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Abstract

Instruction level parallelism (ILP) improves performance for VLIW, EPIC, and Superscalar pro-
cessors. Out-of-order execution improves performance further. The advantage of out-of-order
execution is not fully utilized due to in-order completion. In this report we study the performance
loss due to in-order completion for MIPS R10000 processor.
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1 Introduction

Many micro-architecture studies focus on issues related to branch prediction, cache size, instruc-
tion window size and how design parameters interact [7]. Many studies have focused on available
instruction level parallelism (ILP) for superscalar and superpipelined processors [3]. It would be
interesting to study how ILP interacts with these design parameters. In this report we study the
impact of out-of-order graduation on processor performance.
~ In this report completion of an instruction implies the instruction has completed execution but
still in the completion queue. This completed instruction will be removed from the completion
queue and results will be committed to register file during graduation. Completion refers to com-
pletion of execution and graduation refers to committing the results.

Contemporary superscalar processors use in-order graduation. This is to ensure sequential ex-
ecution behavior in the presence of out-of-order execution of instructions. This also ensures that
all exceptions are reported in program order. Consider a completion queue (active list) of 8 in-
structions as shown below. The instruction graduates from the queue from the top (index 0).
Index column means the index of the queue. Instruction means the instruction stored in that in-
dex. The instructions are inserted into the queue in the program order by the decode unit. Due
to out-of-order execution different instructions finish (shown as Done in Status column) execution
at different point of time. If out-of-order graduation is employed, i.e., if we allow IADD instruc-
tion at index 1 to graduate before IVLOAD at index O (lower index implies older in sequential
program order), sequential execution semantics may not be preserved. Execution will be incorrect
if IVLOAD generates exception due to segmentation fault, for example. In sequential execution
program will terminate at IVLOAD instruction itself and will never execute IADD, in case of such
segmentation fault. However, in this scenario, if we commit the results of IADD before IVLOAD
graduates we will generate different memory state than the earlier one if IVLOAD generates ex-
ception. Similarly we can not allow DADD to graduate since it is after the branch instruction
which is yet to complete. In other words, trying to graduate instructions out-of-order may generate
incorrect results in the presence of exceptions, interrupts, branches etc.

Index Instruction Status
0 IVLOAD R3, -4, R5 Not Domne
1 IADD R5, R5, 1 Done
2 ISUB R4, R4, 4 Done
3 ILE S$cc, R4, RS Done
4 IF $cc L8 Not Done
3 IVSTORE R3, -4, R5 Not Done
6 ILSH R3, R3, 1 Not Done
7 DADD R7, R7, 1 Done

The natural question is why we are studying out-of-order graduation if it is incorrect to per-
form. We want to explore if this out-of-order execution is a performance bottleneck. Moreover,
in embedded systems, we do know the application behavior. Hence, it would be appropriate to
decide when to perform out-of-order graduation and when not based on expected exceptions and
interrupts.




Table 1 shows the fetch, issue, execution and graduation methodology (viz., in-order or out-of-
order) for five processors. UltraSparcl and IA64 are more VLIW type. MIPS R10K and Alpha has
out-of-order issue and execution. PowerPC has in-order issue but out-of-order execution. All these
three processors graduates in-order. In other words, for contemporary processors with out-of-order
execution the graduation is always in-order.

MIPS R10K maintains 32 entry active instruction list. Instruction issue will be stalled if active
instruction list is full. Since graduation is in-order, there may be independent instructions ready to
retire/graduate but is not able to do that because of an active instruction in front of it.

Powerpc MPC7400 [2] maintains 8-entry completion queue. Issue will be done only if there is
empty space in completion queue. Upto 2 instructions can graduate per cycle.

In both cases mentioned above, it may lead to performance penalty which could have been
avoided by allowing independent instructions to graduate out-of-order, by adding extra logic which
picks up every completed instruction inside the active instruction list (in R10K) and checks the
dependency with the instructions above in the queue.

Consider the snapshot of the 8-entry completion queue shown above. The queue is full. There-
fore, no more instructions will be decoded till there is space available in the queue. Due to in-order
graduation semantics the completed instruction IADD is not allowed to graduate till the IVLOAD
instruction graduates. If load is hit in cache then it may held the completed instructions for two
cycles. If load is a miss in primary cache then it will stall decode for 4 - 50 cycles depending
on where it gets the data, secondary cache or main memory. Though I described the situation for
load instruction stopping the graduation process, any instruction with longer latency are potential
candidates for this viz., FMUL, FDIV etc.

These independent instructions, which gets completed prior to previous instructions, get gener-
ated due to software pipelining, loop index increment, array index computation or loop termination
check etc. If we allow IADD to graduate then decode can insert instructions in completion queue.

Table 1. Instruction Fetch, Issue, Execution and Graduation

Fetch Issue Execution Graduation
In-order | OOQ | In-order | OOO | In-order | OOO | In-order | OO0
MIPS R10K 4 4 5 X
Alpha 21264 4 4 6 ?
MPC7400 4 2 8 2
UltraSparc I 4 4 4 X
IA 64 6 6 9 X

Section 2 describes MIPS R10K processor briefly which we implemented in our cycle-accurate,
retargetable SIMPRESS [4] simulator. Section 3 shows the results for out-of-order execution.
Section 4 concludes the paper.




2 MIPS R10000 Architecture

The MIPS R10000 ([8], [9]), is a dynamic, superscalar microprocessor that implements the
64-bit Mips-4 instruction set architecture. It fetches and decodes four instructions per cycle and
dynamically issues them to five fully-pipelined, low-latency execution units. Instructions can be
fetched and executed speculatively beyond branches. Instructions graduate in order upon comple-
tion. Although execution is out of order, the processor still provides sequential memory consis-
tency and precise exception handling. With speculative execution, it calculates memory addresses
and initiates cache refills early. It’s hierarchical, nonblocking memory system helps hide memory
latency with two levels of set-associative, write-back caches. To cope with the complexity of out
of order superscalar processing, the R10000 uses a modular design that locates much of the con-
trol logic with in regular structures, including the active list, register map tables, and instruction
queues.

R10000 fetches and decodes four 32-bit instructions per cycle. If one of these is a branch,
its target address is calculated, the branch path is predicted, and instructions are speculatively
fetched along the predicted path. Decoded instructions are put into a 32-entry Active List and three
16-entry instruction queues. The Active List keeps track of the original instruction order. The
instruction queues dynamically issue each instruction to the appropriate execution unit after all
its operands have become available. The Floating-point Queue issues instructions to the floating-
point multiplier and adder. The Integer Queue issues instructions to two ALUSs. The Address Queue
issues instructions to the Load/Store unit (Address Calculation Unit and TLB) and the Data Cache.
The Address Calculation Unit calculates 44 bit virtual memory addresses and TLB translates them
to 40-bit physical addresses. Instructions graduate in order upon completion. Although execution
is aggressively out-of-order, the processor still provides sequential memory consistency and precise
exception handling.

Figure 1 shows the major blocks in the R10000 processor. In the following sections we describe
MIPS R10K register files, issue queues and memory hierarchy.

2.1 Register Files

Integer and floating-point register files each contain 64 physical registers. The integer register
file has seven read ports and three write ports. These include two dedicated read ports and one
dedicated write port for each ALU and two dedicated read ports for the address calculate unit. The
integer registers seventh read port handles store, jump-register, and move-to-floating-point instruc-
tions. It’s third write port handles load, branch-and-link, and move-from-floating-point instruc-
tions. The floating-point register file has five read and three write ports. The adder and multiplier
each have two dedicated read ports and one dedicated write port. The fifth read port handles store
and move instructions; the third write port handles load and move instructions.

2.2 Instruction Pipeline

The instruction pipeline continues to fetch and decode instructions as long as there is room in
the Active List and queues. When resource conflicts or operand dependencies prevent the queues
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from issuing instructions in their program order, the queue’s dynamic scheduling hardwire tries
to find other instructions that can be issued instead. For frequent operations, each execution unit
is fully pipelined with a single-cycle repeat rate. The ALUs execute simple integer operations
with single cycle latency, so that dependent instructions can be issued on consecutive cycles. The
floating-point units has 3-stage pipelines, but special bypass logic reduces latency to only two
cycles. Integer operands are loaded from the Data Cache with two cycle latency. Floating-point
loads take an extra cycle of latency, because these units are physically farther from the Data Cache.

2.3 Register Renaming

During instruction decode, integer and floating-point registers are renamed using separate map-
ping tables. This hardware handles almost any sequence of four instructions, including sequences
with dependencies and instructions destined to the same functional units. Renaming maps 32 log-
ical register numbers into 64 physical registers. The physical registers contain both committed
and speculative values. When each instruction is decoded, its result is assigned to a physical reg-
ister from a Free List of currently unused registers. At graduation, this register contains a new
committed value, and the previously assigned physical register is returned to the Free List. Thus,
each physical register is uniquely associated with just one value; dependencies can be determined
simply by comparing physical register numbers.

2.4 Branch Prediction

The direction taken by a conditional branch is predicted using a 2-bit algorithm, based on a
512 entry Branch History Table. Each prediction is verified as soon as its branch condition is
determined. if its prediction was incorrect, all instructions fetched along the mis-predicted path
are immediately aborted, and the processor state is restored from a 4-entry Branch Stack. This
allows rapid recovery for up to four mis-predicted branches. Fetching along predicted paths may
have initiated unneeded cache refills. However, the cache is non-blocking, and the correct path can
be fetched while these refills are completed.

2.5 Integer Queue

The integer queue issues instructions to the two integer arithmetic units: ALU1 and ALU2. The
integer queue contains 16 instruction entries. Up to four instructions may be written during each
cycle; newly decoded integer instructions are written into empty entries in no particular order.
Instructions remain in this queue only until they have been issued to an ALU. Branch and shift
instructions can be issued only to ALUI. Integer multiply and divide instructions can be issued
only to ALU2. Other integer instructions can be issued to either ALU. The integer queue controls
six dedicated ports to the integer register file: two operand read ports and a destination write port
for each ALU.




2.6 Floating-point Queue

The floating-point queue issues instructions to the floating-point multiplier and the floating-
point adder. The floating-point queue contains 16 instruction entries. Up to four instructions may
be written during each cycle; newly decoded integer instructions are written into empty entries in
no particular order. Instructions remain in this queue only until they have been issued to a floating
point execution unit. The R10000 has four independent 64-bit floating-point execution units. The
adders and multiplier are each fully pipelined with single-cycle repeat rate and latency of just two
cycles. The adder includes a leading-zero predictor and a dual-carry-chain adder to round its result
before it is normalized. Division and square root are performed in separate iterative units which
operate concurrently with the pipelined units. To reduce latency, the divider cascades two stages,
so it can generate four bits per cycle. These units share the multiplier’s issue and register file ports.
Separate ports are not justified, because the issue rate is low.

2.7 Address Queue

The address queue issues instructions to the load/store unit. The address queue contains 16
instruction entries. Unlike the other two queues, the address queue is organized as a circular First-
In First-Out (FIFO) buffer. A newly decoded load/store instruction is written into the next available
sequential empty entry; upto four instruction may be written during each cycle. The FIFO order
maintains the program’s original instruction sequence so that memory address dependencies may
be easily computed. Instructions remain in this queue until they have graduated; they cannot be
deleted immediately after being issued, since the load/store unit may not be able to complete the
operation immediately. An issued instruction may fail to complete because of a memory. a cache
miss, or a resource conflict; in these cases, the queue must continue to reissue the instruction until
it is completed. The address queue has three issue ports:

e First, it issues each instruction once to the address calculation unit. The unit uses a three
stage pipeline to compute the instruction’s memory address and to translate it in the TLB.
This port controls two dedicated read ports to the integer register file. If the cache is avail-
able, it is accessed at the same time as the TLB. A tag check can be performed even if the
data array is busy.

e Second, the address queue can re-issue accesses to the data cache. The queue allocates usage
of the four sections of the cache, which consist of the tag and data sections of the two cache
banks. Load and store instructions begin with a tag check cycle, which checks to see if
the desired address is already in cache. If it is not, a refill operation is initiated, and this
instruction waits until it has completed. Load instructions also read and align a doubleword
value from the data array. If the data is present and no dependencies exist, the instruction is
marked done in the queue.

e Third, the address queue can issue store instructions to the data cache. A store instruction
may not modify the data cache until it graduates. Only one store can graduate per cycle, but




it may be anywhere within the four oldest instructions, if all previous instructions are already
completed.

2.8 Memory Hierarchy

R10000 implements a nonblocking memory hierarchy with two levels of set-associative caches.
It finds cache misses early, and begins refills in parallel with other useful work. The on-chip
caches provide concurrent access for instruction fetch, data load and store, and refill. All caches
least-recently-used(LRU) replacement algorithm.

The Data Cache is 2-way interleaved with independent tag and data arrays for each bank. These
four arrays operate under shared control of the Address Queue and the External Interface. The
queue concurrently processes up to 16 load and store instructions in four separate pipelines. It
dynamically issues instructions to the address calculation and translation pipeline. The other three
pipelines can concurrently perform tag checks, execute loads, and graduate store instructions. Al-
though address calculation and loads can occur out-of-order, instructions appear to execute with
strong memory order. The Data Cache pipelines interact during several common cache sequences.
Loads can perform the tag check and data read during the same cycle as the address translation.
Store instructions immediately issue a tag check to initiate any required replacement as early.as
possible, but writing data into the cache is delayed until the store becomes the oldest instruction
and graduates. A miss in the primary data cache will initiate a refill sequence from the secondary
cache. For loads, refill data can be bypassed directly into the register file. The two banks of the
Data Cache are each divided into two logical arrays to support 2-way set-associativity. The proces-
sor simultaneously reads the same doubleword from both cache ways, because it checks the cache
tags in parallel and later selects data from the correct way. The external interface refills or writes
back quadwords by accessing two doublewords in parallel. This is possible because the cache way
is known in advance. ‘

The primary cache consists of 2K doublewords. Number of data lines is 8. To store a doubleword
8 locations are needed. Least significant 3 bits are used for this alignment. Address lines 3-13 is
used to access the Data Cache and 5-13 is used to access the Tag Cache. Block size is 4. Tag
value consists of the bits 14-39 of the physical address. It has read/write latency of 1 cycle. The
secondary cache consists of 512K doublewords. Address lines 3-21 is used to access the Data
Cache and 6-21 is used to access the Tag Cache. Block size is 16. Tag value consists of the bits
22-39 of the physical address. It has read/write latency of 2 cycles. After a primary cache miss,
two quadwords are read in the following sequence from the secondary cache. First, its tag is read
along with the first quadword. The tag of the alternate way is read with the second quadword. If
the first wdy hits, the data is available immediately. If the alternate way hits, the secondary cache
is read again. If neither way hits, the secondary cache must be refilled from Main Memory. Main
Memory has read/write latency of 4 cycles.




3 Experiments

In this section we demonstrate the performance improvement due to out-of-order graduation in
MIPS R10K processor.

3.1 Experimental Setup

We performed a set of experiments using R10K processor model in SIMPRESS [4]. Figure 2
shows the R10K processor model we implemented in VSAT-GUI [4].
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Figure 2. R10000 Microprocessor Model in VSAT GUI

We have used 8-entry Active List and allowed out-of-order graduation. In other words, an com-
pleted operation is allowed to graduate and commit results while there are operations ahead of it
and not graduating in the same cycle. We allow the operations to graduate out-of-order when the
prior instructions are not potential candidate for exceptions and do not impose control dependency.
The problem of data dependency does not arise because that is already taken care of before exe-
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cution. In other words, if this instruction had data dependency with the prior instruction then this
instruction would have never completed execution successfully.

We have used a set of benchmarks from DSP and multimedia domains, and compiled them using
the EXPRESS [1] compiler. We collected the statistics information using the SIMPRESS [4] cycle-
accurate structural simulator, which models MIPS R10000 processor and memory subsystem.

3.2 Results

Table 2 presents a set of experiments we ran to study the performance improvement due to
out-of-order graduation. First column shows the benchmarks used. Second column presents the
total cycle counts needed for the benchmarks using in-order graduation. Column 3 presents the
cycle counts needed to execute the benchmarks using out-of-order graduation. Column 4 shows
the performance improvement. We observe an average performance improvement of 6.56%.

As expected the performance decreases if the load instruction misses in the cache and stalls the
decode stage when active list is full. Table 3 presents the performance improvement with varying
cache hit ratio for the benchmark StateExcerpt. This result shows the impact only due to load
instructions. The first column shows the cache hit ratio. Second column presents the cycle counts
for different hit ratios during in-order graduation. Column 3 presents cycle counts for out-of-order
graduation. The last column shows the performance improvement. When hit ratio is 1.00 (row 1),
i.e., there is no cache miss, the load operation completes in 2 - 4 cycles and thereby allows the
completed instructions to graduate soon. However when hit ratio is less than 1.00, implies there
are load operations which stalls the decode stage for long time and holds the completed instruc-
tions in the active list during in-order graduation. As a result we observe increased performance
improvement when hit ratio decreases. We get 27% performance improvement for the benchmark
StateExcerpt when all the load operation misses. This is the upper bound for this benchmark
considering the active list size and load misses. ‘

4 Summary

We present here a study of performance impact of out-of-order graduation for MIPS R10K
processor. The basic observation is that the longer latency operations e.g., load, multiply, division
etc. are holding the smaller latency instructions (completed execution) in active list. As a result
the active list is getting full and hence decode is getting stalled. The performance impact becomes
more observable when the load operation misses.

A careful out-of-order graduation has shown 6.56% performance improvement on an average
for DSM and multimedia kernels. The independent instructions, the potential candidate for out-of-
order graduation, are generated due to software pipelining, loop index improvement, array index
computation or loop termination check etc. We show that long latency operations contribute a lot
to the performance loss. The load miss situation is noticeable. However we have not studied the
impact of different memory subsystem [5] and thereby different load miss situation on out-of-order
graduation.
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Benchmarks | In-order graduation | Out-of-order graduation | % improvement

Hydro 518 478 7.72
ICCG 1451 1353 6.75
InnerProd 339 313 7.67
LinearEq 1641 1533 6.58
TriDiag 492 456 7.32
RecurEq 11701 11541 1.37

StateExcerpt 543 458 15.65

Integrate 1820 1684 747
DiffPred 3058 2901 5.13
FirstSum 312 296 5.13
FirstDiff 221 205 7.24

2DPartPush 12741 12700 0.32

1DPartPush 2830 2586 8.62

CondComp 9408 9342 0.70

2DHydro 6460 5972 7.55

CondRecur 830 704 15.18
LL20 2109 1899 9.96
LL21 3122 2932 6.09
LL22 1086 975 10.22
LL23 2802 2742 2.14

FirstMin 460 460 0.00
Compres 1724 1724 0.00
Laplace 2116 2080 1.70
Linear 830 704 15.18
Lowpass 2821 2561 9.22
Wavelet 433 409 5.54

Average 6.56

Table 2. Performance improvement due to out-of-order graduation

Cache Hit Ratio | In-order graduation | Out-of-order graduation | % improvement
1.00 543 458 15.65
0.99 8361 6586 21.23
0.92 8319 6088 26.82
0.00 8421 6147 27.00

Table 3. Impact of cache misses on out-of-order graduation for benchmark StateExcerpt
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When we try to schedule the operations differently in the Trailblaze scheduler [6] (in EXPRESS
compiler) using the property of shorter independent instructions first, we do not get much perfor-
mance improvement. In fact, at times it generates worse results. This is an interesting observation.
This shows that the static scheduling will of no use for these benchmarks.

Our future work involves studying the effect of the scheduling on bigger benchmarks and also
how different scheduling techniques (e.g., smaller latency operations first etc.) interfere with dif-
ferent active list size. .
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