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Is the Unique Localization of TIMP-3 a Consequence of

Interactions with Heparan Sulifate Proteoglycans?

Gary Takeru Taniguchi

Abstract

For the processes of metastasis and angiogenesis to occur, the
extracellular matrix or basal laminae must undergo degradation.
Matrix metalloproteinases, MMPs, are the key enzymes involved in
these invasive processes. They function by degrading collagens,
proteoglycans and fibronectin of the extracellular matrix. Recently,
Hotary et al. demonstrated in an in vitro model that the MT-MMPs,
membrane-type matrix metalloproteinases, increase the invasive
properties of MDCK cells through a three-dimensional matrix (1). The
TIMPs, tissue inhibitor of metalloproteinases, are multifunctional
proteins that are the natural inhibitors of the MMPs and are also
cytokines. TIMP-3 is unique to the four-member TIMP family in that it
is the only one that localizes to the extracellular matrix. TIMP-1,
TIMP-2, and TIMP-4 are found in body fluids in vivo and in vitro in the
conditioned media of cultured cells.

Blenis and Hawkes determined that the interactions with TIMP-3

and the extracellular matrix are likely to be electrostatic (2). Kishnani
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and Hawkes demonstrated that TIMP-3 binds to heparan sulfate-
coated agarose beads and does not bind to polylysine-coated agarose
beads (3). The data presented in this thesis demonstrate, by creating
sequence alignments and performing homology modeling of the four
TIMPs, that the basic linear sequence of amino acids from Arg20 to
Lys52 of TIMP-3 forms a basic surface on the TIMP-3 molecule that is
not present on the surface of the other TIMPs. Modeling of the TIMP-3
projection with heparan sulfate demonstrated that the two could
interact electrostatically. From these data, we postulate that the basic
region from Arg20 to Lys 52 of TIMP-3 binds to heparan sulfate
proteoglycans localizing it to the extracellular matrix. By creating and
expressing chimeric TIMP-2 and TIMP-3 proteins, we demonstrated
that the region from Arg20 to Lys52 is necessary for the localization of
TIMP-3 in the extracellular matrix but it is not sufficient to change the
localization of TIMP-2 from the conditioned media to the extracellular
matrix.

Purification experiments were performed to provide pure proteins
for further characterization of binding, growth, and inhibitory activity.
Preliminary data suggests that the affinity of MMP-2 for the C3 and
C3-L chimeras is less than its affinity for TIMP-2.

The biological significance of the chimeras was tested by examining

the growth properties to study the effect localization has on cell

vii
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proliferation. TIMP-3 inhibited proliferation. In addition, the more
TIMP-3 sequence that the chimera contains, the slower the growth.

Confocal microscopy demonstrated the co-localization of TIMP-3
and heparan sulfate in the extracellular matrix. In addition, the co-
localization by confocal microscopy provides the first definitive
demonstration of TIMP-3 on the cell surface.

The localization of TIMP-3 at the cell surface places it in a position
where it could directly influence cell surface molecules such as MT-
MMPs and ADAMs, and may be directly controlled by the cell through
its interaction with cell surface heparan sulfate proteoglycans such as

syndecans and glypicans.

1. Hotary K, Allen E, Punturieri A, Yana I, Weiss S]. Requlation of R
cell invasion and morphogenesis in a three-dimensional type I collagen
matrix by membrane-type matrix metalloproteinases 1, 2, and 3.
Journal of Cell Biology 2000;149(6):1309-23.

2. Blenis ], Hawkes SP. Characterization of a transformation-
sensitive protein in the extracellular matrix of chicken embryo
fibroblasts. J Biol Chem 1984;259(18):11563-70.

3. Kishnani N. Characterization of Tissue Inhibitor of
Metalloproteinases-3 (TIMP-3) from the Extracellular Matrices of
Cultured Human and Avian Cells [Ph.D.]. San Francisco: University of

California San Francisco; 1994.
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1.1 Preface

In most cases of cancer-related deaths, the primary tumor is not
the cause but it is rather the metastases to vital organs. If the
neoplasm were confined to a single site, surgeons might be able to
remove the tumor without recurrence of disease. When left untreated,
whether from neglect or unresponsive therapy, most malignant tumors
will metastasize. Current chemotherapy for cancer targets the cell
cycle hoping to kill the proliferating tumor cells. All are based on the
premise that cancerous tissue growth rate is higher than most normal
tissue growth rates and will ‘die off’ before the normal tissue. The
taxane class and platinum-based agents are a two of the cytotoxic
therapies prescribed today (1). The taxane class of chemotherapy
drugs inhibits mitotic progression that induces apoptosis (2). The
platinum agents form DNA adducts that may also be activating
programmed cell death (1). Recently, protein-based therapeutics such
as monoclonal antibodies in conjunction with chemotherapy are being
prescribed for cancer treatment. An anti-CD-20 antibody is being used
to treat HER2-positive (human epidermal growth factor receptor-2)
breast cancer (3). CD-20 positive B-cell non-Hodgkin’s lymphoma is
being treated with a monoclonal antibody to CD-20 (4). Each of these
monoclonal antibodies is believed to induce apoptosis by crosslinking

the cell-surface receptors and triggering an apoptotic pathway (3-5).



Because treatment with these agents sometimes results in drug-
resistant tumor progression, possibly due to ‘genetic instability
resulting in rapid biological diversification’, cellular heterogeneity of
the tumor, and/or homeostatic mechanisms induced by metastatic
cells, new therapies are continually being developed (6).

Therapeutics under investigation include kinase inhibitors, viral
vectors to introduce oncogenes or tumor suppressor genes, anti-
angiogenic agents such as angiostatin, endostatin, interferons alpha
and beta, and matrix metalloproteinase (MMP) inhibitors (7-11).
Investigators are screening small molecules to inhibit kinases to halt
cellular signals that may lead to apoptosis (7). Viral vectors are being
utilized to introduce genes that will replace damaged DNA repair genes
and/or induce apoptosis (8, 9). Although their mode of action is not
understood, the angiogenesis inhibitors, angiostatin and endostatin
halt neovascularization (12, 13). Angiostatin is a 55 kDa fragment of
plasminogen, and endostatin is a 20 kDa C-terminal fragment of type
XVIII collagen (14-16). Interferons alpha and beta are cytokines that
down-regulate angiogenic factors (10). For tumor growth to proceed
past 1 mm in diameter, angiogenesis is required to feed the growing
tumor. Otherwise the tumor will not grow and will involute (12, 17).
The MMP inhibitors include synthetic inhibitors (hydroxamic acid and

phosphinic acid based inhibitor and peptide-based inhibitors), and the



natural inhibitor of MMPs, and the TIMPs, tissue inhibitor of matrix
metalloproteinase (18-23). The goal in using these synthetic inhibitors
or recombinant TIMPs is primarily to target the inhibition of MMPs that
degrade the extracellular matrix (ECM) or basal lamina preventing
tumor angiogenesis and metastasis.

The processes of metastasis and angiogenesis both involve the
local degradation of surrounding stroma and/or basal lamina for
migration and proliferation. (Refer to reviews by Fidler, 1.].,
Woodhouse E.C. et al., and Kleiner, D.E. and Stetler-Stevenson, W.G.
for further information on tumor growth, metastasis and angiogenesis
(6, 24, 25).) In the process of angiogenesis, the surrounding matrix
undergoes remodeling while the vascular endothelium proliferates to
form new capillaries. In the process of metastasis, cells must detach
from the primary tumor, intravasate into the lymphatic or capillary
system, migrate and extravasate to establish new tumors. Each of
these steps in the metastatic process involves the degradation of both
ECM and/or basal lamina that provides a path and sites for migration
by cell attachment and detachment through cell surface molecules

such as the integrins (26).



1.2 The Extracellular Matrix and Basal Laminae

The ECM is an intricate meshwork of proteins and complex
carbohydrates that underlies epithelial cells and surrounds
mesenchymal cells (27). The basal lamina is a specialized form of ECM
that underlies all epithelial cell sheets and tubes, surrounds individual
muscle cells, fat cells and Schwann cells and surrounds the endothelial
cells of capillaries (28). Basal lamina is a strong, elastic and dense
meshwork of different types of collagens, predominantly type 1V, VI,
and XVIII collagen, laminin, entactin, thrombospondin, tenascin,
fibronectin, heparan sulfate proteoglycans such as perlecan, agrin, and
chondroitin sulfate proteoglycans such as versican (27-32). The ECM
provides a site for cell migration, attachment and signaling involving
differentiation, proliferation and morphogenesis through its interaction
with integrins, cadherins, selectins, and other cell surface receptors
and ligands (27, 33-36). In addition, the ECM is believed to modulate
and/or act as a ‘storehouse’ for cytokines and growth factors (33-36).
For example, acidic fibroblast growth factor (aFGF), basic fibroblast
growth factors (bFGF), vascular endothelial growth factor (VEGF), and
platelet derived growth factor (PDGF), bind to heparan sulfate
proteoglycans in the ECM and on the cell surface, which modulate and

concentrate their activities (37, 38).



1.3 Extracellular Matrix Degrading Enzymes

Serine proteases, such as plasmin, and the MMPs have been
implicated as the key enzymes involved in ECM degradation both in
normal physiological processes and pathological tissue damage (25,
39-41). These enzymes have been found in the surrounding stroma
and associated with the cell membrane (24-26, 42). NOTE: Because
they are beyond the scope of this thesis, other ECM degrading
proteases such as cathepsins, meprins, and thrombin will not be
discussed (43).
1.3.1 Plasmin

Plasmin is expressed as the inactive zymogen, plasminogen, that
can be activated by the urokinase-type (uPA) or the tissue-type (tPA)
plasminogen activators (41). The cell surface receptor for uPA (UPAR)
has been demonstrated to focalize plasmin activation near the cell
surface (44). The uPAR also interacts with integrins and vitronectin
that is thought to focalize invasion at the leading edge of migrating
cells (41). The plasminogen activators are inhibited by plasminogen
activator inhibitors-1 and -2 (PAI-1 and PAI-2, respectively), while
plasmin is inhibited by a.-anti-plasmin (41). PAI-1 not only inhibits
uPA but also blocks binding of vitronectin and integrins with the uPAR-
uPA complex (41). Interestingly, high levels of PAI-1, uPA, and uPAR

correlate with poor patient prognosis (41). This may be similar to the
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TIMP-2/MMP-2/MT1-MMP-2 complex where TIMP-2 is not only an
inhibitor but forms a complex with MT1-MMP and proMMP-2 to activate
MMP-2 (45, 46). That is, the complex of PAI-1, uPA, and uPAR may
form a complex that activates plasmin. In addition to degrading ECM
components, plasmin has been demonstrated to activate MMPs such as
MMP-1, MMP-3, MMP-9 and MMP-13 (26, 47). It is of interest to note
that MMP-2, MMP-3, MMP-7, and MMP-12 can cleave plasminogen to
produce angiostatin (15, 48, 49). MMP-3 has also been demonstrated
to modulate plasmin activity by proteolytically cleaving a plasminogen-
binding domain of uPA (50, 51).

Although, the uPA cascade has been implicated in the metastatic
process, inhibition of uPA and plasmin with PAI-2 and aprotinin,
respectively, does not affect invasiveness of epidermal growth factor
induced human squamous carcinoma cells (52). However,
recombinant and synthetic MMP inhibitor completely suppresses
invasiveness. Other cancer cell models and models of vascular wound
healing have shown that uPA is necessary, but not sufficient for
invasiveness and that MMPs may be the key enzymes degrading the
basal laminae (52-55). Although plasmin can degrade ECM, the uPA
cascade may actually be a pathway for MMP activation and subsequent

degradation of ECM.



1.3.2 Matrix Metalloproteinases

The MMPs are a family of zinc-dependent extracellular
endopeptidases also referred to as matrixins. For review on the MMPs
refer to Woessner, J.F., Nagase et al., Kleiner et al., Parks et al. and
Curran et al. (24, 56-59). The MMPs in concert with their natural
inhibitors, the TIMPs, are involved in normal physiological processes
such as wound healing, embryo implantation, and ovulation. Table 1.1
lists normal physiological processes where a controlled balance of
MMPs and TIMPs is believed to be a significant factor. Table 1.1 also
lists pathological diseases such as rheumatoid arthritis, osteoarthritis,
atherosclerosis, and tumor metastasis where an imbalance of MMPs
and TIMPs has been observed. (60-72). Recently, Denhardt, D. T.
compiled a list of the characterization of MMPs and TIMPs in human
malignancies (73). Although most of the MMPs have been implicated
in some form of malignant cancer, this compilation of data and
information from other recent reviews of MMPs and TIMPs, implicate
MT1-MMP, MMP-2 and MMP-9 as key enzymes in the metastatic
phenotype. Unusually high amounts of MT1-MMP, MMP-2, and MMP-9
mMRNA expression and/or activity have been observed in cancer of the
breast, prostate, stomach, colon, head and neck, lung, skin, pancreas,
bladder, brain, ovaries, and liver (24, 42, 56, 73). Because MMP-2

and MMP-9 have broad enzymatic activities towards many ECM



Table 1.1: Normal and pathological roles of MMps and TIMPs,

Normal Processes Pathological Processes

Embryogenesis Rheumatoid arthritis

Salivary gland morphogenesis Osteoarthritis

Mammary development and Cancer invasion

involution

Ovulation Tumor metastasis

Blastocyst implantation Periodontal disease

Endometrial cling Fibrotic lung disease

Cervical dilatation Liver cirrhosis

Fetal membrane rupture Corneal ulceration

Uterine involution Gastric ulcer

Bone growth Skin Diseases

Bone remodeling Otosclerosis

Tooth eruption Atherosclerosis

Hair follicle Cle Abdominal aortic aneurysm F

Angiogenesis Dilated cardiomyopath o

Wound/fracture healing Glomerulunephritis et

Macrophage function Encephalomyelitis " O

Neutrophil function Neural disease e

Apoptosis Diabetes mellitus (74 75 N S
Macular degeneration of the eye (76 o
Cystic fibrosis 27 e Sy g
Asthma (78
Emphysema (79 ® Ay
Guillain-Barre syndrome (gg SR

*From Nagase et 5/ unless otherwise indicated (81). Qo™
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components, more specifically type IV collagen, it is not surprising that
these two enzymes would be found in metastatic diseases (see Table
1.2). It is of interest to note that in many cases, the levels of TIMP-1
and/or TIMP-2 were also elevated compared to controls (24, 42, 56,
73).

The MMPs are secreted in their zymogen form. Once active the MMPs
digest several different types of extracellular proteins, such as
collagens, gelatins, proteoglycans, etc., shown in Table 1.2. The direct
results of their evnzymatic activity are not just degradation of the ECM
but also the activation of other MMPs. In addition, MMPs have been
reported to digest extracellular proteins exposing their cryptic
activities. The cleavage of plasminogen with MMP-3, -7, -9 and -12
results in angiostatin, which inhibits angiogenesis (15, 48, 49).
Matrilysin, MMP-7, can process cell-associated Fas ligand to soluble
Fas ligand resulting in the induction of apoptosis of human embryonic
kidney 293 cells by the soluble Fas ligand (82). Laminin-5 proteolysis
by MT1-MMP and/or MMP-2 stimulates migration of breast epithelial
cells (83). The authors suggest that the proteolysis results in integrin
interactions with the fragments of laminin-5 that alters cell signaling

and migration.

10



Table 1.2: MMP substrates

Enzyme MMP Substrates
Collagenases
Interstitial collagenase MMP-1 Collagens I, II, III, Vii, and X, gelatins,
entactin, aggrecan, link protein
Neutrophil collagenase MMP-8 Collagens I, II and III, aggrecan, link
protein
Collagenase 3 MMP-13 | Collagens I, II, III, VII, and X
Collagenase 4 MMP-18 | Collagens I, II
Gelatinases
Gelatinase A MMP-2 Gelatins, collagens I, 1V, V, VII, X, and XI,
fibronectin, laminin, aggrecan, elastin, large
tenascin C, vitronectin, B-amyloid protein
precursor
Gelatinase B MMP-9 Gelatins, collagens 1V, V, X1V, aggrecan,
elastin, entactin, vitronectin
Stromelysins
Stromelysin 1 MMP-3 Aggrecan, gelatins, fibronectin, laminin,
collagen III, IV, IX and X, large tenascin-C,
vitronectin, activates proMMP-1
Stromelysin 2 MMP-10 | Aggrecan, fibronectin, collagen III, 1V, IX,
and X, activates proMMP-1
Membrane-type MMPs
MT1-MMP MMP-14 | Activates proMMP-2, gelatin, collagens
MT2-MMP MMP-15 | Activates proMMP-2
MT3-MMP MMP-16 | Activates proMMP-2
MT4-MMP MMP-17 | pro-TNFa peptide, fibrinogen, fibrin (84)
MT5-MMP MMP-24 | Activates proMMP-2 (85)
MT6-MMP MMP-25 | Activates proMMP-2 (86)
Others
Matrilysin MMP-7 Aggrecan, fibronectin, laminin, gelatins,
collagen 1V, elastin, entactin, small
tenascin-C, vitronectin, activates proMMP-1
Stromelysin 3 MMP-11 | Weak activity for fibronectin, laminin,
collagen 1V, aggrecan, gelatins, Alpha-1-
antiprotease
Metalloelastase MMP-12 | Elastin
(No name) MMP-19 | type IV collagen, gelatin, fibronectin,
laminin, nidogen, and large tenascin-C
isoform
Enamelysin MMP-20 | Amelogenin
XMMP (Xenopus) MMP-21 |?
CMMP (Chicken) MMP-22 |?
(No name) MMP-23 | ? (87)
Endometase MMP-26 | Gelatin, al-proteinase inhibitor (88)

Compiled from Nagase et al/. and Kleiner et al. (24, 81) and various sources

as indicated.
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Currently, 26 members of the MMP family have been identified and
subdivided into subfamilies; collagenases, gelatinases, stromelysins,
and the membrane-type as shown in Table 1.3, Figure 1.1. (NOTE:
MMP-4, -5 and -6 are not in the table because no references could be
found.) The family shares a common structure of having at least two
domains (Table 1.3): a pro-domain of about 80 amino acids with a
conserved PRCG(V/N)PD sequence where the cystine ligates the
catalytic zinc maintaining the latent proMMP and a catalytic domain of
about 170 amino acids with the zinc-binding motif HEXXHXXGXXH
(89). Recently, MMP-26 was discovered to have a catalytic domain
with a unique "cysteine-switch" pro-peptide sequence, PHCGVPDGSD,
and a zinc-binding motif, VATHEIGHSLGLQH (88). Within the catalytic
domain are conserved structural metal binding sites for 2-3 calcium
ions and a zinc ion which are necessary for activity and stability (89).
MMP-2 and MMP-9 contain three repeats of a fibronectin type II
domain inserted in the catalytic domain that binds with collagens and
gelatins (90, 91). All but MMP-7 and MMP-23 have a hemopexin
domain that is required for collagenases to cleave triple helical
interstitial collagens (92). MMP-23 has a Cys and Pro rich and IL-1
receptor-like region at the C-terminus (93). The six membrane bound
MT-MMPs have a ‘linker, transmembrane and cytoplasmic domain at

th e C-terminus. The MT-MMPs, MMP-11, MMP-21 and MMP-23 contain

12



Table 1.3: Vertebrate members of the MMP

family
Domain
Protein MMP Composition
Collagenase 1 MMP-1 | B
Gelatinase A MMP-2 | C
Stromelysin 1 MMP-3 | B
Matrilysin MMP-7 | A
Collagenase 2 MMP-8 | B
Gelatinase B MMP-9 | D
Stromelysin 2 MMP-10 | B
Stromelysin 3 MMP-11 | E
Macrophage elastase MMP-12 | B
Collagenase 3 MMP-13 | B
MT1-MMP MMP-14 | F
MT2-MMP MMP-15 | F
MT3-MMP MMP-16 | F
MT4-MMP MMP-17 | F
Collagenase 4 MMP-18 | B
(Not named) MMP-19 | B
Enamelysin MMP-20 | B
XMMP (Xenopus) MMP-21 | G
CMMP (Chicken) MMP-22 | B
(Not named) MMP-23 | H
MT5-MMP (94) MMP-24 | F
MT6-MMP (95) MMP-25 | F
Endometase (88, 96) MMP-26 | A

*Updated from Nagase and Woessner (57).

Figure 1.1: Domain arrangements of the vertebrate MMPs.
L AN

2 AN IR
c A A R R A T
P

E s
F OO

G S U EEEEETEE T
H EIRNNNN priosy . FHHES
Signal peptide B Linker Linker, transmembrane
& cytoplasmic domains
Propeptide [[] Hemopexin-like domain [} Furin recognition sequence

Catalytic domain {34 Fibronectin type I domain  [[[]] Vitronectin-like domain

tHH Cys & Pro rich & IL-1 receptor-like domain

13



a furin-sensitive cleavage site between the pro-domain and the
catalytic domain. Some have postulated that furin trafficking may be
regulated by the actin cytoskeletal network that concentrates furins for
focal MMP activation (42). MMP-11 has been shown to be dependent
on intracellular furin activation (97). In contrast, MT1-MMP was still
activated when furin gene expression was suppressed by anti-sense
oligonucleotides (98). Further research is needed to address furin
activation of MMPs.

MMPs are regulated at several levels: expression; activation; and
inhibition. Many of the MMP genes are inducible (57). Control of the
expression of MMPs may be mediated via differential transcriptional
regulation by growth factors, cytokines, oncogenes, chemical agents
such as phorbol esters, physical stress, hormones, cell-matrix and cell-
cell interactions (56, 57). Activation of the secreted zymogens is
regulated. The activation process is believed to occur through the
initial cleavage before the conserved cysteine in the pro-domain, which
disrupts the zinc-cysteine interaction of the pro-domain with the
catalytic domain (57, 89). The pro-domain is finally cleaved leaving
the active mature enzyme (57, 89). This final cleavage has been
found to be autocatalytic in the activation of MMP-2 and MMP-9 (99-
101). Most MMPs can be activated by serine protease such as plasmin

and urokinase-type plasminogen activator (26, 102-104). MMPs can
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activate other MMPs. For example, MMP-3 has been demonstrated to
activate proMMP-1, while MMP-2, MMP-3, and MMP-13 can activate
proMMP-9 (26, 104). The activation of MMP-2 is the most understood
MMP activation pathway and will be discussed in detail later in this

chapter.

1.4 Tissue Inhibitor of Metalloproteinases
The TIMPs, tissue inhibitors of metalloproteinases, are the major
endogenous regulators of MMP activity (73, 105, 106). Although the
MMPs are inhibited by a>-macroglobulins, their inhibition is nonspecific
and only in the fluid phase and not in tissue (106). The TIMPs are 21-
28 kDalton proteins that reversibly and specifically inhibit the MMPs
through a 1:1 stoicheometric, non-covalent complex formation (106).
The four members of the TIMP family are able to inhibit most of the
MMPs, but with different specificity and affinity (106). (NOTE: A more
in depth study of TIMP structure and TIMP/MMP interactions will be
discussed in Chapter 2.) The TIMPs share a 45-60% similarity and a
36-50% identity to each other containing twelve highly conserved
cysteines that form 6 disulfide bridges (calculated using the gap
program from the Genetics Computer Group version 10.0 software).
The disulfides of TIMP-1 and TIMP-2 form a two-domain structure with

3 disulfides in the N-terminal domain and 3 disulfides in the C-terminal
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domain (107). Because the spacing of the cysteines is highly
conserved and because activity is dependent on the intact disulfides in
the N-terminus, it is assumed that TIMP-3 and TIMP-4 share similar
disulfide linkages (107).

Subtle differences in their structure give each TIMP unique and
specific binding and inhibitory properties, discussed in Chapter 2 (89,
108). K; values between 10° to 10> M have been demonstrated for
the TIMP-MMP complexes using peptide substrates (109). The
specificity of the TIMPs appears to be in the N-terminal domain and
the affinity appears to be in the C-terminal domain. Meng et al.
demonstrated by creating mutants of TIMP-2 at position 2 at the
amino terminus, that the specificity of TIMP-1 towards MMP-1, MMP-2,
MMP-3 could be manipulated (110). Butler et a/l. demonstrated that
the N-terminal domain of TIMP-1, TIMP-2, and TIMP-3 binds to the
active-site pocket in the N-terminal domains of MMP-2 and MMP-9, and
the C-terminal tail of TIMP-1, TIMP-2, and TIMP-3 binds to the
C-terminal hemopexin-like domains of MMP-2 and MMP-9 (111).
Butler et al. and Overall et al. reported that the differences in their
affinity was due to charge differences in the C-terminal tail of the
TIMPs and the C-terminal tail of MMPs (111, 112).

The four TIMPs have been cloned from several different species

(see Chapter 2, Figure 2.1). TIMP-1 and TIMP-2 are secreted from
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many cell types and are found in body fluids in vivo and the
conditioned media of cultured cells (113, 114). TIMP-1 is found in
ovary, bone and uterine tissue and is inducible by several cytokines
and chemokines such as bFBF, EGF, TGF8, IL-1, IL-6, phorbol ester,
and progesterone (115). TIMP-2 to appears to be constitutively
expressed in many different tissues (115). The most recently
discovered member, TIMP-4, is less characterized but has been found
in brain, heart and skeletal muscle and breast tissue and localizes to
the conditioned media of cultured cells (116). TIMP-3, which is
inducible by phorbol esters, TGFB, dexamethasone and PDGF, is
unique to the family in that it localizes to the ECM or basal lamina in
kidney, breast, colon, eye, and lung (115-120).
1.4.1 Growth Promoting Activity of TIMPs

The TIMPs not only demonstrate MMP inhibitory activity but also
growth promoting activity. TIMP-1 and erythroid potentiating activity,
EPA, were both discovered in 1985 and found to be the same protein
(113, 121, 122). TIMP-2 has been reported to have cell proliferative
activity in many human, bovine and mouse cell lines (123-127).
TIMP-3 has also been reported to have growth promoting activity in
chicken embryo fibroblasts (128). Point mutations of TIMP-1 that
abolishes MMP inhibitory activity still retains erythroid potentiating

activity (122). Hayakawa et al. demonstrated that reduction and
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alkylation of TIMP-1 and TIMP-2 destroys their MMP inhibitory activity
while retaining their growth promoting activities (126). By adding an
N-terminal alanine to TIMP-2 that abolishes MMP inhibitory activity,
Wingfield et al. demonstrated that the growth modulating property is
independent of the inhibitory activity (129). Recently, Zhao et al.
demonstrated that TIMP-1 shows cell cycle-associated accumulation in
the nuclei of human gingival fibroblasts (130). In addition, TIMP-1 has
been found to bind to the cell surface and translocates to the nucleus
of MCF-7 breast carcinoma cells (131). It is of interest to note that
the TIMP structures have an oligosaccharide- or oligonucleotide-
binding domain that could possibly bind to DNA (132).
1.4.2 Induction of Apoptosis by TIMP-3

In contrast to growth promoting activity, TIMP-3 has been recently
shown to induce apoptotic cell death in many cancer cell lines and in
rat vascular smooth muscle cells (133-137). Although, in 1992, Yang
and Hawkes reported that TIMP-3 stimulates the proliferation of
chicken embryo fibroblasts, this could be interpreted as apoptosis
because DNA synthesis is slowed by addition of TIMP-3 to transformed
chicken embryo fibroblasts (128). Smith et al. reported that apoptosis
of human carcinoma cells was induced by the stabilization of the
TNFalpha receptor on the cell surface by TIMP-3 (133). TIMP-3

appeared to be preventing the shedding of the TNFalpha receptor from
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the surface of the cells. A year later, it was discovered that TIMP-3
and not TIMP-1 or TIMP-2 inhibits TNFalpha converting enzyme
(TACE), which cleaves the membrane bound pro TNFalpha from the
cell surface producing the active cytokine (138). In contrast, TIMP-1
and TIMP-2 inhibit apoptosis (139). Li et a/l. demonstrated that TIMP-1
inhibits MCF10A cell death induced by hydrogen peroxide, adriamycin,
or X-ray irradiation (139). The inhibition of apoptosis occurrs after the
MCF10A cells detach and, therefore, is not dependent on the
stabilization of the matrix by TIMP-1. B16F10 melanoma cells are also
protected from apoptosis by TIMP-2 (137).
1.4.3 TIMP-2 Is an Activator and Inhibitor of MMP-2
Investigators have recently determined that TIMP-2 is not only an
inhibitor of MMPs but also an activator of MMP-2 (140). Because of
the extensive characterization of MMP-2 and TIMP-2 interactions and
the discovery and characterization of the membrane-type matrix
metalloproteinases (MT-MMPs) investigators have developed a clearer
understanding of the activation of MMP-2 (26, 109, 111, 112, 140,
141). TIMP-2 and MT1-MMP have been demonstrated to be secreted
as a complex and show temporal and spatially co-regulated expression
in mouse development (142, 143). The complex of MT1-MMP and
TIMP-2 has been referred to as a “receptor” for proMMP-2 resulting in

MMP-2 activation (140). Investigators report that TIMP-2 binds to
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MT1-MMP followed by binding of proMMP-2 (45, 46). The MT1-MMP
cleaves the proMMP-2 at Asn37-Leu38 and the resulting A1-37MMP-2
is autocatalytically activated by cleavage at Asn80-Tyr81 (99).
Activation also requires the C-terminal domain of proMMP-2 but it is
not necessary for activity (45). By utilizing truncated forms of MMP-2
and MT1-MMP without a transmembrane domain, Butler et a/. deduced
that the N-terminal domain of MT1-MMP binds the N-terminal domain
of TIMP-2 and the C-terminal domain of TIMP-2 interacts with the C-
terminal domain of proMMP-2 to localize it to the cell surface for
activation (140). TIMP-2 and TIMP-3, but not TIMP-1, are effective
inhibitors of MT1-MMP (99). TIMP-4 also binds tightly to the
C-terminal hemopexin-like domain of MMP-2 but has not been
demonstrated to bind any of the MT-MMPs (111, 144). Both TIMP-2
and TIMP-3 bind to MT1-MMP and proMMP-2 but only TIMP-2 can
activate MMP-2 (111). At low levels of TIMP-2 added to TIMP-2-
depleted membranes expressing MT1-MMP, proMMP-2 activation is
increased (140). But, at higher levels of TIMP-2, MT1-MMP is inhibited
by TIMP-2 and does not activate proMMP-2 (140). Because of the cell
surface interactions of TIMP-1 and similar expression patterns of
TIMP-1 and MMP-9, there is speculation that proMMP-9 may be
activated similarly by forming a complex with TIMP-1 and another

MT-MMP (131).
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Similar to local proteolysis exhibited by the uPA
receptor/uPA/plaminogen activation cascade, the cell surface
localization MT1-MMP and activation of MMP-2 may be a way of
focalizing proteolysis of ECM. Human melanoma cells and 3T3 cells
overexpressing MT1-MMP activate MMP-2 and degrade ECM that is
localized predominantly to ‘invadopodia’ (145, 146). oVB3 integrin has
been shown to bind to the hemopexin domain of MMP-2 focalizing the
degradation (147). Deryugina et al. recently demonstrated that MCF7
breast carcinoma cells expressing both aVB3 integrin and MT1-MMP
increase adhesion and migration on vitronectin by localizing MMP-2 at
the cell surface (148). Further investigation is underway to study
potential tyrosine phosphorylation sites in the cytoplasmic domain of
the MT-MMPs (26).

1.4.4 TIMPs as Therapeutics?

Because of their ability to inhibit and activate MMPs, induce
proliferation or apoptosis, investigators struggle with an apparent
paradox of the TIMPs. The TIMPs appear to be an excellent biological
drug for anti-angiogenic and/or anti-metastatic therapy. TIMP-1,
TIMP-2, and TIMP-3 have all been reported to inhibit angiogenesis
(149-151). Several reports over the past 10 years demonstrate the
ability of the TIMPs to inhibit invasion of many different cancerous cell

types (39, 56, 137, 152-160). In rat bladder cancer cell lines, MMP-2
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transfected into MYU3L cells enhance their invasive potential while
transfection of TIMP-1 or TIMP-2 into highly metastatic LMC19 cells
reduces their invasiveness (161, 162). TIMP-1 transgenic mice
demonstrate that TIMP-1 inhibits T-cell Ilymphoma and
hepatocarcinogenesis by tumor vascularization (163, 164). However,
because TIMP-1 and TIMP-2 promote cell growth and rescue cells from
apoptosis, and because TIMP-2 activates proMMP-2, the use of TIMP-1
or TIMP-2 as a therapeutic may exacerbate the disease. TIMP-3 does
not appear to have contraindicative activities. @ TIMP-3 inhibits
proMMP-2 activation by MT1-MMP, which may contribute to the
mechanism by which TIMP-3 inhibits angiogenesis and cellular invasion
(111, 136, 149, 165). TIMP-3 also induces apoptosis of cancerous cell
lines (133, 138). Inhibition of angiogenesis and invasiveness, and
induction of apoptosis could have a potent effect on cancerous tissue.
The unique characteristic of ECM localization displayed by TIMP-3 may
be the critical factor that determines its activities. The localization of
TIMP-3 to the ECM places it in a location where it could directly

interact and affect cell surface molecules (21, 134-137).
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1.4.5 TIMP-3 Electrostatically Interacts with the Extracellular
Matrix

In 1984, Blenis and Hawkes first characterized the ECM localization
of chicken TIMP-3 by utilizing chaotropes, high salt, and ionic and non-
ionic detergents to extract it from the ECM (117). Non-ionic
detergents such as NP-40 and Triton X-100 are unable to extract
TIMP-3 from the ECM except in the presence of high salt, 0.5 M KCl, or
reducing agents such as 10% B-mercaptoethanol. High concentration
of chaotropic agents such as 6 M guanidine-HCI or 6 M urea with 10%
B-mercaptoethanol is necessary to extract TIMP-3. Strong anionic
detergents such as sodium dodecyl sulfate (SDS) will extract TIMP-3
from the ECM. In an attempt to inhibit TIMP-3 production by utilizing
antisense oligodeoxynucleotides (ODN), Kishnani and Hawkes
determined that exposure of transformed chicken embryo fibroblasts
to ODNs caused TIMP-3 to relocate from the ECM to the conditioned
media (166). The amount of TIMP-3 activity detected in the
conditioned media was ODN-sequence independent, directly
proportional to the ODN concentration, and not due to increased
TIMP-3 expression. Kishnani hypothesized that the change in location
of TIMP-3 is due to electrostatic interactions between the negatively
charged ODNs and the basic amino acids of TIMP-3. This hypothesis

was investigated by exposing chicken embryo fibroblasts to several
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charged and uncharged polymers, to determine their effect on the
localization of TIMP-3. The polymers included poly-cationic and
poly-anionic molecules such as poly-lysine, poly-arginine, poly-
aspartate, poly-glutamate, and poly-acrylate, glycosaminoglycans
(GAGs) such as chondroitin sulfates A, B, and C, dextran sulfate,
hyaluronate, and heparan sulfate, and uncharged poly-alanine and
poly-histidine. Poly-cationic and poly-anionic molecules exhibited the
strongest effect on the localization of TIMP-3 to the conditioned media.
Poly-lysine and poly-arginine have a stronger effect when compare to
any of the poly-anions. Of the GAGs, heparan sulfate and dextran
sulfate displayed the strongest effect on the localization of TIMP-3 to
the conditioned media. To determine if the change in location of
TIMP-3 was a binding effect or a displacement effect, the ECM from
chicken embryo fibroblasts was exposed to heparan sulfate-coated
agarose beads and poly-lysine-coated agarose beads. Elutions from
heparan sulfate coated agarose beads contained TIMP-3 activity, while
elutions from the poly-lysine coated agarose beads had no activities.
From these data, Kishnani and Hawkes hypothesized that the poly-
lysine displaces the TIMP-3 from the ECM by binding to the negatively
charged species in the ECM, thus preventing binding of the positively
charged amino acids of TIMP-3. In contrast, negatively charged

sulfates of heparan sulfate bind to the positively charged lysines and
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arginines of TIMP-3 and extract it from the ECM to the conditioned
media. They noted that three short stretches of 9-11 amino acids that
contain a high density of positive charge from lysines and arginines
and are uninterrupted by negative charge may be involved in binding
of TIMP-3 to polyanionic polymers.

From these data and sequence analysis and homology modeling
demonstrated and discussed in Chapter 2 a hypothesis was
constructed. The hypothesis states that basic Region I, Arg20 to
lys52, on the surface of TIMP-3 binds to heparan sulfate chains on
heparan sulfate proteoglycans (HSPGs) in the ECM, localizing TIMP-3

to the ECM.

1.5 Heparan Sulfate Proteoglycans

Heparan sulfates are the heterogeneously N- and O-sulfated
polysaccharide components of proteoglycans that are common
constituents of the ECM and cell surface (167). HSPGs are involved in
cell adhesion, migration, proliferation and differentiation (37, 168).
The heparan sulfate chains of HSPGs bind to various proteases,
protease inhibitors, cytokines and growth factors such as MMP-7, anti-
thrombin III, aFGF, bFGF, VEGF, hepatocyte growth factor,
keratinocyte growth factor, and TGF-B8 (169). Heparan sulfate chains

also bind to structural proteins in the ECM such as fibrillar collagen,
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fibronectin, and laminin (170). In each case HSPGs appear to function
as a way of accumulating or localizing heparan sulfate-binding
molecules to enhance and/or promote ligand-receptor, protease-
inhibitor and protease-substrate interactions. MMP-7 has been
demonstrated to bind to and co-localize with heparan sulfate in the
basement membrane and around epithelial cells (171). The
investigators suggest this may function to sequester the enzyme for
activation or focalized proteolysis. Heparan sulfate and heparin
catalyze the binding of anti-thrombin III to thrombin and factor Xa
inhibiting coagulation (172). Heparin is a highly sulfated form of
heparan sulfate. A specific pentasaccharide sequence of the heparin
chains actually causes a conformational change of the anti-thrombin
III, enabling it to bind (173). Heparan sulfate chains of HSPGs bind to
lipoprotein lipase and enhance the binding of lipoproteins to the cell
surface to facilitate uptake or receptor binding (174, 175).
Thrombospondin-1, which is involved in platelet aggregation and
regulation of cell adhesion, migration, and proliferation, binds to
heparan sulfate on the cell surface and in the ECM (176-178). The
fibroblast growth factors, FGFs, are probably the most intensively
studied HSPG-binding proteins. The FGFs, which stimulate
angiogenesis, proliferation and differentiation, have been implicated in

many forms of cancer (6, 10, 179-181). Heparan sulfate is believed to
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be essential for the complex formation of the FGF and the FGF
receptor, FGFR, resulting in signal transduction (182, 183). Different
FGFs and FGFRs may also have unique specificity towards to different
heparan sulfate sequences and sulfation patterns (182).
1.5.1 Composition of Heparan Sulfate Proteoglycans

The following is a summary of HSPG composition from papers by
Zhang et al. and Esko et al. (184, 185). They are composed of a
protein core with one or more covalently attached GAG chains. The
GAGs attach to conserved SGXG or SG sequences that are usually
preceded by acidic amino acids. Although chondroitin sulfate also
attaches to SGXG or SG sites, repeating SG sequences and adjacent
acidic residues appear to signal for heparan sulfate synthesis. The
heparan sulfate chains are synthesized in the Golgi complex by the
stepwise attachment of saccharide units to form the tetrasaccharide
glucosamine-B81,3-D-galactose-81,3-D-galactose-81,4-D-xylose. The
chains are elongated by the addition of alternating glucuronate and N-
acetylglucosamine. The chains can be anywhere between 30 to 200
disaccharide units. Sulfation occurs by the interdependent reactions of
N-deacetylase and N-sulfotransferases. In addition, glucuronate is
epimerized to iduronate, and glucosamine and iduronate are sulfated
by O-sulfotransferases. Isoenzyme variations and their expression

levels appear to give rise to the different sulfation patterns on the
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heparan sulfate chains attributed to the specific binding of ligands.
HSPGs appear at the cell surface shortly after synthesis where they
are excreted in the case of ECM HSPGs or anchored in the membrane
(186).

The predominant HSPG in the basal lamina is periecan, followed by
agrin and type XVIII collagen (32). Perlecan consists of a core protein
of approximately 400kDa with 3-4 heparan sulfate chains attached in
the N-terminal domain of the protein. Agrin and type XVIII collagen
are 200-210 kDa and 180 kDa proteins, respectively (32). Two
families of HSPGs, Syndecans-1 through -4, 33 kDa proteins with 3-4
glycanation sites, and glypicans-1 through -6, 60-65 kDa proteins with
2-3 glycanation sites, and two unrelated HSPGs, CD44E and the TGFB-
receptor betaglycan have been identified on the cell surface (37, 187).
The syndecans, CD-44E, and TGFB-receptor betaglycan have single
membrane-spanning transmembrane domains. The glypicans are
tethered to the cell surface through glycosylphosphatidylinositol (GPI)
(37, 187, 188). Some of the cell surface HSPGs are enyzymatically
shed possibly by ADAMs or in the case of GPI-anchored HSPGs by
specific phospholipases (186).

Syndecan-1 is the most extensively studied of the cell surface
HSPGs (189). The loss of syndecan-1 expression and different

expression patterns of integrins and E-cadherin correlates with the loss
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of cell differentiation when normal tissues are compared with
cancerous tissue such as squamous cell carcinomas of the head, neck,
lung and cervix (189). Syndecan-1 expression is lower in the
malignant transformation of several of these epithelial cells.
Syndecan-1 has been demonstrated to mediate the binding and
activity of FGF-2 but not FGF-1 to FGFR-1 (190). Recently, Fitzgerald
et al. demonstrated that the shedding of syndecan-1 and -4 is
inhibited by TIMP-3 (191). The localization of TIMP-3 in the ECM may
provide TIMP-3 with the ability to directly regulate the shedding
process. If TIMP-3 also binds to the heparan sulfate chains of
syndecan-1, this interaction may provide a way for the cell to have

direct control over TIMP-3 action.

1.6 Overview

Chapter 2 will demonstrate that a basic Region I, Arg20 to Lys52,
on the surface of the TIMP-3 molecule determined by sequence
alignments and molecular modeling could bind to heparan suifate. A
chimera was constructed to test if this basic Region I could be
exchanged with the homologous region of TIMP-2 to create a TIMP-3
chimera, C3, that localizes to the conditioned media instead of the
ECM in cultured cells. The reverse chimera was also constructed to

determine if this basic Region I could be exchanged into TIMP-2 to
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create a TIMP-2 chimera, C2, that localizes to the ECM instead of the
conditioned media in cultured cells. The results of these experiments
are reported in Chapter 3. The preliminary results from purification of
TIMP-3 and the chimeras will be discussed in Chapter 4.
Demonstration of the co-localization of TIMP-3 and heparan sulfate by
confocal microscopy will be reported in Chapter 5. Preliminary cell
proliferation assay of BHK-21 cells transfected with wild-type and
chimeric TIMP-3 and TIMP-2 proteins will be reported and discussed in
Chapter 6.

The experiments presented in this thesis demonstrate that TIMP-3
is localized to the ECM and cell surface by the interaction of basic

Region I, Arg20 to Lys52, of TIMP-3 with heparan sulfate.
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