0 , in the following way: 

For future reference we note that, as a consequence of Lemma 2.2, the operators Rc:.t and Dc:.t 

map the space S into itself. 

3.3 An Introduction to the Error Analysis We now present an outline of the convergence 

proof. Our approach has been greatly influenced by the work of Roberts [47]. 

As above, let u0 E S be a step function approximation to the initial data u0
• The £ 1 

difference, at time T = lc ~t, between the exact solution, u, of (1.2a,b) and the approximate 

solution, u" , is 

This error may be divided into three distinct components, 

The first term on the right is called the splitting error. It is the error due to the fractional 

step or the error due to exact operator splitting. In Chapter 5 this error is shown to be 0 (~t ), 

(3.7) 



18 

(For the remainder of this chapter C will denote a generic constant, independent of both N and 

tit.) Our proof of (3.7) is modeled after Roberts' use of techniques from the theory of first order 

quasilinear partial differential equations (PDE) (Kruzkov [41]) to prove a similar fact for 

Burgers' equation. 

The second term on the right is the error due to our approximation of the initial data, u0
, 

by the step function, u 0 • In Chapter 4 it ~s shown that the operators R 1 and D 1 are stable in 

the £ 1 norm. This implies 

The third term on the right is the error due to the numerical approximation of the solu-

tions to equations (3.1a,b) and (3.2a,b). That is, it is the error that results from approximating 

- -
the exact operators R~1 and De.~ by the approximate operators R~ and D~, . Since the effect 

of the operator D~, is non-deterministic, the bound on this error takes the form 

where I > 1 is an arbitrary real number. The approach here 1s to break the error into 2k 

pieces, 

II (De.~ R~,)A: u 0 -(D~, R~ )A: U0 lll~e T E (II R~, uj -iL,'uj Ill+ II D~ v j -.5~, vi Ill ). (3.9) 
i=O . 

In Chapter 6 we show that 

(3.10) 

This estimate follows from the fact that Euler's method has local truncation error 0 ((tit )2) and 



that 

R,;/ (z) = Rt:.t ;/ (z) for all I z I > max I x/ I. 
i 

Chapter 7 is devoted to proving that 

The proof of this inequality relies heavily on the pointwise estimate 
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(3.14) 

where a > 0 is an arbitrary real number. This is a simple consequence of an inequality for sums 

of bounded, independent random variables due to Hoeffding [37]. Such exponential inequalities 

are the key to establishing an estimate that is ? (1) after summing k = 0 (Llt-1
) times in (3.9). 

If we now set t:.;t = lfN -1 and use (3.10) and (3.14) in (3.9) we obtain (3.8). 
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4. The Exact Solution Operators Rt and Dt 

The purpose of this chapter is to develop some of the basic properties of the operators R1 

and D1 • The principal result here is that both operators are stable in the L1 norm. In §4.3 this 

fact is used to examine the propagation of the error which is induced by approximating the ini-

tial data with a step function. 

4.1 The Exact Reaction Operator, R1 It is a simple matter to check that the function 

defined by 

(4.1) 

is a solution of the reaction equation (3.la,b). Observe that equation (3.la,b) is an ODE in t; 

the variable :r is simply a parameter which selects the particular initial value, u0 (:r ), to be 

used. The L 1 stability pf R 1 is a simple consequence of having an exact expression for R 1 u
0

• 

LEMMA 4.1 (£ 1 Stability of R1) Let u and v be measurable functions on IR such that 

0 :S u , v :S 1 and II u - v 11 1 < oo. Then for any time t > 0, 

Proof: First note that u 2:: 0 implies 1 + ( e 1 
- 1) u > 1 and similarly for v . Thus, 

IRtu-Rtvl ue 1 ve 1 

_l_+_(_e-:-1 ---1-) -v I 1+(e 1 -l)u 

( 1 + ( e 1 
- 1) u )( 1 + ( e 1 

- 1) v ) 
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<lu-vlet 

since the denominator is the product of two terms; each of which is greater than one. This 

implies 

00 

II R t u - R t v 11 1 - J I R t u ( x ) - R tv ( x ) I dx < e 1 
II u - v 11 1. 

-oo 

Remark: In order to establish a bound of the form 

(4.2) 

that is valid for all time t ~ 0 it is necessary that u , v ~ 0. This is due to the fact that, if 

u < 0, then R1u blows up in finite time. To be more specific, equation (4.1) implies 

R1u(:r:)- -oo as 

whenever u ( :r: ) < 0. 

In the course of proving that the error due to exact operator splitting is small (Chapter 5) 

it will be necessary to know how the reaction operator, R, affects the gradient of a C 1 func-

tion. By differentiating (4.1) we find 

(R1u )., 
u., e 1 

( 1 + ( e 1 - 1) u )2 · 

This immediately implies 

- . 
LEMMA 4.2 Let u E C 1(1R) and assume that 0 ~ u ~ 1. Then for any time t > 0, 



II Uz II oo < 00 =9 

4.2 The Exact Diffusion Operator, Dt::..t Define the heat kernel, G (x ,t ), by 

-z2 
e 4t 

G(x,t)= ~· 
v47rt 
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( 4.3) 

Occasionally, when there is no possibility of confusion, we will write G1 (x) instead of G (x ,t ). 

It is a well known fact that the solution of the heat equation (3.2a,b) is given by 

where * denotes convolution, 

00 

( G1 * u0 )(x) = J G1 (x -y )u0 (y )dy .. 
-oo 

(For example, see John [39], p. 209.) Thus, D~::..1 u0 = G~::..1 •u0 • A basic result from the theory of 

PDE is that the diffusion operator, D1 , maps L P (IR) onto L P (IR) for 1 ~ p ~ oo (Folland 

[24]). We state and prove this fact for p = 1 and p = oo since it will be needed in the sequel. 

LEMMA 4.3 Let u be any measurable function of x E JR. Then for any time t > 0, 

llulloo < 00 =9 

Proof: Since for any t > 0, 

.. 



it follows that 

00 

I I Gt(x) I dx 

-:r2 
oo e 4t 

_[ V41l"t dx = 1 
-oo 

00 00 

llDtu(x)ll 1 I I I Gt{x - y) u (y) dy I dx 
-00 -oo 

00 00 

< J J I Gt(y) I I u ( x - y ) I dy dx 
-00 -oo 

00 00 

J I Gt(y) I J I u (x - y) I dx dy 
-oo -oo 

00 

- I I Gt(y) I dy II u Ill 
-oo 

The proof of the second inequality is similar. 
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Remark: For any bounded differentiable function u on lR which satisfies u:r E L 1 we have 

( G1 • u ):r = G1 • u:r. Consequently, it follows from Lemma 4.3 that 

A similar result holds m in the sup norm. These bounds will be needed several times m 

Chapter 5. 

The L 1 stability of the diffusion operator, D1 , is an immediate consequence Lemma 4.3 

and the fact that D1 u - D1 v = 1J1 ( u - v ). 
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COROLLARY 4.4 (£ 1 Stability of D1 ) For any bounded measurable functions u, v 

defined on lR such that llu - v 11
1 
< oo and any time t > 0 we have 

4.3 The Error Due to Approximating the Initial Data The L 1 stability of the operators 

Rc.c and Dc.1 allows us to analyze the error that occurs as a result of approximating the initial 

data, u0 , with a step function, u 0 • This is accomplished by examining the second term on the 

right in (3.8}, 

This expression will be bounded in terms of the initial error, II u0 
- u 0 11

1 
, by repeatedly apply­

ing Corollary 4.4 to functions of the form u = Rc.c (Dc.c Rc.1 )i u0
, v = Rc.c (Dc.c Rc.c )i u0 and 

Lemma 4.1 to functions of the form u = (Dc.t Rc.c )i u0 , v = (Dc.c Rc.c )i u 0 • Since the 

hypotheses of Lemma 4.1 require that 0 ~ u, v ~ 1 the following lemma will be needed. 

LEMMA 4.5 Let u be a measurable function on the real line such that 0 ~ u ~ 1. Then 

for all time t > 0 and all r E R, 0 ~ R1u (r) ~ 1 and 0 ~ D1 u (r) ~ 1. 

Proof: Rewrite {4.1) to obtain 

u 

{1-u)e-1 +u 

For 0 ~ u ~ 1 both the numerator and the denominator are non-negative and hence, 

Rtu ~ 0. Similarly, u ~ 1 implies u ~ {1- u )e-1 + u whereby R 1u ~ 1. 
.. 
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For u non-negative, 

00 

(D1 u )(x) = J G,(x - y )u (y )dy 
-oo 

is the integral of a non-negative quantity and therefore, D1 u ~ 0. If 0 ~ u (x) ~ 1, then 

I u ( x ) I ~ 1 implying 

00 00 00 

I D1 u (x) I J G,(x -y )u (y )dy I < J Gc(x -y) I u (y) I dy < J Gt(x -y )dy = 1. 
-oo -oo -oo 

Thus, D1 u (x) ~ 1. 

The main result of this chapter now follows easily. 

THEOREM 4.6 Let u and v be bounded measurable functions defined on IR satisfying 

0 ~ u , v ~ 1. Then for all.tl.t > 0, 

( 4.4) 

Remark: Thus, if u = u0 and v = u 0 , where u 0 is a step function approximation to u0 , then 

Theorem 4.6 implies that after k time steps the error due to this approximation is no more 

than a constant times the initial error. Furthermore, the constant, e,. t)J , depends only on the 

time, T = kat , at which this error is measured. 

Proof: The proof is by induction on k. The case k = 0 is automatic. If (4.4) holds for k then 

Lemma 4.1 and Corollary 4.4 imply that 
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:5 e (k +l).o.t II II u - v !" 

It should be noted that in order to apply Lemma 4.1 in the induction step (to the second line) it 

is first necessary to ascertain that 0 :S (DL:l.t RL:l.t )k u :5 1 and similarly for (DL:l.t RL:l.t )k v . This is 

a consequence of Lemma 4.5. 
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5. The Error Due to Exact Operator Splitting 

This chapter is devoted to proving 

{5.1) 

and hence, that the error due to exact operator splitting goes to 0 like t:.t. The key idea, 

{Roberts, [47]), is that the function, w , defined by 

w (x ,t) 

is a solution of 

Wt = Wzz + a(x,t)w + b(x,t) {5.2a) 

w(x,O)=w0 (x) (5.2b) 

with w0(z) = 0 and II b ( · ,t) 11
1 

= 0 (t ). In Theorem 5.4 we show that there exists a constant 

A > 0 such that solutions of (5.2a,b) satisfy the inequality 

T 

ilw(·,T)il
1 

<eAT llw0 ll
1 

+eAT filb(·,t)il 1dt 
0 

(5.3) 

at all times T > 0. Thus, by setting T = t:.t , it follows that the splitting error after one time 

step is 0 (t:.t 2), 

II w ( · ,c:.t) 11 1 < c (c:.t f 

This inequality, together with the L' stability of the operator F 61 (Lemma 5.6), yields (5.1). 
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The techniques employed in the proof of (5.3) come from Kruzkov [41]. They have been 

used by Roberts [47] to prove the convergence of a particle method with random walks to solu-

tions of Burgers' equation. Similar results in the L 2 norm have been obtained by Beale and 

Majda [7] for viscous splitting of the Navier-Stokes equations. 

Roberts' work on exact operator splitting (his Chapter 2) and the material here represent 

two special cases of the following more general result. Under the appropriate assumptions on 

the coefficients a (r ,t ), b (r ,t) and c (r ,t) and the function w (r ,t) solutions of the 

differential equation (DE) 

Wt = Wu + aw., + bw + c 

satisfy the L 1 inequality 

T 

llw(·,T)II
1 

<eAT llw0 ll
1 

+eAT fllb(·,t)ll 1dt. 
0 

This is a special case of results from [41]. 

Chapter 5 is divided into four sections. In §5.1 we begin with a maximum principle for 

solutions of the Kolmogorov equation. This is followed by a proof of the existence and unique-

ness of such solutions. The purpose of §5.2 is to prove Theorem 5.4: Under suitable conditions, 

solutions of (5.2a,b) satisfy the inequality in (5.3). In §5.3 it is shown that for solutions, u, of 

the Kolmogorov equation u~ E L00 implies u., E L00 at any time t > 0. This is then used to 

prove that operator FAr is stable in in the L 1 norm. These results are brought together in §5.4 

to show that the splitting error after one time step is 0 (~t 2) and from this, that the inequality 

in (5.1) holds. 
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6.1 Existence, .Uniqueness, and a Maximum Principle Solutions of the nonlinear 

reaction-diffusion equation (1.1a-e) satisfy a maximum principle in much the same way as do 

solutions of linear parabolic DE's (Bramson [8]). Here we confine ourselves to proving a max­

imum principle for solutions of the. Kolmogorov equation {1.3a,b). (See also Aronson and Wien­

berger [4], Fife and Mcleod [23], and Smoller [52].) 

LEMMA 6.1 (Maximum Principle) Let u and v be bounded solutions of (1.3a,b) in the 

strip 0 = Rx [0, T] with initial data u0 and v0 respectively. Suppose that v0 (x) ~ u0 (x) for 

all X E R. Then for all (x ,t) E n, 

v (x ,t) ~ u (x ,t ). 

Remark: It follows from Lemma 5.1 that, if u is a bounded solution to (1.3a,b) in 0 such that 

the initial data satisfies 0 ~ u0(x) ~ 1 for all X E R, then 0 ~ u (x ,t) ~ 1 inn. 

Proof: Let w = u -v. Then w (r ,0) ?: 0 and 

Wt = Wzz + aw 

for a = 1 - ( u +v ). Since a and w are bounded in 0, it follows from the maximum principle 

for linear parabolic PDE's (Friedman [25], p. 43} that w (x ,t) 2:: o inn. 

With the aid of a fixed point theorem one can demonstrate that for some 6 > 0, there 

exists a solution to (1.3a,b) on the interval [0,8]. (For example, see Theorem 11.12 of Smoller 

[52], p. 115.) But, in order to extend the solution beyond this interval, one must have some 

knowledge of how large the solution is on [0,6]. The maximum principle provides us with this 

knowledge. Hence, as a consequence of the maximum principle, it is possible to show that for 

u0 E [0,1] there exists a unique bounded solution to (1.3a,b) for all time t > 0. 
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Theorem 5.2 (Existence and Uniqueness) Let u0 E C(./R) and assume that 0 :::; u0 :'5 1. 

Then for all T > 0 there exists a unique solution, u , to the Kolmogorov equation ( 1.3a, b) on 

the strip 11 = .IRX[O,T]. 

Proof: First note that there exists 8 > 0 such that ·for all functions u0 which satisfy 

II u0 II 00 :::; 1 one can find a solution u ( z , t ) to ( 1.3a,b) on lR X [0,8]. This is a consequence of 

Theorem 11.12 of Smoller [52], p. 115 (where the Banach space is X= C(./R) n £00(./R) with the 

sup norm). By the remark after Lemma 5.1 it follows that II u ( · ,8) II 00 :::; 1. Hence, there exists 

a solution to (1.3a) on lRX [8,28] with initial data u (z ,8). By taking successive intervals, each of 

length 8, one can 'glue' together a solution on [0, T] for any T > 0. This is the content of 

Theorem 11.14 of [52]. Uniqueness follows from a Gronwall inequality as, for example, in 

Theorem 11.13 of [52], p. 116. 

Remark: Actually, Smoller's theorem only implies the existence of u E C{ [0,8],X ) (continuous 

functions from [0,8] to X) satisfying 

00 t 00 

u(z,t)= J G(z-y,t)u0 (y)dy + J J G(x-y,t-s)f (u(y,s))dy ds 
-oo 0 -oo 

where f ( u) = u (1 - u) and G (x ,t) is the heat kernel (4.3). However, due to the well known 

properties of the heat kernel (John [39], p. 209), the right hand side of this expression is a C00 

function on 1RX(0,8). It follows that u is in fact a 'classical' solution of (1.3a,b). (For further 

discussion see the remarks at the top of p. 115 of Smoller [52].) Here and in the sequel 'solution' 

will always be taken to mean a classical solution. 
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5.2 ~n L1 Bound on Solutions of Wt = Wzz + aw + b The sole task of this section is to 

prove Theorem 5.4: that, under the proper conditions, solutions of (5.2a;b) satisfy the inequality 

in (5.3). This is the cornerstone of the analysis which ultimately leads to the convergence of 

exact operator splitting. An essential ingredient in the proof of Theorem 5.4 is a detailed 

knowledge of the behavior of solutions to the DE (5.4a,b) below, particularly the fact that for 

continuous initial data with compact support these solutions decay exponentially fast as 

I x I - oo. This is Lemma 5.3. A more general result may be found in Lemma 4 of Kruzkov 

[41], p. 232. 

LEMMA 5.3 Fix T > o and let 0 = Rx[o, T]. Suppose that a (x ,t) E G 1(0) and that a 

and az are bounded in 0. Let q0(x) be a continuous function of x E R such that for some 

r > 0, q0 (x) = 0 when I x I ~ r. Then the following statements hold. 

i) There exists a bounded solution, q (x ,t ), in 11 to the problem 

L ( q ) = qzz + aq - qt = 0, (5.4a) 

q (x ,0) = q0(x ). (5.4b) 

ii) Let Co= 8'i! I q0(x) I and A= 8~p {O,a (x ,t )}. Then for all (x ,t) E n 

I q ( x , t ) I ~ C0 e At . (5.5) 

iia) Let C = e(l+A)T+Vl+r
2 Then for all (x t) E 11 

1 . ' ' ' 

(5.6) 

In other words, q - 0 exponentially fast as I x I - oo and the rate of decrease is uniform for 

t E [O,T]. 
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Proof: i) Let f(x ,t ;y ,r) be a fundamental solution of the parabolic DE L (q) = 0 (Friedman 

[25], Chapter 1). The .assumptions on the coefficient a and the initial data q0 guarantee that 

there exists a solution of the form 

00 

q (x ,t) = J r(x ,t ;y ,O)q0 (y )dy 
-oo 

to the Cauchy problem (5.4a,b). For example, this is a consequence of Theorem 12 (p. 25) in 

Friedman [25]. Furthermore, the proof of Friedman's theorem shows that if the function q0 

(Friedman's ~) is assumed to be bounded (instead of exponentially bounded), then the solution 

q (x ,t) is bounded in 0. (This follows from equation (6.12) on p. 24 of [25].) 

ii) The knowledge that q is bounded allows us to use the maximum principal for linear para-

bolic PDE's to compute the bound (5.5). Consider the function Q (x ,t) = C0 eAt. It is easy to 

check that Q(x,O)~q(x,O) for all x E.IR and L(Q)=(a(x,t)-A)Q ~0 on 

0 0 = lRX(O, T]. Consequently, the function w = Q - q satisfies the differential inequality 

L (w) ~ 0 subject to w (x ,0) ~ 0. From i) we know that q, and hence w, is bounded on 0. 

Hence, it follows from Theorem 9 in Chapter 2 (p. 43) of Friedman [25] that w (x ,t) ~ 0 for all 

(x ,t) E 0. Thus, 

The reverse inequality, 

q (X , t ) ~ - Q (X , t ) = -C0 eAt , 

can be shown in a similar manner. The inequality in (5.5) follows immediately. 

iia) By setting Q (x ,t) = C0 e (l+A)t +v't+r
2
-v't+z

2 one can obtain (5.6) using the same argument 

as in ii) above. 
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The stage is now set to prove Theorem 5.4. Following Roberts ([47], p. 25), we multiply 

both sides of (5.2a) by some carefully chosen function, q ( x , t ), integrate over 0 = IRx [0, T], 

and then use integration by parts to push the derivatives from w onto q . If q is chosen prop-

erly, the resulting expression yields (5.3) fairly easily. 

THEOREM 6.4 Fix T > 0 and let a (x ,t) and b (x ,t) be bounded, continuous functions on 

the strip 0 = IRx [0, T] such that a E C 1(1R), a., is bounded in 0, and b E L 1(0). Suppose 

that w ( x ,t) is a solution of .(5.2a,b) in IRx (0, T] with w0 E L 1( IR), and assume that w and w., 

are bounded in 0. Then w satisfies the inequality in (5.3) for A= sup {O,a (x ,t )}. 
0 

Proof: Let q (x ,t) be a function defined on 0. Multiplying (5.2a) by q and integrating over 0 

yields 

T oo T oo 

I I Wt q dx dt = I I ( Wzz q + awq + bq ) dx dt. (5.7) 
0 -oo 0 -oo 

For motivation, assume that q and q., decay exponentially fast as I x I -+ oo. Then integra-

tion by parts yields 

00 oo Too Too 

I wq It-T dx 
-oo 

I wD q I 
1 

_
0 

dx + I I w L • ( q )dx dt + I I b q dx dt 
-oo 0 -oo 0 -oo 

(5.8) 

where L* ( q ) = q66 + aq + q1 • This suggests the following choice for q : Let q be a solution of 

(5.9a) 

q (x, T) = q0 (x) (5.9b) 

(note that we are solving backwards in time) where the initial data, q0 , has yet to be specified. 

Hence, the second term on the right hand side of (5.8) disappears. 
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The substitution t -+ t -T transforms the problem (5.9,b) into one of the form (5.4a,b). 

Assume, for the moment, that q0 is continuous and has compact support. Then Lemma 5.3 

guarantees the existence of a solution, q, to (5.9,b) and a constant C > 0 such that 

I q (x ,t) I :::; c e-v'l+z
2 

for all (x ,t) En. 

The exponential decay of q in 0 enables us to apply integration by parts once to the term 

T oo T oo 

I I w..,.., q dx dt in (5.7) to obtain -I I w.., q.., dx dt. However, there is no assurance that q.., 
0 -oo 0 -oo 

behaves nicely enough at infinity to integrate by parts again. To rectify this problem consider 

the cutoff function q(x) E 00
00_(R) which satisfies 0 ::S q(x) ~ 1 for all x, q(x) = 1 for 

I x I ~ 1, and q(x) = 0 for I x I ~ 2. (Concerning the existence of such functions see Fol-

land [24], p. 18.) Then for any r > 0 the function r((x) = 17(..:_) satisfies 0 ~ q•(x) ~ 1 for 
T 

all x, flr (x) = 1 for I x I ~ r, and q' (x) = 17~ (x) = 0 for I x I ~ 2r. Consequently, the 

function q flr and its first derivative ( q 'lr ).., have compact support. Thus, after multiplying 

{5.2a) by q (x ,t) '7r (x) and integrating over n, it is now permissible to integrate by parts twice. 

Remembering that L • ( q ) = 0 we find 

00 00 T oo 

I wq lt=O'lr dx +I I bq q' dx dt 
-oo 0 -oo 

(5.10) 

T oo 

+ I I ( wq 11~.., + 2wq.., 11~ ) dx dt. 
0-oo 

In the last term on the right the integrand has compact support and hence integration by parts 

can be used to push the x -derivative from q" onto '7~ w . Since '7~ = 'l~z = 0 for I x I ~ r , 

( w 11: .. + 2w.., 11:) is bounded uniformly in t, and I q (x ,t) I ~ Ce -~, this implies 

T oo T 

I I ( wq '1~ .. + 2wq.., '1~ ) dx dt = - I I q ( w fl~z + 2w.., 11~ ) dx dt -+ 0 as r-+ oo. 
0 -oo 0 1•1 > r 
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Now if we assume that q0 has compact support, then w ( x , T) q0
( x ) E L 1( JR.). This, together 

with the fact that q r/'-+ q as r-+ oo, allows us to apply the Lebesque Dominated Convergence 

Theorem to (5.10) to obtain 

00 oo T oo 

I w (x ,T)q0 (x )dx I w0 (x )q (x ,O)dx + I I q (x ,t )b (x ,t )dx dt (5.11) 
-oo -oo 0-oo 

in the limit as r-+ oo. 

All that remains is to choose the initial data, q0 , so that q0 is continuous and has compact 

support. To this end introduce </>(x) E C0
00(./R) which satisfies </>(x) ~ 0 all x, </>(x) = 0 for 

00 

I xI ~ 1, and J </>(x) dx = 1. Fore> 0 define </>E(x) = e-
1
</>(..::.). The class {</>E}00 is 

-oo . . f. 

known as an approximation to the identity (Folland [24], p. 14) or as mean functions (Kruzkov 

[41], p. 221). Fix R > 0 and let 

{ 
sign ( w ( x , T )), 

h (x) = 
0, 

I X I ..s R' 

I X I > R. 

The function h E(x) = (</>E• h )(x) IS smooth, has compact support, and satisfies 

sup I h E(x) I ..S 1. Hence, by Lemma 5.3, (5.9,b) can be solved with initial data 

q0 (x) = h E(x ). Denote this solution by qE(x ,t ). Replacing q by q E in (5.11) and taking the 

absolute value yields 

00 00 T oo 

I w (x, T )h E(x )dx I < I I w0(x) I I q E(x ,0) I dx + J I I b (x ,t) I I q f(x ,t) I dx dt 
-oo -oo 0 -oo 

oo T oo 

..SeAT J I w0 (x) I dx +eAT I J I b(x,t) I dxdt 
-oo 0-oo 

since, by (5.5), I qf(x ,t) I ..seAT for all (x ,t) En. Note that h f = (<l>f•h)-+ h as .f.-+ 0 in 
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the L 1 norm. (For example, see Theorem 0.13 (p. 16) of Folland [24].) Therefore, smce 

w ( x , T) h ( x ) E L \IR), one can apply the Lebesque Dominated Convergence theorem to obtain 

R 00 T oo 

J I w ( x , T) I dx < eAT 
-R 

J I w0(x) I dx +eAT J J I b(x,t) I dxdt. 
-oo 0-oo 

Letting R-oo and using Fatou's lemma yields (5.3). 

5.3 L 1 Stability of Solutions to the Kolmogorov Equation The next step in the proof of 

(5.1) is to show that solutions, u, of the Kolmogorov equation (1.3a,b) are stable in the L 1 

norm and that u'; E L00(R) implies u6 E L00(R) at all subsequent times t > 0. Similar state-

ments have already been proved for solutions of the reaction equation (Lemmas 4.1 and 4.2) 

and the heat equation (Lemma 4.3 and Corollary 4.4). 

We begin with the L00 bound on the gradient, u6 • This bound serves two purposes. First, 

it will be used in Lemma 5.6 to show that the difference between two solutions of ( 1.3a,b) 

satisfies the hypotheses of Theorem 5.4. Assuming that their difference at time t = 0 is in £1, 

this leads to the L 1 stability of solutions of the Kolmogorov equation. Later, in Theorem 5.8, it 

will be used to show that the function w (x ,t) = Fe:.c u0
- De:.c Rt:.J u0 satisfies the hypotheses of 

Theorem 5.4 and hence, that the splitting error after one time step is small. 

LEMMA 5.5 Let u (r ,t) be a solution of the Kolmogorov equation (1.3a,b) with initial data 

u0 E C 1
( IR). Assume that 0 ~ u0

( x ) ~ 1 for all x E IR and that II u~ II 00 < oo. Then for any 

time t ~ 0, 

(5.12) 

Remark: This bound is essentially a corollary to Lemma 3.2 of Bramson [8] which asserts that, 
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if one considers only bounded solutions of (1.3a,b), then the reaction-diffusion equation (1.1a) 

with f 1 ::; 1 (and hence the Kolmogorov equation) is stable in the L00 norm. This is a conse­

quence of the maximum principle for linear parabolic PDE's. 

Proof: Fix r E lR and note that v (z ,t) = u (z +r ,t) is a solution of (1.3a) with initial data 

v0 (z) = u0 (z +r ). By the mean value theorem 

Now use Lemma 3.2 (p. 38) of [8] (with € = I r I II u~ II 00 } to obtain 

I u ( z , t ) - " ( z , t ) I ::; e t II u~ II oo I r I 

for all z E lR and t ~ 0. Setting y = z + r yields 

for all z E IR and t ~ 0. But this holds for all y E IR as well since r was arbitrary. The ine­

quality in (5.12) follows immediately. 

By restricting ourselves to initial data, u0
, which have bounded first derivative, we will 

now use Theorem 5.4 and Lemma 5.5 to prove the L 1 stability of solutions to (1.3a,b). Besides 

providing us with some insight into how solutions of the Kolmogorov equation behave, L 1 sta­

bility is needed in order to derive (5.1) from a bound on the splitting error after one time step. 

It is interesting to note that Theorem 5.4, which is central to the proof of this bound on the 

splitting error, also has L 1 stability of the Kolmogorov equation as a consequence. 

LEMMA 5.6 (L 1 Stability) Let u and v be solutions to the Kolmogorov equation (1.3a,b) 

with initial data u0
, v0 E C 1

( JR). Assume that 0 ::; u0
, v0 :S 1 with II u0 

- v0 II, < oo and 
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that the derivatives u~ , v~ are bounded on JR. Then for any time t 2: 0, 

Proof: Let w = u - v . Then w satisfies the equation 

w1 = W:z:z + a (x ,t )w 

with a = 1- ( u +v ). By the maximum principle, Lemma 5.1, 0 :S u, v :S 1 and therefore 

I a I :S 1. Since, by assumption, u~ and v~ are bounded on IR, Lemma 5.5 guarantees that 

u% and v% are bounded on the strip IRX [O,t] for any t > 0. Thus, it follows from Theorem 5.4 

that 

llw(·,t)ll,<e 1 llw(·,O)!I,. 

5.4 Convergence of Exact Operator Splitting We are now ready to prove (5.1). This is 

accomplished in two steps, The first step, Theorem 5.8, consists of using Theorem 5.4 to show 

that the L 1 norm of the function w ( x ,t ) = F1 u0 - D1 R1 u0 is 0 ( t 2). If one regards DL!.t RL!.t u0 

as a numerical approximation to Ft;., u0 after one time st~p of length Ll.t, then this is simply the 

statement that the local truncation error is of order (Ll.t )2. In other words, our numerical 

scheme (approximating F t;.~ u0 by DL!.r RL!.r u0 ) is consistent. 

THEOREM 5.8 Let u (x ,t) be a solution of the Kolmogorov equation (1.3a,b) with initial 

data u0 E C 1(1R). Assume that 0 :S u0 :S 1 and that u~ E L 1(1R) n L00(1R). Then 

(5.13) 

where C is given by 
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(5.14) 

Proof: As indicated at the beginning of this chapter, the idea is to show that the function 

satisfies a DE of the form (5.2a,b) on n = lRX [O,~t] with initial data w0 (x) = 0 and where 

the coefficient b (x ,t) in (5.2a) satisfies II b II L 1(n) = 0 (~t 2). Then (5.13) is a consequence of 

Theorem 5.4. 

Let u (x ,t) = F1 u0(x) be the solution to the Kolmogorov equation (1.3a,b) with initial 

data u0 and let v (x ,t) = R1u0 (x) denote the solution to the reaction equation {3.1a,b) with 

initial data u0
• Then 

w (X 't ) = u (X 't ) - ( G * v )(X 't ) 

where G (x ,t) is the Gaussian kernel (4.5) and • denotes convolution. By differentiating w with 

respect to t and using the fact that v1 = v (1 - v) and G1 = Gu it is not difficult to show 

· that w satisfies equation (5.2a,b) for a = 1 - ( u + G • v) and b = G • v 2 - ( G • v )2
. 

It follows from Lemma 5.1 that II u ( · ,t) II 00 :5 1 for any time t 2: 0. Furthermore, by 

Lemma 5.5, II"~ ( · ,t) II 00 :5 e 1 II u0~ II 00 • Identical estimates hold for v and G • v . For, by 

Lemma 4.5, II v ( · ,t ) II 00 :5 1 and hence, II ( G • v) II 00 :5 1 for all t 2:. 0. (In what follows, we 

will often suppress mention of the variable t .) By Lemma 4.2, II v~ II 00 :5 e 1 II u~ II 00 and, 

upon writing ( G * v )~ = ( G * v .. ), one finds that II ( G • v ) .. II 00 :5 e 1 II u~ II 00 • Thus, a , a .. , 

b ' w and w .. are bounded continuous functions on n. 
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It remains to show that II b II L1(0) = 0 (~t 2). To this end Theorem 5.4 will once again be 

used, this time applied to the function b = G * v 2 
- ( G * v f Differentiating b with respect to 

t and remembering that v1 = v (1- v) and G1 = Gu one finds that 

-2( G * v )( G * v )u 2( G *V )( G * v )+2( G * v )( G * v 2) 

Hence, b satisfies the DE 

b1 = bu + 2b .f.. c (x ,t) (5.15a) 

b (x ,0) = 0 (5.15b) 

with c = 2 [( G • v_. )2 + ( G * v )( G • v 2)- G • v 3
]. Noting that v and v, are bounded and con-

tinuous in n it follows that b ' b .. ' and c are as well. 

For the remainder of this proof, we will assume that 0 ~ ~ ~t . We claim that 

t 00 

J J I c (x ,s) I dx ds ~ 2C t e -Zt 

0-oo 

where Cis given by (5.14). This follows from II c ( · ,t )11
1 
~ 2Ce-21 whenever t ~ ~t, a fact 

which we shall now show. We can use Lemmas 4.2 and 4.3 to obtain 
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To estimate the remaining portion of c recall that 0 :::; v :::; 1 and write 

00 00 00 

II(G•v)(G•v 2)-(G•v 3)ll
1

:::; J J J G(x-y)G(x-z)lv(z)v 2(y)-v 3(z)ldydzdx 
-oo -oo -oo 

00 00 00 

< J J J G(x-y)G(x-z)v(z)(v(y)+v(z)) lv(y)-v(z)ldydzdx 
-oo -oo -oo 

000000 1 

= 2 J J J G (z -y) G (x -z) I J v, (z + O(y - z)) d (}I I y - z I dy dz dx 
-00 -oo -oo 0 

00 00 

:::; 2 llv,( · ,t)ll1 J J G(y)G(z) I y -z I dy dz 
-oo -oo 

where we have used 

0000 J8t .L,_L G (y) G (z) I y - z I dy dz = ~ . 

(To see this, rewrite the integral in terms of polar coordinates and perform the necessary 

integration.) Thus, 

{ 4v'2t . 
= 2 e 

1 
e 

1 II u~ II 00 + Jrr e 
1 

} II u~ 11 1 



and hence, for t E [O,~t ], 

t 00 

J J I c ( x , 8 ) I dx d8 
0 -oo 

as claimed. 

J II c ( · ,8) 11
1 

d8 < 2C t e -2t 
0 
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Since b (x ,t) is a solution of (5.15a,b) with initial data b (x ,0) = 0, it follows from 

Theorem 5.4 that II b ( · ,t) 11
1 
~ 2C t. This fact allows us to apply Theorem 5.4 once more, 

this time to the function w (x ,t) on n = JRx[o,~t], to obtain 

This is (5.13). 

Continuing to think of D~:>.r Rll.l u0 as a numerical approximation to F~:>.r u0 we may now use 

consistency (Theorem 5.8) together with stability (Theorem 5.6) to prove that for fixed time 

T = k ~t , (D~:>.r R~:>.r )• u0 
- Fl., u0 as ~t - 0. The proof proceeds precisely as in the case of 

Euler's method; at a given time step, j, use stability and consistency to reduce the error at 

time j ~t into the error at time (i -l)~t plus a term of order (~t )2. Thus, the error at time 

T = k ~t is the sum of k terms, each of order (~t )2 plus the error due to the initial approxi-

mation (which in our case is 0). The only difference here is that, in order to use the stability 

and consistency results, it is first necessary to show that the functions they are being applied to 

satisfy the appropriate hypotheses. It is at this point that much of our previous effort towards 

obtaining bounds on F1 u0 and D1 R1 u0 and the gradients of these functions is rewarded. 

THEOREM 5.9 Let u be a solution of the Kolmogorov equation (1.3a,b) with initial data 
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where, if we let T = k t::.t, the constant Cis given by 

c (5.16) 

Proof: For i = 1, ... , n let u i = FJ u0 be the exact solution to the Kolmogorov equation 

(1.3a,b) at time t = i t::.t. By the maximum principle, Lemma 5.1, 0 ~ u i ~ 1 for each j 

and, since u~ E L00(R), Lemma 5.5 implies that that ( u i )z E L00(R). Similarly, let 

vi = (D~ Rc.r )i u0 denote the function obtained after i time steps from u0 via exact operator 

splitting. Repeated application of Lemma 4.5 yields 0 ~ vi ~ 1. Furthermore, Lemmas 4.2 

and 4.3 together with (D~ Rc.1 vi )z = ( Gc.r * (Rc.r vi ))z = Gc.1 * (R~ vi),. imply that 

We can now use the stability of Fc.r (one must verify, by induction, that (ui-l_ vi-i) E £ 1) 

and Theorem 5.8 to obtain 

where the constant, ci -I> is given by (5.14) with u0 replaced by vi -I. Hence, 

,• 

Now use the L 1 and L00 bounds on ( v i )z found above to obtain 
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= max e (i +S)~ { e (i +l).o.t II u0 II + 4~ } H--u0 II 
'L :1'00 r= "'1 
1<~ vrr 

The theorem follows immediately. 
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6. The Error-Due to the Approximate Reaction Operator RAt 

This goal of this chapter is to prove that if ;/ = (DAr RAt )i u 0 is the computed solution after 

j time steps, then for all real 1 :2: 1 

(6.1) 

where the constant, C, depends only on the initial data, u0
, and the time t = j ~t. The proof 

of this inequality is based on the following two points: 

1) Given any L > 0 such that X/ E (-L,L) for all i, then, by (2.1), 

This implies RAt u ( z ) = Rt:.t u ( z) for I z I > L and thus, the L 1 estimate of the error IS 

reduced to an estimate over the interval (-L,L), 

L 

IIRA,ui -Rt:.~uiii 1 =J IRt:.tu(z)-Rt:.tii(z)l dz 
-L 

2) For fixed z, Rt:.t is simply Euler's method for approximating the solution of an ODE and 

hence, the local truncation error is known to be 0 (~t 2). This fact can be exploited to obtain a 

bound for I Rt:.t u(z)- Rt:.t u(z) I which is uniform in z. 

Together, 1) and 2) imply 

In general, however, the size of the interval (-L,L) cannot be given a deterministic bound. 

For the particle positions, X/ ' are random variables yet L has been chosen so that I x/ I < L 

for all i. Consequently, the most that one can hope for is to find the probability that this 
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interval is a given size. This is accomplished by examining the movement of the particles, a 

task to which we now tum. 

6.1 A Probabilistic Bound on the Particle Positions Recall that the position of the ith 

particle at the ith time step is denoted by X/ and that X/ is obtained from X/ -1 by adding a 

normally distributed random variable, YJ/, with mean 0 and variance 2~t to x/-1
• Hence, 

X/ = Xj-1 + ,.,/ . The movement of the particles is thus governed by the distribution of the 

YJ/. This distribution is given by 

P ( YJ/ < r ) = 
1 I e 4~ dy 

v'47r~t -oo </>( v'2:t ) 

where </> is the probability distribution function for a Gaussian distribution .with mean 0 and 

variance 1, 

z s 2 

1 --
</>( x ) = rn= I e 2 d8 . 

v27r -oo 

LEMMA 6.1 Let K > 0 be chosen so that X? E (-K,K) for all i. Then for all a > 0, 

P (X l < -K- a ) < </>( -a ) 
I v'2i ~t 1 

P (X/ > K + a ) < </>( vii-At ). 
'2; ~~ 

(6.2) 

(6.3a) 

(6.3b) 

Proof: First write the position of the ith particle, X/ , in terms of its initial position, X?, and 

the subsequent random walks, YJl, ... , YJ/ , 

x/ = x;-~ + ,.,/ 

·. 
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X i-2 j-1 i = i + 'li + 'li 

= X? + qf + . . . + qJ 

where Yi = qf + . . . + 11/. Since the the sum of j independent normally distributed ran-

dom variables each with mean 0 and variance 2At is itself a normally distributed random vari-

able with mean 0 and variance 2j At it follows that the probability distribution of Yi is given 

by 

By assumption, -K < X? < K for all i, whereby 

P (X/ < -K - a ) = P (X? + Yi < -K - a ) 

· = P (Yi < -K -X?- a ) 

~ P(Yj < -a) 

=</>(~). 

The inequality (6.3b) is proved in a similar fashion. 

It is well known that </>(z) decreases at an exponential rate as z -+ -oo. This fact allows 

us to compute a bound on </>(z) and hence, on the probability that the particles lie outside a 

given interval. 

LEMMA 8.2 For any z < 0, 
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:r2 

A. -1 2 'f'( x ) ~ rn- e . 
x v2rr 

(6.4) 

Remark: This is the first of a sequence of bounds for ¢> that can be derived by considering an 

asymptotic expansion of ¢>(x) in powers of.!.. See Feller [22], p. 175 for further details. 
X 

Proof: Note that 8 < r < 0 implies !.. > 1. Therefore, 
X -

¢>(x) 

as claimed. 

6.2 A Probability Inequality for the Error Due to RAJ We are now prepared to prove a 

probability inequality for the error, II RAJ;/ -fill., t;i 11
1

. To begin we will establish an inequal-

ity· which depends on the parameter a which, as in Lemma 6.1, corresponds to the amount the 

particles may have strayed from their initial positions. Then, in the subsequent corollary, we 

show how to choose a to obtain the inequality stated at the beginning of the chapter, a form 

which will be more convenient for later use. 

THEOREM 6.3 Let u 0 E S , let K > 0 be such that X? E ( -K,K) for all i and let 

ui (r) = (DAI RAJ )i u0 be the step function obtained from u0 via the random gradient method 

at time T · j tit . Then for all a > 0, 

< e 4T (6.5) 

Proof: Set L = K + a. As indicated in the introduction to this chapter, we prove (6.5) by 

bounding II Rll., t;i -RAJ ui II L' under the assumption that at time T = j t.t the particles all 
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lie entirely within the interval (-L,L) and then estimating the probability that this assumption 

is true. Therefore, assume that 

-L <X/ < L, i = 1, ... , N. (6.6) 

By Corollary 2.3, ,,; E s' whereby the w/ satisfy E w/ = 1. Hence, v.i (x) = 1 for X < -L 

and ui (x) = 0 for X > L. Now use (4.1) to write 

. __ u_i (,__x .__) e~Al-- = { 1, Rc.r u1 (x) = 
1- u1 (x) + u1 (x) eAt 0, 

In other words, 

. { 1, 
Rc.rii 1 (x)= 

0, 

if X < -L' 

if X > L. 

Similarly, since 

N 
R- -i ( ) " H(X,i -x) w,.i+l t:.tU X =LJ 

i=l 

if t;i (x) = 1 , 

if u1(x)=O. 

where the w/+ 1 are given by (2.4), and since, by Lemma 2.2, the w/+1 satisfy I; w/+1 = 1, it is 

clear that Rc.r iii satisfies 

- . { 1, 
Rc.rii 1 (x)= 

0, 

if X < -L' 

if X > L. 

Consequently, 
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The next step consists of placing a pointwise (in x ) bound on the difference 

Rt:.1 :;:/ (x)- Rt:.t :;/ (x) and then using this bound to estimate the L 1 integral over (-1,1). Fix x 

and consider Rti/ (x) as a function of t alone, say g (t) = R1i/ (x). The approximation 

Rt:., t;i (x) is simply Euler's method used to approximate the solution, g, of the ODE 

g 1 = g (1- g) with initial data go= t;i (x) (see (2.2)). In other wo~ds, 

= go+ 11t go (1- go). 

It is well known that the error in this approximation after one time step, called the local trunca-

tion error or local discretization error, is bounded by 

< max 
o:::;e=:;.o.t 

(6.7) 

{See Conte & de Boor [18], p_. 359.) In order to bound g 11 first note that since g satisfies 

g I --:- g ( 1 - g ), 

g II _ g t _ 2gg I 

Corollary 2.3 implies 0 $ uj (:r) $ 1 for all X E R and consequently, by Lemma 4.5, 

g (t) = Rtu; (x) satisfies 0 $ g (t) $ 1 for all t. Thus, 

max lg"(e)l =max l2g 3 -3g 2 +g I< J3
18

3
. 

eejo,.o.ti o=::;g=::;t 

Substituting this estimate into (6.7) yields the pointwise bound 
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which must hold for any x E lR since x was arbitrary. Now integrate over x E (-L,L) to obtain 

L 

J I Rl.).r i/ (x)- Rl.).r ui (x) I dx 
-L 

L 

~ '{; (at )2 J dx 
-L 

This estimate is valid as long as the assumption (6.6) holds. In other words, the probabil-

ity that the L 1 error exceeds this estimate is bounded by the probability that at least one of the 

particles lies outside {-L,L). Thus, by Lemmas 6.1 and 6.2, 

N . . 

< E [ p (X/ < -L ) + p (X/ > L ) l 
i=l 

=2N</J( ~) 
2J at 

< N..J4T 
a# 

The main result of this chapter, equation (6.1), follows from Theorem 6.3 immediately 

upon setting a= 3"'tfl JlnN for any real"''~ 1. 

COROLLARY 6.4 Let u 0 E S be generated by N particles and let K > 0 be chosen so that 

the particle positions, X?, all lie in the interval (-K,K). Let T = j at denote the time and let 

C = v; (K + 3fl ). (6.8) 



52 

Then for all real '"'f ~ 1, 
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7. The L 1 Convergence of the Approximate Diffusion Operator, Dc.t 

.. "1 2: 1, 

( 
. - . InN ) 1- ! 7 

p II Dt::.t v 1 - Dc.t v J Ill 2: "rC TN ~ 4 N 

where C depends only on the initial data, ii 0 , and the time, t = j ~~. Setting "1 = 1, it fol-

lows that given any f > 0 we can find N0 = N0 (f) such that for all N 2: N 0 , 

or, equivalently, 

Thus, by using sufficiently many particles, one can guarantee that the error due to approximat-

ing Dc.t by Dc.t is small with arbitrarily high probability. It is in this sense that the approxi-

mate diffusion operator, DtlJ , converges to the exact diffusion operator, Dc.t. Hald has proven 

similar results in the L 2 norm ([33]) and the sup norm ([29]). 

There are two fundamental facts about usmg random walks to solve the heat equation 

{3.2a,b) that should be noted here. First, the rate of convergence does not depend on the time 

step, ~t, and hence is exclusively a function of the number of particles, N. Second, the rate of 

--
convergence is 0 (inN jJliT ). (Actually, the rate of convergence is probably 0 (1/JliT ), with 

the factor InN simply being a spurious term introduced by the analysis.) Therefore, since all of 

the other sources of error behave like 0 (~t ), and since it is considerably cheaper to halve the 

time step than to quadruple the number of particles, this quickly becomes the dominant source 

of error. This is an essential feature of numerical methods which use random walks to model 
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diffusion processes. 

The same problem occurs when one uses random sampling to approximate an integral as 

in Monte Carlo integration ([21, 36, 49]). There have been many suggestions for improving the 

rate of convergence for Monte Carlo methods. For example, one can use equidistributed 

sequences instead of randomly chosen numbers to sample the integral ([17, 35, 36]) or one can 

use some a priori knowledge of the solution to reduce the variance of the error 

([1, 2, 10, 12, 43, 49]}. However, in. spite of a considerable amount of work improvement of the 

convergence rate continues to be difficult. 

This chapter is divided into four sections. In §7 .1 we begin by introducing some notation. 

Following this, in §7.2, we present the basic ideas. In the third section, §7 .3, we prove that DtJ..r 

converges to Dtl.r pointwise: for all z E D? and all a > 0, 

where iii is an upper bound on the particle strengths. Finally, in §7 .4, we use this pointwise 

bound, together with the fact that the pointwise error decreases exponentially fast as 

I z I - oo, to prove the error estimate in the L1 norm. 

The results in this chapter are based on the work of Roberts. Most of the reasoning is 

identical to the arguments in Chapter 4 of [47]. The main difference between Roberts' conver­

gence proof for the approximate diffusion operator and our own is that in his numerical method 

the particle strengths remain constant for all time, whereas in the random gradient method, the 

particle strengths are random variables. This difference manifests itself primarily in the proof 

of Lemma 7.4 where, in order to establish a pointwise bound on the difference between Dtl.t v k 

and Dtl.r v lr , it is first necessary to bound the particle strengths. See the remarks preceding 

Lemma 7.4 for further details. 
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7.1 The Underlying Probability Space, 0 In Chapter 8 we will show that 

6 g 

P( II F}., u0 - (D~t R~, )A: u0 11
1 
~ '"YC ~ ) < 5 TN 1 - 1 -r (7.1) 

where C is a constant, "' ~ 1 is an arbitrary real number, and T = kill . Implicit in this 

statement is the existence of a probability space (O,E,J.') upon which the error, 

II F}.1 u0 - (D~, R~, )A: u0 11
1
, is a random variable that satisfies (7.1). There is a simple one to 

one correspondence between elements of 0 and a given run of the random gradient method: 

each w E 0 corresponds to one realization of the random walks, w = ( '1~, ... , '1~, ... , 

'1~ , ... , '1~ ). Most authors generally find it unnecessary to develop the underlying probability 

space (for example: Hald [32, 33], Goodman [27]). However, since several of the probability esti-

mates below are estimates over subspaces of n rather than n itself (each subspace corresponds 

to one time step), we choose to go into greater detail here. 

Let R 1 d.enote the real line, B 1 the standard Euclidean Borel field on ./R1
, and J.' 1 Gaus-

sian measure on R 1, 

I A: A: A: 

(Note that Jl depends on the time step, ilt .) Let (O,E,J.t) = ( I1 Oi, I1 Ei, I1 Jli) where the 
J=l )=l )=1 

jth component space, (Oi ,Ei ,Jli) = (RN ,BN ,JlN ), is simply N -dimensional Euclidean 

N 
space, RN, with the standard Euclidean Borel field, BN = I1 B 1, and N-dimensional Gaus-

N 
sian measure JlN = I1 J.t 1, 

•=I 

•=1 
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for all S= S1xS2x ... xSN E BN. Here N is the number of particles and k is the time step 

at which we wish to examine the error; both N and k are fixed. 

The component space (0; ,l::; .~;) has been chosen so that there is a one to one 

correspondence between an element w; E 0; and the N random numbers used at the jth time 

step to random walk the particles, '1{ , ... , ,; . In what follows, w i will be used to denote a 

random variable on n i whereas ( 11{ , ... , ,; ) is (ideally) a specific realization of that variable. 

Sometimes, however, it is convenient to ignore this distinction and regard the vector 

('1{, ... , ,; ) as a random variable on the subspace 0;. In practice it should be apparent from 

the context whether ('1{, ... , ,; ) denotes the random variable, w;, or a specific realization of 

7.2 A Brief Outline of the Argument In order to understand our motivation for construct­

ing the probability space n it is helpful to know how we arrive at (7.1). Recall that the error 

at time t = k ~~ can be bounded by 

II Ff.t u0 - (D~, Rc.r )• u0 11
1 

$ II FJ., u0 - (DAJ Rc.r )• u0 11
1 

+ II (D~r R~, )• u0 - (DAJ Rc.r )• u0 11
1 

+ II (D~, R~, )k u0 - (D~, R~r )k u0 11
1

• 

The first two terms on the right, which were estimated in Chapters 4 and 5, are deterministic in 

the sense that they are unaffected by the choice of the random numbers, 17
1
, ••• , 'IN , at each 

time step. Hence, considered as random variables on n, these two terms are constants. The 

third term, however, is not constant on n, since it contains the error due to approximating D~1 

by D~r. Using the stability results from Chapter 4 (Lemma 4.1 and Corollary 4.4) we can split 

this term into two components, 
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Proceeding inductively and using 

we find 

lr 
ll(DAIRAI)"u 0 -(DAIRAI)"u 0 1ll < E ellr-i)AI IIDAIR~,ui-l_i)~,.R~,ui-llll (7.2) 

j=l 

lr ( - - ) < eT E IIR~,ui-l_R~,ui-llll+ IID~,vi -D~tvilll. 
j=l 

Therefore, 

P(ll(DAIR~,)"u 0 -(D~,R~,)"u 0 il 1 >fleeT)< EP(IIR~,ui-I_R~,ui-IIl 1 > E1 } 

j=l 

" -+ E P( II D~, v j - D~t v j II I > €2 ) 

j=l 
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The first k terms on the right hand side of this inequality can be estimated using the 

results of Chapter 6. Let us consider what is involved in estimating terms of the form 

P( II Dt:., iii - Dt:., iii 11
1 

2: €2 ). We first divide the real line into three pieces, (-oo,-L), 

(-L,L), and (L,oo), where L > 0 is free to be chosen as we wish. Thus, 

+ P( II Dt:.l V j - Dt:.l V j II (-L,L) > €4 ) + P( II Dt:.J V j - Dt:.l V j II (L,oo) > €3 ) 

for any €3, €4 satisfying €2 = 2€3 + € 4• Here we have used II ... ·II (-L,L) to denote the L 1 norm 

on the interval ( -L,L) and similarly for II . . . II (-oo,-L) and II . . . II (L,oo)" 

The error over the tails, (-oo,-L) and (L,oo), can be estimated using ideas very similar to 

those used in Chapter 6. We first bound the error over (-oo,-L) (resp. (L,oo)) under the assump-

tion that all of the particles lie in the interval (-B,B) C (-L,L) at times (i -1).:1t and j at. 

Lemmas 6.1 and 6.2 are then used to estimate the probability that this assumption holds. 

The bound for the error over the interval (-L,L) is a bit more involved. Observe that the 

error, II Dt:.l ii j ,.- jjt:.J ii jIll' considered as a function of w = (wl> ... 'WJr) E n, does not 

depend on wi+l• ... , WJr, i.e. on the random walks after the jth time step. Furthermore, 

- - -
vi = Rt:., (Dt:.J Rt:.J )i-lt;o depends only on w;· = (wb . .. , w;_1), since it is also unaffected by 

the random walks taken at the jth time step. Our estimate proceeds in the following way. We 

first prove that for each possible realization of iii = vi (wj ), (i.e. for each fixed 



59 

< 8 

where 8 depends on N , at , t = j at , and the initial data, ii 0 , but not on wj . Here we have 

used Po. to denote probability with respect to the subspace n i . Therefore, since the error does 
J 

not depend on wi+l' . .. , w~r, we have 

J H (II D~ vi - jjt>l vi Ill- €4) djJ 
0 

8. 

Thus, the problem has been reduced to the following: Given any fixed 

vi = vi (w;·} E S, estimate the £ 1 error on (-L,L) between the exact solution of the heat 

equation with initial data vi , D~ vi , and the random walk solution, D~ vi . As we shall 

demonstrate below, it is possible to estimate this error in terms of the pointwise error, 

Po ( I n~ v j (:r)- jj~ vi (r) I 2:: a), at N points in (-L,L}. We now turn to the task of 
} 

establishing such pointwise estimates. 

7.3 Pointwise Estimates In this section we investigate the stze of the pointwise error 

I Dt>, vi (r)- D~ vi (r) I . The principal result will be that 

< 2 e-2Na2 

holds uniformly for all z E R where w is the maximum particle strength for the function vi . 
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We wish to emphasize that this is an estimate over the subspace 0 j • In other words, for fixed 

v j, we examine the pointwise error I Dat vi (x)- Dill v j (x) I as a function of the random 

walks at the jth time step, '1[, ... , '7~. Furthermore, this estimate holds uniformly for all 

possible v j (and hence, for all wj E 0 1 X .•. X 0 j -I)· 

Our first step will be to establish that for all x E R, Eo [ Dat v j (x)] = Dat v j (x) 
J 

where E
01 

denotes expected value with respect to '1[, ... , '1~. While it is also true that 

E0 [ Dat v j (x)] =Dill v j (x) (in fact this is a consequence of the equality over Oj) at the 

moment we are only concerned with the error that is introduced at the jth time step. 

LEMMA 7.1 Fix u0 E S and let v j = Ra1 (Da1 Rill )j-tiio. Then for any x E JR, 

Proof: First, suppose that vi (x) = H( X- z) for arbitrary X E JR. Then, by (3.5), 

Dat v j ( x ) = H (X + 1J - x ) where 1J is a Gaussian random variable with mean 0 and variance 

2At: The expected value of Dat v j (x) is therefore 

= Dat v j (x ). 

In general, v j is of the form 
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N 
vi (x) = EH (X; - x) w;. 

i=l 

(When no confusion is likely we shall drop the superscripts j -1 and j from X{-\ 11/, and w/ .) 
In this case D~ vi ( x ) is given by 

- N 
D~ v i (X ) = E H (X; + '1i - X ) W; 

i=l 

where '71' ... , TIN are N independent Gaussian random variables with mean 0 and variance 

2at. Since both the expected value operator, E , and the diffusion operator, DAt, are linear, it 

now follows that 

- N 
E0 [ DA, vi ( x ) I = E E [ H (X; + '7i - x ) I w; 

J i-1 

N 
E(DA,H(X; + T/i -x)) w; 
i=l. 

= DAt vi (x ). 

Armed with the fact that E 0 [ DA, vi (x) I = DAI vi (x) we can now estimate the size of 
J 

the error due to approximating DAt vi (x) by DAt vi (x ). The simplest approach is to use 

Chebychev's inequality {[16], p. 46), 

P(Z ~ a ) < E [¢>(Z)] 
¢>( 8 ) 

where Z is a random variable, a > 0, ¢>(-a)= ¢>(a), and ¢> is a strictly positive and increasing 

function on (O,oo). Setting Z = I D~ vi (x)- DAt vi (x) I and ¢>(a)= a 2 we find 
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v 8 > 0 

where 

var ( Dc.t v i ( x ) ) Eo. [ (Dc.t iii (x)- Eo. [ Dt:.J iii (x)] )2
] 

J J 

is the variance with respect to the random walks· at the jth time step, f1
1
, ••• , 'IN. In order to 

estimate the vanance first note that H (Xi + 'li - x )2 = H (X.- + 'li - x ) and 

0 ~ H(Xi + 'li - x) ~ 1. Hence, since max x -x 2 =.!.., 
,. e !O,ll 4 

var (H(Xi + 'li - x)) E [ H (X; + 'li - z )2
] - E [ H (X; + 'li - X ) ]

2 

E [ H (Xi + 'li - X ) l - E [ H (Xi + 'li - X ) ]
2 

< 1 
4 

Furthermore, wi is constant as a function of f1
1

, ••• , 'IN and therefore, since the f1
1
, ••• , 'IN 

are independent, H(Xi + 'li - z )wi is independent of H(X..• + 'li'- z )wi' for i ,t. i'. It fol­

lows that for each fixed z E /R, 

var (Dc.t iii (z)) 
N 

var ( E H (Xi + f'Ji - z )wi ) 
i ==1 

N 

E var (H(X.- + 'li - z) )w/ 
i=l 

1 2 < -Nmax w;. 
4 
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Thus, if max wl ~ C N-2 (by Lemma 2.4 this is true (with C = e 2T) for any computed solu-

tion generated from initial data satisfying w? = N-1), then for all x E lR and all a > 0, 

'I/ a> 0. 

Similar estimates have been derived by Hald [33] (see his Theorem 1 and the subsequent 

remark) and Roberts [47] (Theorem 4.3.1). Unfortunately, this inequality is too crude to use 

here, for we require an estimate which yields an o (1) bound after adding the pointwise error at 

0 (N) points and then summing over k = 0 (.o.t-1) time steps. This problem has been con-

sidered by Roberts in [47]. His solution was to use the following inequality of exponential type 

due to Hoeffding [37]. Inequalities of this type may also be found in §19.1 of Loeve [42]. 

LEMMA 7.2 (Hoeffding [37], p. 16) Let Z1, •.• , ZN be N independent random variables 

satisfying 0 ~ Z; ~ 1. Then for any a > 0, 

P( ~ EZ;- ~ EE [Z;] ~a)$ e-2
Na

2
. 

i cal i -1 

Applying Lemma 7.2 twice, once to the Z; and once to the random variables 1 - Z; , and 

then using the fact that for all random variables X and Y 

P( I X- Y I ~ a) < P( X- Y ~ a) + P( Y- X ~ a), 

we obtain the following more useful form of this inequality. 

COROLLARY 7.3 Let Z11 •.. , ZN be N independent random variables satisfying 

0 ~ Z; ~ 1. Then for any a > 0, 

( 
lN 1N ) 2 

P I - ~ Z; --~ E [Z; ]I ~ a ~ 2e -2Na . 
N i=1 N ;~1 
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By noting that for each fixed X E R, zi = H (Xi + 'li - X) wi w-1 satisfies the 

hypotheses of Corollary 7.3 where w =max wi, we can now derive an exponential bound on 

Po ( 1 DAt iii ( x) - DA, vi ( x) I ~ aNw ). As was mentioned in the introduction to this chapter 
1 

our result differs slightly from Roberts ([47], Theorem 4.3.4) in that his particle strengths are 

constant over time whereas, in the random gradient method, they are altered at each time step. 

This is analogous to the difficulty one encounters when trying to generalize a convergence proof 

for the two dimensional vortex method to three dimensions. For, in the vortex method, particle 

strengths correspond to vorticity and vorticity is constant along particle paths in two dimen-

sional inviscid flow but not in three dimensional inviscid flow ([3]). 1 

LEMMA 7.4 Let u0 E S, let vi= RA,(DAtRAI )i-1u0
, and let w = m~ w/. Then for any 

I 

x E JR. and a > 0, 

~ aNw ) < 2e -ZNo 
2

• 

Remark : If w? = 0 (N-1
), then this estimate depends exclusively on the parameter a and the 

number of particles, N and the time t = j t&t . For, by Lemma 2.4, Nw is 0 ( e 1 
) for any vi 

which has been generated by the random gradient method from initial data with particle 

strengths that are 0 (N-1). 

Proof:. By Corollary 2.3 vi E S . Therefore, wi satisfies 0 < wi < 1 for each i and hence, 

0 < wi $ w. Thus, 0 < w; w -t < 1. Define 

1While it is doubtful that the work here will shed much light on the problem of proving convergence for vortex 
methods with variable particle strengths, one might achieve such a benefit by adapting Goodman's convergence proof 
for the two dimensional random vortex method 1211 to a convergence proof for the random gradient method. One of the 
principal difficulties that would have to be overcome is how to apply the ideas from Goodman's proof to a method 
which has variable particle strengths. Since this is one or the problems that must be solved in order to prove the con­
vergence or a three dimensional random vortex method, it's possible that one might gain some insight by solving this 
simpler problem first. 
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For each fixed x E R, the Z; are N independent random variables satisfying 0 ~ Z; ~ 1. 

Furthermore, 

1 - - · 1 N -:::.- DA, v 1 (x) =- I;Z; 
Nw N i=t 

and hence, by Lemma 7.1, 

1 - · 1 N 
-:::.- DA, v 1 (x) = N L;E [Z;']. 
Nw i=t 

It now follows from Corollary 7.3 that for any x E R, 

1 N 1 N 
Po. ( I - E E [Z; l - - E Z; I :> 0' ) 

1 Ni=t Ni=t 

7.4 The L 1 Convergence of DAJ We will now use the pointwise estimates from §7.3 to 

derive an error bound in the L 1 norm. The proof is accomplished by dividing the real line into 

three intervals, (-oo,-L), (-L,L), and (L,oo), and establishing bounds on each of these intervals 

separately. With the exception of the first result, Corollary 7.6, all bounds in this section are 

over the probability space n. 

Our first task is to establish a bound for the L 1 error over the interval (-L,L). To begin, 

we divide this interval into N -1 appropriately chosen subintervals, (aj_1,aj ), Then we use the 

monotonicity2 of the functions DAJ iii and DAl iii, to demonstrate that, on each of these subin-

2As Roberts has pointed out (147J), monotonicity is not necessary here. 



66 

tervals, I Dt:.r vi ( x) ~ Dt:.r vi ( x) I is no greater than VN -1 plus the maximum value of the 

error at the endpoints of the subinterval. Hence, the L 1 error over (-L,L) is bounded by 

2L[VN"-1+8], where e is the maximum value of the pointwise error at the a;. Calculation of 

the L 1 error over ( -L ,L) thus reduces to estimating the size of N pointwise errors. 

THEOREM 7.5 Let u0 E S 'and assume that u0 is generated by N particles. Let 

vi = Rt:.r (Dt:.r Rt:.r )i-1u0 and set w = m~ w/. Then for all real a, L > 0, 
I 

Proof: For the duration of this proof we drop the superscript j from vi and write ii. Observe 

that Dt:.J ii and Dt:.J ii are monotonically decreasing functions bounded between 0 and 1. To see 

this, first note that by Corollary 2.3, Dt:.J ii E S . Thus, Dt:.r ii is a monotone decreasing func-

tion of x satisfying 0 ~ Dt:.r ii ~ l. Similarly, by writing Dt:.r ii as the convolution of the heat 

kernel with ii and using the fact that ii E S , it is an easy matter to show that Dt:.r ii is mono-

tone decreasing with 0 ~ Dt:.J ii ~ 1. 

Since Dt:.J ii is monotone and 0 ~ Dt:.r v ~ 1 it follows that we can find a sequence 

a 1, a2, ... , aN with -L =a 1 < a2 < ... < aN = L such that 

j = 2, ... 'N. 

(Of course we could use (N-It' here instead of VN -t. But this turns out to be only a tern-

porary gain, since this term will be added to terms of order VN -I below.) For each j let 0( a i) 

denote the absolute value of the difference between Dt:.r ii and Dt:.J ii at the point a;, 

O(a;) = I Dt:.J ii(a;)- Dt:.r ii(a;) I. 
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Now, since Dt:.t ii and Dt:.t ii are monotone decreasing functions of x , it follows that for each 

Similarly, one can show that 

Hence, for x E (aj_ 1,ai ), 

1 I Dt:.r ii(x)- Dt:.t ii(x) I :5 ,fJii + max{O(aj_!), O(ai )}. 

Thisyields the following estimate for the L 1 norm over the interval (-'L,L): 

1 :5 2L[TN + mr O(aj )]. 

The function e = m~ 0( ai) is a random variable with which depends en ,,, ... , 'IN . The pro­
J 

.J 
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bability that the error over the interval (-L,L) is greater than 2L[JN-l + a.NW] can be 

estimated in terms of the probability that 8 > aNw. To see this, note that by {7.4), 

II DAr v- DAr v 11(-L,LJ > 2L[ iN+ aNw] -~ 2L[ iN+ 8] > 2L[ iN+ aNw] 

~ 8> aNw. 

Therefore, since 8 ~ aNw implies I DAr v(a;)- DAr ii(a;) I ~ aNw for some a;, we can 

use Lemma 7.4 to obtain 

Theorem 7.5 holds for all possible vi. In other words, if we regard vi as a function of 

wj =(w11 ••• ,w;_t), then the bound in {7.3) holds for all wj"E 0 1 x ... x0;_1• Therefore, 

using the argument outlined at the end of §7.2, we now obtain a bound over the probability 

space n. 

COROLLARY 7.6 Let u0 E S and assume that u0 is generated by N particles. Let 

vi = RAr (DAr RAr )i-1u0 and set w =max w/. Then for all real numbers a, L > 0, 
i 

The next step is to prove a probability inequality for the error in the L 1 norm over the 

tails, {-oo,-L) and (L,oo). Note that we are still free to choose L. Let K > 0 be given such 
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that at time t = 0 the particles all lie in ( -K,K). Let L = K + 2/3 where /3 > 0 is an arbitrary 

parameter. The idea, due to Roberts [47], is to estimate the error as a function of /3 under the 

assumption that at time (j -1)at or j at the particles remain in the interval (-K-/3,K+/3). This 

reduces the problem to that of finding the probability that the particles are in this interval at 

the (i -1)Bt and jth time steps, a problem which is easily solved using Leuimas 6.1 and 6.2. 

THEOREM 7.7 Let u0 E S. Assume that u0 is generated by N particles and that for some 

K > 0 all of these particles lie in the interval (-K,K). Let iii = Rt:>~ (Dt:>~ Rt::.t )i-1u0 and denote 

the time by T = j at . For any real number /3 > 0 set L = K + 2/3. Then 

_p2 _p2 

P( II D - i D- - i II > .fjJ e ~ ) < 4N ff 4T t:>~V - ~v e 
(-oo,-L) - J1r - /3 J1r ' 

(7.6a) 

_p2 _p2 

P(IID -i D- -j II > w 4L::.t) < 4Nff 4T 
~ v - ~ v (L,oo) _ r.;. e _ r= e 

vrr /3 vrr 
(7 .6b) 

Proof: We prove (7.6a); the proof of (7.6b) is similar. Let B = K+/3. We begin by proving 

_p2 

II Dt::.t 1i j - Dt::.t iii II > ..;;;r e ~ ~ 3 i such that X;"-1 or x/ ¢ (-B,B) (7.7) 
(-oo,-L) - ../7r · 

. I . 

where x;- and X/ are the particle positions for iii and Dt::.t iii respectively. The probability 

that some X.l-1 or X/ ¢ (-B,B) is then be estimated using Lemmas 6.1 and 6.2. The inequality 

in (7 .6a) follows immediately. We prove the contrapositive of (7. 7). Assume that 

-B < x/-1 
I I 

x/ 
I < B Y i E {1, ... , N }. (7.8) 

By the triangle inequality, 

II Dt::.t ii i - Dt::.t ii j II (-oo,-L) < II Dt::.t ii i - 1 II (-oo,-L) + 111 - Dt::.t vi II (-oo,-L)" 
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Hence, it suffices to show 

Ill - D6t V j II (-oo,-L) = 0 (7.9) 

and 

-f32 

II D - j 1 II ..;t;t 4L!.t 
AI v - (-oo,-L) < .Ji e 

(7 .10} 

The proof of (7.9) is easy. For, by (7.8), x < -L = -K-2/3 < -B = -K-/3 implies 

x < X/ for all i. Therefore, for all x < -L, 

- N . 
DAt ii i ( x ) = E H (X/ - x ) w/ 

N . 
Ew/ =1 

i=l i=l 

where we have used D61 ii j E S (Corollary 2.3). Therefore, 

-L 

Ill - D6t ii j II (-oo,-L) = J I 1 - D6t ii i ( x ) I dx = 0. 
-oo 

To prove (7 .10) observe that (7 .8) implies - B - X < x! -I_ X for all X E JR. Thus, since 

D6t H ( x ) is a monotonically increasing function of x that is bounded above by 1, 

i = 1, ... , N. 

Multiply each side of this inequality by w/ and, using the fact that D61 is linear and 

Ewi = 1, sum over i = 1, ... , N to obtain 

Hence, for all x E R, 

Since 1 - D6t !f (-x) = D6t(l - H (-x)) and 1 - H (-x) = H (x) (when x rf 0}, we can 
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integrate over ( -oo,-L ) to obtain 

-L 

Ill- Dt:.t ii j II (-oo,-L) = I 11- Dt:.t ii j (x) I dx 
-oo 

-L 

:5 I 11- Dt:.t H (-B- x) I dx 
-00 

-/I 

=I 11-D~:.,H(-s)lds 
-oo 

-/1 

= I I D~:.t H (s) I ds 
-oo 

= II Dt::.t H II (--oo,-/1)· 

In order to estimate this last quantity, recall the function t/J defined by 6.2 and note that 

D~:., H (x) = G~:., •H (x) = </>( .j x ). Hence, 
2t:.t 

~ _,2 
-/1 V2t:>l - 2-

IID~:.,H 11(-oo,-/1) =I I e ~2 ds dx 
-oo -oo V ;1;1!' 

1 
=J21T 

-/I 
;;u;; -/1 _,2 
I I e 2 dx ds 

--oo • v'2AI 

-/I .;u:;; . -8 2 

- -
1

- I (-/3- s J2t:.t )e 2 ds -J21T 
-00 

-/I 
,;u;:t .;u:;; -8 2 

< __ t I -se 2 ds 
J21T -00 



Thus, we have shown 

-tJ2 
..r;:;r 4.o.t 

=--e 
Vi 

-tJ2 

II DtJ.1 vi - 1 II (-oo,-L) ~ II DtJ.1 H II (-oo,-P) < ~ e 
4
.o.t 
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This proves (7.10) and hence, (7.7). All that remains is to estimate the probability that 

the right hand side of (7 .7) is true. By Lemmas 6.1 and 6.2, 

N . . 
P( 3 i : xt' or x/ rp (-B,B)) ~ E [ P(xr' < -K-(3 ) + P(xr' > K+/3 ) l 

i=l 

N . . 

+ E [ P(X/ < -K-(3 ) + P(X/ > K+/3 ) l 
i=l 

< 2N A-( -!3 ) + <> N -+..( -(3 ) 
- <jJ .Ji( j -l)c.t ~ <jJ ../2 j c.t 

-(3 
where we have used the fact that </>( x ) is an increasing function of x to bound </>( ..; ( . ) ) 

2 J -1 c.t 

-{3 
by ¢>( ../2j c.t ). 

Combining Corollary 7.6, Theorem 7.7, and an appropriate choice of the parameters a 

and (3 yields the main result of this chapter, a probability inequality for the error in the L 1 

norm. 

THEOREM 7.8 Let u0 E S be generated by N ~ 3 particles, each with weight w;0 = N- 1
, 

and assume that for some K > 0 all of the particles lie in the interval (-K,K). Let 
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vi = iL, (.D~, R~, )i-1u0 and denote the time by T = j t.t. Then for any real number 

I 2: 1, 

where C is given by 

1- Jl.7 
< 4N 4 (7.11) 

(7.12) 

Proof: Fix IE R with I 2: 1 and let a= 3v'llnN j../SN, {3 = 3v'IT InN , and 

L = K + 2{3. Referring now to equation (7.5), we find 

-Jl.71nN 1-Jl.7 
2Ne-2N 012 ~ 2Ne 1 = 2N 1 

Furthermore, since I and InN are both 2: 1, 

2L [ m +aNw] 2 (K + 6v'ff' v'lnN ) (-1- + 3v'l JTiliV Nw ) 
JN v'8 JN 

where we have used Lemma 2.4, together with wi0 = N-1, to deduce that Nw ~ e T . Conse-

quently, (7.5) becomes 

We can derive similar estimates for the error over the tails, (-oo,-L) and (L,oo). With our 

choice of a and {3 the right hand side of (7 .6a,b) becomes 
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4Nff _tp 
-~=--e 4T 

{3-.fi 

since 4/3-.fi :::5: 1. To estimate the oth~r quantity that appears in (7.6a,b) use J ~ 1 and 

'"'f ~ 1 to write 

p2 
..;t;t --
--e 4~ .;; 

Substituting these two inequalities into (7.6a,b) yields 

Combining these estimates with (7.13) above yields (7.11). 
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8. Convergence-of the Method 

We now use the results from the previous chapters to prove the convergence of the random gra-

dient method. The main result of this chapter is the following. If the hypotheses listed in §8.1 

hold, then for any real number 'Y ~ 1, 

5 g 

P( IIFltu0 -(DAtR.a.~)•u 0 ll 1 2: 'Y[ eT llu0 -u 0 II
1
+CtAt+C2 7};]) ~ 5T N 1 -

17 
(8.1) 

where the constants cl and c2 depend only u0, u0' and the time, T =kAt. The most impor-

tant hypothesis here is that At = C0/W for some constant C0• This has the effect of balanc-

ing the error due to the time step (temporal discretization) with the error due to the number of 

particles (spatial discretization). 

This inequality is useful for a couple of reasons. On the one hand, it tells us that the pro-

bability of the error being greater than 'Y[ e T II u0 - u0 II
1
+C1At +C2 7/: ] decreases exponen-

. tially as a function of 'Y. This allows us to find bounds for the expected value and the variance 

of the error: 

Both of these estimates follow from the fact that for any random variable Z ~ 0 and any real 

number a > 0, 

00 

E [ Z ] < a ( 1 + ~ P ( Z ~ ra ) ). 
r=l 
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On the other hand, when I= 1, the inequality in (8.1) implies that 

This estimate may be used to guide our choice of N. For example, say T = 1. Then, if we 

wish to obtain accuracy of order 1:, it suffices to choose N so that 

T II o -o II C 1 C InN -e u - u 1+ 1 lflil + 2 lflil - 1:. (8.3) 

(More particles results in a better initial error.) Now note that the right hand side of (8.2) is an 

increasing function of N and that for N = 1000, 

1-5 T N-1 995 
1000 

Thus, if N 2:: 1000 is chosen so that.(8.3) holds, then the probability inequality in (8.2) assures 

us that better than 99% of the time 

The estimate in (8.2) is probably not sharp. In fact, in Chapter 9 we present numerical 

experiments with an exact traveling wave solution for which the error tends to 0 like 1/ JN 

instead of InN jlflil. 

8.1. The Hypotheses Throughout this chapter let T = k tlt denote the time at which we 

wish to compare the computed solution to the exact solution. We shall assume that the follow-

ing hypotheses hold: 

Hypothesis A 1: In addition to (1.3c-e) the .exact initial data, u0
, satisfies u0 E C 1(D?), 
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Hypothesis~: The approximate initial data, u0
, satisfies u0 E S (see §2.3), u0 is generated by 

N ~ 10 particles, and the initial weights satisfy w? = N-1
• 

Hypothesis As: The computational parameters N and at have been chosen so that for some 

constant C0 we have at = C0/~ . 

We also assume that the constant K > 0 has been chosen so that the variation of u0 lies 

in (-K,K), 

IX? I < K i = 1, ... , N. (8.4) 

8.2. A Bound on the Probability Distribution of the Error We prove the probability 

inequality stated at the beginning of this chapter in two steps. In the first step (Theorem 8.1) 

we use the estimates from Chapters 6 and 7 to establish a probability inequality for the error 

due to the approximate operators, II (DAr RAt )k u0 -(DAr RAt )k u 0 11 1. In the second step 

(Theorem 8.2) we use the (deterministic) bounds from Chapters 4 and 5 to control the remain-

THEOREM 8.1 Assume that hypotheses AI> ~' and As hold. Let 

(8.5) 

J3 l7f' l7f' ,;;;:t 
where B1 = g (K + 3v T ), B2 = 2 [ (K + 6v T )(I+ 2e T) + ..Jrr ], and C0 1s given by 

hypothesis As. Then for any real number 'r > 1, 

Proof: Let Z i 



wj = II Dt:.t v j - Dt:.t v j Ill where v j is as in Chapter 7. From equation (7.2) we have 

k 

Z~e < e T E ( vj + wj ). 
j=l 

We have Z0 = 0 and thus, since k = T lfliT /Co and (.o.t )2 = Co2/.J'N, 

z~ > IC InN ~ .. - 2m . 

IC2 InN 
~ ::J j such that ( Vj + Wj ) > ke T lfliT 

We can now apply Corollary 6.4 and Theorem 7.8 to obtain 

1 - .i'J 
< 5k N 1 

6 g 
---'J 

- 5TN 1 1
. 
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Using Theorem 8.1 and the bounds from Theorems 4.6 and 5.9, we will now derive the 

essential result of this paper, a bound on the probability distribution of the error, 

THEOREM 8.2 Assume that hypotheses A1, ~. and A3 hold. Let C1 be given by (5.16) and 
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C2 by (8.5). Then for all real "Y > 1, 

5 g 

P( 11Fl.,u0 - (D6,Rt:.~ )k u0 11 1 ~ "Y [ e T II u0 - u0 l1 1 +C1~t+C2 ~]) ~ 5T N-:;--:;-r_ 

Proof: Applying Theorems 4.6 and 5.9 to equation (3.6) we see that 

Thus, since "Y ~ 1, 

implies 

It now follows from Theorem 8.1 that 

8.3. The Expected Value and Variance of the Error In addition to telling us how large 

the error is likely to be, the bound in Theorem 8.2 also allows us to estimate the expected value 

and the variance of the error. To do this we will need the following lemma, a variant of which 

may be found on page 41 of Chung [16]. 
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LEMMA 8.3 Let Z ~ 0 be a random variable with E [Z] < oo and let a > 0 be an arbitrary 

real number. Then 

00 

E [Z] :S a [ 1 + L P ( Z 2:: ra ) ]. 
r=l 

Proof: Since E [Z] is finite we can write 

00 

E [Z] :S L ( r + 1) a P ( ra :S Z < ( r + 1) a ) 
r=O 

00 

= a E ( r + 1) [ P ( Z ~ ra ) - P ( Z ~ ( r + 1) a ) ] 
r=O 

00 

=a L P(Z ~ ra ) 
r=O 

00 

~ a [ 1 + E P ( Z ~ ra ) ]. 
r=l 

The last inequality follows from the fact that P ( Z ~ ra ) = P ( Z ~ 0 ) = 1 when r = 0. 

We will now derive a bound on the expected value of the error by setting '"Y = 1, 2, ... 

in Theorem 8.2 and applying Lemma 8.3. 

THEOREM 8.4: Assume that hypotheses A1, A.z, and A3 hold. Let C 1 be given by (5.16) and 

C2 by (8.5). Then 

Proof: Let 
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(8.7) 

Theorem 8.2 and Lemma 8.3 together imply that 

.2. oo -.a. r 
E[ 11Fltu0 -(D~,R~t)ku 0 ll 1 ] < g(At,N)(1+5TN~L; N 1 

). 

r=l 

oo ~r ~ 

Note that I; N ~ is a ratio series with ratio N ~ < 1. Therefore, since N ~ 10 (assump-
r=l 

tion A2), we have 

.! oo -.i r 
5TN 4 EN 4 

r=l 

The theorem follows immediately. 

-.i 
N4 < T. 

The final result in this section is a bound on the variance of .the error. The proof, which is 

very similar to the proof of Theorem 8.4, is based on the following two points: 

1) If Z is a random variable, then 

var ( Z ) E [ Z2
] - E [ Z ]2 < E [ Z2

]. 

2) For all random variables Z ~ 0 and all real numbers a , 

p ( z2 ·~ a 2) P ( Z ~ a ). 

THEOREM 8.5: Assume that hypotheses A1, A2, and A3 hold. Let C 1 be given by (5.16) and 

Cz by (8.5). Then 
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Proof: Set z = II Fl., u0 - (D.:~.t R.:~.t ). u0 II, . As noted above, it suffices to bound E [ Z2
]. Let 

g (A.t ,N) be defined by (8.7). From Theorem 8.2 we have 

5 9 
---"! 

p ( Z 2 > '12 g (A. t ,N ) 2 ) P(Z > '"'tg(A.t,N)) < 5TN_. 1 

Setting '1 = Jr for each r E z+ = { 1, 2, ... } and applying Lemma 8.3 we find 

.A. 00 -.li.V, 
E[Z 2 ] < g(A.t,N) 2 (1+5TN .. EN .. ). 

r-1 

00 4V, 4 
All that remains is to estimate E N -t • To accomplish this set b = N 1

, j3 = -ln b 
r-1 

and note that j3 > 0. Then 

fbr. 
00 

< b + J e -fJ.rz d:t 
r=l I 

<) ?JZ .;; 00 
b - [ (~ + ~)e-fJ z ] 

~ j3 I 

b + ( _!_ + .!, )e -fJ 
~ j3 

-.II. 

< 2 N 1 

where we have used the hypothesis that N ~ 10 and hence, InN > 2. Thus, 
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8.4. Dependence of the Error on Arbitrary v We will now remove the restriction v = 1. 

For arbitrary v ~ 1let u11 be the solution of equation (1.3a,b) with initial data u~. Define 

u (x ,t) = uv(v'vx ,t ). 

Then u satisfies (1.3a,b) with diffusion coefficient 1 and initial data u0
( x) = u~ v'vx ). Note 

that 

(8.9) 

and 

(8.10) 

The random gradient method scales in the same manner. In other words, let u11 be the 

random gradient solution of (1.3a,b) with diffusion coefficient vat time T = k t.t. Denote the 

initial particle positions by X?{v), i = 1, ... , N. Then for any k ~ 0, 

is the random gradient solution of (1.3a,b) with diffusion coefficient 1 and initial particle posi­

tions 

This statement follows immediately from the fact that if '1 is a Gaussian distributed random 

variable with variance 2vt.t then '1/ Vv is a Gaussian random variable with variance 2t.t . 

Thus we have 
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and using (8.6) we find 

E II uv( T ) - u t 11 1 = vV E II u ( T) - u k 11 1 

It is necessary to investigate the dependence of the constants C1 and C2 on v. From (5.16), (8.9) 

and (8.10) we have 

C, = T e 3T {eT llazu0 lloo+ 41f"} llazu0 ll, 

= T e 3T { v'v e T II az u~ II 00 + 41f"} II az u~ II, (8.11) 

Thus, the splitting error is 0 ( vv). Note that if one is modeling a ~wave front of the form 

(8.12) 

for some arbitrary C 1 function g, then even though az g11 = 0 (v-112) the constant C1 remains 

o (1) due to the factor vv multiplying II az u~ II 00 in (8.11) above. 

In order to examme the dependence of C2 on v let K" be chosen so that 

-K" ~ X?(v) ~ K" for all i. Then K = K" /VV satisfies (8.4) and we find 

Cz = V: (K + 3 ff) + 2 [ (K + 6 ff) (1 + 2e T) + v;J ] 

= V: (Tv + 3 ff) + 2 [ ( ~ + 6 ff) (1 + 2e T) + v;J ]. 
Hence, Cz' = vv C2 is bounded uniformly in v for v ~ 1 and we have 



E llu.,(T)-u~ll 1 ~{l+T)vv[ eT llu0 -u 0 llt+Ctat +C2 ~ ]. 

={l+T)[ eT llu'1,-u~llt+Ctfvat +C2' ~] 
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as claimed. The conclusion that C2 is 0 (v-112) may be misleading however ... For example, with 

waves of the form {8.12) one generally chooses the approximate initial data so that 

K11 = 0 ( vv) in which case C2 = 0 {1). 

Finally we remark that a similar argument applied to (8.8} can be used to establish the 

validity of the bound on the variance of the error in (1.7). 
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9. Numerical Results In order to compare the theoretical bounds with the actual perfor~ 

mance of the method we used the random gradient method to compute a known exact solution. 

In addition, we present the results of experiments with a second order solution of the reaction 

equation (3.1a,b) and a second order operator splitting (Strang splitting). These experiments 

allow us to test the 'sharpness' of our theoretical estimates and our understanding of the way 

various sources of error behave. 

9.1. The Test Problem Let v = 1. Then the Kolmogorov equation (1.3a,b) has a traveling 

wave solution of the form 

u(:r,y)=g(r -at) (9.1) 

with speed 

5 
a=-

J6 

and wave form 

Our approximation to u0 was determined by placing N particles, each with weight w? = N-1, 

at 

{

g-1(1- ~) 
X?= 

-1(_1 ) 
g 2N 

For this choice of u0 we have 

i = 1, ... , N -1, 

i =N. 

(9.2) 

For u g1ven by (9.1) we define the center of the wave at time t to be the point 

rt = Ze ( t ) such that 



1 
u (ze ,t) = 2· 
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We measured the error at time t on a grid of 1001 equally spaced points, centered at Ze and 

spaced a distance ~z = 0.02 apart. We measured the error in each of the discrete L 1, L 2 , and 

L00 norms. Errors in all three norms decreased at roughly the same rate and therefore we 

present only the results in the L 1 norm. 

9.2. Numerical Results Table 1 contains the results of a computation with the basic ran-

dom gradient method described in Chapter 2. Each entry in the table is the L 1 norm of the 

error at time T = 1.0 after one run. Note that N increases by 4 as one moves to the right 

along a row while il.t decreases by 2 as one moves down a column. Further note that, on the 

average, the error decreases by 2 as one moves diagonally down one row and right one column. 

We conclude that for the present problem, the proper relationship between il.t and N is 

1 
il.t = 0 ( .JN ). (9.3) 

The relation il.t = 0 ( VJV -1) arrived at by theoretical considerations appears to be an 

underestimate of the dependence of the error on N . In other words, for il. t = 0 ( VJV -1) the 

errors that depend on N will decrease twice as fast as the errors that depend on il.t , until even-

tually these latter sources of error dominate all others. The method still converges if we take 

il.t = 0 (W-1
) but we will be doing four times as much work to get the same results. In 

methods such as the vortex sheet method, in which the work is proportional to 0 (N2), we 

would be doing sixteen times as much work. One should be careful when basing their choice of 

parameters on theoretical estimates alone. 

Note that the errors in Table 1 decrease at a rate remarkably close to 

0 (il.t) = 0 (.JN-1). We interpret this to mean that when il.t and N are chosen so that (9.3) 

holds, the expected value of the error is 0 (il.t) = 0 ( .JN -1) and that, for N ~ 1000, the 
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variance of this error is relatively small. Thus, for N 2:: 1000 one obtains reasonable results 

with one trial. This corroborates the estimates we made in the introduction to Chapter 8. 

FirBt Order Solution. of the ODE Ut = u (1- u ). 

- Number of Particles -
At 1000 4000 16000 64000 256000 1024000 
1 0.5504 0.3863 0.4548 0.4394 0.4447 0.4439 

2-1 0.2287 0.2110 0.2168 0.2192 0.2202 0.2210 
4-1 0.0995 0.1148 0.0989 0.1056 0.1125 0.1135 
g-1 0.1116 0.0531 0.0575 0.0579 0.0551 0.0576 
16-1 0.0976 0.0419 0.0276 0.0359 0.0300 0.0288 
32-1 0.1034 0.0453 0.0192 0.0256 0.0116 -

Table 1 (L 1 norm) 

Fix At and consider the error as a function of N. Note that at first it decays like ../FT -I 

but then eventually levels out. Further note that this 'plateau' occurs further and further to the 

right as At decreases. The plateau is due to those sources of error, such as the splitting error 

and the error due to approximating Rt:.J by Ro.,, that depend on At alone. Similarly, one can 

isolate plateaus that depend only N. Since the 0 (../FT-1) errors dominate the 0 (N-1) error in 

(9.2), these errors are primarily if not exclusively due to the random walk. 

While we know of no way to improve the accuracy of the random walk there are several 

ways to obtain a method which is higher order in time. We begin by considering a second order 

ODE solver. Define 

This is simply a second order solution of the ODE (3.1a,b) ([18], p. 364). Table 2 contains the 

results of a numerical experiment with Rt:.J replaced by ii;;,"4
• It is immediately apparent that 

there has been an overall decrease in the error. Note, however, that the rate of convergence has 

not changed, even as a function of At alone. On the average the errors still decay like 0 (At). 
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Second Order Solution of the ODE. 

- Number of Particles -
t.t 1000 4000 16000 64000 256000 
1 0.1034 0.0663 0.0682 0.0634 0.0660 

z-1 0.0439 0.0275 0.0223 0.0215 0.0230 
4-1 0.0297 0.0189 0.0104 0.0088 0.0095 
s-1 0.0250 0.0139 0.0063 0.0040 0.0044 

16-1 0.0273 0.0165 0.0076 0.0036 0.0031 
32-1 0.0309 0.0137 0.0078 0.0045 0.0022 

Table 2 (£ 1 norm) 

We interpret this data in the following way. When Rc.., is replaced by R~1"4 the (•.H )2 in 

(3.10) is replaced by (t.t )3.t Thus, the dependence of the last term on the right in (3.6) on t.t IS 

now 0 ((t.t )2) rather than 0 (t.t ). However, its dependence on N is still 0 (v'N-1). From (9.2) 

we see that the middle term is 0 (N-1
) and hence is presumably negligible compared to the last 

term. What remains is the first term, the error due to operator splitting. 

Following Strang [54] we now employ the following operator splitting algorithm, 

- i+1 R-2.~ D- R-2.~ - i u, = t>.l/2 ~ t>.l/2 u, . (9.5) 

We will refer to this as Strang splitting. We believe that when Strang splitting is used the error 

due to exact operator splitting becomes 0 ( JV (t.t )2), 

In fact, we think that this can be shown by applying the argument in the proof of Theorem 5.8 

to the function 

I This statement is easily proved. We simply use the well known fact that the local truncation error for a second 
order ODE solver is 0 ((c..t )3) to replace the right hand side of (6.7) by (c..t )8 times the appropriate constant. 
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In this regard we note Beale and Majda have shown that Strang splitting for the Navier-Stokes 

equations is second order accurate [7]. 

Second Order Solution of the ODE with Strang Splitting. 

- Number of Particles -
fl.t 1000 4000 16000 64000 256000 
1 0.0545 0.0243 0.0139 0.0083 0.0109 
~1 0.0293 0.0144 0.0090 0.0057 0.0062 
4-1 0.0300 0.0140 0.0097 0.0034 0.0028 
g-1 0.0242 0.0146 0.0064 0.0028 0.0018 

16-1 0.0266 0.0175 0.0071 0.0026 0.0020 
32-1 0.0311 0.0133 0.0083 0.0045 0.0022 

Table 3 (£ 1 norm) 

In Table 3 we present the results of using this algorithm on the test problem. We note a 

further decrease in the error as compared to Tables 1 and 2. This can be explained by the fact 

that the first term on the right hand side in (3.6) is now 0 ((t1t )2) rather than 0 (flt ). In fact, 

for fl.t :5 1/8 the errors that depend on fl.t appear to be so small there is little further decrease 

in the error if one fixes N and lets fl.t go to 0. It is important to note that the error still 

depends on N like 0 ( ..JN -1 
). In other words, the overall dependence of the error on N has 

not changed. However, now the choice of parameters which results in the first and last terms on 

the right in (3.6) decreasing at the same rate is 

1 
fl.t = 0 ( .vN ). 

It is important to note that Strang splitting costs no more than first order splitting. One simply, 

takes half a time step at the beginning and another half time step at the end, 

Table 4 contains the data from columns 1, 3, and 5 of Table 3 organized so that the most 

efficient way to decrease the errors now lies on the diagonal. Thus, we see that for a given fixed 
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N one can now achieve the same level of accuracy as the original method with fewer time 

steps. This results in a small savings in computational· effort. To decrease the error by four the 

original version requires N - 16N and il.t - il.t /4 resulting in 64 times as much work.t On 

the other hand, the higher order method requires 32 times as much work to achieve one fourth 

the error. We remark that for methods in which the work required at each time step is 0 (N 2
) 

the savings is proportionally smaller. 

Second Order Solution of the ODE with Strang Splitting. 

- Number of Particles -
il.t 1000 16000 256000 
1 0.0545 0.0139 0.0109 

2-1 0.0293 0.0090 0.0062 
4-1 0.0300 0.0097 0.0028 
8-1 0.0242 0.0064 0.0018 
16-1 0.0266 0.0071 0.0020 
32-1 0.0311 0.0083 0.0022 

Table 4 (The optimal choice of parameters lies on the diagonals.) 

Finally. we replaced RAt by RAt (it is easy to compute the exact solution of equation 

(3.1a,b)) and tried this version on the test problem. In this experment we did not use Strang 

splitting. The· results are presented in Table 5. For those choices of N and il.t for which one 

expects the errors due to Jl.t to be noticeable we note a moderate improvement over the use of 

the second order ODE solver without Strang splitting. On the other hand, when the 0 ( VN -1) 

errors dominate, the errors in Table 5 are quite close to those in Table 2. Comparing Table 5 

with 'Table 3 we note the marked difference that the use of Strang splitting makes. We con-

elude that if one is going to go to the trouble of using a higher order solution of the ODE (3.1a), 

then one should also use Strang splitting, especially because it results in no appreciable increase 

in computational effort. 

I Here we have neglected the work required to sort the particles at the end of every time step and assumed the 
worlt at every time step is 0 (N ). 
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Exact Solution of the ODE. 

- Number of Particles -
at 1000 4000 16000 64000 256000 1024000 
1 0.0756 0.0307 0.0329 0.0267 0.0293 0.0288 

2-1 0.0372 0.0199 0.0155 0.0128 0.0144 0.0149 
4-1 0.0297 0.0175 0.0102 0.0069 0.0074 0.0075 
g-1 0.0248 0.0141 0.0063 0.0037 0.0039 0.0037 
16-1 0.0272 0.0166 0.0076 0.0035 0.0031 0.0016 
32-1 0.0309 0.0137 0.0079 0.0045 0.0022 0.0007 

Table 5 (L 1 norm) 

9.3. Conelusions The most obvious conclusion is that the theoretical estimates underesti-

mate the rate of convergence. One can argue that this is a special test problem and more gen-

eral problems may converge at a slower rate. However, most solutions of {1.3a,b) converge to 

traveling wave solutions in time (Bramson [8]) and it seems likely that the method's behavior 

with this particular traveling wave solution is representative of its general behavior when 

approximating a traveling wave solution. 

We believe that the failure of our analysis to accurately predict the true rate of conver-

gence is largely due to the fact that we divided the overall error into the sum of the errors 

made at each time step and bounded each of these errors separately. In this regard we note that 

in [33] Hald was able to establish the correct rate of convergence for the method considered 

there because he could write down the exact solution at any time t . Thus, he simply subtracted 

this from the computed soluti.on. This example serves to indicate the perils of using the triangle 

inequality too liberally. 

The numerical results above clearly demonstrate that for the original version of the ran-
.. 

dom gradient method the dependence of the overall error on the fractional step is 0 (at). 

Based on this evidence we believe that the bound in (3.6) is sharp and that our analysis simply 

underestimates the dependence of the last term on N. Furthermore, we believe that the conver-
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gence proof provides a sharp estimate of the dependence of the error on lit . 

• 

... 
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