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Abstract
Sclerostin is a potent inhibitor of bone formation but has been shown to correlate positively with
areal bone mineral density (aBMD). Little is known about its relationship to parameters of bone
strength and volumentric BMD (vBMD) as measured by peripheral quantitative computed
tomography (pQCT). We measured both serum sclerostin and parameters of tibial bone size and
strength by pQCT to characterize this relationship. Our study population consisted of 223
Caucasian and 35 African American women (mean age 87) from the Study of Osteoporotic
Fractures (SOF) cohort, who had usable pQCT scans of the tibia at sites 4% (T4%), 33% (T33%),
and 66% (T66%) from the ankle. Analysis of covariance was used to test for differences in age-
adjusted means of aBMD, pQCT variables, and serum biomarkers across sclerostin quartiles.
Black women had significantly lower median sclerostin (34.3 pmol/L) than white women (48.5
pmol/L) (p=0.05). Women in the highest sclerostin quartile had 7-14.5% higher hip aBMD and
pQCT parameters of vBMD and bone size than those in the lowest quartile in multivariate models
adjusting for age, race, weight, height and diabetes. The association of sclerostin with parameters
of bone strength differed dramatically between T33% and T66% sites. At T66%, women in the
highest sclerostin quartile had pQCT strength parameters 9.4-15.3% greater than the lowest
quartile, whereas no trend was found for the T33% site. Our results suggest paradoxical
associations between circulating sclerostin and bone size, density and strength.

Introduction
Sclerostin is a protein produced by osteocytes that decreases osteoblastic bone formation
through inhibition of canonical Wnt/β-catenin signaling(1). People who lack sclerostin
develop sclerosteosis, a disease of extremely high bone mass(2) and treatment with a
sclerostin antibody has been shown to increase bone formation, mass and strength in both
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human (3) and animal models(4,5). Although sclerostin is an inhibitor of bone formation,
several studies have found serum sclerostin to be positively correlated to lumbar spine bone
mineral density (BMD) (6), (7) and markers of bone formation(8), although the latter is
inconsistent (9). Studies have reported higher serum sclerostin levels in post- versus pre-
menopausal women(10), men versus women(10), (11), bed-ridden (12), immobilized or
‘mechanically unloaded’ patients(13), and those with acute spinal cord injury(14). Individuals
with certain diseases have both higher circulating sclerostin and increased risk of bone
fracture, including type 2 –but not type 1- diabetes mellitus(9), (15), Paget’s disease, and
prostate cancer with metastases to bone(8). With regards to osteoporosis, we previously
reported that despite being positively associated with areal BMD (aBMD), women with
higher serum sclerostin had an increased risk of hip fracture risk(16), although a smaller
French study found no association with fracture e(17). A study from Saudi Arabia recently
reported >7-fold increased fracture risk for each standard deviation increase in
sclerostin (18). This study was unique in its finding of a negative association between
sclerostin and aBMD.

It is unknown if sclerostin is related to measures of bone geometry and strength. Peripheral
quantitative computed tomography (pQCT) assesses volumetric BMD (vBMD) and
geometric parameters of trabecular and cortical bone separately and can be used to estimate
mechanical properties of bone. In older men, every SD decrease in many pQCT parameters
was significantly associated with increased fracture risk (hazard ratio, (HR) 1.4-2.2)
independent of age, BMI, and femoral neck aBMD(19). Other studies in women have found
similar links between pQCT parameters and fracture risk(20), (21), (22).

The aim of the current study is to characterize the relationship between serum sclerostin and
parameters of bone strength, architecture and bone turnover in elderly women and to test
whether these associations are in part mediated by sex steroid hormones.

Methods
Sclerostin and pQCT

Participants—Between 1986 and 1987, 9704 Caucasian women ages 65 and older were
recruited for the Study of Osteoporotic Fractures at four metropolitan areas in the United
States, including 2401 women from the Monongahela valley near Pittsburgh PA. Age-
eligible participants were contacted by mail using community-based listings such as HMO
membership and voter registration. In 1997, 662 African American women were added to
the national study, including 177 at the Pittsburgh site. The current analysis was limited to
the 258 surviving members of the Pittsburgh cohort (ages 79-96, mean 87.0 years) who
attended a clinic visit in 2006-2008, a median of 20 years after their baseline examination,
Figure 1.

Measurements at the follow-up visit—Serum samples were collected in a fasting state
and after processing were stored at −80 C until assay. Seclerostin assays were carried out at
the Heinz Nutrition Laboratory at the Graduate School of Public Health, University of
Pittsburgh. Sclerostin levels were measured by ELISA sandwich assay (Biomedica
Medizinprodukte GmbH & Co. KG, Wien, Austria), which has a sensitivity ranging from
50-50,000 pg/ml and CV between 4.1 - 9.8%(23). Serum sclerostin measured with this assay
has been shown to correlate with levels in bone marrow (24). CTX (Serum-b-Crosslaps) was
measured on Elecsys 2010 (Roche GmbH) by ECLIA (ElectroChemiLuminscence
ImmunoAssay), a sandwich assay measuring ranges of 0.010 - 2.880 ng/mL with intra- and
interassay variation of <4.7% and 4.8%, respectively. Serum P1NP was also measured on
Elecsys 2010 (Roche GmbH) by ECLIA, measuring ranges of 5.0 – 437.2 ng/mL with intra-
and interassay variations of <2.1% and 2.1%. Testosterone and estradiol were quantified in
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serum (0.5 ml) by previously described radio-immunoassay (RIA) methods (25-27). Prior to
the RIAs, steroids are extracted with hexane:ethyl acetate (3:2) and then testosterone and
estradiol are separated from each other and their metabolites by Celite column partition
chromatography. Appropriate tritiated internal standards are added to each serum sample
before the extraction step in order to follow and correct for procedural losses. The assay
sensitivities for the testosterone and estradiol RIAs are 1.5 ng/dL and 2 pg/ml, respectively,
and the interassay coefficients of variation (CVs) for these assays are 8%, 12%, and 12% at
13, 30 and 96 ng/dL, and 11%, 13% and 12% at 15, 36 and 101 pg/ml, respectively.

Analysis of SHBG is carried out by chemiluminescent immunometric assay on the Immulite
analyzer (Siemens Healthcare Diagnostics, Deerfield, IL). The assay utilizes monoclonal
murine anti-SHBG attached to a bead and a polyclonal rabbit anti-SHBG conjugated to
alkaline phosphatase. The assay sensitivity is 1 nmol/L, and the interassay CV is 9.1% at 69
nmol/L.

Free and bioavailable (non-SHBG-bound) testosterone and estradiol are calculated using the
measured total testosterone and estradiol levels, respectively, and SHBG concentrations as
well as an average assumed concentration for albumin (28,29). This method has been found to
have high validity (30). Blind duplicates from 26 randomly selected women showed excellent
correlations for all biomarkers (r=0.87-0.99, p<0.05). Procollagen type I N-terminal
propeptide (P1NP) and CTX were measured at Synarc.

Measurements obtained at the year 20 visit included anthropometry, vital signs, physical
function, and hip and whole body areal (aBMD). Body mass index (BMI) was calculated as
weight in kilograms (measured on a balance beam scale) divided by height (measured by
Harpenden stadiometer) squared. Vital signs were obtained using a digital ear thermometer
(Omron MC-514) and automatic blood pressure monitor (Omron HEM-780). Physical
function evaluation utilized the short physical performance battery (SPPB) developed by
Guralnik and colleagues, which included grip strength (measured by Preston Grip or TEC
dynamometer), gait speed, single and multiple chair stands, and tandem stands (31). BMD
was measured by dual energy x-ray absorptiometry (Hologic QDR 4500W, Bedford, MA)
for the hip and whole body.

Self-reported functional status was obtained by in-clinic interview. Participants were asked
to bring into the clinic all their prescription and over-the-counter medications for review by
study staff. Information on medical history, lifestyle and tobacco use was collected by a self-
administered questionnaire.

Peripheral quantitative computed tomography—The Stratec Three XCT-2000
pQCT (Stratec Medizintechnik, Pforzheim, Germany) was used to perform scans on
different sites: 4% (T4%), 33% (T33%) and 66% (T66%) of the total length of the tibia.
Phantom scans were performed on a daily basis as a quality control measure. Trained
technicians followed a standardized protocol for scanning, using anatomical landmarks to
optimize patient positioning in the machine. Tibia length was measured from medial
malleolus to medial epicondyle. Scans at 4% of tibial site represent predominantly trabecular
bone, whereas scans at the 33% and 66% sites consisted mainly of cortical bone. A single
axial slice of 2.5 mm thickness with a voxel size of 0.5 mm and a speed of 20 mm/s was
taken. Image processing was performed by a single investigator using the Stratec software
package (Version 5.5E).

pQCT Bone parameters—Of 36 available pQCT parameters, we analyzed three that
reflect bone density and size as well as five strength parameters shown to be predictive of
fracture risk(19). All scanning sites were measured for total volumetric bone mineral density
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(vBMD, mg/cm3). At T33% and T66%, size parameters of cortical area (mm2) and thickness
(mm) were measured, in addition to strength parameters such as cross sectional moment of
inertia (CSMI, mm4), polar moment of inertia (PMI, mm4), section modulus (SM, mm3),
and polar (SSIp) and axial (SSIx) stress strain indices. Formulas for calculating CSMI, SM
and SSI have been described in a previous publication (32). CSMI and PMI reflect
estimations of bone resistance to bending and torsion. SM derives from the CSMI and is an
estimator of torsional strength. SSI estimates bending strength by accounting for material
properties of bone and multiplying SM by the quotient of the measured cortical density and
normal physiologic cortical density (1200 mg/cm3). SSIp accounts for torsional load, where
SSIx does not, and has proven to be a precise indicator of architectural strength in bone-
bending tests. In terms of breaking force, however, it is SSIx that correlates stronger than
areal BMD, CSMI or cortical vBMD(20).

Statistical Analysis
We compared participant characteristics across quartiles of sclerostin. For normally
distributed variables, a test of linear trend was performed by treating sclerostin quartile
cutoffs as category integer valued steps. For non-normally distributed or skewed variables,
the Jonckheere-Terpstra test for trend was performed. The Cochran-Armitage test for trend
was used for dichotomous variables.

Analysis of covariance was used to test for differences across sclerostin quartiles in age-
adjusted and multivariable-adjusted means of continuous variables (DXA BMD, pQCT tibia
bone strength and geometry, and bone turnover markers, P1NP and beta CTX). The
multivariable-adjusted model included age, race, weight, BMI, and diabetes status. To
explore whether the results are modified by 25-hydroxyvitamin D, sex hormone binding
globulin, or bioavailable estradiol and testosterone, we subsequently individually adjusted
for each marker in the multivariable models for 25(OH)D. All analyses were conducted with
Statistical Analysis System (SAS; version 9.3; SAS Institute, Cary, NC).

Results
Descriptive characteristics of study participants across quartiles of serum sclerostin are
shown in Table 1. With increasing levels of sclerostin, women tended to be older, have
lower grip strength and higher total 25-hydroxyvitamin D levels (p <.05). Other markers of
physical function/activity including gait speed, time to complete 5 chair stands, using arms
during chair stand and self-reported ‘walks for exercise’ showed no significant relationship
to serum sclerostin. A greater proportion of white women had the highest sclerostin levels.
The median serum sclerostin concentration was higher in whites (48.45 pmol/L) compared
to blacks (34.30 pmol/L) (p <.05). There was no association between sclerostin and
smoking, body weight, height, BMI or sex steroid hormones. There was no significant
difference in the prevalence of stroke or health status across sclerostin quartiles. There was
some suggestion that a higher proportion of diabetics was observed among the highest
sclerostin quartiles but there was no significant difference in serum sclerostin level by
diabetes status: diabetes yes, median=51.0 pmol/L; no, median=45.8, pmol/L, p-0.16.

Table 2 shows unadjusted trends of hip aBMD and pQCT tibial measurements at T4%,
T33% and T66% across sclerostin quartiles. Total hip BMD had the strongest positive
association with sclerostin and was 11.6% higher in the top sclerostin quartile compared to
the lowest, followed by trabecular vBMD at T4%, which was almost 10% higher in the top
sclerostin quartile compared to the lowest. Cortical vBMD at T33% and T66% showed a
more modest difference of 1.3% and 1.5%, comparing the fourth and first quartiles,
respectively. Parameters of bone size also showed strong positive associations with
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sclerostin. For the T33% site, cortical area and thickness were 7.6% and 10.8% higher in the
top sclerostin quartile compared to the lowest. The same parameters at the T66% site
showed a similar difference of 12.2% and 12.7%, respectively. Interestingly, the association
between sclerostin and parameters of bone strength differed dramatically between T33% and
T66% sites. At T33%, no parameters of bone strength were associated with sclerostin,
whereas all T66% parameters showed a strong positive trend. Comparing women with the
lowest sclerostin, women with the highest sclerostin had 10.1-13.4% higher cross-sectional
and polar moments of inertia, section modulus, and both polar and axial stress-strain indices
at the T66% site.

Multivariate adjustment strengthened the positive trend between sclerostin and parameters
of BMD at all three sites, as well as parameters of bone size at T33%, Table 3. Additional
adjustment for serum 25-hydroxyvitamin D did not influence these findings, nor did
adjustment for serum hormone binding globulin, bioavailable estradiol or bioavailable
testosterone (data not shown). Multivariate adjustment did not affect the positive
relationship between sclerostin and cortical vBMD at T66%, but it tended to strengthen the
positive association between sclerostin and pQCT parameters of bone size. Similarly,
positive trends between sclerostin and parameters of strength at T66% persisted after
adjustment, increasing 9.4-15.3% from the lowest to highest sclerostin quartiles. Additional
adjustments for 25-hydroxyvitamin D, serum hormone binding globulin, bioavailable
estradiol, or bioavailable testosterone had no effect on our findings (data not shown).

Both PINP and beta CTX tended to decrease with increasing sclerostin, Table 5. However,
in the full multivariable model and in models adding 25-hydroxyvitamin D, there was no
association between sclerostin and markers of bone turnover.

Discussion
Women with the highest sclerostin levels had significantly higher aBMD, vBMD and larger
bones than women with the lowest sclerostin levels. After adjusting for age, race, weight,
height and diabetes, we found that women with the highest serum sclerostin levels had
pQCT parameters of bone strength 9.4 to 15.3% higher than those with the lowest, but only
at the 66% site of the tibia. No association was found at the T33% site for reasons that
remain unclear, even though additional analyses showed measurements at T33% and T66%
to correlate with each other strongly (r > 0.75, p < .0001). To our knowledge, this is the first
study to examine the relationship between circulating sclerostin and pQCT parameters of
bone strength and differences by race/ethnicity. The lower sclerostin levels among the
African American women are consistent with their lower risk of fracture.

Sclerostin and Bone Strength
These results were contrary to our initial hypothesis that higher sclerostin would confer
decreased bone strength and lower vBMD, guided by previous reports that higher sclerostin
was associated with increased risk of fracture(16). Assuming that fracture risk is directly
related to bone strength and that pQCT acts as a reliable proxy for bone strength, we would
have expected lower pQCT values in the highest sclerostin quartile, when in fact just the
opposite was true, especially, for the T66% site. However, our results are consistent with
previous observations showing positive cross-sectional associations between sclerostin and
aBMD(6), (9), (33). Measurements of bone strength by pQCT may also reflect osteocyte
number which may be why we see a positive association between sclerostin and pQCT
parameters.

Sclerostin was related to bone strength only at the T66% site. One explanation could be that
the production of sclerostin differs across the skeleton and possibly local levels differ at
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T66% vs. T33%. If this is true, then our findings present another paradox in that the
associations were found at the T66% site instead of the part of the bone bearing the greatest
load, that is, T33%. Other studies report that sclerostin is upregulated in mechanically
unloaded animal models and immobilized human subjects(1), (13), suggesting that sclerostin
levels should actually be higher at T66% because it is relatively ‘unloaded’ compared to
T33%. One possible explanation is that bone strength and microstructure reflects mechanical
forces other than just gravitational load and that surrounding musculature plays a role. The
T66% site differs to that of T33%, with larger muscle mass and origins of several muscles,
including the tibialis anterior and posterior. These may produce multidirectional forces that
downregulate local sclerostin production, thereby improving bone architecture and strength.
In addition, we found an inverse association between grip strength and sclerostin suggesting
that sclerostin is also regulated by mechanical forces caused by gravity. An inverse
association between sclerostin and physical activity has also been recently reported showing
that minor changes in physical activity had effects on sclerostin levels (34).

Sclerostin and Bone Size/Density
Higher sclerostin was associated with greater parameters of bone size for all three tibial
sites, with pQCT size parameters 9.6-15.2% higher in women with the highest sclerostin
compared to women with the lowest sclerostin. These results were consistent with the
current model of serum sclerostin as a partial reflection of osteocyte number. Women in the
highest sclerostin quartile had 11.6% higher total hip aBMD, 12.1% higher trabecular
vBMD at T4% and slightly higher cortical volumetric BMD at T33% and T66% than those
in the lowest quartile. Our study included measurement of volumetric BMD, expanding
upon previous studies that have only used areal BMD to characterize associations with
sclerostin.

Sclerostin and Other Biomarkers
Negative associations between bioavailable estradiol and circulating sclerostin have been
reported (35). Our study showed no association between sex hormones and sclerostin, which
may reflect the very old age and low estrogen levels of participants involved. With regards
to bone turnover markers, the literature is inconsistent, although a weak negative association
with sclerostin is most commonly reported. Our univariate analysis of P1NP and CTX
revealed a weak negative relationship, which was attenuated after adjustment. Sclerostin was
positively correlated with 25-hydroxyvitamin D levels, but adjusting for 25(OH)D had no
effect on results. The jury is still out regarding the relationship between these two variables:
some studies have found a similar positive correlation (36) while others have found no
relationship at all (37), even among similar post-menopausal female populations (38).

Strengths of our study include a well-characterized, unique population of very old women, at
higher risk of fracture. Other studies have focused on much younger individuals. Our
inclusion of African American participants allowed us to describe racial differences in
sclerostin for the first time. Measuring volumetric BMD and pQCT parameters of bone
strength extended knowledge on sclerostin’s relationship to bone microstructure and
strength. We demonstrated excellent reproducibility for sclerostin. Because of our cross-
sectional study design, limitations include lack of longitudinal data and lack of
generalizability to other ages. We were unable to examine associations with fracture because
only 24 women reported a fracture after this clinic visit and statistical power was low. Our
sample of African American participants was small (n=35) and we had no power to test
whether the relationship differed in Whites and Blacks. Other known factors such as PTH
that influence sclerostin levels were not included, which may have yielded insight into the
relationship we found with sclerostin and 25-hydroxyvitamin D.
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In conclusion, higher serum sclerostin levels are associated with higher vBMD and bone
size in elderly women, as well as higher pQCT parameters of bone strength at the T66% site.
Further research should address why sclerostin is positively associated with measures of
bone size, BMD and strength yet is a potent inhibitor of bone formation in vivo.
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Figure 1.
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Table 2

Means (SD) of DXA BMD and pQCT tibia measurements across sclerostin quartiles

Sclerostin Quartiles

Quartile 1
(n = 64)

Quartile 2
(n = 65)

Quartile 3
(n = 65)

Quartile 4
(n = 64)

Total hip BMD (g/cm2) 0.69 ± 0.12 0.71 ± 0.12 0.75 ± 0.15 0.77 ± 0.10

Trabecular vBMD T4% (mg/ccm) 177.10 ± 47.84 181.81 ± 42.45 189.61 ± 44.13 194.63 ± 41.75

Cortical vBMD T33% (mg/ccm) 1083.78 ± 48.61 1090.87 ± 44.60 1114.90 ± 49.08 1097.64 ± 44.57

Cortical area T33% (mm2) 182.72 ± 42.82 192.16 ± 33.83 202.66 ± 37.59 196.60 ± 39.95

Cortical thickness T33% (mm) 3.35 ± 0.94 3.54 ± 0.75 3.88 ± 0.87 3.71 ± 0.82

Cross sectional moment of inertia T33% (mm4) 9008.22 ± 2462.51 9093.80 ± 2063.58 9192.93 ± 2369.24 9207.84 ± 2810.06

Polar moment of inertia T33% (mm4) 16019.43 ± 4014.49 16649.66 ± 3317.47 16514.12 ± 3763.46 16311.14 ± 4710.95

Section modulus T33% (mm3) 1171.49 ± 260.86 1222.49 ± 200.89 1228.31 ± 238.63 1203.17 ± 273.86

Stress-strain index (axial) T33% 756.55 ± 156.81 768.83 ± 134.11 779.27 ± 150.88 762.36 ± 167.47

Stress-strain index (polar) T33% 1185.30 ± 240.06 1237.19 ± 193.55 1253.92 ± 229.09 1219.90 ± 279.46

Cortical vBMD T66% (mg/ccm) 1003.87 ± 44.86 1006.43 ± 40.70 1028.09 ± 50.73 1016.39 ± 42.88

Cortical area T66% (mm2) 168.98 ± 53.08 175.85 ± 44.17 193.19 ± 54.52 189.59 ± 44.71

Cortical thickness T66% (mm) 2.21 ± 0.79 2.25 ± 0.66 2.57 ± 0.88 2.49 ± 0.70

Cross sectional moment of inertia T66% (mm4) 18790.65 ± 6301.58 19972.67 ± 5856.83 21273.29 ± 5719.66 21310.31 ± 6781.61

Polar moment of inertia T66% (mm4) 28803.24 ± 8813.75 31167.58 ± 8531.41 32285.92 ± 8132.19 32315.04 ± 9394.04

Section modulus T66% (mm3) 1557.43 ± 468.80 1685.22 ± 432.53 1780.58 ± 449.75 1756.76 ± 431.35

Stress-strain index (axial) T66% 1224.56 ± 308.85 1301.57 ± 264.93 1364.69 ± 257.74 1347.71 ± 299.06

Stress-strain index (polar) T66% 1745.22 ± 417.59 1899.80 ± 364.39 1945.71 ± 374.13 1927.75 ± 420.37

*
Sclerostin quartile cut-points are 33.3, 46.4 and 66.3 pmol/L
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