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RESEARCH ARTICLE https://doi.org/10.1158/2767-9764.CRC-23-0493 OPEN ACCESS 

Role of Forkhead Box P3 in IFNγ-Mediated 
PD-L1 Expression and Bladder Cancer 
Epithelial-to-Mesenchymal Transition 
Hanwei Zhang1, Ann Ly1, Emily Chou1, Liang Wang2, Paul Zhang3, Kris Prado1, Yiqian Gu3, Matteo Pellegrini3,4, 
and Arnold I. Chin1,4 

�
 ABSTRACT 

Antagonism of the PD-1/PD-L1 axis is a critical therapeutic strategy for 
patients with advanced bladder cancer. IFNγ functions as a key regulator 
of PD-L1 in both immune as well as cancer cells. Forkhead box P3 
(FOXP3) is a transcription factor synonymous in T regulatory cell function 
but with increasingly described functions in cancer cells. Here, we inves-
tigated the relationship between FOXP3 and PD-L1 in bladder cancer. We 
showed that FOXP3 is critical in the ability for IFNγ to activate PD-L1 in 
bladder cancer cells. FOXP3 can bind to the PD-L1 promoter and induces 
a gene program that leads to regulation of multiple immune-related genes 
and genes involved in epithelial-to-mesenchymal transition (EMT). Using 
in vitro and in vivo human and murine models, we showed that FOXP3 

can influence bladder cancer EMT as well as promote cancer metastases. 
Furthermore, FOXP3 may be a convergent factor for multiple activators of 
PD-L1, including the chemotherapeutic drug cisplatin. 

Significance: Historically a key transcription factor driving T regulatory 
cell function, FOXP3 has an increasingly recognized role in cancer cells. 
In bladder cancer, we defined a novel mechanism whereby FOXP3 me-
diates the activation of the immune checkpoint PD-L1 by the cytokine 
IFNγ. We also showed that FOXP3 induces other immune checkpoints 
as well as genes involved in EMT, promoting immune resistance and 
cancer metastases. 

Introduction 
Bladder cancer affects more than 81,000 people in the United States and 
570,000 individuals worldwide, leading to more than 200,000 deaths a year 
worldwide (1). Urothelial bladder cancer comprises the majority of bladder 
cancer cases, and up to 30% of patients initially present with muscle-invasive 
bladder cancer or metastatic disease at the time of diagnoses (2). Cisplatin- 
based chemotherapy has been the mainstay systemic therapy for patients 
with advanced urothelial bladder cancer for decades (3). However, recent 

studies have shown superiority of anti–PD-L1 checkpoint inhibitors in 
combination with chemotherapy over cisplatin-based chemotherapy alone in 
this patient population (4, 5). Urothelial bladder cancer is responsive to 
checkpoint inhibitors in part due to its high tumor mutational burden, in-
filtration of immune cells, and the expression of PD-L1 in up to 40% of 
tumors (3, 6, 7). 

Immune checkpoints are diverse molecules important in regulating the 
delicate balance of immune homeostasis. Interaction of PD-1 (CD279), an Ig 
superfamily member of the CD28 family of T-cell coreceptors, with its ligand 
PD-L1 (CD274/B7-H1) downregulates CD8+ T-cell immunity in peripheral 
tissues (8). Cancers have developed mechanisms to evade the immune sys-
tem by hijacking negative regulatory immune pathways, one of which is by 
increasing the expression of PD-L1 on tumor epithelial cells (8). Blocking 
this receptor–ligand interaction inhibits downregulation of cytotoxic CD8+ T 
lymphocytes (CTL) and sustains anti-tumor immune responses. The thera-
peutic targeting of inhibitory checkpoint molecules against CTL-associated 
protein 4 (CTLA-4), PD-1, and PD-L1 have led to profound clinical re-
sponses and have revolutionized the landscape of cancer immunotherapy 
across multiple cancer types (9). 

PD-L1 is expressed on both hematopoietic cells, such as T, B, and myeloid 
cells, and nonhematopoietic tissues, including vascular endothelium and 
cancer cells (8, 9). The level of PD-L1 expression on both tumor and infil-
trating immune cells is dynamic and correlates with response to anti–PD-1 
or anti–PD-L1 blockade therapy (10). Indeed, a threshold level of PD-L1 
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expression is used as an inclusion criterion for the treatment of multiple 
cancer types (11). IFNγ, a cytokine produced largely by T cells and NK cells, 
has been attributed as a master regulator of PD-L1 expression through the 
JAK-STAT-IRF1 pathway (8, 9, 12). An increasing body of literature has 
described multiple transcriptional and translational regulatory mechanisms 
of PD-L1 in both immune cells as well as in a variety of cancer cells (13). 
Further understanding of PD-L1 regulation may lead to future therapies to 
augment antitumor immunity. 

We have previously shown that bladder cancer expression of FOXP3 pre-
dominates as an alternatively spliced form, FOXP3Δ3, and negatively cor-
relates with patient outcomes (14). Further analysis of our initial 
overexpression studies of FOXP3Δ3 in bladder cancer cell lines suggested 
correlation to PD-L1 expression. We hypothesized that FOXP3 may regulate 
a gene program that induces immune resistance in bladder cancer. Here, we 
tested this hypothesis and investigated the relationship between FOXP3Δ3 
and PD-L1 in bladder cancer. 

Materials and Methods 
Cell culture 
Human bladder cancer cell lines HT1376 (RRID: CVCL_1292), T24 (RRID: 
CVCL_0554), and SW780 (RRID: CVCL_1728) were all originally authen-
ticated from ATCC (karyotyping and morphology). Murine MB49 cell lines 
were originally derived from carcinogen-induced urothelial cell carcinomas 
in C57Bl6 mice, obtained from Timothy Ratliff. Mycoplasma testing was 
conducted upon cell line receipt using MycoProbe Mycoplasma Detection 
Kit (R&D Systems, Cat# CUL001B) and used within 6 months of resusci-
tation from frozen aliquots (14, 15). PARCB1 and PARCB2 were generated 
from primary urothelial cells. No Mycoplasma testing was conducted, and 
cell lines were used within 6 months of resuscitation from frozen aliquots 
(16). Additional single-cell clones derived from these lines were expanded 
and frozen in multiple early-passage aliquots for experimentation and used 
within 6 months. Cell lines were maintained at 37°C with 5% CO2 in RPMI- 
1640 medium (Corning, Cat# 15-013-CV) or DMEM (Corning, Cat# 10-040- 
CV) supplemented with 10% FBS (Omega Scientific, Cat# FB-01) and 1% 
penicillin–streptomycin. For PD-L1 activation, cells were cultured in 6-well 
plates treated with human 100 ng/mL IFNγ (PeproTech, Cat# 300-02), hu-
man 100 ng/mL IL4 (PeproTech, Cat# 200-04), human 100 ng/mL IL10 
(PeproTech, Cat# 200-10), mouse 100 ng/mL IFNγ (PeproTech, Cat# 315- 
05), 20 μmol/L cisplatin (Sigma-Aldrich, Cat# 232120), or 20 μmol/L rux-
olitinib (Selleck Chemicals, Cat# S1378) for 48 hours as indicated. For IFNγ 
blocking, cells were cocultured with 2 µg/mL anti-human IFNγ Ab (BioL-
egend, Cat# 506502, RRID: AB_315435) or isotype control (BioLegend, Cat# 
401402, RRID: AB_2801451). PARCB1 and PARCB2 lines were cultured in 
advanced DMEM/F12 (Gibco, Cat# 12634-010) containing 10% B27 
(Thermo Fisher Scientific, Cat# 17504044), Glutamax (Thermo Fisher Sci-
entific, Cat# 35050061), 10 ng/mL human FGF (PeproTech, Cat# 100-18B), 
and 10 ng/mL human EGF (PeproTech, Cat# AF-100-15). 

Generation of KO cells 
HT1376 and SW780 cell lines deficient in FOXP3 were generated by CRISPR/ 
Cas9 using two independent guide RNAs (gRNA), AAACCGCCTCGA- 
AGATCTCGGCCC (Gr3) and AAACGGGGGAACCTTCCAGGGCCG 
(Gr4), targeting exon 2 (coding exon 1) and cloned into lenti-gRNA-puro 

(Addgene, Cat# 84752, RRID: Addgene_167911). MB49 cell lines deficient 
in FOXP3 were generated by CRISPR/Cas9 using two independent gRNAs, 
CCCCAGGAGTCTTGCCAAGC (Gr5) and GTGGGGGACCCTTCC- 
AAGGTC (Gr6), to target mouse Foxp3 exon 1 and cloned into lenti- 
gRNA-puro. Lentivirus were produced by standard methods. Briefly, 
HEK293T cells at 80% confluence were cotransfected with lenti-CRISPR- 
gRNA, VSV-G envelope plasmid, and pCMV-dR8.2 packaging plasmid by 
X-treme transfection reagent (Roche, Cat# 6366244001) following the 
manufacturer’s instructions. After transfection for 48 hours, supernatants 
containing virus were collected and filtered at 0.45 μm. Transduction of 
cells were performed in the presence of 8 μg/mL polybrene (Sigma-Aldrich, 
Cat# TR-1003-G). gRNA-expressing single clones were established by a 2 
to 3 weeks of selection with 1 μg/mL puromycin. Single-cell clones were 
generated and confirmed by Sanger sequencing. Gene knockout (KO) was 
confirmed by qPCR, Western blotting, and/or flow cytometry. CRISPR 
control lines were generated using gRNA targeting the luciferase gene. 

FOXP3 reconstitution 
FOXP3 and FOXP3Δ3 cDNA was cloned into the lentiviral vector FUCW 
driven by a Cytomegalovirus promoter and GFP, red fluorescent protein, or 
blue fluorescent protein driven by a ubiquitin promoter, respectively. 
HT1376 CRISPR KO lines, PARCB1 and PARCB2 cells, in single-cell sus-
pension were combined, with lentivirus expressing either FOXP3Δ3 or 
FOXP3 in the presence of 8 μg/mL polybrene. Single-cell clones were se-
lected for reconstitution, and FOXP3 expression was confirmed by Western 
blotting and flow cytometry. 

qPCR 
qPCR experiments were performed using SYBR Green on the ViiA 7 
(Applied Biosciences) with primers for human FOXP3Δ3 (50-GCAGCT- 
CTCAACGGTGGAT, 30-CTGATCATGGCTGGGCTCTC), human FOXP3 
(50- TGCCTCCTCTTCTTCCTTGA, 30- TTGAGAGCTGGTGCATGA- 
AA), human PD-L1 (50-GGACAAGCAGTGACCATCA, 30-CCCAGA- 
ATTACCAAGTGAGTCCT), murine Foxp3 (50- CACCTATGCCAC-CCT- 
TATCGG, 30- CATGCGAGTAAACCAATGGTA), and murine PD-L1 (50- 
AGTATGGCAGCAACGTCACG, 30- TCCTTTTCCCAGTACACCACT- 
A). Total RNA from cultured cells were extracted using TRIzol reagent 
(Invitrogen, Cat#15596026). cDNAs were synthesized with a high-capacity 
cDNA reverse transcription kit (Thermo Fisher Scientific, Cat# 4368814). 

Immunoblotting 
Human and mouse bladder cancer cell lines were lysed with 1% Triton X-100 
lysis buffer containing proteinase inhibitors (Roche, Cat# 11 836 153 001), 
protein concentration measured by Pierce BCA Protein Assay Reagent A 
(Thermo Fisher Scientific, Cat# 23228), and separated on NuPAGE 4% to 
12% Bis-Tris Gel (Invitrogen, Cat# NP0322Box). PARCB samples for PD-L1 
immunoblotting were first deglycosylated with 1% PNGase F (New England 
Biolabs, Cat# P0704S). Blots were incubated with anti-human FOXP3 (1: 
5,000, Invitrogen, Cat# 14-4774-82, RRID: AB_467552), anti-human PD-L1 
(0.25 μg/mL, R&D Systems, Cat# AF156, RRID: AB_2073445), anti-human 
phospho-STAT1 (1:1,000, Cell Signaling Technology, Cat# 9167, RRID: 
AB_561284), anti-mouse FOXP3 (1:5,000, Abcam, Cat# 54501, RRID: 
AB_880110), or anti-mouse PD-L1 (0.5 μg/mL, R&D Systems, Cat# AF1019, 
RRID: AB_354540), and secondary anti-goat or -rabbit horseradish 
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peroxidase–conjugated Ab (1:2,000, SouthernBiotech, Cat# 6425-05, RRID: 
AB_2796346, Cat# 3030-05, RRID: AB_2716837, and Cat# 4040-05, RRID: 
AB_2795942), with membranes visualized on film enhanced by chem-
iluminescence (Cytiva, Cat# RPN2332). GAPDH (1:5,000, Thermo Fisher 
Scientific, Cat# MA5-15738-HRP, RRID: AB_2537659) was used as the 
loading control. 

Immunoprecipitation 
For FOXP3 immunoprecipitation (IP), MB49 cell lysates were centrifuged at 
4°C at 12,000 g for 10 minutes. Supernatants were mixed with 5 μL Dyna-
beads (Invitrogen, Cat# 10003D) after 1:5 dilution with IP diluting buffer for 
2 hours at 4°C to preclear. Supernatants were collected and incubated with 
10 μg/mL anti-mouse FOXP3 Ab (BioLegend, Cat# 126402, RRID: 
AB_1089120) for 4°C overnight. Twenty-five μL Dynabeads were added to 
the Ab–lysate mix and incubated for 4 hours at 4°C. Immune complexes 
were collected and washed 5 times with co-IP buffer, and bound proteins 
were eluted by 2� SDS-PAGE loading buffer for Western blotting. 

Flow cytometry 
Human bladder cancer cell lines were collected with 0.05 or 0.25% trypsin- 
EDTA and washed with PBS containing 1% FBS. Human bladder lines were 
stained for anti-human PD-L1 (1:750, BV421 clone 29E.2A3, BioLegend, 
Cat# 329713, RRID: AB_10901164) and anti-human FOXP3 (1:20, Alexa 
Fluor 647 clone 259D/C7, BD Biosciences, Cat# 560045, RRID: AB_1645411) 
with intracellular staining performed using the manufacturer’s protocol 
(eBioscience, Cat# 00-5523). Murine bladder lines were stained with anti- 
mouse PD-L1 (1:1,000, BV421 clone 10F.9G2, BioLegend, Cat# 124315, 
RRID: AB_10897097) and anti-mouse FOXP3 (1:50, Alexa Fluor 647 clone 
MF23, BD Biosciences, Cat# 560402, RRID: AB_1645202). After staining, 
cells were analyzed on LSRFortessa Cell Analyzer (BD Bioscience). Data were 
collected using BD FACS Diva Software version 7 and analyzed with FlowJo 
v10.1.6 (RRID: SCR_008520). 

ChIP 
Chromatin immunoprecipitation (ChIP) assays were performed with 
HT1376 cells in accordance with standard protocols. HT1376 cells were 
treated with IFNγ for 48 hours, cross-linked for 9 minutes with 1% form-
aldehyde at 37°C, and quenched with 140 nmol/L glycine for 5 minutes. After 
rinsing with PBS containing proteinase inhibitors, cells were detached by 
scraping in 1.5 mL lysis buffer. Chromatin was sheared by sonication 
(Qsonica Q800R, 40 cycles of 20 seconds on and 40 seconds off at 4°C) to 
obtain chromatin fragment lengths of 100 to 800 bp. After centrifugation at 
14,000 RPM for 10 minutes at 4°C, the supernatant was collected and in-
cubated with anti-FOXP3 (Abcam, Cat# 54501, RRID: AB_880110) or 
control Ab (rabbit IgG) overnight with rotation at 4°C and then incubated 
for 2 hours with 24 μL Dynabeads (Invitrogen, Cat# 10003D) for each 250 μL 
lysate. After washing, IP DNA was eluted and treated with Proteinase K, and 
the cross-links were reversed. DNA was purified with chloroform. DNA 
concentration was measured by Qubit, and 1 ng of ChIP DNA was used 
for PCR. 

ChIP primers for binding sites 1 and 2 (50-ACCAGTGACATAAACAGA- 
CCAA, 30-TCCCAAATAGTGTTGCTGATCA), binding site 3 (50-CGTCAG- 
TTTGGATGTTTGGA, 30-CCAAAATTTCATGAATCACTTCAC), binding 
site 4 (50-GAAACCTACCTGTTCTCCCTCT, 30- AGAAAGTAAGTTGCA- 

GAACACTACA), binding site 5 (50-GGATTTCTGCTACATGTAGTG, 30- 
AATACCATTAAGGACTGAATTCA), binding site 6 (50-TCCCATTAG- 
TGGGTAAGAAAG, 30-TTCACTTATGAGCTTGACCA), and binding site 7 
(50-TTATTGTGAGATTGAACATCTTTCA, 30-AACTATACAAACTAC- 
ACATAACCC). 

Luciferase reporter assay 
The PD-L1 promoter sequence (�3,000–0 from the ATG initiation site) was 
cloned from HT1376 cells into the pGL4.10 luciferase vector at the Kpn1 and 
Xho1 restriction sites using the primers 50- TAAGCAGCTAGCTGA 
CCTCACAGGCCTGAA and 30-TAAGCACTCGAGCTTTCTGGAATG- 
CCCTAA. Mutations to putative FOXP3-binding sites were generated using 
Q5 Site-Directed Mutagenesis Kit (New England Biolabs, Cat# E0554). 
Primers were used for BS1 [50-CAGTGACATTTACAGACCAAAAAA, 30- 
GCTAGGCCCTGAGGATAGATT (ATAAACA to ATTTACA)], BS2 [50- 
AATATTTTTTAATTTATGGGTGA, 30- ATTTTTTTGCTAATTTGAAA-
GATC (TAAACA to TAATTT)], BS3 [50- GGTCTGCGGGACATTCTACG, 
30- AAGTGATATAATGGAAAGAACCCC (TAAACA to GGGACA)], BS4 
[50-CCTGTGTCGGGACACACAC, 30-AATCACTGTCAATATCTTGGA-
CATTTC (TAAACA to GGGTTT)], BS5 [50- CTTACTTTCTAT 
GAAAAGGGAAAATCAGTACA, 30- TTGCAGAACACTACATGTAGCA- 
GAAA (TGTTTAC to AAAAGGG)], BS6 [50- CATATCTTCACAGGG- 
ACTAAATATT, 30-ACAAATAGGCTTTCTTACC (ACAAACA to 
ACAGGGA)], and BS7 [50-ATCTTTCATAAAAAGGGATGTCACCT, 30- 
GTTCAATCTCACAATAAAAAATATAAGATATGAAA (TGTTTAC to 
AAAAGGG)]. Sequences were verified by Sanger sequencing. 

Dual-luciferase reporter assay system (Promega, Cat# E1910) was used 
according to the manufacturer’s protocol. Briefly, 1.25 � 105 293T cells were 
plated in 24-well plates (Corning) for 24 hours prior to transfection. 
Transfection was performed with 1.2 μL Lipofectamine 3000 Transfection 
Reagent with 50 ng luciferase reporter (wild-type PD-L1 promoter or mutant 
PD-L1 promoter plasmid DNA), 500 ng FOXP3Δ3 or FOXP3, and 5 ng 
Renilla diluted in 50 μL of Opti-MEM (Gibco) used as the internal control. 
Forty-eight hours after transfection, cells were washed with 1 mL PBS and 
lysed with 100 μL lysis buffer for 20 minutes, and luciferase activity was 
measured using a BG-1 luminometer (GEM Biomedical). 

RNA-seq 
Total RNA was isolated from HT1376 CT and HT1376 FOXP3 KO cells treated 
with IFNγ for 48 hours by Trizol (Thermo Fisher Scientific, Cat# 15596026). 
Triplicate samples were prepared for each condition. Libraries for RNA 
sequencing (RNA-seq) were prepared using the KAPA RNA HyperPrep Kit 
with RiboErase (Roche, Cat# KK8560) and sequenced on the NovaSeq S4 
(Illumina) with 150 bp paired end reads at approximately 50 million reads 
per sample. 

After RNA-seq, raw sequencing fastq files from HTSeq were aligned to the 
Homo sapiens GRCh38.103 reference genome using STAR. Contaminating 
bacterial Mycoplasma sequences were removed using Kraken. Aligned BAM 
files were converted into a non-normalized count matrix using htseq-count. 
Conversion from ENSEMBL ID to gene symbol using GRCh38.103 as the 
reference genome. After alignment, the input count matrix was normalized 
using the R package DeSeq2 median of ratios methods. Samples with read 
counts lower than 10 were omitted. Fold change calculations from the 
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Deseq2-normalized count matrix were obtained by taking the log2fold of the 
ratio of normalized counts between two groups. Apeglm shrinkage provided 
more accurate estimates of the effect size. We reported events with P < 0.05 
from DeSeq2. A Z score was calculated for each replicate and then averaged 
within groups. The R package pheatmap was used to plot heatmaps. 

DeSeq2-normalized count matrix was used as input for gene set enrichment 
analysis. Because we had three replicates per experimental condition, we 
used the gene set permutation and performed 1,000 permutations to cal-
culate the P value for gene lists. We compared our differentially expressed 
genes to the Molecular Signatures Database (MSigDB) collections H, C1, C2, 
C3, C4, C5, C6, C7, and C8. 

Animals 
6 to 8 weeks old female C57BL/6 (RRID: MGI_2159769) and NOD-scid 
IL2Rgammanull (NSG;RRID: IMSR JAX_005557) mice were acquired from 
the Jackson Laboratory. PARCB2 FOXP3Δ3 and PARCB2 FOXP3 cells (1 � 106) 
were subcutaneously implanted in NSG animals. Comparing C57Bl6 and 
NSG backgrounds, HT1376 CT and HT1376 FOXP3 KO cells (2 � 105) were 
resuspended in 50 μL PBS, mixed with 50 μL Matrigel (Corning, Cat# 
356237), and injected into the flanks of mice. Tumor volume was measured 
every other day and calculated using the following formula: tumor length 
(mm) � tumor width (mm) � tumor height (mm) � 0.4. Mice were sac-
rificed when the first tumors reached 10 mm in diameter per protocol. 
Tumors were divided and fixed in formalin and flash-frozen in optimal 
cutting temperature compound. To examine metastases, MB49 CT and 
MB49 Foxp3 KO cells (1 � 106) were intravenously introduced in the tail vein 
of C57Bl6 animals. At 2 weeks, animals were sacrificed, and lungs and liver 
were fixed in formalin and a portion flash frozen in optimal cutting tem-
perature. Animals were maintained at the University of California, Los 
Angeles (UCLA) Division of Laboratory and Animal Medicine facilities 
under the approval and guidance of the Institutional Animal Care and Use 
Committee of the UCLA under the protocol #2010-023. 

IHC and immunofluorescence 
Formalin-fixed sections were paraffin-embedded, sectioned at 5 μm, stained 
with hematoxylin and eosin, and examined by light microscopy. Human tu-
mors were examined by immunofluorescence using anti-human FOXP3 (1: 
300, Invitrogen, Cat# 14-4774-82, RRID: AB_467552), anti-human PD-L1 (1: 
200, Cell Signaling, Cat# 13684T, RRID: AB_2687655), anti-human E-cadherin 
(1:200, Invitrogen, Cat# 4A2C7, RRID: AB_2925243), anti-human N-cadherin 
(1:100, SinoBiological, Cat# 11039-R020, RRID: AB_2860274), anti-human 
ICAM-1 (1:200, Cell Signaling, Cat# 67836S, RRID: AB_2799738), and sec-
ondary anti-mouse Alexa Fluor 488 (1:1,000, Vector Laboratories, Cat# DI- 
2488, RRID: AB_2307439) or secondary anti-rabbit Alexa Fluor 594 (1:1,000, 
Invitrogen, Cat# A11006, RRID: AB_141373). IHC was performed using anti- 
human chromogranin A (1:200, Sino Biological, Cat# 100256-T08, RRID: 
AB_2860064) or anti-human neuron-specific enolase (NSE) (1:200, Pro-
teintech, Cat# 0149-1-AP, RRID: AB_2099180) and secondary anti-rabbit HRP 
(1:1,000, SouthernBiotech, Cat# 4050-05). Murine MB49 tumors were subject 
to immunofluorescence staining using anti-mouse PD-L1 (1:100 anti-mouse 
CD274, BioLegend, Cat# 124301, RRID: AB_961226), anti-mouse CD8 (1:100 
R&D, Cat# MB116, RRID: AB_357497), anti-mouse CD4 (1:200, BD Phar-
mingen, Cat# 550280, RRID: AB_393575), anti-mouse IFNγ (1:100 R&D, Cat# 
MAB4851, RRID: AB_2123046), anti-mouse E-cadherin (1:200, Cell Signaling, 

Cat# 3195, RRID: AB_2123046), anti-mouse N-cadherin (1:200, BioLegend, 
Cat# 844701, RRID: AB_2750044), anti-mouse ICAM-1 (1:300, BioLegend, 
Cat# 116101, RRID: AB_313692), anti-mouse chromogranin A (1:300, Pro-
teintech, Cat# 10529-1-AP, RRID: AB_2081122) or anti-mouse NSE (1:200, 
Proteintech, Cat# 10149-1-AP, RRID: AB_2099180), and secondary anti-rat 
Alexa Fluor 568 (1:1,000, Invitrogen, Cat# A11077, RRID: AB_141874) or anti- 
rat Alexa Fluor 488 (1:1,000, Invitrogen, Cat# 48262, RRID: AB_2896330) 
following standard protocols. Imaging was performed using Axio Imager 2 
(Zeiss). 

Primary tumors 
Primary urothelial bladder cancers [four high-grade muscle-invasive (HgT2) 
and two high-grade non–muscle invasive (HgT1)] were obtained following 
written informed consent under the approval of the UCLA Institutional 
Review Board (# 11-001363). 

Statistics 
Two-tailed Student t test was performed when comparing two groups and 
one-way ANOVA when comparing multiple groups (significance P < 0.05). 
Number of replicates and n values are indicated. Error bars represent SD or 
SEM with P values as indicated. 

Data availability 
Raw sequencing data are deposited to GEO GSE268243. 

Results 
FOXP3 mediates IFNγ-induced PD-L1 expression in 
bladder cancer cell lines dependent on JAK/STAT 
We first examined our prior RNAseq dataset in which FOXP3Δ3 was ex-
ogenously overexpressed in HT1376 bladder cancer cell lines and detected an 
increase of 5 to 8 folds in PD-L1 expression (14). As IFNγ is a key regulator 
for PD-L1 expression, we tested the ability for IFNγ to induce expression of 
endogenous FOXP3 and PD-L1 in HT1376, T24, and SW780 bladder cancer 
cell lines by flow cytometry. HT1376 cells have a high basal expression of 
FOXP3 and showed an approximately 50% induction of FOXP3 with a 2-fold 
induction of PD-L1 expression (Fig. 1A). Although T24 and SW780 lines 
have low basal expression of FOXP3, they exhibited a marked induction of 
both FOXP3 and PD-L1 upon IFNγ stimulation, with similar overall % 
expression as in HT1376 cells (Fig. 1A). 

To determine if PD-L1 expression is dependent on FOXP3, we knocked out 
all isoforms of FOXP3 by CRISPR/Cas9 targeting of exon 2 in HT1376 cells, 
which express high basal levels of FOXP3. Single-cell clones of representative 
HT1376 control KO (HT1376 CT) and HT1376 FOXP3 CRISPR KO 
(HT1376 FOXP3 KO) cell lines were stimulated with IFNγ and examined for 
expression of FOXP3 and PD-L1. In HT1376 FOXP3 KO cells, the absence of 
FOXP3 resulted in decreased basal PD-L1 expression and greatly impaired 
induction of PD-L1 by IFNγ, as measured by qPCR (Fig. 1B), Western 
blotting (Fig. 1C; Supplementary Fig. S1) and flow cytometry (Fig. 1D). To 
confirm our findings, we generated FOXP3 CRISPR KO in SW780 cells and 
similarly observed that FOXP3 is critical for the ability of IFNγ to induce 
PD-L1 expression (Supplementary Fig. S2A). 

We previously have shown that bladder cancers predominantly express the 
FOXP3Δ3 isoform over the full-length FOXP3, including in HT1376 cells 
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(14). To examine the ability of FOXP3 to rescue the KO phenotype, we 
reconstituted HT1376 FOXP3 KO cells with lentiviral vectors expressing 
FOXP3Δ3 or FOXP3. We found that both wild-type FOXP3 and FOXP3Δ3 
have the similar capacity to restore induction of PD-L1 expression, as 
measured by flow cytometry (Fig. 1E) and Western blotting (Fig. 1F; Sup-
plementary Fig. S1). Binding of IFNγ to the IFNγ receptor leads to activation 
of JAK1 and JAK2, phosphorylation and dimerization of STAT1, and sub-
sequent translocation to the nucleus, enabling downstream gene expression 
(17). To determine if IFNγ activates FOXP3 through the JAK-STAT path-
way, we stimulated HT1376 CT and HT1376 FOXP3 KO cells without and with 
the JAK1/2 inhibitor ruxolitinib. In HT1376 CT cells, ruxolitinib significantly 
curtained the ability for IFNγ to induce the expression of both PD-L1 and 
FOXP3 by flow cytometry, whereas minimal PD-L1 was induced by IFNγ 
irrespective of ruxolitinib in HT1376 FOXP3 KO cells, as expected (Fig. 1G). 
Loss of STAT1 phosphorylation by ruxolitinib in Western blotting con-
firmed adequate inhibition (Fig. 1H; Supplementary Fig. S1). Other cyto-
kines that signal through the JAK/STAT pathway, including IL4 and IL10, 
were tested in HT1376 cells and did not show any significant induction of 
FOXP3 or PD-L1 (Supplementary Fig. S3). 

FOXP3 regulates IFNγ-dependent gene expression in 
immune activation and EMT 
To understand the ability of FOXP3 to directly activate PD-L1, we screened 
the PD-L1 promoter sequence from the GRCh38 reference genome for the 
FOXP3-binding motifs A/G T/C AAACA and TGTTTAC and identified 
seven putative binding sites in the 3,000 base pairs upstream from the ATG 
transcriptional start site of the PD-L1 promoter (Fig. 2A; refs. 18, 19). 
Using ChIP PCR, we tested these putative binding sites, showing binding at 
ATAAACA (�2,824 to �2,817) and TAAACA (�2,768 to �2,762), which 
were tested together because of their proximity. We also found binding at 
TAAACA (�1,978 to �1,972) but not at the other sequences (Fig. 2B). This 
is supported by a recent study showing binding of the PD-L1 promoter in 
pancreatic ductal adenocarcinoma cells by FOXP3 (20). To further validate 
these putative binding sites, we cloned this region of the PD-L1 promoter 
and tested individual binding sites through site-directed mutagenesis. 
Luciferase reporter assays confirmed the importance of BS2 and BS3, but 
not BS1, in the ability of FOXP3Δ3 to activate the PD-L1 promoter 
(Fig. 2C). We then examined the ability for FOXP3 to activate PD-L1 and 
other genes through ChIP sequencing. However, we could not detect any 
specific binding of FOXP3 using all commercially available FOXP3 and 
FOXP3Δ3 antibodies in MT-2 T cell lines with high expression of en-
dogenous FOXP3, wild-type HT1376, and IFNγ-stimulated HT1376 cells, 
suggesting limitations of the currently available antibodies (Supplementary 
Fig. S4). 

Alternatively, to identify genes and pathways downstream of FOXP3 in 
context of IFNγ, we performed RNA-seq analysis of HT1376 CT and 
HT1376 FOXP3 KO lines without and with IFNγ stimulation. Initial gene 
set enrichment analysis of HT1376 CT and HT1376 FOXP3 KO cells iden-
tified FOXP3-dependent genes associated with inflammation and epi-
thelial-to-mesenchymal transition (EMT) (Fig. 2D; Supplementary Table 
S1). We then identified IFNγ-regulated genes and FOXP3-dependent 
genes to capture overlapping genes that were both IFNγ-regulated and 
FOXP3-dependent (Fig. 2E; Supplementary Tables S2 and S3). We 
identified 271 genes that were both IFNγ-inducible and FOXP3- 

dependent depicted in a heatmap (Fig. 2F; Supplementary Fig. S5; 
Supplementary Tables S4 and S5). From this subset of FOXP3-dependent 
IFNγ-inducible genes, we highlighted genes related to inflammation, 
including PD-L1 (CD274), other immune checkpoints, such as program 
cell death 1 ligand 2 (PDCD1LG2, also CD273/PD-L2/B7-DC) and 
indoleamine 2, 3-dioxygenase 1 (IDO1), and genes involved in 
EMT, including CEACAM-1, ICAM-1, MUC1, and ZEB1 (Fig. 2G; refs. 
21–26). 

Expression of FOXP3 in the genetically defined PARCB2 
bladder cancer model acquires a more aggressive 
phenotype 
We have previously developed a novel genetically defined bladder cancer 
model, PARCB, that transforms benign urothelial cells to aggressive bladder 
cancer with neuroendocrine features (16). This model is an ideal system to test 
the contribution of FOXP3Δ3 and FOXP3 expression with defined genetic 
drivers as opposed to the heterogeneity of traditional cell lines. We introduced 
lentiviral vectors expressing FOXP3Δ3 or FOXP3 into PARCB1 and PARCB2 
lines to generate PARCB1/2 FOXP3Δ3 and PARCB1/2 FOXP3 lines, respectively 
(Fig. 3A). We have previously shown that PARCB1 lines are more similar to 
primary small-cell bladder cancers, whereas PARCB2 cells are more similar to 
urothelial bladder cancers (16). PARCB2 cells have both a low endogenous 
expression of FOXP3 and low basal expression of PD-L1. Compared with 
parental PARCB2 cells, overexpression of both FOXP3Δ3 and FOXP3 showed 
significant induction of PD-L1 gene expression by qPCR (Fig. 3B) and protein 
expression confirmed by Western blotting (Fig. 3C; Supplementary Fig. S1). In 
contrast, PARCB1 lines expressed undetectable levels of FOXP3 and PD-L1. 
Overexpression of FOXP3Δ3 or FOXP3 in PARCB1 lines led to minimal 
induction of PD-L1 expression, suggesting additional factors perhaps required 
in small-cell cancers that may be critical in expression of PD-L1 (Fig. 3B). 

To examine the influence of FOXP3 in tumor architecture, we implanted 
PARCB2 FOXP3Δ3 and PARCB2 FOXP3 lines into immunocompromised 
NOD-scid IL2Rgammanull (NSG) mice. We found no significant differences 
in tumor sizes (Fig. 3D). Interestingly, histology of the tumors showed more 
densely packed cells consistent with a neuroendocrine phenotype and de-
creased papillary features in tumors derived from PARCB2 FOXP3Δ3 and 
PARCB2 FOXP3 compared with parental PARCB2 cell lines (Fig. 3E). As 
expected, we observed increased immunostaining of both FOXP3 and PD-L1 
in PARCB2 FOXP3Δ3 and PARCB2 FOXP3 tumors (Fig. 3E; Supplementary 
Table S6). The bias toward a neuroendocrine phenotype was confirmed by 
increased expression of chromogranin A and NSE in tumors derived from 
PARCB2 FOXP3Δ3 and PARCB2 FOXP3 cell lines (Fig. 3F; ref. 27). Charac-
teristic of the EMT phenotype, we observed a loss of E-cadherin expression 
as well as increased N-cadherin and ICAM-1 expression by overexpression 
of either FOXP3Δ3 or FOXP3 (Fig. 3G; Supplementary Table S6; ref. 28). 

Loss of Foxp3 in a murine bladder cancer model leads 
to smaller tumors and fewer metastases 
A limitation of the PARCB model is the use of xenografts and immune- 
deficient NSG animals. To examine the contribution of an intact immune 
system, we utilized the murine bladder cancer cell line MB49. Compared 
with the human gene, murine Foxp3 lacks the noncoding first exon and does 
not express isoforms (29, 30). We generated MB49 control CRISPR 
(MB49 CT) and MB49 lines with FOXP3 deficiency by CRISPR/Cas9 
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(MB49 Foxp3 KO). MB49 cells have a low basal expression of FOXP3 and 
PD-L1, whereas stimulation of MB49 cells by IFNγ leads to upregulation 
of both FOXP3 and PD-L1, consistent with our findings in human 
bladder cancer cell lines. KO of FOXP3 in MB49 cells decreased PD-L1 
gene expression by qPCR (Fig. 4A) and markedly decreased protein 
expression by Western blotting and flow cytometry (Supplementary Fig. 
S1,S6A and S6B). 

To examine the influence of the immune system in vivo, we compared the 
growth of MB49 CT and MB49 Foxp3 KO cells in a s.c. implantation model on 
syngenic C57Bl6 and immunodeficient NSG mice. In the immunocompetent 
C57Bl6 background, syngeneic tumors from MB49 CT cells grew larger than 
MB49 Foxp3 KO cells, exemplifying how the presence of FOXP3 confers a 
more aggressive phenotype (Fig. 4B). In the absence of an intact host im-
mune system, tumors from MB49 CT and MB49 Foxp3 KO cells grew at a 
similar rate, a result akin to PARCB2 cells in NSG animals, demonstrating 
the importance of an intact immune system in FOXP3-mediated functions 
(Fig. 4B). 

If a decrease in PD-L1 mediated by loss of FOXP3 contributed to the 
immune-dependent suppression of tumor growth, we would predict an in-
crease in infiltration of CD8+ cells. Immunofluorescence staining of tumors 
confirmed this hypothesis with a decrease in PD-L1, an increase in CD8+ 

T cells, and similar levels of CD4+ T cells in MB49 Foxp3 KO compared with 
MB49 CT tumors in the C57Bl6 background. Similar expressions of IFNγ 
were observed consistent with an insensitivity to IFNγ as a mechanism for 
the differences seen in the absence of FOXP3 (Fig. 4C; Supplementary Table 
S6). As expected, no T cells or IFNγ were expressed in tumors from NSG 
animals. 

The ability for FOXP3 to mediate EMT in MB49 cells, which have a high 
metastatic potential, was investigated (15). In a similar trend to PARCB cells, 
loss of FOXP3 led to an increase in E-cadherin expression and decrease in 
N-cadherin and ICAM-1 expressions (Fig. 4D; Supplementary Table S6). To 
functionally test the influence of FOXP3 in EMT, we examined the meta-
static potential of MB49 cells with and without FOXP3. Syngeneic C57Bl6 
mice were intravenously implanted with MB49 CT and MB49 Foxp3 KO cells, 
and the lungs and liver were examined for metastases. In wild-type MB49 CT 

mice, we noted an approximately 6-fold greater number of lung metastases 
compared with mice implanted with MB49 cells lacking FOXP3. In the liver, 
20% of mice developed metastases implanted with MB49 CT cells, whereas no 
mice implanted with MB49 Foxp3 KO cells developed tumors (Fig. 4E). Unlike 
in PARCB cells, expression of the neuroendocrine marker chromogranin A 
was unchanged in MB49 CT and MB49 Foxp3 KO tumors, with minimal ex-
pression of NSE noted, suggesting that FOXP3 is not a driver of the neu-
roendocrine phenotype (Supplementary Fig. S6C). 

FOXP3 shared across other activators of PD-L1, including 
cisplatin chemotherapy 
We next asked if FOXP3 is common to multiple upstream activators of PD-L1 
besides IFNγ. We tested the contribution for chemotherapy as an activator as 
induction of PD-L1 expression following chemotherapy has been observed 
clinically (31). We selected the platinum-based agent cisplatin which is ubiq-
uitous to the treatment of patients with metastatic urothelial bladder cancer. 
We stimulated HT1376, T24, and SW780 cell lines with cisplatin and noted 
significant induction of both FOXP3 and PD-L1 in all lines tested (Fig. 5A). To 

determine if induction of PD-L1 by cisplatin is mediated by FOXP3, we treated 
HT1376 CT and HT1376 FOXP3 KO lines with cisplatin and noted decreased PD- 
L1 induction in the FOXP3 KO cells, as measured by qPCR (Fig. 5B), Western 
blotting (Fig. 5C; Supplementary Fig. S1), and flow cytometry (Fig. 5D). A 
similar trend was seen in SW780 FOXP3 KO lines (Supplementary Fig. S2B). To 
test if cisplatin induction of PD-L1 was mediated by IFNγ, we treated HT1376 
cells with an IFNγ-depleting Ab. IFNγ depletion prevented PD-L1 induction 
by IFNγ but had no effect on PD-L1 induction by cisplatin (Fig. 5E). Thus, 
FOXP3-dependent cisplatin induced PD-L1 independent to IFNγ, suggesting 
that the transcriptional program of FOXP3 represents a shared pathway used 
by multiple activators of PD-L1 expression. 

Correlation of FOXP3 and PD-L1 in primary bladder 
cancers 
These findings point to a critical role of FOXP3 in IFNγ-mediated PD-L1 
expression with additional functional roles in promoting EMT in bladder 
cancer cells. To confirm our findings in primary tumors, we examined the 
correlation of FOXP3 and PD-L1 in six high-grade bladder cancer specimens 
and showed colocalization of FOXP3 and PD-L1 expression (Fig. 6A; Sup-
plementary Table S6). 

Discussion 
PD-L1 is an immune checkpoint that plays a central role in restraining T-cell 
activation as well as in the immune escape of cancers. As such, immune 
checkpoint inhibitors through blocking antibodies against PD-1 or PD-L1 
augment antitumor T-cell responses and play a central role in immuno-
therapy across multiple cancer types (9). PD-L1 expression is dynamic and 
regulated through a multiplicity of mechanisms. This includes transcrip-
tional regulation by inflammatory cytokines, including IFNγ, IL1β, IL4, IL6, 
and IL10, and oncogenic signaling pathways such as MYC, EGFR via STAT3, 
and β-catenin to highlight a few (13, 32–34). Additional mechanisms of PD- 
L1 regulation include post-transcriptional regulation by miRNAs and long 
ncRNAs, mTOR regulation of PD-L1 translation, and post-translational 
control through glycosylation or protection by CMTM6 from lysosomal 
degradation (35–39). 

Previously, we have shown the clinical correlation of FOXP3 expression to 
worse overall survival in patients with urothelial bladder cancer as well as 
the induction of genes that mediate cancer cell differentiation and che-
motherapy resistance (14). Here, using multiple human and murine cell 
lines, we have shown that FOXP3 is critical in regulating IFNγ-mediated 
PD-L1 expression. We showed direct binding of FOXP3 to the PD-L1 
promoter at specific FOXP3-binding motifs, confirming results initially 
described in pancreatic cancer cells (20). In murine MB49 cells, loss of 
FOXP3 led to smaller tumors, decreased expression of PD-L1, and in-
creased CD8+ T cells in tumor tissues in vivo but preserved tissue ex-
pression of IFNγ, supporting loss of IFNγ responsiveness. We examined 
other regulators of PD-L1 and showed that FOXP3 also mediated cisplatin- 
induced PD-L1 expression, suggesting a broader role as a common 
downstream mediator of PD-L1. Interestingly, we had previously shown 
that FOXP3 imparted cisplatin resistance in vitro (14). 

Urothelial bladder cancer is composed of multiple molecular subtypes (40–42). 
These subtypes have imparted distinct susceptibilities and resistance to treat-
ments, such as to chemotherapy or checkpoint blockage immunotherapy (43, 
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44). Previously, our PARCB model showed that from a defined molecular 
background, a single urothelial cell may be capable of developing into 
multiple histologic cancer subtypes, including neuroendocrine, urothe-
lial, and squamous, differentiated in an immune compromised 

background in vivo (16). Here, we showed that expression of FOXP3 in 
our PARCB2 model skews toward a histologically more aggressive phe-
notype with a further increase in neuroendocrine markers and loss of 
papillary features. 
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In examining the role of FOXP3 in tumors cells, we described a gene expression 
program that promotes cancer cells through upregulation of PD-L1 expression 
and other inflammation-related genes and genes involved in EMT. FOXP3 has 
been shown to promote EMT in non–small cell lung cancer cells through a Wnt/ 
β-catenin pathway (45). PD-L1 itself is associated with EMT, both directly in-
ducing EMT as well as its own expression regulated by the induction of EMT 
(46). Of particular interest, additional checkpoints, including PD-L2 and IDO1, 
may also be regulated by FOXP3. FOXP3’s role in cancer cells may function in a 
broader role to promote immune resistance in cancer cells as well as instigating 
tumor metastases (Fig. 6B). Accordingly, loss of FOXP3 in our murine tumor 
model led to drastically fewer metastases to the lung and liver compared with the 
wild-type counterpart. 

This study has several limitations that will provoke future studies. First, we 
could not achieve binding of endogenous or exogenous FOXP3 sufficient for 
ChIP sequencing analysis, which would complement our gene expression 
studies on the broader role of FOXP3 in cancer cells. This was attributed to 
limitations of current antibodies (47). Second, we showed no differences be-
tween FOXP3 versus FOXP3Δ3 in the ability to rescue IFNγ-mediated acti-
vation of PD-L1 in HT1376 cells, with a decreased ability of FOXP3 to activate 
PD-L1 in PARCB2 cells. Although the role of isoforms in Tregs has been 
unclear, a recent study explored the interdependence of FOXP3 and 
FOXP3ΔE2 (also referred to as Δ3 with noncoding exon 1), revealing a unique 
transcriptional program driven by FOXP3ΔE2 to foster Treg stability (29). The 
skewing of elevated FOXP3Δ3 to FOXP3 ratios in cancer cells likely presents a 
survival advantage to the cancer cell. Future investigation into the balance of 
isoform expression in cancer cells will complement the knowledge in Tregs. 
This may have functional impact when considering targeting FOXP3 in cancer 
therapy both with respect to cancer cells as well as in T regs. 

In summary, we describe the role of FOXP3 in bladder cancer cells that pro-
motes a more aggressive phenotype both histologically as well as functionally. 
Although we focused on its role in mediating PD-L1 expression, FOXP3 clearly 
plays a more expansive role in regulating gene expression across a panel of 
immune- and EMT-related genes in cancer cells. Whereas current checkpoint 

inhibitor therapies utilize blocking monoclonal antibodies against the ligand or 
its cognate receptor PD-1, knowledge of PD-L1 regulation may provide novel 
avenues for its targeting, including episomal sequestrating, ubiquitination, and 
targeting transcription regulation of PD-L1. Based on our findings, potential 
targeting of FOXP3 may impact PD-L1 expression and other immune check-
points, as well as other cancer cell intrinsic functions in promoting EMT. The 
consequence of any therapy against FOXP3 will need to acknowledge its effect in 
cancer cells as well as well-established roles in T regulatory cell function, which 
in itself has been a focus of cancer therapy (48). 
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