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Abstract

Deployment Algorithms for Outdoor IoT Networks Over 2.5D Terrain

by

Kerry Scott Veenstra

Outdoor IoT networks are used for a range of applications including surveillance and

environmental monitoring. The nodes of such networks sense environmental data and,

through wireless networks that interconnect them, transmit these measurements to data

collection sites known as sinks. Much research in this area focuses on 2D deployments where

nodes must remain coplanar and 3D deployments where nodes can move freely through

the air or underwater. However outdoor deployments where nodes remain on the surface

of terrain cannot be modeled as either 2D or 3D because the models fail to account for

obstructions to communication and coverage that are caused by the terrain itself. Such

“2.5D deployments” require terrain-aware deployment tools and algorithms that are not yet

well developed. In this dissertation I present my work on such tools and algorithms.

First, I developed two novel terrain-aware network deployment algorithms. Grid

Partition accounts for visibility over 2.5D terrain, but it also improves performance by

using elevation as a visibility proxy that vastly reduces the number of more costly visibil-

ity computations. The other algorithm, EMNAglobal,steps, improves on EMNAglobal, an

estimation-of-distribution algorithm, by computing the covariance matrix of the solution

population’s distribution by referencing the mean of the previous generation instead of the

x



mean of the current generation’s mean. Comprehensive experiments show that the proposed

algorithms perform as well as or better than traditional optimization meta-heuristics, mea-

sured as network sensor coverage. In addition, the core idea behind one of the algorithms,

Grid Partition, can serve as a meta-heuristic itself and is used in one of my recovery

algorithms.

Next, I developed and evaluated a class of terrain-aware network recovery algo-

rithms which guide networks in self-repair following a node failure. Terrain-Aware Recovery

with Commshed Intersections (TARCI) consists of four algorithm variants. Experiments

show that the variant that incorporates Grid Partition as a meta-heuristic (TARCI-GP)

achieves nearly the same quality of results as a variant that includes an exhaustive step while

requiring two orders of magnitude less CPU time. In addition, I show that my terrain-aware

recovery algorithms perform better than recovery algorithms that are intended for 2D

deployments.

Finally, to help with the development of my terrain-aware algorithms, I created a

terrain-aware experimental framework. The Terrain-Aware Framework For IoT (TAFFI)

simulates Java- and C++-based algorithms, both distributed and centralized. The framework

provides a library of line-of-sight algorithms and a suite of benchmark terrains. To ensure

that the benchmarks include a wide range of landform variation, another contribution of

this dissertation is the design of two terrain classifiers that ensure that the benchmark

terrains used in the experiments represent a wide variety of terrain landforms.
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Chapter 1

Introduction

1.1 Motivation

Outdoor IoT deployments have unique requirements. In areas where terrain is

non-planar, the target region of the IoT deployment can block inter-device communication

and reduce remote sensing coverage. Although the related problem of Wireless Sensor

Network (WSN) deployment has been well researched[52], most outdoor WSN deployment

approaches often constrain nodes to a region represented by a two-dimensional (2D) plane,

which cannot model non-planar terrain. Even if a plane includes obstructions, which is

considered in the Art Gallery Problem[43], a plane with obstructions is a poor model for

non-planar terrain. For example, a mobile node in a plane can move in only two dimensions

to avoid the effects of a blocking obstruction. On the other hand, an outdoor IoT node

has the further option of moving up a hill to increase its elevation and let it see over
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an obstruction. So WSN deployment algorithms for 2D are not appropriate for use with

deployments over outdoor IoT terrain.

Movement of WSN nodes in three dimensions also has been researched by con-

sidering nodes that can fly or can float in 3D regions of air or water[26][44]. Although an

IoT node such as a quadcopter (which can fly through the air over terrain) can increase

its elevation to see over obstructions, such capabilities require energy expenditure just to

remain immobile, and so this dissertation does do not consider such nodes.

Instead, the problems addressed in this dissertation are modeled by restricting

IoT nodes to a 2.5D surface, where “2.5D” means a surface whose third dimension is a

function of the first two[66]. One can define such a surface by coordinates using a height

function of two variables: (x, y, h(x, y)). A 2.5D surface can represent nearly any terrain

form, except for rare cases where terrain has more than one height at position (x, y), such

as a cave or an overhang, which this dissertation doesn’t consider.

1.2 Terminology

1.2.1 Non-contact Sensors

This dissertation considers nodes that have non-contact sensors that detect events

at a distance but require an unobstructed view. Examples of such sensors are ultrasonic

microphones, infrared imagers, and cameras. In this dissertation we can think of all such

sensors as cameras.
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1.2.2 Visibility, Viewshed, Coverage

One says that a target is visible if one or more of the network’s cameras can see the

target with a clear line-of-sight (or CLOS ) view. In the case of non-contact sensors, besides

CLOS, the camera’s “range” must be considered, as well. For instance, when someone is so

far away that they become a single pixel on the camera sensor, it’s not possible to identify

who they are. So we limit the maximum camera-to-target range to some sensor radius.

Combining visibility, i.e., CLOS, and sensor radius leads one to the concept of range-limited

visibility. In this dissertation, all visibility is assumed to be range-limited.

Range-limited visibility can thus be used to guide the deployment of visual sensor

networks. For any camera node (or for any network of camera nodes), the set of all

visible targets forms a viewshed [7]. A common and frequent goal in visual sensor network

deployments is to maximize the number of targets that comprise the viewshed—or in the

case of continuous terrain, to maximize the area of the viewshed. The number of targets of

a viewshed or its area is called its cumulative visibility [7] or its coverage[52]. Accounting for

the constraint of maximum camera-target range yields the measure of network fitness that

I use in this work: range-limited cumulative visibility. Through the rest of this dissertation,

all cumulative visibility is assumed to be range-limited. The terms cumulative visibility

and coverage will be used interchangeably.

Often terrain is modeled using a grid of heights called a height map, where each

(x, y) or (latitude, longitude) position has an associated terrain elevation. When using a

3



Figure 1.1: Viewshed of a two-node network on 2.5D terrain. Lighter areas represent regions
with higher elevation, and darker areas represent regions with lower elevation. Blue squares
represent the positions of nodes. Yellow areas indicate the positions of targets that have
CLOS (clear line of sight) visibility to at least one of the nodes.

grid-based height map, a straightforward visibility algorithm will treat each grid position

as entirely visible or as entirely obstructed[65]. As such, the cumulative visibility of a

deployment is given by the total number of grid positions that have visibility from at least

one of the network’s cameras. As discussed in more detail in Section 1.3, the problem of

achieving maximum coverage, or maximum cumulative visibility, can be formulated as an

optimization problem which aims at placing the camera nodes such as to maximize the

visual sensor network’s overall coverage.

To illustrate the concepts of viewsheds and cumulative visibility, Fig. 1.1 shows a

2.5D terrain height map where bright regions of the map indicate positions of the terrain

that have greater elevation. Ridges appear as bright linear regions while valleys appear

4



Figure 1.2: On the left is a Height Map of terrain. Lighter regions represent higher
elevations, such as hills and plateaus, and darker regions represent lower elevations, such as
valleys. On the right is a Coverage Map showing the range-limited cumulative visibility of
the terrain. Lighter regions identify potential node positions that would provide greater
coverage (range-limited cumulative visibility).

as dark lines. The two blue squares represent the node positions of a two-node network,

and the yellow regions comprise the all of the positions that are visible to at least one of

the nodes, defining the viewshed of the network. The total area of the yellow region is the

network’s cumulative visibility or coverage.

1.2.3 Wonderful Life Utility

Consider Fig. 1.2. On the left is a height map. Now imagine that for each position

on the height map one computes the yellow viewshed region for one node at that position.

The area of each position’s viewshed would be that position’s cumulative visibility. Then

once the cumulative visibility of every position is computed, all of these values can be

plotted on a coverage map, as shown on the right side of the figure. One can use such a

5



Figure 1.3: On the left is a Coverage Map. On the right is a corresponding Wonderful-Life
Utility Map that results from placing a node at the position of the blue square. Brighter
parts of the WLU Map indicate positions where placing a second node would improve
network coverage the most.

coverage map to choose the best position for a node. That is, if one places a node at the

brightest position on the map, then one will have a deployment with the greatest coverage.

However, to place a second node, one wants to know the additional or incremental

coverage that the second node provides. To this end, I use the Wonderful Life Utility

(or WLU ), a concept from potential games[72]. Using WLU, a node compares the global

utility of the system with the global utility of an alternate world in which the node doesn’t

exist. The difference is the node’s WLU, that is, its individual contribution to global utility.

(The local utility function’s name is inspired by a scene in the Frank Capra movie It’s a

Wonderful Life[6] during which James Stewart’s character learns what his home town would

have been like if he hadn’t been born.)

As an example, the left side of Fig. 1.3 shows the coverage for all positions of

6



Figure 1.4: This three-node example shows how changes in Wonderful Life Utility (WLU)
are the same as changes in global utility. The total area of the figure represents the system’s
global utility (g). The two open circles represent the coverage of the two outermost nodes,
and the central, dark region represents the Wonderful Life Utility of the central node. If the
central node were to move, the change in the total area would be the same as the change in
the area of the dark region, or ∆g = ∆WLU.

the map, and the right side shows the WLU for all positions after a node is placed at the

position indicated by the blue square. That is, the right side shows the additional coverage

that would result from placing a second node on the map given a first node in the indicated

position. Comparing the maps, one can see that WLU is low near the first node. This is

because placing a second node near the first node just provides multi-coverage and does

little to improve overall coverage. On the other hand, far from the first node, the WLU

map is seen to be the same as the coverage map because placing a second node far from

the first avoids multi-coverage and hence will improve overall coverage.

A characteristic of WLU is that changes in a node’s WLU are the same as changes

in the global objective function g as long as no two nodes change state simultaneously. As

demonstrataed in Fig 1.4, we know that:

∆g = ∆WLU. (1.1)

Hence, as long as (1.1) is true, a node can use changes in its WLU to compute the effect
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that its movement has on network fitness.

1.2.4 Commsheds

Similar to light waves, microwave signals can pass through the air, and they cannot

pass through soil. And so just as visibility leads to the concept of a covered region of terrain

called a viewshed, communication constraints lead to an analogous communication concept

of a covered region of terrain called a communication viewshed or a commshed [13]. A

commshed is a region of 2.5D terrain within which a node can communicate with whichever

node defined the commshed.

While this dissertation uses a CLOS radio-propagation model, using other models,

such as those that incorporate Fresnel zones[18], does not affect the overall algorithms

which treat commsheds as sets of positions. I address these ideas further in Future Work in

Chapter 6.

Just as a maximum sensor range leads to a range-limited viewshed, a maximum

communication range leads to a range-limited commshed. In the rest of this dissertation,

any mention of a commshed is assumed to be range-limited.

Since commsheds are sets of positions, the commsheds of a network’s nodes can be

joined using the union set operation to construct the commshed of the network, which is the

set of positions where a new node could communicate with at least one of the preexisting

nodes of the network (Fig. 1.5).

In addition to commshed unions, a key concept in this dissertation is commshed
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Figure 1.5: Commshed of a network. The gray region indicates positions that are within
distance RC of at least one node of the network. A new node that is placed anywhere in the
commshed can communicate with the network. (For clarity, this figure uses a simple 2D
disk radio-propagation model, but commsheds can be defined using any radio-propagation
model.)

intersections, specifically the intersection of the commsheds that are defined by a partitioned

network’s partitions. The commsheds of a network’s partitions can be joined using the

intersection set operation yielding the set of positions where placing a node will rejoin the

partitions and make the network whole again (Fig 1.6). Commshed intersections will appear

again in Chapter 4 on network recovery.

1.3 Problem Formulation

Using the terminology of the prior section, this section describes the three related

topics of this dissertation.

The first topic is the camera network deployment problem of a fixed number of

nodes over outdoor terrain. This problem requires maximizing line-of-site visual coverage.
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Figure 1.6: Commsheds of a partitioned network. The central, roughly triangular gray
region indicates the intersection of all of the partitions’ commsheds. A new node that is
placed anywhere in the three-way intersection can communicate with all three partitions
and will repair the network.

Initially, a homogeneous network of mobile and omnidirectional camera nodes[52] is placed

at random over terrain. Each node can determine its position, through GPS or another

means, and has access to a digital height map of terrain. Then each node guides itself using

the height data to compute its WLU and to improve overall coverage through a one-time

deployment. Node-to-node communication is modeled using a disk model and is one-hop.

To address this problem, I design distributed deployment algorithms. Work on deployment

is described in Chapter 3.

The second topic is the problem of network recovery over outdoor terrain. This

problem requires mobile nodes to reposition themselves in order to reconnect a network

that has been partitioned due the loss of a single node. An additional goal is to mitigate

lost coverage or even to improve coverage. For an example of network recovery see Fig. 1.7.
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(a) A network with two cut vertices.

(b) Node 2 fails, partitioning the network and
isolating nodes 3, 4, 6, 9, and 10 from the sink.

(c) Node 9 repositions to restore communication
between the two partitions.

Figure 1.7: Example of network recovery through node mobility.

To address this problem, I design and evaluate algorithms that guide the necessary node

movement. Work on network recovery is described in Chapter 4.

The third topic of this dissertation is the creation of the research framework that

was used to carry out reproducible experiments on the algorithms mentioned above. Work

on the TAFFI research framework is described in Chapter 2.
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1.4 Contributions

My contributions include:

• Distributed Deployment Algorithms

◦ The distributed Grid Partition deployment algorithm, which has superior coverage-

cost performance compared with other distributed optimization algorithms[60].

◦ A distributed simulated annealing deployment algorithm[59].

◦ The distributed EMNAglobal,steps population-based, Estimation of Distribution

(EDA) algorithm that better directs its search by adopting an alternative, more

suitable covariance-matrix computation approach[62].

◦ A simplified least-squares-based gradient-descent algorithm.

◦ The exploration of the effect of benchmarks and algorithm-control parameters

on distributed outdoor IoT deployment algorithm performance.

• Family of Recovery Algorithms

◦ The TARCI network recovery algorithm, whose performance compares will with

an exhaustive algorithm for about a hundredth of the cost[63].

• Experimental Framework for 2.5D Terrain

◦ The TAFFI framework with its experimental infrastructure, command-line job

management, library of line-of-sight algorithms, library of terrains, and selection
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of deployment algorithms[62].

• Terrain Classifiers

◦ The use and evaluation of Average Cumulative Visibility as a novel terrain

classifier (with Sam Mansfield)[37].

◦ The use and evaluation of the Greedy Adding set-cover heuristic as a novel

terrain classifier[62].

1.5 Organization of Dissertation

The rest of this dissertation is organized as follows: Chapter 2 describes my

TAFFI research framework, Chapter 3 describes my contributions to 2.5D deployment

algorithms, and Chapter 4 covers my contributions to 2.5D recovery algorithms. Chapter 5

lists additional accomplishments of mine made at UCSC and Chapter 6 concludes the

dissertation and includes a discussion of future work.
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Chapter 2

Evaluation Framework

I created TAFFI (Terrain-Aware Framework for IoT)[62] to allow easy and repeat-

able evaluation of distributed network algorithms over 2.5D terrain. This chapter describes

the framework’s components and is organized into the following sections: Section 2.1 de-

scribes TAFFI’s source of benchmark terrain data, the terrain classifiers that I used during

benchmark selection, and TAFFI’s terrain representation. Section 2.2 contains detailed

descriptions of TAFFI’s currently supported benchmark algorithms. Section 2.3 contains

TAFFI’s implementation details.

2.1 Terrain

Evaluating outdoor IoT algorithms requires modeling 2.5D terrain. One needs to

choose a terrain representation and create a useful selection of terrain benchmarks. To help

ensure effective algorithm evaluation, the benchmarks that are selected should represent
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a variety of landmass forms without redundancy. This goal requires the use of terrain

classifiers.

2.1.1 Terrain Representation

Practical terrain data is discontinuous, as it is a set of distinct elevation samples.

This sort of data is called a Digital Elevation Model or DEM[7]. Since DEM data does not

define a continuous surface, visibility computations must assume a spatial representation

for the data in order to compute obstructions. For example, if one were to represent terrain

using a Regular Square Grid (RSG)[46], the world would be a collection of tightly packed

prisms with each prism’s height determined by a corresponding point in the DEM. Then

the author of a visibility algorithm would need to decide what “seeing a datapoint” means:

is it seeing the top face of the prism? Is it seeing part of an edge? An RSG representation

is far removed from actual topography, and my reading of the literature suggests that it is

not the most popular representation in visibility computations.

A more popular representation is a Triangulated Irregular Network (TIN)[47],

which most GIS (Graphical Information Systems) visibility algorithms use. The advantage

of using a TIN is that a group of TIN triangles can be merged into a larger triangle for

efficient storage. De Floriani evaluates several TIN-based visibility algorithms[17].

Although the TIN terrain representation is used often, high-resolution DEM data

is available in raster grid format, with individual height data points for each point on a

longitude/latitude grid. Converting such data into a TIN representation would require
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sub-sampling the raster grid data, with consequential loss of terrain detail. Such loss of

detail would add undesired errors to the visibility computations.

One could avoid any loss of detail by using the original raster grid as the TIN grid,

but then that grid choice would eliminate any storage benefit that the TIN representation

normally affords. Consequently, I have selected a raster grid terrain representation that

aligns with my source of terrain benchmark data (discussed next). Another advantage of

the raster grid representation for terrain data is that it serves the Wang/Robinson/White

dynamic-programming visibility algorithm that I use[65].

2.1.2 Terrain Benchmarks

In my research, I have used two sources of terrain data for benchmarks: synthetic

terrains and Shuttle Radar Topography Mission (SRTM) terrains. Although I abandoned

synthetic terrains early in the research, I will briefly describe them in order to support that

decision. Synthetic terrains are mathematically defined, such as a flat plane, a random

surface, and sinusoids[59]. An example of a terrain that is described by sinusoids is below.

This height equation is intended to be used over the terrain tile {0 ≤ x ≤ 239, 0 ≤ y ≤ 179}:

hwavy2
(x, y) = 1000

[
sin2(

π

180
x) + sin2(

π

120
y)
]

Although synthetic terrains are easy to define, early on I reluctantly acknowledged that these

arbitrary terrain forms have no basis in evaluating algorithms for real-world deployments,

when actual, real-world terrain data is available. Hence, benchmarks used in this dissertation
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Figure 2.1: Selected subtiles of SRTM tile N37W123.

are sourced from real-world terrain data.

I used data from NASA’s 2005 Shuttle Radar Topography Mission (SRTM)[16].

This mission collected elevation data for much of the landmass of the Earth and provides

this information in datasets as digital elevation models (DEMs). The DEMs provide the

height for positions on the Earth using latitude-longitude coordinates that have a precision

of 1 arc second (about 30 meters in the latitude direction).

The SRTM datasets are organized into “tiles” of 3600× 3600 arcsecs (1 degree of

longitude by 1 degree of latitude). I selected tile N37W123 (Fig. 2.1) because it includes

regions that represent a wide variety of landform shapes. Since the full N37W123 tile is

impractically large, I divided it into 300 subtiles, each 240× 180 arcsec, and consider each
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subtile separately for inclusion as a terrain benchmark. The figure indicates which subtiles

are used for benchmarks; the next section justifies the selection.

2.1.3 Terrain Classification

To help ensure that my benchmark set includes a broad but practical selection of

landmass forms, I evaluated each subtile using two metrics. The first metric is the coverage

provided by the centralized greedy set-cover heuristic Greedy Adding [8]. I began to use this

heuristic as a novel terrain-classification metric in [60]. The second metric, which I used

earlier in my joint work with Mansfield, is a subtile’s Average Cumulative Visibility [37]

(ACV). To compute the ACV of a subtile, one averages the cumulative visibility of all of

its 43 200 positions. As explained below, I have observed that the Greedy Adding terrain

metric-classifier predicts the performance of the best algorithms that I have tested, while the

ACV classifier better predicts the performance of the remaining algorithms. Section 2.4.1

discusses this observation further.

After classifying all of the subtiles using Greedy Adding, I selected 21 benchmark

subtiles that span a broad range of classifier values, as confirmed by the horizontal dis-

tribution of datapoints in my tests of a variety of deployment algorithms from Chapter 3

(see Fig. 3.6 for results with 10 nodes). Then I confirmed that my selected benchmark

subtiles also span a broad range of ACV values, as confirmed by the horizontal distribution

of datapoints in the results of 3.7 for 10 nodes. (Distributions for 20 and 30 nodes are

similar. See Appendix A.)
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2.2 Terrain-Aware Framework For IoT

This section discusses the use of the TAFFI/Java framework for evaluating dis-

tributed deployment algorithms. Then it compares TAFFI/Java with the use of the

TAFFI/C++ framework for evaluating centralized deployment and recovery algorithms.

Section 2.3 presents the implementation details.

2.2.1 TAFFI/Java Operation

Controlled by the TAFFI/Java framework, each simulated node runs an Outer

Loop in which it alternates between communicating with its neighbors, i.e., the nodes within

communication range, and moving. The communication phase consists of broadcasting

a node’s current physical position along with the most recent position reports that have

been received from other nodes. The movement phase consists of using the optimization

algorithm of choice to compute a new position and then moving to it. If a node is unable to

find an improved position over several iterations, the Outer Loop will terminate. To avoid

getting into an infinite execution loop, the Outer Loop will terminate after a maximum

number of iterations. The Outer Loop of TAFFI/Java is detailed in Algorithm 2.1 and is

described below.

Each node of the network executes this Outer Loop independently. In Steps 1–2,

the node is given an initial position and an initial exploration radius equal to RE. The

exploration radius is used to prevent a node from traveling too far before receiving position
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Algorithm 2.1 Outer Loop of TAFFI/Java that is executed independently by each node
in distributed algorithms.

1: pE ← initial node position
2: rE ← RE

3: for L times do
4: Move to a new position pE based on the chosen algorithm
5: Decrease rE {see text}
6: if improvement in the network fitness is inadequate then
7: exit for loop {see text}
8: end if
9: Communicate pE to other nearby nodes.

10: end for

updates from its neighbors. This feature is motivated by each node’s use of WLU as a

fitness function, i.e., I want to avoid the situation where ∆g ̸= ∆WLU due to a change

in a neighboring node’s coverage. (See Section 2.2.1 for a complete explanation of the

exploration radius and exploration region.)

Steps 3–10 are the outer loop which runs until the node’s fitness ceases improving

for C cycles or until a maximum number of loops L is executed. The maximum loop count

helps ensure that the algorithm eventually will terminate. Step 4 implements the movement

phase by calling the optimization algorithm of choice which determines the next position for

the node and moves the node to its new position. Step 5 decreases the exploration radius

to sequentially focus the search on more promising regions. For my current experiments, the

exploration radius decreases linearly each iteration by RE
13 . However, Simulated Annealing,

which focuses the search using its temperature parameter T , leaves its exploration radius

at RE. Steps 6–8 terminate the loop if there is inadequate fitness improvement, that is,

if there is no improvement in the best fitness seen for C consecutive cycles. Each node
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waits C cycles before terminating because the inability to find a better position may be

resolved when one of the node’s neighbors moves and allows a subsequent improvement

in the node’s WLU. In my experiments, I found that C = 4 is adequate. Once all nodes

terminate, the simulation ends. Assuming that the simulation continues, Step 9 implements

the communication phase during which the node broadcasts its new position to all of its

neighbors. The node includes in its broadcast any current positions of its neighbors that it

is aware of. In other words, this step performs one-hop signaling, which also includes the

most recently received neighbor positions. Since nodes are not synchronized, any node may

receive position updates from its neighbors at any time, although in my simulations, nodes

store such updates until they are first used at the beginning of Step 4.

2.2.2 TAFFI/C++ Operation

TAFFI/C++ is better suited for evaluating centralized algorithms since, unlike

TAFFI/Java which runs Java models under a simulator and scheduler, TAFFI/C++ runs

native compiled C++ programs. That difference makes passing control parameters on

the command-line of a TARCI/C++ program more straightforward than passing control

parameters to a TARCI/Java simulation through a Cooja configuration file.

But aside from those differences, both TAFFI frameworks are similar: both

frameworks schedule jobs on the command line, both frameworks provide a library with

visibility algorithms, and both frameworks provide a library of benchmark terrains. Although

it is possible to force TARCI/Java to run a centralized algorithm (essentially running the
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entire centralized simulation during the initialization of node 1), I found that writing a

C++ command-line program was more straightforward.

2.2.3 Benchmark Algorithms

To help with the evaluation of deployment algorithms, TAFFI/Java includes

several distributed benchmark algorithms for comparison. Details of the distributed covered

in Chapter 3, but I list them here: Grid Partition, EMNAglobal,steps, Simulated Annealing,

Gradient Descent, and Pattern Search. In addition, several centralized benchmark algorithms

are included: Random Placement, Regular Grid, and Greedy Adding.

2.3 Implementation Details

2.3.1 TAFFI/Java Implementation

While a Cooja user can describe a node’s operation using emulated microcontroller

binaries or using compiled C code with a JNI interface[20], instead I chose to write

“application-level” nodes in the simulator’s native Java. Such application-level nodes

are more straightforward to use and avoid the memory limitations of Cooja’s MSP430

microcontroller emulator.

My AppMoteMobile Java subclass extends Cooja’s AbstractApplicationMote

class, but it also adds mobility. To add mobility, my AppMoteMobile class creates two

interlocked MoteTimeEvent objects: moveEvent and transmitEvent. These private objects
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are created by the AppMoteMobile constructor. Each call to the node’s execute() method

schedules a moveEvent. When the moveEvent fires, it computes the node’s new position,

moves the node, and then schedules a transmitEvent. A transmitEvent transmits a packet.

After each transmission, the sentPacket() callback calls the node’s execute() method,

which then schedules another moveEvent, completing the cycle. The moveEvent performs

Steps 4–8 of Algorithm 2.1; the transmitEvent performs step 9.

I use several software tools to manage the tens of thousands of simulation runs

that evaluated the algorithms for this dissertation. First, I run simulations under GNU

Make[53], which helps me avoid duplicate runs. Since I use multiple compute servers, each

server has its own Make file that defines only that server’s Make targets and then includes

a common Make file, which contains the dependencies and actions necessary to run all

simulations. Due to the inherent operation of Make, only the simulations that are identified

in each server’s Make file are run.

Second, to pass control parameters to simulations, I wrote a command-line utility,

params, that creates Cooja simulation configuration (.csc) files from templates. The

params utility accepts the name of a .csc file template (which will be the basis for the

generated configuration file), an index into a compiled-in list of random initial node locations

(for simulation reproducibility), and an optional list of name/value pairs for controlling

simulation parameters. The name/value pairs can be placed directly on the command line,

or they can be included within one or more referenced text files. This flexibility helps me

efficiently run a large set of simulation runs for my experiments.
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Third, I use a parameterized Bash[48] script to prepare each simulation’s .csc

file, run the simulation, and compress the resulting log file using Gzip[19].

Fourth, I use MATLAB[54] for data analysis and for plot generation. MATLAB

can directly generate the Encapsulated PostScript files that are used by LaTeX[29] to

generate the plots in manuscripts (such as this one). I also use MATLAB to generate data

table text files, which I include in LaTeX documents manually.

Fifth, prior to running MATLAB, I use GNU Awk[49] scripts to merge data from

the tens of thousands of Cooja simulation log files into a handful of automatically generated

MATLAB script (.m) files, one script file for each plot, or for each set of related plots, or

for each data table text file. GNU Make manages the GNU Awk and MATLAB executions

and helps ensure that tables and plots are updated when necessary.

2.3.2 TAFFI/C++ Implementation

Although using TAFFI/C++ means that a centralized C++ program is written

instead of a distributed Java program, and that control parameters are passed directly on

the C++ program’s command line rather than indirectly through a Cooja configuration file

using params, the rest of job management and data analysis with TAFFI/C++ is the same

as with TAFFI/Java.
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2.4 Discussion

2.4.1 Evaluation of Terrain Classifiers

In Section 2.1.3, I introduced two terrain classifiers, namely Greedy Adding and

ACV. I used these classifiers to choose the terrain benchmarks for my experiments, desiring

that the selected benchmarks present a wide range of difficulty. Here I evaluate the

effectiveness of these classifiers as predictors of difficulty.

I used MATLAB’s fitlm() function to fit an algorithm’s cumulative visibility

results (see Chapter 3) for each benchmark (averaged over 10 random seeds) to each

benchmark’s corresponding classifier value. Then for each regression model generated, I

retrieved the r2 coefficient of determination from the model’s Rsquared.Ordinary property.

The r2 value indicates the approximate portion of variability in an algorithm’s results that

is predicted by the terrain classifier. An r2 value of 1.00 or −1.00 means that the classifier

perfectly predicted variability in the algorithms result (as a linear function); an r2 value of

0.00 means that the classifier failed to predict variability in the algorithm’s result. Table 2.1

reports the r2 Coefficient of Determination for algorithm results relative to both classifiers

for 10, 20, and 30 nodes.

Considering first the Distributed Grid Partition algorithm, the table shows rel-

atively high r2 values for the Greedy Adding terrain classifier, meaning that using this

classifier will tend to choose benchmarks with a wide range of difficulty for Grid Partition.

(I note that since Grid Partition performs nearly as well as Greedy Adding in my tests,
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Table 2.1: Terrain Classifications as Predictors of Algorithm Performance.

r2 using Greedy Adding r2 using ACV

Algorithm 10 20 30 10 20 30

Nodes Nodes Nodes Nodes Nodes Nodes

Dist. Grid Partition 0.92 0.89 0.87 0.20 0.26 0.50

Dist. Simulated Annealing 0.83 0.65 0.12 0.30 0.05 0.02

Dist. Pattern Search 0.61 0.78 0.92 0.64 0.77 0.69

Dist. EMNAglobal,steps 0.31 0.74 0.88 0.85 0.84 0.88

Dist. Gradient Descent 0.09 0.50 0.73 0.94 0.93 0.96

Regular Grid 0.14 0.41 0.57 0.69 0.85 0.89

Random Placement 0.07 0.37 0.62 0.99 0.99 0.98

seeing a uniformly high r2 is not a surprise.) The table also shows that the benchmarks

selected using Greedy Adding present a wide range of difficulty for Simulated Annealing

when it is run with 10 and 20 nodes. Greedy Adding can predict how terrain will affect

Pattern Search and how terrain will affect EMNAglobal,steps with 20 and 30 nodes. These

results suggest that although there are features of algorithms that are influenced by terrain,

also there are algorithm features that are affected by the number of nodes deployed. This

is an area for future work.

Examining the ACV (Average Cumulative Visibility) half of the table, I see that

using the ACV classifier to choose benchmarks will result in a wide range of difficulty

for EMNAglobal,steps, Gradient Descent, Regular Grid, and Random Placement. The

EMNAglobal,steps algorithm, which performs well with more nodes, is well served by ACV,

but since the remaining three of these algorithms are among the worst that I tested,

evaluating their performance by terrain using ACV is merely interesting.
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The correlation of Random Placement with ACV is unsurprising since the coverage

of several randomly placed nodes would tend to sum to a multiple of average coverage, and

ACV is an average. The correlation of Gradient Descent with ACV also should not be

surprising since I know that due a noisy fitness function, Gradient Descent ends its searches

early after encountering local optima, meaning that Gradient Descent finds solutions that

are only slightly better than its initial random placements. EMNAglobal,steps is strongly

correlated with ACV, but also it is strongly correlated with Greedy Adding in simulations

with 30 nodes. It is curious that a single algorithm shows correlation with both metrics

under different circumstances. Since both terrain classifiers predict the performance of some

algorithms tested, I used both.

2.4.2 Reproducibility

Reprodicibility of results is important for quality research, but it is difficult to

achieve. To help working toward this end, nearly all of the experiments of this dissertation

were performed non-interactively, through the command-line based TAFFI framework. In

addition, nearly all of the plots (Embedded Postscript files for LATEXand PNG image files

for PowerPoint) were created from MATLAB scripts. This unwavering focus on using

command-line tools through scripts and Make files helps ensure that results can be repeated

merely by moving the original results files and rerunning the necessary Make files. (This

sounds easy, and it is, but in many cases regenerating the results will take several days of

CPU time, due to the large number of experiments conducted. Be aware!)
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2.5 Contributions

Regarding the framework: TAFFI (Terrain-Aware Framework for IoT) inherently

considers the topography of a target deployment region by having the modeled camera nodes

select their positions in order to maximize an outdoor IoT network’s overall visual coverage.

TAFFI also incorporates an experimental infrastructure that eases the development and

analysis of distributed IoT algorithms that aim at the deployment and repair of outdoor

IoT camera networks. When one uses TAFFI, one creates models in either Java or

C++. TAFFI/Java is built upon the Cooja-Contiki IoT network simulator/emulator[45]

and is best suited for modeling distributed algorithms and their networking protocols.

TAFFI/C++ is built upon GCC and is best for modeling centralized algorithms. Both

frameworks integrate a line-of-sight radio-communications model and provide a line-of-sight

camera/target visibility library for IoT device models. And both frameworks add flexible

command-line job management to simplify the creation of experiments and to help ensure

repeatability, although I note that the command-line job management is especially useful

with TAFFI/Java because it lets users avoid Cooja’s GUI-based means for individually

defining multiple experiments.

To help standardize experimental setups, TAFFI includes a benchmark suite of

actual terrains. To ensure that the selected terrains span a wide range of landmass forms, I

chose them based on two novel terrain-classification metrics: Greedy Adding and Average

Cumulative Visibility. I show that, together, these two metrics suggest best-case deployment
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algorithm performance, and as such, they helped me ensure that the benchmark suite

includes terrains that range from “flatter” to “rougher.”

To facilitate evaluating the performance of distributed IoT deployment techniques

TAFFI includes several distributed deployment algorithms.
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Chapter 3

Outdoor IoT Deployment Algorithms

In this chapter I describe my outdoor IoT deployment algorithms. This chapter is

organized as follows: Section 3.1 discusses related work, and Section 3.2 presents a taxonomy

of optimization algorithm that I considered. Then Sections 3.3 and 3.4 present my iterative-

improvement algorithms Distributed Simulated Annealing and distributed Grid Partition.

Next Section 3.5 presents my estimation of distribution algorithm EMNAglobal,steps. After

briefly discussing my evaluation methodology in Section 3.6, I present my results in

Section 3.7 and conclude with discussion in Section 3.8.

3.1 Related Work

The placement of nodes with the goal of covering targets is a well-known problem

with applications in a variety of other disciplines. For instance, in the Art Gallery Problem

the floorspace of an art gallery is “guarded” by locating cameras or guards[43]. Variations
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of the problem include the inclusion of “holes” in the floorspace (which can be considered

columns in the gallery), and guarding the outside of the building rather than guarding the

inside. Since a floorspace is 2D, this problem is different than mine. A 3D version of the Art

Gallery problem considers the visibility of a polyhedron’s interior volume, but once again I

am concerned with a different problem: the visibility of a polyhedron’s upper surface.

In operations research, the Location Set Covering Problem (LSCP) strives to

minimize the number of facilities needed to provide 100% coverage of a 2D area[56].

Although LSCP can be formulated as a zero-one linear-programming problem (with two

variables for each node’s two coordinates and one equation for each target whose coverage

is desired[55]), since LSCP assumes an unbounded number of nodes, I do not consider it

further.

Related to LSCP, the Maximal Covering Location Problem (MCLP), strives to

identify positions for a fixed number of facilities that will maximize the total demand that

is satisfied. This problem can be addressed by a greedy set cover heuristic that stops after

placing all available nodes, as exemplified by the Greedy Adding algorithm analyzed by

Church[8]. As LSCP is similar to my problem, I include centralized Greedy Adding in my

evaluation as a likely upper bound.

Coverage in the area of wireless sensor networks (WSNs) has received considerable

attention from the research community. In particular, the work in[76] provides a thorough

survey of the state-of-the-art in using centralized algorithms to provide coverage over terrain.

Many algorithms consider network connectivity constraints, which is part of my future
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work.

Finally, many researchers have looked at the centralized camera network de-

ployment problem over 2.5D terrain. To cite two examples, Lv et al.[35] use Simulated

Annealing with a centralized algorithm, and Akbarzadeh et al.[2] compare four different

centralized placement algorithms for camera nodes: regular grid, simulated annealing, the

L-BFGS method, and CMA-ES. However, this dissertation considers distributed deployment

algorithms, rather than the centralized algorithms of the related work.

3.2 Taxonomy of Algorithms

When one is presented with a complex optimization problem, often it is not trivial

to find an algorithm that guarantees an optimal solution in reasonable time. Instead one

can use heuristics to find an adequate solution. Heuristics can be classified in different ways,

such as whether they are inspired by nature or whether they make use of search history.

Others have found it useful to classify heuristics into those that iteratively improve a single

solution and those that use an evolving population of multiple solutions[5].

3.2.1 Iterative Improvement Algorithms

An iterative-improvement algorithm repeatedly adjusts a single candidate solution

during its search for a global optimum. The algorithm’s decisions are based on the fitness

of the current solution and any prior solutions seen. I want to evaluate how a selection of
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iterative-improvement algorithms respond to the WLU fitness function, which means that

I should choose algorithms that do well in a distributed context with only a two-variable

fitness function. (Below we will see that two-variable fitness functions are inappropriate

for some well-known heuristics.) In addition, the algorithms must use my chosen terrain

representation (see Section 2.1.1). Later in this chapter, I consider these iterative heuristics:

the stochastic optimization algorithm Simulated Annealing (Section 3.3) and the greedy

algorithm Grid Partition (Section 3.4).

3.2.2 Population-Based Algorithms

Population-based algorithms use a “population” of candidate solutions in a search

for a global optimum. Such an algorithm’s decisions are based on the fitness of all of the

candidate solutions of the population. Some examples of population-based heuristics that I

considered are Estimation of Distribution (EDA), Ant Colony Optimization, and Swarm

Intelligence.

An EDA is a form of Evolutionary Algorithm in which the various tuning parame-

ters (controlling crossover and mutation, for instance) are eliminated and replaced with

multivariate probability distributions[30]. CMA-ES is a well-known EDA heuristic that

adds recombination weights, step-size control, and learning rates[21]. Although CMA-ES

performs well with higher-dimension fitness functions, its author reports that it will be

outperformed when a fitness function has only two dimensions[22], as is the case with my

distributed algorithm.
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I considered using an Ant Colony Optimization (ACO) heuristic. Such a heuristic

can be used for local search algorithms, but like Estimate of Distribution Algorithms

(EDAs), it has shown success with higher-dimension fitness functions. For example, an ACO

algorithm for a 75-city Traveling Salesman Problem is considered a “small” instance[14].

For this reason, although ACO might be appropriate for a centralized algorithm that

finds positions for 75 nodes, I do not consider it as a potential solution to my distributed

optimization problem that has a two-variable fitness function.

I also considered the population-based Swarm Intelligence heuristic. In one

well-known Swarm Intelligence technique, Particle Swarm Optimization (PSO), numerous

potential solutions, or “particles,” move in the solution space while randomly adjusting their

velocities based on their and other particles’ best known solutions[33]. Given a particle i at

position xi with velocity vi, the stochastic weighted average (3.1) updates the velocity of

the particle making it tend toward its personal best position pi as well as toward the best

position pg of the particle’s neighbors or “group.” φ1 and φ2 are random vector weights,

and the operator ⊗ is component-wise multiplication.

vNEW
i ← wvi + φ1 ⊗ (pi − xi) + φ2 ⊗ (pg − xi) (3.1)

xNEW
i ← xi + vNEW

i (3.2)

Particles using velocity-update equation (3.1) or its variants tend to “swarm” around a

common solution. Although PSO is an intriguing technique, practical applications cited in

[33] have more than just two dimensions.
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Finding no existing population-based algorithms that are reported to perform well

on two-variable optimization problems, I nonetheless remain intrigued. For the purpose

of my evaluation, I developed an EDA algorithm that is inspired by one of CMA-ES’s

simpler predecessors. My algorithm, EMNAglobal,steps is described later in this chapter

(Section 3.5).

3.3 Simulated Annealing

Simulated Annealing is a general and well-known stochastic optimization method

whose operation is inspired by the annealing of a metal. The method is notable in that it

has been used successfully in finding solutions to various discrete optimization problems,

including deployment of sensor networks[34][38] and even the physical design of VLSI

circuits[69].

A Simulated Annealing algorithm generates a sequence of incremental candidate

solutions. At each point in the sequence, the algorithm determines whether the candidate

solution should be accepted or rejected. The criteria for acceptance depends on the change

in the system’s fitness, comparing a candidate solution to the solution that was most recently

accepted. Given a prior accepted solution p and a randomly generated candidate solution

q, the probability of accepting q is computed from the potential change in fitness.

∆ = WLU(q)−WLU(p)
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yielding

P (accept q) =


1 if ∆ ≥ 0

e∆/T if ∆ < 0

(3.3)

A difference between Simulated Annealing and a greedy algorithm is that there is a chance

that a Simulated Annealing algorithm will move away from a locally optimal position. The

control parameter T in (3.3) is analogous to a system’s slowly decreasing temperature during

annealing, and therefore, at lower temperatures, the probability of accepting a solution

that does not improve fitness decreases1. While T > 0, an inferior candidate solution may

be accepted as a “stepping stone” to a superior solution. The rate at which T decreases

greatly affects the performance of the algorithm. I discuss this “annealing schedule” in

more detail below.

In the classic Simulated Annealing algorithm implementation, there are two nested

loops. The outer loop manages the temperature and the number of iterations, and the

inner loop performs a search at a given temperature[51, p. 54]. In my implementation,

TAFFI/Java performs the control portion of the outer loop and limits the total number of

iterations. Then during each iteration of the outer loop, TAFFI/Java calls Algorithm 3.1,

which performs the outer loop’s remaining tasks and the tasks of the inner loop.

My implementation is shown in Algorithm 3.1. The algorithm uses as parameters

starting position pE, exploration radius RE, number of iterations M , temperature T , and

1Stated more accurately, T combines temperature and Boltzman’s constant, but the Simulated Annealing
algorithm functions without their separation and refers to their combination as “temperature”[69, p. 5].
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Algorithm 3.1 Distributed Simulated Annealing. Inputs: starting position pE, exploration
radius RE, number of iterations M , and temperature T . Control parameter and its evaluated
value: β = 0.9.
1: p← pE

2: for i = 1 to M do
3: Create a random potential move q for this node within RE of p.
4: ∆←WLU(q)−WLU(p).
5: if ∆ > 0 then
6: p← q
7: else
8: p← q with probability e∆/T

9: end if
10: end for
11: M ← βM {0 < β < 1}
12: Reduce T {see text}
13: Return M , T , and the best p seen

control parameter β, which is used to reduce the number of candidate solutions evaluated.

I use the value of β that is commonly found in Simulated Annealing references.

In Algorithm 3.1, the for loop of Steps 2–10 (called the Metropolis loop) gen-

erates and evaluates a succession of M candidate solutions at temperature T . Step 11

reduces M , helping to control execution time. Step 12 reduces T , an important part of a

Simulated Annealing algorithm, as discussed below. After M iterations, Step 13 returns

to TAFFI/Java the best position found, but it also returns updated values of parameters

M and T that will be passed back during the next call from TAFFI/Java.

Step 12 determines the algorithm’s annealing schedule. Early implementations of

Simulated Annealing started with a large value of T that forces acceptance of all candidate

solutions[51, p. 54]. Their loops periodically multiplied T by a constant between zero and

one, reducing T monotonically. However, a disadvantage of this simple method is that
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the rate of temperature reduction is fixed without any feedback. So if one reduces T too

rapidly the system “quenches” early before finding an optimal value, degenerating to a

greedy algorithm. But if one changes T too slowly, execution time of the algorithm may

extend unnecessarily.

To avoid both quenching and unnecessarily long run times, adaptive cooling

schedules have been developed. For my Distributed Simulated Annealing algorithm, I adopt

an efficient yet general cooling schedule[51, p. 72]. This schedule attempts to control T such

that consequential increases in the fitness function are limited to the value of the fitness

function’s standard deviation. (See [51, p. 72] for the inspiration behind this choice.)

Another important aspect of a Simulated Annealing algorithm is the generation

of candidate solutions. First, candidate solutions should be incremental changes to the

current solution rather than large jumps. Second, the mechanism that generates candidate

solutions should allow the possibility of returning to any prior solution. For my algorithm,

a candidate position is selected from a uniform circular distribution of radius RE that is

centered on the current position, and so any move potentially can be reversed.

The Simulated Annealing algorithm is evaluated, along with other deployment

algorithms, in Section 3.6.
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Figure 3.1: Placing a node at a low elevation in a valley can lead to good coverage.

Figure 3.2: Placing a node at a high elevation on a plateau can lead to poor coverage.

3.4 Grid Partition

My distributed Grid Partition algorithm[60][61] is inspired by landform classifi-

cation[36] and landform scale. Since one might ask the question, “Why not just position

nodes on all of the mountaintops?”, below I show that globally high positions do not

necessarily provide good coverage, but locally high positions may (on landforms with a
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Figure 3.3: Nodes must consider local elevation in order to avoid view-blocking depressions.

smaller scale).

First consider Fig. 3.1. The dark region of the height map on the left indicates

the low elevation of a large valley. The corresponding region on the coverage map on the

right side is bright and indicates positions with superior coverage. So the concave-up shape

of a valley causes many positions on a valley’s wall to see a large portion of the opposite

wall, improving coverage, even when elevation is relatively low.

Next consider Fig. 3.2. The bright, central region of the coverage map on the left

indicates the region of greatest elevation. Comparing to the coverage map on the right, the

corresponding region is dark, which indicates poor coverage. This correspondence shows

that higher node elevation does not necessarily lead to greater visibility. There are two

reasons for this: (1) A sensor that is located away from the edge a high plateau will be

unable to see regions below the plateau without first moving to the edge. (2) While distant

mountains might be “seen” from positions anywhere on the plateau, the range limitation of
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a sensor may prevent the sensor from usefully resolving distant targets. So overall height

does not guarantee coverage.

Finally, let’s consider the effect of landform scale. The height map on the left of

Fig. 3.3 shows that the valley wall has small ridges and depressions. Comparing to the

corresponding region of the coverage map on the right, the small ridges have great coverage

and the depression between the ridges has poor coverage. Consequently, we see that the

scale of the landform is important. Choosing the highest elevations over too large a scale

can hurt coverage, while choosing the highest elevations over a smaller scale can help it.

Following the above observations, the Grid Partition algorithm attempts to find

positions on landforms that will have large viewsheds, such as valleys, while also maximizing

coverage using terrain elevation data to position camera nodes on small rises, ridges, or hills.

The key concept of Grid Partition is that terrain elevation data can identify locally superior

node positions, making it possible to limit the total number of coverage computations

needed.

Using Fig. 3.4 I summarize the Grid Partition algorithm. Grid Partition considers

only candidate positions that are in an exploration region that is defined by a circle of

radius r centered on the node’s current position (see Fig 3.4a). The algorithm partitions

the exploration region into n0 squares (Fig 3.4b) and consults terrain height data to find

the highest position within each square (Fig 3.4c). (Choosing the highest local position

helps the node avoid local visual obstructions.) Then the algorithm computes the WLU

at each of the identified positions and identifies a subset of candidate positions with the
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(a) Exploration region (b) Grid partition. (c) Highest positions.

(d) Best positions. (e) Move and shrink.

Figure 3.4: Illustration of the Grid Partition algorithm (see text).

best WLU (Fig 3.4d). The final step of an iteration (Fig. 3.4e) is for the node to choose

a new candidate position by computing the centroid of the best candidate positions that

were found in the previous step, and also to decrease r. The process is repeated by looping

back to Fig. 3.4a, but with the updated candidate position and exploration radius.

Algorithm 3.2 contains the details of this greedy algorithm, which I walk through

here. At invocation, the algorithm accepts an initial position pE and exploration radius

rE. Parameter A controls the rate at which the exploration region shrinks. Parameter F

is the fraction of the candidate positions that will guide repositioning of the exploration
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Algorithm 3.2 Grid Partition. Inputs: starting position pE and exploration radius
rE. Control parameters and their evaluated values: A = 0.9, F = 0.25, M = 10, and
n0 = {5, 10, 21}.
1: CE ← circle centered at pE with radius rE
2: C← CE

3: p← pE

4: r ← rE
5: pbest ← p
6: for M times do
7: loop
8: Using a square grid, partition CE ∩C into n regions R1 . . . Rn, where n ≈ n0. {see

text}
9: pi ← highest position within Ri for i in 1 . . . n.

10: Compute the fitness of each position p1 . . .pn.
11: Sort positions p1 . . .pn by decreasing fitness.
12: pbest ← p1 if p1 is better than pbest
13: if the grid in step 8 is smaller than the DEM grid then
14: exit loop
15: end if
16: p← mean of positions p1 . . .p⌊Fn⌋
17: r ← Ar
18: C← circle centered at p with radius r
19: end loop
20: end for
21: return pbest

region. I chose these two parameters together: a smaller value of F focuses the algorithm

on moving the exploration region to superior positions, while a larger value of A ensures

that consecutive exploration regions will overlap sufficiently, leading to comparison with

several of the prior iteration’s candidate positions. Parameter M limits the number of loop

iterations. I chose a value for M that, along with A, eventually reduces the area of the

exploration region to 12% of its initial value, which seems an adequate amount of focus.

Parameter n0 determines the number of grid squares the algorithm will use, and hence

43



the number of fitness-function evaluations that will be performed during each iteration,

essentially acting as an “effort” parameter.

Steps 1–5 initialize the algorithm. CE is the initial exploration region, centered

at pE with radius rE. The node will not leave this region. C is the current exploration

region, centered at p with radius r. The current exploration region will shift and shrink as

the algorithm proceeds, focusing its attention on regions around better positions. pbest is

the best position seen so far, which at initialization is the node’s current position. In Steps

6–20 the algorithm searches for the best next position for the node. This loop runs M times

(unless it is terminated early by Steps 13–15). Steps 7–19 form an inner loop that searches

within the exploration region that is centered on pE. Step 8 of the algorithm partitions

the exploration region using a square grid. The result of this step is a square grid with

approximately n0 complete squares within the exploration region. Changing the value of n0

will not lead to incorrect results, but too large a value will negatively affect the run time of

the algorithm, while too small a value will negatively impact solution quality. In Section 3.7

I characterize the effect of changing the value of n0. The actual number of complete grid

squares in the partition is n, a value that is used in several subsequent steps. (Derivation

of the equation that computes the spacing of the grid can be found in Appendices C and

D.) Steps 9–12 evaluate the fitness of the highest position within each grid square and

record the best position seen so far. Recall that the fitness of a position is its WLU, that is,

the contribution that the node would provide to the range-limited cumulative visibility of

the network if the node moved to that position. Steps 13–15 terminate the loop when the
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algorithm degenerates to exhaustive search of the exploration region. Steps 16–18 shift

the current exploration region to the mean of the top ⌊Fn⌋ positions just evaluated and

shrinks the exploration region. This reduction in the exploration area while maintaining

the value of n0 increases the density of the evaluated positions. Step 21 returns the best

position found.

Grid Partition is evaluated, along with other deployment algorithms, in Section 3.6.

3.5 EMNA/global,steps

My EMNAglobal,steps algorithm is a modification of EMNAglobal[30]. While

EMNAglobal uses the traditional definition of covariance to update a multivariate Gaussian

distribution, EMNAglobal,steps adopts the strategy of CMA-ES, which is to compute the

covariance matrix by referencing the mean of the previous generation instead of the current

generation’s mean. As explained in [21], this approach measures the variances of successful

individuals’ steps, continuing the search in the direction of improvement and helping to

avoid premature convergence. Fig. 3.5 illustrates the benefit of this approach using an

example.

My implementation of EMNAglobal,steps is shown in Algorithm 3.3. As input,

the algorithm accepts a starting position pE and an exploration radius rE. It also accepts

four parameters: n is the number of individuals (candidate solutions) per generation, M

determines the number of generations, F is the fraction of individuals that will be used
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(a) EMNAglobal computes a covariance matrix nor-

mally, by referencing the current generation’s mean.

(b) EMNAglobal,steps computes a covariance ma-

trix by referencing the prior generation’s mean.

Figure 3.5: Demonstration of the effect of the reference mean on an EDA algorithm’s
covariance computation. Fig. 3.5a marks the prior generation’s mean with a + and plots
line segments from the current generation of fittest individuals to their mean, which is used
in their covariance computation. The resulting EMNAglobal covariance matrix is indicated
by a 50% isodensity ellipse. Notice that the search tends to deviate from the direction
of improvement. Fig. 3.5b plots the same individuals as in Fig. 3.5a, but line segments
indicate that the alternate covariance computation uses the prior generation’s mean +,
a strategy employed by CMA-ES[21]. The 50% isodensity ellipse of EMNAglobal,steps is
centered on the mean of the fittest individuals ×, with the ellipse’s shape determined by
the alternate covariance matrix. The ellipse shows how the EMNAglobal,steps search better

continues in the direction of improvement.

as parents of the next generation, and c is the magnitude of the initial covariance matrix.

I needed to limit values for M and n to control the algorithm’s execution time. The

magnitude of the value that I chose for F is commonly used in population algorithms.

Step 1 defines an exploration region CE. All randomly generated positions will

be restricted to this area. Steps 2 and 3 define the initial mean and covariance matrix of
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Algorithm 3.3 EMNAglobal,steps. Inputs: starting position pE and exploration radius rE.
Control parameters and their evaluated values: number of generations M = 50, number of
individuals n = 15, fraction of individuals to be used as parents F = 1

3 , and magnitude of
initial covariance matrix c = 1

2rE.

1: CE ← circle centered at pE with radius rE
2: p← pE

3: cov←
[
c 0
0 c

]
4: p1 . . .pn ← n random positions from bivariate Gaussian(p, cov) that

also are inside CE

5: pbest ← p1

6: for M times do
7: loop
8: Compute the fitness of each position p1 . . .pn.
9: Sort positions p1 . . .pn by decreasing fitness.

10: pbest ← p1 if p1 is better than pbest

11: cov = 1
⌊Fn⌋

∑⌊Fn⌋
i=1 (pi − p)(pi − p)T

{Compute the covariance using the prior generation’s mean.}
12: p← mean of positions p1 . . .p⌊Fn⌋
13: p1 . . .pn ← n random positions from bivariate Gaussian(p, cov) that

also are inside CE

14: end loop
15: end for
16: return pbest

a bivariate Gaussian distribution. Initially I used c = rE in defining the initial value of the

covariance matrix, but the resulting wide distribution was too similar to a disk model with

radius rE and failed to create a distribution with sufficient focus. I found an acceptable

distribution when I reduced c to 1
2rE. Step 4 generates the initial population of n random

positions[27, §3.4.1 C(5)]. Step 5 initializes pbest with an arbitrary generated position.

Steps 6–15 loop through M generations. Within the loop, Steps 8–9 isolate the Fn fittest

positions to use as parents of the next generation. Step 10 saves the very best position

seen so far. Steps 11 and 12 update the covariance matrix and the mean of the bivariate
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Gaussian distribution using the Fn parents. (As Step 11 is a matrix equation, the T

superscript is the matrix transpose operator.) The order in which cov and p are computed

ensures that the parents’ covariance matrix uses the mean of all of the individuals, instead

of the mean of just the parents. This choice measures the variance of the parents’ steps

away from the prior generation’s mean, as desired. Step 13 creates the next generation of

random positions. Finally, Step 16 returns the best position seen.

EMNAglobal,steps is evaluated, along with other deployment algorithms, in Sec-

tion 3.6.

3.6 Evaluation Methodology

To evaluate my algorithms, I compared them against a benchmark suite of several

traditional optimization algorithms. Details of the baseline algorithms that I include for

comparison purposes are described in Section 3.6.1. The algorithms are parameterized, but

since the values of parameters RC, RS, and RE are tightly related, Section 3.6.2 explains.

The table in Section 3.6.3 shows the values of the remaining parameters.

3.6.1 Benchmark Algorithms

Below are descriptions of the benchmark algorithms.
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Gradient Descent

If the domain of the fitness function WLU(p) is continuous, and its gradient

∇WLU(p) is defined (and possibly its Hessian matrix ∇2WLU(p) also is defined), then

one can use gradient-based optimization techniques[25, Ch. 5][40, Ch. 3]. However, as I

outlined in Section 2.1, my fitness function’s domain is discrete, and so I must use gradient

estimation techniques, as are used in fields such as volume graphics[15].

In the case of discrete fitness function optimization, a simple method for estimating

gradients is to approximate each partial derivative using central differences. With this

method, one computes the slopes of the fitness function using nearby data points. An

estimate of the gradient vector at (x, y) using the central-differences method is shown below.

∇WLU(x, y) ≈ 1

2

WLU(x+∆, y)−WLU(x−∆, y)

WLU(x, y +∆)−WLU(x, y −∆)


If I were to use the central-differences method to estimate gradients, then I could

employ gradient descent or quasi-Newton methods to find the value of p that maximizes

the fitness function WLU(p)[25].

However, during an initial test of this method, I discovered that abrupt changes in

the cumulative visibility function pass into the derivative approximation and interfere with

the ability of the gradient descent algorithm to find a good solution. One way to smooth

the estimated gradient is to use least-squares fitting, specifically to fit a plane to a set of

points immediately around the node and use the plane’s slope as the estimated gradient.
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To that end, I implemented an algorithm using a derivative approximation via

least-squares estimation. A plane is fit to a set of w2 WLU values WLUi = WLU(xi, yi) for

i ∈ {1 . . . w2}, with the values arranged in a w × w grid that is centered on the position of

interest. I evaluated w = 3 in an earlier version of this algorithm but was dissatisfied with

the noise level that remained, however I was satisfied with the amount of remaining noise

when w = 5.

While it is straightforward to use least-squares fitting to estimate gradients, I note

that the regular-grid terrain representation lets one simplify the fitting algorithm to be as

simple as a weighted average, as follows: One can find the direction of the plane’s steepest

ascent (bx, by) by solving this linear system[70, p. 363]:
∑

xiWLUi∑
yiWLUi

 =


∑

x2i
∑

xiyi∑
xiyi

∑
y2i


bx
by

 (3.4)

Next, one can simplify (3.4) through two modifications. First, scale the values

of xi and yi to integers by using a spacing that matches the raster grid of the DEM

data. Second, the algorithm translates the coordinates to be centered at the origin so that

xi ∈ {−2,−1, 0, 1, 2} and yi ∈ {−2,−1, 0, 1, 2}. These modifications result in
∑

xiyi = 0

and
∑

y2i =
∑

x2i , which one can substitute into (3.4).
∑

xiWLUi∑
yiWLUi

 =


∑

x2i 0

0
∑

x2i


bx
by

 (3.5)

Also, since my algorithm relies on the gradient (bx, by) for the direction of steepest ascent

but not its magnitude, one can scale both bx and by by
∑

x2i without affecting the direction.
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Algorithm 3.4 Gradient Descent. Inputs: starting position pE and exploration radius rE.
Control parameter and its evaluated value: w = 5.

1: CE ← circle centered at pE with radius rE
2: pnext ← pE

3: repeat
4: p← pnext

5: Fit a plane to the fitness of the w2 positions around p.
6: if the plane is level then
7: exit repeat-until loop
8: end if
9: pnext ← position adjacent to p in the direction of the plane’s steepest upward slope

10: until pnext is outside CE or pnext already has been visited
11: return p

This change results in a simpler gradient (cx, cy) that yields the same ascent direction.
∑

xiWLUi∑
yiWLUi

 =

1 0

0 1


cx
cy

 (3.6)

Then one can solve directly for weighted averages cx and cy.

cx =
∑

xiWLUi (3.7)

cy =
∑

yiWLUi (3.8)

Then using two-argument arctangent, one can compute the direction of the steepest ascent

of WLU.

θ = atan2 (
∑

yiWLUi,
∑

xiWLUi) (3.9)

My implementation of Gradient Descent is illustrated in Algorithm 3.4. As input,

the algorithm accepts an initial position pE, an exploration radius rE, and the parameter

w. Steps 1–2 initialize the algorithm: CE is the initial exploration region, centered at pE
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with radius rE. The node will not leave this region. pnext is set to a value that readies the

repeat-until loop. Steps 3–10 form a loop that moves the node along the computed WLU

gradient. The algorithm uses (3.7) and (3.8) in Step 5 and (3.9) in Step 9. The loop will

terminate when any of three conditions is met: the slope of the computed WLU gradient

is 0, the search reaches the edge of the exploration region, or the algorithm attempts to

revisit a position that it already had visited in a prior loop iteration. Step 11 returns the

best position found.

Pattern Search

An alternative optimization scheme that requires no derivative computations is

Direct Search[71]. In Direct Search methods, one or more sets of parameters are compared

using a fitness function, and then an iterative step is taken to update the parameters. This

process repeats until the state of the system converges or until the number of iterations

exceeds some threshold.

A simple Direct Search algorithm is Pattern Search, which was used by Fermi and

Metropolis, as mentioned in [11]. Pattern Search compares the fitness of a candidate solution

with the fitness of nearby candidate solutions that one obtains after adjusting individual

components of the candidate solution by a step ±∆. For my distributed algorithm with

52



Algorithm 3.5 Pattern Search. Inputs: starting position pE and exploration radius rE.
Parameters: minimum step rmin = size of DEM grid.

1: CE ← circle centered at pE with radius rE
2: p← pE

3: r ← rE
4: while r > rmin do
5: p1 ← (x, y + r)
6: p2 ← (x, y − r)
7: p3 ← (x+ r, y)
8: p4 ← (x− r, y)
9: Compute the fitness of p,p1 . . .p4.

{Assign fitness 0 to any pi that falls outside CE.}
10: if p is more fit than all pi then
11: r ← r/2
12: else
13: p← fittest of p1 . . .p4

14: end if
15: end while
16: return p

only two parameters (x, y), the four nearby candidate solutions are

(x±∆, y)

(x, y ±∆)

In each iteration, classic Pattern Search accepts the first candidate solution that improves

the fitness function. If, during an iteration, all four candidate solutions are evaluated

without finding an improvement, then ∆ is reduced by one half, and the process continues.

Eventually the algorithm reaches a stopping condition (for instance a maximum iteration

count or a minimum value for ∆).

I implemented the classic Pattern Search algorithm[23][40, §9.3], except that given

the small number of necessary function evaluations, I modified the algorithm to evaluate
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all four candidate positions before choosing the best one. (The classic algorithm accepts

the first of the candidates that improves the fitness.) Algorithm 3.5 shows my Distributed

Pattern Search implementation.

The algorithm accepts an initial position pE, an exploration radius rE, and a

parameter rmin, which is the horizontal resolution of the terrain’s height map. Steps 1–3

initialize the algorithm, accepting a starting exploration region that is defined by pE and rE.

The value of r determines when the algorithm will terminate, as explained in the next step.

Steps 4–15 loop until r ≤ rmin. Steps 5–8 compute four candidate positions: p1 . . .p4.

These positions are r away from the current position p in all four cardinal directions. Step 9

computes the fitness of all of the positions under consideration, using the fitness value of 0

for any position that falls out of the exploration region. Using this special value ensures

that the algorithm always chooses positions that are inside the exploration region. Steps

10–14 either move p to the fittest position or, if p already is in the fittest position, cut r in

half. Step 16 returns the best position.

Simplex Method

I also considered using the Direct Search based Simplex Method by Nedler and

Mead[39][40, §9.5]. The Simplex Method, when optimizing the positions of a single node

(m = 1), maintains a collection of 2m+1 = 3 candidate solutions. During each iteration, all

of the candidate solutions are compared, and the algorithm attempts to move the worst one

to a superior position. When the algorithm cannot improve the worst candidate solution, it
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assumes that the candidate solutions surround a maximum, and it moves the two worst

candidates toward the third candidate.

Although not identical to Pattern Search, the Simplex Method with m = 1 is quite

similar, using three candidate solutions (instead of four), and using similar update rules.

Consequently, I decided not to use it as a second Direct-Search based algorithm.

Random Placement

For the Random Placement algorithm, nodes are placed according to a uniform

random distribution. This exercise is repeated 100 times, and the average of the range-

limited cumulative visibility is reported.

Regular Grid

For the Regular Grid algorithm, nodes are placed in a triangular grid on a

subtile, a configuration that provides complete coverage on a plane. The range-limited

cumulative visibility is computed for that deployment.

Greedy Adding

I implemented the Greedy Adding algorithm[8], which is a centralized Greedy-

Set-Cover heuristic[9, §35.3] that has been modified to stop after placing all nodes of the

network (Algorithm 3.6).
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Algorithm 3.6 Centralized Greedy Adding.

1: for every node i do
2: Place node i at the position that best improves network fitness.
3: end for

3.6.2 Communication, Exploration, and Sensing Radii

Since all of the distributed algorithms that I tested use WLU as a fitness function,

and since a node that computes its WLU needs to know the viewsheds of its neighbors,

in addition to the exploration radius (discussed in Section 2.2), I must also consider the

node communication radius (or communication range). A node can compute its WLU

accurately as long as it has three values: its own position, the positions of its neighbors,

and an understanding of visibility over terrain. However, depending on circumstances that

I describe below, a node does not need to know the positions of all of its neighbors for

accurate WLU computation.

Before understanding this, I must account for the fact that that radio signal

propagation can be vastly different than propagation of visible light. On one hand, under

appropriate conditions, radio waves (such as VHF) can travel around and through obstacles

that are opaque to visible light[50, §16.2.2]. On the other hand, even with clear line of sight

(CLOS), radio propagation can be affected by fading due to multi-path effects[18][32, §7.3].

Although I acknowledge that radio propagation is more complicated than CLOS, to simplify

my evaluation I use range-limited CLOS to model radio communication, as described below.

(Other radio propagation regimes will be considered as part of future work.)
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I use communication radius RC to specify the maximum distance between two

nodes that allow them to be in direct communication. I show below that with planar terrain,

there is a relationship between RC, the exploration radius RE, and the sensing range RS

(the maximum CLOS distance to a detectable event).

First consider the case when all nodes are immobile. To properly compute their

WLUs, two neighboring nodes must know, based on their sensing range, when they cover

the same region. If the nodes are separated by twice the sensing radius RS, then (assuming

CLOS) they both can just cover the point midway between them. Then, to be aware of

each other’s positions, the nodes’ communication radius RC must be at least twice RS:

RC ≥ 2RS

Now let us consider a single mobile node (assuming the same sensing and radio-propagation

models). If a mobile node is surrounded by immobile neighbors, and it is evaluating a

potential move, then for the node to have neighbor-position data for an accurate WLU

computation, the required communication radius must be increased by the maximum

possible distance that the node could move toward a neighbor before communicating with

the neighbor again. I call this distance the node’s exploration radius RE.

RC ≥ 2RS +RE

The prior inequality assumes immobile neighbors, but I must consider that neigh-

bors also can be mobile. Since two nodes that are out of communication range may move
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simultaneously toward each other, the required communication distance must be increased

by another RE. This gives the constraint relation in its most general form:

RC ≥ 2RS + 2RE (3.10)

I can rearrange (3.10) to create a constraint on RE:

RE ≤ 1
2RC −RS (3.11)

This constraint on the exploration radius is sufficient to prevent nodes that are on planar

terrain and that are separated by a distance greater than RC from inadvertently covering

the same area of interest after moving. Consequently, in the case of planar terrain, nodes

that limit their exploration range using (3.11) always will have an accurate view of WLU.

However, nodes on 2.5D terrain could be unable to communicate and then have

overlapping viewsheds, for example if the nodes are on opposite sides of a hill. And so

even nodes that limit their exploration using (3.11) are not certain to make accurate WLU

computations. That said, it still could be beneficial to limit node exploration, and so I

evaluated the sensitivity of algorithm performance to different values of RE. Given the

240 × 180 size of the benchmark tiles, I chose a sensing radius of RS = 50, which allows

a triangular grid deployment of 10 nodes to completely cover flat terrain. Then I chose a

communications radius RC = 130. This value is larger than 2RS so that nodes with nearly

overlapping coverage may be able to communicate, but it is not so large as to cause all

node broadcasts to be global. Using (3.11) I compute RE = 1
2RC −RS = 1

2 × 130− 50 = 15.

To evaluate the importance of RE, I ran simulations with RE ∈ {10, 15, 21, 34, 51, 76}.

58



Table 3.1: Control Parameters. I ran simulation using these values of control parameters.
When sweeping values of m, I set RE = 15 and n0 = 10. When sweeping values of RE, I set
m = 10 and n0 = 10. When sweeping values of n0, I set m = 10 and RE = 15.

Algorithm Parameter Purpose Name Value

Framework Termination Condition C 4

Framework Iteration Count L 10

Framework Number of Nodes m {10, 20, 30}
Framework Communications Radius RC 130

Framework Init. Exploration Radius RE {10, 15, 21, 34, 51, 76}
Framework Sensing Radius RS 50

Grid Partition Reduce Exploration Region A 0.9

Grid Partition Frac. of Positions to Average F 0.25

Grid Partition Iteration Count M 10

Grid Partition Partition Count n0 {5, 10, 21}
Simulated Annealing Reduce Iteration Count β 0.9

Pattern Search Minimum Step rmin 1

EMNAglobal,steps Mag. of Init. Cov. Matrix c 1
2rE

EMNAglobal,steps Frac. of Indiv. as Parents F 1
3

EMNAglobal,steps Number of Generations M 50

EMNAglobal,steps Number of Individuals n 15

3.6.3 Parameters

In addition to the parameter values mentioned in the prior section, I evaluated all

algorithms using 10, 20, and 30 nodes. All simulations are run using 10 different random

seeds and on the 21 benchmark terrain subtiles discussed in Section 2.1, meaning that

each algorithm is simulated 210 times for each parameter set. Table 3.1 summarizes the

parameter values that I used.
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Figure 3.6: Results of algorithms on test terrains vs. centralized Greedy Adding—10 nodes.

3.7 Results

In this section, I present the performance of the algorithms, compare the effective-

ness of the two terrain classifiers Greedy Adding and ACV (described in Section 2.1), and

discuss the effect of different values of the Exploration Radius.
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Figure 3.7: Results of algorithms on test terrains vs. ACV of terrain—10 nodes.

3.7.1 Algorithm Performance

I simulated all algorithms with 10-, 20-, and 30-node deployments. Overall

algorithm results are presented in Table 3.2, with each entry representing the average value

over all benchmark terrains and over all random seeds. To allow for more straightforward

comparisons between algorithms, this table reports the cumulative visibility results as

a percentage of Centralized Greedy Adding cumulative visibility. Detailed results are

plotted in Figs. 3.6 and 3.7. Results for 20 and 30 nodes are similar and can be found in
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Table 3.2: Distributed 2.5D IoT Deployment Algorithms Performance: Cumulative Visibility
and Number of Fitness Computations. Results are averages over all 21 benchmarks. For
comparison, visibility results appear as a percentage of Centralized Greedy Adding.

Cumulative Visibility Fitness Comps per Node

for Number of Nodes for Number of Nodes

Algorithm 10 20 30 10 20 30

Cent. Greedy Adding 100% 100% 100% — — —

Dist. Grid Partition 88% 89% 90% 745 782 793

Dist. Simulated Annealing 83% 78% 76% 1025 1236 1319

Dist. Pattern Search 80% 86% 88% 184 189 188

Dist. EMNAglobal,steps 78% 87% 91% 10 154 7244 7624

Dist. Gradient Descent 50% 60% 69% 251 300 330

Regular Grid 35% 43% 51% — — —

Random Placement 28% 36% 44% — — —

Appendix A.

As expected, centralized Greedy Adding provides an upper target for comparison

against the distributed algorithms. Looking first at results for 10 nodes, Grid Partition

shows the best overall results at 88% of Greedy Adding, followed by Simulated Annealing

and Pattern Search. The superior performance of Grid Partition can be explained by its

unique fitness function, which is a combination of WLU and local terrain height. I was

surprised that Pattern Search, at 80% Greedy Adding, did so well with so few evaluations

of the fitness function. The result demonstrates the effectiveness of this classic strategy.

My Population Based algorithm, EMNAglobal,steps, did about as well as Pattern

Search in terms of coverage, but it required nearly two orders of magnitude more fitness

computations. As discussed in Section 3.2.2, the related CMA-ES algorithm is quite
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computationally expensive when the number of variables is relatively small, and in my case

of only two variables, I anticipated this result. However, later I reveal an unanticipated

improvement when I discuss increasing the number of nodes.

Gradient Descent, with its 5× 5 grid for gradient estimation, surprised me with

its somewhat poor performance. Although I had chosen w = 5 because I feared that more

than 25 fitness computations needed at each position would be computationally expensive, I

discovered that the algorithm requires relatively few fitness computations. An algorithm like

Gradient Descent, in which nodes look only a few cells away from their current location and

can be easily trapped in a local optimum, has a disadvantage compared to other algorithms

like Pattern Search and Grid Partition, which will evaluate positions much farther away

before declaring victory. Exploring larger values for w is part of future work.

For easier comparison, Fig. 3.8 plots the results compared to Greedy Adding

for 10, 20, and 30 nodes. I observe that the relative performance of most algorithms in

terms of coverage is maintained, suggesting that their relative performance is unaffected

by node count—and hence unaffected by node density as well, since the areas of the

benchmark subtiles are unchanged. Interestingly, I observe that as node density increases,

the performance of most algorithms improves compared to Greedy Adding. My suspicion is

that the increased node density decreases the average distance that a node can travel before

it causes multicoverage. Put another way, it is easier for a node that has many neighbors

to find its optimal position nearby. This explanation best describes the improvement seen

in Distributed Gradient Descent, which is less likely to encounter a local optimum when

63



10 20 30

Number of Nodes

0
%

1
0
0
%

C
u
m

u
la

ti
v
e
 V

is
ib

ili
ty

 C
o
m

p
a
re

d
 t
o
 G

re
e
d
y
 A

d
d
in

g

Cent. Greedy Adding

Dist. Grid Partition

Dist. Simulated Annealing

Dist. Pattern Search

Dist. EMNA
global,steps

Dist. Gradient Descent

Regular Grid

Random Placement

Figure 3.8: Cumulative visibility compared to Greedy Adding vs. 10, 20, and 30 nodes.

the distance that the node must travel is shorter.

Two of the algorithms’ responses to changes in the node counts surprised me. First,

the performance of Distributed Simulated Annealing worsened with increasing node density

as compared to Greedy Adding. Since, unlike other algorithms, Distributed Simulated

Annealing uses a fixed RE and a decreasing T to focus its search (instead of using a

decreasing rE), this result suggests that for Distributed Simulated Annealing node density

should be considered when choosing either RE or the annealing schedule.

The second surprise is that EMNAglobal,steps yielded superior performance (slightly

higher than Distributed Grid Partition and Distributed Pattern Search) in simulations with

30 nodes. Understanding the root cause of this behavior will be part of future work.
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Figure 3.9: Effect of the value of n0 on Grid Partition results.

Finally, I evaluated the effect of n0 on the performance of Grid Partition. Recall

that the n0 parameter controls the amount of effort that the algorithm expends. Specifically,

n0 is the number of grid squares that the algorithm tries to partition the exploration region

into, where each square will cause a fitness computation. So a larger value of n0 will cause

the algorithm to compute the WLU of more positions, resulting in longer run times. A

smaller value for n0 will reduce run time but may hurt coverage by examining too few

positions. Fig. 3.9 shows that n0 = 10 provides adequate cost-performance trade-off for the

sample terrains examined.

3.7.2 Exploring the Exploration Radius

In Section 3.6.2 I explained that there may be a tradeoff between WLU accu-

racy and the exploration radius RE. Recall that inequality (3.11) suggests that for my

chosen simulation parameters, an ideal value for RE is 15, but only in 2D. To exam-
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ine whether such a tradeoff exists over 2.5D terrain, I ran additional simulations with

RE ∈ {10, 15, 21, 34, 51, 76} using a subset of the algorithms, choosing Distributed Grid

Partition, Distributed Pattern Search, and Distributed Gradient Descent. Fig. 3.10 shows

the results. Each graph shows two curves, one for cumulative visibility (coverage, in blue)

and the other for the number of fitness computations (computational cost, in brown).

Considering Grid Partition first, one can see that RE = 15 is not the optimal value,

since the results continue to improve up to RE = 51. With RE = 76 the number of fitness

computations continues to increase, but algorithm performance actually worsens. Pattern

Search also shows improvement with RE > 15, along with an increase in the number of

fitness computations. Finally, Gradient Descent shows that changing RE has almost no

effect on performance and the number of fitness computations. In Section 3.7.1 I conjecture

that Gradient Descent is easily trapped in a local optima. The observation that performance

hardly changes at all between RE = 10 and RE = 15 suggests that most nodes find a local

optimum before moving 15 units.

These results show that adhering to the strict constraint in (3.11) with 2.5D

terrain does more harm than good. I observe that choosing a value for RE can help an

algorithm achieve an adequate balance between performance and computational cost, but

the argument that leads to (3.11) must be reconsidered. It is possible that algorithms that

can properly compensate (backtrack) away from multicoverage do not need the additional

constraint that (3.11) imposes.
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3.8 Discussion

In this paper, I evaluated my distributed deployment algorithms for outdoor

IoT camera networks over 2.5D terrain. I compared my own algorithms (Distributed

Grid Partition and Distributed EMNAglobal,steps) to traditional optimization algorithms

(Distributed Simulated Annealing, Distributed Pattern Search, and Distributed Gradient

Descent), and to centralized baseline algorithms (Regular Grid, Random Placement, and

Greedy Adding). The results show that my algorithms compare favorably. I used TAFFI in

conjunction with two terrain classifiers that I proposed, Greedy Adding and ACV (Average

Cumulative Visibility), in order to subject the 2.5D deployment algorithms considered in

my study to a variety of terrains ranging from flatter to rougher topography, suggesting that

the proposed terrain classifiers can serve as a valuable part of a 2.5D-benchmark selection

methodology.

My future work includes improving the framework’s communication model to

consider other radio propagation regimes, adding network connectivity constraints, charac-

terizing the effect of the number of generations on EMNAglobal,steps, looking further at the

algorithms’ scalability-coverage tradeoff (e.g., deployments beyond 30 nodes), and exploring

cost-performance tradeoffs of the Distributed Gradient Descent algorithm.
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Figure 3.10: Comparison of Range-Limited Cumulative Visibility and the number of
uncached Fitness Computations in the distributed algorithms that were tested.
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Chapter 4

Outdoor IoT Recovery Algorithms

In this chapter I describe the suite of TARCI recovery algorithms. The chapter is

organized as follows: Section 4.1 describes related work. Section 4.2 presents the TARCI

algorithm. The algorithm is evaluated in Section 4.3, and results are presented in Section 4.4.

4.1 Related Work

Recovery from node failures has been well researched for deployments over two-

dimensional (2D) planes, with researchers proposing numerous mechanisms. The surveys

in [73][74] classify and describe existing 2D recovery approaches. In the remainder of

this section, I reference their taxonomy of fault tolerance to discuss related work and its

applicability to 2.5D terrain.
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4.1.1 Proactive Methods

One class of recovery approach is based on proactive mechanisms. For example,

avoiding faults through over-provisioning. One can do this by deploying k-connected wireless

networks where k > 1, meaning that every node is connected to the sink by k node-disjoint

paths. Such a strategy ensures that a network can withstand up to k − 1 node failures

without becoming partitioned.

An example of this approach using k = 2 is Basu & Redi[4]. In their work, a

bi-connected network is created from a connected network by repeatedly identifying a

connected subset of nodes and then moving the subset as a block toward the rest of the

network. Each block of nodes moves until the appearance of a redundant path eliminates a

cut vertex.

I note some shortcomings to this approach. First, while provisioned approaches in

general prevent consequential loss of connectivity following a node failure, such solutions

usually bear the cost of requiring redundant nodes. Second, if a provisioned algorithm does

not add redundant nodes, then the area of coverage will be reduced by the necessity of

moving nodes closer together to create redundant paths. Third, proactive approaches incur

overhead even when no faults happen.

I also note a drawback from using block moves over 2.5D terrain. Any strategy

for 2D can assume that block moves that maintain intra-block node-to-node distances also

will maintain intra-block node-to-node communication. However, with 2.5D terrain, two
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nodes of a moving block may lose contact if one node drops into a valley or if both nodes

move to opposite sides of a hill. That is, generally, any algorithm that assumes that a block

move will maintain intra-block communication is inappropriate for 2.5D terrain.

4.1.2 Reactive Methods

Reactive methods are an alternative to proactive approaches where recovery

mechanisms are activated only when a node failure that causes the network to partition is

detected.

One example of a reactive approach is RIM (Recovery by Inward Motion)[75]. The

RIM algorithm works as follows: after detecting a node failure, the node’s 1-hop neighbors

move inward until they form a connected subnetwork. Then, if the inward motion of the

failed node’s 1-hop neighbors causes disconnection with any of their neighbors, there will

be a cascading motion of nodes, with each node moving toward its inner neighbor until it

reconnects.

The problem with RIM when used with 2.5D terrain is that it assumes that nodes

that are closer than RC can communicate. However, as I mentioned earlier, on 2.5D terrain,

any repositioning that ignores hills and other obstructions can cause loss of communication,

regardless of inter-node distance. Consequently, RIM is not appropriate for 2.5D terrain

deployments.

Another example is DARA[1], an algorithm that is similar to RIM but that avoids

the shortcomings of deployment over 2.5D terrain. DARA will direct a node to move only to
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a position that was just vacated by the mobility of loss a neighboring node. Consequently,

a DARA-recovered network never attempts to establish new links between node positions.

That is, DARA’s cascading node motion will change which nodes occupy which positions,

but the set of positions will remain unchanged, and hence connectivity between positions

will not be altered. (That is, aside from any connections to the position that eventually

is abandoned as part of DARA’s network recovery effort.) This “reuse” of node positions

by DARA means that it will work with 2.5D terrain. However, I must note that the very

position restrictions that let DARA ensure node connectivity also prevent the algorithm

from considering new connected positions that would mitigate coverage loss or even improve

coverage.

4.1.3 Hybrid Methods

As just discussed, it’s possible that a recovery mechanism can be purely reactive,

with nodes formulating a strategy only after the need for network recovery is detected, but

alternative hybrid approaches also are possible. Hybrid approaches have two phases: a

pre-failure planning phase and a failure response phase.

Some examples of hybrid approaches are PADRA[3], PCR[24], and NORAS[57].

During the pre-failure planning phase of these approaches, the critical nodes of the network

self identify using a distributed algorithm. (Cut vertices are critical nodes, but a heuristic

algorithm may mistake a non-cut-vertex as a critical node.) Then each critical node uses a

heuristic mechanism to designate a recovery node for itself (also called a backup) that will
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activate should the critical node fail.

After the pre-failure planning phase is complete, the network is primed to respond

to the failure of a critical node. For these algorithms the failure response is similar: following

the failure of a critical node, the corresponding recovery node moves to take the position of

the failed node, possibly initiating cascading node movement in order to maintain network

connectivity. Critical nodes of PADRA and PCR potentially select a recovery node that is

not an immediate neighbor, and so to balance energy usage, cascading node movement is

initiated along the path between the failed node and its backup.

These approaches have a few shortcomings. First, as already noted, the distributed

algorithms that identify cut vertices as critical nodes sometimes mistakenly designate a node

that is not a cut vertex as critical. Although such a mistake will not harm connectivity—

since failure of a mistakenly identified node merely will activate the recovery mechanism on

a still-connected network—unnecessary activation causes unnecessary energy usage.

The second shortcoming is apparent when one considers 2.5D terrain. While the

examples that I have cited are similar to DARA in that they direct a node to move only

to a position that was just vacated by a neighboring node (meaning that node-to-node

connectivity assumptions will be maintained with 2.5D terrain), these position restrictions

prevent the algorithm from considering new connected positions that would mitigate coverage

loss or would improve coverage.
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(a) Commshed of a network. The gray region
indicates positions that are within distance RC

of at least one node of the network. A new node
that is placed anywhere in the commshed can
communicate with the network.

(b) Commsheds of a partitioned network. The
darkest gray region indicates the intersection of
all of the partitions’ commsheds. A new node
that is placed anywhere in the intersection can
communicate with all three partitions and will
repair the network.

Figure 4.1: Conceptual example of using commshed intersections to identify candidate
positions for a recovery node. For clarity this example uses the 2D disk model, but one could
extend the example to 2.5D by replacing the disk model with a terrain-based range-limited
CLOS model, similar in appearance to the viewsheds shown in Fig 1.1.

4.2 Terrain Aware Recovery with Commshed Intersections

To address the requirements of Outdoor IoT deployments over 2.5D terrain, I

propose a suite of hybrid repair algorithms. I call my algorithms TARCI for Terrain

Aware Recovery with Commshed Intersections. TARCI leverages the notions of commsheds

and viewsheds as they quantitatively capture my goals of connectivity restoration and

coverage-loss mitigation. Based on available 2.5D terrain models, TARCI uses this data to

compute the commsheds and viewsheds that guide its pre-failure planning decisions.

In other words, the key idea behind TARCI is to use commsheds and viewsheds to

compute the set of recovery positions for a partitioned network by finding the intersection

of the partitions’ commsheds (Fig 4.1). Then, given a set of potential recovery positions
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provided by the commshed intersection, one can compute the viewsheds of each of the

potential recovery positions to prioritize the positions based on the amount of additional

coverage that each potential recovery position provides.

Ideally one would evaluate all potential recovery positions within the commshed

intersection, but during algorithm development I observed that in some circumstances the

commshed intersection is quite large, meaning that one should try to limit the number of

potential recovery positions (and corresponding viewsheds) that are evaluated during the

pre-failure planning phase. So to understand the necessity and benefits of such limits, I

developed and evaluated four variants of TARCI that use different approaches to prioritize

potential positions for each candidate recovery position:

• TARCI-E exhaustively considers all possible new positions for a recovery node. Al-

though it expends the most energy during pre-failure planning of all of the algorithm

variants, it will find the optimal recovery solution. Hence, I use TARCI-E as a baseline

in my evaluations, i.e., the worse case for energy consumption and the best case for

recovery optimality.

• TARCI-H uses the height of each possible new position as a proxy of the position’s

potential communication effectiveness, and so it evaluates the highest H positions of

the commshed intersection. It expends much less energy during pre-failure planning

than TARCI-E, as determined by control parameter H. When choosing a value for

control parameter H, there are trade-offs between the quality of the recovery solution
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and the pre-failure energy usage. I discuss these tradeoffs in Section 4.4.

• TARCI-GP is similar to TARCI-H, but it uses my Grid Partition[60] mechanism to

distribute the considered positions across the entire commshed intersection, rather

than considering only the highest positions, which will tend to cluster together. Grid

Partition places a grid of approximately H squares over the commshed intersection

and then evaluates the highest position of each grid square. For a given value of H,

TARCI-GP expends about the same amount of energy during pre-failure planning as

TARCI-H. And as with TARCI-H, the chosen value for control parameter H leads

to trade-offs between the quality of the recovery solution and the pre-failure energy

usage (see Section 4.4).

• TARCI-D minimizes energy usage during both pre-failure planning and recovery.

During pre-failure planning, it immediately chooses the recovery position within the

commshed intersection that is closest to the candidate recovery node’s current position.

Then during recovery, the node can reach the commshed intersection by traveling the

shortest distance.

The pre-failure planning phase of a hybrid recovery algorithm typically corresponds

to a relatively small amount of time compared to the network’s total deployment time. I

also note that the sinks usually are larger nodes that are equipped with more computation

capabilities and have larger battery packs/solar panels or are connected to continuous

energy sources. Hence, I made the design choice of using a centralized pre-failure planning
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Table 4.1: Message Types

Message Type Purpose Payload

NEIGHBORS-R Sink requests neighbor lists.

NEIGHBORS Node sends its neighbor list to the sink. Neighbor List

ASSIGNMENT Sink sends a recovery assignment to a recovery
node.

Assigned Node

ACTIVATE Sink instructs nodes to start recovery tasks.

KEEP-ALIVE Nodes detect the failure of an immediate neighbor.

FAILED-NODE A node that detects a failed neighbor broadcasts a
FAILED-NODE message that identifies the neigh-
bor.

Failed Node

algorithm instead of a distributed algorithm to: (1) identify critical nodes and (2) choose

appropriate failure responses. As my experimental results demonstrate (see Section 4.4),

this results in a relatively small energy usage increase due to additional communication.

4.2.1 Pre-Failure Planning

Pre-failure planning computations comprise the bulk of the recovery algorithm’s

work and are performed while the network is whole. The overall goal of pre-failure planning

is for TARCI to select a recovery response for every cut vertex of the network and then to

send appropriate instructions to corresponding recovery node(s).

To summarize this phase, pre-failure planning begins when the sink broadcasts a

NEIGHBORS-R request message. (All messages exchanged are summarized in Table 4.1.)

Then in response, each node sends a list of its neighbors to the sink in a NEIGHBORS

message. Using this information, the sink determines the network topology. This topology
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Algorithm 4.1 Pre-Failure Planning: Network Initialization by the Sink. Input: network
graph N .

1: Compute each node’s commshed.
2: V ← cut vertices of N
3: for every cut vertex v ∈ V do
4: for every node r ∈ N where r ̸= v do
5: Evaluate the effectiveness of moving node r to recover from the failure of cut vertex

v. {See Algorithm 4.2.}
6: end for
7: Choose the node r with the best recovery response and assign it as the recovery node

for cut vertex v.
8: end for

is used by TARCI’s pre-failure planning algortihm.

Using any selected means, TARCI identifies the network’s cut vertices and then,

for every cut vertex, TARCI evaluates every other node of the network as a potential

recovery node which will respond if the identified cut vertex fails. After TARCI selects the

best recovery node for the identified cut-vertex, the sink sends an ASSIGNMENT message

to the recovery node informing it that it is the backup node for the cut vertex and where

it will reposition to should the cut vertex fail. Details of TARCI’s pre-failure planning

algorithm are below.

Algorithm 4.1 – Network Initialization by the Sink: Input is the network

graph N , and the result is the recovery response for every cut vertex of the network.

The algorithm relies on knowledge of each node’s commshed, and so the commsheds are

computed in Step 1. Step 2 identifies the cut vertices of the network. I note that since

the relative execution time of this step is relatively small, one can use the simple approach

of removing each vertex one-by-one and then checking for a disconnected network with
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Algorithm 4.2 Pre-Failure Planning: Evaluating the effectiveness the moving node r to
recover from the failure of cut vertex v. Inputs: network graph N , node r, and cut vertex v.

1: N ′ ← N − r − v
2: Split N ′ into its connected components P1 . . . Pn.
3: C ←

⋂n
i=1 commshed(Pi)

{Intersection C contains all of the potential new positions for node r that will reconnect
the network.}

4: if C = ∅ then
5: Return failure.
6: else
7: Select all or a subset of the positions ci ∈ C. {See text.}
8: For every selected ci compute fitness(ci).
9: Return the best fitness(ci) and the corresponding ci.

10: end if

depth-first search. However, if one desires better asymptotic performance, Problem 22-2

of [9] leads one to a more efficient algorithm that identifies cut vertices through a traversal

of a single depth-first search. Steps 3–8 form a loop that formulates a recovery response

for the failure of each cut vertex v. Within the loop, Steps 4–6 evaluate the capability of

every other node r to respond for the failure of cut vertex v. (Details of the evaluation are

in Algorithm 4.2.) Then Step 7 compares node capabilities and chooses the best node r to

act as the recovery node for cut vertex v.

Algorithm 4.2 – Recovery Node Effectiveness: This subroutine accepts as

input a network graph N , the position of a failed cut vertex v, and the position of a recovery

node r. It returns the fitness of assigning r as the recovery node for v, or it returns failure if

no repositioning of r will repair the network. Step 1 removes cut vertex v and node r from

the network N . This network modification is needed to evaluate the failure of cut vertex

v along with node r moving in response. Step 2 computes the combined effect of these
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changes: a set of network partitions P1 . . . Pn. Next, Step 3 determines which potential

new positions for node r could repair the network. This set of potential new positions, C,

is the intersection of all of the partitions’ commsheds. Steps 4–10 determine the result

of the algorithm. If C is the empty set, then the algorithm indicates that there is no new

position for node r that will let the network recover from the loss of cut vertex v. (One

might think that moving node r to the position of failed cut vertex v always would repair

the network, but r might be a cut vertex itself, and so finding a repair position for r is not

certain.) If set C is not empty, then it contains one or more potential new positions for

node r, and in Step 7 all or some of these positions are evaluated for fitness. The set of

positions that are evaluated depends on the variant of TARCI that is running (TARCI-E,

TARCI-H, TARCI-GP, and TARCI-D), as mentioned earlier. Step 8 determines the fitness

of all of the selected positions, and then Step 9 compares the fitness results and returns

the best position.

Once the sink has made all recovery assignments, it broadcasts an ACTIVATE

message, and the nodes start their Failure-Response Tasks.

4.2.2 Failure Response

After pre-failure planning, all nodes receive an ACTIVATE message and run a

pair of failure-response tasks. One task (Algorithm 4.3) relies on KEEP-ALIVE messages

to detect the failure of an immediate neighbor. Upon detecting such a failure, a node

broadcasts to its partition a FAILED-NODE message that identifies the failed neighbor.

80



Algorithm 4.3 Node Failure-Response Task #1.

1: if this node detects that a neighbor has failed then
2: Broadcast a FAILED-NODE message that identifies the failed neighbor.
3: if this node is the recovery node for the failed neighbor then
4: Take the assigned recovery action.
5: end if
6: end if

Algorithm 4.4 Node Failure-Response Task #2.

1: if this node is the assigned recovery node for a received FAILED-NODE message then
2: Take the assigned recovery action.
3: end if

Then, if it is the designated recovery node for the failed neighbor, it performs its assigned

recovery action and repositions itself.

The other task (Algorithm 4.4) is run by nodes that have been designated as a

recovery node. This task checks all FAILED-NODE messages to determine whether the

recovery node needs to activate its recovery response for a failed node and reposition itself.

4.3 Evaluation Methodology

I used the TAFFI framework to evaluate the TARCI recovery algorithms using a

suite of benchmarks, as described below.

4.3.1 Experimental Evaluation Infrastructure

To evaluate and compare the different variants of TARCI, I modeled and simulated

its algorithms using the C++ version of TAFFI (Terrain-Aware Framework for IoT, see

Chapter 2). Compared to TAFFI/Java, TAFFI/C++ better matches TARCI’s centralized
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algorithms since the alternative of using TAFFI/Java’s Cooja-Contiki simulator would have

added the complication of running a centralized algorithm in a distributed Cooja-Contiki

simulation environment.

My analysis tasks were facilitated through the following TAFFI/C++ features:

• A C++ library of line-of-sight algorithms that aid the creation of command-line

simulation models for 2.5D terrain. Using the library improves code quality and

programming efficiency.

• A benchmark suite of actual terrains that help with reproducibility and algorithm

comparisons.

• Command-line job management using GNU Make[53], preventing my inadvertently

duplicating simulation runs and also helping me run simultaneous simulations on

multiple servers.

• Data collection from thousands of simulation logs using GNU Awk[49] scripts.

• MATLAB[54] scripts that analyze data and generate plots as Encapsulated PostScript

files, which are used with LaTeX[29] in the creation of technical papers.

Simulations were run on a compute server with two Intel® Xeon® Processor

E5-2670 CPUs running at 2.60 GHz, providing the server with a total of 32 threads. For

one of the performance metrics, runs measured processor time using the C++ clock()

function.
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4.3.2 Benchmark Networks

Each of the TARCI algorithm variants was evaluated for its post-recovery coverage

and estimated energy usage as it repaired 475 different cut vertices in 200 benchmark

networks.

Each of the 200 benchmark networks was created using a three-step process: step

(A) choose a benchmark terrain subtile from a terrain dataset, step (B) place a sink in one

of ten predefined positions on the subtile and deploy ten nodes into a connected network,

and step (C) if necessary, decrease the communications range, breaking links until the

network has one or more cut vertices.

Regarding step (A), for my source of 2.5D benchmark terrain subtiles, I lever-

aged my prior work on two terrain classifiers that help me verify that a set of Shuttle

Radar Topography Mission (SRTM)[16] terrain subtiles represent a wide range of landform

variation[60][62]. See Section 2.1.3 for details.

Regarding step (B), the ten sink positions are chosen from locations on a regular

triangular grid. Using a grid ensures that the possible sink positions will be distributed

uniformly over the subtile and will help create a variety of experimental setups. After

placing the sink, I run Connected Greedy Adding, or CGA (see below for more details on

CGA) to compute an initial network deployment of ten nodes. I chose to use ten-node

networks because earlier work with this source of terrain data showed that ten nodes is

ideal with the 240-by-180 unit terrain subtiles and my chosen value of RC . Indeed, choosing
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Algorithm 4.5 Connected Greedy Adding. Input: network graph N and position of the
sink s.
1: C ← commshed(s)
2: for every node xi ∈ N do
3: Place node xi at the position in C that best improves coverage.
4: C ← C ∪ commshed(xi)
5: end for

a larger number of nodes with the same subtile would require me to decrease the value of

RC , which would reduce the resolution of the commsheds.

The initial-deployment algorithm Connected Greedy Adding is a modification of

the set-cover heuristic Greedy Adding[8] that, in addition to trying to optimize coverage,

also includes steps to ensure that a network is connected. Referring to Algorithm 4.5, the

salient additions are CGA Step 1 and CGA Step 4, which construct and maintain the

commshed C. This commshed is the set of all positions of the terrain that can communicate

with the sink or with any already placed node of the network. The algorithm ensures

network connectivity by construction because CGA Step 3 places nodes only in positions

that are part of the current commshed.

The result of CGA is initial positions for all nodes xi, thereby defining a network

that has good coverage and that also is connected. I repeat this first step using 200 different

pairs of subtiles and sink positions to generate 200 benchmark networks.

This brings us to the optional step (C) of benchmark creation. Although all of

the benchmark networks that are generated have good coverage and also are connected,

some of the networks inadvertently are bi-connected, meaning that they lack cut vertices,
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making them poor benchmarks for hybrid recovery methods. Consequently, I perform step

(C) on all bi-connected networks, ensuring that each network has at least one cut vertex.

Specifically, step (C) reduces the communications range RC for all nodes of a bi-connected

network until at least one cut vertex appears. After this process is complete, all of the 200

benchmark networks have a specific value for RC and one or more cut vertices.

4.3.3 Experiments

I evaluated all of the algorithms using three performance metrics: (1) CPU time

used during pre-failure planning (to compare relative pre-failure-planning energy usage),

(2) change in coverage following network recovery after the loss of a cut vertex, and (3)

distance traveled during network recovery after the loss of a cut vertex (to compare relative

recovery energy usage).

Also, to allow comparing the performance of TARCI variants against 2D algorithms,

I devised a proxy algorithm that will perform no worse than the 2D algorithms. Since

2D recovery algorithms often ignore coverage, I expect that they will perform no better

than a proxy algorithm that merely moves the network’s remaining nine nodes into the

original positions of nodes x1 through x9. The idea is that nodes x1 through x9 are in

the positions chosen by Connected Greedy Adding for a nine-node network, and so they

should provide better coverage than the positions chosen by any 2D recovery algorithm

that ignores coverage. I call this algorithm 9-Node CGA and use it as an estimated upper

bound for 2D recovery algorithms like DARA[1]. Since 9-Node CGA simply restores the
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Table 4.2: Control Parameters

Parameter Purpose Name Value

Number of Nodes m 10

Initial Communications Range RC 130

Event-Detection Range RS 50

Number of Candidate Positions H {10, 20, 30, 40, 50, 100}

remaining nodes to the original positions of nodes x1 through x9, it expends essentially

zero energy during pre-failure planning.

I ran algorithms TARCI-E, TARCI-H, TARCI-GP, and TARCI-D over all 475 cut

verticies of the benchmark networks. Table 4.2 shows the values of control parameters used

during the experiments. I chose values of m, RC , and RS that worked well in other research

experiments with this size of terrain subtile.

Since TARCI-H and TARCI-GP evaluate H positions, I determined the sensitivity

of these algorithms to the control parameter H by repeating the tests using the six values

of H listed as Number of Candidate Positions in Table 4.2.

4.4 Results

CPU time for pre-failure planning: Table 4.3 compares the average pre-

failure-planning CPU time with the average post-recovery change in coverage. As expected,

the exhaustive TARCI-E algorithm uses the most CPU time, but TARCI-GP with H = 30

shows nearly as good post-recovery coverage as TARCI-E while using about two orders of

magnitude less CPU time for pre-failure planning! TARCI-H is similar, but its performance
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Table 4.3: Pre-Failure Planning CPU Time

Pre-Failure Planning Post-Recovery

Algorithm H Minutes CPU Time Change in Coverage

TARCI-E — 65 -4.7%

TARCI-GP 100 2.4 -5.0%

TARCI-GP 30 0.74 -5.2%

TARCI-GP 10 0.30 -6.0%

TARCI-H 100 2.7 -5.9%

TARCI-H 30 0.77 -6.6%

TARCI-H 10 0.37 -7.6%

9-Node CGA — 0.0 -6.5%

TARCI-D — 0.064 -11.2%

is slightly worse than TARCI-GP. Finally, I note that looking at the post-recovery change

in coverage, TARCI-H and TARCI-GP best 9-Node CGA, the estimate for the upper bound

of the 2D recovery algorithms like DARA[1].

Change in coverage: Another view of post-recovery change in coverage is

presented in Fig. 4.2 where I can see that nearly all of the TARCI algorithms (except

for TARCI-D and TARCI-H with H = 10) have superior recovery responses. I am not

surprised by this result because—similar to 2D algorithms DARA, PADRA, PCR, and

NORAS—9-Node CGA never will direct a node into a previously unoccupied position, while

the TARCI algorithms, without this restriction, can find positions with superior coverage.

As noted in the previous section, the 2D algorithms that ignore coverage are expected to

perform no better than 9-Node CGA.

Distance traveled during recovery: Fig 4.3 estimates energy usage during
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Figure 4.2: Change in coverage boxplot.

failure response from the distance that a backup node travels. Comparing TARCI-GP

and TARCI-H, I see that TARCI-GP reduces coverage less than TARCI-H, but it also

expends more recovery energy. The positive correlation between the goodness of the

recovery response and the distance traveled can be explained by noting that TARCI-GP

searches more widely, and so it is able to find a superior, more distant position. The

datapoint for TARCI-D is consistent with this explanation, since TARCI-D always chooses

the shortest possible recovery distance, and consequently it ignores any positions that

have better coverage. Comparing datapoints of all of the TARCI variants, the positive

correlation mentioned above between the average distance traveled and the average change
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Figure 4.3: Change in coverage vs distance.

in post-recovery coverage is clear.

Finally, considering the sensitivity of TARCI-GP and TARCI-H to the value of H,

Fig. 4.4 shows that TARCI-GP’s average effectiveness is nearly as good as that of TARCI-E

when TARCI-GP considers 30 positions. The graph also shows that TARCI-H must consider

at least 40 positions in order to better the results of 9-Node CGA.
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Chapter 5

Prior Accomplishments

While at UCSC, I published addition research not directly related to this disserta-

tion.

RTT Estimation via Machine Learning. In 2011, I contributed to using

machine learning to control RTT estimation in TCP[41][42]. Specifically, I corroborated

simulation results by implementing a proposed algorithm in the Linux kernel. This effort

required converting a floating-point machine-learning algorithm to use fixed-point arithmetic.

Testbeds & Vehicle Tracking. During 2011 and 2012, I designed and installed

the prototype for the BTS2 campus-bus tracking system. This effort involved creating

designs for five different printed-circuit boards, assembling the prototypes, and helping

manage the prototype’s installation in a campus bus. It also involved switching the base

station hardware away from Mini-ITX PCs to Raspberry Pi boards, rewriting the original

BTS base station software, and helping manage the deployment of the new base-station
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hardware on the roofs of five campus buildings. Finally, I wrote prototype web server and

database software to display the bus tracking results. In 2013, I helped run experiments using

the SCORPION testbed and then, based on that experience, I documented the testbed’s

management suite and published said documentation in IEEE conference proceedings[64].

In 2014, I managed undergraduate and grad students who were paid to assemble BTS2

production devices for all of the campus buses, and then I assisted with managing the BTS2

installation in all of the buses. In 2017, I (finally) wrote and submitted my Masters Thesis

for BTS2[58].

Reproducibility. In 2019, I helped re-run some of my earlier Dissertation

experiments as part of validating the Popper reproducibility tool[10].
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Chapter 6

Conclusions

This chapter concludes the dissertation by first revisiting my contributions and

then discussing directions for future work.

6.1 Contributions Revisited

In this dissertation I developed two novel terrain-aware algorithms for deploying

outdoor IoT networks over 2.5D terrain. Grid Partition accounts for visibility over 2.5D

terrain and finds solutions that compete with a centralized deployment algorithm. It also

serves as a meta-heuristic. EMNAglobal,stepsfinds solutions that compete with a centralized

deployment algorithm, although it requires more calls to the utility function. I compared

these algorithms to distributed versions of simulated annealing, gradient descent, and

pattern search.

I developed and evaluated a class of terrain-aware hybrid network recovery algo-
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rithms which guide networks in self-repair following a node failure. Terrain-Aware Recovery

with Commshed Intersections (TARCI) consists of four algorithm variants. Experiments

show that the variant that incorporates Grid Partition as a meta-heuristic (TARCI-GP)

achieves nearly the same quality of results as a variant that includes an exhaustive step,

although TARCI-GP uses two orders of magnitude less CPU time. I show that my terrain-

aware recovery algorithms perform better than recovery algorithms that are intended for

2D deployments.

To help with the development of my terrain-aware algorithms, I created a terrain-

aware experimental framework. The Terrain-Aware Framework For IoT (TAFFI) simulates

Java- and C++-based algorithms, both distributed and centralized. The framework provides

a library of line-of-sight algorithms and a suite of benchmark terrains. To ensure that

the benchmarks include a wide range of landform variation, another contribution of this

dissertation is the design of two terrain classifiers that ensure that the benchmark terrains

used in the experiments represent a wide variety of terrain landforms.

6.2 Future Work

The work in this dissertation stimulates several ideas for future work.

Radio Propagation. First, I want to make clear the restrictions of this work’s ra-

dio propagation modeling. The pragmatic choice of using CLOS for radio propagation could

be addressed by incorporating Fresnel zones[18]. This change would require reconsidering
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the Wang/Robinson/White dynamic programming CLOS visibility model. Probabilistic

radio propagation models could address the effects of fading. We note that adding proba-

bilistic propagation models would require changing the all algorithms to respond to actual

connectivity.

We note that unlike the recovery algorithms proposed in this dissertation, the

deployment algorithms use a simple disk model for connectivity, meaning that radio

connections diffract over obstructions with the only limit being range. An obvious step is

to modify the deployment algorithms to use the same radio propagation models that the

recovery algorithms use.

Real deployments. Another area of inquiry is to compare the ideas of this work

with a real-world deployment. Not only would such an exercise validate the suggested

changes to radio-propagation modeling, but it also would lead to using real-world modeling

of vegetation (trees) as visual obstructions, along with the necessary algorithm changes to

handle observed connectivity.

Connectivity. There are two areas where non-propagation effects of connectivity

can be explored. First, we can incorporate methods to account for network partitioning that

might occur during the initial random placement. Second, Grid Partition—and the other

deployment algorithms—could use multi-constraint optimization methods to maximize

coverage while keeping the network connected.

Other Deployment Work. One can consider heterogeneous deployments where

an algorithm saves resources by adding communications-only nodes (relay nodes). But
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unlike 2D algorithms[28][31], one must design an algorithm that understands 2.5D terrain.

Since most of the algorithms spend the much of their time computing visibility, one could

evaluate the possibility of storing precomputed viewsheds and commsheds as a way of

trading off computation for storage. Since we create recovery benchmark networks by

decreasing radio power (converting bi-connected networks into networks with cut vertices),

the inverse must be true: one should consider combining node mobility with increasing

radio power to recover from a partitioned network.

Another area of inquiry is “temporary” deployments where “hopping” nodes sense

and then return to the base.
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Appendix A

Additional Plots

This appendix contains additional plots from 20-node and 30-node simulations that

show nearly the same results as plots from 10-node simulations referenced in Section 2.1.3.
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Figure A.1: Results of algorithms on test terrains vs. centralized Greedy Adding—20 nodes.
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Figure A.2: Results of algorithms on test terrains vs. ACV of terrain—20 nodes.
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Figure A.3: Results of algorithms on test terrains vs. centralized Greedy Adding—30 nodes.
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Figure A.4: Results of algorithms on test terrains vs. ACV of terrain—30 nodes.
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Appendix B

Custom C++ Programs

During the course of this research, I implemented several Java classes and command-

line C++ programs. The Java classes are documented in Section 2.2.1. This appendix

describes the C++ programs.

Many of the programs share the same features, and many accept the same command-

line options:

• They read or write terrain data files using the SRTM height-file (HGT) format (-hgt).

• They indicate the origin of the SRTM height file by the latitude and longitude of its

southwest corner (-hgt-latlon).

• They create graphical representations of input and output data in image files that

use the BMP format (-bmp). (You can convert such files into other image formats

using the ImageMagick program convert.)
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• They limit an experiment to a subtile of terrain by specifying a coordinate window or

a two-letter subtile name (-w or -subtile).

• They specify a sensor radius and a communication radius (-r and -cr).

B.1 Generating Synthetic Terrains

Early in the research I explored using synthetic terrains, but I quickly moved to

using actual STRM terrain data. Nonetheless, [59] includes some synthetic terrains, and so

I document the terrain generators here.

Two programs generate wavy terrain. Over the 3600× 3600 synthetic HGT tile,

mk wavy srtm makes ten “bumps” vertically and 15 bumps horizontally, and mk wavy2 srtm

makes 20 bumps vertically and 30 bumps horizontally. (The artificial appearance of these

arbitrary “landform” shapes led me to consider using real terrain data.) The program

mk flat srtm generates a completely flat terrain at elevation 257 meters, the program

mk dish srtm small generates a “dish” centered on Cooja’s window with elevation ranging

from 100 meters in the middle to 1100 meters at the dish’s edge, and mk slope generates

sloped terrain with elevation ranging from 100 meters in the west to 1100 meters in the

east.

Usage: mk_wavy_strm

Usage: mk_wavy2_strm

Usage: mk_flat_strm

Usage: mk_dish_srtm_small

Usage: mk_slope
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B.2 Centralized Deployment Algorithms

All of the centralized deployment algorithms are tested using the visibility

program. (Some of the centralized simulations can be run using the Cooja-Contiki simulator,

too.)

Usage: visibility [options]

Options:

-hgt infile.hgt HGT input file

-hgt-latlon latitude longitude position of HGT file in decimal deg.

-bmp outfile.bmp BMP output file

-bmp-sequence basename sequence of BMPs

-bmp-palette type 0 = grayscale

1 = heat map

2 = blue/yellow

3 = dark-blue/yellow,

4 = dark-blue/light-yellow #1,

5 = dark-blue/light-yellow #2,

6 = black/light-yellow

7 = black/yellow #1

8 = black/yellow #2

9 = black/white

-bmp-grid-x x vertical gridlines every x pixels

-bmp-grid-y y horizontal gridlines every y pixels

-txt outfile.txt TXT output file

-w lat_min lon_min lat_max lon_max window in decimal degrees

-wm x_min y_min x_max y_max window in meters (unimplemented)

-v latitude longitude viewpoint in decimal degrees

-vm xMeters yMeters viewpoint in meters using Cooja

coordinates, where the upper-left

corner of the window is (0,0)

-vrand num_rand_viewpoints random viewpoints

-vh viewpoint_height_above_terrain same units as HGT file

-r radius_max radius for cumulative visibility

-s unsigned_seed init random number generator

-V compute visibility

-C compute cumulative visibility

-C-hgt-out outfile.hgt with -C, optional HGT output file

-C-min minimum with -C, optionally force c_min

-C-max maximum with -C, optionally force c_max

-W compute WLU with -v, -vm, or -vrand
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-W-min minimum with -W, optionally force wlu_min

-W-max maximum with -W, optionally force wlu_max

-Wvp compute WLU for last viewpoint

-H write heights BMP

-Hv write heights BMP with visibility

Gradient Ascent options:

-G method compute results of gradient ascent

-v longitude latitude viewpoint(s) in decimal degrees

-t num_iterations number of iterations

-delta pattern_search_delta integer

Simulated Annealing options:

-S compute results of S.A.

-v longitude latitude viewpoint(s) in decimal degrees

-T initial temperature

-M initial iterations at temp

-a alpha

-b beta

-l lambda

-d dist_max

-t max_time

-Sd use distributed algorithm

-er exploration radius

-cr communication radius

Potential Games options:

-P compute results of P.G.

-b beta

-d dist_max

-t max_time

B.3 Generating Recovery Test Cases: CGA

Connected Greedy Adding (CGA) is the first of a pair of programs that together

generate test cases for recovery algorithms. Given a fixed sink position, cga chooses initial

positions for the nodes over terrain. The generated networks are guaranteed by construction

to be connected, but in addition, cga tries to maximize coverage. The program creates text

strings that you can use to call the topology program, which finalizes the generation of
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the test cases by converting any bi-connected networks into networks that have at least one

cut vertex.

Usage: cga [options]

Options:

-hgt infile.hgt HGT input file

-hgt-latlon latitude longitude position of HGT file in decimal deg.

-bmp-viewshed outfile.bmp BMP viewshed output file

-bmp-commshed outfile.bmp BMP commshed output file

-bmp-heights outfile.bmp BMP heights output file

-bmp-palette type 0 = grayscale

1 = heat map

2 = blue/yellow

3 = dark-blue/yellow,

4 = dark-blue/light-yellow #1,

5 = dark-blue/light-yellow #2,

6 = black/light-yellow

7 = black/yellow #1

8 = black/yellow #2

9 = black/white

-bmp-grid-x x vertical gridlines every x pixels

-bmp-grid-y y horizontal gridlines every y pixels

-w lat_min lon_min lat_max lon_max window in decimal degrees

-subtile code two-letter subtile of window

-sink index sink index (1 to 10)

-tweak-sink move sink to nearby high point

-m num_nodes number of nodes

-vh viewpoint_height_above_terrain same units as HGT file

-r radius sensor radius

-cr radius communications radius

B.4 Generating Recovery Test Cases: Topology

topology is the second of a pair of programs that together generate test cases

for recovery algorithms. topology extracts a network topology from an indicated terrain

subtile, a sink position, and a set of node positions. (The program cga generates command

line strings that correctly invoke topology.) The program’s output is an adjacency matrix
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and a MATLAB .m file that will plot the generated test network. topology also is used to

plot the Post-Recovery network using a command line string that is generated by recover.

Usage: topology [options]

Options:

-hgt infile.hgt HGT input file

-hgt-latlon latitude longitude position of HGT file in decimal deg.

-w lat_min lon_min lat_max lon_max window in decimal degrees

-subtile code two-letter subtile of window

-v latitude longitude viewpoint in decimal degrees

-vp xPixels yPixels viewpoint in pixels using SRTM

coordinates, where the lower-left

corner is (0,0) up to (3600,3600)

-vm xMeters yMeters viewpoint in meters using Cooja

coordinates, where the upper-left

corner of the window is (0,0)

-failed-node nodeid

-recovery-node nodeid 1 ... num nodes

-recovery-vp xPixels yPixels like -vp

-objective objective code in base filename

-vh viewpoint_height_above_terrain same units as HGT file

-cr range communications range in pixels

-io force intervisibility (or)

-ia force intervisibility (and)

B.5 Recovery Algorithm TARCI

recover is a program that simulates the Pre-Failure and Post-Recovery phases of

the hybrid recovery algorithm TARCI and then reports the results. The program uses as

input a MATLAB .m file that was generated by topology. From this file, recover extracts

the communications radius and the (x, y) coordinates of the network’s nodes, and then

it searches for the best recovery node for each cut vertex of the network. The results of

the simulations are printed to stdout, along with command line strings that will direct
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topology to make a MATLAB plot file for the each result.

Usage: recover [options]

Options:

-hgt infile.hgt HGT input file

-hgt-latlon latitude longitude position of HGT file in decimal deg.

-m infile.m MATLAB input file

-subtile code two-letter subtile of window

-sink node sink id

-r radius sensor radius

-H num test the highest num positions

-P percent test the highest % positions

-grid-partition use grid partition
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Appendix C

Perimeter and Area of Intersecting Circles

The Grid Partition algorithm chooses its grid size based on the perimeter p and

the area A of a search region that is defined by the intersection of two circles. The shape of

such an intersection depends on the circles’ radii and their center-to-center separation. Let

the radii of the circles be r and rE, with r ≤ rE, and let the center-to-center separation of

the circles be d. The equations for p and A depend on the relationship between the values

of r, rE, and d:

Case #1. If the larger circle completely encloses the smaller circle, then d ≤ rE−r.

The perimeter and area of the intersection are the same as those of the smaller circle:

p = 2πr and A = πr2.

Case #2. If the circles do not intersect, then d ≥ rE + r. Both the perimeter and

area are zero: p = 0 and A = 0.

Case #3. If the circles overlap partially, then rE − r < d < rE + r. The perimeter
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Figure C.1: The perimeter of a circle-circle intersection: p = s+ sE.

p, which is the sum of arc lengths s and sE in Fig. C.1, can be computed straightforwardly.

First, apply the Law of Cosines [68] to determine the angles θ and θE .

θ = cos−1

(
d2 + r2 − r2E

2dr

)
(C.1)

θE = cos−1

(
d2 + r2E − r2

2drE

)
(C.2)

Then double each angle and multiply by its corresponding radius to obtain arc

lengths.

s = 2rθ

sE = 2rEθE
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Figure C.2: Area arithmetic used for computing the area of a lens-shaped circle-circle
intersection. The areas of the circular sectors in (a) and (b) are easy to compute and are
summed into (c), but with the darker region double counted. We obtain the area of the
lens-shaped region in (f) by subtracting the two triangular regions in (e).

The perimeter p is the sum of the two arc lengths.

p = s+ sE

p = 2rθ + 2rEθE

p = 2r cos−1

(
d2 + r2 − r2E

2dr

)
+ 2rE cos−1

(
d2 + r2E − r2

2drE

)
(C.3)

We find the area A of the lens-shaped circle-circle intersection of Fig. C.2(f)

through area arithmetic. First we add the areas of the two circular sectors of Fig. C.2(a)

and Fig. C.2(b). The resulting sum in Fig. C.2(c) double counts the area of the overlapping

region. Next, to eliminate the double counting, we subtract the area of the two triangles of

Fig. C.2(e). This leaves the area of the circle-circle intersection in Fig. C.2(f), which can be
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expressed algebraically as

A = A2θE +A2θ − 2Atriangle (C.4)

To fully evaluate this equation, we observe that the area of a circular sector is

the area of a full circle multiplied by the portion of the circle that the subtended angle

represents:

A2θE = πr2E

(
2θE
2π

)
= r2EθE (C.5)

A2θ = πr2
(
2θ

2π

)
= r2θ (C.6)

To obtain the area of the triangle in Fig. C.1 with sides d, r, and rE, we use

Heron’s Formula[67]:

Atriangle =

1

4

√
(d+ r + rE)(−d+ r + rE)(d− r + rE)(d+ r − rE) (C.7)

Substituting (C.5), (C.6), and (C.7) into (C.4), the area of the circle-circle intersection is

A = r2EθE + r2θ

− 1

2

√
(d+ r + rE)(−d+ r + rE)(d− r + rE)(d+ r − rE) (C.8)
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Appendix D

Size of the Grid Partition

Given an exploration region with perimeter p from (C.3) and area A from (C.8),

we want to know the grid size g that will partition the region into approximately n0 squares.

(We are content with an approximation because the Grid Partition algorithm is a heuristic,

and an exact result is not necessary.) We can derive an equation for g by generalizing an

estimate for the number of squares that are completely enclosed by a circular region.

The relationship between A, g, and n0 for circular regions is identical to that

investigated by the semiconductor manufacturing industry to estimate gross dice per wafer

(GDW). We start with (3) in reference [12].

GDW =
πR2

eff

Adie
− c1Reff√

Adie
(D.1)

We substitute our own variables in (D.1) using GDW ≈ n0, Reff = rE and Adie = g2. For
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reasons that will become clear, we also switch the proportionality constant using c1 = 2πk:

n0 ≈
πr2

g2
− 2πkr

g
(D.2)

Examining (D.2), one understands that it estimates the number of fully encom-

passed squares n0 by starting with the ratio between the area of a circular region πr2 and

the area of a square g2. Since this area ratio overestimates the number of fully encompassed

squares by including the contributions of partially encompassed squares, the equation

applies a correction term. The correction term is the ratio between the perimeter 2πr of

the circular region and the edge length g of a square. One can see that this ratio will be

roughly proportional to the number of squares that the perimeter crosses. The correction

term of (D.2) is this ratio adjusted by a constant value k.

We generalize (D.2) for non-circular regions by replacing πr2, the area of a circle,

with A, and by replacing 2πr, the perimeter of a circle, with p. The result is

n0 ≈
A

g2
− kp

g
(D.3)

Multiplying both sides by g2 and solving the resulting quadratic equation for g,

we obtain an estimate for the grid size from the area A and perimeter p of a region:

g ≈
√
4An0 + k2p2 − kp

2n0
(D.4)

Empirically we’ve determined a good value for the proportionality constant k.

k = 0.6 (D.5)
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As a check, we can compute a value for k from the constant c1 = 1.16π of [12] and

our substitution c1 = 2πk.

c1 = 1.16π

2πk = 1.16π

k =
1.16π

2π

k = 0.58

This result verifies our value k = 0.6, as it is nearly identical.
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[14] Marco Dorigo and Thomas Stützle. Ant colony optimization: Overview and recent ad-

vances. In Michel Gendreau and Jean-Yves Potvin, editors, Handbook of Metaheuristics.

Springer International Publishing, Cham, Switzerland, 3rd edition, 2019.

[15] Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, and Daniel

Weiskopf. Real-Time Volume Graphics. A. K. Peters, Ltd., Wellessley, Massachusetts,

2006.

[16] Tom G. Farr, Paul A. Rosen, Edward Caro, Robert Crippen, Riley Duren, Scott

Hensley, Michael Kobrick, Mimi Paller, Ernesto Rodriguez, Ladislav Roth, David

Seal, Scott Shaffer, Joanne Shimada, Jeffrey Umland, Marian Werner, Michael Oskin,

Douglas Burbank, and Douglas Alsdorf. The shuttle radar topography mission. Reviews

of Geophysics, 45(2):1–33, 2007.

[17] Leila De Floriani and Paola Magillo. Algorithms for visibility computation on digital

terrain models. In SAC, pages 380–387, 1993.

[18] Roger L. Freeman. Line-of-Sight Microwave Radiolinks, chapter 2, pages 37–131. John

Wiley & Sons, Ltd, 2007.

[19] Jean-loup Gailly. GNU Gzip. https://www.gnu.org/software/gzip/manual, 2021.

118

https://www.gnu.org/software/gzip/manual


[20] Rob Gordon. Essential JNI: Java Native Interface. Prentice Hall, Englewood Cliffs,

New Jersey, 1998.

[21] Nikolaus Hansen. The cma evolution strategy: A comparing review. In Jose A.
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