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INTRODUCTION 

The positive muon (~+) has been used for probing the magnetic 

properties of condensed matter. + Because the ~ has a magnetic moment, 

it interacts with the magnetic fields of a sample. Part of the method 

of using the~+ as a magnetic probe involves the production of a 

beam of ~·s whose magnetic moments are longitudinally polarized. 

The technique of producing a beam will be btiefly discussed in Section I, 

but for the moment we assume that we have a polarized beam of ~·s. 

The beam of polarized ~·s is stopped in a target and each~+ until 

its decay will magnetically behave like a light protron. Each muon 

will interact with the local magnetic fields of the target. These 

local fields may arise from hyperfine fields of the electrons or 

+ nuclei of the target. When the~. decays, the direction of the w's 

magnetic moment is correlated with the direction of its emitted 

position. Thus, counting decay positrons in a given direction as a 

functi~n of time spent by the muon in the target gives information 

about the evolution of the ~·s polarization. If a large number of ~·s 

experience the same local magnetic field, the energy of interaction 

between the magnetic moment of~ and the local field may be observed 

as a precession frequency. A study of the various precession frequencies 

observed gives information about what states the ~+ has formed in the 

medium. 

+ One state that the ~ may form is muonium (Mu) which acts magnetically 

as a light isotope of hydrogen. + Because of the interaction of the p 

with its electron in Mu, the~+ will precess at a frequency 103 times 

that of the f~ee ~+ in an external magnetic field~ The f~ctor of 103 
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arises from the Larmor Precession of triplet muonium where w ~-21 w = 103 w . mu e u 
A study of the muonium precession frequencies gives information about 

the electron spin density at the~+. This information is directly 

connected to the dielectric properties of the target. 

Thi~ dissertation is concerned with the states that the ~+ fotms 

in semiconductors, in particular, silicon and germanium. 

Section I contains the properties of the~+ and a brief description 

of how a polarized ~+ be~m is constructed. A phenomenological description 

+ of the slowing down of~ in solids and the possible states formed by 
+ 

the ~ is also discussed. The last part of Section I contains a 

discussion of previous work done with~+ in semiconductors. 

Section II contains the experimental results of studies done on 

quartz, silicon, and germani~m. Studies were done on the field and 

temperature dependenc~ of muonium precession frequencies in silicon 

and germanium. The detection of anomalous frequencies led to a series 

of experiments that investigated the field and orientational dependence 

of these frequencies. The muonium and ahomalous frequencies were 

investigated fori series of temperatures between liquid helium tempera-

ture and 120°K for p-type silicon. 

Section III contains an investigation of several models used to 

explain the results we have obtained in Si and Ge for muonium precession 

and the anomalous frequencies. 

For muonium precession a brief description is given of the calculation 

of Wang and Kittel which was done to explain the reduction in the contact 

interaction for muonium in Si and Ge. 
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THE STUDY OF MUON1C STATES IN SEMICONDUCTORS 

Richard Franklin Johnson 

Lawrence Berkeley Laboratory 
· Department of Physics 

University of California 
Berkeley, California 94720 

ABSTRACT 

A beam of polarized positive muons was stopped in semiconducting 

materials situated in a uniform magnetic field transverse to the 

beam direction. The precession of the positive muon was observed by 

detection of the decay positron coming from the asymmetric decay of 

the muon. 

·Long-lived muonium was observed via its 11 two-frequency 11 precession 

in p-type samples of silicon and germanium. From the precession 

' frequencies of muonium in silicon and germanium it has been determined 

that the Fermi contact interaction is reduced in these media compared 

to its:vacuum value. This implies significant screening of the impurity 

potential of the muon in these materials. 

A series of frequencies other than the positive muon and muonium 

precession frequencies was ·detected in p-type silicon. The field 

dependence of these precession frequencies, tentatively designated 

"anomalous", has been studied for two different crystal orientations 

in the ~xternal field. A >hift in these anomalous frequencies has 

been detected for the two crystal orientations at all fields. Since 

the states associated with the anomalou~ frequencies should have 

symmetries compatible with the lattice structure of silicon which is 

face centered cubic (diamond structure), a systematic study of magnetic 

orientational effects was done. 
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A study of the behavior of the precession-frequencies as a function 

of temperature at 100 G was done for temperature between room tempera

ture and liquid helium temperature. The temperature study indicates 

a variation of the precession frequencies associated with muonium. 

At room temperature muonium was not detected. 

The formation of muonium is discussed in terms of a deep donor 

in which the binding energy is greater than half the forbidden gap 

energy in silicon and germanium. 

The formation of the anomalous state is tentatively viewed as a 

shallow donor state having Tl symmetry. The use of this model leads 

to the tentative conclusion that the anomalous frequencies may not be 

associated with shallow donor states. 

The apparent variation of the.muonium precession frequencies is 

studied using the model of the formation of a localized moment in which 

the impurity potential of the muon polarizes the electrons of the 

valence band. The temperature dependence of this model is investigated 

to indicate temperature trends in the muonium frequencies. 
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Several models are considered in an attempt to explain the anomalous 

frequencies: (l) excited 25-muonium, (2) 2P-muonium and (3) shallow 

donor muonium having Tl symmetry. 

The temperature variation of the muonium precession frequencies 

is investigated via a virtual state model. The temperature trends 

obtained from the virtual state or "localized moment" moment model 

point to the possibility of muonium being formed as a virtual state. 
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I. EXPERIMENTAL PRELIMINARIES 

A. ~+Properties and Precession Measurements 

The positive'muon (~+) is a particle that has approximately l/9 

the mass of the proton and a charge equal in magnitude to that of the 

electron. Its mean lifetime is 2.2 ~sec, and it decays into a positive 

electron and two neutrinos. With a spin of l/2 and a mass a fraction 

of the proton's mass, the positive muon has a magnetic moment 3.18 times 

larger than that of the proton; therefore, with consideration for 

lifetime, mass and magnetic moment, the positive muon can be viewed 

magnetically as a light proton. 

As a result of the asymmetric decay of the positive muon, its 

decay positron has a higher probabili~y of emerging from the decay 

along the direction of the spin of. the~+. This makes the~+ a useful 

probe of magnetic fields in media. The information about magnetic 

fields can be obtained by observing the time distribution of the decay 

of a large number of polarized ~·s which have stopped and are precessing 

in a target of interest. 

The early experiments1 •2 that used the positive muon as a probe 

in semiconductors were concerned with the various changes in the ~·s 

polarization. The residual polarization (final ~+ polarization) was 

measured for a variety of doping and temperature condittons. A small 

residual polarization implied that the muon's spin had interacted 

strongly with-target medium, which meant that the muon had formed a 

complex which lasted long enough to cause its spin to depolarize, due 

to the ~·s interact-ion with the internal magnetic field of the complex. 
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B. Polarized~+ Beams and Muonic States in Semiconductors 

At the 184 Inch Synchrocyclotron at LBL, a 730 MeV proton beam 

is produced which is used to bombard a copper target for the production 

of n mesons. The TI
1

S have a parity violating decay which results in 

a positive muon and a neutrino. Because the ~~s decay in flight, and 

since the ~ has substantial mofuentum (29 MeV/c) in the center of mass 

system, one is able to separate the forward and backward spins of the 

polarized muon beam. In the center of mass system the ~~s spin is 

antiparallel to its mO'mentum. Since then decays isotropically in 

the c.m. frame, then the higher energy ~~s in the lab frame will tend 

to have their spins ahtiparallel to the beam. 

The higher energy muons are stopped in a target of interest and 

begin to precess in an external fi~ld transverse to the pOlarized beam 

(Fig. 1). The precession of the muons in whatever local fields they 

experience will be determined by counting the number of decay positrons 

as a function of time spent by the~+ in the target. The angle between 

the muon spin and the observable positron trajectory will vary in time 

as e = wt (see Fig. 2). 

The positron rate in the counter telescope as a function of muon 

lifetime in the target will be given by 

N(t) = N exp(-t/T )[1 + E A.(t) Cos(w.t + ¢
1
.)] + B 

0 ~ i 1 1 

where the sum is over all possible states the muon can be in, N is 
0 

the mean number of counts per bin, T is the mean lifetime of the 
ll 

muon (2.2 sec), 11J. is the precession frequency of the muon in the 
1 

(I. 1 ) 

external magnetic field and whatever local field it experiences, ¢; is 

the initial phase of the muon in the state i, A;(t) is the muon asymmetry 
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in state i which may be time dependent in general. and B is the 

background which was in the experiment at LBL reduced to 1 to 2% of N . 
\ 0 

The parameters in the above equation can be determined by a maximum 

likelihood fit. The same information can also be obtained by analysis 

of the Fourier transform of the data which would give all possible 

precessio~ frequencies due to local magnetic fields. 

A stopped muon (Fig. 1) is determined by the logic combination 

(Bl + B2) • M • Sl • S2X. For a decay positron signal the logic com

bination S2X • E • S2 • S3 • (Bl + B2 + M) is used. The stopped muon 

sig~al starts a clock and creates a gate which lasts about 12 ysec. 

Any positron signal which occurs during the gate will stop the clock. 

Therefore. for each observed muon decay one measures the individual 

lifetime of the decayed muon. Da~a from an ~nsemble of muons stopping 

in the target will then form a time histogram of the precessing 

muons (Fig. 3). 

Care must be taken not to include events that occur when more 

than one muon is stopped in the target or more than two decay positrons 

signals occur during the 12 ysec gate. These "Bad" events are rejected 

by the logic. The complete details of the experiment can be found in 

Ref. 3. 

Typical counting rates of semiconducting targets of sizes 1 in. 

in diameter and 3 in. long are for the higher energy y 1 S: 

Incident muons 

Stopped muons 

Detected positrons (good events) 

"13ad" events 

3000/sec 

1500/sec 
30/sec. 

3/sec 

•J • 
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The low number of detected positron events is due to the solid 

angle of the positron telescope (~2% of 4n steradians) . 

In the experiments on semiconducting materials in which the 

lifetime and asymmetry of signals were determined for those signals 

that had relatively small asymmetries or short relaxation times 

compared to the~+ lifetime (e.g., muonium) approximately 30 million 

events were accumulated to be used in a maximum likelihood fit of the 

parameters in Eq. (1.1). Those experiments which were concerned 

with the variation of the precession frequencies represent from 2 

to 10 million events; these data were Fourier analyzed. With the 

Fourier analysis most of the signals were statistically significant 

after 2 million events had been accumulated (see Section II). 

l. Muon Thermalization and Muonium Formation 

Upon entering a target the muon has an energy of about 50 MeV and 

will first lose energy by scattering with electrons u~til its velocity 

approaches that of the valence electrons of the target atoms. When 

the ~ has decelerated to the valence electron speeds (~2 to 3 keV) 

there is a high probability that muonium can be formed. The. time it 

+ -10 4 5 takes the ~ to decelerate to these speeds is ~10 sec. ' From 

energies of several keV until it thermalizes (~lo- 12 to 10-ll sec) 

thew+ will successively capture and lose electrons. A quasi-stable 

bound state of thermalized muonium may exist in the target depending 

on the dielectric properties of the electrons in the target. If a 

' + bound state of muonium is formed in the target, the w bound in muonium 

will precess at a mean frequency 103 times faster than that of a free 

muon. 
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There are several other states the positive muon may form (Fig. 4): 

(1) Diamagnetic compounds in which the muon will precess at a 

frequency equal to that of the free muon. 

(2) The muon may also form radicals with the atoms of the medium, 

in which case its precession will depend on the hyperfine interaction 

it experiences. 

(3) In addition to being in ground state muonium, there is a 

possibility that the muon can be in some of the excited states of 

muonium. These excited states would have a radii that are large in 

comparison to the size of a unit cell as is shown below and should 

have symmetries that are in keeping with the symmetry of the lattice. 

An estimate of the sizes and energies of impurities can be made 

if we consider a hydrogenic atom in a semiconductor. Most semi-

conductors have large static dielectric constants (e.g., ESi = 11.7) 

and one would expect the mean radii and energy of an impurity to be 

affected. For the hydrogenic impurity in a semiconductor the size of 

the nth excited state will be: 

2 mE 
an = n aB m* (I. 2) 

and the energy wi 11 be 

2 2 E = - E /n (m*/mE ) n 0 
(I. 3) 

where c is the bulk dielectric constant, m* is the effective mass of 

the electron, a8 is the Bohr radius of hydrogen in vacuum (0.528~), 

and E
0 

is 13.58 eV. For a large dielectric constant and a small 

effective mass the orbits are large (~60~ in Si compared to a lattice 

constant of 5.43~) and the binding energy is small (~0.013 eV compared 
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to the gap energy of 1.21 eV). The binding energy for those impurity 

states that are formed in the forbidden gap in semiconductors is 

usually measured from the bottom of the conduction band. Impurity 

states near the conduction band edge which contribute electrons to 

the conduction band are called shallow donor states. From the estimate 

above of the size and binding energy one would expect the excited 

states of muonium to be shallow donor states. Any shallow donor states 

of muonium in crystals with the diamond structure would have to have 

symmetries disignated by the Al state (s-like), Tl state (p-like), 

and Estate (d-like). 6 The symmetries of these states have been 

investigated by Kohn and Luttinger. 7 

(4) The muon can also be in short-lived diamagnetic states. 

These states would be evidenced bj a rapid decay of a component of 

the.muon precession signal. 

One possible short-lived diamagnetic state can be envisioned 

by analogy to the H- ion; however, one should not take this analogy 

too strictly in the sense that for the H ion there are definitely 

two electrons associated with the atom giving an average electron spin 

density at the proton of zero. Whereas for Mu there will be one 

electron, but the spin density at the~+ will also be zero because of 

the interaction of the muon's electron with all of the electrons in 

the band. This spin density would be expected to fluctuate in time, 

thereby giving a rapidly decaying component of the muon precession. 

These considerations are based on the model of the muon being in a 

virtual state in a band. 8- 10 

(5) Several diamagnetic or paramagnetic states can be formed 

if the muon is able to form defects. In silicon and germanium the 
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"knock on 11 energy necessary to completely displace a lattice atom 

is 14 eV and 25 eV respectively; therefore, there could be a situation 

in which the muon has just enough energy to displace an atom of the 

lattice and become trapped by the defect. If this happens, there 

are two possible environments the + will experience: (a) a defect ]J 

center in which the covalent bonds of the surrounding atoms are completely 

satisfied, thereby leading to a diamagnetic environment, (b) a center 

in which the bonds of the surrounding lattice atoms are not completely 

satisfied, leading to a possible paramagnetic situation. If it is a 
. 

paramagnetic environment, the muon will precess at a frequency 

different from that of the free muon. 

As mentioned earlier, the question of whether a stable bound 

state of thermalized muonium can exist in the target medium depends 

on the dielectric properties of the electrons. If the density of 

electrons is of the order of that in a conductor (degenerate gas), 

then the electrons will tend to screen the J.l+ and interact with each 

other. Because of the interaction between electrons, the muon will 

not have any one electron associated with it; hence, one would expect 

that in good conductors no stable state of muonium can exist. This is 

exactly the experimental evidence. 2 As the electron density decreases, 

the mutual interaction between electrons will decrease until an electron 

concentration is reached where there will be one electron associated 

with the muon.' In this case a bound state of muoniu111 can exist, and 

one would expect the formation of quasi-stable thermalized muonium 

in insulators and semiconductors. The aboVe considerations have been 

"f" d . 11' 1,2 ver1 1e exper1menta y. 

. 
:. 

_\.I 
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2. Muonium Hamiltonian and "Two Frequency Precession'; 

It was mentioned earlier in this section that the asymmetry 

+ of the u may have an additional time dependence. One of the major 

contributions to this time dependence is the formation of muonium 

and the resultant contact interaction that the muon experiences with 

its electron. To investitate this behavior, we assume a Hamiltonian 

of the form 

e 
• 0 

where 

is the contact energy, oe and au are the electron and muon Pauli 

spin operators, and ww and we are ~he Larmer frequencies of the 

muon and electron, respectively, which are given by hw~ = gww~B 

and e e hw = gew
0

B. In this case gw = 2 and ge = +2 and w
0 

= eh/2mc. 

(I. 4) 

(I. 5) 

The eigenvalues can be determined by using a set of spin functions 

(t t ,t + ,+ t ,+ + ) which give w e w e w e w e 

wl = w/4 + w _ = E1/h 

w2 = w /4 + Jw2!4 + w~ 
0 0 

w3 = w/4 - w_ = E3/h 

-w /4- J};4 w4 = + ul 
0 0 

= E2/h 
(I. 6) 

2 E4/h = + 

1 where w± =~(lwei ± lwwl ). The frequencies w1, w2, w3 can be associated 

with the triplet state of a Breit-Rabi diagram, and w4 with the singlet 

state (Fig. 5). 
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The energy eigenstates for the above Hamiltonian for the axis 

of quantization along the magnetic fie 1 d wi 11 be 

I El } = 1\/~> II 

I E2} = sIt ll + e >II + c I + ll t e >II 
(I. 7) 

IE3> = I+ ll + e >II 

I E4} = cl t/ e>ll - sl+llte>ll 

where 

s = 

-+ 
with the "natural" specific field x = IBI/B

0 
where B

0 
= 1585 G. 

Experimentally, for most cases, we are unable to detect the 

hyperfine (contact) frequency (w1 - w4) directly. Because of the 

time resolution, frequencies above 200 MHz would be undetected; however, 

the two precession frequencies w12 = w1 - w2 and w23 = w2 - w3 are 

well within the experimental resolution. 

In general how does the ll'S polarization depend on muonium formation? 

This question can best be answered by considering the l-1 1
5 initial spin 

polarization as the axis of quantizatio~ (field direction arbitrary). 

If the available electrons in the target are not polarized, then 

initially half of the muonium ensemble will form in the state 

Ia > = It t > and the other half in jb > = It+ >. If we consider 
o l-Ie o l-Ie 

the case of the initial polarization of the ll being parallel to the 

magnetic field then la
0

> = ltllte>ll = IE1 >which is a stationary state. 

For the second half of the ensemble lb
0

> = jtll+e>ll = sjE2> + cjE4 >. 
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This state will have a time dependence 

-iw t -iw t 
lb(t)> = se 2 IE>+ ce 4 IE4 > 

or 

where w24 = w2 - w4. Therefore, the state lb(t)> oscillates between 

the original state 1\/e>ll and the state 1--r]Jte>ll at a frequency w24 . 

This means that the polarization of the ]J+ oscillates (for Jb(t)>) 

(I. 8) 

between P max 
= l and P . = (x

2
- l) 

m1 n x2 + ·1 
These relations can be derived 

from Eqs. (I.7) and (!.8). The polarization for Ia> is +1. Thus-the 

net muon polarization oscillates at angular frequency w24 between 

x2;(x2+l) ~nd +1 giving an average polarization as a function of specific 

field of 

2 
X 

p = l/2 + l/2 ----
]J + x2 

As can be seen,when the field is large PJJ + l, which means that at 

+ large fields the lJ is effectively decoupled from its electron in 

muonium. 

In the process of slowing down~ if the ]J+ is able to capture 

an electron to form quasi-stable muonium, then the time evolution of 

(I. 9) 

thew's spin will be dependent on the muonium precess ion frequencies 

and the degree of polarization of the captured electron's spin. The 
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"proper muonium" or the time evolution of the 11's polarization via 

its "two frequency" precession in muonium was thoroughly investigated 

by Ivanter and Smilga. 11 The evolution of the 11's spin polariz~tion 

is obtained from a Hamiltonian of the form: 

H = HMu + V + W 

where HMu is the muonium Hamiltonian, G represents the interaction 

of the electron in muonium with the lattice and W represents the 

lattice-lattice interaction. A spin density matrix is defined for 

muonium in terms of the Pauli spin matrices 0;· 

. 1 ++ ++ L p=-2 l+P0 +P0 + 
J.l J.l e e 

i 'j = 1 

i j 
p .. 0 0 
lJ e 

(1.10) 

(1.11) 

where PJ.l is the muon polarization vector components o10 , o20 , o30 (x,y,z) 

and and Pe is the electron polarization vector components o01 , p02 , o03 . 

The time evolution of p is given by 

~·~ =- ~ [H,p] (1.12) 

which leads to a set of Wangne~s-Block equations: Following Invanter 

and Smilga10 the time dependent terms ij and ~ can be viewed as 

relaxation of the electron's spin and may be replaced by a phenomenological 

parameter 2v (spin flip frequency) for. all pure and mixed electron 

components. The results are then 
w 

pil = 2° (pjoEilj - PokEilk) + wjoljk wjoBlEljk- 2VPi 

P10 = w~ 0 ikEljk- w~pkOtlik (l.lJ) 
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The above system of equations splits into two irreducible parts, one 

part involving longitudinal components of P and P and the other 
]1 e 

part the transverse components with respect to the external magnetic 

field. Introducing the complex combination. 

(!.14) 
P I p + ,. 0 I - p + ,· 

]1 = 31 32 ' Pe - · 13 °23 

p]J represents the polarization of the ]1 projected on the (x,y) plain 

(LB). Further introducing 

p]J 

Pe 
~ 

p = 
p]J 

I (!.15) 

Pe 
I 

The transverse subsystem can be written as 

dp = A . p dt (!.16) 

where 

2iz;;x 0 -i i 

0 -c\) + 2i x) ; 0 
wo 

A = -(4v _ 2Ex) 
(!.17) 

-1 i 
tuo 

-i 0 -(~~ + 2ix) 

The solution of the above set of equations when there is no spin 

f1 i p frequency (v = 0) in the X direction (along the beam) is 
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where w± is as previously defined and 

= (l w2 + w2)1/2 
Q 4 0 + 

z:; = 
m . e --. 
m 
ll 

The w .. are just the Zeeman transition frequencies in muonium. For 
lJ 

long times and large fields the terms associated with w14 and w24 

will average to zero 

( L 18) 

(I.l9) 

~ = 

When there is mild relaxation due to spin flipping [v2 
« (w~)2 x 4] 

then 

-t/T [~ · ) 1 3 · ~sin~t · 
~ 2 e cos~ t + · 2 cosw_t 

y 3T ~ Jy 

( 2) l 2w + ~ . - . + 2 s1nD tslnlJJ_t 
(JJ r2 y 

0 y 

where 

. ;. 

•• 
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and the beat frequency is also relaxation dependent 

Therefore, in most experiments the observation of muonium precession 

will be via its two precession frequencies w12 and w23 . 

C. Previous Studies of w+ in Semiconductors 

The earliest study of muons in semiconductors was done by 

Feher et al. ,1 who studied a number of silicon crystals with different 

doping in a longitudinal field at various temperatures (Fig. 6). When 

they looked at the residual muon polarization as a function of doping, 

they found that at high hole concentrations (-1018 Boron atoms/cm3) 

the polarization was nearly at maximum and decreased as the hole 
' 

concentration decreased to the intrinsic stage (1010 carriers/cm3). 

As the number of free electrons increased, the residual 

decreased until it reached a minimum at 1014 phosphorus 

thereafter began to increase to a maximum at a doping of 

polarization 

atoms/cm3 and 
18 10 phosphorus 

3 atoms/em . The residual polarization was also studied in n-type Ge 

at room temperature and liquid nitrogen temperature. It was found 

that the residual polarization at the lower temperature was 1/3 of 

that at room temperature. 

The subsequent interpretation of this strong dependence of the 

residual polarization on doping was as follows: When the conduction 

electron concentration is high, the semiconductor has the properties 

of a conductor, implying that the w+ is interacting with the degenerate 
. + 

electron gas and that the w does not have any one electron associated 
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with it. This interaction gives a mean electron spin density of 

zero at the muon. Because the mean electron spin density is zero, 

the muon's spin is effectively decoupled from any electron's; hence, 

there is no net Fermi contact interaction. Because the net contact 

interaction is zero, the muon is less strongly depolarized thereby 

giving a large residual polarization. 

As the conduction electron density decreases, the mean spin 

density at the ~+ increases which would be evidenced by an increase 

in the depolarization and a decrea~e in the residual polarization. 

The mechanism for the reduction of muon's polarization would be the 

formation of muonium (Mu) in which the muon would experience the 

Fermi contact interaction of its electron. 

The increase of the residual .polarization with the increase of 

the hole concentration was less clearly understood. 1 The mechanism 

suggested was the capture and loss of electrons that were n6t in 

equilibrium with the lattice whereby the effective electron spin 

density at the muon was decreased. 

There are two other possible explanations for the increase in 

18 3 the residual polarization: (1) In the region of 10 holes/em the 

holes form a gas that is slightly degenerate (overlap of wave functions) 

implying that the Fermi level will be near the valence band edge. As 

the acceptor concentration increases the Fermi level will tend to 

move from the c~nter of the forbidden gap toward the valence band edge. 

If we assume that the muonium level is a localized state in the 

forbidden gap, then when the Fermi level is above the Mu level muonium 

can be formed. If muonium can be formed and is quasi-stabl~ the ~+ 

polarization will be small. Increasing the hole contentration will 

. . 
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make the Fermi level move lower in the gap and eventually pass 

the Mu level. Once the Mu level is above the Fermi level quasi-stable 

muonium cannot be formed or, in other words, the muonium atom will be 
+ + 

ionized (free w ) leading to a large residual polarization of the w . 

(2) The othet possible explanation is that muonium is not a 

localized level in the forbidden gap but it is a virtual state in the 

valence band. Virtual states have been considered by Friedel 12 in 

explaining the behavior of magnetic impurities in conductors. 

Anderson9 and Wolff10 have done similar calculations to explain the 

formation of localized moments. The formation of a localized moment 

(Mu) would depend on the width of the virtual state, its position in 

the band and its position with respect to the Fermi level and valence 

band edge. As the Fermi level moves toward the valence band edge 

the virtual level will tend to become broader. As the width of the 

level increases, the localized moment (mean electron spin density at 

the w+) will decrease until it is zero implying no muonium formation and 

a high residual polarization. This model will be explored in Section III. 
? 

The series of experiments done by Eisenstein et al.- on samples 

of Si and Ge in a transverse magnetic field for different dopings and 

various temperatures gave results similar to those reported by 

Feher et a1. 1 for positive muons in longitudinal fields (Table I). In 

both series of experiments a gated scaling technique was used which 

effectively yielded the average polarization over 1-4 wsec. Because 

of the choice of field direction and/or time resolution, neither 

experiment was able to demonstrate the presence of muonium. Although 

they were unable to detect any muonium signals, Eisenstein et al.
2 
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postulated that the behavior of the residual polarization rn11lrl ho 
\..V'\.AIU Lfl, .... 

partially explained by the presence of muonium formation. Ivanter 

and Smilga 1 s11 thorough theoretical investigation of the depolarization 

.of the muon via its formation of muonium showed that the 11 proper 

muonium .. mechanism (coherant precession of a large number of Mu atoms) 
. 2 

could explain a number of results that had been obtained experimentally. 

However, the 11 proper muonium .. mechanism could not fully explain the 

data of Eisenstein ~t a1. 11 For low fields the polarization of the 

Jl deviated from curves based on proper muonium. The implication is 

that there are other depolarization effects that the muon experiences 

in semiconductors. 

Although the 11 proper muonium .. mechanism explains a major portion 

of the ]1
1 S depolarization behavio~ in semiconductors there is, at 

least for silicon, another depolarizing mechanism that should be taken 

into account. In our experiments at LBL we have detected another set 

of frequencies in Si besides Jl+ and muonium. These frequencies are 

associated with a state or states that will contribute to the depolari-

zation of the Jl 1 S spin. Hence at present it would be more appropriate 
II 

to consider a model of 11 proper muonium plus anomalous state(s) 

depolarization. 

Andrianov et al . 13 studied the initial asymmetry and relaxation 

+ of the Jl in intrinsic Ge in the temperature range between 77°K and 

360°K and found that the initial asymmetry and 'relaxation rate 

increased as the temperature increased ('Fig. 7). It was assumed that 

the muon precession was proportional to A(t) cos(wt + ¢) where A(t) 

is the time-dependent asymmetry of the muon, and wand¢ are the 

precession frequency and initial phase, respectively. ·In n-type Ge; 
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however, it was found that there was virtually no depolarization of the 

muon asymmetry. Similar effects were found in Si. 

Gurevich et a1. 14 were able to detect the presence of long-lived 

interstitial niuonium by its "two-frequency precession" in germanium 

(Fig. 8). From this measurement they were able to determine that 

the Fermi contact interaction was 0.56 of that in vacuum implying 

a significant dielectric screening of the Jl+ potential in Ge. 

Andrianov et a1. 15 were able to fit the proper muonium mechanism· 

model to their longitudinal data (Fig. 9) in silicon (p-type) and 

bt · d = 0.405 vac o a1ne wMu w
0 

Hence, in silicon there is significant 

screening of the Jl'S potential. 

The motivation of the initial experiments at LBL was the direct 

measurement of the muonium precession frequencies in a transverse field 

for silicon.· Thes~ initial experiments not only met with success 

but indicated a number of other experiments that should be done. 

These experiments and their results will be discussed in the next 

section. 

( 
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II. EXPERIMENTS AND RESULTS 

In the experiments at LBL the presence of long-lived interstitial 

muonium in Si 16 •17 has been detected. It was determined in Si that 

the contact interaction was reduced compared to its value in vacuum, 

implying that the dielectric screening of the ~+ is more effective 

in Si than in Ge. Not only was the presence of muonium detected, 

but a number of "anomalous" frequencies were also detected. In order 

to get a better idea of the magnitude of the g-factor (s) associated 

with the anomalous frequencies, a series of experiments were done 

for different values of the external magnetic field between 15 G 

and 4.4 kG. The field variation of the anomalous precession frequencies 

was done for two separate orientations of the crystal in the external 

field: (l) The field along the (lll) direction and along the (100) 

direction. It was determined that there was a shift in the anomalous 

frequencies between the (111) and (100) directions for all fields 

investigated. Since shifts in precession frequencies cannot be 

associated with an s~state, it was decided that information about the 

symmetry of the state (s) associated with the anomalous frequencies 

could be obtained by looking at the shift in the precession frequencies 

as a function of the orientation of a 100 G magnetic field in the 

[110] plan of the crystal. The lifetime of the muonium and the state(s) 

associated with the anomalo~s frequencies was also investigated as 

a function of the temperature. Both the field orientation and 

temperature dependence studies were cut short because the 184 Inch 

Synchrocyclotron was shut down; however, interesting trends can be 

found in both sets of data·. 

. ' 

'{ 
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+ The screening of the w in muonium for Si and Ge can be attributed 

to the dielectric properties of these media, and an estimate can be 

made of the binding energy of Mu in these semiconductors. 18 Nosov 

and Ykoleva19 predicted that the dielectric properties of the medium 

must be considered, and if shallow donor muonium is formed, the 

contact interaction should be reduced by a factor of 1/[(m/m*) .::2], 

where E is the bulk dielectric constant, and~* is the isotropic 

effective mass of the electron. This simple model is ~ot in agreement 

with experimental data, which suggest that muonium acts as a deep 

donor. The binding energy of Mu in Si and Ge was estimated by Wang 

and Kittel 18 using position~dependent dielectric functions, and they 

were able to show that Mu acts as a deep donor. This will be discussed 

in Section III. 

Although it is known that there are substantial amounts of 

hydrogen in Ge and Si, no signals due to hydrogen have been detected· 

b . . t t . 1 t h . 20 th f y any sp1n resonance exper1men or op 1ca ec n1ques; ere ore, 

muonium, which acts magnetically as a light isotope of hydrogen, can 

give information concerning what happens to hydrogen in these 

semiconductors. In this section the series of experiments performed 

at LBL on some insulators and semiconductors and the results of these 

experiments will be given. 
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A. Materials and Equipment 

1. Samples 

Two types of quartz crystals were used for targest in the 

experiments: natural and fused quartz. The choice of both kinds 

of quartz was a test of the possible variation of the muonium precession 

frequencies as a function of environment. The natural quartz sample 

had the dimensions of 7.62 em x 10.16 em x 12.7 em and the .fused 

quartz was in the form of a cylinder with a diameter of 7.62 em 

and height of 10.16 em~ 

For the silicon crystals, five sets bf single crystals were used. 

One sample was n-type compensated for 6 x 1013 carriers/cm3 at room 

temperature. Thtee other sets were p-type with 5 x 1012 Boron 
.· 3 13 3 14 atoms/em (P0), 5.3 x 10 Boron atoms/em (P1), and 3 x 10 Boron 

3 atoms/em (P 2). These three sets of p-type Si were used to test the 

variation of the precession frequencies on doping. 

Upon detection of the Mu precession frequencies and the anomalous 
' 

frequencies, a sample of p-type Si with a high concentration of 

oxygen (-lo18 oxygen atoms/cm3) was used to search for a possible 

effect of this impurity on the precession frequendies and amplitudes, 

in particular as a test of the anomalous frequencies. 

All of the Si crystals were drawn and grown with their [111] axis 

parallel to the axis of the rods. With the exception of the sample 

with the high 02 content, all crystals we~e zone-refined. 

All of the silicon crystals were 2.54 em in diameter and 

10.16 em long. An experimental target consisted of three rods aligned 

to present maximum surface area to the muon beam. 

•' 
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The germanium sample was a single crystal of p-type with 

7 x 1014 Boron atoms/cm3 at room temperature. This crystal was in 

the form of a rod 5.08 em in diameter and 10.16 em long. 

All of the above samples were run at room temperature and 

liquid nitrogen temperature. Two of the p-type silicon samples 

(P0, P1) were run at ten field values at 77°K to test for any indication 

of doping dependence of the precession frequencies. The higher of 

these p-type samples (P1) was run at a number of temperatures from 

room temperature down to liquid helium temperature (4.2°K). This 

sample (P1) was also used in a field orientational study at 77°K and 

100 G. 

2. Refri9erators 

For the liquid nitrogen temperature runs a styrofoam dewar with 

walls 1/2 in. thick was used. Styrofoam was used because only a 

very few of the muons stop in its walls (about 2% of those stopping 

in the sample). 

For the series of temperature runs between 4.2°K and room 

temperature, two refrigerators were used: one by Cryomech Inc. and 

the other by Cryogenics Inc. Both were 10 watt helium refrigerators. 

For both refrige~ators the sample was mounted on the same copper 

cold finger with the same vacuum jacket which had windows made of 

copper that were 5 mils thick. 

21 For the liquid helium runs, the University of Tokyo group, 

which was involved in~ studies in solids was kind enough to allow 

us the use of their cryostat, developed by Ken Nagamine, of that 

group, which had copper windows 5 mils thick. 
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3. Magnetic Fields 

The magnetic fields were provided by a set of concentric Helmoltz 

coils and a set of trim coils to remove the stray fields in the vicinity 

of the targets, including the magnetic field due to the 184 Inch 

cyclotron magnet. The fields ranged from 15.5 G to 4.4 kG, with 

the largest field inhomogeneity in· a 3 in. cube about the target at 

any field being 0.02 G. The magnets were stable and were monitored 

every hour with a drift of 0.01 G every 24 hr period. The fields 

above 1 kG were monitored with an NMR probe and a feedback loop provided 

the capability of keeping the field variation to within 0.001 Gat 

all times. 

4. Data Analysis 

For all of the targets .a maximum likelihood fit was done to 

obtain N , B, A, T2 , w , ¢ . A knowledge of w gave a check of the 
0 ~ ~ ~ ~ 

external magnetic field. With N and B determined (see Appendix) the 
0 

data was then Fourier analyzed. Those peaks which gave a signal to 

noise of 3 or larger were considered significant. Maximum likelihood 

fits were also done for the anomalous and muonium frequencies in P0, 

P1, and P2-Si and for muonium in quartz.. These fits gave asymmetries, 

relaxation times, frequencies and phases. For the targets that were 

+ run in the refrigerator, the asymmetry of the ~ does not have the 

contribution due to the copper cold finger subtracted out. 
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B. Targets and Results 

1. Quartz 

- · Fused quartz was run at room temperature and 1 iquid nitrogen 

temperature. There was no evidence of muonium precession at room 

temperature but the two frequency precession of muonium was detected 

at liquid nitrogen temperature (Fig. 10). It was determined that 

for muonium the contact interaction is equal to its value in vacuum. 

This seems reasonable because quartz has large interstitial cavities 

and one would expect little or no dielectric screening from the 

electrons in these cavities. Muon precession was also detected. 

The lifetime of muonium was found to be around 500 ns. The 

results obtained for qua~tz are in agreement with Gurevich et a1. 14 

2. Germanium 

In P-type germanium the precession of muonium was partially 

detected in that the lower of the two precession frequencies was 

detected. See Table II and Fig. 11. The lack of the upper precession 

frequency (less than or equal to the noise) could be attributed to the 

sample being polycrystalline in nature thereby giving a short Mu 

lifetime due to surface effects, or, incorrect determination of the 

impurities in the sample. The germanium sample was the only 

crystal commercially grown. It is also possible that the Fourier 

analysis was in error; however, this seems unlikely since 6 million 

events were analyzed. The signals for Mu were statistically 

iignificant (singal/noise > 3) for 2 million events in all samples 

investigated. The Fourier analysis was tried for several windows, 

time widths, and starting times with the same lack of an upper Mu 
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signal. The lower detected Mu frequency is in agreement with ' 

Gurevich et a1. 14 

3. N- Type Si . 

In the experiments on N-type Si at room and liquid nitrogen 

temperatures, the two-frequency precession of muonium was not 

detected. + 
The~ precession signal was evident at room and liquid 

nitrogen temperatures. These results are in keeping with those of 

Feher et al. 1 and implies that if muonium forms, ·it has a very 

short lifetime (Table II). 

4. P-Type Si 

The P 1 -~ype silicon sample was run at room and liquid nitrogen 

temperatures. The ~+ precession signal was evident at room temperature, 

but there was no evidence of Mu pr.ecession. At liquid nitrogen 

+ temperature not only was the ~ precession detected, but the two-

frequency precession of muonium was also evident (Fig. 12) and 

Table III). These frequencies were assigned to muonium after it was 

determined that the difference in the precession frequencies was 

proportional to the square of the magnetic field. The difference is 

not only proportional to the square of the magnetic field but inversely 

proportional to 1~(0)1 2 . From Eqs. (I.6) the measured muonium 

precession frequencies are: 

and 

-w /2 + ~~};4 + tu+
2 

+ w 
0 0 
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Now the difference in these precession frequencies is 

~ = w - w = -w + 2 w2/4 + 
2 

· 23 12 o o w+ 

For relatively small fields (-100 G) w. >> w an~ ·o + 

Hence, we have a direct way of measuring J'I'(O)J 2. From the "two-

frequency of muonium it was determined that 

J'I'(O)I~i 
----,...-- = 0.44 ± 0.02 
J'I'(O)l~ac 

which implies that the apparent size of muonium has increased. As 

is evident from Fig. 12, other frequencies were detected that are 

lower than the muonium frequencies, but much larger than the free 

+ . f 
~ precess1on requency. These frequencies have been designated 

"anomalous 11 frequencies. 

To test the dependence of the precession frequencies on doping, 

two other silicon samples were used (P0 and P2). From Table III 

it can be seen that all of the precession frequencies agree to within 

the errors. For the highest doping there are two additional frequencies 

besides the muonium and anomalous frequencies. 

Because the muonium and anomalous precession frequencies were 

not doping-dependent, a study of the field dependence of the anomalous 

frequencies in P1-type Si was done (Table IV, Fig. 13) with the 

field in the [111] and [100] directions~ The evidence from the table 
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and Fig. 13 indicates that these anomalous frequendies are less 

strongly field dependent than the muonium frequencies. From Fig. 13 

it is apparent that there is a shift in the precession frequencies 

associated with the anomalous state for the [111] and [100] directions. ~ 

These data suggested a series of runs at 100 G and 77°K for different 

orientations of the magnetic field in the (100) plane of the crystal. 

These data would give additional information about the symmetry of 

the state(s) associated with the anomalous frequencies as well as 

determine which frequencies are associated with the same state(s). 

Unfortunately, this series of experiments was cut short by the shutdown 
I . 

of the 184 Inch Synchrocyclotron at LBL for Physics research and the 

data for the runs that were completed is listed in Table. V and Fig. 14. 

The most striking aspect of this data is the increase in the 

number of precession frequencies as the field directi6n moves into 

the [110] direction. The shift in the anomalous precession frequencies 

and the increase in the number of precession frequencies detected 

leads to the conclusion that the state(s) associated with the anomalous 

frequencies cannot have symmetries that are of s-character. If the 

symmetry were s-like as ground state muonium is then there would be 

no shift in the precession frequencies. In order for these precession 

frequencies to shift with field orientation there must be some other 

angular momentum that the state has other than spin (i.e., orbital 

angular momentum). 

A study was done to investigate the temperature dependence of 

the muonium and anomalous frequencies (Table VI, Fig. 15). Note that 

the frequencies associated with muonium show a variation with temperature 
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that is larger than any experimental errors and tend to increase 

with increasing temperature. These temperature variations cannot 

be associated with any drift in the magnetic field. From the maximum 

likelihood fits of the muon precession frequencies, the maximum 

drift in the field is such that oB/B = 0.02, which implies a maximum 

shift in the muonium precession frequencies due to drift of 3.84 MHz 

and 4.36 MHz for the lower and upper precession frequencies, respectively. 

However, it must be mentioned that the upper precession frequency which 

shows the temperature trend may not be associated with muonium. This 

will be discussed in Section III. 

The frequencies associated with the anomalous state(s) were 

detectable down to liquid helium temperature. The existence of the 

anomal~us frequenci~s at 77°K and '4.2 6 K associated with the lack of 

any detectable muonium signal at the lower temperature has been 

corroborated by the Bell Labs group. 22 

An experiment on P1-type Si at 77°K and 4.4 kG was done to 

investigate the behavior of the~+ precession signal. It was determined 

that there are at least two components of the free muon precession 

signal. One component has a relaxation time that is greater than 

25 ~sec and the other component has a short relaxation time of ~30 nsec. 

The possibilities of what these components are will be discussed in 

the next section (III) along with the discussion of several models used 

to explain the interesting behavior of muonium and the anomalous 

frequencies. 
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III. DISCUSSION OF RESULTS AND TENTATIVE MODELS 

A. + 
]..1 and Muonium 

Perhaps the most significant data obtained along with the muon 

precession is the detection of the two-frequency precession of 

muonium and the implied change in the contact interaction in both 

silicon and germamium (Tables II and III). + Because the ]..1 and 

the Mu signals do appear, they must represent independent populations 

of the ensemble of muons stopping in the target. In silicon the sum 

of the asymmetries for 1./ and muonium accounts for 2/3 of the initial 

muon asymmetry, which implies a certain fraction of the muons are 

depolariz~d in times much shorter than the time resolution of the 

experiment or have frequencies outside of the resolution of the 

experiment. + There is evidence of at least two components in the ]..1 
' 

precession signal obtained at 4.4 kG and 77°K. The rapid decay of 

+ one c6mponent of the ]..1 signal occurred in approximately 30 nsec, 

which implies that so~e of the ]..1
1 S are initially in quasi diamagnetic 

states that rapidly change into some other paramagnetic states. 

From the muonium precession data obtained from our experiments 
14 (77°K, 100 G) at LBL along with the data of Gurevich et al., an 

estimate has been made by Wang and Kittel 16 of the binding energy 

of Mu in Si and Ge. Two methods were employed to calculate the 

binding energy: (l) a cavity calculation and (2) use of a position 

dependent dielectric function E(r). The cavity calculation will 

be discussed briefly. 
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B. Cavity Calculation 

The cavity calculation was 9one initially by Reiss, 23 who used 

variational wave functions to explain why hydrogen does not ionize 

in semiconductors . 24 Kaus did a similar calculation by solving the 

Hamiltonian in the cavity and outside the cavity, and matching the 

logarithmic derivative at the boundary. 

The salient features of the cavity model are: (1) the nucleus 

is assumed to be in a cavity in which its electron experiences the 

unscreened Coulomb potential, and (2) outside of the cavity the 

electron "sees" the fully screened potential. The potential is chosen 

so that it is continuous at the boundary of the cavity; however, 

there will be a discontinuity in the electric field. 

For computational convenienc~ the variation in the mass is chosen 

so that within the cavity the electron has its vacuum mass m0, which 

changes at the cavity boundary to its effective mass in the 

semiconductor m*. 

A fu~ther approximation used is that which matches the wave 

function inside the cavity to the envelope function outside the 

cavity. Since the Bloch function will be periodic in the lattice, 

we are only concerned with the behavior of the envelope function which 

satisfies a Hamiltonian of the same form as the wave function in the 

"t 18 cav1 y. 

The Hamiltonian will have the form: 

v . ~I • = E'¥ ,. 
l l 

(III.l) 
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where the potential is chosen to be 

and 

l m = m 
m. = 1 o 

1 
m = m* 2 

(inside) 

(outside) 

where E
0 

is the bulk dielectric constant. 

(inside) 

(outside) 

The above set of equations were solved and the lugarithmic 

derivatives were matched at the cavity boundary to give an eigenvalue 

equation for the energy as a function of the cavity radius of the 

following form: 

l/2[(k2/kl)- 1] X ,F,[L + 1 - Al ; 2(L + l) klR] 

X U[L + 1 - A2 ; 2(L + 1) ; k2R] 

(III.2) 

+ [(L + 1 - >-,)/2(L + 1)] X lF,[L + 2- A, '2(L + l) + 1 k,RJ 

where 

X U[L + 1 - A2 ; 2(L + 1) ; k2R] 

+ (k2/kl)(L + 1 - A2) X ,F,[L + 1 - Al 2(L + 1) k,RJ 

X u [L + 2 - A2 ; 2 ( L + 1 ) + 1 ; k2R] = 0 

k~ = (sm/11 2
) lEI + e

2
(1 - l/E::

0
)/R] 

k~ = ( 8m* /h 
2

) I E I 
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and 1F1 and U are the normal and logarithmic solutions of the confluent 

hypergeometric equation. The binding energy is shown in Fig. 15 as 

a function of cavity radius. The best estimate of the experimental 

values (contact ratios) is obtained when the electron's vacuum mass 

is used; binding energies of 0.15 ·Rys and 0.065 Rys are obtained 

18 for muonium in silicon and germanium, respectively. These binding 

energies are associated with ratios of contact energy in the medium 

to the vacuum of 0.756 for the hexagonal site in Si and 0.787 in Ge. 

The ratios are slightly higher for the tetrahedral sites. 25 Wang and 

Kitte1 18 were able to get a bette~ estimate of the binding energy by 

using position-dependent dielectric functions calculated from the 

data of Walter and Cohen 26 and Vinsome and Richardon. 27 It can be 

seen from Table VII that muonium seems to be a deep donor. Notice 

that the estimated binding energy if measured from the conduction 

band edge in both Si and Ge would put Mu in the valence band since 

the band gaps are 1.21 eV (0.089 Rys) and 0.81 eV (0.0596 Rys) in 

Si and Ge respectively. With this model all excited states were shown 

t6'be shallow. 18 'The value for the contact ratio in Si is in good 

agreement with the experimentally determined value (0.44). 
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C. Anomalous States 

Frbm Table III and Fig. 11 it can be seen that in silicon 

there is a set of frequencies tliat is lower than the Mu precession 

frequencies but is much higher than the~+ precession frequency. 

These frequencies have tentatively been designated as "anomalous". 

We initially considered several models in an attempt to explain 

not only muonium procession but these anomalous frequencies as we11. 17 

The two models given the most consideration were: 

(1) The muon was coupled to a system in which it experienced 

a contact interaction similar to, but smaller than, that of muonium. 

Therefore, its spin Hamiltonian would have the form as that of Mu: 

+~ +e h +~ +~ h +e +e H = Aa • a + I w • a + I w ~ a (III.3) 

where again, as in Section I, the a's are the Pauli spin operators and 

the Larmor frequencies are those as defined. 

When the above Hamiltonian was fit to the anomalous frequency 

data, both ge and j'¥(0)1 2 were allowed to vary. The transitions 

w12 and w23 in the Breit-Rabi diagram (Fig. 5) were fit to the data 

for the .magnetic field along the [111] direction. The best values 

were: The [111] direction, ge = 13 ± 3 and w
0

/w
0

(vac) = 0.0198 ± 0.0002; 

for the [100] direction, ge = 13 ± 3 and w /w (vac) = 0.0205 ± 0.0003 
0 0 

(Fig. 17). There were two objections that were raised about the 

Modified Breit-Rabi model: (a) the g-factor obtained for an electron 

in an s-state is unphysical, because in an s-state the electron's 

g-factor should be 2, (b) since the precession frequencies are shifted, 

a pure s-state cannot produce this shift. 
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(2) The above objections to the interpretation of the phenomenological 

model led to consideration of the 2-P state of Mu. This model was 

considered plausible bec~use an inclusion of the electrons orbital 

angular momentum and its spin-orbit interaction could explain the 

large factor obtained and the fitted hyperfine interaction. 

A conventional phenomenological description of the anomalous 

precession frequencies can be given by an 11 effective spin Hamiltonian~~ 

formalism that is often used in ESR work: 

(III.4) 

Where A and g are tensors and J -e · e is the effective spin of the electron 

Assuming in this model that ge is a scalar and the minimum anisotropy 

is along the [111] axis for A, then A has only two independent elements: 

A33 = A
11 

and A11 = A22 = A1 . Further, assuming that J e = 1/2 the 

best fit becomes: 

A11 = ( 0. 0198 

and A
1 

= (1.035.± 0.02) A
11

. 

± 0.0002) A (vac) 0 ' 

Since this model is phenomenological, 

any other states or wave function considered to explain the anomalous 

frequencies must give parameters that aie consistent with those 

parameters obtained from the phenomenological Hamiltonian. 

1. 11 State Calculation 

It has been suggested28 that since there is a need for a model 

that explains the anisotropy in the precession frequencies without 

having the unnecessarily large g-value for the electron, consideration 
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of the Tl, conduction band-state in silicon might prove to be fruitful. 

It has a set of wave functions that are p-like, and one would expect-

a shift in the transition frequencies as a function of field orientation. 

This is the model that will be considered. 

The two models which will be tonsidered in an attempt to explain 

the observed precession frequencies for the excited state of muonium 

will be the (1) isotropic wave functions for the Tl state and (2) the 

variational wave functions of Kohn and Luttinger. 7 

It will become apparent that to fit the model to the anomalous 

precession frequency data, one arives at values for the size of the 

atom that are at odds with the effective mass approximation and 

cavity calculation. 7•8•18 All of these calculations were unable to 

demonstrate an excited deep state .for muonium. The size of the atom 

obtained is comparable to that of Mu calculated by Wang and Kittel . 18 

a. Effective Mass Theory. In the effective mass approximation7•8 

for shallow-donor impurity atoms, the central approximation is that 

there is little or no interband mixing of wave functions; and the 

wave functions in a band must satisfy a secular equation of the form: 
\ 

(III.5) 

where V(x) is the impurity potential, F~(x) is th~ envelope function 

for the ~th_minimum, and E~ is the energy ellipsoid about the ~th_ 

minimum in the band, E is given by 

E ( k) - 1 (kx2 + ky2) + - 1- ( k - k ) 2 
~ - 2mt 2m1 z o (III.6) 
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where m2 and mt are the longitudinal and transverse masses of the 

l t th nth • • e ec ron near eN .-m1n1mum. 

If the ellipsoidal energy surfaces are replaced by spherical 

ones, then m2 = mt = m*, and in the approximation of no intraband 

mixing for silicon, there will be six equivalent wave functions 

corresponding to the six conduction band minima along the (100) 

directions. If the intervalley mixing is considered, then the 

degeneracy is moved and the six wave functions split with increasing 

energy into a singlet (Al), triplet (Tl)~ and doublet (E). The 

singlet wave function tends to build up charge at the origin and has 

the form 

The wave functions for the Tl state tend to be p-like near the 

origin and have the form 

-r/a 
~z = Ae sin(k

0
r sinecos¢) (III.?) 

And finally the E-state wave functions will have a d-like character 

near the origin and will be of the form 
' 

~I ( 1 ) -r/a cos(k
0
r sinGcoscp)] = Be [cos(k r cosO) E 0 

(III.8) 
lf'(2) -r/a - cos(k r sinesin¢)] = Be [cos(k

0
r cose) E 0 
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where the conduction band minima occur at k = 0.86(2rr/as.), 7 and 
0 1 

~ is the appropriate Bohr radius for the effective mass approximation. 

We will be primarily concerned with the wave functions for the Tl 

state in calculating certai~ average values. 

b. Spin Hamiltonian for Tl State. We assume that the~+ is in 

a muonic atom that has the symmetry of the Tl state in silicon, whose 

Hamiltonian is given by 

. + n• oi • L + 3(S • r)(I • r) 
2 

r 

I 

(III.9) 

where S and <L> are, respectively, the spin and orbital angular-momentum 
+ operators of the electron, and I is the spin operator for the JJ • The 

appropriate set of wave functions will be linear combinations of the 

~·s. The extra parameter o in the Zeeman term for the electron is 

(me/m~), where me is the atomic mass of the electron and m~ is its 

effective mass. Note that the effective mass is only included in the 

nonlocal (orbital) part of the electron•s angular momentum. The 

spin-orbit constant is given by 

~ = 

where the macroscopic dielectric constant for silicon is E . = 11 .7. 
Sl 

The hyperfine constant is defined as 

n• = E(m /m ) ~ = nE/206.76 
e JJ 

. -



. . 

-41-

Some spacial averaging must also be done for the operators in the 

hyperfine term of the Hamiltonian. 

After averaging and for an arbitrary field direction, the 

Hamiltonian becomes 

H = P S • <L > + P1 [ o <L > + 2S ] 
0 . z z 

+ P
2

[(o<L+> + 2S+) e-i~ + (o<L-> + 2S-) ei~J - P
3

I
2 

( + -i~ - i¢ - P 4 I e · + I e ) + P 5 I • <L> (III.lO) 

+ P6 (1 2 )[I+S+e-i 2~ + I-S-ei 2~J + P
7

(1
2

)[I+S- + I-S+] 

+ P
8

(l ) I S + P
9

(l )[(I+S + I S+) e-i¢ + (I-S + I S-) ei~] z z z z z z z z 

and where the P's are linear combinations of the coefficience in 

Eq. (II I. 9) . 

Spin functions we~e chosen of the form: 

I ~2 . 1 ) = I X. ) t 1- 1 jJ 

and 

i = 1,2, ... 6 

where 

lx·>=-1 11J' ±iiJ'> 
1 /2 X y 

or I X.) = I \jf ) 
1 z 

When the above spin functions are used, a 12 x 12 secular determinant 

is obtained with the largest elements along the diagonal. The off

diagonal terms for moderate fields (50-500) G) are on the order of 

l/20 of the diagonal. A way of getting a picture of the behavior 

of the eigenvalues of this Hamiltonian is to consider only the fine 
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structure (lxi>•s). When the hyperfine interaction is turned on, 

there will be a small mixing of the spin functions of different J. 

These mixings will give rise to small but nonzero transition probabilities 

between states of different J. The allowed transitions were determined 

by looking at the matrix elements (¢.II I¢.>. 
1 X J 

2. Comparison with Experiment 

A maximum likelihood fit of the above model to the anomalous 

data for the [111] direction (e = 53°, rp = n/4) and checked by a rotation 

into the [100] direction (8 = 0, rp = n/2) with the data obtained for 

the [100] orientation. The best fit to the data was obtained for 

8 = 5.00 and a = 2.01 ± 0.02X. The value of i obtained, implies an 

effective mass of m* = 0.2 m0. 

The transitions that were best fitted to the data were of 

( 6I = ± 1 ,!'IS= ±1). Even though an agreement with experiment was obtai ned 

for this model, the size of the atom obtained is not in keeping with 

the effective mass approximation. The usual sizes of atoms associated 

with the effective mass approximation have sizes on the order of 16X 

and above. Therefore, the use of m* in the Hamiltonian is not 

justified. With an atom size of 2~ there will not be complete screening 

and the wave functions should be more like the vacuum wave functions. 

Because a physically reasonable result was not obtained, it was 

thought that the ignoring of the anisotropy in the mass may have had 

a significant effect. Hence, the variational wave functions of Kohn 

and Littinger7 were used, which are 

/ 

. .. 
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Aexp [ 
2 + 2 2] 

\f' = y_ z + ~ sin k
0
x 

X 2 2 a1 a2 

[ 2 w 2] \f' = Aexp x + z + y__ sin koy y 2 2 a1 a2 

2 + 2 2] x Y.. + ~ sin k
0

z 2 2 a1 a2 

The Hamiltonian has the same form as before (Eq. (III.lO)), with 

different average values. By using the above wave functions, a 

maximum likelihood fit to the anomalous frequency data was done 

(Figs. 18 and 19) with the results a1 = 1.500~ ± 0.001~, 

a2 = 1.470 ± 0.001~, and o = 5.2 ± 0.01. Again these values are 

at odds with the effective mass approximation. 

D. Comparison of Models 

Table VIII has a listing of models that have been discussed 

(III.ll) 

with the fitted parameters for each theory and the ancillary information 

that can be obtained from the fitted parameters. 

The dielectric function model of Wang and Kitte1 16 gives a 

contact ratio that is in very good agreement with the experimental 

value obtained for silicon. The value of the contact ratio for Ge 

is ~20% lower than the experimental value. This much lower theoretical 

contact ratio for Ge may be due to the behavior of sGe(r) for small 

values of~ or the~ dependence of the effective mass cannot be ignored. 

If the lower theoretical contact ratio is soley due to E(r), then it 

implies that the slope of E(r) is too shallow for small values of r 

• 
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in Ge. The energy values are slightly larger than the gaps in both 

Si and Ge. Even if the energy estimates are off by 20%, it is clear 

that ground state Mu acts as a deep donor in both materials. Since 

the binding energy puts the Mu level just above the valence band edge 

or just below it, one would expect some temperature effects on the 

ground state Mu. If the binoing energy puts the Mu level above the 

valence band edge, there is a possibility that the Mu level may 

enter the valence band because of the variation of the forbidden gap 

as a function temperature. If the Mu level enters the valence band, 

it becomes a virtual state and a description of the state using the 
. 9 10 . 

models of Anderson qnd Wolff would be appropriate. Formation of 

a virtual state in the valence band would lead to a temperature 

+ variation of the electron spin density at the ~ thereby giving a 

temperature variation of the Mu precession frequencies. 

The dielectric function approach of Wang and Kittel 18 is the only 

model that has an unambiguous connection between the ground states 

and all excited states; therefore, the anomalous frequencies models 

will be compared to this model. Even though there may be an error 

in the calculated energy for ground state Mu in the dielectric 

function model, the error is much smaller for the excited states 

because for larger~ E(r) goes over into the static dielectric constant . 

Hence, a comparison of the binding energies of the states associated 

with the models used for the anomalous frequencies to the excited states 

in the Wang and Kittel model should point to whether the anomalous 

states are deep or shallow donors. 
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The phenomenological models (2S, 2P) give the best fit to the 

anomalous frequencies. However, there were several low frequencies 

that the models could not fit. The T1 state fits are poor but give 

contact ratios that are consistent with the phenomenological models 

(see the excited state values in Table VIII). The wave functions 

that are used to calculate the ancillary information for the 

phenomenological models give information that is unphysical; however, 

there is an unambiguous connection between the T1 state and the A1 
states and the binding energy can be calculated from the fitted 

parameters. Since the contact ratio for the T1 model is consistent 

with the phenomenological model, the binding energy calculated using 

this model sh6uld be a fair estimate of the true binding energy for 

the anomalous state. 

As can be seen from Table VIII the contact ratios for the 

anomalous state model are six times larger than the contact ratio 

for the excited Mu state of Wang and Kittel and the cal.culated binding 

energy (using Tl wave functions) is two orders of magnitude larger 

than the excited Mu binding energy of Wang and Kitte1. 18 The calculated 

binding energy for the anomalous state models would seem to make the 

anomalous state a deep donor. If the calculated binding is roughly 

correct then one would not expect the anomalous state to be an e~cited 
. + 

state of Muonium but some other deep state formed by the ~ . 

To date there have been no frequencies comparable to the anomalous 

frequencies detected in Ge. There are at least two explanations: 

(1) The anomalous frequencies are an excited state of Mu in Si for 

which the transition probabilities to the ground state Mu are small, 
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whereas in Ge the transition prob'abil ities to the ground state are 

much larger thereby quenching the signal associated with the excited 

states. + (2) The anomalous frequencies are t~e result of the ~ 

forming defects in both media, in which case a comparison of the 

11 knock on 11 energies for completely moving a host atom are -25 eV 

and 14 eV forGe and Si, respectively. This difference in 11knock on: 

energies could explain the lack of these signals in Ge. 

It is possible that a deep donor state with Tl symmetry can be 

formed when the ~ creates a defect and is trapped by it; therefore, 

we can imagine a situation in which some of the stopping muons create 

defects and are trapped by them. Some of these muons will be in a 

paramagnetic environment (unsatisfied bonds of the surrounding host 

atoms), and will give the precess~on frequencies associated with the 

anomalous state. The other trapped muons will find themselves in a 

+ diamagnetic environment and will precess at the free~ frequency. 

However, a certain number of these muons in the diamagnetic environment 

may capture electrons within 30 nsec of being trapped, thereby explaining 

the rapid decay of one component of the muon precession signal that 

was detected at 77°K and 4.4 kG. These conjectures need to be tested 

by experiment . 
. ,.'·'· ... ~.:.!·:.'" 

E. Orientational Dependerice 

From the data in Table V it is obvious that as the field changes 

from the [100] direction, the number of precession frequencies tends' 

to increase, reaching a maximum in the [110] direction. This would 

seem to be evidence that the axis of symmetry for the state associated 

with the anomalous frequencies is in the [100] direction. The 
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prominent frequencies (underlined) tend to shift with field direction; 

however, the relative intensities of the prominent lines do not vary 

significantly. This behavior is in keeping with the anomalous 

state having Tl symmetry. Data for more field directions is necessary 

in order to tag unambiguously each frequency. 

F. Temperature Dependence 

Examining the data from Table VI, several things become apparent: 

(1) The prominent signals associated with the anomalous state are 

present at all temperatures tested. The lifetime of this state was 

found to be weakly temperature dependent. This information must be 

taken into account when possible configurations are considered for 

the anomalous state. (2) Below 40°K, the Muonium frequencies were 

not detected, but were present from 55 to 140°K. Special attention 

must be paid to the frequencies that are labeled as Mu for 120 and 140°K. 

It i~ evident that the upper frequency labeled has shifted significantly 

as was point ed out in Section III. 

A point of caution must be made about the upper labeled Mu 

frequency at 120 and l40°K. This frequency may not be associated 

with muonium. It could be due to some other state. 

1·. Diffusive Model 

One possibility is that at low temperatures Mu is not diffusing 

and is either at the tetrahedral or the hexagonal site in Si. In 

order to reach a different site Mu would have to have enough energy 

to overcome a potential barrier. The activation energy necessary 

for hydrogen to change sites has been discussed by Weiser. 25 •29 Some 

d h b bt . d f h d d. ff . . S. d G 20 ' 31 ata ave een o a1ne or y rogen 1 us1ng 1n 1 an e, 
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but these data are for elevated temperatures. Nor is it clear that 

muonium or hydrogen would be diffusing at very low temperatures.· 

Tentatively it can be assumed that below 120°K, muonium is not diffusing 

and may be at either site; for example, let us say at the tetrahedral. 

As the temperature is raised to l20°K and above, some of the muonium 

atoms are able to occupy the hexagonal site thereby producing different 

precession frequencies (see Table VI). Hence, the upper precession 

frequency associated with muonium in Table VI could be due to Mu at an 

interstitial site of different symmetry. This possibility cannot 

be ruled out at present. 

If one assumes that the upper frequency in Table VI is associated 

with muonium, then an intriguing possibility presents itself. If 

there is a variation in the precession frequencies for muonium, then . . 

this implies that the contact interaction is temperature-dependent. 

Stated more exactly: the electron spin density at the ~+ in muonium 

would be temperature-dependent. 

2. Energy Shifts and Lifetimes 

As can be seen from the calculations of Wang and Kitte1, 18 the 

calculated binding energy for muonium would put the bound state of the 

muon in the valence band of both Si and Ge, i.e., Mu would be 280 MeV 

below the valence band edge in Si. The only way this can occur is 

is that a virtual state or, in maqnetic terms, a "localized 

moment" is formed in the valence band. The width of this state and 

hence its lifetime would depend on its interaction with the electrons 

of the band. Being near the band edge, one would expect some 

temperature dependence of the binding energy and lifetime of the Mu. 
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In this section we will explore some of the consequences of the 

formation of a localized moment and its temperature dependence. 

To investigate the temperature dependence of the binding energy, 

the theory of localized moments that uses the techniques of Anderson9 

and Wolff10 will be considered. This theory has been successfully 

d t 1 . t. . . . . . 1 32-34 A 1 . use o exp a1n magne 1c 1mpur1t1es 1n meta s. n a ternat1ve 

approach to describing localized moments is to use the scattering 

theory of Friedel , 12 in which the electrons of the band scatter off 

the impurity potential with correlation included to form a virtual 

bound state whose lifetime would be inversely proportional .to the width 

of the state. However, an easier physical insight can be obtained 

how these virtual states arise, by using Anderson's technique. 

The essential feature of the.theory of _localized moments can be 

seen by considering the Hamiltonian for a pair of electrons in a band 

having orthogonal wave functions 

(III.l2) 

where H
0 

is the total kinetic energy and 

(III.l3) 

is the Coulomb repulsion energy between the electrons, and a and b 

refer to different orbitals. On the other hand 

(III.l4) 

is the exchange energy, and Sa and Sb are the spins of the electrons. 

Therefore, Sa • Sb is (-3/4) for antiparallel spins and (1/4) for 
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parallel spins. Since the wave functions,for this system must be 

antisymmetric, states can be constructed as follows: 

and 

where the spin functions are given byxA (antiparallel) and x5 (parallel). 

It can be seen that for the antisymmetric spin states the exchange 

contribution is zero: 

and 

H~ = H + Kab A · o 

H~S = H + K b - J b o a •a 

If the electrons are in the same orbital then 

with 

and 

H1 = A 

= H 
0 

It is apparent that the two states differ by the Coulomb repulsion. 

To characterize the behavior of a localized state it is assumed 

that a bound state at energy -E has been formed with an electron 

of a particular spin orientation, .say spin up. Then the electrons 

with spins down will experience the Coulomb repulsion shifting the 
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energy fdr the spfndown state to -E + U. When one now includes a 

covalent admixture of the localized state wave function with those 

of the band, there will be a reduction in the number of electrons 

with spin up: raising the energy of the localized state from -E 

to -E + onU and lowering the energy of the state with the opposite 

spin to -E + (l - on) U. Therefore, the larger the admixture, the 

smaller the difference in the energy levels resulting in a smaller 

localized moment, until a point is reached where the number of up and 

down electrons is. equal, leading to the disappearance of the localized 

moment. It must be mentioned here that when there are equal populations 

of up and down electron spins, one has a situation which is comparable 

to H-. Therefore, what might be expected from this model is a case 

in which w+ is in a diamagnetic state and is quickly depolarized 

because of fluctuations in the spin density. Experimentally, this would 
+ be detected as a rapidly decaying component of the w signal. Such 

decay has been detected in Si at 77° and 4.4 kG. 

Hamiltonian 

The Hamiltonian we use is of the form 

H = L Eknkcr + E(n+ + n_) + Un+n- + L VSk(Ck CSCJ + c;ckcr) (III.l5) 

k,cr k,cr 

where Ek is the energy of the electrons in the band of momentum !. nkcr 

is the number operator for momentum k and spin cr, and Ck
0 

and Ck
0 

the 

destruction and creation operators. 

The second term in the Hamiltonian is the unperturbed energy of 

the impurity atom. It is also assumed that the wave function for the 

localized state is orthogonal to the Wannier function belonging 

to the electron states in the band. 



D 

-52-

The third term in the Hamiltonian is the correlation energy 

between the localized electrons, where previously U has been defined. 

The fourth te~m is the interaction of the localized state with 

those states of the band where 

' I ik·R 
VSk = ~ ¢$(r) V(r) ~ e n A(r - Rn) 

and where ¢5{r) is the wave function of the localized state and 

A(r - R ) is the Wannier function centered about Rn. n , 

(III.l6) 

Anderson9 was able to solve the above Hamiltonians for the density 

of spins in the localized state and the modified density of states 

in the band by using Green•s function methods. He obtained, for the 

density of localized spins 

where ~, the width of the state is given by 

2 (Eo - E:k) -, iS 
i~ = lim Lk (VSk) 2 2 

S-+0 ( E - E: ) + S a k 

and the energy of the localized state is 

ES = E + ~E(E ) a a 

with 

E = -E + <n > U a -a 
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and 

l I v 1

2 l llE ( E ) = p L: E S k 
a k - E: a k 

the shift in this state due to its interaction with the states of 

the band. This shift can be associated with the rigid-band model 

shift in which all states of the band are shifted because of the 

. "t t t" 1 35 1mpur1 y po en 1a . 

In order to get the number of electrons with a particular spin 

orientation we integrate the density over all states in the band: 

= -1 Jo .· <n > + IT . 
-oo 

(III.l7) 

And for spin down 

l _ l E + <n+ > U + E ( E _) 
<n > = i cot · ll(E_} 

where 

E+ = E + <n_ > U 
- + 

These equations must be solved self-consistently, which means a 

simultaneous solution of both equations. In Fig. 20 is plotted the 

two equations for~- 5, and it is seen that there are three solutions: 

two in which there is a localized moment (n+ = l, n = 0; "+ = 0, n = 1) 

. and one in which there is no localized moment (n+ = n = 0.5). As the 

width of the state increases, the localized spin density will decrease 
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until at U/~- 1 there is no localized moment (Fig. 21). These ideas 

will be used to investigate the behavior of muonium in semiconductors. 

Before getting into the calculation for Mu in semiconductors 

some physical arguments about the behavior of the level shift and its 

widths. As the level gets further into the valence band the admixture 

of the localized state with the states of the band should increase 

.implying that the state should become less distinguishable from those 

of the band. This would result in a decrease in the shift in the 

level the further into the band one went giving a maximum shift at the 

band edge. On the other hand because of the increase of admixture, 

the level should broaden the deeper the level is in the band which 

would result in a decrease in the ·localized moment. In the band gap 

the width of the level should be extremely narrow. For semiconductors 

one would expect the following behavior: since both Si and Ge have 

band gaps that are temperature dependent one would expect the level 

for Mu to change in the valence band. As the temperature is increased 

the gip will decrease and since the binding energy for Mu is-measured 

from the conduction band edge it will move deeper into the.valence band 
l 

thereby giving a variation in the localized moment. Hence, experiment-

ally a variation in the muonium signals as the temperature is increased 

would be expected. 

If either the 11 localized states 11 or the diamagnetic states are 

in the band gap their lifetimes would be dependent on whether they 

were above or below the Fermi level. 
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Experimentally what has been determined is that as the temperature 

i~ raised above 77°K the frequency of the muonium signals increases 

until at room temperature muonium is no longer detected. As the 

temperature is lowered from 77°K, to liquid helium temperature (4.2°K) 

there is no apparent shift in the muonium precession frequency 

and.the muonium signal was undetected below 55°K. Tentatively, this 

behavior is interpreted as follows: The ~uon forms a localized 

moment with the states of the valence band such that at low temperatures 

this virtual-state has equal contributions from the spin-up electron 

states and spin-down states. If the localized moment energy level is 

sufficiently close to the valence band edge, then there is a possibility 

of perturbing the contribution of spin-up and -down states to the 

localized moment by varying the temperature. When there are equal 

populations of spins states contributing to the localized moment, one 

would expect no localized moment to form, and the distribution of 

states about this level will be symmetric. When the temperature 

increases, the states contributing to the localized moment above the 

level will be affected, thereby leading to unequal contributions of up 

and down spins. These unequal populations will be evidenced by nonzero 

localized moment, hence muonium precession. 

3. Muonium as a Localized Moment 

In order to get some idea of the behavior of muonium, ~ rough 

quantitative calculation of the pertinent quantities in the l~st 

section will be done. It is assumed that the wave function for the 

localized ~tate has s-character 
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(III.18) 

where a is the appropriate size of the atom for a given ionization 

energy. 

For the Wannier functibns of the band, we assume a free electron 

gas, so the functions will have the approximate form: 

1 sinklr - R 1 
3 1/2 U(r) n 

(~ n) klr - ~nl 
(III.l9) 

where n is the volume of a unit cell and Rn is the position of the 

nth atom in the lattice. It is t~ntatively assumed the ~dependence 

of the u's is only significant near the atoms of the lattice. 

Therefore, 

Assuming a potential in the Thomas-Fermi approximation, 

. 2 -A.r 
V ( r ) = ..::Lq -=-e

r 

where ~ is the screening distance for the electron gas, and is given by 

[ 
2 (3n )l/3]1/2 

A.=~ _Q_ 
2 ' 7T 
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Instead of the Thomas-Fermi screening distance, one can use the 

parameters that come out of the calculations for the dielectric 

. . . . 36-39 B · h b · 1 h funct1ons 1n sem1conductors. y us1ng t e a ove potent1a , t en 

V = 1 (-l-)112/!l._) sinkR (III.20) 
Sk n a3n ·~ k[(l/a + ~)2 + k2] 

where R is the distance to the nearest neighbor Si or Ge atoms. There 

is very strong evidence17 that the muon stops at interstitial sites, 

and in lattices that have the diamond structure there are two 

possible sites: 25 the tetrahedral site (~ = 2.35~) or the hexagonal 

site (r = 2.25~). It is obvious that there will be slightly more 

admixture at the hexagonal site than at the tretrahedral site. 

Since we are considering a semiconductor, the mean number of spin 

' up electrons at the muon in the virtual state is given by 

. -E (T) 

n = lf 9 rvb(E:) f(E:)ds. 

t n ( E ,2 + r· 2 {· ) 
E - t I . vb E 

-oo 
·~ r 

0 

(III.21) 

where the width of the stater depends on the location of the localized 

moment level and the band in which the integral is being evaluated. 

A similar form is obtained for n-t. The function f(E) is the Fermi number 

density, 

1 f ( c ) = ---:::-r;o 

B(t-Ef) 
1 + e 

The width of the state in the valence and conduction bands will have 

the fonn 
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2 2 where <v 5k> is the average of VSk over the appropriate energy surface 

and 

n (2 )31
2 

112 PV b(s) = ~ ~ · [-(Eg(T) +E)] 
' 2n h . 

Figures 22 through 25 show the variation of the mean number of 

spins at the ~+ and the change in the Mu frequencies for two different 

Boron concentrations (2xl014 B atoms/cm3, 5xlo18 B atoms/cm3) in P-type 

silicon. The calculations were ddne with and without a variation 

of the gap with temperature. 39 ~ 40 As can be seen, a significant 

change occurs only when the variation of the gap with temperature 

is included. The trends of the muonium precession frequencies 

calculated here makes the localized moment a possible candidate in 

the explanation of the shifts in the muonium frequencies. It is 

obvious, however, that the temperature dependenc~ obtained from the 

localized moment calculation does not resemble the experimental 

evidence (Fig. 15). This may be attributed to several things: 

(1) The choice of Wannier function is not realistic, (2) the Mu level 

in the valence band was held fixed to the valence band edge when the 

temperatur.e varied and (3) the screening of the ~ + was assumed to be 

independent of temperature. The experimental evidence o~ the apparent 
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temperature de~endence of the muonium precession frequencies (Fig. 15) 

raises the question of how these frequencies could behave differently 

as a function of temperature? Returning to the approximate expression 

for the precession frequencies in small fields we see that 

2 

w ~ w -
12 -

and 

where 

and 

w+ 

I;; = 
m e 
m 

11 
l/206.76 

If muonium is a localized moment, then there will not only be a 

variation in the contact interaction but the Zeeman terms will also 

vary with temperature. With this in mind we redefine the following 

w± = l/2[n(T) ± 1;;] we 

w' = n(T) w 
0 . 0 

+ where n(T) is the mean number of spin up electrons at the 11 • The 

mean number of spins will be less than unity. The muonium precession 

frequencies then become: 
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[n(T) + d 2 w2 · 
wl2 ~ l/2[n(T) - ~] we - 4n(T) wo e 

. [n(T) + s]2 w2 

w23 ~ l/2[n{T) - ~] we + 4n(T) w e 
0 

No temperature variation of the lower muonium precession frequency 

leads to the conclusion that if muonium is a localized moment, then 

w
0 

must also vary with temperature. The behavior of the experimental 

data cannot be explained with just a variation of the mean number of 

spins. Including the temperature variation of w0 we obtain for the 

specialized condition llw12 = 0: 

The variation of w with temperature implies a change in the 
0 • 

screening of the ~·s impurity potential. This seems plausible 

since. the dielectric function depends on the electron number density 

which is temperature dependent. 43 The specialized condition on llw12 
seems somewhat ~estrictive but cannot be ruled out at present. It 

has been brought to our attention that Gerevich et a1. 44 have obtained 

evidence in germanium of a possible temperature variation of the Mu 

precession frequencies. These developments point to a need for more 

experimental data before the question of muonium precession in semi-

conductors is finally understood. 

\\ 

' . 
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IV. CONCLUSIONS 

There are a number of conclusions that can be reached upon 

examination of the data from experiments performed at LBL: 

(l) Muonium is at least a deep donor, and, if atomic hydrogen can 

exist in Si, it must also be a deep donor. The same argument holds 

for muonium in Ge using the data of Gurevich et a1. 14 

(2) In addition to muonium formation in Si. there is another state in 

which the muon experiences a hyperfine interaction smaller than the contact 

in muonium. This has been designated the anomalous state. 

(3) The anomalous state has orientational dependence in an external 

magnetic field that is in keeping with a state that has Tl syrronetry. 

(4) The precession frequencies associated with the anomalous 

state are weakly temperature-dependent, which may rule out the 
' 

possibility that this state is associated with an excited state of 

muonium. If it were an excited state of muonium, one would expect 

an increase in the anomalous signal with respect to the muonium 

precession frequencies as the temperature is raised. At temperatures 

above 55°K, there is no obvious change in the relative intensities of 

mu~nium and the anomalous frequencies. 

Since there is an apparent change in the precession frequencies 

associated with muonium, there exists the possibility that muonium is 

not only a deep donor, but is more appropriately described as forming 

a localized moment in the valence band of silicon and germanium. 

For this localized state the electron spin-density at the muon will 

be temperature-dependent, and this is evidenced by a variation in the 

precession frequencies of muonium. 
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Another possible explanation for the shift in the muonium 

frequencies is obtained from a model in which the muonium atom needs 

an activation energy to diffuse from one interstitial site of a 

given symmetry to another of a different symmetry. As the temperature 

is raised, the relative populations of muonium atoms will change at 

both sites creating two different sets of precession frequencies. 

The possibility of this model, points to a strong need for more 

experimental data on the temperature dependence not only in silicon 

but in germanium as well. 

There is evidence that the anomalous state ~renot a shallow-donor 

state, but is a deep state as well as muonium. This evidence also 

points to the possibility of the anomalous state being associated with 

the formation of defects. If defects are formed, they could only occur 

for epithermal energies of the muon. Therefore, this state would be 

independent of, or weakly dependent on, the temperature. The above 

model is in keeping with the data obtained to date. Ta date no 

frequencies comparable to the anomalous frequencies have been detected 

in Ge, possibly due to the relative energies required to form defects 

in the two semiconductors. One would expect fewer defects to form in 

germanium than in silicon because the knock-on energy to create 

defects in germanium is approximately two times the knock-on energy 

in silicon. Also, because the conduction band minima in Ge are in 

the [111] direction as compared to Si, where they are in the [100] 

direction, it is possible the field direction is a bad choice for 

Ge ([111]). This should be explored experimentally. 
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V. FUTURE EXPERIMENTS 

Muonium precession has only been investigated in indirect-gap 

semiconductors (Si, Ge). It would prove instructive to investigate 

muonium•s behavior in a few direct-gap se~iconductors. For instance, 

a-Sn is a ·direct-gap semiconductor that has a zero gap, and may 

demonstrate some interesting behavior, such as, allowing muonium to 

form two states: one in the valence band and one in the conduction band. 

Each muonium state should give entirely different temperature behavior. 

Muonium formation should be investigated in Si and Ge as a function 

of doping in a transverse field. It is also possible to use a low

momentom muon beam and thin films of Si or Ge with a tunable laser to 

investigate the behavior of muonium as a function of conduction 

electron concentration. 

The above experiments are only a few of those necessary to help 

us understand the behavior of muonium and, by implication, hydrogen in 

semiconductors. The future promises to be very fruitful and enlightening 

with the use of this rather new tool. 
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APPENDIX. ERROR ANA~YSIS FOR FOURIER TRANSFORM 

Experimentally, we assume the expression of the counts/bin is of 

the form 

t t 

N(t) = N
0

e- T~ [1' + Ae- T2 cos(wt +<I)] + 8 

What we normally do is a maximum likelihood f.t of the data to obtain 

values for N
0 

and B. From these we define a quantity. 

The error in Xj will be due to: (1) The fit of N
0 

and B. This is a 

correlated error and will effect the contents of each bin in frequency 

space'differently. (2) The statistical fluctuations in N(t), which 

produces errors in the Fourier transform. These errors will be 

uncorrelated. 

Hence assuming B << N(t) then for the correlated errors 

( )

2 
2 N(t.) 2 

(~X.) ~ 2J exp{2t./T )(~N ) 
J corr N J ~ o 

0 

or 

for the uncorrelated errors 

2 
2 (~N(t.)) (~X.) = N J exp(2t./T ) 

J unc 
0 

J ~ 

-2 

""' (~No) exp{2t./T ) 
0 J ~ 
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or 

X. unc = -
1- exp[t./'r ] 

J IN J Jl 
0 

Now the Fourier transform without errors is given by 

2N-l 

ak = ~rJ L: 
j=O 

x.exp[-hrk./N] 
J J 

where 2N is the number of time bins of width Tb used in the transform. 

After some algebra we got 

1 _ i2N(-wk· + T . + . T b) 
e r• b 1 T _ A i¢ ~ 2 

a k - 4 N e --__,(,.---:.____,----..T-=---r-:--
i -rrk b 

1 - e, -N- + wT b + i T 
2 

1 - e -i2tt~ + Tb - . Tb) 1-

-i<P T2 
+ e . Tb) -i (Tik + Tb -- e - 1-

N T2 

Letting 

[6V - lowest frequency in Fourier space] 
0 

K = 2Na 



,, 0 0 'e-·fi 
r~ .v ~J t> 0 ~") &~ 9 5 

then 

w - 2n(n + o) 
l':;vo -
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where n is an integer and 0 < o < 1. With the above definitions and 

ignoring the second term in the Fourier transform, which is only 

significant for small k or k- N we get. 

and the power is 

A • 1 -K i 2no 
,,~, - e e a ~ - e '~' _____ ..;:,__ ____ _ 

k 4N -a · n ( - k ) 1 - e + 1 N n - + o 
{K = 2Na} . 

A2 1 + e2K- 2e-Kcos[2(n- k)K+ 2no] 
= 16N2 1 + e-2a - 2e-acos N (n - k + o)] 

The power will be a maximum when k ~nor 

2 -2K -K A 1 + e - 2e cos(2no) 
= pk ~ n = 16N2 1 + e-2a - 2e-acos no 

N 

As can be seen from the expression for the power, the bin in which 

the maximum power occurs is dependent on the value of o. Hence the peak 

associated with the transform of Xj will have a width dependent on o. 

This width of the peak is a consequence of the finite Fourier transform, 

and is present even when T2 ~ ro (a and K ~ 0). The absolute maximum 

power occurs when t~ --~ •xo or 

p 
max 

2 -2K -K ( ) = A x 1 + e - 2e cos 2no 
~16N 1 + - 2a 2 -a no e e cos ~ 
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and 

{if a << 1 2Na « 1} 

Because w is not in general an integral multiple of .6.w
0 

- 2n.6.v
0

, the 

maximum power is shared by the bins surrounding the k ~ n bin. 

We now look for the full width half maximum bins (FWHM). They 

will occur when 

or 

p. = l Pmax 
k 2 k 

A2 1 + e- 2K- 2e-Kcos[2(n- k•) n + 2no] 
16N2 1 + e- 2a 2e-acos[ (n N k') + ~0 ] 

Letting k• = n ± £, then 

1 

or 

and the FWHM is 

_ A2 · 1 + e-2K - 2e-Kcos2no 

- 32N2 1 + e- 2a - 2e-acos(~6 ) 

1 
~ 2 

1 
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When there is no mismatch (o + o) 

4 a « 1 then 

Hence the width of the peak in Foruier space is due to the mismatch 

of~ and the relaxation time of the signal. 

We now consider what happens to the position and width of the 

peak when there is a correlated error in x .. We obtain the Fourier 
J 

transform 

± 6x. ) e 
J corr 

bk = ak ± 2~ e~:) 

_ i rrk j 
N 

Tb 6N 
where i3 = - , and 1 etting B = - 0 the power becomes 

T~ N ' 
0 

As can be seen the maximum power still occurs at k ~ n. 

For the uncorrelated errors we calculate the error in the power 

the following way 



where 

and 

so . 

or 
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= 1 ~ oPk 2N-l ~ )2 
2N L..J ox s s=O 

(t-:.x )2 
s 

Tiks i7fks 
oPk - 1 [a*Ne -i -N- + ake_N_] 
oxx - 2N 

2 
(t-:.X )2 = (-1-) e2sS 

s v'N 
0 

+ 

This error has the same effect as the correlated error of broadening 

the peak (see Figure), but not shifting the peaks. Therefore, we 

combine the two errors in quadr.ature 

oP = [(oPk)
2 

+ unc 
(oP )2 Jl/2 

k corr 
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+ * Table I. ll residual polarization. 

( Impurity Residual Polarization Resistivity 
Simple (em) Atoms/em 3 300°K 77°K 4.2-l0°K 

Si 0.05 4xlo18s atoms 0.90±0.01 0.67±0.08 0. 45±0. 01 

3000.00 12 3x10 B atoms 0.52±0.05 0.24±0.03 0.24±0.08 

350.00 4x1o12P atoms 0.45±0.08 0.15±0.04 0.19±0.05 

50.00 13 4x10 P atoms 0.07±0.03 0.10±0.03 0. 15±0.03 

0.3 2x1o16P atoms 0.09±0.03 0.12±0.03 0.16±0.04 

0.03 3x1o17P atoms 0.10±0.05 

0. 01 18 1 . 5x1 0 P a toms 1.00±0.07 

0.003 1.5x1o18P atoms 1.07±0.10 0.92±0.09 0.80±0.10 

Ge 1015P atoms 0.92±0.03 0.23 0.07 0.18±0.07 
; 

* et al. 2 Data of Eisenstein 
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Table II. Precession frequencies for ~+ and Mu at 100 G. 

T~ 

,. 
Temp. + w Mu ~ ~ 

Sample (oK) Asymmetry (MHz) (~-sec) Asymmetry 

Quartz no 0.042±0.001 1 . 355±0. 004 12.0 0.072±0.005 

P-Ge 
(Boron no 0.067±0.003 1.350±0.002 25 . .o 0.083±0.007 
7xlo14;cm8) 

P1-s; 
(8oron 300° 0.094±0.002 1.348±0.003 25.0 ---

13 3 5.3xlO /em ) 

N-Si no --- 1.349±0.002 30.0 ---

t .. ~ 

w w 

I 
Other Mu 1 Mu2 Freq. 

(MHz) (MHz) I (MHz) I 

134.3±0.6 143.2±0.6 I ---

ljl.3±0.8 - --- ---

--- --- 7.96±1.6 

I 

--- --- ---

I 
....... 
(J1 
I 

-C 

c 
·~_.,, 

F"~ 

11...~ 

~ 

.~. 

(T, 

C; 

0. 

J;., 

...0 

..0 



Table III. Doping dependence 100 G, 77°K. 

T 
w w + w Mu Mu1 Mu2 wan om. l-1 l-1 l-1 

Sample Asymmetry (MHz) (l-t-sec) Asymmetry (MHz) (MHz) (MHz) 

P0-Si 0.0132±0.002 1 . 428±0. 001 <92.0 0.042±0.008 131.1±0.6 151 .2±0.6 40.7±0.6 

(5xl012B/cm3) 45.7±0.6 

P1-s; 0.022±0.002 1 . 365±0. 001 <95.0 0.051±0.006 130.1±0.6 150.7±0.6 41 .6±0.6 

(5.3x1013B;cm3) 46.5±0.6 

I 
........ 

P2-Si 0.022±0.003 1 . 372±0. 001 <91.0 0.046±0.005 131. 2±0. 6 150.2±0.6 41.2±0.6 0'1 
I 

(3xlo14B;cm3) 44.2±0.6 

47.5±0.6 

49.3±0.6 

. ' . .. 
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Table IV. Precession frequencies for P1-si .at 77°K for different fields and directions. 

Direction Field w w Anamalous Frequencies Other 
(Gauss) Mu1 Mu 2 Frequencies c~ 

• C: 
[111 J 15.5 --- --- 37.9±0.8 

. ,. 
":..,., .. 

[111 J 30 39.0±0.8* --- 48.9±0.8 127.3±0.8 .tt···, 
-~.mi' 

[111 J 52 69.7±1.6 75.3±1.6 40.5±0.8 ' 46.5±0.8 308.7±0.8 ..t:. 

[111 J 153 190.7±1.6 --- 41.1±0.8 '43.9±0.8 '47.1±0.8 '49.9±0.8 15.5±0.8 0" 

[111 J C" 341 --- --- 38.9±0.8** ' 48.9±0.8 15.2±0.8 I ~·· 

-....J 
-....J ". 

[111 J 520 37.6±0.13 
I ,,:i'' --- ---

t;r. 
[111 J 1 ,074 --- ---- 29.6±0.8 ' 38.2±0.£ ' 56.8±0.8 

0 
[100] 15.5 --- --- --- --- 0 

[100] 30 40.7±0.8* --- 8.75±0.8 • 13.7±0.8 • 45.8±0.8 126.7±0.8 

[1 00] 52 72.9±1.6 78.6±1.6 25.5±0.8 ' 42.9±0.8 ' 48.9±0.8 ' 56.9±0.8 

[100] 1 01 . 1 132.5±1.6 --- 43.3±0.8 • 48.9±0.8 

[100] 153 191.3±1.6 --- 48.9±0.8 

[100] 1 ,074 --- --- 31 .4±0.8 ' 60.5±0.8 101.2±0.8 

·~ 

At these fields and lower ones the two muonium precession frequencies cannot be resolved. 
** These frequencies coincide with the second harmonic of the cyclotron r-f structure~ 



Table V. Orie~tation dependence of anomalous frequencies (77°K, lDO G). 

Direction w(MHz) 

[100] 43.3±0.8(s)* 48.9±0.8(s) 

[111 J 41. 0±0. 8 ( s ) 46.5±0.8(s) 

[111]±15° 23.4±1.6(s) 39.0±1.6(s) 58.9±3.5(w) 

[ll 0] 41.1±1.6(s) 101.5±1.6(w) 191.3±1.6(w) 
3.4±1.6(s) 42.8±1.6(s) 47.1±1.6(s) 105.2±1.6(w) 209.1±1.6(w) 

* The frequencies labeled s had a signal/noise >6 and the ones labeled w had a ratio 
between 3 and 6. 

.. 

I 
........ 
co 
I 



Table v:. Temperature dependence of precession frequencies in r,-si at 100 Gl C111] direction. 

Temp. 
( 01'~ .,, 

4.2" 

4..; 

-h 

'"''"' 

77 

120 

14J 

* 

A 
).: 

w 
ll 

0.172~0.002 1.426=0.001 

T 
lJ 

(~-sec) 

>6. l 

0.146±0.003 1:363±0.001 >23.9 

O.l35:c0.002 1.376:c0.001 >14.8 

0.078±0.003 1 .392±0.004 >6. 74 

0.138::0.003 1.374::0.002 >15.6 

0. 1<tO±C.005 1.376:cO.C03 >13.9 

A;.<,u wMu 
1 

w ll,u 2 

0.0461* 131.5±0.8 146.6±0.8 

I 0.051 

I 0056 

1 0.056 

132.0::0.8 

130.5::2.8 

131.5±0.8 

150.7±0.8 

(2) 
158.8±1.8 

(2) 
162.4.:0.8 

Tr,ese <>sy::-;metries are approxbate and are cbtc.ined from the Fourier Transform. 

Other Frequencies 

..';6.8~0.8 

31.2~0.8 . 40.7±0.8 

52.7±0.3 
31.2:c0.8 • 40.8:!:0.8 • 46.0±1.6 76.4::0.8 

41.6±0.8 . 46.8±0.8 . 78.0±0.8 

101.5~3.8 
46.2±0,8 1 60.5±1.6 1 74,2±0,8 0 116.3~1.6 1 

183.2±1.6 

.... 
---- ----- ---

!2)_ - . . . t d . h h . . .. · 1nese trequenc1es may not ce assoc1a e w1t t .e upper muon1um precess1on .requency. 

I 
'-1 
\.0 
I 

0 
If""'-'>, 

'-' 

e·· 
~-"'' 

!:·-.,_ 

0'· 

t:·. 

H , .. 
'i..vr ~ 

c~ 



Table VII. Contact interaction ratios and ionization energies for Mu in Ge 

d S
. 16 an 1. · 

. * ** 
[1'¥(0) 1 2 /l't'(O)I~acJH [1 '¥- (0) 1

2 
I I'¥ ( 0) I ~acJ T -E -E H H 

Ge 0.453 0.478 0.116 Rys 0.126 Rys 

Si 0.426 0.429 0.112 Rys 0.116 Rys 
- - ------- --·· 

* Tetrahedral site. 
** Hex a gor.a 1 site. 
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Table VIII, Listing of models used to explain Mu and/or the anomalous state in Si: ' 

~1odcl Cavity £(r) 

Data Used Re=.44 Ret .44 

--- ---
Fitted 
Parameters 

-

Contact .756 .427 
Radio ' 

. ·' 
E I 

(Rydbe~gs} . 15 .112 

<r >".** 2.95 2. 61 
(in a

8
) 

Contact --- .00294 
Ratio 

Er (Rydbergs) --- .0042 

<r>*** --- 31.4 
(in all") 

--· 

-

PHENOMENOLOGICAL 
f--· 

2$-r 2Pt 

A nom tt A nom 

R =.0198 e Re=.Ol98 

±.002 ±.002 

ge =13±3 g
0

=13±3 

1.253 1. 253 

l. 078 1. 078 

-----

'.928 .028 

.0198 .0198 

.269 .269 

3. 71 .3. 71 

---- -----··-··-
Sni!•lETRIZEll W1 VE Fut:crrorls 

Tiso 
1 

A 11om ~
--------:------·· 

liHlSlO 
1 

--------
Ar:om 

·-0 r 
<r>=2.01±.01A ill= 1 . 50.c. 0 Ill 

c. 2"1.<17-".DlA 

o~s. 2i .01 

6}:~*=5. O:t.OOl 
m 

--

.0377 

Al 
±.002 

.054 
s ±.002 
T 
A 
T 3.81 E 

±.02 

--

Tl 

s 
T 
A ~---
T 
E 3.81 

±.02 

.082B 
±.002 

.066 
±.003 

2.88 
.!..04 

--· --~----------

i"The:>e mode 1 s a i'C pheno!Tieno 1 O<J i ca 1 ; it is c.s sun~cd It ere that <!Jl 5 ( r )=A e -: ( l:ydr·o~lGn i c), 
~ihr;rc a is chosen to give t!te fitted hyperfine interaction . 

.,..The ~1~ datil \·IuS tho experi11:entally determined r<:tio R =J~~(u)j 2Si/J~~(o)j 2 vac. 
tt e 

The anomu 1 ous s til to datil ·w;;·e the obsC'rvcd pr!!ces s ion frcqucnc i es. 
*"* The usc of th.e:~e \'ici'O funcbcns i\ssumes th<:t the td, T1 anJ E state5 differ fr·ont OilCh 
other by at most the va1ley-od;it inter<1ction (-o.o:n oV=.oo:~28 Rys}. 
*~ .... 

ilp, is tit(' C.ol11' rctdius. 
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Fig. 3. Time histogram of the precession of the positive muon in carbon 
tetrachloride. This target gives one of the highest 
asymmetries for the muon asymmetry implying little or no muonium 
formation. 
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Fig. 8. Histogram of data for P-type Ge from Guervich et al~ The upper 
curve for P-type Ge and the lower is for intrinsic Ge. 
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