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Abstract—In the Intelligent Vehicle Grid, the car is becoming
a formidable sensor platform, absorbing information from the
environment, from other cars (and from the driver) and feeding it
to other cars and infrastructure to assist in safe navigation, pollu-
tion control and traffic management. The Vehicle Grid essentially
becomes an Internet of Things (IOT), which we call Internet
of Vehicles (IOV), capable to make its own decisions about
driving customers to their destinations. Like other important IOT
examples (e.g., smart buildings), the Internet of Vehicles will not
merely upload data to the Internet using V2I. It will also use V2V
communications between peers to complement on board sensor
inputs and provide safe and efficient navigation. In this paper,
we first describe several vehicular applications that leverage V2V
and V2I. Communications with infrastructure and with other
vehicles, however, can create privacy and security violations. In
the second part of the paper we address these issues and more
specifically focus on the need to guarantee location privacy to
mobile users. We argue on the importance of creating public,
open “smart city” data repositories for the research community
and propose privacy preserving techniques for the anonymous
uploading of urban sensor data from vehicles.

I. INTRODUCTION

Academic researchers are becoming increasingly interested

in studying smart city behaviors, like pedestrians, drivers, and

traffic, city resources (eg energy) and city environment (eg

pollution, noise). These studies are based on Open Shared

Data made available by several Smart City testbeds around the

country. To this end, Open Data Science enables researchers to

collect the data, process it with data mining and ML techniques

and create accurate models that allow them to realistically

validate smart city design methodologies. This requires the

collection of data from sensors, cameras embedded in the

”smart city” (eg, smart building, smart transport, smart instru-

mented crowd) to derive models of behavior, predict trends,

optimize system management and detect the onset of attacks.

In the past, much research in these environments has been

performed in simulation or in carefully controlled and expen-

sive testbed systems. Increasingly, research addressing these

challenges must be performed in more realistic environments.

However, doing so poses serious questions, many of which

relate to cybersecurity aspects of their work. Researchers will

need to deploy their technologies in real vehicles, in real

roads and cities (or, at least, on-campus roads used for general

purposes), to demonstrate that they are not mere toys suitable

for use in a simulated environment or highly controlled

test track. The necessities of the research require testing in

such uncontrolled environments, yet such environments pose

serious risks to the validity of the experiments and the integrity

and privacy of the data gathered by them.

In autonomous vehicles, some of the data available on the

cars will be used to examine the behavior of drivers and their

reactions to traffic conditions. These measurements will be

helpful to reassure future customers that autonomous vehicles

are in fact safe. For example, today most manufacturers

expect the drivers to keep their hands on the steering wheel.

Accordingly, they are developing an “early warning” system.

When the system issues an alarm, the driver should be ready

to take over because of the announced danger. At times, the

cautious driver will step on the brakes before the alarm, even

if it was not necessary. Other times, the driver intervenes after

hearing the alarm, but the alarm was unjustified. Other times

again the alarm is justified but the driver is not alert nor ready.

An important measurement will be the false positive rate, that

is the fraction of manual interventions that were not justi-

fied by traffic conditions. Measuring the autonomous/manual

switchover behavior of drivers is extremely useful to design the

early warning system in the car, i.e. the system that instructs

the driver to take over the controls. The warning threshold

must be tuned to the particular driver’s “personality”, say

cautious or aggressive, else the driver will not use it! Thus,

these measurements are used both to classify the driver and

tune the system.

In principle, these experiments can be run in a simulator.

Namely, the driver is in front of a “game type” simulator that

replicates realistic road conditions. The autonomous system

then captures these conditions and triggers the alarm, when

it determines that the traffic situation (eg pedestrians in the

crosswalk, bicycles competing for the road, chaotic traffic

jams, etc) may pose serious liability risks or may overwhelm

the self driving controls.

The simulator solves the data privacy issue since no real data

is used. However, the simulator will have serious limitations.

It will not be able to accurately reflect the noise that in real

life distorts the signals (radio, video, LIDAR, etc) captured by

the car. Moreover, the driver that sits at a simulator tends to

behave in a very different way than the driver at the wheel

in real traffic. Because of the above reasons, these driver

behavior experiments must be carried out in vivo. The data

collected in these experiments will be of interest to a large

cross section of Smart City researchers, from robotics experts



to traffic engineering and behavioral scientists.

The autonomous/manual switchover experiment is a rather

complex experiment, requiring the collection of many signals,

namely: position and speed of the vehicle in question and of

all the surrounding vehicles (to assess traffic context, conges-

tion, etc.); road map and road conditions; road signal states

such as intersection signals; green waves; acceleration and

brake interventions by the autonomous car and by the driver,

respectively; the triggering of cockpit alarms; the degree of

attention of the driver (eg, reading, watching movie, talking,

hands on/off wheel and eyes on/off the road, etc). This data

may be collected, say, every 100 ms (human reaction time) and

packaged for delivery to the Measurement Collection Center.

Using this data, an estimate of what would have happened

without manual intervention can be generated a posteriori. The

alarm threshold must be low enough for timely warning to the

driver for safe intervention. It should not be too low otherwise

the superfluous triggering of alarms will exasperate the driver!

Looking at the problem from another viewpoint, the collec-

tion of this data poses privacy challenges. If the collection

system is always on, the auto dealer, say, will know inti-

mately the commuting habits of the driver, raising serious

privacy concerns. The issue then is to extract only the data

that is strictly necessary to build the model and carry out

the optimization, while fuzzing the unnecessary details. This

anonymization issue will be addressed in the last section of

the paper, namely, private data collection. The next section

provides the background of the vehicular system evolution

to IOV and Vehicular Cloud, the establishment of V2V/V2I

communications standards and the emergence of vehicular

applications that exploit these standards. As we shall see, it

will be some of these applications that carry intrinsic security

and privacy risks.

II. EVOLUTION FROM VEHICLES TO IOV AND THE

VEHICULAR CLOUD

The urban fleet of vehicles is rapidly evolving from a

collection of sensor platforms that provide information to

drivers and upload filtered sensor data (e.g., GPS location, road

conditions, etc.) up the Internet, to a network of autonomous

vehicles that exchange their sensor inputs among each other in

order to optimize several different utility functions. One such

function, and probably the most important for autonomous

vehicles, is prompt delivery of the passengers to destination

with maximum safety and comfort and minimum impact on

the environment. We are witnessing today in the vehicle fleet

the same evolution that occurred ten years ago in the sensor

domain from Sensor Web (i.e., sensors are accessible from the

Internet to get their data) to Internet of Things (the components

with embedded sensors are networked with each other and

make intelligent use of the sensors). In the intelligent home,

the IOT formed by the myriad of sensors and actuators, that

cover the house internally and externally, can manage all the

utilities in the most economical way, with maximum comfort

to residents, with virtually no human intervention. Similarly, in

the modern energy grid, the IOT consisting of all components

large and small can manage power loads in a safe and efficient

manner, with the operators now playing the role of observers.

In the vehicular grid, the Internet of Vehicles (IOV) is more

complex than the smart home and smart energy grid IOTs. In

fact there are many different “Things” in the IOV. Namely:

1) External sensors (GPS, cameras, lidars etc)

2) Internal automotive sensors and actuators (brakes, steer-

ing wheel, accelerator, etc)

3) Internal cockpit sensors (driver’s state of health, alertness,

tone of voice, health sensors like the Ford heart monitor

seat, etc)

4) The Driver’s messages (tweets, Facebook, other crowd-

sourced info, etc) are also measurable sensor outputs that

characterize the state of the system and of the driver.

5) Vehicle’s beacons, alarms report on the Vehicle state; say,

position, key internal parameters, possible dangers, etc.

This complex picture (of sensors and stakeholders) tells us

that IOVs are different from other IOTs. What sets them apart

from other IOTs (and requires more “things”) are the following

properties/characteristics:

1) Mobility:

a) IoVs Must manage mobility and wireless bottleneck

b) They must guarantee motion privacy

2) Safety critical Applications

a) This implies low latency requirements

3) V2V:

a) V2V is critical for safety, low latency apps (eg, pla-

toons)

4) Attacks:

a) Security and DDoS attacks (from hackers and form

malicious agents) are made possible by V2V.

In the vehicular network, like in all the other IOTs, when

the human control is removed, the autonomous vehicles must

efficiently cooperate to maintain smooth traffic flow in roads

and highways. Visionaries predict that the self-driving vehicles

will behave much better than human drivers, handling more

traffic with lower delays, less pollution and better driver and

passenger comfort. However, the complexity of the distributed

control of hundreds of thousands of cars cannot be taken

lightly. If a natural catastrophe suddenly happens, say an

earthquake, the vehicles must be able to coordinate the evac-

uation of critical areas in a rapid and orderly manner. This

requires the ability to efficiently communicate with each other

and also to discover where the needed resources are (e.g.,

ambulances, police vehicles, information about escape routes,

images about damage that must be avoided, etc.). Moreover,

the communications must be secure, to prevent malicious

attacks that in the case of autonomous vehicles could be

literally deadly since there is no standby control and split

second chance of intervention by the driver (who meantime

may be surfing the web).

All of these functions, from efficient communications to dis-

tributed processing over various entities, will be provided by

an emerging compute, communications and storage platform



specifically designed for vehicles—the Vehicular Cloud. The

Vehicular Cloud is justified by several observed trends:

1) Vehicles are becoming powerful sensor platforms

a) GPS, video cameras, pollution, radars, acoustic, etc

2) Spectrum is becoming scarce => Internet upload of all

the sensor outputs expensive and besides infeasible

3) More data is cooperatively processed by vehicles rather

than uploaded to Internet:

a) road alarms (pedestrian crossing, electr. brake lights),

platoon coordination signals, intersection announce-

ment, etc

4) Distributed Surveillance (video, mechanical, chemical

sensors)

a) Must be locally supported, deployed

5) Protection from DDoS attacks, must be done locally, via

the Vehicular Cloud

To support the above functions, the mobile Vehicle Cloud

provides several basic services, from routing to content search,

through standard, open interfaces that are shared by all auto

manufacturers.

III. EMERGING APPLICATIONS

A number of applications have emerged in recent years,

leveraging V2I and V2V

• Safe Navigation

• Crash prevention; platoon stability; shockwaves

• Content Download/Upload

• News, entertainment, location relevant info download;

ICN

• Video upload (eg remote drive, Pic-on-wheels, accident

scene, etc)

• Sensor Data gathering

• Forensics; driver behavior; traffic crowdsource; ICN

• Privacy preserving data analysis

• Intelligent Transport

• Efficient routing to mitigate congestion/pollution

• Vehicle Autonomy

• Autonomous, self driving vehicles, etc

We will review some of these application next, with focus

on autonomous vehicle impact and security privacy concerns.

A. V2V for Safe and Efficient navigation

Safe navigation generally includes these features:

• Forward Collision Warning,

• Intersection Collisions

• Traffic shockwaves

• Platooning (e.g., trucks)

• Advisories about road perils such as“Ice on bridge”,

“Congestion ahead”?

Figure 1 illustrates the use of DSRC beacons to support

safe distance keeping within platoons. Automakers, however,

have been reluctant to use V2V or V2I to implement safety

procedures for customers. The major reason is liability in case

of accidents. Say, suppose the car in front maliciously tells my

Figure 1: Platoon Control Systems. Cooperative adaptive

cruise control.

car to brake because of a sudden obstacle, while there is no

obstacle. My car stops and is hit by the car behind. I am

technically at fault.

More fundamentally, the autonomous vehicle manufactur-

ers today relay only on their own sensors (e.g., Acoustic,

Laser, Lidar, Visual Communications, Video Cameras, GPS,

accelerometer, etc. – the GOOGLE car has over 200 sensors on

board). If their sensors are faulty, they accept the liability. In

view of this attitude, we should ask the question: why should

manufacturers need V2V to Protect Self Driving Vehicles and

all the advanced cruise control vehicles, since they have all

the sensors at their disposal to prevent crashes?

Unfortunately, for the self-driving car manufacturers, the

future contradicts this assumption. Consider these points:

Thousands of autonomous vehicles will share the road in 5-

10 years. Advance platooning will be necessary to justify

the cost of these cars. Very high speeds with small car

intergaps will be required to efficiently utilize highways.

Isolating the autonomous cars in “sensor cocoons” without

car to car communications will cost them the ability to platoon

efficiently. It will require them to maintain 40m gaps between

cars (as depicted in Figure 1) with serious efficiency and

safety consequences! Bottom line: Autonomous vehicles will

be forced to adopt V2V.

B. Intelligent navigation - from Dash Express to WAZE

Dash Express revolutionized the navigator business in 2008

by exploiting Time and Speed crowdsensing by its customers.

Namely, cars periodically submit Time and Speed reports.

Routing instructions to cars are updated using customers

reports. See Figure 3. Current Navigators are mostly based

on the same crowdsourcing model. For example WAZE (by

Google) is implemented in the Cloud and is accessed via V2I

(DSRC, WIFI or LTE).

The Centralized, Cloud based Navigator Server allows for

many advanced features like: optimization of routes; Mini-



Controllers comparison

ACC – headway T = 0.3 s ACC – headway T = 1.2 s

CACC – distance = 5 m

Figure 2: CACC vs ACC. Controllers comparison.

Figure 3: Dash Express. Intelligent navigation.

Figure 4: Waze Attacks [1]. Privacy Attack: Waze allows re-

mote customers to view current traffic in an arbitrary window.

By moving window, attacker tracks victim. DDoS Attack: the

malicious customer impersonates multiple WAZE vehicles in

small area, simulating traffic bottleneck.

mization of pollution (eco routing); Traffic flow balancing;

Arrival time control on preferred routes; Traffic and congestion

control. However, centralized traffic management cannot react

promptly to local traffic perturbations (WAZE has a reaction

time of 10-15min). Thus, a doubled parked truck in the next

block; a recent traffic accident; a sudden queue of traffic on

the preplanned route forces me to wait up to 15 min before

I find the cause with WAZE. The Internet based Navigator

Server cannot micro-manage traffic for scalability reasons.

Enter distributed traffic management! The distributed ap-

proach is a good complement of centralized supervision, see

Leontiadis et. al. [2]. In the referenced paper the distributed,

totally crowdsourced scheme “CATE: Comp Assisted Travel

Environment” is introduced. In a nutshell, Vehicles crowd

source traffic information and build traffic load data base:

1) estimate traffic from own travel time;

2) share it with neighboring vehicles (with V2V in an ad

hoc manner)

3) dynamically recompute the best route to destination

Interestingly, both Centralized and Distributed navigation

systems lead to security issues. In a separate paper we describe

the vulnerability of the distributed scheme to BOTNET attacks

launched by compromised cars [ xyz]. The compromised cars

manage to propagate false information and lure honest cars

in a major traffic bottleneck in a couple of minutes! The

Centralized Navigator protects from BOTNETs, but exposes

customers to Privacy attacks, as described below.

C. Security Problem: Privacy violations in V2I communica-

tions

The Centralized Navigators, have security problems and

can lead to Communication Privacy Violations. In fact, with

centralized navigators, Cars upload their position, velocity and

intended destination to the Navigator. For example:

• WAZE delivers vehicle position and traffic conditions to

GOOGLE traffic

• UBER vehicles upload passenger and vehicle status to

UBER Server

• LTE providers can trilaterate and localize the vehicles as

they connect to the Internet

The collected data can be used by the Navigation servers

to track users and discover their habits and favorite hot

spots. Naturally, Service Providers like GOOGLE, UBER

and Cellular Companies are committed to protect customer

privacy. However, privacy guarantees have been often broken

in the past (intentionally or by mistake). Examples of privacy

violations with WAZE are shown in Figure 4. In the Waze

Privacy Attack, Waze allows remote customers to view current

traffic in an arbitrary window. By moving the window, the

attacker tracks the victim. In the Waze DDoS Attack, the

malicious customer impersonates multiple WAZE vehicles in

a small area, simulating traffic bottleneck.

In the remainder of this paper, we focus on the Privacy

violation issue, a problem common to all applications that

upload mobile data from IOT or IOV to Servers in the

Cloud. We formally define the problem, introduce an efficient,

scalable solution, Haystack, and evaluate it on the Southern

California PEMS vehicle sensor loop data from CALTRAN.



IV. RELATED WORK

Differential privacy [3], [4], [5], [6] has been proposed as a

mechanism to privately share data such that anything that can

be learned if a particular data owner is included in the database

can also be learned if the particular data owner is not included

in the database. To achieve this privacy guarantee, differential

privacy mandates that only a sublinear number of queries have

access to the database and that noise proportional to the global

sensitivity of the counting query is added (independent of the

number of data owners).

Distributional privacy [7] is a privacy mechanism which

says that the released aggregate information only reveals the

underlying ground truth distribution and nothing else. This

protects individual data owners and is strictly stronger than

differential privacy. However, it is computationally inefficient

though can work over a large class of queries known as

Vapnik-Chervonenkis (VC) dimension, which is one measure-

ment of learning theory in regards to machine learning.

Zero-knowledge privacy [8] is a cryptographically influ-

enced privacy definition that is strictly stronger than differ-

ential privacy. Crowd-blending privacy [9] is weaker than

differential privacy; however, with a pre-sampling step, it

satisfies both differential privacy and zero-knowledge privacy.

These mechanisms do not add noise linear in the number of

data owners and rely on aggressive sampling, which negatively

impact the accuracy estimations.

The randomized response based policies [10], [11], [12],

[13] satisfies the differential privacy mechanism as well as

stronger mechanisms such as zero-knowledge privacy. How-

ever, the accuracy of the randomized response mechanism

quickly degrades unless the coin toss values are configured

to large values (e.g., greater than 80%).

V. ARCHITECTURE

A. System Model

We now describe the system model. The system proceeds

in epochs. Every epoch t each data owner i generates personal

data (e.g. current location) on a device under their control (e.g.,

a smartphone or vehicle). There is a personal data stream X =
{Xt,i} where 0 ≤ t < T .

The data owner’s personal data Xt,i = {xt,i,l} where 0≤ l < L

is a bit vector of length L, where L is the number of queries

(e.g., number of locations to monitor). While simple, binary

classification can be extended to real-valued functions [14].

Next, each data owner generates a privatized (possibly

randomized) view given their personal data Z = {Zt,i|Xt,i}
where 0 ≤ t < T . Each entry Zt,i is a random variable in t,

and is independently distributed across each i entry though

not identically distributed.

The contributions from data owners at epoch t are aggre-

gated to learn statistics about the population. We model the

privatized data collected at each epoch as a statistical database

as a vector Zt = (Zt,1, ...,Zt,i) where each entry i has been

contributed by a data owner. Each i row is protected due to

the cryptographic private write and the aggregator does not

know which data owner wrote each i entry.

B. System Goals

The goals for our system as follows. The protocol does not

require a restart if a mobile node (e.g., smartphone or vehicle)

enters or leaves. Messages received are processed in the same

epoch in which they are received, regardless of whether they

are at the beginning or end of the epoch.

In addition, the analysts are deemed to be reputable, e.g.,

Department of Transportation, National Institutes of Health,

or Centers for Disease Control. Each analyst may own or

contribute an aggregation server. Aggregation servers may

also be contributed by privacy watchdog groups such as the

Electronic Frontier Foundation (EFF).

C. Threat Model

The population (database) size or total number of par-

ticipating data owners is not published or released. This

mitigates auxiliary attacks whereby an adversary can utilize

the database size (number of participants) to deduce if a

particular individual is included [15], [16].

Data owners establish an independent TLS connection to

each aggregator to transmit the shares confidentially. The TLS

connection is long-lived to amortize the connection setup.

Aggregation parties may try to collude, though we assume

there is at least one honest aggregation party which does not

collude (e.g., a privacy watchdog like the EFF). Data owners

may try to collude with the aggregation servers, though we

assume there are at least two honest data owners who do not

collude with the aggregators. Of course the larger the number

of honest data owners, the stronger the privacy guarantees are

for each data owner.

Aggregators are expected to be available and online,

so we do not consider denial of service attacks whereby

data owners are not able to transmit their responses. We

assume aggregators do not corrupt the messages though

they can attempt to read all messages. Privacy holds as long

as there is at least one honest aggregator who does not collude.

D. Query

Queries are of the form of counting queries such as “What is

the distribution of vehicles across New York City and how fast

are the vehicles traveling?”. The query is a two dimensional

matrix where the first dimension is a list of locations and

the second dimension is a range of vehicle speeds. Each

vehicle truthfully responds by selecting the coordinate which

matches their current location and speed. That is, the value

of a single entry of the matrix is incremented by one. This

results in a query of sensitivity of only one. More generally, a

d-dimensional query can be supported to learn more complex

distributions.

VI. HAYSTACK PRIVACY

We now introduce the notion of Haystack Privacy. The main

goal is to scale the the number of participants in order to

strengthen privacy yet maintain accuracy.



Figure 5: Each data owner selects an index uniformly at

random to write their location status. The information-theoretic

private write is protected as long as there is at least one honest

aggregator which does not collude. The aggregators share their

results to compute the final aggregate output.

In Haystack, data owners locally privatize their personal

data independent of other data owners or centralized services.

Second, data owners blend with, and are indistinguishable,

from at least c crowds, where each crowd is composed

of at least k data owners. Finally, data owners perform a

cryptographic private write (similar to Figure 5) such that no

aggregator knows where in the data structure (which row in

Figure 6) a data owner wrote to. Effectively each data owner

can be thought of as “hiding in a haystack”.

The key contribution of Haystack Privacy is that every-

one in the population participates. For example, suppose we

crowdsource vehicle densities across New York City using the

query in Figure 6. A data owner (vehicle) begins by answering

the query “Am I at Brooklyn Bridge?”. Prior work using the

Laplace mechanism [6], [4] would have everyone at Brooklyn

Bridge answer truthfully. Then, a small amount of privacy

noise is added to protect privacy. In Haystack Privacy, all

data owners respond to the query as seen in Figure 6. A

small fraction of those not at Brooklyn Bridge will respond

“Yes, I’m at Brooklyn Bridge”. A small fraction at Brooklyn

Bridge will respond “No, I’m not at Brooklyn Bridge”. Both

cases provide plausible deniability and are controlled by two

different Bernoulli trials specified in the query. To estimate the

aggregate count, the expected value of the privacy noise due to

the Bernoulli trials is calculated and removed. One observation

is the number of people at Brooklyn Bridge is fixed. While the

number of people in any locale (e.g., Brooklyn Bridge) may be

fixed, the inclusion of inputs from people not at that location

enables us to leverage the law of large numbers to ensure

that the estimated privacy noise approaches the expected value

and thus preserves accuracy. In Section §VII, we show that,

for our use case, Haystack Privacy preserves accuracy. That

is, increasing participation improves the privacy yet maintains

accuracy.

A. Mechanism

In the Haystack Privacy mechanism, each data owner

independently and individually privatizes their data before

privately writing to a cloud service which aggregates all

the responses. The privatization is performed by a series

of Bernoulli trials which randomizes the truthful answer in

a particular way such that the final aggregation is able to

calculate the expected value over the population as a Binomial

distribution and then remove the expected value of the noise

to approximate the ground truth value.

The main goal is to be able to increase the population

participating such that the data owners blend with each other to

provide privacy protection. As we control the randomization,

we construct a mechanism whereby the error introduced by the

sampling variance cancels out. We construct our mechanism as

follows. Each data owner responds twice for the same query,

though flips a single term to allow for the error cancelation.

YES refers to the population that is at a particular location

and conversely NO are those that are not.

YESA Privatized Value=











⊥1 with probability π⊥1

⊥1 with probability πY

⊥2 with probability 1−π⊥1
−πY

(1)

NOA Privatized Value=











⊥1 with probability π⊥1

⊥1 with probability π⊥N

⊥2 with probability 1−π⊥1
−π⊥N

(2)

YESB Privatized Value =











⊥1 with probability π⊥1
−πY

⊥2 with probability πY

⊥2 with probability 1−π⊥1

(3)

NOB Privatized Value =











⊥1 with probability π⊥1
−π⊥N

⊥2 with probability π⊥N

⊥2 with probability 1−π⊥1

(4)

The expected values are as follows:

E[⊥1A
] = (π⊥1

+πY )×YES+(π⊥1
+πN)×NO

= π⊥1
×YES+πY ×YES+π⊥1

×NO+πN ×NO

= π⊥1
×TOTAL+πY ×YESA +πN ×NO

= π⊥1
×TOTAL+πY ×YESA +πN ×TOTAL−πN ×YES

(5)



Figure 6: Haystack mechanism. Each data owner selects a row uniformly at random from an N ×L matrix, where N is the

number of rows (greater than the number of data owners), and performs a cryptographic private write. A crowdsourced regional

query maps each location to a bit. The query specifies two Bernoulli trials to privately respond. Each privatized response is

protected by reporting multiple locations and by sometimes NOT reporting the actual location. Aggregation is performed for

each location. The final aggregate output is calculated by subtracting the expected value of the privacy noise due to the Bernoulli

trials.

E[⊥1B
] = (π⊥1

−πY )×YES+(π⊥1
−πN)×NO

= π⊥1
×YES−πY ×YES+π⊥1

×NO−πN ×NO

= π⊥1
×TOTAL−πY ×YES−πN ×NO

= π⊥1
×TOTAL−πY ×YES− (πN ×TOTAL−πN ×YES)

= π⊥1
×TOTAL−πY ×YES−πN ×TOTAL+πN ×YES

(6)

E[⊥2A
] = (1−π⊥1

−π⊥Y
)×YES+(1−π⊥1

−πN)×NO

= (1−π⊥1
)×TOTAL−πY ×YES−πN ×NO

= (1−π⊥1
)×TOTAL−πY ×YES−

(πN ×TOTAL−πN ×YES)

= (1−π⊥1
)×TOTAL−πY ×YES−

πN ×TOTAL+πN ×YES

(7)

E[⊥2B
] = (1−π⊥1

)×YES+⊥Y ×YES+

(1−π⊥1
)×NO+⊥N ×NO

= (1−π⊥1
)×TOTAL+πY ×YES+πN ×NO

= (1−π⊥1
)×TOTAL+πY ×YES+

πN ×TOTAL−πN ×YES

(8)

We should now be able to subtract either pairs of ex-

pected values and solve for YES. Either E[⊥1A
]−E[⊥1B

] or

E[⊥2A
]−E[⊥2B

]. In order to solve the system of equations, the

count πN ×TOTAL is revealed. Note this value only includes

responses from the NO population and not the Y ES population.

We then eliminate this value from both systems of equations

and solve for YES.
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Figure 7: Accuracy. Ground truth versus privatized vehicle counts with a 95% confidence interval. The population not at

the station being monitored (i.e., No population) increases by expanding the query to include additional vehicles not at the

particular location.

VII. EVALUATION

We evaluate the Haystack mechanism over a real dataset

rather than arbitrary distributions. We utilize the California

Transportation Dataset from magnetic pavement sensors [17]

collected in LA\Ventura California freeways [18]. There are

a total of 3,220 stations and 47,719 vehicles total. We assign

virtual identities to each vehicle. Each vehicle announces the

station it is currently at.

Figure 7 compares the Haystack mechanism to the ground

truth data over a 24 hour time period with a confidence

interval of 95%. We select a single popular highway station

that collects and aggregates vehicle counts every 30 seconds.

(For reasons of illustration we graph a subset of points for

readability). We assign virtual identifiers and have every vehi-

cle at the monitored station truthfully report “Yes” while every

other vehicle in the population truthfully reports “No”. The

Haystack Privacy mechanism then privatizes each vehicle’s

response. Traffic management analyzing the privatized time

series would be able to infer the ebbs and flow of the vehicular

traffic.

The coin toss probabilities are fixed with parameters π⊥1
=

0.15, πYes = 0.20, πNo = 0.25. The additional blending pop-

ulation (those not at the particular location) starts with 10

thousand and increases to 10 million vehicles.

VIII. CONCLUSION

In this paper we have demonstrated that data can be pri-

vately collected into a common open data vehicular database

to be shared amongst multiple collaborators. We introduce

the concept of Haystack Privacy, which strengths in privacy

strength as more data owners participate yet maintains accu-

racy. We believe this is a new direction in open data vehicular

research.
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