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Spin-orbit driven band inversion in bilayer graphene by van der Waals proximity effect
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3Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA

4National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
5Department of Physics, University of California, Berkeley, CA 94720 USA

Spin orbit coupling (SOC) is the key to realizing time-reversal invariant topological phases of matter [1, 2].
Famously, SOC was predicted by Kane and Mele[3] to stabilize a quantum spin Hall insulator; however, the
weak intrinsic SOC in monolayer graphene[4–7] has precluded experimental observation. Here, we exploit
a layer-selective proximity effect—achieved via van der Waals contact to a semiconducting transition metal
dichalcogenide[8–21]—to engineer Kane-Mele SOC in ultra-clean bilayer graphene. Using high-resolution ca-
pacitance measurements to probe the bulk electronic compressibility, we find that SOC leads to the formation of
a distinct incompressible, gapped phase at charge neutrality. The experimental data agrees quantitatively with a
simple theoretical model in which the new phase results from SOC-driven band inversion. In contrast to Kane-
Mele SOC in monolayer graphene, the inverted phase is not expected to be a time reversal invariant topological
insulator, despite being separated from conventional band insulators by electric field tuned phase transitions
where crystal symmetry mandates that the bulk gap must close[22]. Electrical transport measurements, conspic-
uously, reveal that the inverted phase has a conductivity ∼ e2/h, which is suppressed by exceptionally small
in-plane magnetic fields. The high conductivity and anomalous magnetoresistance are consistent with theoreti-
cal models that predict helical edge states within the inversted phase, that are protected from backscattering by
an emergent spin symmetry that remains robust even for large Rashba SOC. Our results pave the way for prox-
imity engineering of strong topological insulators as well as correlated quantum phases in the strong spin-orbit
regime in graphene heterostructures.

Depending on microscopic symmetry, spin orbit coupling
(SOC) in graphene can take several forms, leading in turn to
different electronic states at charge neutrality. In the absence
of SOC, the low energy electronic structure of monolayer
graphene is described by Dirac equations in two inequivalent
valleys centered at the two momenta K and K ′ of the hexag-
onal Brillouin zone. SOC, along with other perturbations that
break the equivalence of the two valleys or two carbon sub-
lattices, can be written with the aid of three sets of Pauli ma-
trices, σ̂i, τ̂i and ŝi, which operate on the space of the carbon
sublattices within the graphene unit cell, the K and K’ valleys,
and the physical electron spin, respectively. If the full symme-
try of the graphene crystal is preserved, the only symmetry-
allowed SOC term at low energies is the Kane-Mele (KM)
term[3], HKM = λKM

2 σzτzsz . However, additional terms can
arise when experimental substrates break lattice symmetries;
these include the Rashba SOC, HR = λR (σxτzsy − σysx),
and the so-called Ising SOC, HI = λIτzsz . In monolayer
graphene, only the intrinsic λKM term leads to a topologi-
cal phase[3, 12]. Moreover, this topological phase requires
λR < λKM[3], a physically unrealistic[4–6] scenario given the
measured value λKM ≈40 µeV[7].

Proximity effects between two dimensional crystals pro-
vide a tool for engineering electronic structures that do not
occur naturally within a single material. First principles cal-
culations indicate [8, 9] that heterostructures of graphene and
transition metal dichalcogenide semiconductors such as tung-
sten diselenide (WSe2) may endow graphene electrons with a
SOC strength of several meV—two orders of magnitude larger

than the intrinsic KM SOC[7] and sufficient, in principle, to
enable observation of new topological phases[23]. Numer-
ous experimental efforts have reported signatures of enhanced
SOC in graphene-transition metal dichalcogenide (TMD) het-
erostructures. However, most rely on measurements of either
spin relaxation[17–21] or weak antilocalization[10–16], nei-
ther of which can distinguish between bulk or defect mediated
SOC. One study[11] of quantum oscillations found evidence
for Rashba SOC within graphene band electrons of BLG, but
neither Ising SOC nor a λKM-driven topological phase[3] have
been reported.

Here we explore the effects of proximity-induced SOC
van der Waals heterostructures built around bilayer graphene
(BLG)-tungsten diselenide (WSe2) interfaces (see Materials
and Methods). In constrast to monolayer graphene, the elec-
tronic spectrum of BLG features a quadratic band touching
at charge neutrality. An applied perpendicular electric dis-
placement field, D, drives the system to a layer polarized
band insulator in which wavefunctions are strongly polarized
on the low energy layer, making BLG an ideal tool for prob-
ing short-range van der Waals proximity effects. To access
subtle features within the electronic structure, we use hexag-
onal boron nitride (hBN) gate dielectrics[24] and single crys-
tal graphite (G) top- and bottom-gate electrodes, which re-
duce charge inhomogeneity[25] while simultaneously allow-
ing independent control over the charge carrier density, n, and
D (see Fig. 1A). We measure the penetration field capaci-
tance, CP , which is inversely related to the bulk electronic
compressibility[26]. Fig. 1B shows CP as a function of n
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FIG. 1. Inverted phase in bilayer graphene from proximity induced SOC. (A) Device schematic for a symmetrically WSe2 encapsulated
device. The charge density n = ctvt+ cbvb and perpendicular displacement fieldD = 1

ε0
(ctvt − cbvb) are controlled by the voltages applied

to the top and bottom gate (vt(b)). (B) Penetration field capacitance, CP , as a function of charge density n and displacement field D measured
at B=0 and T≈50 mK in the Device S1. White arrows indicate compressibility minima associated with band splitting due to proximity induced
SOC. (C) CP measured at n = 0 for a device symmetrically encapsulated with WSe2 (S1, red), a device asymmetrically encapsulated in
hBN and WSe2 (A1, blue) and a control device fully encapsulated in hBN (C1, black). Only the symmetrically encapsulated device shows an
incompressible peak at D = 0. (D) Low energy bands near the K point of the Brillouin zone for u = 10 meV, calculated for a model that
includes an Ising SOC of equal magnitude (λI = 2.6 meV) but opposite signs on each layer. (E) Simulated CP from for the same model.
The symbols denote points corresponding to different Fermi levels called out in (D). (F) Low energy bands near the K point of the Brillouin
zone for u = 0, calculated within the same model. The bands are spin degenerate, and a gap is visible near zero energy. Light gray bands are
calculated in the absence of SOC.

and D measured in a BLG flake symmetrically encapsulated
in WSe2. The most prominent features of the data are incom-
pressible states at n ∼ 0 associated with layer-polarized band
insulators (BIs), which deepen as |D| increases and are char-
acteristic of BLG. However, WSe2 encapsulation also pro-
duces features associated with proximity-induced SOC. First,
four weak CP minima appear at finite n (indicated by arrows
in Fig. 1B), whose positions depend strongly on D. Sec-
ond, an additional incompressible phase is observed at charge
neutrality near D = 0, separated from the BIs by points of
high compressibility. We observe the incompressible state in
two devices, S1 and S2, that are symmetrically encapsulated
in WSe2 but it does not appear in either hBN-encapsulated
device C1 or in devices A1 and A2 that are asymmetrically
encapsulated in hBN and WSe2 (Figs. 1C and S3).

Both experimental features can be captured by a continuum
model of BLG[26] with the sole addition of an Ising SOC term
having equal magnitude—but opposite sign—on the two car-
bon layers (Fig. 1D-F). The opposite sign is consistent with
3D inversion symmetry. Fig. 1E shows simulated CP from
this model, in which the only free parameters are the strength
of the SOC (λI = 2.6 meV) and the out-of-plane dielectric
constant of the BLG (ε⊥BLG = 4.3). The latter is used to relate
the experimentally measured D to the the interlayer potential

difference u = − d
ε⊥BLG

D which enters the theoretical model
(here d = .33 nm is the BLG interlayer separation). At finite
u, Ising SOC splits the normally spin-degenerate conduction
and valence bands in bilayer graphene (Fig. 1D). TheCP min-
ima arise from the high compressibility associated with the
edge of the higher (lower) conduction (valence) band. These
band edges appear at finite density after the first bands have
already begun filling (Fig. 1D-E).

The CP maximum observed near n,D = 0 can be under-
stood by noting that within a two-band model of BLG, layer
and carbon sublattice are equivalent[27]. As a result, Ising
SOC with opposite signs on opposite layers is equivalent to
a single SOC term proportional to σz , precisely reproducing
the Kane-Mele SOC[3]. The two-band Hamiltonian of WSe2
encapsulated BLG is thus

Ĥ = ĤBLG +
λI

2
σzszτz +

u

2
σz, (1)

where ĤBLG describes BLG in the absence of either SOC
or electric fields, and σz indexes the two low energy carbon
atoms, or equivalently, layer.

Within this model, the SOC inverts the bands for |u| < |λI|,
opening a gap even at u = 0 (Fig. 1F). Due to the 2π-Berry
phase of the ĤBLG, however, the resulting inverted phase (IP)
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is not predicted to be a strong topological insulator and the
observed incompressible phase near n,D = 0 is not expected
to have edge states protected by time-reversal symmetry. The
IP is nevertheless topologically distinct from the high-u BIs
within this model; they differ in the polarization of the insula-
tors’ Wannier orbitals, which are pinned to one of three high-
symmetry positions within the BLG unit cell[22, 26]. The-
oretically, this distinction guarantees a gap closing between
the IP and BIs, consistent with the compressible CP minima
experimentally.

Proximity induced SOC arises from overlaps between
atomic orbitals, so is only expected to occur for the BLG
layer in direct contact with the WSe2. Fig. 2A shows a
schematic representation of an asymmetric heterostructure in
which WSe2 is in contact with only the bottom layer. In con-
trast to the symmetric devices, CP -minima appear in device
A1 only for electrons for D < 0 and only for holes for D > 0
(Fig. 2B). Note that in isolated BLG, all thermodynamic fea-
tures should respect D ↔ −D symmetry, suggesting that the
asymmetric CP minima are caused by coupling between the
BLG and other elements in the heterostructure. Theoretical
simulations (Figs. 2C and S3) confirm that when SOC is in-
duced only on the layer proximate to the WSe2, the spin split-
ting is restricted to the conduction (for D > 0) or valence (for
D < 0), consistent with the experimental data[26].

The nature of the induced SOC can be precisely validated
using the unique properties of BLG in a quantizing perpen-
dicular magnetic field (B⊥), where the energy spectrum is de-
scribed by highly degenerate Landau Levels (LLs). Twofold
quasi-degeneracies of the inequivalent valleys (ξ = ±1), spin
projections (s = ±1), and the lowest two orbital (N = 0, 1 )
LLs[27] combine to form an octet LL spanning ν ∈ (−4, 4),
where ν = 2π`2Bn denotes the LL filling factor. The degener-
acy between individual octet sublevels |ξNs〉 is lifted by small
intrinsic level splittings that include the Zeeman effect (lifting
the spin degeneracy), interlayer potential u (lifting the valley
degeneracy through the near-perfect equivalence of valley and
layer polarization in the lowest LLs [27]) and band structure
effects that distinguish the two orbitals. If disorder is suffi-
ciently low, these splittings tend to fully polarize the electron
system into one or more of the |ξNs〉, which manifests exper-
imentally as incompressible phases at all integer ν. As shown
in Fig. 2D, this signature is present in WSe2 supported sam-
ples, which show signs of full lifting of the octet degeneracy
for B⊥ & 2 T. Notably, the higher B⊥ phenomenology of
our samples suggests that WSe2 is comparable to hBN[24]
as a substrate for high quality graphene heterostructures, with
Coulomb driven states with fractional Hall conductivity ob-
served in compressibility (see. Fig. S6-S7).

Three features make the octets LL a precision probe of
SOC. First, the small scale of the intrinsic splittings al-
lows even few-meV scale SOC[8] to rearrange the LL fill-
ing sequence[28]. Second, the octet LL is entirely insensi-
tive to Rashba SOC[28], allowing a direct measurement of
the Ising SOC[28]. Finally, a broad set of D-field tuned phase
transitions are observed throughout the zero-energy LL, cor-

responding to transitions between states with differing layer
polarizations. The critical displacement field, D∗, required
to effect these transitions (Fig. 2E) provides a direct com-
parison of the energy for LLs on opposite layers (and thus
opposite valleys), and can be extracted with high precision
(Fig. 2E). Fig. 2F shows the single particle energy spectrum
of the octet LL with asymmetric Ising SOC[26]. While the
Coulomb interaction changes the order in which these levels
fill for −3 < ν < 3, it plays no role in determining which
LL fills first (ν = −3) or last (ν = 3)[29]. We thus focus
on the observed behavior of D∗ν=±3, which can be simply
related to u∗ν=±3 calculated from our theoretical model[26].
The spin structure of the LLs is readily probed by varying the
in-plane magnetic field B‖ at fixed B⊥, which varies the Zee-
man energy but leaves orbital energy scales fixed. In hBN
encapsulated devices, D∗ν=±3 is observed to be independent
from B‖ (Fig. S4), consistent with theoretical expectation
that the transition occurs between ground states of identical
spin. A strikingly different dependence is observed in de-
vice A1 (Fig. 2D); now D∗ν=±3 is a strong function of B‖
indicating that the transition is between ground states with
different spin. As shown in the figure, the observed behav-
ior is quantitatively consistent with our model of Ising SOC
on the WSe2 proximal layer, under the stipulations that λI be
larger in magnitude than the Zeeman energy due to the ap-
plied magnetic field (λI > EZ) and that the sign of λI be cho-
sen to cancel, rather then add, to the B⊥-proportioal part of
the Zeeman splitting in the affected valley. Under these con-
ditions, the level structure near ν = ±3 is inverted, leading
to the observed behavior in B‖ (see Fig. S5). Moreover, λI
can now be directly extracted from the dependence of D∗ν=±3
on B⊥[28], in the absence of B‖: because the effective Zee-
man splitting arising from the SOC is oriented out of plane,
an out-of-plane extrinsic Zeeman splitting will precisely can-
cel it when 2EZ = 2gµBB⊥ = λI. Fig. 2E shows D∗ν±3 for
B‖ = 0. The two curves cross at B⊥ ≈ 7.4 T from which it
follows that λI = 1.7 meV (see Fig. S9 for a similar analysis
in device A2, resulting in λI = 2.0 meV). This value is in rea-
sonable agreement with ab initio calculations[23] predicting
λI = 1.19 meV for similar device geometries.

In summary, to account for the bulk thermodynamic mea-
surements of TMD-encapsulated BLG it is necessary to in-
clude Ising SOC λI on the layers proximate to the TMD,
with equal and opposite values in the case of symmetric-
encapsulation. However, our bulk measurements do not quan-
titatively constrain the Rashba SOC λR. This is because the
effect of λR on the low-energy band structure of BLG is highly
suppressed by the large inter-layer hybridization scale γ1, and
hence has a negligible effect on both the LL structure[28] and
the zero magnetic field compressibility[22]. Previous exper-
imental works largely focusing on monolayer devices have
suggested a wide range of values for λR between 0 and 15
meV [11, 13, 14, 20, 30]. Despite its small influence on the
bulk, theoretically the Rashba SOC plays a critical role in the
edge state spectrum of our BLG Hamiltonian, Eq. 1. For
λR = 0, sz is conserved, and the edge is predicted to host
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FIG. 2. Layer selective spin-orbit proximity effect. (A) Schematic of an asymmetrically encapsulated device. (B) Penetration field capac-
itance, CP , as a function of n and D in the Device A1, measured at B=0 and T≈50 mK. The white arrows indicate compressibility minima
associated with band splitting, which we attribute to proximity induced SOC. (C) Low energy bands near the K point of the Brillouin zone for
u = −10 meV (top) and u = 10 meV (bottom), calculated for a model that includes an Ising SOC of (λI = 1.7 meV) on the bottom layer. (D)
CP as a function of ν = 2π`2Bn and D for device A1 at B⊥ = 5 T. (E) CP traces taken at the locations of the white dotted lines in panel (D)
for ν = ±3. The minima in CP correspond to phase transitions that occur at D∗ν=±3. (F) Energy spectrum of the octet LL calculated within
a continuum model with λI = 5 meV on the bottom layer. The energy levels are plotted as a function of u for B⊥ = 5 T. Solid/dashed line
denote spin projected parallel/antiparallel to the applied B⊥. The indicated u∗ν=±3 correspond to the layer transitions for filling or emptying a
single level from the octet. Note that for the chosen sign of λI, the net spin splitting on the proximity-affected layer is reversed. (G) Measured
D∗ν=±3—proportional to u∗ν=±3—as a function of BT for fixed B⊥ = 4 T in device A1. The dashed lines are fits to our model [26] with
λI = 1.7 meV on the the bottom layer. (H) Measured D∗ν=±3 as a function of B⊥ with B‖ = 0 in device A1. Dashed lines are fits to the same
model as in panel (G).

two pairs of counter-propagating, spin filtered modes with a
quantized conductance (and spin Hall effect) of 4 e

2

h [22, 23].
When λR 6= 0, however, sz symmetry is weakly broken and
backscattering is expected.

In order to explore the possibility of edge state transport ex-
perimentally, we measure the longitudinal resistance (Rxx =
1/σxx) as a function of D and n at BT = 0 for a symmetri-
cally encapsulated device (S2) fabricated with transport con-
tacts. The IP is readily evident (Figs. 3A(i) and S9B), but
is not a strong insulator, showing a finite four-terminal con-
ductivity σxx & e2/h at low temperatures. Such behavior is
consistent with transport via edge states with a finite transmis-
sion coefficient, as might be expected for a finite length helical

edge in which backscattering is suppressed but not completely
forbidden. However, it is also consistent with bulk conduction
through a mesoscopically disordered sample.

To disambiguate these two scenarios, we study the response
of σxx to a small in-plane magnetic field,B‖, which breaks σz
conservation. B‖ is expected to rapidly localize spin-filtered
edge states while having a minimal effect on the bulk en-
ergy spectrum when EZ < λI (i.e. B‖ < 10 − 20 T for
λI ∼ 1-2meV). Indeed, the IP shows strong in-plane magneto-
resistance at exceptionally small values of B‖, as shown in
Figs. 3A(i-iii), a response that is completely absent in the BI
phases. This is in contrast with CP measurements of the bulk,
which show no detectable dependence on B‖ at low fields and
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FIG. 3. Magnetoconductance and edge state transport in the inverted phase. (A) Longitudinal conductance, σxx = 1/Rxx, measured
in a four terminal geometry at n = 0. (i) σxx as a function of D for different values of B‖. The IP is visible as a conductance suppression
between |D| < 20meV/nm, separated by conductance maxima from the BIs at large |D|. (ii) σxx as a function ofB‖ for different values ofD.
Strong in-plane magnetoconductance is observed only in the IP, and not in the BIs. (iii) Subtracted ∆σxx = σxx(B‖)− σxx(B‖ = 300mT),
highlighting that the anomalous in-plane magnetoconductance is restricted to the IP. (B) CP as a function of D and B‖ with B⊥ = 0 T.
Experimental data for device S1 is plotted on the left and simulated CP from the continuum model is plotted on the right. (C) Band structure
calculated for a 1000 lattice-site wide BLG ribbon with Ising SOC of equal magnitude (λI = 5 meV) and opposite sign on the opposite layers.
Within the bulk gap, a set of spin polarized energy bands emerge with wave functions tightly localized on the sample boundary. The top inset
shows a detailed view of the edge states that approach E=0 near theM point of the Brillouin zone forEZ = gµBB‖ = 0 (Left) andEZ = 0.5
meV (right). These states are not gapless even for EZ = λR = 0. The lower panel shows the same calculation for edge states near the K
point. While gapless for EZ = λR = 0, in-plane field produces a gap proportional to EZ .

a high field response that is well accounted for in our theoret-
ical model (Fig. 3B).

To explore the plausibility of edge state transport in the IP,
we perform numerical simulations of the band structure for
a finite width BLG ribbon[26]. The resulting energy levels
(Fig. 3C) reproduce the bulk gap from the continuum model,
but additionally feature states localized on the edge of the rib-
bon that approach E = 0 at the K, K ′, and M points in
the Brillouin zone. Closer inspection reveals that while the
M point (Fig. 3C, top inset) edge states are gapped even in
the absence of Rashba SOC, the states near the K and K’
points (Fig. 3C, bottom inset) are indeed gapless and heli-
cal. Simulations[22] show that the helical edge states are re-
markably robust to Rashba SOC: the edge gap is strongly sup-

pressed by interlayer hopping terms in the BLG band struc-
ture, so that the anticipated gap is ∆edge ∝ λ2R/γ1 ≈ .25 meV
even for λR = 10 meV, near the largest values reported in the
literature[11]. In contrast, the helical edge states are highly
sensitive to finite B‖ (Fig. 3C, right panels of top and bottom
insets), developing an energy gap directly proportional to the
Zeeman energy ∆edge ≈ gµBB‖ ≈ .1 meV ×B‖/T.

These considerations are qualitatively consistent with the
observed in-plane magnetoresistance anomaly. However, we
note that the fine structure of the edge states is highly sensi-
tive to choice of theoretical parameters, and ignores electron-
electron interactions which may play a significant role. Our
experimental magnetoresistance data saturate at a rather low
resistance value, well below h/e2, possibly indicating residual
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bulk conductance. It bears noting that the weak edge transport
is understood to be a consequence of the accidental approxi-
mate sz-conservation in this system. However, recent theo-
retical work[22] argues that the same fabrication technique
implemented with ABC trilayer graphene—where the SOC
gaps a cubic band touching with 3π Berry phase—results in a
strong topological insulator with time-reversal symmetry pro-
tected edge states. Notably, the multi-layer graphene/WSe2
platform generically allows for gate tunable transitions be-
tween topological and trivial insulating states, a long-standing
milestone in the quest for reconfigurable topological circuits.
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Materials and Methods: Five bilayer graphene van der
Waals heterostructure devices (labeled C1, A1, S1, A2/S2,
A3) were fabricated and studied in this work, as shown Fig.
S1. All devices were fabricated using a stacking and transfer
method based on van der Waals adhesion[31]. Contact to the
bilayer graphene was achieved using ∼ 10 nm thick graphite
flakes. All devices made use of single crystal hexagonal boron
nitride gate dielectrics[24] and graphite gates[25], which in
combination are known to minimize extrinsic charge disor-

der. Devices A1, S1, and A2/S2 were fabricated using WSe2
crystals grown by a flux method[32], while device A3 was
fabricated using WSe2 from a commercial source (2Dsemi-
conductors.com). A mixture of CHF3 and O2 was used to dry
etch the stacks to define the device area and create connections
to the bilayer graphene and top and bottom gates. Electrical
contact was made to the edges of the exposed graphite flakes
using a three layer metal film of Cr/Pd/Au (3nm/15nm/80nm).

Penetration field capacitance measurements were per-
formed on all devices and additional connections were pat-
terned in device A2/S2 in order to perform electrical transport.
With the exception of device A2/S2, all devices had character-
istics corresponding to uniform encapsulation on each facet
by either hBN or WSe2, depending on the device configura-
tion. Device A2/S2 showed two sets of LL phase transitions
in the zero-energy LL, consistent with the device having one
asymmetric portion (A2) and one symmetric portion (S2). Ex-
tended data from this device is presented in Fig. S9.

Small changes in device capacitance are measured using a
low temperature capacitance bridge[33] which effectively dis-
connects the device capacitance from the large capacitance of
the cryostat cabling, see Fig. S2. CP is a measure of the
capacitance between the top and bottom gates and its mag-
nitude is high when the bilayer graphene is incompressible
(gapped) and low when it is compressible (conducting). CP
is measured by applying a fixed AC excitation (17-33 kHz) to
the top gate (δVtop) and the phase and amplitude of a second
AC excitation with the same frequency is adjusted and ap-
plied to a standard reference capacitor (Cref) on the low tem-
perature amplifier in order to balance the capacitance bridge.
A commercial high electron mobility transistor (FHX35X)
transforms the small sample impedance to a 1 kΩ output
impedance roughly translating to a (power) gain of ∼1000.
Vtop and Vsamp (at a fixed Vgate) are swept in order to ad-
just charge density n = cT vT + cBvB and displacement field
D = (cT vT − cBvB)/(2ε0).

All measurements were performed within the electronic
band-gap of WSe2. Charge accumulation in the WSe2 lay-
ers is evident in capacitance measurements at high densities
and manifests as apparent negative signals in CP as charge
carriers are transferred from bilayer graphene to the opposite
facet of the WSe2 substrates.
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SUPPLEMENTARY MATERIALS

Device fabrication and measurement

Five bilayer graphene van der Waals heterostructure devices (labeled C1, A1, S1, A2/S2, A3) were fabricated and studied
in this work, as shown Fig. S1. All devices were fabricated using a stacking and transfer method based on van der Waals
adhesion[31]. Contact to the bilayer graphene was achieved using ∼ 10 nm thick graphite flakes. All devices made use of
single crystal hexagonal boron nitride gate dielectrics[24] and graphite gates[25], which in combination are known to minimize
extrinsic charge disorder. Devices A1, S1, and S2/S2 were fabricated using WSe2 crystals grown by a flux method[32], while
device A3 was fabricated using WSe2 from a commercial source (2Dsemiconductors.com). A mixture of CHF3 and O2 was used
to dry etch the stacks to define the device area and create connections to the bilayer graphene and top and bottom gates. Electrical
contact was made to the edges of the exposed graphite flakes using a three layer metal film of Cr/Pd/Au (3nm/15nm/80nm).

Penetration field capacitance measurements were performed on all devices and additional connections were patterned in device
A2/S2 in order to perform electrical transport. With the exception of device A2/S2, all devices had characteristics corresponding
to uniform encapsulation on each facet by either hBN or WSe2, depending on the device configuration. Device A2/S2 showed
two sets of LL phase transitions in the zero-energy LL, consistent with the device having one asymmetric portion (A2) and one
symmetric portion (S2). Extended data from this device is presented in Fig. S9.

Small changes in device capacitance are measured using a low temperature capacitance bridge[33] which effectively discon-
nects the device capacitance from the large capacitance of the cryostat cabling, see Fig. S2. CP is a measure of the capacitance
between the top and bottom gates and its magnitude is high when the bilayer graphene is incompressible (gapped) and low when
it is compressible (conducting). CP is measured by applying a fixed AC excitation (17-33 kHz) to the top gate (δVtop) and the
phase and amplitude of a second AC excitation with the same frequency is adjusted and applied to a standard reference capacitor
(Cref) on the low temperature amplifier in order to balance the capacitance bridge. A commercial high electron mobility tran-
sistor (FHX35X) transforms the small sample impedance to a 1 kΩ output impedance roughly translating to a (power) gain of
∼1000. Vtop and Vsamp (at a fixed Vgate) are swept in order to adjust charge density n = cT vT + cBvB and displacement field
D = (cT vT − cBvB)/(2ε0).

All measurements were performed within the electronic band-gap of WSe2. Charge accumulation in the WSe2 layers is
evident in capacitance measurements at high densities and manifests as apparent negative signals in CP as charge carriers are
transferred from bilayer graphene to the opposite facet of the WSe2 substrates.

FIG. S1. (A) Optical image of the control device C1 with accompanying model (below). (B) Optical image of the asymmetric device A1 with
accompanying model (below). (C) Optical image of the symmetric device S1 with accompanying model (below). (D) Optical image of another
symmetric device with a single-sided region. Details about this device are presented in Fig. S9. (E) Optical image of another asymmetric
device A3 with accompanying model (below). This device showed additional features in the magnetocapacitance measurements which are
associated with a moiré superlattice potential due to alignment of the bilayer graphene with the top BN, see Fig. S7.
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FIG. S2. Electrical schematic showing the details of the penetration field capacitance measurements. The components enclosed in the red
dashed box are inside the cryostat, held at base temperature. Voltages are applied to Vtop and Vsamp (at a fixed Vgate) in order to adjust charge
density n = cT vT + cBvB and displacement field D = (cT vT − cBvB)/(2ε0).

FIG. S3. (A) Penetration field capacitance, CP , as a function of charge density n and displacement fieldD measured at B=0 and T≈50 mK in
the control device C1. (B) Schematic of the device C1, a BLG flake encapsulated with hBN. (C) Simulated CP as a function of interlayer bias,
u, and charge density, n, from a low energy continuum model for the control Device C1. (D) Low energy bands near the K point of the Brillouin
zone with ky = 0. Line color represents the expectation value of the out-of-plane projection of the electron spin, 〈Sz〉. Panels correspond to
u = 10 meV (top), u = 0 meV (middle), and u = −10 meV (bottom). (E) CP for device A1. Arrows indicate weak features in CP . (F)
Schematic of the device A1, in which the BLG is asymmetrically encapsulated between WSe2 and hBN crystals. (G) Simulated CP from for
the asymmetric geometry with λI = 1.7 meV Ising SOC on the bottom layer. Arrows denote band-edge singularity-associated features arising
from spin-split valence (conduction) bands for electron (hole) doping, visible in (H) the low energy band structure. (I) CP measured for device
S1. Note the incompressible phase centered at D = 0, n = 0, absent in either control or symmetric devices. (J) Schematic of device S1, in
which the BLG is symmetrically encapsulated between two few-layer WSe2 crystals. (K) Simulated CP for the symmetric geometry, with an
Ising SOC of equal magnitude (λI = 2.6 meV) but opposite signs on opposite layers. (L) Low energy bands in the symmetric geometry near
the K point of the Brillouin zone with ky = 0. Line color represents the expectation value of the out-of-plane projection of the electron spin,
〈Sz〉. Panels correspond to u = 10 meV (top), u = 0 meV (middle), and u = −10 meV (bottom).
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Comparison of experimental data and numerical simulations at B = 0 for varying λR

In order to determine what type of spin-orbit symmetry breaking terms are present in the symmetric device, we analyze the
band structure and simulated capacitance CP for a one sided device in further detail. As discussed in the main text, the band
structure and in turn the system for the symmetric device are almost completely insensitive to the value of the Rashba SOC
under the assumption of equal and opposite Rashba coupling in the top and bottom layer. To circumvent this peculiar property
we focus on the one-sided device, which does not exhibit similar insensitivity to Rashba SOC due to its asymmetric construction.

The measured capacitance for the one sided device is shown in Fig. S4A. In addition to the symmetric gapped regions due
to the applied interlayer potential (as also seen in the control device, C1), we observe two clearly defined asymmetric features
(indicated with white arrows on the Fig. S4) present in the u > 0, n < 0 and u < 0, n > 0 regions. Each feature consists of two
line-like “dips” in capacitance. By definition, minima in CP correspond to maxima of density of compressibility. A maximum
of compressibility in turn suggests an extremum of the band structure (van Hove singularities). With this understanding in mind
we consider three separate device simulations

1. a pure Ising SOC system: a non-zero Ising coupling, zero Rashba coupling (Fig. S4B),

2. a pure Rashba SOC system: a zero Ising coupling, non-zero Rashba coupling (Fig. S4C),

3. a mixed system: a non-zero Ising coupling, non-zero Rashba coupling (Fig. S4D).

Corresponding band structures for the pure Ising (Fig. S4E-H) and pure Rashba (Fig. S4I-L) devices are shown in the the panels
below the capacitance simulations. We clearly see that neither Rashba nor Ising term lead to formation of a local minimum of the
bandstructure. The Ising SOC together with interlayer potential causes an energy splitting of either conduction or valence bands
(Fig. S4E), whilst the Rashba SOC causes primarily splittings in momenta (Fig. S4I). Of these two effects only the splitting
in energy will lead to two van Hove singularities as seen in the experimental map Fig. S4A. This is further exemplified by the
energy contours plots of the two systems (Fig. S4F-H and Fig. S4J-L), which show a clear difference between bandstructures for
the pure Ising and pure Rashba devices. We note however that a mixed system (both a non-zero Ising and Rashba term) cannot
be excluded based on this analysis as the capacitance of the mixed system possesses all qualitative features of a pure Ising device
as shown in Fig. S4D.
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FIG. S4. (A)CP measurement of device A1 as a function of n andD. (B) SimulatedCP from a low energy continuum model with a one-sided
Ising SOC of λI = 1.7 meV. (C) Simulated CP from a low energy continuum model with a one-sided Rashba SOC of λR = 15 meV. (D)
Simulated CP from a low energy continuum model with a one-sided Ising and Rashba SOC of λI = 1.7 meV, λR = 15 meV, respectively. (E)
Low energy bands near the K point of the Brillouin zone with ky = 0, u = −10 meV, and λI = 1.7 meV. A clear band splitting is observed in
the conduction band associated with the addition of an Ising SOC. (F) Fermi contour at E = −10 meV and u = 10 meV. (G) Fermi contour
at E = 5 meV and u = 10 meV. (H) Fermi contour at E = 10 meV and u = 10 meV. (I) Low energy bands near the K point of the Brillouin
zone with ky = 0, u = −10 meV, and λR = 15 meV. (J) Fermi contour at E = −10 meV and u = −10 meV. (K) Fermi contour at E = 5
meV and u = −10 meV. (L) Fermi contour at E = 10 meV and u = −10 meV.
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ν = ±3 phase transitions in the control device C1 and comparison with A1

In the control device, C1, we do not expect to observe a Zeeman dependence of D∗ν=±3 as the transitions occur between states
with the same spin orientation. Fig. S5A shows the Landau level spectrum at B = 5 T for bilayer graphene without SOC. The
level transitions at u∗ν=−3 are between | − 0 ↑〉 and | + 0 ↑〉. The applied magnetic field simply moves these two states down
in energy, shifting the energy at which the transition occurs but keeping it pinned to u = 0 meV. This can be readily seen for
the control device, C1, in the extracted D∗ from measurements of CP , see Fig. S5B. D∗ is constant across the measurable field
range. Note that offsets from u∗ = 0 are possible due to differing on-site energies within the BLG unit cell, which can arise
from coupling to the hBN substrate, but that these offsets do not influence the spin degree of freedom. This is in contrast with
the asymmetric device with a layer specific SOC. Fig. S5C shows the calculated Landau level spectrum for bilayer graphene
now with an Ising SOC of λI = 5 meV. The level transitions for both ν = −3 and ν = +3 have been shifted away from u = 0
meV as a result of the rearrangement of the states on the bottom layer. Not only has the transition shifted from zero but the
transitions now occur between states with opposite spin orientation. Application of a magnetic field acts to shift the levels in
opposite directions, thereby changing the u∗ at which the transition occurs. This is again readily observed in the data for an
asymmetric device, A1, shown in Fig. S5D. D∗ν=±3 moves to lower D larger magnetic fields. An illustration of the canting of
the spin in the spin orbit coupled layer in an asymmetric device is shown in Fig. S5E. As the in-plane field is increased the spin
in the proximitized layer cants toward the total magnetic field vector.

FIG. S5. (A) Energy level diagram of the zero-energy LL in the absence of SOC. The ν = ±3 transitions occurring between ground states
with identical spin polarization. Note that offsets from u∗ = 0 are possible due to differing on-site energies within the BLG unit cell, which
can arise from coupling to the hBN substrate, but that these offsets do not influence the spin degree of freedom. (B) Measured D∗ν=±3 as a
function of BT for fixed B⊥ = 4T in control device C1. No Zeeman dependence is observed, consistent with expectations from a SOC-free
model. (C) Energy level diagram of the zero-energy LL with a layer-selective Ising SOC of λI = 5meV, with sign chosen so that the effect
of the SOC opposes the external field (reproduced from Fig. 2F of main text). Note that the ν = ±3 transitions now occur between ground
states with opposite spin polarization. (D) Measured D∗ν=±3 as a function of BT for fixed B⊥ = 4T in device A1, reproduced from the
main text. The red dashed line is a two parameter fit with λI = 1.7 meV and εBLG = 2.8, with the latter needed for the conversion between
experimentally measured D and theoretically calculated u. (E) Schematic of the effect of BT in an asymmetric device. While the LL in the
unaffected layer always aligns its spin polarization with the external magnetic field, the spin polarization of LLs in the SOC-proximitized result
from a competition between SOC-induced Zeeman field (out of plane) and the changing direction of the physical Zeeman field. The affected
spin cants only slightly for EZ � λI, but eventually the Zeeman energy overwhelms the SOC and the two spins align as EZ/λI →∞.
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High field CP measurements, fractional quantum hall and Chern insulator states

At higher magnetic fields we observe fractional quantum hall and Chern insulator states which are a testament to the quality of
the heterostructures even with the incorporation of WSe2. Fig. S6 shows CP measurements of the zero-energy Landau level for
devices C1(Fig. S6A), A1(Fig. S6B), and S1(Fig. S6C) taken at 18 T. In the control device, incompressible states are observed
at integer and fractional fillings consistent with our previous findings[25]. Remarkably, the the same is true for A1 and S1 where
the same filling sequences are observed. The red dashed line in Fig. S6C shows the location of the high resolution CP linecut
shown in Fig. S7A where fractional states are clearly observed. In device A3, fabricated with commercially obtained WSe2, we
observe fractional Chern insulator states at even higher fields[34]. Fig. S7B shows CP as a function of nominal charge density
n0/c, where c is the geometric capacitance, and B⊥. Fig. S7C shows a schematic of the insulating states observed in Fig. S7B.
Fractional Chern insulating states at 1/3, 2/5, 3/5, 2/3rds filling are observed within the Chern band defined between (t,s) = (1,1)
and (2,0) (black lines).



S-7

FIG. S6. (A) CP for device C1 as a function of D and n at B = 18 T. (B) CP for device A1 as a function of D and n at B = 18 T. (C) CP
for device S1 as a function of D and n at B = 18 T.
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FIG. S7. (A) Fractional quantum hall (FQH) states observed at 18 T in device S1. The linecut is taken at D = 1.5 V/nm in Fig. S6C (red
dashed line) corresponding to a range of −4 < ν < −2. In the N=0 orbital FQH states up to sevenths are clearly observed. In the N=1 orbital
an incompressible state is observed at half filling. (B) Fractional Chern insulator (FCI) states in asymmetric device, A3, at high magnetic
fields with the BLG and hBN perfectly aligned. CP as a function of nominal electron density n0/c, where c is the geometric capacitance, and
applied perpendicular magnetic field (B) at a fixed perpendicular electric field ( p0

c
= 2ε0

c
D = -6 V). (C) Schematic of the observed insulating

states in units normalized to the moiré unit cell area (Amoiré), the number of flux quanta per moiré unit cell nΦ = BAmoiré/Φ0 and number of
electrons per unit cell ne = n/Amoiré where Φ0 = h/e is a flux quantum and n is the electron density. The insulating states are characterized
by their inverse slope and intercept in these units, t and s, respectively. We observe a topological Chern band with δt = C = 1 and δs = 1
which originates at nΦ = 1 between insulating states (t,s) = (1,1) and (2,0) (black lines). We observe fractional Chern insulating states at 1/3,
2/5, 3/5, 2/3rds filling of the band with quantum numbers t, s = (4/3, 2/3), (7/5, 3/5), (8/5, 2/5), (5/3, 1/3), respectively.
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Asymmetries in ν 6= ±3 LL crossings

In addition to the crossing observed between Landau level coincidences for ν = ±3 for device A1, we also observe similar
crossings at the same critical magnetic field, defined by the strength of λI, for ν = ±1 (Fig. S8B) and ν = ±2 (Fig. S8C). While
the dependence of these crossings on magnetic field is similar to the ν = ±3 case, interactions become important for these level
crossings and their full evolution is outside the scope of our single particle theoretical model. The excited state Landau levels
(N = ±1 Fig. S8D-E) and (N = ±2 Fig. S8G-I) additionally show strong asymmetries away from zero displacement field and
nonlinear dependence on magnetic field due to the proximity induced SOC.

FIG. S8. Level transitions in device A1 for ν = 0(A), ν = ±1(B), ν = ±2(C), ν = ±5(D), ν = ±6(E), ν = ±7(F), ν = ±9(G),
ν = ±10(H), ν = ±11(I).
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High in-plane magnetic field response and data from device A2/S2

Device A2/S2 (Fig. 3A and Fig. S9) was fabricated with the intention of producing a symmetric device. However, capacitance
measurements and post-facto optical microscopy show a misalignment in one region (indicated in Fig. S9A, resulting in a small
area of the device in which only one facet of the BLG is in contact with WSe2. Capacitance measurements, which are sensitive
to areal averages of density of states, indeed detect twice the normal number of phase transitions (Fig. S9D), which show
features characteristic, respectively, of both symmetric and asymmetric devices S1 and A1. In particular, one set of phase
transitions shows the characteristic crossing of the D∗ν±3 transitions in finite field, resulting in a measured λI = 2.0 meV (Fig.
S9E). Transport measurements are performed on the side of the device that is completely encapsulated which shows clearly the
inverted phase at zero field (Fig. S9B) and the high in-plane field response (Fig. S9C) that was determined in device S1 with
magnetocapacitance measurements.

FIG. S9. (A) Optical image of device A2/S2. (B) Rxx as a function of D and n at B = 0 T for device S2. The IP is evident at charge
neutrality and zero displacement field. (C) Rxx as a function of B‖ and D for device S2. (D) CP as a function of n and D at B = 4 T for
device A2/S2. Two sets of ν = ±3 transitions are evident indicated by the white arrows. (E) ν = ±3 transitions for device A2/S2. The
crossing between ν = −3 and ν = +3 coming from the one-sided portion of the device (A2) is consistent with the crossing found in the
asymmetric device A1. No crossing is evident in the symmetric portion which is consistent with transitions in S1 (not shown).
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Simulations of CP at B⊥ = 0

In this section we describe briefly the procedure used to simulate the bulk measurements of the capacitance Cp. As discussed
in the main text, capacitance CP is a probe of density of states. This is expressed through the relation,

Cp(µ, u) =
c

c+ ν(µ, u)
, (S1)

where we introduced a notation ν(µ, u) for the density of states of the bilayer system at a chemical potential µ with an interlayer
potential u applied between the two layers. Here c is a sample dependent geometric capacitance as described in the main text.

To compute the density of states ν(µ, u), for small values of chemical and interlayer potential, we use an effective continuum
model valid near the Dirac points (the K± valleys), which is expressed in the (A1, B1, A2, B2) basis as [29, 35, 36]

H0 =


u
2 v0π

† −v4π† −v3π
v0π

u
2 + ∆′ γ1 −v4π†

−v4π γ1 −u2 + ∆′ v0π
†

−v3π† −v4π v0π −u2

 , (S2)

π = ~(ξkx + iky), π† = ~(ξkx − iky), vi =

√
3a

2~
γi.

Here, a = 2.46 Å is the monolayer graphene lattice constant, the sign factor ξ = ±1 serves as the valley index corresponding
to the valley wave vectors ~K± = (± 4π

3a , 0). The wavevector ~k = (kx, ky) is measured relative to ~K±. The hopping parameters
are denoted by: γ0 = 2.61 eV for the interlayer nearest neighbor hopping, γ1 = 0.361 eV for the interlayer coupling between
orbitals on the dimer sites B1 and A2, γ3 = 0.283 eV for the trigonal warping, and γ4 = 0.138 eV for the interlayer coupling
between dimer and non-dimer orbitals A1 and A2 or B1 and B2. The parameter ∆′ = 0.015 eV describes the energy difference
between dimer and non-dimer sites. The interlayer bias is given by u = V2 − V1 = − dε0

εBLG
D where Vi is the potential on layer

i = 1, 2 and d, ε0, εBLG, D were defined in the main text.
We include the additional symmetry breaking terms, the interfacially-induced Ising and Rashba SOC, by adding layer-specific

spin-orbit Hamiltonians δHi[28]

δHi =
λi
2
ξsz +

λR,i
2

(ξσxsy − σysx) (S3)

to the total Hamiltonian of the system H = H0 +
∑
i=1,2 δHi. Here i = 1, 2 again labels the layers, λi and λR,i are the Ising

and Rashba spin-orbit couplings in the layer i. The Pauli matrices σi and si denote the sublattice and spin degrees of freedom.
The explicit calculation of the density of states is done by discretizing the momentum ~k on a lattice, diagonalizing the total

HamiltonianH and then evaluating a sum

ν(µ) =
1

4π2

Sk
N

∑
~k,j

δ(ε~k,j − µ) , (S4)

where N =
∑
~k 1 is the total number of momentum points in the Brillouin zone with area Sk. The index j runs over all energy

bands, each with single-particle energy ε~k,j , and hence the valley/spin degeneracy is included explicitly in this summation.

To overcome numerical artifacts due to a finite discretization of the momentum ~k, we soften the delta function in the above
summation with a Lorentzian as

δ(ε~k,j − µ) ≈ γ

π

1

(ε~k,j − µ)2 + γ2
. (S5)

For all simulations plotted in the text we chose γ = 0.12 meV, which required a k spacing of 10−3 1/a to ensure lack of ringing
artifacts.

In order to convert from a simulated parameter space (µ, u) to the experimentally accessible one (n(µ, u), u) we evaluate the
charge density through a relation[29]

en(µ, u) = cµ+

∫ µ

0

dµ̃ ν(µ̃, u) (S6)

and then plot the capacitance Cp as a function of charge density n(µ, u) and interlayer potential u as shown in Fig. 1 in the main
text and the supplemental figures.
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This analysis readily extends itself to include an in-plane magnetic field B‖ as done in Fig. 3 in the main text. We incorporate
the field dependence only via the Zeeman splitting term (without loss of generality we take B‖ along the x-axis)

HB‖ = µBB‖sx (S7)

where µB = 5.796×10−5 eV/T. A system with magnetic field is then characterized by a HamiltonianH = H0 +
∑
i=1,2 δHi+

HB‖ and the procedure followed to obtain the capacitance maps in in-plane magnetic field is then identical to the one without
magnetic field applied.

Landau Level Calculations

Here we show how the zero Landau level (ZLL) spectra are calculated for one-sided devices A1-A3. The approach is detailed
in Ref. [28] and in this section we briefly summarize the procedure and elaborate on additional modifications required to produce
experimental fits.

In the absence of magnetic field, the Hamiltonian of a one-sided device is given byH = H0 + δH1. This Hamiltonian can be
extended to the case of large perpendicular magnetic field by introducing spin-resolved Landau level creation and annihilation
operators, as well as introducing the Zeeman splitting term in the perpendicular direction,

HB⊥ = µBB⊥sz. (S8)

When γ3 = 0, by careful construction of the ansatz, the system decouples into subspaces labelled by the valley index ξ, as well
as the largest Landau level index present within each subspace n. The Hamiltonian of the full system can therefore be written as
a direct sum of the subspace-specific Hamiltonians,H =

⊕
ξ,nHξ,n. The ZLLs are then given by the eight smallest eigenvalues

of H, which comprises the eigenvalues of Hξ,0 (two), the two smallest eigenvalues of Hξ,1 (four), and the smallest eigenvalue
of Hξ,2 (two).

In this work, we introduce two additional modifications to fit experimental data as follows:

1. Sublattice asymmetry. This is due to on-site potential differences between the four different sublattice sites of BLG, which
we model by adding toH the layer specific Hamiltonians

HABi =
∆AB,i

2
σz. (S9)

Once again i labels the layers. These terms appear in the diagonal entries so that while each of the Landau levels are
shifted, no mixing is introduced.

The parameters (∆AB,1,∆AB,2) used for fitting are (0.44, 0)meV for Fig. 2(G-H) in the main text, and (57.3,−50)meV
for Fig.S8(E) in the supplementary material.

2. In-plane magnetic field. This effect is included by adding the Zeeman splitting term givenHB‖ given in Eq. S7. However,
it introduces mixing across all the subspaces of different n but with ξ. Its leading corrections are captured by introducing
the in-plane Zeeman term only to the components spanned by the ZLL eigenstates in the γ4 = 0 limit. These are
{|A1s, 0〉, |A1s, 1〉, |A2s, 0〉} for ξ = +, and {|B2s, 0〉, |B1s, 0〉, |B2s, 1〉} for ξ = −, so that the leading corrections of
the in-plane B-field are captured by solving for the eigenvalues of the truncated systemH '

⊕
ξ,n=0,1,2Hξ,n.

The values of interlayer potential u, or equivalently the displacement field D, at which the two most negative (positive)
ZLLs cross can then be extracted at each given value of applied magnetic field B = (B‖, B⊥) to obtain the crossing plots for
ν = −3(+3).

Finally, we note that while the γ3 parameter introduces mixing between the ZLLs and the higher LLs, the effect is extremely
weak such that the ZLL spectrum remains essentially unchanged. We verified that this is indeed the case and therefore neglect it
completely in the ZLL calculations as in previous work[29].

Edge state calculations

The edge spectra shown in Fig. 3 were obtained by diagonalizing a tight-binding model of a zig-zag edge strip of width
W = 1000 for the lowest 32 states. Tight binding parameters are t0 = −2.6, t1 = 0.36, t3 = 0.28 (in eV) taken from the
notation and valyes of Ref. 35. We implemented SOC using the minimal hoppings required to reproduce the continuum Ising
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(next-nearest neighbor hopping) and Rashba (nearest neighbor hopping) couplings. In the insets, color denotes the spin 〈sz〉,
and data is only shown for states with position localized to 〈ŷ〉 < 3

4W . The SOC was chosen to be completely layer asymmetric
(preserving the 3D inversion symmetry) with λI = 5meV and λR = 15meV. The Rashba coupling does open up an edge gap,
but it is undetectable on this scale because it is suppressed by powers of g/t1 where g are small couplings like λR and D. We
have verified that the edge gap does grow continually as λR is increased to physically unrealistic values.

Note that these spectra neglect the particle-hole breaking hopping t4 =∼ 0.14eV. This term changes neither the connectivity
of the edge states nor the magnitude of their gaps, but it does alter their dispersion. In the a tight-binding model we use here, in
which hoppings are abruptly terminated at the edge, the resulting edge dispersion has a Fermi surface with compensated electron
and hole pockets. It is not clear whether these would persist in more realistic models, a useful direction for future ab-initio
calculations.
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