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THE ESSENTIAL DIMENSION OF CONGRUENCE COVERS

BENSON FARB, MARK KISIN AND JESSE WOLFSON

Abstract. Consider the algebraic function Φg,n that assigns to a general
g-dimensional abelian variety an n-torsion point. A question first posed by
Kronecker and Klein asks: What is the minimal d such that, after a rational
change of variables, the function Φg,n can be written as an algebraic function
of d variables?

Using techniques from the deformation theory of p-divisible groups and fi-
nite flat group schemes, we answer this question by computing the essential
dimension and p-dimension of congruence covers of the moduli space of princi-
pally polarized abelian varieties. We apply this result to compute the essential
p-dimension of congruence covers of the moduli space of genus g curves, as well
as its hyperelliptic locus, and of certain locally symmetric varieties. These re-
sults include cases where the locally symmetric variety M is proper. As far
as we know, these are the first examples of nontrivial lower bounds on the es-
sential dimension of an unramified, non-abelian covering of a proper algebraic
variety.
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1. Introduction

This article grew out of an attempt to answer questions first raised by Kronecker
and Klein.1 Let K be an algebraically closed field of characteristic 0, and consider

The authors are partially supported by NSF grants DMS-1811772 (BF), DMS-1601054 (MK)
and DMS-1811846 (JW).

1See [Kl1888, p. 171], [Kr1861, p. 309] and [Bu1890,Bu1891,Bu1893], esp. the footnote to
[Bu1891, Ch. 11] on p. 216, and the treatment in §51-55 that follows.
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2 BENSON FARB, MARK KISIN AND JESSE WOLFSON

the algebraic function Φg,n that assigns to a general g-dimensional (principally
polarized) abelian K-variety an n-torsion point.

Question 1. Let g, n ≥ 2. What is the minimum d such that, after a rational
change of variables, the function Φg,n can be written as an algebraic function of d
variables?

We can rephrase Question 1 in more modern language, using the moduli space
of principally polarized abelian varieties and the notion of essential dimension in-
troduced by Buhler–Reichstein [BR97]. Let Ag denote the coarse moduli space of
g-dimensional, principally polarized abelian varieties over K, and let A1

g,n be the
coarse moduli space of pairs (A, z) where A is a principally polarized abelian variety
of dimension g, and z is an n-torsion point on A.

For any finite, generically étale map of K-schemes, p : X ′ → X , define the
essential dimension edK(X ′ → X), or edK(X ′/X) if the map is implicit, to be the
minimal d for which, generically, X ′ → X is a pullback:

X ′ //❴❴❴

��

Y ′

��

X
f

//❴❴❴ Y

of a finite map Y ′ → Y of d-dimensionalK-varieties via a rational map f : X 99K Y .
In this case we call f a (rational) compression of p. Question 1 can be rephrased as
asking for the value of edK(A1

g,n → Ag).
Following Klein [Kl1884], we can ask a related question, where we allow certain

accessory irrationalities; that is, we can ask for

min
E→Ag

edK(A1
g,n|E → E)

for some class of finite, generically étale maps E → Ag.
2 For example, the essential

p-dimension edK(X ′/X ; p) is defined (see [RY00], Definition 6.3) as the minimum
of edK(X ′ ×X E → E) where E → X runs over finite, generically étale maps of
K-varieties of degree prime to p. For any map E → X one always has

edK(X ′ ×X E → E) = edK(X̃ ′ ×X E → E)

where X̃ ′ denotes the composite of Galois closures of the connected components of
X ′ (see Lemmas 2.2.2, 2.2.3, cf. [BR97, Lemma 2.3]). In particular, for any class of
maps E → Ag the answer to the question above does not change if we replace A1

g,n

by Ag,n, the coarse moduli space of pairs (A,B) where A is a principally polarized
abelian variety of dimension g, and B is a symplectic basis for the n-torsion A[n].

(Here and below we fix once and for all an isomorphism µn(K)
∼
−→ Z/nZ, so that

we may speak of a symplectic basis for A[n].)
In this paper we apply techniques from the deformation theory of p-divisible

groups and finite flat group schemes to compute the essential p-dimension of con-
gruence covers of certain locally symmetric varieties, such as Ag.

Theorem 2. Let g, n ≥ 2, and let p be any prime with p|n. Then

edK(Ag,n/Ag; p) = edK(Ag,n/Ag) = dimAg =

(
g + 1

2

)
.

2Given maps X′ → X and E → X, we use the notations X′|E and X′ ×X E interchangeably
to denote the fiber product.
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Theorem 2 thus answers Question 1: the minimal d equals
(
g+1
2

)
. We in fact prove

a more general result, that for subvarieties of Z ⊂ Ag satisfying some mild technical
hypotheses, edK(Ag,n|Z/Z) = dimZ. More precisely, we prove the following (see
Theorem 3.2.6 below).

Theorem 3. Let p be prime, and let N ≥ 3 be an integer prime to p. Suppose
that L = Q̄p, an algebraic closure of Qp, let OL be its ring of integers and let
k be its residue field. Let Z ⊂ Ag,N/OL

be a locally closed subscheme that is
equidimensional and smooth over OL, and whose special fiber Zk meets the ordinary
locus Aord

g,N ⊂ Ag,N/k. Then

edL(Ag,p|ZL
/ZL; p) = edL(Ag,p|ZL

/ZL) = dimZL.

We give three applications of Theorem 3. The first is an analogue of Theorem 2
forMg, the coarse moduli space of smooth, proper, genus g ≥ 2 curves over K. For
any integer n, consider the level n congruence cover Mg[n] → Mg, where Mg[n]
denotes the moduli space of pairs (C,B) consisting of a smooth, proper curve C of
genus g, together with a symplectic basis B for J(C)[n], where J(C) is the Jacobian
of C. Applying Theorem 3 and the Torelli theorem, we will deduce the following.

Corollary 4. Let g, n ≥ 2. Let p be any prime with p | n. Then

edK(Mg[n]/Mg) = edK(Mg[n]/Mg; p) = dimMg = 3g − 3.

As a second application of Theorem 3, we answer a question encountered by
Burkhardt in his study of hyperelliptic functions (see in particular [Bu1891, Ch.
11]). Let Hg denote the coarse moduli of smooth, hyperelliptic curves of genus
g ≥ 2 over K. For any integer n, consider the level n congruence cover Hg[n]→ Hg,
where Hg[n] denotes the moduli space of pairs (C,B) consisting of a hyperelliptic
curve C together with a symplectic basis B for J(C)[n]. Analogously to the case of
Mg, we prove the following.

Corollary 5. Let g, n ≥ 2. Let p | n be any odd prime. Then

edK(Hg [n]/Hg) = edK(Hg[n]/Hg; p) = dimHg = 2g − 1.

The hypothesis that p is odd in Corollary 5 is necessary; see 3.3.5 below.
Our third application of Theorem 3 generalizes Theorem 2 to many locally sym-

metric varieties. Recall that a locally symmetric variety is a variety whose complex
points have the form Γ\X where X is a Hermitian symmetric domain and Γ is an
arithmetic lattice in the corresponding real semisimple Lie group (see 4.2.3 below).
Attached to Γ there is a semisimple algebraic group G over Q, with X = G(R)/K∞,
for K∞ ⊂ G(R) a maximal compact subgroup. By a principal p-level covering
Γ1\X → Γ\X we mean that the definition of Γ does not involve any congruences at
p, and Γ1 ⊂ Γ is the subgroup of elements that are trivial mod p. A sample of what
we prove is the following (see Theorem 4.3.5 below for the most general statement).

Theorem 6. With notation as just given, suppose that each irreducible factor of
Gad

R is the adjoint group of one of U(n, n), SO(n, 2) with n+ 2 6= 8, or Sp(2n) for
some positive integer n. If G is unramified at p, (a condition which holds for almost
all p) then for any principal p-level covering Γ1\X → Γ\X, we have

ed(Γ1\X → Γ\X ; p) = dimX.
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In fact our results apply to any Hermitian symmetric domain of classical type,
but in general they require a more involved condition on the Q-group G giving
rise to Γ; they always apply if G splits over Qp. Note that these results include
cases where the locally symmetric variety Γ\X is proper. As far as we know, these
are the first examples of nontrivial lower bounds on the essential dimension of an
unramified, non-abelian covering of a proper algebraic variety. The only prior result
for unramified covers of proper varieties of which we are aware is due to Gabber
[CT02, Appendix], who proved that if {E′

i → Ei} is a collection of connected,
unramified Z/pZ covers of elliptic curves Ei, then under certain conditions, the
cover E′

1 × · · · × E
′
r → E1 × · · · × Er has essential dimension at p equal to r.

When Γ\X is proper, the use of fixed-point techniques is precluded by the fact
that one cannot use “ramification at infinity”. This is in analogy with Margulis
superrigidity for irreducible lattices Γ in higher rank semisimple Lie groups, where,
for nonuniform Γ (equivalently noncompact Γ\X), unipotents in Γ play a crucial
role. When Γ is uniform, it contains no unipotents, and new ideas were needed
(and were provided only later, also by Margulis).

There are many examples of finite simple groups of Lie type for which our meth-
ods give a lower bound on the essential p-dimension of a covering of locally sym-
metric varieties with that group.

Corollary 7. Let H be a classical, absolutely simple group over Fq, with q = pr.
Then there is a congruence H(Fq)-cover of locally symmetric varieties Y ′ → Y such
that e := edK(Y ′/Y ; p) satisfies :

• If H is a form of PGLn which is split if n is odd, then e = r⌊n
2

4 ⌋.

• If H is PSp2n then e = r(n
2+n
2 ).

• If H is a split form of PO2n then e = r(n
2−n
2 ).

• If H is a form of POn and H is not of type D4, then e = r(n− 2).

Historical Remarks.

(1) The study of essential dimension originates in Hermite’s study of the quintic
[He1858], Kronecker’s response to this [Kr1861], and Klein’s “Resolvent
Problem” (see [Kl1893, Lecture IX] and [Kl1884] esp. Part II, Ch. 1.7, as
well as [Kl1887], [Kle05], and more generally the papers [Kle22, p. 255-
506]; see also [Tsc43]). Following Buhler-Reichstein [BR97], the last two
decades have seen an array of computations, new methods, generalizations,
and applications of this invariant (see [Rei10] or [Mer17] for recent surveys),
but computations to date have largely focused on a different set of problems
than those we consider here.

(2) In contrast to Kronecker, Klein also advocated for the consideration of
accessory irrationalities as a “characteristic feature” of higher degree equa-
tions, and called upon his readers to “fathom the nature and significance
of the necessary accessory irrationalities.” [Kl1884, p. 174, Part II, Ch.1.7]
While essential dimension at p partially answers this call, a full answer
requires the notion of resolvent degree RD(X → Y ), which asks for the
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minimum d such that an algebraic function admits a formula3 using only al-
gebraic functions of d or fewer variables (see [FW17]). For example, Klein’s
icosahedral formula for the quintic [Kl1884] shows that RD(Φ) = 1 for any
algebraic function Φ with monodromy A5, while the essential p-dimension
can equal 2. At present, we do not know of a single example which provably
has RD(X → Y ) > 1.

Idea of Proof. To prove Theorem 2 and its generalization to subvarieties, we
use arithmetic techniques, and specifically Serre-Tate theory, which describes the
deformation theory of an ordinary abelian variety in characteristic p in terms of
its p-divisible group. Let N ≥ 3 be an integer coprime to p, and let A denote the
universal abelian scheme over Ag,N (now considered over Z[ζN ][1/N ]). Let A[p] be
its p-torsion group scheme, and let Ax denote the fiber of A at x. Given a rational
compression of Ag,pN → Ag,N (in characteristic 0) onto a smaller-dimensional
variety, we show that there is an ordinary mod p point x of Ag,N , and a tangent
direction tx at x, such that the deformation of Ax[p] corresponding to tx is trivial.
From this we deduce that the deformation of Ax corresponding to tx is trivial, a
contradiction.

One might view our method as an arithmetic analogue of the “fixed point
method” in the theory of essential dimension (see [Rei10]), where the role of fixed
points for a group action is now played by wild ramification at a prime. In the
fixed point method one usually works over a field where the order of the group is
invertible. In contrast, for us the presence of wild ramification plays an essential
role.

Acknowledgements. We would like to thank Aaron Landesman and Zinovy Re-
ichstein for detailed comments on an earlier version of this paper and for extensive
helpful correspondence. We also thank Maxime Bergeron, Mike Fried, Eric Rains,
Alexander Polishchuk and Burt Totaro, for various helpful comments. Finally we
thank the referee for many useful comments.

2. Preliminary results

2.1. Finite étale maps. We begin with some general lemmas on finite étale maps.

2.1.1. Let G→ G′ be a map of groups, and S a finite set with an action of G. We
say the action of G on S lifts to G′ if there is an action of G′ on S, which induces
the given action of G on S. We call such a G′-action a lifting of the G-action on
S. We say that the action of G on S virtually lifts to G′ if there is a finite index
subgroup G′′ ⊂ G′, containing the image of G, such that the action of G on S lifts
to G′′.

For a positive integer n we denote by Sn the n-fold product equipped with the
diagonal action of G, and by πi : S

n → S, i = 1, . . . , n the projections.

Lemma 2.1.2. Let G→ G′ be a map of groups, and S a finite set with an action
of G.

3Recall that a formula for an algebraic function Φ on a complex variety X is a tower of finite

field extensions C(X) = K0 ⊂ K1 ⊂ · · · ⊂ Kr, a choice of primitive element Ψi ∈ Ki for
Ki/Ki−1 for each i, and an embedding C(X)(Φ) ⊂ Kr of fields over C(X). One can then write
Φ = R(Ψ1, . . . ,Ψr) for R ∈ K(X)(t1, . . . , tr) a rational function, which is to say a “formula” for
Φ in terms of the Ψi.
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(1) Suppose the action of G on S admits a lifting to an action of G′ on S,
and fix such a lifting. Then there exists a finite index subgroup G′′ ⊂ G′

containing the image of G, such that G and G′′ have the same image in
Aut(S).

(2) Let T ⊂ Sn be a G-stable subset such that ∪ni=1πi(T ) = S. Then the action
of G on S virtually lifts to G′ if and only if the action of G on T virtually
lifts to G′.

Proof. Let N ⊂ G′ be the kernel of G′ → Aut(S), and G′′ ⊂ G′ the subgroup
generated by N and the image of G. Since S is finite, N and hence G′′ has finite
index in G′, and satisfies the conditions in (1).

For (2), suppose that the action of G on S virtually lifts to G′. By (1), after
replacing G′ by a finite index subgroup containing the image of G, we may assume
that the action of G on S lifts to G′, and that G and G′ have the same image in
Aut(S). Then T is G′-stable, so the action of G on T lifts to G′. Conversely, if
the action of G on T virtually lifts to G′, then, by (1), we may assume that the
action of G on T lifts to G′, and that G and G′ have the same image in Aut(T ).
In particular, any element of G′ acts on Aut(T ) via an element of Aut(S). Since
∪ni=1πi(T ) = S this element of Aut(S) is uniquely determined. The uniqueness
implies that G′ → Aut(T ) factors through a homomorphism G′ → Aut(S), which
lifts the action of G on S. �

2.1.3. Let X be a scheme, and f : Y → X a finite étale cover. We will say that
f is Galois if any connected component of Y is Galois over its image. If x̄ is a
geometric point of X, then Y corresponds to a finite set S(Y ) equipped with an
action of π1(X, x̄). Conversely, if X is connected and S is a finite set with an action
of π1(X, x̄), we denote by Y (S) the corresponding finite étale cover of X.

In the next three lemmas we consider a map of schemes g : X → X ′ and a finite
étale cover f ′ : Y ′ → X ′ equipped with an isomorphism Y

∼
−→ Y ′×X′ X. If X and

X ′ are connected, and x̄ again denotes the geometric point of X ′ induced by x̄,
then such a Y ′ exists if and only if the action of π1(X, x̄) on S(Y ) lifts to π1(X

′, x̄).

Lemma 2.1.4. If f is Galois, then there is an finite étale h : X ′′ → X ′ such that
g factors through X ′′ and Y ′′ = X ′′ ×X′ Y ′ → X ′′ is Galois.

Proof. We may assume that X and X ′ are connected. We apply Lemma 2.1.2,
(1), to π1(X, x̄) → π1(X

′, x̄) and S = S(Y ) = S(Y ′). Let h : X ′′ → X ′ be the
finite étale map corresponding to the π1(X

′, x̄)-set π1(X
′, x̄)/G′′. Since this set

has a π1(X, x̄) fixed point, g factors through X ′′. By construction, the images of
π1(X

′′, x̄) and π1(X, x̄) in Aut(S(Y ′)) = Aut(S(Y )) are equal. Denote this image
by H, and for s ∈ S(Y ) denote by Hs the stabilizer. Since Y → X is Galois, Hs is
a normal subgroup which does not depend on s, which is implies that Y ′′ → X ′′ is
Galois. �

2.1.5. Let A be a finite ring. By an A-local system F on X we will mean an
étale sheaf of A-modules which is locally isomorphic to the constant A-module An

for some n. Such an F is representable by a finite étale map Y (F) → X. This is
clear étale locally on X, and follows from étale descent in general. Isomorphism
classes of A-local systems are in bijective correspondence with conjugacy classes of
representations π1(X)→ GLn(A).
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For X → X1 a map of schemes, and G an A-local system on X1, we will denote
by G|X the pullback of G to X.

Lemma 2.1.6. Suppose that f : Y = Y (F)→ X corresponds to an A-local system
F . Then there is a finite étale h : X ′′ → X ′ such that g factors through X ′′ and
Y ′′ = X ′′ ×X Y ′ → X ′′ represents an A-local system F ′′, with F ′′|X

∼
−→ F .

Proof. ChooseX ′′ as in the proof of Lemma 2.1.4, using the construction in Lemma
2.1.2, (1). Then the finite set S(Y ) = S(Y ′) naturally has the structure of a finite
free A-module on which π1(X, x̄) acts A-linearly. Since the images of π1(X

′′, x̄) and
π1(X, x̄) in Aut(S(Y ) are equal, π1(X

′′, x̄) acts on S(Y ) A-linearly, which implies
the statement of the lemma. �

2.1.7. For any integer N ≥ 1 we denote by µN the kernel of Gm
N
→ Gm. This is

a finite flat group scheme on Z, and we denote by the same symbol its pullback to
any scheme X. This pullback is étale if any only if X is a Z[1/N ]-scheme.

Suppose X is a Z[1/N ]-scheme. For any Z/NZ algebra A, we again denote by
µN or A(1) the étale sheaf µN ⊗Z/NZ A. For any non-negative integer i we write

A(i) = A(1)⊗i. For i negative we set A(i) equal to the A-linear dual of A(−i).

Lemma 2.1.8. Let N ≥ 1 be an integer, i, j integers, and A a finite Z/NZ-algebra.
Suppose that X is a Z[1/N ]-scheme and that f : Y = Y (F) → X corresponds to
an A-local system F , which is an extension of A(i)r by A(j)s, for some positive
integers h, g.

Then there is a finite étale map X ′′ → X ′ such that g factors through X ′′ and
the cover Y ′′ = X ′′ ×X Y ′ → X ′′ represents an A-local system F ′′, which is an
extension of A(i)r by A(j)s, with F ′′|X

∼
−→ F as extensions.

Proof. Replacing F by F(−j) := F ⊗A A(−j), we may suppose that j = 0. By

Lemma 2.1.6, we may assume Y ′′ represents an A-local system and g∗(F ′)
∼
−→ F

as A-local systems. Let F1 ⊂ F denote the sub A-local system corresponding to
A(j)s, so that F1 corresponds to an A-submodule S(Y ′)1 ⊂ S(Y

′).
Since the group H acts trivially on SY ′,1, after replacing X ′ by X ′′, we may

assume that F ′ is an extension of F ′/A(i)r by A(j)s, and g∗(F ′)
∼
−→ F is an

isomorphism of extensions. A similar argument, applied to F/A(j)s⊗A(−i), shows

that we may assume that F ′ is an extension of A(i)r by A(j)s, with F ′|X
∼
−→ F

as extensions. �

2.2. Essential dimension.

2.2.1. Let K be a field, X a K-scheme of finite type, and f : Y → X a finite étale
cover. The essential dimension [BR97, §2] edK(Y/X) of Y over X is the smallest
integer e such that there exists a finite type K-scheme W of dimension e, a dense
open subscheme U ⊂ X, and a map U → W, such that Y |U is the pullback of a
finite étale covering over W. The essential p-dimension edK(Y/X ; p) is defined as
the minimum of edK(Y ×X E/E) where E → X runs over dominant, generically
finite maps, which have degree prime to p at all generic points of X.

Note that when X is irreducible, the definition does not change if we consider
only coverings with E irreducible. Indeed, for any E → X, as above, one of the
irreducible components of E will have degree prime to p over the generic point of
X.
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Suppose X is connected. A Galois closure of Y → X is a union of Galois closures
of the connected components of Y. If Yi → X i = 1, . . . r are finite étale, Galois and
connected, then a composite of the Yi is a connected component of Y1×X× · · ·×XYr.
Up to isomorphism, this does not depend on the choice of connected component.
If we drop the assumption that X is connected, we define the Galois closure and
composite by making these constructions over each connected component of X.

Lemma 2.2.2. Let f : Y → X be finite étale cover, and Ỹ a Galois closure for Y.
For any map of K-schemes E → X, we have

edK(YE/E) = edK(ỸE/E).

In particular, we have

edK(Y/X ; p) = edK(Ỹ /X ; p).

Proof. Wemay assume thatX is connected. Let x̄ be a geometric point forX, and S
a π1(X, x̄)-set with Y = Y (S). Suppose first that Y is connected. Let N ⊂ π1(X, x̄)
be the (normal) subgroup which fixes S pointwise. If s ∈ S, and π1(X, x̄)s is the
stabilizer of s, then N = ∩ni=1giπ1(X, x̄)sg

−1
i for a finite collection of elements

g1, . . . , gn ∈ π1(X, x̄). Let S̃ denote the π1(X, x̄)-orbit of (g1 · s, . . . , gn · s) ∈ S
n.

Then the stabilizer in π1(X, x̄) of any point of S̃ is N, so Ỹ = Y (S̃) is a Galois
closure of Y.

Now we drop the assumption that Y is connected, and let Y1, . . . , Yr denote the
connected components of Y, with Yi corresponding to a subset Si ⊂ S on which
π1(X, x̄) acts transitively. The above construction gives subsets S̃i ⊂ Sn

i , (we may

assume without loss of generality that n does not depend on i) with Ỹi = Y (S̃i) a

Galois closure of Yi. If S̃ =
∐

i S̃i ⊂ S
n, then Ỹ = Y (S̃) =

∐
i Ỹi is a Galois closure

for Y.
From the construction one sees that S, T = S̃ and G = π1(X, x̄) satisfy the

conditions in Lemma 2.1.2, (2) (note that these conditions do not depend on the
choice of G′). For any map of groups H → G, these conditions continue to hold if
we instead view S and T as H-sets.

Now let E → X be a map of K-schemes, U ⊂ E a connected open subset, and
U → E′ a map of K-schemes. Suppose U admits a geometric point ȳ mapping to
x̄. Applying the above remark with H = π1(U, ȳ), Lemma 2.1.2, (2) implies that
the action of H on S virtually lifts to π1(E

′, ȳ) if and only the action of H on T
virtually lifts to π1(E

′, ȳ). As in the proof of Lemma 2.1.4, this implies that Y |U
arises by pullback from a cover of E′′ for some finite étale E′′ → E′, if and only if
the same condition holds for Ỹ |U . Since x̄ was an arbitary geometric point of X,

this implies edK(Y |E/E) = edK(Ỹ |E/E). �

Lemma 2.2.3. Let Yi → X i = 1, . . . , r be connected Galois coverings of K-
schemes, and Y → X a composite of the Yi. Then for any map of K-schemes
E → X, we have

edK(YE/E) = edK((
∐

i

Yi)E/E).

In particular, we have

edK(Y/X ; p) = edK((
∐

i

Yi)/X ; p).
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Proof. Let x̄ be a geometric point for X, and let Si be a π1(X, x̄)-set with Yi =
Y (Si). Let S =

∐
i Si. Then Y corresponds to a transitive π1(X, x̄) set T ⊂ S1 ×

· · · × Sr which surjects onto each Si. Viewing T ⊂ Sr, we see that T satisfies the
conditions of Lemma 2.1.2. The lemma now follows as in the proof of Lemma
2.2.2. �

Lemma 2.2.4. Let A be a finite ring, K a field, F an A-local system on a connected
K-scheme X equipped with a geometric point x̄, and ρF : π1(X, x̄) → GLn(A) the
representation corresponding to F . Let Y be the covering of X corresponding to
kerρF .

Then Y is the composite of Galois closures of the connected components of Y (F).
In particular,

edK(Y ′/X) = edK(Y (F)/X).

For any prime p we also have

edK(Y/X ; p) = edK(Y (F)/X ; p).

Proof. Consider the action of π1(X, x̄) on An corresponding to F . The connected
components of Y (F) correspond to the stabilizers π1(X)s for s ∈ An. A Galois
closure of such a component corresponds to

∩g∈π1(X)gπ1(X)sg
−1 = ∩g∈π1(X)π1(X)gs.

Thus the composite of such Galois closures corresponds to ∩sπ1(X)s = ker ρF .
The lemma now follows from Lemmas 2.2.2 and 2.2.3.

�

Lemma 2.2.5. Let K ′ ⊂ K be algebraically closed fields. If Y → X is a finite
étale covering of finite type K ′-schemes then

edK′(Y/X) = edK(YK/XK).

Proof. Let UK ⊂ XK be a dense open and UK →WK a morphism with dimWK =
edK(YK/XK) such that YK |UK

arises from a finite cover f ′ : Y ′
K →WK . Then UK ,

the finite cover f ′ and the isomorphism f ′∗Y ′
K

∼
−→ YK |UK

are all defined over some
finitely generated K ′-algebra R ⊂ K. Specializing by a map R → K ′ produces the
required data for the covering Y → X. �

2.2.6. It will be convenient to make the following definition. Suppose that Y → X
is a finite étale covering of finite type R-schemes, where R is a domain of charac-
teristic 0. Set ed(Y/X) = edK̄(Y/X) where K̄ is any algebraically closed field
containing R, and similarly for ed(Y/X ; p) By Lemma 2.2.5 this does not depend
on the choice of K̄.

Lemma 2.2.7. Let K be an algebraically closed field, and Y → X a finite Galois
covering of connected, finite type K-schemes with Galois group G. Let H ⊂ G be a
central, cyclic subgroup of order n with char(K) ∤ n. Then for any prime p we have

ed(Y → X ; p) ≥ ed(Y/H → X ; p)

with equality if p ∤ n.

Proof. To show ed(Y/X ; p) ≥ ed(Y/H → X ; p), after shrinking X, we may assume
there is a map f : X → X ′ such that Y = f∗Y ′ for a finite étale covering Y ′ → X ′,
which may be assumed to be connected and Galois by Lemma 2.1.4. The Galois
group of Y ′/X ′ is necessarily equal to G, and we have f∗(Y ′/H)

∼
−→ Y/H.
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For the converse inequality when p ∤ n, we may assume there is a map f : X → X ′

such that Y/H = f∗Y ′ for a finite étale covering Y ′ → X ′, which we may again
assume is connected and Galois with group G/H. The image, c, of Y ′ → X ′ under

H1(X ′, G/H)→ H2(X ′, H)
∼
−→ H2(X ′, µn)

is the obstruction to lifting Y ′ → X ′ to a G-covering. Here, for the final isomor-
phism, we are using that K is algebraically closed of characteristic prime to n.
Viewing c as a Brauer class, we see that it has order dividing n. This implies that
(after perhaps shrinking X further) there is an étale covering X ′

1 → X ′ of order
dividing a power n such that c|X1 is trivial [FD93, Lemma 4.17]. In particular,
X ′

1 → X ′ has order prime to p. Replacing Y → X → X ′ by their pullbacks to X ′
1,

we may assume that c = 0, and that Y ′ = Y ′′/H for some Galois covering Y ′′ → X ′

with group G.
The difference between the G-coverings Y → X and f∗Y ′′ → X is measured by

a class in H1(X,H). After replacing X by the H-covering corresponding to this

class, we may assume that this class is trivial, and so Y
∼
−→ f∗Y ′′. This shows that

ed(Y/X ; p) ≤ ed(Y/H → X ; p), �

3. Essential dimension and moduli of abelian varieties

3.1. Ordinary finite flat group schemes. In this subsection, we fix a prime
p, and we consider a complete discrete valuation ring V of characteristic 0, with
perfect residue field k of characteristic p, and a uniformizer π ∈ V.

By a finite flat group scheme on a Zp-scheme X we will always mean a finite flat,
commutative, group scheme on X of p-power order. A finite flat group scheme on X
is called ordinary if étale locally on X, it is an extension of a constant group scheme
⊕i∈IZ/pniZ by a group scheme of the form ⊕j∈Jµpmj for integers ni,mj ≥ 1. In
this subsection we study the classification of these extensions.

3.1.1. Now let X̃ = SpecA be an affine Zp-scheme, and set X = X̃ ⊗ Q. Let
n ≥ 1, and consider the exact sequence of sheaves

1→ µpn → Gm
pn

→ Gm → 1

in the flat topology of X̃. Taking flat cohomology of this sequence and its restriction
to X we obtain a commutative diagram with exact rows

1 // A×/(A×)p
n

//

��

H1(X̃, µpn) //

��

H1(X̃,Gm)

��

1 // A[1/p]×/(A[1/p]×)p
n

// H1(X,µpn) // H1(X,Gm)

The groupH1(X̃,Gm) classifies line bundles on X̃. Hence, if A is local it vanishes,
and this can be used to classify extensions of Z/pnZ by µpn as finite flat group
schemes. We have

Ext1
X̃
(Z/pnZ, µpn)

∼
−→ H1(X̃, µpn)

∼
−→ A×/(A×)p

n

.

Here and below, the group on the left denotes extensions as sheaves of Z/pnZ-
modules.
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Similarly, we can classify extensions of Qp/Zp by µp∞ = limn µpn as p-divisible
groups. If E is such an extension, then E [pn] is an extension of Z/pnZ by µpn and
we have

θ̂A : Ext1
X̃
(Qp/Zp, µp∞)

∼
−→ lim←−nA

×/(A×)p
n

.

If A is complete and local with residue field k, then the right hand side may be
identified with A×,1 ⊂ A×, the subgroup of units which map to 1 in k×. Thus we
have

θ̂A : Ext1
X̃
(Qp/Zp, µp∞)

∼
−→ A×,1.

3.1.2. For the rest of this subsection we assume that A = V [[x1, . . . , xn]]. Then
H1(X,Gm) = 0 by [Gro68, XI, Thm 3.13], and we have a commutative diagram

A×/(A×)p
n ∼

//

��

H1(X̃, µpn)

��

A[1/p]×/(A[1/p]×)p
n ∼

// H1(X,µpn)

3.1.3. We call an element of Ext1X(Z/pnZ, µpn) = H1(X,µpn) syntomic if it arises

from an element of A×, or equivalently from a class in Ext1
X̃
(Z/pnZ, µpn), and

we denote by Ext1,synX (Z/pnZ, µpn) ⊂ Ext1X(Z/pnZ, µpn) the subgroup of syntomic
elements.

Lemma 3.1.4. A syntomic class in Ext1X(Z/pnZ, µpn) arises from a unique class

in Ext1
X̃
(Z/pnZ, µpn).

Proof. If a ∈ A× is a pnth-power in A[1/p] then it is a pnth power in A, as A is
normal. Hence the map A×/(A×)p

n

→ A[1/p]×/(A[1/p]×)p
n

is injective, and the
lemma follows from the description of Ext1’s above. �

Lemma 3.1.5. Let B = V [[y1, . . . , ys]] for some integer s ≥ 0, and

f : X̃ → Ỹ = SpecB

a local flat map of complete local V -algebras. Suppose that c ∈ H1(Y, µpn), where
Y = SpecB[1/p], and that f∗(c) ∈ H1(X,µpn) is syntomic. Then c is syntomic.

Proof. Let b ∈ B[1/p]× be an element giving rise to c. Since B is a unique fac-
torization domain we may write b = b0π

i with b0 ∈ B
× and i ∈ Z. Since f∗(c) is

syntomic, we may write πi = a0a
pn

with a0 ∈ A
× and a ∈ A[1/p]×. Comparing the

images of both sides in the group of divisors on A, one sees that pn|i. So c arises
from b0. �

3.1.6. Let mA be the maximal ideal of A, and m̄A its image in A/πA. The natural
map

m̄A/m̄
2
A

a 7→1+a
→ k×\(A/(π,m2

A))
×

is a bijection; both sides are k-vector spaces spanned by x1, . . . , xn. We denote by
θA the composite

θA : Ext1,synX (Z/pZ, µp)
∼
−→ A×/(A×)p → k×\(A/(π,m2

A))
× ∼
−→ m̄A/m̄

2
A.

Here we have used Lemma 3.1.4 to identify Ext1,synX (Z/pZ, µp) and Ext1
X̃
(Z/pZ, µp).
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Lemma 3.1.7. With the notation of Lemma 3.1.5, suppose that

L ⊂ Ext1,synY (Z/pZ, µp)

is a subset such that the k-span of θA(f
∗(L)) is m̄A/m̄

2
A. Then f is an isomorphism.

Proof. By functoriality of the association A 7→ θA, we have θA(f
∗(L)) = f∗(θB(L)).

Hence the k-span of θA(f
∗(L)) is contained in image of m̄B/m̄

2
B. It follows that

m̄B/m̄
2
B surjects onto m̄A/m̄

2
A. Since A and B are complete local V -algebras, this

implies that B, which is a subring of A, surjects onto A. Hence f is an isomorphism.
�

3.2. Monodromy of p-torsion in an abelian scheme. We now use the results
of the previous section to obtain results about the essential dimension of covers of
of the moduli space of abelian varieties.

3.2.1. Recall that an abelian scheme A over a Zp-scheme is called ordinary if the
group scheme A[pn] is ordinary for all n ≥ 1. This is equivalent to requiring the
condition for n = 1.

Let k be an algebraically closed field of characteristic p > 0, and let V be a
complete discrete valuation ring with residue field k, so that W (k) ⊂ V. Let A0 be
an abelian scheme over k of dimension g. We assume that A0 is ordinary. Since k
is algebraically closed, this implies that A0[p

∞] is isomorphic to (Qp/Zp)
g ⊕ µg

p∞ .
Consider the functor DA0 on the category of Artinian V -algebras C with residue

field k, which attaches to C the set of isomorphism classes of deformations of A0 to
an abelian scheme over C. Recall [Kat81, §2] that DA0 is equivalent to the functor
which attaches to C the set of isomorphism classes of deformations of A0[p

∞], and
that DA0 is pro-representable by a formally smooth V -algebra R of dimension g2,
called the universal deformation V -algebra of A0.

We denote by AR the universal (formal) abelian scheme over R. Note that al-
though AR is only a formal scheme over R, the torsion group schemes AR[p

n] are
finite over R, and so can be regarded as genuine R-schemes.

Since A0 is ordinary the p-divisible group AR[p
∞] = limnAR[p

n] is an extension
of (Qp/Zp)

g by µg
p∞ . Hence AR[p] is an extension of (Z/pZ)g by µg

p. This extension

class is given by a g × g matrix of classes (ci,j) with ci,j ∈ Ext1R(Z/pZ, µp).

Lemma 3.2.2. With the notation of §3.1, the elements θR({ci,j}i,j) span m̄R/m̄
2
R.

Proof. Consider the isomorphism

θ̂R : Ext1R(Qp/Zp, µp∞)
∼
−→ R×,1

introduced in §3.1. The universal extension of p-divisible groups over R gives rise
to a g × g matrix of elements (ĉi,j) ∈ Ext1R(Qp/Zp, µp∞) which reduce to (ci,j).

Let L ⊂ m̄R/m̄
2
R be the k-span of the images of the elements θ̂R(ĉi,j) − 1, or

equivalently, the elements θR(ci,j) − 1, and set R′ = k ⊕ L ⊂ R/(π,m2
R). Using

the isomorphism θ̂R′ , one sees that AR[p
∞]|R/(π,m2

R
) is defined over R′. If L (

m̄R/m̄
2
R, then there exists a surjective map R/(π,m2

R) → k[x]/x2 which sends L
to zero. Specializing AR[p

∞]|R/(π,m2
R
) by this map induces the trivial deformation

of A0[p
∞] (that is the split extension of (Qp/Zp)

g by µp∞) over Spec k[x]/x2. This
contradicts the fact that R pro-represents DA0 . Hence L = m̄R/m̄

2
R, which proves

the lemma. �
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3.2.3. Let A be a quotient of R which is formally smooth over V. That is, A
is isomorphic as a complete V -algebra to V [[x1, . . . xn]]. As in §3.1, we set X =

SpecA[1/p] and X̃ = SpecA.

Lemma 3.2.4. Let B = V [[y1, . . . ys]] for some integer s ≥ 0, and let

f : X̃ → Ỹ = SpecB

be a local flat map of complete local V -algebras. Set Y = SpecB[1/p]. Suppose that
k is algebraically closed, and that there exists an Fp-local system L on Y which is

an extension of (Z/pZ)g by µg
p such that f∗L

∼
−→ AR[p]|X as extensions of Fp-local

systems. Then f is an isomorphism.

Proof. Using the notation of 3.2.1, we have θR({ci,j}i,j) spans m̄R/m̄
2
R by Lemma

3.2.2. In particular, if we again denote by ci,j the restrictions of these classes to A,
then θA({ci,j}i,j) spans m̄A/m̄

2
A.

Now by Lemma 3.1.5 the g2 extension classes defining L are syntomic. So L arises
from an extension of (Z/pZ)g by µg

p as finite flat group schemes over Ỹ . If we denote

by (di,j) the corresponding g×g matrix of elements of Ext1
Ỹ
(Z/pZ, µp), then Lemma

3.1.4, together with the fact that f∗L
∼
−→ AR[p]|X implies that f∗(di,j) = ci,j . It

follows that the elements θA(f
∗({di,j}))i,j span m̄A/m̄

2
A, which implies that f is an

isomorphism by Lemma 3.1.7. �

3.2.5. Fix an integer g ≥ 1, a prime p ≥ 2, and a positive integer N ≥ 2 coprime to
p. Consider the ring Z[ζN ][1/N ], where ζN is a primitive N th root of 1. Using the

isomorphism Z/NZ
∼
−→
17→ζN

µN , for any Z[ζN ][1/N ]-scheme T, and any principally

polarized abelian scheme A over T, the N -torsion scheme A[N ] is equipped with
the (alternating) Weil pairing

A[N ]×A[N ]→ Z/NZ.

We denote by Ag,N the Z[ζN ][1/N ]-scheme which is the coarse moduli space of
principally polarized abelian schemes A of dimension g equipped with a symplectic
basis of A[N ]. When N ≥ 3, this is a fine moduli space which is smooth over
Z[ζN ][1/N ]. For a Z[ζN ][1/N ]-algebra B, we denote by Ag,N/B the base change of
Ag,N to B. If no confusion is likely to result we sometimes denote this base change
simply by Ag,N .

Suppose that N ≥ 3, and let A → Ag,N be the universal abelian scheme. The
p-torsion subgroup A[p] ⊂ A is a finite flat group scheme over Ag,N which is étale
over Z[ζN ][1/Np]. Let x ∈ Ag,N be a point with residue field κ(x) of characteristic
p, and Ax the corresponding abelian variety over κ(x). The set of points x such
that Ax is ordinary is an open subscheme Aord

g,N ⊂ Ag,N ⊗Fp. For any N, we denote

by Aord
g,N ⊂ Ag,N ⊗ Fp the image of Ag,NN ′ for any N ′ ≥ 3 coprime to N and p.

We now denote by k a perfect field of characteristic p, and K/W [1/p] a finite
extension with ring of integersOK and uniformizer π.We assume thatK is equipped
with a choice of primitive N th root of 1, ζN ∈ K. We remind the reader regarding
the convention for the definition of ed and ed( · ; p) introduced in 2.2.6.

Theorem 3.2.6. Let g ≥ 1 and let p be any prime. Let N ≥ 3 and coprime to
p, and let Z ⊂ Ag,N/OK

be a locally closed subscheme which is equidimensional

and smooth over OK , and whose special fiber, Zk, meets the ordinary locus Aord
g,N ⊂
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Ag,N/k. Then

ed(A[p]|ZK
/ZK ; p) = dimZK .

Proof. It suffices to prove the theorem when k is algebraically closed which we
assume from now on. Moreover, since K is an arbitrary finite extension of W [1/p],
it is enough to show that edK(A[p]|ZK

/ZK ; p) = dimZK . We may replace Z by a
component whose special fibre meets the ordinary locus, and assume that ZK and
Zk are geometrically connected.

Suppose that ed(A[p]|ZK
/ZK ; p) < dimZK . Then there exists a dominant, gener-

ically finite map UK → ZK of degree prime to p at the generic points of UK , and a
map h : UK → YK to a finite type K-scheme YK with dimYK < dimZK , such that
A[p]|UK

arises as the pullback of a finite étale covering of YK . We may assume that
YK is the scheme-theoretic image of UK under h. Next, after replacing both UK

and YK by dense affine opens, we may assume that both these schemes are affine
corresponding to K-algebras BK and CK respectively, and that UK → YK is flat.

Let Z̃ be the normalization of Z in UK . Let p be the generic point of Zk, and
q1, . . . , qm the primes of Z̃ over p. Since the degree of Z̃ → Z over p is prime to
p, for some i the ramification degree e(qi/p) and the degree of the residue field
extension κ(qi)/κ(p) are prime to p. In particular, the residue field extension is
seperable. By Abhyankar’s Lemma, it follows that, after replacing K by a finite
extension, we may assume that e(qi/p) = 1 for some i, and that Z̃ → Z is étale at
qi. Shrinking UK further if necessary, we may assume that there is an affine open
SpecB = U ⊂ Z̃ such that Uk → Zk has dense image, U ⊗K = UK , and U → Z
is étale. In particular, U is smooth over OK .

Now choose a finitely generated OK-subalgebra C ⊂ CK ∩B such that C⊗K =
CK . This is possible as CK is finitely generated over K. Then h extends to a map
h : U → Y = SpecC. Let J ⊃ (p) be an ideal of C, and YJ → Y the blow up of J.
Denote by UJ the proper transform of U by this blow up. That is, UJ is the closure
of UK in U × YJ . By the Raynaud-Gruson flattening theorem, [RG71, Thm 5.2.2],
we can choose J so that UJ → YJ is flat. Since U is normal, the map UJ → U is
an isomorphism over the generic points of U ⊗ k. Hence, after replacing Y by an
affine open in YJ , and shrinking U, we may assume that U → Y is flat.

Shrinking U further, we may assume that the special fiber Uk maps to the or-

dinary locus of Ag,N . Now let B̂ and Ĉ, denote the p-adic completions of B and

C respectively, and set Û = Spec B̂ and Ŷ = Spec Ĉ. 4 Since A[p]|Û is ordinary,

there is a finite étale covering Û ′ = Spec B̂′ → Û such that A[p]|Û ′ is an extension

of (Z/pZ)g by µg
p. Hence by Lemmas 2.1.6 and 2.1.8, Û ′

K → ŶK factors through a

finite étale map Ŷ ′
K → ŶK such that A[p]|Û ′

K

is the pullback of an extension F ′ of

(Z/pZ)g by µg
p on Ŷ ′

K . As Û
′ is normal, we may assume Ŷ ′

K is normal.

Let Ŷ ′ = Spec Ĉ′ be the normalization of Ŷ in Ŷ ′
K . As Û

′ is normal, we have

Û ′ → Ŷ ′ → Ŷ .

As Ŷ ′ is normal, Û ′ → Ŷ ′ is flat over the generic points of Ŷ ′
k. Hence, there exists

f0 ∈ Ĉ′/πĈ′ which is nowhere nilpotent on Ŷ ′
k, and such that Û ′

k → Ŷ ′
k is flat

4Although it would in some sense be more natural to work with formal schemes here, we stay
in the world of affine schemes, so as to be able to apply the results proved in §1, and to deal with
generic fibers without resorting to p-adic analytic spaces.
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over the complement of the support of the ideal (f0). Now let f ∈ Ĉ′ be a lift of

f0, and let Ĉ′′ = Ĉ′[1/f ] and B̂′′ = B̂′[1/f ], the p-adic completions 5 of C′[1/f ]

and B′[1/f ]. Let Û ′′ = SpecB′′ and Ŷ ′′ = Spec Ĉ′′. Then Û ′′ is flat over Ŷ ′′ by

[Gro61, IV, 11.3.10.1]. Moreover, since Û → Ŷ is flat, the generic points of Û ′
k map

to generic points of Ŷ ′
k. So the image of Û ′′

k is dense in Û ′
k, and in particular Û ′′(k)

is non-empty.

Now choose a point x ∈ Û ′′(k), and denote by y ∈ Ŷ ′′(k) its image. We write
OÛ ′′,x and OŶ ′′,y for the complete local rings at x and y. Since the maps

Û ′′ → Û ′ → Û → Z

are formally étale, OÛ ′′,x is naturally isomorphic to the complete local ring at the

image of x in Z. Let R be the universal deformation OK-algebra of the abelian
scheme Ax. Then OÛ ′′,x is naturally a quotient of R. The map OŶ ′′,y → OÛ ′′,x

satisfies the conditions of Lemma 3.2.4, (cf. [Gro61, IV, 17.5.3]) and it follows that
this map is an isomorphism. In particular, this implies that

dimYK = dimOŶ ′′,y − 1 = dimOÛ ′′,x − 1 = dimZK

which contradicts our initial assumption. �

Corollary 3.2.7. Let g ≥ 1, be an integer, p any prime, and N ≥ 1 an integer
coprime to p. Let Z ⊂ Ag,N/OK

be a locally closed subscheme which is equidimen-
sional and smooth over OK , and whose special fiber, Zk, meets the ordinary locus
Aord

g,N ⊂ Ag,N/k.
If N = 1, 2 we also assume the following condition: For any generic point η ∈ Zk,

and η̄ the spectrum of an algebraic closure of κ(η), the abelian variety Aη̄ over η̄,
has automorphism group equal to {±1}. Then

ed(Ag,pN |ZK
/ZK ; p) = dimZK .

Proof. If N ≥ 3, the corollary follows from Theorem 3.2.6 and Lemma 2.2.4.
Suppose N = 1 or 2. Let N ′ ≥ 3 be an integer coprime to pN. We may assume

that K is equipped with a primitive pN ′th root of 1, ζpN ′ . The map of K-schemes
Ag,pN → Ag,N , is a covering with group Sp2g(Fp)/{±1}. Consider the maps

Ag,pNN ′ → Ag,pN ×Ag,N
Ag,NN ′ =: A′

g,pNN ′ → Ag,NN ′ .

Then A′
g,pNN ′ → Ag,NN ′ again corresponds to a Sp2g(Fp)/{±1} covering, and

Ag,pNN ′ → Ag,NN ′ corresponds to a Sp2g(Fp) covering. When p = 2 these two
coverings coincide.

Let ZN ′ = Z×Ag,N
Ag,NN ′ . Our assumption on the automorphisms ofAη̄ implies

that at the generic points of Zk, the map ZN ′ → Z is étale. Thus, after replacing
Z by a fibrewise dense open, we may assume that ZN ′ is smooth over OK . The
observations of the previous paragraph, Lemma 2.2.7 when p > 2, Lemma 2.2.4
and Theorem 3.2.6 imply that we have

(3.2.8) ed(Ag,pN |ZK
/ZK ; p) ≥ ed(A′

g,pNN ′ |ZN′,K
/ZN ′,K ; p)

= ed(Ag,pNN ′ |ZN′,K
/ZN ′,K ; p) = ed(A[p]|ZN′,K

/ZN ′,K ; p) = dimZK .

�

5Ĉ′′ corresponds to a formal affine open in the formal scheme Spf Ĉ′.
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Corollary 3.2.9. Let g, n ≥ 2 and N a positive integer coprime to n. Consider the
finite étale map of Q(ζnN )-schemes Ag,nN → Ag,N . Then for any p | n we have

ed(Ag,nN/Ag,N ; p) = dimAg =

(
g + 1

2

)
.

Proof. A fortiori it suffices to consider the case when n = p is prime, which is a
special case of 3.2.7. �

3.3. Moduli spaces of curves. Using the Torelli theorem one can use Theorem
3.2.6 to deduce the essential p-dimension of certain coverings of families of curves.

3.3.1. Let g ≥ 2, and letMg denote the coarse moduli space of smooth, proper,
genus g curves. For any integer n, let Mg[n] denote the Z[ζn][1/n]-scheme which
is the coarse moduli space of pairs (C,B) consisting of a proper smooth curve C
of genus g, together with a choice B of symplectic basis for J(C)[n], where J(C)
denotes the Jacobian of C. For n ≥ 3 this is a fine moduli space which is smooth
over Z[ζn][1/n] [DM69].

Theorem 3.3.2. Let g, n ≥ 2, and let p be any prime dividing n. Then

ed(Mg[n]/Mg; p) = dimMg = 3g − 3.

Proof. Let N ≥ 3 be an integer. There is a natural map of Z[ζN ][1/N ]-schemes
̟ :Mg[N ]→ Ag,N taking a curve to its Jacobian. For (C,B) inMg[N ] the pairs
(J(C),B) and (J(C),−B) are isomorphic via −1 on J(C). Thus (C,B) 7→ (C,−B)
is an involution Σ of Mg[N ], which is non-trivial, unless g = 2. We denote by
Mg[N ]′ the quotient of Mg[N ] by this involution. When g ≥ 3, the fixed points
of Σ in any fibre ofMg[N ] over SpecZ[ζN ][1/N ], are contained in a proper closed
subset. ThusMg[N ]′ is generically smooth over every point of SpecZ[ζN ][1/N ].

By [OS80] 1.11, 2.7, 2.8, the map of Z[ζN ][1/N ]-schemesMg[N ]→ Ag,N induces
a mapMg[N ]′ → Ag,N which is injective, an immersion if g = 2 and an immersion
outside the hyperelliptic locus if g ≥ 3.

It suffices to prove the theorem with n replaced by the prime factor p. Let N ≥ 3
be coprime to p, and letMg[pN ]′′ =Mg[p]×Mg

Mg[N ]
′
. It is enough to show that

ed(Mg[pN ]′′/Mg[N ]′; p) = 3g− 3. If p = 2 thenMg[pN ]′′ =Mg[pN ]′ as coverings
ofMg[N ]′, and if p ≥ 3 we have natural degree 2 maps of coverings ofMg[N ]′

Mg[pN ]′′ ←Mg[pN ]→Mg[pN ]′.

Thus, using Lemma 2.2.7 when p ≥ 3, it suffices to show that

ed(Mg[pN ]′/Mg[N ]′; p) = 3g − 3.

Since Mg[pN ]′ = Ag,pN |Mg [N ]′ , for example by comparing the degrees of these
coverings, and Mg[N ]′ meets the ordinary locus in Ag,N ⊗ Fp [FvdG04, 2.3], the
theorem now follows from Theorem 3.2.6. �

3.3.3. We now prove the analogue of Theorem 3.3.2 for the moduli space of
hyperelliptic curves. Let S be a Z[1/2]-scheme. Recall that a hyperelliptic curve
over S is a smooth proper curve C/S of genus g ≥ 1, equipped with an involution σ
such that P = C/〈σ〉 has genus 0. Let Hg denote the coarse moduli space of genus
g hyperelliptic curves over Z. It is classical (and not hard to see) that over Z[1/2]
one has

Hg
∼=M0,2g+2/S2g+2
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whereM0,2g+2 is the moduli space of genus 0 curves with 2g + 2 ordered marked
points, and S2g+2 is the symmetric group on 2g + 2 letters.

For any integer n, let Hg[n] denote the Z[ζn][1/n]-scheme which is the coarse
moduli space of pairs (C,B) consisting of a hyperelliptic curve C together with a
symplectic basis B for J(C)[n]. As above, for n ≥ 3 this is a fine moduli space
which is smooth over Z[ζn][1/n].

Theorem 3.3.4. Let g, n ≥ 2, and let p be any odd prime dividing n. Then

ed(Hg[n]/Hg; p) = dimHg = 2g − 1.

Proof. There is a natural map of Z[1/2]-schemes Hg →Mg which is generically an
injective immersion on every fibre over Z[1/2], as a general hyperelliptic curve has
only one non-trivial automorphism [Poo00], Thm 1. By the Torelli theorem and
[OS80] Cor. 3.2, the map Mg → Ag is also generically an injective immersion on
every fibre over Z[1/2], and thus so is Hg → Ag.

Now the Jacobian of a hyperelliptic curve over the generic point of Hg has
automorphism group {±1} [Mat58] p. 790, and Hg meets the ordinary locus of
Ag⊗Fp by [GP05], Theorem 1. Hence the theorem follows from Corollary 3.2.7. �

3.3.5. We remark that when g = 2, Theorem 3.3.4 extends to p = 2, as this is a
special case of Theorem 3.3.2. However, an extension to p = 2 is not possible when
g > 2. To explain this, recall that for a finite group G, and a prime p, ed(G; p)
denotes the supremum of ed(Y/X ; p) taken over all G-covers Y/X of finite type K-
schemes, for any characteristic 0, algebraically closed field K (the definition being
independent of K). The covering

M0,2g+2 →M0,2g+2/S2g+2
∼
−→ Hg

is a component of Hg[2]; for g > 2, the cover is disconnected, and all components
are isomorphic.6 We conclude that

ed(Hg[2]/Hg; 2) = ed(M0,2g+2/Hg; 2)

= ed(S2g+2; 2)

= g + 1 < 2g − 1

where the second equality follows from the versality ofM0,2g+2 for S2g+2, and the
third follows from [MR09, Corollary 4.2].

The lower bound ed(Hg[2]/Hg; 2) ≥ g + 1 can actually be recovered using the
techniques of this paper. The point is that although Hg → Ag is not generically an
immersion in characteristic 2, one can show that the image of the map on tangent
spaces at a generic point has dimension g+1.We are grateful to Aaron Landesman
for showing us this calculation.

4. Essential dimension of congruence covers

4.1. Forms of reductive groups. In this subsection we prove a (presumably well
known) lemma showing that for a reductive group over a number field one can
always find a form with given specializations at finitely many places.

6The monodromy of Hg[2] → Hg was computed by Jordan [Jo1870, p. 364, §498] to factor as
SB2g+2 ։ S2g+2 →֒ Sp2g(F2), where SB2g+2 = π1(Hg) denotes the spherical braid group. See

also [Dic08, p. 125], or for a more recent treatment, see the q = 2 case of [McM13, Theorem 5.2].
The connected components of the cover are in bijection with the cosets Sp2g(F2)/S2g+2. The

equivalence of the components follows from the monodromy computation.
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4.1.1. Let F be a number field and G = Gad an adjoint, connected reductive group
over F. We fix algebraic closures F̄ and F̄v of F and Fv respectively, for every finite
place v of F, as well as embeddings F̄ →֒ F̄v.

Recall [DG65, XXIV, Thm. 1.3] that the automorphism group scheme of G is an
extension

(4.1.2) 1→ G→ Aut(G)→ Out(G)→ 1

where Out(G) is a finite group scheme. If G is split, then this extension is split
and Out(G) is a constant group scheme which can be identified with the group of
automorphisms of the Dynkin diagram of G.

We will also make use of the notion of the fundamental group π1(G) [Bor96].
This is a finite abelian group equipped with a Gal(F̄ /F )-action. As an étale sheaf

on SpecF, one has π1(G)⊗µn
∼
−→ ker (Gsc → G) where Gsc is the simply connected

cover of Gder, and n is the order ker (Gsc → G).

Lemma 4.1.3. Let G be a split, adjoint connected reductive group over F, and S
a finite set of places of F. The natural map of pointed sets

H1(F,Aut(G))→
∏

v∈S

H1(Fv,Aut(G))

is surjective.

Proof. Recall the following facts about the cohomology of reductive groups over
global and local fields [Kot86]: Let H be an adjoint connected reductive group over
F. For any place v of F , there is a map

H1(Fv, H)→ π1(H)Gal(F̄v/Fv),

which is an isomorphism if v is finite. For any finite set of places T of F, consider
the composite map

ξ :
∏

v∈T

H1(Fv , H)→
∏

v∈T

π1(H)Gal(F̄v/Fv) → π1(H)Gal(F̄ /F ).

Then by [Kot86, §2.2] (xv)v∈T ∈
∏

v∈T H
1(Fv, H) is in the image of H1(F,H) if

ξ((xv)) = 0. Applying this to T = S ∪{v0} for some finite place v0 /∈ S, we see that

(4.1.4) H1(F,H)→
∏

v∈S

H1(Fv, H)

is surjective.
Next we remark that the map

H1(F,Out(G))→
∏

v∈S

H1(Fv,Out(G))

is surjective. Indeed, since G is split a class in H1(F,Out(G)) is simply a conjugacy
class of maps Gal(F̄ /F )→ Out(G), and similarly for the local classes, so this follows
from [Cal12, Prop. 3.2].

Now let (xv) ∈
∏

v∈S H
1(Fv,Aut(G)) and let (x̄v) ∈

∏
v∈S H

1(Fv,Out(G)) be

the image of (xv). By what we have seen above, there exists x̄ ∈ H1(F,Out(G))
mapping to (x̄v). Since we are assuming G is split, (4.1.2) is a split extension, so
there is a x ∈ H1(F,Aut(G)) mapping to x̄. Let H be the twist of G by x. Recall
that this means that, if we choose a cocycle x = (xσ)σ∈Gal(F̄ /F ) representing x, then
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there is an isomorphism τ : G
∼
−→ H over F̄ , such for g ∈ G(F̄ ) and σ ∈ Gal(F̄ /F ),

we have τ(σ(g)) = (σ(τ(g)))xσ . We have a commutative diagram

H1(F,Aut(G)) //

∼τ

��

∏
v∈S H

1(Fv ,Aut(G))

∼τ |Fv

��

H1(F,Aut(H)) //
∏

v∈S H
1(Fv,Aut(H))

such that the vertical maps send x and (x|Fv
)v to the trivial classes in the bottom

line. Thus it suffices to show that

H1(F,H)→
∏

v∈S

H1(Fv, H)

is surjective, which we saw above. �

4.2. Shimura varieties. In this subsection we apply the results of Section 3 to
compute the essential dimension for congruence covers of Shimura varieties. This
will be applied in the next subsection to give examples of congruence covers of
locally symmetric varieties where our techniques give a lower bound on the essential
dimension. Since our aim is to give lower bounds on essential dimension, it may
seem odd that we work with the formalism of Shimura varieties, rather than the
locally symmetric varieties which are their geometrically connected components.
However, many of the results we need are in the literature only in the former
language, and it would take more effort to make the (routine) translation.

4.2.1. Recall [Del79, §1.2] that a Shimura datum is a pair (G,X) consisting of
a connected reductive group G over Q, and a G(R) conjugacy class of maps h :
C× → G(R). This data is required to satisfy certain properties which imply that
the commutant of h(C×) is a subgroup K∞ ⊂ G(R) whose image in Gad(R) is
maximal compact and X = G(R)/K∞ is a Hermitian symmetric domain.

Let A denote the adeles over Q and Af the finite adeles. Let K ⊂ G(Af ) be a
compact open subgroup. The conditions on (G,X) imply that for K sufficiently
small, the quotient

ShK(G,X) = G(Q)\X ×G(Af )/K

has a natural structure of (the complex points of) an algebraic variety over a number
field E = E(G,X) ⊂ C, called the reflex field of (G,X), which does not depend on
K. We denote this algebraic variety by the same symbol, ShK(G,X).

Now let VZ = Z2g equipped with a perfect symplectic form ψ. Set V = VZ ⊗Z Q
and GSp = GSp(V, ψ). We denote by S± the conjugacy class of maps h : C× →
GSp(R) satisying the following two properties

(1) The action of the real Lie group C× on VC gives rise to a Hodge structure
of type (−1, 0) (0,−1) :

VC
∼
−→ V −1,0 ⊕ V 0,−1.

(2) The pairing (x, y) 7→ ψ(x, h(i)y) on VR is positive or negative definite.

Then (GSp, S±) is a Shimura datum called the Siegel datum, and ShK(GSp, S±)
has an interpretation as the moduli space of principally polarized abelian varieties
with suitable level structure.

We say that (G,X) is of Hodge type if there is a map ι : G →֒ GSp of reductive
groups over Q which induces X → S±. Given any compact open subgroup K ⊂
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G(Af ) there exists a K
′ ⊂ GSp(Af ) such that the above maps induce an embedding

of Shimura varieties [Del71, Prop. 1.15]

ShK(G,X) →֒ ShK′(GSp, S±).

4.2.2. Now fix a prime p, and suppose that G is the generic fibre of a reductive
group GZ(p)

over Z(p). If no confusion is likely to result we will sometimes write

simply G for GZ(p)
. We take K to be of the form KpK

p where Kp = G(Zp) and

Kp ⊂ G(Ap
f ), where Ap

f denotes the finite adeles with trivial p-component. Under

these conditions, p is unramified in E, and for any prime λ|p of E, ShK(G,X) has
a canonical smooth model over OEλ

[Kis10, Thm. 2.3.8], [KMP16, Thm. 1], which
we will denote by SK(G,X). In particular, we may apply this to ShK′(GSp, S±) if
we take K ′ = K ′

pK
′p with K ′

p = GSp(VZ, ψ)(Zp).
Given GZ(p)

and (G,X) of Hodge type, we may always choose (V, ψ), ι and K ′

with K ′
p = GSp(VZ, ψ)(Zp) such that ι induces a map of smooth OEλ

-schemes

ι : SK(G,X) →֒ SK′(GSp, S±)

which is locally on the source an embedding [KP, 4.1.5], [Kis10, Prop. 2.3.5]. That
is, if x ∈ SK(G,X) is a closed point, and y = ι(x), then the complete local ring
at x is a quotient of the complete local ring at y. In particular, there is an open
subscheme of SK(G,X), whose special fibre is dense in SK(G,X)⊗ Fp, such that
the restriction of ι to this open subscheme is a locally closed embedding. Fix such
choices. As in §3, we denote by A the universal abelian scheme over SK′(GSp, S±).
Then we have

Lemma 4.2.3. Suppose that the reflex field E, admits a prime λ|p with residue field
Fp. Then a Galois closure of the étale local system A[p]|ShK(G,X) → ShK(G,X) is
given by a congruence cover SK(G,X)p → SK(G,X), with monodromy group iso-
morphic to Gder(Fp) over every geometrically connected component of ShK(G,X).

Moreover,

ed(ShK(G,X)p → ShK(G,X); p) = dimCX.

Proof. Let S and S′ denote geometrically connected components of ShK(G,X) and
ShK′(GSp, S±) respectively with S ⊂ S′. The étale local systemA[p]|SQ̄

corresponds
to a representation

ρG : π1(SQ̄)→ π1(S
′
Q̄
)→ GSp(Fp)

where GSp = GSp(VZ, ψ), as above, and ρG has image Gder(Fp): By the smooth
base change theorem and the comparison between the algebraic étale and topolog-
ical fundamental groups for varieties over C, it suffices to check that the composite
of the maps of topological fundamental groups

πtop
1 (S(C))→ πtop

1 (S′(C))→ GSp(Fp)

has image Gder(Fp). This sequence of maps may be identified with [Del79, 2.1.2,
2.0.13]

Γ→ Γ′ → GSp(Fp)

where Γ and Γ′ are T -congruence subgroups of Gder(Q) and Sp(Q)-respectively, for
some finite set of finite places T not containing p. In particular, the image of the
composite map is Gder(Fp).
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By Lemma 2.2.4 we have

ed(ShK(G,X)p → ShK(G,X); p) = ed(A[p]|SQ̄
/SQ̄; p).

We now consider the map of integral models ι, corresponding to the prime λ|p of
the lemma. Since λ has residue field Fp, every component of the image ι meets the
ordinary locus of SK′(GSp, S±) by [Wor, Thm. 1.1]. Now using that for some N
with (N, p) = 1, there is a surjective map Ag,N → ShK′(GSp, S±), and Theorem
3.2.6, we conclude

ed(A[p]|SQ̄
/SQ̄; p) = dimS = dimX.

�

4.3. Congruence covers. It will be more convenient to state the results of this
subsection in terms of locally symmetric varieties. These are geometrically con-
nected components of the Shimura varieties discussed in the previous subsection.

4.3.1. Let G be a semisimple, almost simple group over Q. We will assume that
G is of classical type, so that (the connected components of) its Dynkin diagram
are of type A,B,C or D.

Let K∞ ⊂ G(R) be a maximal compact subgroup. We will assume that X =
G(R)/K∞ is a Hermitian symmetric domain. The group Gad(R) is a product of
simple groups Gi(R), for i in some index set I. We denote by Inc (resp. Ic) the set
of i with Gi non-compact (resp. compact). Then X is a product of the irreducible
Hermitian symmetric domains Xi = Gi(R)/Ki, for i ∈ Inc, where Ki ⊂ Gi(R) is
maximal compact. We use Deligne’s notation [Del79] for the classification of these
irreducible Hermitian symmetric domains. Since we are assuming G is of classical
type, for i ∈ Inc, Xi is of type A,B,C, DR or DH. The group Gi(R) is either
the adjoint group of U(p, q) in case of type A, of Sp(2n) in the case of type C, of
SO(n, 2) in case of type B or DR, and of SO∗(2n), an inner form of SO(2n), if Gi

is of type DH.
Since G is almost simple, for i ∈ Inc the Xi are all of the same type, except

possibly if G is of type D, in which case it is possible that both factors of type DR

and DH occur among the Xi. We will say that G is of Hodge type if all the factors
Xi are of the same type A,B,C,DR, DH and the following condition holds: G is
simply connected, unless the Xi are of type DH, in which case G(C) is a product
of special orthogonal groups.

4.3.2. The Dynkin diagram ∆(G) is equipped with a set of vertices Σ(G) which
is described as follows (cf. [Del79] §1.2, 1.3). For i ∈ Inc, Ki ⊂ Gi is the centralizer
of a rank 1 compact torus U(1) ⊂ Gi, which is the center of Ki. Thus there are
two cocharacters h, h−1 : U(1)→ Gi which identify U(1) with this compact torus.
These cocharacters are miniscule, and each corresponds to a vertex of ∆(Gi). The
two vertices are distinct exactly when h, h−1 are not conjugate cocharacters. In
this case, they are exchanged by the opposition involution of ∆(Gi), which also
gives the action of complex conjugation on ∆(Gi). We set Σ(G) to be the union of
all the vertices above. Thus Σ(G) ∩∆(Gi) is empty if i ∈ Ic, and consists of one
or two vertices if i ∈ Inc. In the latter case it consists of two vertices if and only if
Gi(R) is either the adjoint group of U(p, q) with p 6= q, or of SO∗(2n) with n odd.

4.3.3. Fix an embedding Q̄ →֒ C. The Galois group Gal(Q̄/Q) acts on ∆(G). We
consider a subset Σ ⊂ Σ(G) such that ∆(Gi)∩Σ consists of one element for i ∈ Inc..
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We call G p-admissible if G splits over an unramified extension of Qp, and for
some embedding Q̄ →֒ Q̄p, and some choice of Σ, the action of Gal(Q̄p/Qp) leaves
Σ invariant. This definition may look slightly odd; it will be used to guarantee that
the reflex field of a Shimura variety built out of G has at least one prime where the
Shimura variety has a non-empty ordinary locus.

4.3.4. For any reductive group H over Q a congruence subgroup Γ ⊂ H(Q) is a
group of the form H(Q) ∩ K for some compact open subgroup K ⊂ H(Af ). An
arithmetic lattice Γ ⊂ H(Q) is a finite index subgroup of a congruence subgroup.
If i : G′ → G is a map of reductive groups whose kernel is in the center of G′, and
Γ′ ⊂ G′(Q) is an arithmetic lattice then i(Γ′) ⊂ G(Q) is an arithmetic lattice.

If Γ ⊂ G(Q) is an arithmetic lattice which acts freely on X then MΓ := Γ\X
has a natural structure of algebraic variety over Q̄ [Del79, §2]. For any arithmetic
lattice Γ there is a finite index subgroup which acts freely on X. For a Shimura
datum (G,X) the geometrically connected components of ShK(G,X) have the form
Γ\X, where Γ ⊂ Gad(Q) is the image of a congruence subgroup of Gder(Q); this
was already used in the proof of Lemma 4.2.3.

Now suppose that G is almost simple and G splits over an unramified extension
of Qp. Then G extends to a reductive group GZp

over Zp. Let K = KpKp ⊂ G(Af )

and K1 = KpK1
p ⊂ G(Af ) be compact open, with Kp ⊂ G(Ap

f ), Kp = GZp
(Zp)

and K1
p = ker (GZp

(Zp)→ GZp
(Fp)). Let Γ = G(Q) ∩K and Γ1 = G(Q) ∩K1. We

call a covering of the form Γ1\X → Γ\X a principal p-level covering.

Theorem 4.3.5. Let G′ be an almost simple group of Hodge type which is p-
admissible, and let X = G′(R)/K∞. Then for any principal p-level covering. Γ1\X →
Γ\X we have

ed(Γ1\X → Γ\X ; p) = dimX.

Proof. We slightly abuse notation and write Gad for G′ad. Let Σ ⊂ Σ(G′) be a
subset of the form described above. This corresponds to a Gad(R)-conjugacy class
of cocharacters h : U(1) → Gad, which we denote by Xad. Then (Gad, Xad) is a
Shimura datum and its reflex field corresponds to the subgroup of Gal(Q̄/Q) which
takes Σ to itself [Del79, Prop. 2.3.6]. Since G′ is p-admissible, there is a choice of
Σ, and a prime λ′|p of E(Gad, Xad) with κ(λ′) = Fp.

Then one sees using [Del79, Prop. 2.3.10] that one can choose a Shimura datum
of Hodge type (G,X) with Gder = G′ and adjoint Shimura datum (Gad, Xad),
and so that all primes of E(Gad, Xad) above p split completely in E(G,X). In
particular, any prime λ|λ′ of E(G,X) has residue field Fp. We have verified that
(G,X) satisfies the hypotheses of Lemma 4.2.3. The theorem follows by restricting
the map of that lemma to geometrically connected components. �

4.3.6. We can make the condition of p-admissibility of G′ in Theorem 4.3.5 some-
what more explicit, if we assume that G′ad(R) has no compact factors.

Corollary 4.3.7. Let G′ be an almost simple group which splits over an unramified
extension of Qp. Suppose either that

(1) G′ splits over Qp, or
(2) The irreducible factors of G′ad(R) are all isomorphic to the adjoint group

of one of U(n, n), SO(n, 2) with n 6= 6, or Sp(2n) for some positive integer
n.
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Then G′ is p-admissible, and for any principal p-level covering Γ1\X → Γ\X we
have

ed(Γ1\X → Γ\X ; p) = dimX.

Proof. If G′ splits over Qp then Gal(Q̄p/Qp) acts trivially on ∆(G), and so leaves
any choice of Σ stable. For (2), one checks using the classification of [Del79] that in
each of these cases, Σ = Σ(G), and a vertex v ∈ Σ(G) is stable by any automorphism
of the connected component of ∆(G) containing v. It follows that Gal(Q̄/Q) leaves
Σ(G) stable. �

4.3.8. The above results give examples of coverings for which one can compute
the essential p-dimension. It may be of interest to compare these numbers with
the essential p-dimension of the corresponding group, which can in principle be
computed using the Karpenko-Merkjurev theorem [KM08].

We call a reductive group H almost absolutely simple if H is semisimple and
Had is absolutely simple. (That is, it remains simple over an algebraic closure).We
have the following result.

Proposition 4.3.9. Let H be a classical, almost absolutely simple group over Fq,
with q = pr. Then there exists a Hermitian symmetric domain X attached to an
adjoint Q-group G, and arithmetic lattices Γ′ ⊂ Γ ⊂ G(Q) corresponding to a

principal p-covering, with Γ/Γ′ ∼
−→ H(Fq), such that

e = ed(Γ′\X → Γ\X ; p)

satisfies

• If H is a form of SLn which is split if n is odd, then e = r⌊n
2

4 ⌋.

• If H is Sp2n then e = r(n
2+n
2 ).

• If H is a split form of SO2n then e = r(n
2−n
2 ).

• If H is a form of Spinn and H is not of type D4, then e(H(Fq)) = r(n−2).

Proof. Let Ḡ = ResFq/Fp
H. There is a unique (up to canonical isomorphism) con-

nected reductive group GZp
over Zp with GZp

⊗ Fp = Ḡ.
We (may) now assume that H is one of the four types listed, and in each of these

cases we define a semisimple Lie group GR over R as follows. If H is a form of SLn,
we take GR to be SU(n2 ,

n
2 )

r if n is even and SU(n−1
2 , n+1

2 )r if n is odd. If H is Sp2n
we take GR = Spr

2n. If H is a form of SO2n we take GR to be SO∗(2n)r, the inner
form of (the compact group) SO(2n) which gives rise to the Hermitian symmetric
domain of type DH

n (cf. [Del79, 1.3.9,1.3.10]). If H is a form of Spinn we take GR

to be Spin(n− 2, 2)r.
In all cases GR and GZp

are forms of the same split group. Thus by Lemma 4.1.3
there exists a semisimple reductive group G over Q, which gives rise to GR and GZp

over R and Zp respectively. By assumption G′ is of Hodge type, and we now check
that it can be chosen to be p-admissible. This is necessarily the case by Corollary
4.3.7, except when n is odd and H is a form of SLn or H is a form of SO(2n). In
these cases, we are assuming that H is a split form, so Gal(Q̄p/Qp) permutes the
components of ∆(G) simply transitively. If H is a form of SLn or SO(2n) with n
odd, then ∆(Gi) contains two points in Σ(G) (the opposition involution is nontrivial
on ∆(Gi) in these cases), and we can take Σ ⊂ Σ(G) to be a Gal(Q̄p/Qp)-orbit of
any point v ∈ Σ(G).
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When H is a form of SO(2n) with n even, then the opposition involution is trivial
on ∆(Gi), and hence so is the action of complex conjugation. The set Σ(G) meets
each component of ∆(G) in one vertex. Let Σ1 be the Gal(Q̄p/Qp)-orbit of any
vertex in Σ(G). There is an inner form G1,R of G over R such that Σ(G1,R) = Σ1.
(Note that the Dynkin diagrams of inner forms are identified so this makes sense.)
Explicitly, let a ∈ Out(G) be an automorphism which preserves the connected
components of ∆(G) and such that a(Σ(G)) = Σ1. (Such an a is unique except if
H is of type D4.) Then G1,R is given by twisting G by the cocycle ãσ(ã)−1 where
ã ∈ Aut(G)(C) lifts a. Using the surjection (4.1.4), we see that there is an inner
twisting G1 of G over Q which is isomorphic to G1,R over R and to G over Qp, as
an inner twist. As Σ(G1) = Σ1 is stable by Gal(Q̄p/Qp), G1 is p-adimissible. Thus,
the proposition follows from Theorem 4.3.5 and the formulae for the dimensions of
Hermitian symmetric domains. �

Corollary 4.3.10. Let H be a classical, absolutely simple group over Fq, with
q = pr. Then there is a congruence H(Fq)-cover of locally symmetric varieties
Y ′ → Y such that e := edK(Y ′/Y ; p) satisfies :

• If H is a form of PGLn which is split if n is odd, then e = r⌊n
2

4 ⌋.

• If H is PSp2n then e = r(n
2+n
2 ).

• If H is a split form of PO2n then e = r(n
2−n
2 ).

• If H is a form of POn and H is not of type D4, then e = r(n− 2).

Proof. This follows immediately from Proposition 4.3.9 and Lemma 2.2.7. �
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de modèles canoniques, Automorphic forms, representations and L-functions (Proc.
Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, 1979, pp. 247–
289.

[DM69] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus,

Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109.
[DG65] M. Demazure and A. Grothendieck, Schémas en groupes. Fasc. 7: Exposés 23 à
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1962, Advanced Studies in Pure Mathematics, Vol. 2.
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l’Académie des Sciences 46 (1858), 508–515.

[HS02] K Hulek and G.K. Sankaran, The geometry of Siegel modular varieties, Higher dimen-
sional birational geometry (Kyoto, 1997), 2002, pp. 89–156.

[Jo1870] Camille Jordan, Traité des Substitutions, Gauthier–Villars, Paris, 1870.
[KM08] Nikita A. Karpenko and Alexander S. Merkurjev, Essential dimension of finite p-groups,

Invent. Math. 172 (2008), no. 3, 491–508.

[Kat81] N. Katz, Serre-Tate local moduli, Algebraic surfaces (Orsay, 1976–78), 1981, pp. 138–
202.

[KMP16] Wansu Kim and Keerthi Madapusi Pera, 2-adic integral canonical models, Forum Math.
Sigma 4 (2016), e28, 34.

[Kis10] Mark Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc.
23 (2010), no. 4, 967–1012.

[KP] Mark Kisin and George Pappas, Integral models of Shimura varieties with parahoric
level structure, Publ. IHES, to appear, arXiv:1512.01149.

[Kl1884] Felix Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom
fnften Grade (Lectures on the Icosahedron and the Solution of the Equation of the Fifth
Degree), Leipzig, Tübner, 1884.
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Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, 1980,
pp. 157–204.

http://arxiv.org/abs/1512.01149


26 BENSON FARB, MARK KISIN AND JESSE WOLFSON

[RG71] M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de
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