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Abstract

We solve elliptic semilinear boundary value problems in which the
nonlinear term is superlinear. By weakening the hypotheses, we are able
to include more equations than hitherto permitted. In particular, we do
not require the superquadracity condition imposed by most authors, and
it is not assumed that the region is bounded.

1 Introduction

Consider the problem

−∆u = f(x, u), x ∈ Ω ; u = 0 on ∂Ω,(1)

where Ω ⊂ R
n is a bounded domain whose boundary is a smooth manifold, and

f(x, t) is a continuous function on Ω̄×R. This semilinear Dirichlet problem has
been studied by many authors. It is called sublinear if there is a constant C
such that

|f(x, t)| ≤ C(|t| + 1), x ∈ Ω, t ∈ R.

Otherwise, it is called superlinear. Beginning in [1], almost all researchers study-
ing the superlinear problem assumed

(a1) There are constants c1, c2 ≥ 0 such that

|f(x, t)| ≤ c1 + c2|t|s,
∗Supported in part by an NSF grant.
†Supported by NSFC grant (GP10001019).
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where 0 ≤ s < (n + 2)/(n − 2) if n > 2.

(a2) f(x, t) = o(|t|) as t → 0.

(a3) there are constants µ > 2, r ≥ 0 such that

0 < µF (x, t) ≤ tf(x, t), |t| ≥ r,(2)

where

F (x, t) =
∫ t

0

f(x, s) ds.

They proved

Theorem 1.1. Under hypotheses (a1)−(a3), problem (1) has a nontrivial weak
solution.

The condition (a3) is convenient, but it is very restrictive. In particular, it
implies that there exist positive constants c3, c4 such that

F (x, t) ≥ c3|t|µ − c4, x ∈ Ω, t ∈ R.(3)

This eliminates many superlinear problems.
A much weaker condition that implies superlinearity is

(a′
3) Either

F (x, t)/t2 → ∞ as t → ∞
or

F (x, t)/t2 → ∞ as t → −∞

The purpose of the present paper is to explore what happens when (a3) is
replaced with (a′

3). Surprisingly, we find the following to be true.

Theorem 1.2. Under hypotheses (a1), (a2), (a′
3) the boundary value problem

−∆u = βf(x, u), x ∈ Ω ; u = 0 on ∂Ω,(4)

has a nontrivial solution for almost every positive β.

Unfortunately, this theorem does not give any information for any specific
β. We then turned our attention to solving (1) under a weaker assumption than
(a3). For this purpose we introduced

(a′′
3) There are constants µ > 2, r ≥ 0 such that

µF (x, t) − tf(x, t) ≤ C(t2 + 1), |t| ≥ r.(5)

Note that (a3) implies both (a′
3) and (a′′

3), but they are much weaker. We prove

Theorem 1.3. Under hypotheses (a1), (a2), (a′
3), (a

′′
3) problem (1) has a non-

trivial solution.
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We also have

Theorem 1.4. If we replace hypothesis (a′′
3) with

(a′′′
3 ) The function

H(x, t) := tf(x, t) − 2F (x, t)(6)

is convex in t.

then the problem (1) has at least one nontrivial solution.

Costa-Magalhães [2] solved (1) under the following assumptions:

|f(x, t)| ≤ a0|t|p−1 + b0, x ∈ Ω, t ∈ R,

lim sup
|t|→∞

F (x, t)|
|t|q ≤ b < ∞ uniformly for a.e. x ∈ Ω,

lim inf
|t|→∞

H(x, t)
|t|µ ≥ a > 0 uniformly for a.e. x ∈ Ω,

lim sup
t→0

2F (x, t)/t2 ≤ α < λ0 uniformly for a.e. x ∈ Ω,

F (x, t)/t2 → ∞ as |t| → ∞,

where 1 ≤ p < 2n/(n − 2), µ > n(q − 2)/2.

Willem-Zou [11] proved a weaker form of Theorem 1.2 for a special case.
They do not require hypothesis (a3), but they do assume

tf(x, t) ≥ 0, t ∈ R

and
tf(x, t) ≥ c0|t|µ, |t| ≥ r

for some constants c0 > 0, r ≥ 0, µ > 2. Some authors have replaced hypothesis
(a3) with (3). Although (3) is a more natural assumption, it is still too restrictive
to be desirable. It is for this reason that we introduced assumptions (a′

3) and
(a′′

3).

Stronger versions of Theorems 1.2 – 1.4 will be given in the next section. In
them we are not restricted to any particular boundary value problem, and it is
not assumed that the region Ω is bounded.
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2 The main theorems

Many elliptic semilinear problems can be described in the following way. Let Ω
be a domain in Rn, and let A be a selfadjoint operator on L2(Ω). We assume
that A ≥ λ0 > 0 and that

C∞
0 (Ω) ⊂ D := D(A1/2) ⊂ Hm,2(Ω)(7)

for some m > 0, where C∞
0 (Ω) denotes the set of test functions in Ω (i.e.,

infinitely differentiable functions with compact supports in Ω) and Hm,2(Ω)
denotes the Sobolev space. If m is an integer, the norm in Hm,2(Ω) is given by

‖u‖m,2 :=


 ∑

|µ|≤m

‖Dµu‖2




1/2

.(8)

Here Dµ represents the generic derivative of order |µ| and the norm on the right
hand side of (8) is that of L2(Ω). If m is not an integer, there are several ways
of defining the space Hm,2(Ω), all of which are equivalent. We shall not assume
that m is an integer.

Let q be a number satisfying

2 < q ≤ 2n/(n − 2m), 2m < n,(9)
2 < q < ∞, n ≤ 2m,

and let f(x, t) be a Carathéodory function on Ω × R. This means that f(x, t)
is continuous in t for a.e. x ∈ Ω and measurable in x for every t ∈ R.

We consider the problem

Au = f(x, u), u ∈ D.(10)

By a solution of (10) we shall mean a function u ∈ D such that

(u, v)D = (f(·, u), v), v ∈ D.(11)

If u is a solution of (11) and f(x, u) is in L2(Ω), then u is in D(A) and solves
(10) in the classical sense. Otherwise we call it a weak (or semistrong) solution.

We make the following assumptions

(A) The function f(x, t) satisfies

|f(x, t)| ≤ V (x)q(|t|q−1 + 1)(12)

and

f(x, t)/V (x)q = o(|t|q−1) as |t| → ∞,(13)
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where V (x) > 0 is a function in Lq(Ω) such that

‖V u‖q ≤ C‖u‖D, u ∈ D.(14)

Here

‖u‖q := (
∫

Ω

|u(x)|qdx)1/q,(15)

‖u‖D := ‖A1/2u‖,(16)

and q′ = q/(q − 1). If Ω and V (x) are bounded, then (14) will hold automat-
ically by the Sobolev inequality. However, there are functions V (x) which are
unbounded and such that (14) holds even on unbounded regions Ω (cf., e.g.,
[4]). With the norm (16), D becomes a Hilbert space.

(B) The point λ0 is an isolated simple eigenvalue with a bounded eigenfunction
ϕ0(x) �= 0 a.e. in Ω.

(C) There is a δ > 0 such that

2F (x, t) ≤ λ0t
2, |t| ≤ δ, x ∈ Ω,

where

F (x, t) :=
∫ t

0

f(x, s)ds.(17)

(D) There is a function W (x) ∈ L1(Ω) such that either

−W (x) ≤ F (x, t)/t2 → ∞ as t → ∞, x ∈ Ω.

or
−W (x) ≤ F (x, t)/t2 → ∞ as t → −∞, x ∈ Ω.

(E) There are constants µ < 1, C ≥ 0 such that

[2F (x, t) − µtf(x, t)]/(t2 + 1) ≤ C, t ∈ R, x ∈ Ω.

We shall prove

Theorem 2.1. Under the above hypotheses, the problem

Au = f(x, u), u ∈ D(18)

has at least one nontrivial solution.

We also have
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Theorem 2.2. If we replace hypothesis (E) with

(E′) The function

H(x, t) := tf(x, t) − 2F (x, t)(19)

is convex in t.

then the problem (18) has at least one nontrivial solution.

Problem (18) is called sublinear if f(x, t) satisfies

|f(x, t)| ≤ C(|t| + 1), x ∈ Ω, t ∈ R.(20)

Otherwise it is called superlinear. Hypothesis (D) requires (18) to be superlin-
ear.

The problem (18) has been studied by many people. The vast majority of
results obtained concern sublinear problems. Much less has been proved for the
superlinear case. In [1] the basic assumption was

0 < µF (x, t) ≤ tf(x, t), |t| ≥ r(21)

for some µ > 2 and r ≥ 0. This is a very convenient hypothesis since it readily
achieves mountain pass geometry as well as satisfaction of the Palais-Smale con-
dition. However it is a severe restriction; it strictly controls the growth of f(x, t)
as |t| → ∞. Almost every author discussing superlinear problems has made this
assumption. We have been able to weaken this assumption considerably, but
not to our complete satisfaction. We assume either that

µF (x, t) − tf(x, t) ≤ C(t2 + 1), |t| ≥ r

for some µ > 2 and r ≥ 0 or that (19) is convex in t. These allow much more
freedom for the function f(x, t). But they do not allow as much freedom as we
would like.

If we drop hypothesis (E) completely, then we are able to prove the following
theorems.

Theorem 2.3. If we replace hypotheses (C), (D) with

(C′) There are a δ > 0 and a λ̃ > λ0 such that

2F (x, t) ≥ λ̃t2, |t| ≤ δ, x ∈ Ω.

and

(D′) There is a function W (x) ∈ L1(Ω) such that

W (x) ≥ P (x, t) → −∞ as |t| → ∞, x ∈ Ω,

6



where

P (x, t) := F (x, t) − 1
2
λ0t

2.(22)

and drop hypothesis (E), then problem (18) has at least one nontrivial solution.

We also have

Theorem 2.4. Assume that (A)–(D) hold. Then for almost every β ∈ (0, 1),
the equation

Au = βf(x, u)(23)

has a nontrivial solution. In particular, the eigenvalue problem (23) has in-
finitely many solutions.

Theorem 2.5. If we replace hypothesis (C) in Theorem 2.4 with

(C′′) There are a δ > 0 and a λ̃ ≤ λ0 such that

2F (x, t) ≤ λ̃t2, |t| ≤ δ, x ∈ Ω.

and (D) with

(D′′) Either ∫
Ω

F (x, Rϕ0) dx/R2 → ∞ as R → ∞
or ∫

Ω

F (x,−Rϕ0) dx/R2 → ∞ as R → ∞.

then (23) has a nontrivial solution for almost every β ∈ (0, λ0/λ̃).

Corollary 2.6. If we replace hypothesis (C′′) in Theorem 2.5 with

(C′′′) F (x, t)/t2 → 0 uniformly as t → 0.

then (23) has a nontrivial solution for almost every β ∈ (0,∞).

The method (called the monotonicity trick) which allows one to solve (23)
for almost all values of β in some interval was first introduced by Struwe [8] for
minimization problems. It was applied by Jeanjean [3] and others for various
types of problems.

3 Preliminaries

Define

G(u) := ‖u‖2
D − 2

∫
Ω

F (x, u)dx.(24)

Under hypothesis (A), it is known that G is a continuously differentiable
functional on the whole of D. In fact, the following were proved in [5, pp. 56–58]
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Proposition 3.1. Under hypothesis (A), F (x, u(x)) and v(x)f(x, u(x)) are in
L1(Ω) whenever u, v ∈ D.

Proposition 3.2. G(u) has a Fréchet derivative G′(u) on D given by

(G′(u), v)D = 2(u, v)D − 2(f(·, u), v).(25)

Proposition 3.3. The derivative G′(u) given by (25) is continuous in u.

Theorem 3.4. Under hypotheses (A)–(C), the following alternative holds:

Either

(a) there is an infinite number of y(x) ∈ D(A) \ {0} such that

Ay = f(x, y) = λ0y(26)

or

(b) for each ρ > 0 sufficiently small, there is an ε > 0 such that

G(u) ≥ ε, ‖u‖D = ρ.(27)

4 Proofs

We now give the proof of Theorem 2.1.

Proof. We take

G(u) = ‖u‖2
D − 2

∫
Ω

F (x, u)dx.(28)

Under our hypotheses, Propositions 3.1–3.3 apply, and

(G′(u), v) = 2(u, v)D − 2(f(·, u), v), u, v ∈ D.(29)

By Theorem 3.4 we see that there are positive constants ε, ρ such that

G(u) ≥ ε, ‖u‖D = ρ(30)

unless

Au = λ0u = f(x, u), u ∈ D \ {0}(31)
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has a solution. This would give a nontrivial solution of (18). We may therefore
assume that (30) holds. Next we note that

G(±Rϕ0)/R2 = ‖ϕ0‖2
D − 2

∫
Ω

{F (x,±Rϕ0)/R2ϕ2
0}ϕ2

0dx → −∞ as R → ∞

by hypothesis (D), since ϕ0 �= 0 a.e. Since G(0) = 0 and (30) holds, we can
now apply the usual mountain pass theorem (cf., e.g., [5, p. 22]) to conclude
that there is a sequence {uk} ⊂ D such that

G(uk) → c ≥ ε, G′(uk) → 0.

Then

G(uk) = ρ2
k − 2

∫
F (x, uk)dx → c(32)

and

(G′(uk), uk) = 2ρ2
k − 2(f(·, uk), uk) = o(ρk),(33)

where ρk = ‖uk‖D. Assume that ρk → ∞, and let ũk = uk/ρk. Since ‖ũk‖D = 1,
there is a renamed subsequence such that ũk → ũ weakly in D, strongly in
L2

loc(Ω) and a.e. in Ω. By (32),∫
Ω

2F (x, uk)
u2

k

ũ2
k dx → 1.

Let
Ω1 = {x ∈ Ω : ũ(x) �= 0}, Ω2 = Ω \ Ω1.

Then
2F (x, uk)

u2
k

ũ2
k → ∞, x ∈ Ω1

by hypothesis (D). If Ω1 has positive measure, then∫
Ω

2F (x, uk)
u2

k

ũ2
k dx ≥

∫
Ω1

2F (x, uk)
u2

k

ũ2
k dx +

∫
Ω2

[−W (x)] dx → ∞.

Thus, the measure of Ω1 must be 0, i.e., we must have ũ ≡ 0 a.e. Moreover,∫
Ω

2F (x, uk) − µukf(x, uk)
u2

k

ũ2
k dx → 1 − µ.

But by hypothesis (E),

lim sup
2F (x, uk) − µukf(x, uk)

u2
k

ũ2
k ≤ lim supC

u2
k + 1
u2

k

ũ2
k = 0,

which implies that 1 − µ ≤ 0, contrary to assumption. Hence, the ρk are
bounded. We can now follow the usual procedures to obtain a weak solution of
(18) satisfying G(u) = c ≥ ε (cf., e.g., [5, p. 64]). Since G(0) = 0, we see that
u �= 0. This completes the proof.
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We postpone the proof of Theorem 2.2 until the next section.

In proving Theorem 2.3, we shall make use of

Lemma 4.1. Under hypothesis (C′), there is an α �= 0 such that G(αϕ0) < 0.

Proof. We can assume that

‖ϕ0‖D = 1.(34)

Thus,

G(αϕ0) = α2 − 2
∫

Ω

F (x, αϕ0) dx

≤ α2 − λ̃α2

∫
|αϕ0(x)|<δ

ϕ0(x)2dx

+
∫
|αϕ0(x)|>δ

V q(|αϕ0|q + |αϕ0|)

≤ α2 − λ̃α2‖ϕ0‖2 + C|α|q‖V ϕ0‖q
q

≤ α2[1 − (λ̃/λ0) + C ′|α|q−2].

This can be made negative by taking α sufficiently small.

Lemma 4.2. Under hypothesis (D′),

G(u) → ∞ as ‖u‖D → ∞.(35)

Proof. Suppose there is a sequence {uk} ⊂ D such that ρk = ‖uk‖ → ∞ and

G(uk) ≤ K.

Write

uk = wk + αkϕ0, ũk = uk/ρk, w̃k = wk/ρk, α̃k = αk/ρk,

where wk⊥ϕ0. If λ1 > λ0 is the next point in the spectrum of A, then

λ1‖w‖2 ≤ ‖w‖2
D, w⊥ϕ0.

Thus

G(uk) = ‖uk‖2
D − λ0‖uk‖2 − 2

∫
Ω

P (x, uk) dx

≥ (1 − λ0

λ1
)‖wk‖2

D − 2
∫

Ω

P (x, uk) dx

≥ (1 − λ0

λ1
)‖wk‖2

D − 2
∫

Ω

W (x) dx.
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The only way this would not converge to ∞ is if ‖wk‖D is bounded. But then
‖w̃k‖D → 0, and |α̃k| → 1. Since ‖ũk‖D = 1, there is a renamed subsequence
such that ũk → ũ weakly in D, strongly in L2

loc(Ω) and a.e. in Ω. Since w̃ = 0
and |α̃| = 1, we have ũ(x) = α̃ϕ0(x) �= 0 a.e. Hence, |uk(x)| = ρk|ũk(x)| → ∞
a.e. Consequently, ∫

Ω

P (x, uk) dx → −∞,

showing that G(uk) → ∞. This completes the proof.

We can now give the proof of Theorem 2.3.

Proof. Let
m = inf

D
G.

Then there is a sequence {uk} ⊂ D such that G(uk) → m. In view of Lemma
4.2, we must have ‖uk‖D ≤ C. Thus, there is a renamed subsequence such that
uk → u weakly in D, strongly in L2

loc(Ω) and a.e. in Ω. Now,

G(u) = ‖u‖2
D − 2

∫
Ω

F (x, u) dx

= ‖uk‖2
D − 2([uk − u], u)D − ‖uk − u‖2

D

− 2
∫

Ω

F (x, uk) dx + 2
∫

Ω

[F (x, uk) − F (x, u)]dx

≤ G(uk) − 2([uk − u], u)D + 2
∫

Ω

[F (x, uk) − F (x, u)]dx.

From our hypotheses, it follows that∫
Ω

F (x, uk) dx →
∫

Ω

F (x, u) dx

(cf., e.g., [5, p. 64]). We therefore have in the limit G(u) ≤ m, from which we
conclude that G(u) = m and G′(u) = 0. Hence, u is a weak solution of (10).
We see from Lemma 4.1 that m < 0. Since G(0) = 0, we see that u �= 0. This
completes the proof.

5 The eigenvalue problem

In this section we shall give the proofs of Theorems 2.4, 2.5 and 2.2. They
will be based on the following result given in [7]. Let E be a reflexive Banach
space with norm ‖ · ‖, and let A, B be two closed subsets of E. Suppose that
G ∈ C1(E, R) is of the form: G(u) := I(u)−J(u), u ∈ E, where I, J ∈ C1(E, R)
map bounded sets to bounded sets. Define

Gλ(u) = λI(u) − J(u), λ ∈ Λ,

where Λ is an open interval contained in (0,+∞). Assume one of the following
alternatives holds.
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(H1) I(u) ≥ 0 for all u ∈ E and either I(u) → ∞ or |J(u)| → ∞ as ‖u‖ → ∞.

(H2) I(u) ≤ 0 for all u ∈ E and either I(u) → −∞ or |J(u)| → ∞ as ‖u‖ → ∞.

Furthermore, we suppose that

(H3) a0(λ) := supA Gλ ≤ b0(λ) := infB Gλ, for any λ ∈ Λ.

We let Φ be the set of mappings Γ(t) ∈ C(E × [0, 1], E) with the following
properties:

a) for each t ∈ [0, 1),Γ(t) is a homeomorphism of E onto itself and Γ(t)−1 is
continuous on E × [0, 1)

b) Γ(0) = I

c) for each Γ(t) ∈ Φ there is a u0 ∈ E such that Γ(1)u = u0 for all u ∈ E and
Γ(t)u → u0 as t → 1 uniformly on bounded subsets of E.

We have

Theorem 5.1. Assume that (H1) (or (H2)) and (H3) hold.

(1) If A links B and A is bounded, then for almost all λ ∈ Λ there exists
uk(λ) ∈ E such that supk ‖uk(λ)‖ < ∞, G′

λ(uk(λ)) → 0 and

Gλ(uk(λ)) → a(λ) := inf
Γ∈Φ

sup
s∈[0,1],u∈A

Gλ(Γ(s, u)), k → ∞.

Furthermore, if a(λ) = b0(λ), then dist(uk(λ), B) → 0, k → ∞.

(2) If B links A and B is bounded, then for almost all λ ∈ Λ there exists
vk(λ) ∈ E such that supk ‖vk(λ)‖ < ∞, G′

λ(vk(λ)) → 0 and

Gλ(vk(λ)) → b(λ) := sup
Γ∈Φ

inf
s∈[0,1],v∈B

Gλ(Γ(s, v)), k → ∞.

Furthermore, if a0(λ) = b(λ), then dist(vk(λ), A) → 0, k → ∞.

We shall also need the following extension of Theorem 3.4.

Theorem 5.2. Let λ be a parameter satisfying 1 < λ ≤ K < ∞. Under hy-
potheses (A)–(D), for each ρ > 0 sufficiently small (not depending on λ), we
have

Gλ(u) := λ‖u‖2
D − 2

∫
Ω

F (x, u)dx ≥ (λ − 1)ρ2, ‖u‖D = ρ.(36)

If we replace hypothesis (C) with hypothesis (C′′), assuming 1 < λ̃/λ0 < λ ≤
K < ∞, then we have

Gλ(u) ≥
(

λ − λ̃

λ0

)
ρ2, ‖u‖D = ρ.(37)
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Proof. Let λ1 > λ0 be the next point in the spectrum of A, and let N0 denote
the eigenspace of λ0. We take M = N⊥

0 ∩ D. By hypothesis (B), there is a
ρ > 0 such that

‖y‖D ≤ ρ ⇒ |y(x)| ≤ δ/2, y ∈ N0.

Now suppose u ∈ D satisfies

‖u‖D ≤ ρ and |u(x)| ≥ δ(38)

for some x ∈ Ω. We write

u = w + y, w ∈ M, y ∈ N0.(39)

Then for those x ∈ Ω satisfying (38) we have

δ ≤ |u(x)| ≤ |w(x)| + |y(x)| ≤ |w(x)| + (δ/2).

Hence

|y(x)| ≤ δ/2 ≤ |w(x)|,(40)

and consequently,

|u(x)| ≤ 2|w(x)|(41)

for all such x. Now we have by (12) and (14)

Gλ(u) ≥ λ‖u‖2
D − λ0

∫
|u|<δ

u2dx − C

∫
|u|>δ

(|V u|q + V q|u|)dx

≥ λ‖u‖2
D − λ0‖u‖2 − C ′

∫
|u|>δ

|V u|qdx

≥ (λ − 1)‖y‖2
D + λ‖w‖2

D − λ0‖w‖2 − C ′′
∫

2|w|>δ

|V w|qdx

in view of the fact that ‖y‖2
D = λ0‖y‖2 and (41) holds. Thus, by (14),

Gλ(u) ≥ (λ − 1)‖y‖2
D +

(
λ − λ0

λ1
− C ′′′‖w‖q−2

D

)
‖w‖2

D, ‖u‖D ≤ ρ.(42)

We take ρ > 0 to satisfy

1 − λ0

λ1
> C ′′′ρq−2

This gives

Gλ(u) ≥ (λ − 1)ρ2 +
(

λ − λ0

λ1
− C ′′′ρq−2 − λ + 1

)
‖w‖2

D

≥ (λ − 1)ρ2, ‖u‖D = ρ.

13



Hence, (36) holds.
To prove (37) under hypothesis (C′′), let η = λ̃/λ0 and Λ = (η, K). Under

hypothesis (C′′) we have in place of (42)

Gλ(u) ≥ (λ − η)‖y‖2
D +

(
λ − λ̃

λ1
− C ′′′‖w‖q−2

D

)
‖w‖2

D, ‖u‖D ≤ ρ.(43)

We take ρ > 0 to satisfy

η − λ̃

λ1
> C ′′′ρq−2

Consequently,

Gλ(u) ≥ (λ − η)ρ2 +

(
λ − λ̃

λ1
− C ′′′ρq−2 − λ + η

)
‖w‖2

D

≥ (λ − η)ρ2, ‖u‖D = ρ.

This gives (37), and the proof is complete.

We now turn to the proofs of Theorems 2.4 and 2.5. We prove the latter first.
We shall prove Theorem 2.5 by applying Theorems 5.1 and 5.2.

Proof. We take E = D, Λ = (η, K), where η = λ̃/λ0, K > 1 is a finite number,
and

I(u) = ‖u‖2
D, J(u) = 2

∫
Ω

F (x, u) dx.

For the purpose of this application, it is sufficient to know that the sets

A± = [0,±Rϕ0], B = {x ∈ D : ‖x‖D = ρ}

link each other if R > ρ (cf., e.g., [5]). In our case hypothesis (H1) is satisfied.
We now check that (H3) holds. We observe that

G′
λ(u) = 0

is equivalent to (23) with β = 1/λ. Now, at least one of the expressions

J(±Rϕ0)/R2 = 2
∫

Ω

F (x,±Rϕ0) dx/R2 → ∞ as R → ∞

by hypothesis (D′′). Hence, for R sufficiently large, one of the inequalities

Gλ(±Rϕ0)/R2 ≤ K‖ϕ0‖2
D − 2

∫
Ω

{F (x,±Rϕ0)/R2 ≤ 0

holds. Thus,
a0(λ) ≤ 0, λ ∈ Λ.
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Moreover, it follows from Theorem 5.2 that (37) holds. Hence,

b0(λ) ≥ (λ − η)ρ2, λ ∈ Λ.

This shows that hypothesis (H3) holds. We can now apply Theorem 5.1 to con-
clude that for almost all λ ∈ Λ, there exists uk(λ) ∈ D such that supk ‖uk(λ)‖ <
∞, G′

λ(uk(λ)) → 0 and

Gλ(uk(λ)) → a(λ) ≥ b0(λ).

Once it is known that the sequence {uk} is bounded, we can apply the usual
theory to conclude that there is a solution of

G′
λ(u) = 0, Gλ(u) = a(λ)

(cf., e.g., [5, p. 64]). Moreover, from the definition, we see that a(λ) ≥ (λ−η)ρ2.
Hence, the equation G′

λ(u) = 0 has a nontrivial solution for almost every λ ∈ Λ.
This is equivalent to (23) having a nontrivial solution for almost every β ∈
(K−1, η−1). Since K was arbitrary, the result follows.

To prove Theorem 2.4, it suffices to take λ̃ = λ0 and show that hypothesis (D)
implies hypothesis (D′′). To see this, we note that∫

Ω

F (x,±Rϕ0) dx/R2 =
∫

Ω

F (x,±Rϕ0)
R2ϕ2

0

ϕ2
0dx → ∞

by hypothesis (D) and the fact that ϕ0(x) �= 0 a.e.

To prove Corollary 2.6, we let ε be any positive number. By hypothesis
(C′′′), there is a δ > 0 such that

F (x, t)/t2 ≤ ε, |t| ≤ δ, x ∈ Ω.

By Theorem 2.5, equation (23) has a nontrivial solution for a.e. β ∈ (0, λ0/ε).
Since ε was arbitrary, the result follows.

We now give the proof of Theorem 2.2.

Proof. By Theorem 2.4, for each arbitrary K > 1, and a.e. λ ∈ (1, K), there
exists uλ such that G′

λ(uλ) = 0, Gλ(uλ) = a(λ) ≥ (λ − 1)ρ2. Choose λn →
1, λn > 1. Then there exists un such that

G′
λn

(un) = 0, Gλn
(un) = a(λn) ≥ a(1) ≥ b0(1).

By Theorem 3.4, we may assume b0(1) ≥ ε > 0. Therefore,∫
Ω

2F (x, un)
‖un‖2

D

dx ≤ c.

Now we prove that {un} is bounded. If ‖un‖D → ∞, let wn = un/‖un‖D, then
wn → w weakly in D, strongly in L2

loc(Ω) and a.e. in Ω.
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Case 1: w �= 0 in D. We get a contradiction as follows:

c ≥
∫

Ω

2F (x, un)
‖un‖2

D

dx =
∫

Ω

2F (x, un)
u2

n

|wn|2dx

≥
∫

w �=0

2F (x, un)
u2

n

|wn|2dx −
∫

w=0

W1(x) dx → ∞.

Case 2: w = 0 in D. We define tn ∈ [0, 1] by

Gλn
(tnun) = max

t∈[0,1]
Gλn

(tun).

For any c > 0 and w̄n = cwn, we have∫
Ω

F (x, w̄n) dx → 0

(cf., e.g., [5, p. 64]). Thus,

Gλn
(tnun) ≥ Gλn

(cwn) = c2λn − 2
∫

Ω

F (x, w̄n) dx ≥ c2/2

for n large enough. That is, lim
n→∞

Gλn
(tnun) = ∞ and (G′

λn
(tnun), un) = 0.

Therefore,

Gλn(tnun) =
∫

Ω

(
f(x, tnun)tnun − 2F (x, tnun)

)
dx

=
∫

Ω

H(x, tnun) dx → ∞.

By hypothesis (E′),

Gλn
(un) =

∫
Ω

H(x, un) dx ≥
∫

Ω

H(x, tnun) dx → ∞.

But

Gλn
(un) = a(λn) ≤ sup

s∈[0,1] ,u∈A

Gλn
((1 − s)u)

≤ sup
s∈[0,1] ,u∈A

GK((1 − s)u)

< c,

a contradiction. Thus, ‖un‖D ≤ C. It now follows that

G′(un) → 0, G(un) → a(1) ≥ b0(1).

We can now apply Theorem 3.4.1 in [5, p. 64] to obtain the desired solution.
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