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Mini-Symposium

New Insights into the Specificity and Plasticity of Reward
and Aversion Encoding in the Mesolimbic System

Susan F. Volman,1 Stephan Lammel,2 Elyssa B. Margolis,3 Yunbok Kim,4 Jocelyn M. Richard,5 Mitchell F. Roitman,6

and Mary Kay Lobo7

1Division of Basic Neuroscience and Behavioral Research, National Institute on Drug Abuse, Bethesda, Maryland 20892, 2Nancy Pritzker Laboratory,
Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305, 3Department of Neurology, University
of California, San Francisco, California 94143, 4Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, 5Department of
Psychology, University of Michigan, Ann Arbor, Michigan 48109, 6Department of Psychology, University of Illinois at Chicago, Chicago, Illinois 60607, and
7Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21230

The mesocorticolimbic system, consisting, at its core, of the ventral tegmental area, the nucleus accumbens, and medial prefrontal cortex,
has historically been investigated primarily for its role in positively motivated behaviors and reinforcement learning, and its dysfunction
in addiction, schizophrenia, depression, and other mood disorders. Recently, researchers have undertaken a more comprehensive
analysis of this system, including its role in not only reward but also punishment, as well as in both positive and negative reinforcement.
This focus has been facilitated by new anatomical, physiological, and behavioral approaches to delineate functional circuits underlying
behaviors and to determine how this system flexibly encodes and responds to positive and negative states and events, beyond simple
associative learning. This review is a summary of topics covered in a mini-symposium at the 2013 Society for Neuroscience annual
meeting.

Introduction
The dopamine neurons in the ventral tegmental area (VTA) and
their targets in the nucleus accumbens (NAc) and the medial
prefrontal cortex (mPFC) are often considered the nexus of the
brain’s mesocorticolimbic “reward circuit,” although it has long
been known that neurons in these brain areas are also influenced
by aversive stimuli and events (e.g., Bromberg-Martin et al.,
2010). With the advent of new anatomical, physiological, and
behavioral approaches, and critical attention to psychological
constructs, a more sophisticated understanding is emerging of
the role of the mesocorticolimbic system in motivated behavior.

One area of current investigation is the delineation of func-
tional heterogeneity and specificity of subcircuits in the VTA
(reviewed by Ungless and Grace, 2012; Lammel et al., 2013; Ro-
eper, 2013). It is now apparent that the dopamine (DA) neurons
in the VTA comprise several subpopulations distinguished by
their afferent and efferent projections, gene expression profiles,
electrophysiological properties, and participation in reward and
aversion. Similarly, the GABAergic neurons in the VTA display
diversity (Margolis et al., 2012). Tract-tracing experiments in

both mice and rats have revealed physiological and pharmacolog-
ical heterogeneity among DA projections to a variety of targets
(Ford et al., 2006; Margolis et al., 2006a, 2008b; Lammel et al.,
2008, 2011). In the mouse, the analysis of DA neuron heteroge-
neity has been greatly advanced by the use of optogenetic ap-
proaches that depend on molecular genetic tools, which have
only recently become available for other species. Thus, although
DA neuron heterogeneity has been found in other species, it is not
yet known exactly how or whether the pattern of subcircuits dif-
fers among species (Margolis et al., 2008b; Ungless and Grace,
2012).

It is well established from studies in rodents and monkeys that
putative DA neurons in the VTA increase their firing in response
to the presentation of primary rewards and to conditioned stim-
uli that predict reward. However, the nature of the response of
these neurons to aversive events and associated conditioned stim-
uli remains controversial (Ungless et al., 2010; Ungless and
Grace, 2012). A full discussion of this issue is beyond the scope of
this review, but briefly, although many DA neurons are inhibited
by aversive stimuli, a subset of confirmed DA neurons are excited
(Brischoux et al., 2009; Cohen et al., 2012). In addition, studies
using fast scan cyclic voltammetry (FSCV) and microdialysis
have shown elevated DA levels in the NAc and mPFC in response
to aversive stimuli (Bassareo et al., 2002; Budygin et al., 2012).
However, questions remain about differences between responses
in anesthetized versus awake animals, whether some aversive
stimuli used in these studies are truly aversive, whether recorded
responses coincide with the onset of an aversive event or its offset,
which may be perceived as rewarding, and other interpretations
of DA release, such as in response to stimuli that predict success-
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ful punishment avoidance (Oleson and Cheer, 2013). A recent
study, described in more detail below, took a more global ap-
proach to analyzing how value-related information is encoded in
VTA (Kim et al., 2012).

There is a long tradition of single-unit electrophysiological
recording of NAc responses to natural and drug rewards and
associated stimuli (Carelli, 2002; Carelli and West, 2013). Based
on these data and other evidence, Carlezon and Thomas (2009)
proposed that reward is encoded by reduced activity of medium
spiny neurons (MSNs) in NAc, whereas aversion is encoded by
excitation of MSNs. More recently, the understanding of encod-
ing of reward and aversion in NAc has been advanced by the use
of FSCV to measure DA transients released from VTA terminals
and by the design of behavioral experiments to differentiate he-
donic value, motivation, and learning as separate constructs
(Richard et al., 2012; reviewed by McCutcheon et al., 2012; Ber-
ridge and Kringelbach, 2013). These studies have revealed re-
gional differences in the NAc, such as the “hedonic hotspot” in
the rostrodorsal portion of the medial shell (Peciña et al., 2006),
other differences along the rostrocaudal dimension (Richard et
al., 2013), and modulation of the valence of NAc neuronal func-
tion and release of DA in the NAc by behavioral state and learned
associations (Reynolds and Berridge, 2008; Roitman et al., 2010;
Loriaux et al., 2011; McCutcheon et al., 2012; Robinson and Ber-
ridge, 2013). Finally, new molecular approaches are beginning to
reveal the functional organization of the direct and indirect out-
put pathways of the NAc (Hikida et al., 2010, 2013; Lobo and
Nestler, 2011).

New approaches to understanding neural circuits in the VTA
Dopaminergic, GABAergic, and glutamatergic neurons are inter-
mingled in the VTA (Fields et al., 2007). Approximately 60% of
the neurons in the VTA are dopaminergic (Swanson, 1982; Mar-
golis et al., 2006b; Nair-Roberts et al., 2008), 25% are GABAergic
(Margolis et al., 2012), and data suggest that the remaining 15%
are glutamatergic neurons (Yamaguchi et al., 2007, 2011). Over
30 years ago, it was established that, whereas substantia nigra pars
compacta DA neurons send axon collaterals to multiple brain
regions with broad terminal arbors, individual VTA neurons
project to single target brain regions (Fallon, 1981; Swanson,
1982; Margolis et al., 2006a; Matsuda et al., 2009). These projec-
tions include the PFC and limbic structures, such as the NAc as
well as the basolateral amygdala (Björklund and Dunnett, 2007).
There is also growing evidence for selective synapse formation on
subpopulations of VTA neurons. For instance, combinations of
optogenetics, electrophysiology, and immunocytochemistry
have been used to demonstrate that functional GABAergic inputs
to the VTA from the NAc synapse specifically on non-DA neu-
rons, whereas GABAergic inputs arising from the ventral palli-
dum synapse onto both DA and non-DA neurons (Xia et al.,
2011; Hjelmstad et al., 2013). Anatomical studies indicate even
more specific organization, such that afferent inputs sort by both
the projection target and neurotransmitter content of the post-
synaptic cell (e.g., Carr and Sesack, 2000; Omelchenko and Ses-
ack, 2005). For example, glutamatergic inputs from the mPFC
synapse onto VTA DA neurons that project back to the mPFC,
but not DA neurons that project to the NAc (Carr and Sesack,
2000). This anatomical organization of the VTA raises the possi-
bility of differential activity coursing through the multiple cir-
cuits of the VTA.

Given the heterogeneity of neurons in the VTA, one persistent
challenge has been accurate identification of the type of neuron
recorded in vivo and ex vivo. The anatomical evidence for parallel,

potentially independent, projections from the VTA to its targets
raises the possibility that VTA DA neural activity is indeed more
heterogeneous than previously postulated. Recent studies sug-
gesting that established electrophysiological criteria may be
insufficient for distinguishing VTA neurons of different neu-
rotransmitter content have generated significant attention in the
field (Margolis et al., 2006b, 2012; Ungless and Grace, 2012).
However, neuronal markers that clearly differentiate these cell
types in vivo and ex vivo have not yet emerged. Established meth-
ods, such as immunocytochemical identification of biocytin-
labeled cells or the use of transgenic mice that express fluorescent
proteins in different cell populations (e.g., TH-GFP mice), are
currently the most reliable approaches for distinguishing VTA
neurons (Margolis et al., 2010). In addition, novel methods, such
as optical tagging (i.e., the identification of cell types based on
their response to optogenetic stimulation), should be used to
unambiguously identify VTA cell populations (Cohen et al.,
2012).

Although many electrophysiological studies have overlooked
heterogeneity among VTA DA neurons, recent work has begun to
assign intrinsic and pharmacological properties to VTA DA neu-
rons according to their projection targets. By combining retro-
grade tracing of dopaminergic projection targets with ex vivo
electrophysiology, profound differences in the anatomical, mo-
lecular, physiological, and pharmacological properties of VTA
DA subpopulations were shown (Ford et al., 2006; Margolis et al.,
2006a, 2008b; Lammel et al., 2008, 2011; Roeper, 2013). More-
over, the prediction of the dopaminergic phenotype seems to be
more reliable when the projection target is known (Margolis et
al., 2008b; Lammel et al., 2011). VTA GABA neurons also exhibit
a broad set of physiological and pharmacological properties, of-
ten similar to those of VTA DA neurons (Margolis et al., 2012). It
remains to be determined how VTA GABA neuron properties are
distributed in different efferent subpopulations.

Recently, researchers have begun to uncover the behavioral
relevance of the diversity of afferent-specific inputs to VTA neu-
rons using optogenetic stimulation of selected presynaptic termi-
nals. Their studies showed that rewarding and aversive
behaviors in mice can be controlled by optogenetic stimula-
tion (Lammel et al., 2012; Stamatakis and Stuber, 2012; Jen-
nings et al., 2013). Specifically, by expressing light-activated
channel channelrhodopsin-2 in the laterodorsal tegmentum, it
was shown that optical stimulation of laterodorsal tegmentum
terminals in the VTA induced conditioned place preference
(CPP) (Lammel et al., 2012). In contrast, light stimulation of
terminals from the lateral habenula in the VTA and rostromedial
tegmentum (RMTg, a GABAergic nucleus that extends posteri-
orly and dorsal from the VTA and sends a large projection to
midbrain DA neurons) produced conditioned place aversion
(Lammel et al., 2012). Brain slice recordings of functional synap-
tic connectivity revealed that laterodorsal tegmentum neurons
synapse on VTA DA neurons projecting to NAc lateral shell. In
contrast, lateral habenula neurons make synaptic connections on
both GABAergic neurons in the RMTg as well as DA neurons
projecting to PFC (Omelchenko and Sesack, 2005; Balcita-
Pedicino et al., 2011; Lammel et al., 2012). Importantly, optical
stimulation of lateral habenula terminals in the VTA induced
inhibitory postsynaptic currents in VTA DA neurons projecting
to NAc lateral shell (Lammel et al., 2012), which supports the idea
that VTA DA neurons are tonically inhibited by RMTg GABA-
ergic neurons (Bourdy and Barrot, 2012). These findings show
that VTA neurons are part of segregated circuits that control
reward- and aversion-associated behaviors.
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Layered on top of the different circuits passing through the
VTA contributing to behavior is the differential control of these
circuits by peptides and other neuromodulators. For instance, �
opioid receptor (MOR) modulation of circuit elements in the
VTA has been intensely studied because of the robust behavioral
effects of microinjecting MOR agents into the VTA. For example,
microinjecting a MOR agonist into the VTA produces CPP (Phil-
lips and LePiane, 1980; Bals-Kubik et al., 1993; Nader and van der
Kooy, 1997; Zangen et al., 2002). This manipulation also in-
creases DA release in the ventral striatum (Spanagel et al., 1992;
Devine et al., 1993), and it is thought that this occurs through
disinhibition: MORs on GABA terminals inhibit GABA release
onto DA neurons, permitting them to fire more (Kelley et al.,
1980; Johnson and North, 1992). Although MOR function in the
VTA is required for systemic opioid CPP (Olmstead and Frank-
lin, 1997; Zhang et al., 2009), mounting evidence suggests that the
mechanism of MOR reward in the VTA is significantly more
complicated than increasing DA in the NAc. That is, CPP to
either systemic or intra-VTA morphine can persist in animals
trained while DA signaling was either pharmacologically blocked
or genetically diminished (Bechara et al., 1992; Nader and van der
Kooy, 1997; Hnasko et al., 2005). When animals are opiate de-
pendent, however, systemic or intra-NAc blockade of DA signal-
ing does eliminate acquisition of intra-VTA morphine CPP
(Bechara et al., 1992; Nader and van der Kooy, 1997). This sug-
gests that there are both dopaminergic and non-dopaminergic
pathways through the VTA that can signal reward.

In addition to disinhibition, there are a variety of other effects
of MOR activation on VTA neurons that could contribute to
either DA-dependent or DA-independent reward. For instance,
MOR activation not only inhibits GABA release onto VTA DA
neurons, but also onto non-DA neurons (Margolis et al., 2008a).
It also inhibits glutamate release onto many VTA neurons (Bonci
and Malenka, 1999; Margolis et al., 2005). Importantly, over half
of VTA neurons, including DA neurons, are postsynaptically in-
hibited by MOR agonists (Cameron et al., 1997; Margolis et al.,
2003; Ford et al., 2006). Further, about half of the VTA GABA
neurons are inhibited by MOR activation, and many of these are
likely projection neurons (Margolis et al., 2012). Previous studies
demonstrating that postsynaptic � opioid receptor effects sort by
projection target among VTA DA neurons (Ford et al., 2006;
Margolis et al., 2006a, 2008b) raise the possibility that MOR ef-
fects on DA and GABA neurons in the VTA may also sort by
projection target. Together, these observations indicate that
MOR activation in the VTA produces reward through at least two
circuits, possibly harnessing those revealed as separable in the
aforementioned optogenetic studies.

Coordinated activity of VTA neurons during appetitive and
aversive learning
As described above, recent studies indicate that the midbrain
VTA DA system is more heterogeneous than previously assumed
(Carr and Sesack, 2000; Margolis et al., 2006b, 2012; Fields et al.,
2007; Yamaguchi et al., 2007; Luo et al., 2008; Lammel et al., 2012;
Roeper, 2013). Given that this system is implicated in multiple
forms of learning and memory, motivation, valuation, and exec-
utive function (Goldman-Rakic, 1996; Gibbs et al., 2007; Schultz,
2007; Salamone and Correa, 2012), it is not surprising that the
conceptualization of it as a highly homogeneous network of cells
is beginning to fall away. The heterogeneity of VTA neurons
raises new questions, however, such as the degree to which they
encode information through their joint activity during behavior-
ally activated states, which can be addressed by investigating their

population dynamics to quantify the extent to which they inter-
act. Understanding the nature of this interaction is also relevant
to the pathophysiology of neurological and psychiatric disorders.
For example, impairment of coordinated activity and joint pro-
cessing of information in the VTA may be one mechanism that
produces the behavioral symptoms of disorders, such as schizo-
phrenia, for which there is no consistent marker of dopamine
neuron pathology (Moghaddam and Wood, 2013).

In cortical regions, it has been well recognized that dynamic
coordination between groups of neurons is critical for orchestra-
tion of behavior (Cohen and Kohn, 2011). Few studies, however,
have focused on investigating the nature of interaction of simul-
taneously recorded VTA neurons. Kim et al. (2012) observed
modulations in the correlation structure between VTA neurons,
according to the conditioned value of a stimulus. After associative
learning, stimuli that had been paired with a rewarding outcome
caused the firing of simultaneously recorded VTA neurons to
become more correlated. Similar findings have also been ob-
served in substantia nigra DA neurons (Joshua et al., 2009). Cor-
relations in VTA were context specific, were decreased by
presentation of aversive stimuli paired with a mild electrical
shock, and also tracked reversals of appetitive and aversive asso-
ciations (Kim et al., 2012). Other studies have reported synchro-
nization (and modulations of synchrony) among VTA neurons
with drug exposure (Hyland et al., 2002; Li et al., 2011). Although
the role of these correlations in VTA activity in cognition is not
well understood, it is hypothesized that they are essential for
encoding appetitive information (Joshua et al., 2009).

In addition to correlations in activity between neurons, local
field potential oscillations, which mainly reflect the summation
of synaptic inputs to a region, provide information about the
correlation structure of VTA networks. Kim et al., (2012) found
that the responses of many VTA neurons to visual and auditory
stimuli are phase-locked to the � rhythm; after associative condi-
tioning, the proportion phase-locked to stimuli predicting a
rewarding outcome increased, whereas the proportion phase-
locked to stimuli predicting an aversive outcome decreased. In-
teractions between neuronal firing and � oscillations have also
been observed in the VTA during appetitive association and
working memory tasks (Fujisawa and Buzsáki, 2011; Kim et al.,
2012).

Collectively, these data suggest that VTA neurons flexibly or-
ganize as functional networks to process behaviorally relevant
information. Although there currently is little understanding of
the role of these neuronal interactions in cognition, evidence is
mounting that they are essential to influencing how the VTA
processes information related to both positive and negative
motivation.

Encoding and modulation of positive and negative
motivation in the NAc
Although the difference between VTA neurons that encode re-
ward versus aversion may be based in part on their projection
targets, even within a given target region, overlapping neu-
rotransmitters and neuromodulators, including dopamine, may
contribute to both positive and negative motivation. The NAc is
most well known for its role in reward and is associated with the
generation of appetitive motivational and affective states, includ-
ing reward seeking, ingestion, and pleasure (Kelley et al., 2005),
but it has also been implicated in aversive motivational and affec-
tive states (Levita et al., 2009). The particular role of the NAc in
encoding and causing behaviors related to aversion remains the
subject of ongoing investigation and may differ depending on
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both the subregion of the NAc and the nature of the “aversion” in
question.

The rostrocaudal gradient of the NAc medial shell
Although inhibition of NAc neurons appears important for ap-
petitive motivation and reward seeking (Carlezon and Thomas,
2009), inhibition of NAc neurons is also capable of generating
certain negative affective and motivational states, particularly
when more caudal areas of the medial shell region are inhibited
(Richard et al., 2013). Inhibition of medial shell by either block-
ade of AMPA glutamate receptors or GABA receptor agonism
generates intense hyperphagia, causing rats to eat up to 10 times
what they would eat under control conditions (Maldonado-
Irizarry et al., 1995; Stratford and Kelley, 1997). Yet, inhibitions
of caudal NAc shell elicit less eating, and instead generate a suite
of defensive reactions (Reynolds and Berridge, 2001). When the
experimenter attempts to touch a rat that has received caudal
shell inhibition, the rat is likely to emit audible distress vocaliza-
tions, attempt to escape, and attempt to (and sometimes success-
fully) bite the experimenter. Caudal shell inhibitions also
generate a behavior known as defensive treading or burying, in
which rodents use rapid forepaw movements to throw dirt or
debris at a threatening stimulus or predator (Coss and Owings,
1978; Treit et al., 1981).

Yet, the rostrocaudal localization of eating and fear is not
rigid, and varies depending on the nature of the current environ-
mental context (Reynolds and Berridge, 2008; Richard et al.,
2013). When rats are tested in the familiar, comfortable environ-
ment, the AMPA receptor antagonist DNQX generates purely
appetitive behaviors (eating without fear) at �80% of NAc shell
microinjections sites. In contrast, when rats are tested in a stress-
ful, bright, and loud environment, DNQX generates fearful be-
haviors at 80% of sites tested. Therefore, the valence of motivated
behavior generated from the same microinjection, especially at
intermediate rostrocaudal locations, can switch from appetitive
to defensive, and vice versa.

What are the neural mechanisms of these changes in motiva-
tional valence? Importantly, whereas the valence of behavior elic-
ited by AMPA glutamate receptor blockade is flexible and
modulated by the environment, the valence of behavior gener-
ated by GABA agonism is resistant to changes in the environment
(Richard et al., 2013). Furthermore, although eating and defen-
sive behaviors generated by glutamate antagonism have been
shown to depend on local endogenous DA (Faure et al., 2008),
GABA agonism robustly generates eating and defensive behav-
iors even in the face of local DA blockade (Richard et al., 2013).
Given that eating and fear generated by AMPA antagonism de-
pend on different DA receptor subtypes (eating requires D1
alone, and fear requires D1 and D2 stimulation), perhaps subtle
changes in DA transmission can account for the appetitive versus
fearful bias of DNQX-induced behaviors in different environ-
ments (Richard and Berridge, 2011). Additionally, AMPA block-
ade in NAc shell may also differentially generate eating versus fear
depending on the current states of its many corticolimbic gluta-
mate inputs, including from PFC. For instance, when infralimbic
cortex is activated (via pharmacological disinhibition), NAc shell
DNQX generates both less eating and fewer defensive reactions
(Richard and Berridge, 2013). In contrast, when medial orbito-
frontal cortex is activated, DNQX generates more eating at inter-
mediate and caudal sites, whereas fear is unaffected (Richard and
Berridge, 2013), suggesting that some glutamate inputs may se-
lectively potentiate or suppress eating versus fear. It remains to be
seen whether changes in the state of other corticolimbic gluta-

mate inputs can account for the dramatic flips from appetitive to
defensive behavior induced by the environment.

Mesolimbic encoding of rewarding and aversive stimuli
A major challenge for determining the mesolimbic encoding of
aversions is that, although rodents will voluntarily and avidly
consume rewards, they avoid aversive stimuli when possible. One
approach to directly compare reward and aversion responses
within the mesolimbic system has been to use the intraoral deliv-
ery of taste stimuli (Grill and Norgren, 1978), which permits
complete experimenter control. Intraorally delivered solutions
evoke stereotypical orofacial responses that can be classified as
either appetitive (rewarding) or aversive (Berridge, 2000). A
combination of this approach and recording techniques that
sample mesolimbic activity during intraoral infusions can serve
to delineate mesolimbic encoding of these opposing hedonic
evaluations. FSCV captures fluctuations in DA concentration
from DA terminal regions with excellent spatial and temporal
specificity (Robinson et al., 2003; Wightman et al., 2007;
Owesson-White et al., 2012). Measurements in awake and behav-
ing rats have revealed that brief (�1–2 s) DA release events
(�25–100 nM), commonly referred to as dopamine transients,
occur spontaneously with low probability (Owesson-White et al.,
2012). Rewarding stimuli, including food (Roitman et al., 2004;
Brown et al., 2011; McCutcheon et al., 2012), drugs of abuse
(Stuber et al., 2005; Aragona et al., 2009), and cues that predict
their delivery (Phillips et al., 2003; Daberkow et al., 2013), in-
crease the probability of dopamine transients at their onset. In-
traoral infusions of a rewarding sucrose solution also increase
dopamine transients within the dorsomedial shell of the NAc that
are time-locked to infusion onset, as well as throughout and after
the intraoral infusion (Roitman et al., 2008). An aversive quinine
solution, delivered via intraoral infusion during the same record-
ing sessions, evoked the opposite response (i.e., dopamine tran-
sients were suppressed during and after intraoral infusions). This
latter finding likely represents the neurochemical consequence of
pauses in the firing of DA neurons, which have been recorded in
response to aversive stimuli (Mirenowicz and Schultz, 1996; Ma-
tsumoto and Hikosaka, 2009; Cohen et al., 2012).

Electrophysiological recordings in the NAc during intraoral
delivery of rewarding and aversive taste stimuli reveal that, like
NAc dopamine transients, NAc neurons are also acutely respon-
sive to both classes of hedonic stimuli but encode them differen-
tially (Roitman et al., 2005). Sucrose consumption evokes a
reduction in activity in the majority of responsive NAc neurons
(Roitman et al., 2005; Taha and Fields, 2005, 2006). Quinine,
instead, predominantly evokes increases in neuronal activity dur-
ing intraoral infusions (Roitman et al., 2005). Thus, rewarding
taste stimuli evoke an immediate increase in DA release in the
NAc and a decrease in the population firing rate of NAc neurons.
Aversive taste stimuli evoke the opposite pattern: a suppression of
dopamine transients and an increase in the population firing rate
of NAc neurons.

The differences in DA release and neural activity responses to
rewarding and aversive taste stimuli could be the result of their
different sensory qualities, rather than the hedonic responses they
evoke. With the use of a conditioned taste aversion paradigm, the
rewarding taste of sucrose is rendered aversive after it is paired
with an injection of the malaise-producing agent lithium chlo-
ride. Intraoral infusions of sucrose in rats with a conditioned taste
aversion evoke aversive orofacial responses and patterns of DA
release and NAc activity similar to that observed in response to
quinine (Roitman et al., 2010; McCutcheon et al., 2012). Rats that
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experience sucrose and lithium chloride on separate days, and
therefore do not learn a taste aversion, show appetitive orofacial
responses and patterns of DA release and neural activity similar to
that observed in response to sucrose given to naive rats. These
findings have been used, along with other approaches, to support
the “activity hypothesis” of hedonic encoding by the NAc (Car-
lezon and Thomas, 2009).

Differential activity of NAc neurons is likely tied to motor
plans to either approach and consume or avoid and reject stimuli.
Indeed, decreases in the firing rate of NAc neurons during su-
crose consumption, the predominant response, are linked to ap-
petitive and consummatory behavior (Nicola et al., 2004;
Roitman et al., 2005; Gutierrez et al., 2010), and preventing these
decreases halts sucrose consumption (Krause et al., 2010). Inter-
estingly, different subtypes of NAc neurons (i.e., DA D1- vs DA
D2-receptor expressing) exert opposing influences over reward-
directed behavior (Lobo et al., 2010). An important future course
will be to identify the phenotype of NAc neurons that differen-
tially respond to reward and aversion, and to determine whether
there is a causal link between differential patterns of dopamine
transients and NAc neural activity and appetitive versus aversive
behavioral responses.

Differential motivational control by NAc direct and
indirect pathways
Until recently, the complex cytoarchitecture of the NAc has im-
peded understanding of the specific contributions of different
NAc neuron subtypes in motivational behaviors. The two types of
NAc and dorsal striatum projection neurons, the MSNs, are dif-
ferentiated by enrichment of many genes, including the DA D1
and DA D2 receptors (Gerfen et al., 1990; Lobo, 2009). They are
further differentiated by their projections in the basal ganglia
circuit: D1-MSNs in the dorsal striatum form the direct pathway
and project the globus pallidus internal segment (GPi) and mid-
brain regions, including substantia nigra (SN); D2-MSNs in the
dorsal striatum comprise the indirect pathway, projecting to glo-
bus pallidus external segment (GPe) (Gerfen, 1992; Smith et al.,
2013). The NAc projections are not quite synonymous with the
dorsal striatal direct versus indirect pathways. Similar to dorsal
striatum, NAc D2-MSNs exclusively project to a pallidal region,
ventral pallidum (VP), whereas NAc D1-MSNs project to both
VP and midbrain regions, including SN and VTA, as demon-
strated in rodent studies and more recently in D1-tdTomato/D2-
GFP double transgenic lines (Nicola, 2007; Tripathi et al., 2010;
Smith et al., 2013).

Early studies using inducible transgenic lines that serendipi-
tously express �FosB, a transcription factor critical for plasticity
changes to motivational stimuli, in D1-MSNs or D2-MSNs dem-
onstrated a role for D1-MSNs in mediating positive motivational
responses to drugs of abuse and natural reward, whereas D2-
MSNs mediated negative responses to natural reward (McClung
et al., 2004; Robison and Nestler, 2011). Recent use of D1-Cre
and D2-Cre transgenic lines combined with Cre-inducible mouse
lines or viral vectors has led to converging evidence that the two
NAc projection MSNs, as well as the MSNs in dorsal striatum,
have opposing actions on motor, reward, reinforcement, and
drug seeking (Kravitz et al., 2010, 2012; Lobo et al., 2010; e.g.,
Hikida et al., 2010; Ferguson et al., 2011; Tai et al., 2012). Studies
using optogenetic or pharmacogenetic tools to selectively activate
or inhibit D1-MSNs and D2-MSNs demonstrate that recruit-
ment of the D1-MSNs results in positive responses to rewarding
stimuli. In contrast, activation of D2-MSNs produces punish-
ment and suppression of behavior (reviewed by Kravitz and

Kreitzer, 2012; Lenz and Lobo, 2013). Similarly, studies using
cell-type selective profiling or manipulation of genes or signaling
pathways, which are critical for behavioral and synaptic plasticity
to drugs of abuse, demonstrate a role for D1-MSNs in molecular
regulation of these plasticity events (Valjent et al., 2009; Lobo and
Nestler, 2011; Chandra et al., 2013; Smith et al., 2013). However,
this is not the case for all molecular signaling pathways as a recent
study demonstrated that the positive behavioral responses to co-
caine, mediated through VTA-NAc BDNF signaling, occur
through BDNF-TrkB signaling in D2-MSNs (Lobo et al., 2010).
Furthermore, studies examining gene expression and post-
translational histone modifications in D1-MSNs and D2-MSNs
after repeated exposure to cocaine reveal that each MSN subtype
displays distinct transcriptional regulation after chronic expo-
sure to drugs of abuse (Heiman et al., 2008; Jordi et al., 2013).
Together, these studies conducted over the past decade demon-
strate a complex and opposing functional and molecular regula-
tion through the MSN subtypes to mediate motivational and
molecular plasticity responses to rewarding and aversive stimuli.

Conclusion
In conclusion, the topics reviewed above provide a broad per-
spective on the emerging view that the neural circuits underlying
reward and punishment and negative and positive affect and mo-
tivation are intertwined, but that they are being unraveled with
the use of new technical and theoretical approaches. We expect
that much more progress will be made over the next decade in
understanding these circuits, their role in adaptive behavior, and
their dysfunction in mental and addiction disorders.
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