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ABSTRACT OF THE THESIS

Housing Sale Price Prediction Using Machine Learning Algorithms

by

Yichen Zhou
Master of Applied Statistics
University of California, Los Angeles, 2020

Professor Ying Nian Wu, Chair

In this thesis, | explore how predictive modeling can be applied in housing sale price prediction
by analyzing the housing dataset and use machine learning models. Actually, | try four different
models, namely, linear regression, lasso regression, randomforest and xgboost. Additionally, as
the data have 79 explanatory variables with many missing values, | spend much time dealing
with the data. | do explorary data analysis, feature enginnering before model fitting. And then
using rmse and R-squared to measure the model performance. After I try four different models, |
get some results. As for the first model - linear regression, it doesn’t meet the assumption of
equality of the variances. Therefore, we can’t use the linear model as the candidate of our final
model. Then I try lasso regression, but the RMSE and R-squared looks not so good. Then I try
Random forest. The R squared in this model of training set is very good, but in the test set the R

squared is relatively low, which may show the RF model is a little bit overfitting. Finally I try the



fourth model - xgboost. All of the results of this xgboost model seem very good. Therefore, I will
use this xgboost model as my final model to predict the housing price. The xgboost model also

shows which variables have important effects on sale price.
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CHAPTER 1

1.Introduction

Ask a home buyer to describe their dream house, and they probably won't begin with the height
of the basement ceiling or the proximity to an east-west railroad. But this playground
competition's dataset proves that much more influences price negotiations than the number of
bedrooms or a white-picket fence [1]. However, this dataset related to the thesis proves that may
have more effects on the housing price than the number of bedrooms or floors. Also, | want to
predict the reasonable housing price with these aspects of the houses by using this dataset.

This dataset contains 79 explanatory variables which related to almost every aspect of residential
homes in Ames, lowa. In the following steps, | will explore this dataset, do feature engineering,
fit some machine learning models to predict the housing prices and find which aspects of the
house influence the housing prices mostly.

Machine learning is closely related to computational statistics, which focus on using
mathematical optimization to deliver methods, theory and application domains to solve medical,
industry, social and business problems in the real world.

In my thesis, I will try four models: Linear Regression, Lasso Regression, RandomForest and
Xgboost to predict the housing sale price. And finally, I will use the Xgboost model as my final

model. This model also gives us which aspects have big effects on housing sale price.



CHAPTER 2

2.Explorary Data Analysis

2.1 The response variable — Saleprice

Scatter plot of SalePrice
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SalePrice
£
5

]
0 500 1000 1500
Figure 1

Figure 1 gives us the scatter plot of the sale price. Most of the points are assembled on the

bottom. And there seems to be no large outliers in the sale price variable



Distribution of SalePrice
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Figure 2
Figure 2 shows that the distribution of sale prices are right skewed, which shows the distribution

of the sale prices isn’t normal. It is reasonable because few people can afford very expensive
houses. | need to take transformation to the sale prices variable before model fitting.
2.2 The most related numeric predictors

| decided to see which numeric variables have a high correlation with the Sale Price by making a

correlation plot.



2.2.1 Correlations
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Figure 3

There are 10 numeric variables with correlations of at least 0.5 with Sale Price. All those
correlations are positive.

I will visualize the relation between Sale Price and the two predictors with the highest correlation
with Sale Price; Overall Quality and the Above Grade Living Area.

It also becomes clear the multicollinearity is an issue. For example: the correlation between
GarageCars and GarageArea is very high (0.89), and both have similar (high) correlations with
Sale Price. The other 6 six variables with a correlation higher than 0.5 with SalePrice are: -
TotalBsmtSF: Total square feet of basement area -1stFIrSF: First Floor square feet -FullBath:

Full bathrooms above grade -TotRmsAbvGrd: Total rooms above grade (does not include



bathrooms) -YearBuilt: Original construction date -YearRemodAdd: Remodel date (same as
construction date if no remodeling or additions).

2.2.2 Overall Quality

We find that the highest correlation 0.79 which is between the overall quality and sale price. This

overall quality variable rates the overall material and finish of the house as follows:

OverallQual: Rates the overall material and finish of the house

o

Very Excellent
Excellent

Very Good
Good

Above Average
Average

Below Average
Fair

Poor

Very Poor

“ N WhkuUioyN0W-=

Figure 4 shows the counts of the Overall Quality variable, it is very hard to judge whether the

distribution of this variable is normal, so we need to check its skew.

Distribution of Overall Quality
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]
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1

Figure 4



The skew of overall quality is 0.21 which is very low. Therefore, the distribution of the overall
quality could be regarded as normal.
Figure 5 shows the relationship between the overall quality and the sale price.

OverallQual vs. SalePrice
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Figure 5
We find that there is a positive relationship between the Overall Quality and Sale Price. And it

seems like a quadratic relationship or something else like that rather than the linear relationship.
This relationship seems easy to be understood. If a house keeper want to improve the overall
quality of his house from very poor to poor, he will only need to spend a little money and buy a
few items. However, if the house keeper want to improve the overall quality of his house from
excellent to very excellent, it will be very difficult and costs he much money.

2.2.3 Above Grade (Ground) Living Area (square feet)

The correlation between this numeric variable and sale price is 0.71 which the second highest.
We can give interpretations to the high correlations. Large above grade (ground) living area
means large house, and large house means expensive sale price. This makes sense a lot.

The counts of Above Grade (Ground) Living Area which is shown as follows:
6



200

150

count

100

0 1000 2000 3000 4000 5000 6000
GrLivArea

Figure 6
Most houses have low Above Grade (Ground) Living Area, and only a few houses have very

high Above Grade (Ground) Living Area. The distribution of this variable isn’t normal. I need to
take transformation to the sale prices variable before model fitting.

| also need to see the relationship between this variable and Sale price.

GrLivArea vs. SalePrice
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Figure 7
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There are two obvious outliers with high above grade living area but low sale price.
Actually, I will not easily delete these two outliers. Because there may be some reasons
accounting for the low sale price. | just analysis the overall quality variable, therefore I think

they may have low overall quality.

Table 1
1d SalePrice OverallQual GrlivArea
524 184750 10 4676
1299 | 160000 10 5642

However, from table 1, we can see the two houses also have high overall quality. There may be
some other reasons accounting for their low prices, but I will keep houses 1299 and 524 in mind

as prime candidates to take out as outliers.

2.3 Missing Values

Table 2 shows which variables contain missing values.

PoolQc
2909
FireplaceQu
1420
GarageCond
159
BsmtFinType2
80
Utilities
2
Exterior2nd
1
Electrical
1

MiscFeature
2814
LotFrontage
486
GarageType
157
BsmtFinTypel
79
BsmtFullBath
2
BsmtFinSF1
1
KitchenQual
1

Table 2

Alley
2721
GarageYrBIt
159
BsmtCond
82
MasVnrType
24
BsmtHalfBath
2
BsmtFinSF2
1
GarageCars
1

Fence
2348
GarageFinish
159
BsmtExposure
82
MasVnrArea
23
Functional
2
BsmtUnfSF
1
GarageArea
1

SalePrice
1459
GarageQual
159
BsmtQual
81
MSZoning
4
Exteriorlst
1
TotalBsmtSF
1
SaleType
1



We can see that there are 34 predictor variables containing missing values. And | need to fix
these NAs in these variables.

2.4 Inputing missing data

2.4.1 Pool Quiality

The pool quality variable has the most missing values. So, we need to analyze this variable and

fix these missing values.

The description of the Pool Quality will help us fix the NAs.

PoolQC: Pool quality

Ex Excellent

Gd Good

TA Average/Typical
Fa Fair

NA No Pool

NA means no pool. Therefore, we can replace the NA by 0 which means no pool. Also, we will

replace other levels by ordinal numbers as follows:

Table 3
ORIGINAL LABEL NEW LABEL
NONE \ 0
FA \ 1
TA \ 2
GD \ 3
EX \ 4

2.4.2 Miscellaneous feature
This variable has the second largest number of NA in this dataset. The description of the

Miscellaneous feature variable is shown as follows:



MiscFeature: Miscellaneous feature not covered in other categories
Elev Elevator

Gar2 2nd Garage (if not described in garage section)
Othr Other

Shed Shed (over 100 SF)

TenCTennis Court

NA None

The levels of this variable are not ordinal. Therefore, | choose to convert this variable to factor.

Figure 8 shows the relationship between this variable and sale price

MiscFeature vs. SalePrice
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Figure 8
| think this variable may not have much influence on the sale price. It sounds reasonable that the

sale price of a house with a tennis court is high. And there is only one house with a tennis court
in this dataset.

2.5 Dealing with Character Varibales

After | fix the missing values in some variables, I still need to be care of the rest character

variables without NAs.

10



Table 4

Street LandContour LandSlope
Condition1 Condition2 BldgType
HouseStyle RoofStyle RoofMatl
Foundation Heating HeatingQC
Central Air PavedDrive Neighborhood

All in all, there are 15 remaining character variables. | want to convert them into factors or

ordinal numbers. 1 will give table 5 to show the conclusions rather than too many details.

Table 5
Variables Original Type New Type
Foundation Character Factor
Heating Character Factor
HeatingQc Character Number
RoofStyle Character Factor
RoofMatl Character Factor
LandContour Character Factor
LandSlope Character Number
BldgType Character Factor
HouseStyle Character Factor
Neighborhood Character Factor
Conditionl Character Factor
Condtion2 Character Factor
Street Character Number
PavedDrive Character Number

2.6 Changing some numeric variables into factors

After | fix the missing values and do label encoding, all of the character variables are converted
into factors or numeric labels.

Nevertheless, | find that there are some numeric variables that should be categorical variables.

11



2.6.1 Year and Month sold

The year sold variable only contains 5 years. Therefore, I think it may be reasonable for me to
convert it to factors.

The month sold variable is originally a numeric variable. However, the month is actually

categorical. Therefore, | need to convert this month sold variable into factors.

200,000~ 200,000~

175,000~ 175,000

150,000~ 150,000 -
125,000~ 125,000~
100,000~ 100,000~
75,000~ 75,000~
50,000~ 50,000~
25,000~ 25,000~

o- {314] {320 /1304 [ {338} {175 o-Wse ) ¥52 " {106} {141 {204 253 [ 234 ]} 122 963 ' Hoo ' {70 M {50

1 2 3 4 5 & 71 8 9 1 11 12

2006 2007 2008 2009 2010
YrSold MoSold

SalePrice
SalePrice

Figure 9

We can find some facts from the figure 9.

The right plot is about the sale price and the month sold. We can see there is seasonality related
to the month. This seasonality seems to have obvious effects on the housing price.

The left plot is about the sale price and the year sold. From this plot, we can see the effects of the
Financial Crisis happening 2008. The median housing sale price came to the highest in 2007 and
then gradually decreased from 2008.

The financial crisis of 2008, also known as the global financial crisis and the 2008 financial

crisis, was a severe worldwide economic crisis considered by many economists to have been the

12



most serious financial crisis since the Great Depression of the 1930s, to which it is often
compared. [2]

2.6.2 MSSubClass

The description of this MSSubClass variable is shown as follows:

MSSubClass: Identifies the type of dwelling involved in the sale.

20 1-STORY 1946 & NEWER ALL STYLES

30 1-STORY 1945 & OLDER

40 1-STORY W/FINISHED ATTIC ALL AGES

45 1-1/2 STORY - UNFINISHED ALL AGES

50 1-1/2 STORY FINISHED ALL AGES

60 2-STORY 1946 & NEWER

70 2-STORY 1945 & OLDER

75 2-1/2 STORY ALL AGES

80 SPLIT OR MULTI-LEVEL

85 SPLIT FOYER

90 DUPLEX - ALL STYLES AND AGES

120 1-STORY PUD (Planned Unit Development) - 1946 & NEWER
150 1-1/2 STORY PUD - ALL AGES

160 2-STORY PUD - 1946 & NEWER

180 PUD - MULTILEVEL - INCL SPULIT LEV/FOYER

190 2 FAMILY CONVERSION - ALL STYLES AND AGES

From the description, we can find that the MSSubClass variable actually identifies the type of
dwelling of the houses. However, it is coded as numeric. Therefore, | need to convert it to
factors.

2.7 Importance of variables

After | explore some variables, convert some character variables into factors or numbers and
convert 3 numeric variables into factors, now I find that there are 56 numeric variables and 23
factor variables in this new dataset.

2.7.1 Correlations between variables (once again)

| plan to check the correlations again and to whether they have changed after | deal with so many

variables.
13
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Comparing the correlations in this section to the correlations in section 2.2.1, We can see that the
number of numeric variables having at least 0.5 correlations with the SalePrice has increased
from 10 to 16, which may shows that my data analysis is reasonable.

2.7.2 Get Importance of variables

From the correlations, we can get an overview of some important numeric variables such as the
Overall quality and Above Grade (Ground) Living Area. Also, we can find some variables such
as the Garage Car and the Garage Area have multicollinearity.

However, | want to get more details about the importance of variables which including the factor
variables. Therefore, | conduct a simple and quick random forest with only 100 trees and see the

most 20 important variables.

14
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Figure 11
In the most 20 important variables, only 3 are factors. Neighborhood, MSSubClass, and

GarageType.
2.8 Feature Engineering

2.8.1 Bathrooms Variables

There all totally 4 bathrooms variables - FullBath, HalfBath, BsmtFullBath and BsmtHalfBath.
As far as | am concerned, there is no need to have so many variables about bathrooms. Also, the
importance of them are not very high. Therefore, | want to combine them into one variable by
adding them all so that this predictor is likely to become more correlated with sale price.

The descriptions of these four variables are shown as follows:



BsmtFullBath: Basement full bathrooms
BsmtHalfBath: Basement half bathrooms
FullBath: Full bathrooms above grade

HalfBath: Half baths above grade

However, | need to know what is half bathroom.
“A half-bath, also known as a powder room or guest bath, has only two of the four main
bathroom components-typically a toilet and sink.” [3]
Therefore, | plan to count the half bathroom as half. | will create a new variable about bathrooms
as follows:
TotalBathrooms = FullBath + 0.5HalfBath
+BsmtFullBath + 0.5BsmtHalfBath

Figure 12 help me visualize the new variable - totalbathrooms.

16
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Figure 12

TotalBathrooms. From this plot we can find that with the number of total bathrooms increasing,
the sale price tends to increase, too.

The second plot gives us the counts houses in each TotalBathrooms in this dataset. From this
plot, we can find that most houses have 2 TotalBathrooms.

Also, the correlation between totalbathrooms and sale price is 0.63, which seems very suitable
for me to analysis this variable.

2.8.2 Total Square Feet

When people want to buy a house, the total square feet of this house is an very important factor.

This dataset contains two variables about the total square feet - GrLivArea and TotalBsmtSF.

17



GrLivArea means above grade (ground) living area. And TotalBsmtSF means total square feet of
basement area.
Therefore, | want to create a new variable - Total Square Feet by just adding them.

TotalSqFeet = GrLivArea + TotalBsmtSF

Figure 13 shows the relationship between this total square feet and sale price

800,000 -
700,000 -
600,000 -

500,000 -

ice

SalePr

400,000 -

300,000 -

200,000 -

100,000 -

0 3000 6000 9000 12000
TotalSqgFeet

Figure 13
It is very similar to the relationship between GrLivArea and sale price (Section 2.2.3). There are

also two potential outliers. (House 524 and 1299).
The correlation between the TotalSqFeet and SalePrice is around 0.78 which is higher than the
correlation between GrLivArea and SalePrice. If we delete the two potential outliers, the

correlation will increase by 5%. (0.82)

18



2.8.3 Neighborhood

We have visualized the neighborhood variable in section 5.2.1. There are so many labels in this

variable, and it will be very hard to analysis. Therefore, | want to combine them into only a few

labels (3 or 4).

In order to achieve my goal, | want to see the relationship between this neighborhood and the

median sale price as well as the mean sale price.

Median SalePrice

Mean SalePrice
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Figure 14

From the figure 14, we can find some results.

Both the median and mean sale price in ‘StoneBr’, ‘NridgHt’, ‘NoRidge’ are very high. Also,

19



both the median and mean sale price in ‘MeadowV’, IDOTRR’, ‘BrDale’ are the three lowest.

Therefore, 1 want to combine these labels into only 3 labels as follows:

Table 6
ORIGINAL LABEL NEW LABEL
'STONEBR', NRIDGHT', ' NORIDGE' | 2
'MEADOWYV", TDOTRR', 'BRDALE/, 1
'STONEBR', 'NRIDGHT', NORIDGE'
'MEADOWYV', 'IDOTRR', 'BRDALE' \ 0

2.9 Preparing data for modeling

2.9.1 Dropping highly correlated variables

From the correlation plot, we can find that some variables are highly correlated. Therefore, |
need to drop a variable if the correlations of two variables are very high. For example: The
GarageCars variable and GarageArea variable have a correlation of 0.89. Of those two, | will
drop the variable with the lowest correlation with SalePrice (which is GarageArea with a
SalePrice correlation of 0.62. GarageCars has a SalePrice correlation of 0.64).

All in all, I will drop 7 variables which are ‘YearRemodAdd’, ‘GarageYrBIt’, ‘GarageArea’,
‘GarageCond’, ‘TotalBsmtSF’, ‘TotalRmsAbvGrd’, ‘BsmtFinSF1°.

2.9.2 Removing outliers

In section 2.2.3, | said that the house 524 and 1299 are prime candidates to be taken out as
outliers. Now I plan to just remove the two really big houses with low SalePrice. Maybe | will
investigate these two houses more in the future.

2.9.3 Dealing with skewness of response variable

In 2.1 Section, we find that the response variable - SalePrice doesn’t have a normal distribution.

Therefore, we need to take transformation to the variable.
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The skew of the variable before transformation is 1.87 which indicates the right skew is too high
and the QQ plot shows that sale prices are also not normally distributed. To fix this problem, 1

choose to take the log transformation of SalePrice.

QQ plot Before Transformation

Sample Quantiles
1e+05 5Se+05
|

Theoretical Quantiles

QQ plot After Transformation

13.5

Sample Quantiles
12.0

10.5

Theoretical Quantiles

Figure 15
After | take log transformation, the skew is 0.12 which is very low. And the QQ plot looks very

good.
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2.10 Splitting the data

Before fit model to the data set, | need to split the data into training set and test set.

Each model will be trained on the same training dataset and evaluated on the same test dataset.
The following models will be evaluated by the MSE and R-squared and compared to determine
which model is the most effective model.

The data will be splitted into two parts for the modeling process. First, the training dataset

contain 70% of the total dataset. And the test dataset will contain 30% of the total data.

22



CHAPTER 3

3. Criteria to measure performance

3.1 RMSE - root mean square error

The root-mean-square error (RMSE) represents the square root of the second sample moment of
the differences between predicted values and observed values or the quadratic mean of these
differences.

RMSE is the square root of the average of squared errors. The effect of each error on RMSE is
proportional to the size of the squared error; thus, larger errors have a disproportionately large

effect on RMSE. Consequently, RMSE is sensitive to outliers.

The RMSE of an estimator 8 with respect to an estimated parameter 6 is defined as the square

root of the mean square error.

RMSE () = JMSE(@) = \/E((é\ —9)?)
For an unbiased estimator, the RMSD is the square root of the variance, known as the standard
deviation. [4]
The RMSE of predicted values y; of a regression’s dependent variable y;, with variables
observed over n times, is computed for n different predictions as the square root of the mean of

the squares of the deviation:

RMSE:\/ nL(Y = i)?
n
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3.2 R Squared - Coefficient of determination

In statistics, the coefficient of determination, denoted R? is the proportion of the variance in the
dependent variable that is predictable from the independent variables.

When evaluating the goodness-of-fit of simulated (Yy,..4) vs. measured (Y,s) values, it is not
appropriate to base this on the R? of the linear regression (i.e., Y,5s = m X Yyeq + b). The R?
quantifies the degree of any linear correlation between Y,,5 and Y,,,..4, While for the goodness-of-

fit evaluation only one specific linear correlation should be taken into consideration: Y,,s =

1 X Ypreq + 0(ie., the 1:1 line).

A_V ‘_V
°
‘.__l;y f
.
X X
» »
R2 -1 S Sres &
B S8 tot

The better the linear regression (on the right) fits the data in comparison
to the simple average (on the left graph), the closer the value of Risto
1. The areas of the blue squares represent the squared residuals with
respect to the linear regression. The areas of the red squares represent
the squared residuals with respect to the average value.

Figure 16
A data set has n values marked y;, ..., y, (collectively known as y; or as a vector y =

[V1,---,¥a]T), €ach associated with a fitted (or modeled, or predicted) value ¥ , ..., y,.
Define the residuals as e; = y; — y;.

If y is the mean of the observed data, we have
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S|

y =

n
z Vi
i=1

So, the variability of the data set can be measured using three sums of squares formulas:

a. The total sum of squares (proportional to the variance of the data):
SStot = Z(Yi —-y)?
i
b. The regression sum of squares, also called the explained sum of squares:
SSreg = Z()ll\l _y)z
i

c. The sum of squares of residuals, also called the residual sum of squares:
SSres = Z(yi - 3/7\1')2 = z eiz

i i
The most general definition of the coefficient (R squared) of determination is:

SSres
SStot

R?=1-

R? is a statistic that will give some information about the goodness of fit of a model. Suppose

R? = 0.49. This implies that 49% of the variability of the dependent variable has been accounted
for, and the remaining 51% of the variability is still unaccounted for. In regression, the R?
coefficient of determination is a statistical measure of how well the regression predictions
approximate the real data points. An R? of 1 indicates that the regression predictions perfectly fit

the data [5].
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CHAPTER 4

4. Model Fitting

4.1 Linear Regression

In statistics, linear regression is a linear approach to modeling the relationship between a scalar
response (or dependent variable) and one or more explanatory variables (or independent
variables). The case of one explanatory variable is called simple linear regression. For more than
one explanatory variable, the process is called multiple linear regression. This term is distinct
from multivariate linear regression, where multiple correlated dependent variables are predicted,
rather than a single scalar variable.

In linear regression, the relationships are modeled using linear predictor functions whose
unknown model parameters are estimated from the data. Such models are called linear models.
Most commonly, the conditional mean of the response given the values of the explanatory
variables (or predictors) is assumed to be an affine function of those values; less commonly, the
conditional median or some other quantile is used. Like all forms of regression analysis, linear
regression focuses on the conditional probability distribution of the response given the values of
the predictors, rather than on the joint probability distribution of all of these variables, which is
the domain of multivariate analysis.

Linear regression was the first type of regression analysis to be studied rigorously, and to be used
extensively in practical applications. This is because models which depend linearly on their

unknown parameters are easier to fit than models which are non-linearly related to their
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parameters and because the statistical properties of the resulting estimators are easier to
determine. [6]

Given a dataset {y;, x;1, ... X };=, Of n statistical units, a linear regression model assumes that
the relationship between the dependent variable y and the p-vector of regressors x is linear. This
relationship is modeled through a disturbance term or error variable e, which is an unobserved
random variable that adds “noise” to the linear relationship between the dependent variable and

regressors. Thus the model takes the form:

Vi = Bo+ Brxut...+Bpxip = X[ B + €
Often these n equations are stacked together and written in matrix notation as
Y=Xf+¢€
All in all, I started with linear regression model which is the simplest in my cases. | will give the

RMSE and R Squared of both the training set and the test set in the following table.

Table 7
OLS TRAINING SET TEST SET
RMSE \ 0.0883 0.1262
R? | 0.9512 0.9312

Remember | have taken log transformation to the outcome variable — Sale Price. Therefore, the
RMSE value is very low. But it doesn’t matter, we can still compare these values.
The result of the linear regression model seems good. However, | need to check the assumption

of the linear regression. Figure 17 will help me do the check.
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Figure 17

Plot 1 Residuals vs Fitted: Relatively straight line but with patterns. Linearity assumption can be
accepted.

Plot 2 QQ plot for normality: Relatively normal. Normality assumption can be accepted.

Plot 3 Scale-Location for assumption of equal variance: Relatively flat line, however it has
patterns. We will need to check further using ncv test.

Plot 4 Residuals vs Leverage: No influential case as we barely can see Cook’s distance line.
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The NCV test shows the p-value << 0.05, which tells us our final linear model doesn’t meet the
assumption of equality of the variances. Therefore, we can’t use the linear model as the
candidate of our final model.

4.2 Lasso Regression

In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also
Lasso or LASSO) is a regression analysis method that performs both variable selection and
regularization in order to enhance the prediction accuracy and interpretability of the statistical
model it produces.

Lasso was originally formulated for least squares models and this simple case reveals a
substantial amount about the behavior of the estimator, including its relationship to ridge
regression and best subset selection and the connections between lasso coefficient estimates and
so-called soft thresholding. It also reveals that (like standard linear regression) the coefficient
estimates do not need to be unique if covariates are collinear.

Though originally defined for least squares, lasso regularization is easily extended to a wide
variety of statistical models including generalized linear models, generalized estimating
equations, proportional hazards models, and M-estimators, in a straightforward fashion. Lasso’s
ability to perform subset selection relies on the form of the constraint and has a variety of
interpretations including in terms of geometry, Bayesian statistics, and convex analysis.

Lasso was introduced in order to improve the prediction accuracy and interpretability of
regression models by altering the model fitting process to select only a subset of the provided
covariates for use in the final model rather than using all of them. It was developed

independently in geophysics, based on prior work that used the [, penalty for both fitting and
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penalization of the coefficients, and by the statistician, Robert Tibshirani based on Breiman’s
nonnegative garrote.

Lasso was originally introduced in the context of least squares, and it can be instructive to
consider this case first, since it illustrates many of lasso’s properties in a straightforward setting.
Consider a sample consisting of N cases, each of which consists of p covariates and a single
outcome. Let y; be the outcome and x; = (x4, x5, .. .,xp)T be the covariate vector for the ith

case. Then the objective of lasso is to solve.

N
pip (= o =)

where this formula is subject to 25-;1 1B I< t.
Here t is a prespecified free parameter that determines the amount of regularisation. Let X be the
covariance matrix, so that X;; = (x;;); and x! is the i, row of X, the expression can be written
more compactly as
1 2
min{s 11y = Boly — XB 113
where this formula is subjectto || B ||,< t

1
Note that || B Il,= (X}, | B; IP)? is the standard [” norm, and 1, isan N x 1 vectors of ones.

Denoting the scalar mean of the data points x; by x and the mean of the response variables y; by

v, the resulting estimate for S5, will end up being é\o =y— ET[?, so that

Vi—Bo—xIB=yi—GF—-% B) —xIB=i-y) - (-0
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and therefore, it is standard to work with variables that have been centered (made zero-mean).
Additionally, the covariates are typically standardized (XN, x?* = 1) so that the solution does
not depend on the measurement scale.

It can be helpful to rewrite
1 2

ﬁrrel}?r%{ﬁ Iy —XB IZI)}
where this formula is subject to || £ 11, < t in the so called Lagrangian form

1 2 1

in{—|ly—X
preré}z%{N Iy —XB |£+ 1B Il}

where the exact relationship between t and A is data independent [6].

In section 4.1, our linear regression model doesn’t meet the assumption of equality of the

variances, so we used the lasso regression to fix this issue. And let’s see the results of the lasso

regression:
Table 8
LASSO TRAINING SET TEST SET
RMSE \ 0.0992 0.1176
R? | 0.9084 0.8878

Comparing with the result of linear regression model, the result of lasso doesn’t seem so good.
But this model is robust, and I plan to consider the lasso model as the candidate of my final

model.

4.3 Random Forest

Random forest, like its name implies, consists of a large number of individual decision trees that
operate as an ensemble. Each individual tree in the random forest spits out a class prediction and

the class with the most votes becomes our model’s prediction.
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The fundamental concept behind random forest is a simple but powerful one — the wisdom of
crowds. In data science speak, the reason that the random forest model works so well is:
A large number of relatively uncorrelated models (trees) operating as a committee will
outperform any of the individual constituent models. [7]
The training algorithm for random forests applies the general technique of bootstrap aggregating,
or bagging, to tree learners. Given a training set X = xy,..., x,, with response Y = y,,..., ¥
bagging repeatedly (B times) selects a random sample with replacement of the training set and
fits trees to these samples:
Forb=1,...,B:
1. Sample, with replacement, n training examples from X, Y; called these X;,, ;.
2. Train a classification or regression tree f;,, on X;, Yj,.
After training, predictions for unseen samples x’ can be made by averaging the predictions from
all the individual regression trees on x’:

NS

f== bzl fo ()
or by taking the majority vote in the case of classification trees.
This bootstrapping procedure leads to better model performance because it decreases the
variance of the model, without increasing the bias. This means that while the predictions of a
single tree are highly sensitive to noise in its training set, the average of many trees is not, as
long as the trees are not correlated. Simply training many trees on a single training set would
give strongly correlated trees (or even the same tree many times, if the training algorithm is
deterministic); bootstrap sampling is a way of de correlating the trees by showing them different

training sets.
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Additionally, an estimate of the uncertainty of the prediction can be made as the standard

deviation of the predictions from all the individual regression trees on x’:

o j b (fo) = )7
B—-1

The number of samples/trees, B, is a free parameter. Typically, a few hundred to several
thousand trees are used, depending on the size and nature of the training set. An optimal number
of trees B can be found using cross validation, or by observing the out of bag error: the mean
prediction error on each training sample x;, using only the trees that did not have x; in their
bootstrap sample. The training and test error tend to level off after some number of trees have
been fit.
The above procedure describes the original bagging algorithm for trees. Random forests differ in
only one way from this general scheme: they use a modified tree learning algorithm that selects,
at each candidate split in the learning process, a random subset of the features. This process is
sometimes called “feature bagging”. The reason for doing this is the correlation of the trees in an
ordinary bootstrap sample: if one or a few features are very strong predictors for the response
variable (target output), these features will be selected in many of the B trees, causing them to

become correlated. An analysis of how bagging and random subspace projection contribute to

accuracy gains under different conditions is given by Ho.
Typically, for a classification problem with p features, ﬁ (rounded down) features are used in

each split. For regression problems the inventors recommend p/3 with a minimum node size of 5
as the default. In practice the best values for these parameters will depend on the problem, and

they should be treated as tuning parameters [8].
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The figure 18 shows the relationship between the error and the number of trees, we find that we

need to set the number of trees equal to 100.
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Figure 18
I also want to visualize the important variables, so that | can know which variables in this

random forest model tend to have more influence on the sale price.

RandomForest Importance

40-
30-
MSE
40
30
20-
20
10
10-

GarageCars X1stFIrSF YearBuilt TotBathroomsKitchenQual ExterQual — GrlivArea NeighborhoodOverallQual TotalSqFest
Variables

% increase M SE if variable is randomly permuted

Figure 19
From figure 19, we can see that the TotalSqFeet and OverallQual are the most important two

variables.
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The RMSE and R squared of my RF model shows as follows:

Table 9
RF TRAINING SET TEST SET
RMSE \ 0.0242 0.0523
RZ | 0.9411 0.8673

The RMSE of the random forest model are very low, which tells us the predictions in the random
forest model tend to be more central than the regression model.

However, the R squared of the training set is very good. But the R squared of the test set is
relatively low, which may show that the random forest model is a little bit overfitting.

4.4 XGBoost

XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses a gradient
boosting framework. In prediction problems involving unstructured data (images, text, etc.)
artificial neural networks tend to outperform all other algorithms or frameworks. However, when
it comes to small-to-medium structured/tabular data, decision tree based algorithms are
considered best-in-class right now.

The algorithm differentiates itself in the following ways:

1.A wide range of applications: Can be used to solve regression, classification, ranking, and user-
defined prediction problems.

2.Portability: Runs smoothly on Windows, Linux, and OS X.

3.Languages: Supports all major programming languages including C++, Python, R, Java, Scala,
and Julia.

4.Cloud Integration: Supports AWS, Azure, and Yarn clusters and works well with Flink, Spark,

and other ecosystems. [9]
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XGBoost is the leading model for working with standard tabular data (the type of data you store
in Pandas DataFrames, as opposed to more exotic types of data like images and videos).
XGBoost models dominate many Kaggle competitions.

To reach peak accuracy, XGBoost models require more knowledge and model tuning than
techniques like Random Forest.

XGBoost is an implementation of the Gradient Boosted Decision Trees algorithm What is

Gradient Boosted Decision Trees? We’ll walk through a diagram in the figure 20.

Naive Model

Calculate Errors

Add Last Model Build Model
to Ensemble Predicting Errors

Figure 20
We go through cycles that repeatedly builds new models and combines them into an ensemble

model. We start the cycle by calculating the errors for each observation in the dataset. We then
build a new model to predict those. We add predictions from this error predicting model to the
“ensemble of models.”

To make a prediction, we add the predictions from all previous models. We can use these

predictions to calculate new errors, build the next model, and add it to the ensemble.
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There’s one piece outside that cycle. We need some base prediction to start the cycle. In practice,
the initial predictions can be pretty naive. Even if its predictions are wildly inaccurate,
subsequent additions to the ensemble will address those errors. [10]

Actually, 1 just worked with the XGBoost package in R directly. The main reason for this was
that the package uses its own efficient data structure which help me a lot to get the result.

The importance of the XGboost model is shown as follows:

Feature importance
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Figure 21

We can see that the TotalSqFeet and OverallQual are the most important two variables which are
the same as the result of RandomForest model.

Table 10 gives the RMSE and R squared of my Xgboost model.



Table 10

XGBOOST TRAINING SET TEST SET
RMSE \ 0.0588 0.1212
R? | 0.9495 0.9348

The RMSE of my Xgboost model aren’t bad, which tells us the prediction of my xgboost model
aren’t very far from the true sale price. And the R-squared in the training set and test set are both
high, which shows the xgboost model are reasonable and not overfitting. All of the RMSE and R

squared seems good, | may use the Xgboost model as my final model.
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CHAPTER 5

5. Conclusion

The objective of this paper is to fit models to predict the housing sale price and find some
important aspects of the house.

In order to achieve my goal, | fit four models to the dataset: linear regression, lasso regression,
random forest and Xgboost. As for the first model - linear regression, it doesn’t meet the
assumption of equality of the variances. Therefore we can’t use the linear model as the candidate
of our final model. In order to deal with this problem, I try the second model - lasso regression,
but the Rmse and R-squared looks not so good. The third model is Random forest. The Rmse of
this model are relative low in both the training set and test set, which shows the predictions
seems not bad. What’s more, The R squared in this model of training set is very good, but in the
test set the R squared is relatively low, which may show the random forest model is a little bit
overfitting. Finally, I try the fourth model - Xgboost. All of the results of this xgboost model
seem good. Therefore, | will use this xgboost model as my final model to predict the housing
price.

What’s more, from the feature importance plot of the Xgboost, we can know that the total square
feet, the overall quality, and the total number of bathrooms are the three main aspects which

influence the housing sale price.
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