
UC Irvine
ICS Technical Reports

Title
A study of out-of-order completion for the MIPS R10K superscalar processor

Permalink
https://escholarship.org/uc/item/7rs2r6rk

Authors
Mishra, Prabhat
Dutt, Nikil
Nicolau, Alex

Publication Date
2001
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rs2r6rk
https://escholarship.org
http://www.cdlib.org/


...... JUT ... ,Jlll. ...... ,., Mishra, Nikil 
{pmishra, dutt, nicolau }@ics.uci.edu 

http://www.cecs.uci.edu/,...,aces 

may 
by Copyright 
(Title 17 U. . 

UCI-ICS Technical Report #01-06 
Dept. of Information and Computer Science 
University of California, Irvine, CA 92697 

January, 2001 



A Study of Out-of-Order Completion for the MIPS RlOK 
Superscalar Processor 

Prabhat Mishra Nikil Dutt 
pmishra@cecs.uci.edu dutt@cecs.uci.edu 

Alex Nicolau 
nicolau@cecs.uci.edu 

Architectures and Compilers for Embedded Systems (ACES) Laboratory 
Center for Embedded Computer Systems 

University of California, Irvine, CA 92697-3425, USA 
http://www.cecs.uci.edur aces 

Technical Report #01-06 
Dept. of Information and Computer Science 

University of California, Irvine, CA 92697, USA 

January 2001 

Abstract 

1 5 2002 

Instruction level parallelism (!LP) improves peiformance for VLIW, EPIC, and Superscalar pro
cessors. Out-of-order execution improves peif ormance further. The advantage of out-of-order 
execution is not fully utilized due to in-order completion. In this report we study the peif ormance 
loss due to in-order completion for MIPS RI 0000 processor. 
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1 Introduction 

Many micro-architecture studies focus on issues related to branch prediction, cache size, instruc
tion window size and how design parameters interact [7]. Many studies have focused on available 
instruction level parallelism (ILP) for superscalar and superpipelined processors [3]. It would be 
interesting to study how ILP interacts with these design parameters. In this report we study the 
impact of out-of-order graduation on processor performance. 

In this report completion of an instruction implies the instruction has completed execution but 
still in the completion queue. This completed instruction will be removed from the completion 
queue and results will be committed to register file during graduation. Completion refers to com
pletion of execution and graduation refers to committing the results. 

Contemporary superscalar processors use in-order graduation. This is to ensure sequential ex
ecution behavior in the presence of out-of-order execution of instructions. This also ensures that 
all exceptions are reported in program order. Consider a completion queue (active list) of 8 in
structions as shown below. The instruction graduates from the queue from the top (index 0). 
Index column means the index of the queue. Instruction means the instruction stored in that in
dex. The instructions are inserted into the queue in the program order by the decode unit. Due 
to out-of-order execution different instructions finish (shown as Done in Status column) execution 
at different point of time. If out-of-order graduation is employed, i.e., if we allow IADD instruc
tion at index 1 to graduate before IVLOAD at index 0 (lower index implies older in sequential 
program order), sequential execution semantics may not be preserved. Execution will be incorrect 
if IVLOAD generates exception due to segmentation fault, for example. In sequential execution 
program will terminate at IVLOAD instruction itself and will never execute IADD, in case of such 
segmentation fault. However, in this scenario, if we commit the results of IADD before IVLOAD 
graduates we will generate different memory state than the earlier one if IVLOAD generates ex
ception. Similarly we can not allow DADD to graduate since it is after the branch instruction 
which is yet to complete. In other words, trying to graduate instructions out-of-order may generate 
incorrect results in the presence of exceptions, interrupts, branches etc. 

Index Instruction Status 

0 IVLOAD R3, -4, R5 Not Done 
1 IADD R5, R5, 1 Done 
2 ISUB R4, R4, 4 Done 
3 ILE $cc, R4, R5 Done 
4 IF $cc L8 Not Done 
3 IVSTORE R3, -4, R5 Not Done 
6 ILSH R3, R3, 1 Not Done 
7 DADD R7, R7, 1 Done 

The natural question is why we are studying out-of-order graduation if it is incorrect to per
form. We want to explore if this out-of-order execution is a performance bottleneck. Moreover, 
in embedded systems, we do know the application behavior. Hence, it would be appropriate to 
decide when to perform out-of-order graduation and when not based on expected exceptions and 
interrupts. 
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Table 1 shows the fetch, issue, execution and graduation methodology (viz., in-order or out-of
ord~r) for five processors. UltraSparcl and IA64 are more VLIW type. MIPS RlOK and Alpha has 
out-of-order issue and execution. PowerPC has in-order issue but out-of-order execution. All these 
three processors graduates in-order. In other words, for contemporary processors with out-of-order 
execution the graduation is always in-order. 

MIPS RlOK maintains 32 entry active instruction list. Instruction issue will be stalled if active 
instruction list is full. Since graduation is in-order, there may be independent instructions ready to 
retire/graduate but is not able to do that because of an active instruction in front of it. 

Powerpc MPC7400 [2] maintains 8-entry completion queue. Issue will be done only if there is 
empty space in completion queue. Upto 2 instructions can graduate per cycle. 

In both cases mentioned above, it may lead to performance penalty which could have been 
avoided by allowing independent instructions to graduate out-of-order, by adding extra logic which 
picks up every completed instruction inside the active instruction list (in RlOK) and checks the 
dependency with the instructions above in the queue. 

Consider the snapshot of the 8-entry completion queue shown above. The queue is full. There
fore, no more instructions will be decoded till there is space available in the queue. Due to in-order 
graduation semantics the completed instruction IADD is not allowed to graduate till the IVLOAD 
instruction graduates. If load is hit in cache then it may held the completed instructions for two 
cycles. If load is a miss in primary cache then it will stall decode for 4 - 50 cycles depending 
on where it gets the data, secondary cache or main memory. Though I described the situation for 
load instruction stopping the graduation process, any instruction with longer latency are potential 
candidates for this viz., FMUL, FDIV etc. 

These independent instructions, which gets completed prior to previous instructions, get gener
ated due to software pipelining, loop index increment, array index computation or loop termination 
check etc. If we allow IADD to graduate then decode can insert instructions in completion queue. 

Table 1. Instruction Fetch, Issue, Execution and Graduation 
Fetch Issue Execution Graduation 

In-order 000 In-order 000 In-order 000 In-order 000 
MIPS RlOK 4 4 5 x 
Alpha 21264 4 4 6 ? 

MPC7400 4 2 8 2 
UltraSparc I 4 4 4 x 

IA64 6 6 9 x 

Section 2 describes MIPS Rl OK processor briefly which we implemented in our cycle-accurate, 
retargetable SIMPRESS [4] simulator. Section 3 shows the results for out-of-order execution. 
Section 4 concludes the paper. 
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2 MIPS RlOOOO Architecture 

The MIPS RlOOOO ([8], [9]), is a dynamic, superscalar microprocessor that implements the 
64-bit Mips-4 instruction set architecture. It fetches and decodes four instructions per cycle and 
dynamically issues them to five fully-pipelined, low-latency execution units. Instructions can be 
fetched and executed speculatively beyond branches. Instructions graduate in order upon comple
tion. Although execution is out of order, the processor still provides sequential memory consis
tency and precise exception handling. With speculative execution, it calculates memory addresses 
and initiates cache refills early. It's hierarchical, nonblocking memory system helps hide memory 
latency with two levels of set-associative, write-back caches. To cope with the complexity of out 
of order superscalar processing, the Rl 0000 uses a modular design that locates much of the con
trol logic with in regular structures, including the active list, register map tables, and instruction 
queues. 

RlOOOO fetches and decodes four 32-bit instructions per cycle. If one of these is a branch, 
its target address is calculated, the branch path is predicted, and instructions are speculatively 
fetched along the predicted path. Decoded instructions are put into a 32-entry Active List and three 
16-entry instruction queues. The Active List keeps track of the original instruction order. The 
instruction queues dynamically issue each instruction to the appropriate execution unit after all 
its operands have become available. The Floating-point Queue issues instructions to the floating
point multiplier and adder. The Integer Queue issues instructions to two ALU s. The Address Queue 
issues instructions to the Load/Store unit (Address Calculation Unit and TLB) and the Data Cache. 
The Address Calculation Unit calculates 44 bit virtual memory addresses and TLB translates them 
to 40-bit physical addresses. Instructions graduate in order upon completion. Although execution 
is aggressively out-of-order, the processor still provides sequential memory consistency and precise 
exception handling. 

Figure 1 shows the major blocks in the RlOOOO processor. In the.following sections we describe 
MIPS Rl OK register files, issue queues and memory hierarchy. 

2.1 Register Files 

Integer and floating-point register files each contain 64 physical registers. The integer register 
file has seven read ports and three write ports. These include two dedicated read ports and one 
dedicated write port for each ALU and two dedicated read ports for the address calculate unit. The 
integer registers seventh read port handles store, jump-register, and move-to-floating-point instruc
tions. It's third write port handles load, branch-and-link, and move-from-floating-point instruc
tions. The floating-point register file has five read and three write ports. The adder and multiplier 
each have two dedicated read ports and one dedicated write port. The fifth read port handles store 
and move instructions; the third write port handles load and move instructions. 

2.2 Instruction Pipeline 

The instruction pipeline continues to fetch and decode instructions as long as there is room in 
the Active List and queues. When resource conflicts or operand dependencies prevent the queues 
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from issuing instructions in their prograin order, the queue's dynamic scheduling hardwire tries 
to find other instructions that can be issued instead. For frequent operations, each execution unit 
is fully pipelined with a single-cycle repeat rate. The ALUs execute simple integer operations 
with single cycle latency, so that dependent instructions can be issued on consecutive cycles. The 
floating-point units has 3-stage pipelines, but special bypass logic reduces latency to only two 
cycles. Integer operands are loaded from the Data Cache with two cycle latency. Floating-point 
loads take an extra cycle of latency, because these units are physically farther from the Data Cache. 

2.3 Register Renaming 

During instruction decode, integer and floating-point registers are renamed using separate map
ping tables. This hardware handles almost any sequence of four instructions, including sequences 
with dependencies and instructions destined to the same functional units. Renaming maps 32 log
ical register numbers into 64 physical registers. The physical registers contain both committed 
and speculative values. When each instruction is decoded, its result is assigned to a physical reg
ister from a Free List of currently unused registers. At graduation, this register contains a new 
committed value, and the previously assigned physical register is returned to the Free List. Thus, 
each physical register is uniquely associated with just one value; dependencies can be determined 
simply by comparing physical register numbers. 

2.4 Branch Prediction 

The direction taken by a conditional branch is predicted using a 2-bit algorithm, based on a 
512 entry Branch History Table. Each prediction is verified as soon as its branch condition is 
determined. if its prediction was incorrect, all instructions fetched along the mis-predicted path 
are immediately aborted, and the processor state is restored from a 4-entry Branch Stack. This 
allows rapid recovery for up to four mis-predicted branches. Fetching along predicted paths may 
have initiated unneeded cache refills. However, the cache is non-blocking, and the correct path can 
be fetched while these refills are completed. 

2.5 Integer Queue 

The integer queue issues instructions to the two integer arithmetic units: ALUl and ALU2. The 
integer queue contains 16 instruction entries. Up to four instructions may be written during each 
cycle; newly decoded integer instructions are written into empty entries in no particular order. 
Instructions remain in this queue only until they have been issued to an ALU. Branch and shift 
instructions can be issued only to ALUl. Integer multiply and divide instructions can be issued 
only to ALU2. Other integer instructions can be issued to either ALU. The integer queue controls 
six dedicated ports to the integer register file: two operand read ports and a destination write port 
for each ALU. 
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2.6 Floating-point Queue 

The floating-point queue issues instructions to the floating-point multiplier and the floating
point adder. The floating-point queue contains 16 instruction entries. Up to four instructions may 
be written during each cycle; newly decoded integer instructions are written into empty entries in 
no particular order. Instructions remain in this queue only until they have been issued to a floating 
point execution unit. The RlOOOO has four independent 64-bit floating-point execution units. The 
adders and multiplier are each fully pipelined with single-cycle repeat rate and latency of just two 
cycles. The adder includes a leading-zero predictor and a dual-carry-chain adder to round its result 
before it is normalized. Division and square root are performed in separate iterative units which 
operate concurrently with the pipelined units. To reduce latency, the divider cascades two stages, 
so it can generate four bits per cycle. These units share the multiplier's issue and register file ports. 
Separate ports are not justified, because the issue rate is low. 

2. 7 Address Queue 

The address queue issues instructions to the load/store unit. The address queue contains 16 
instruction entries. Unlike the other two queues, the address queue is organized as a circular First
In First-Out (FIFO) buffer. A newly decoded load/store instruction is written into the next available 
sequential empty entry; upto four instruction may be written during each cycle. The FIFO order 
maintains the program's original instruction sequence so that memory address dependencies may 
be easily computed. Instructions remain in this queue until they have graduated; they cannot be 
deleted immediately after being issued, since the load/store unit may not be able to complete the 
operation immediately. An issued instruction may fail to complete because of a memory. a cache 
miss, or a resource conflict; in these cases, the queue must continue to reissue the instruction until 
it is completed. The address queue has three issue ports: 

• First, it issues each instruction once to the address calculation unit. The unit uses a three 
stage pipeline to compute the instruction's memory address and to translate it in the TLB. 
This port controls two dedicated read ports to the integer register file. If the cache is avail
able, it is accessed at the same time as the TLB. A tag check can be performed even if the 
data array is busy. 

• Second, the address queue can re-issue accesses to the data cache. The queue allocates usage 
of the four sections of the cache, which consist of the tag and data sections of the two cache 
banks. Load and store instructions begin with a tag check cycle, which checks to see if 
the desired address is already in cache. If it is not, a refill operation is initiated, and this 
instruction waits until it has completed. Load instructions also read and align a doubleword 
value from the data array. If the data is present and no dependencies exist, the instruction is 
marked done in the queue. 

• Third, the address queue can issue store instructions to the data cache. A store instruction 
may not modify the data cache until it graduates. Only one store can graduate per cycle, but 
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it may be anywhere within the four oldest instructions, if all previous instructions are already 
completed. 

2.8 Memory Hierarchy 

RlOOOO implements a nonblocking memory hierarchy with two levels of set-associative caches. 
It finds cache misses early, and begins refills in parallel with other useful work. The on-chip 
caches provide concurrent access for instruction fetch, data load and store, and refill. All caches 
least-recently-used(LRU) replacement algorithm. 

The Data Cache is 2-way interleaved with independent tag and data arrays for each bank. These 
four arrays operate under shared control of the Address Queue and the External Interface. The 
queue concurrently processes up to 16 load and store instructions in four separate pipelines. It 
dynamically issues instructions to the address calculation and translation pipeline. The other three 
pipelines can concurrently perform tag checks, execute loads, and graduate store instructions. Al
though address calculation and loads can occur out-of-order, instructions appear to execute with 
strong memory order. The Data Cache pipelines interact during several common cache sequences. 
Loads can perform the tag check and data read during the same cycle as the address translation. 
Store instructions immediately issue a tag check to initiate any required replacement as early. as 
possible, but writing data into the cache is delayed until the store becomes the oldest instruction 
and graduates. A miss in the primary data cache will initiate a refill sequence from the secondary 
cache. For loads, refill data can be bypassed directly into the register file. The two banks of the 
Data Cache are each divided into two logical arrays to support 2-way set-associativity. The proces
sor simultaneously reads the same doubleword from both cache ways, because it checks the cache 
tags in parallel and later selects data from the correct way. The external interface refills or writes 
back quadwords by accessing two doublewords in parallel. This is possible because the cache way 
is known in advance. 

The primary cache consists of 2K doublewords. Number of data lines is 8. To store a doubleword 
8 locations are needed. Least significant 3 bits are used for this alignment. Address lines 3-13 is 
used to access the Data Cache and 5-13 is used to access the Tag Cache. Block size is 4. Tag 
value consists of the bits 14-39 of the physical address. It has read/write latency of 1 cycle. The 
secondary cache consists of 512K doublewords. Address lines 3-21 is used to access the Data 
Cache and 6-21 is used to access the Tag Cache. Block size is 16. Tag value consists of the bits 
22-39 of the physical address. It has read/write latency of 2 cycles. After a primary cache miss, 
two quadwords are read in the following sequence from the secondary cache. First, its tag is read 
along with the first quadword. The tag of the alternate way is read with the second quadword. If 
the first way hits, the data is available immediately. If the alternate way hits, the secondary cache 
is read again. If neither way hits, the secondary cache must be refilled from Main Memory. Main 
Memory has read/write latency of 4 cycles. 
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3 Experiments 

In this section we demonstrate the performance improvement due to out-of-order graduation in 
MIPS RlOK processor. 

3.1 Experimental Setup 

We performed a set of experiments using RlOK processor model in SIMPRESS [4]. Figure 2 
shows the RlOK processor model we implemented in VSAT-GUI [4]. 

PC UNIT 

DECODE 

Figure 2. RlOOOO Microprocessor Model in VSAT GUI 

We have used 8-entry Active List and allowed out-of-order graduation. In other words, an com
pleted operation is allowed to graduate and commit results while there are operations ahead of it 
and not graduating in the same cycle. We allow the operations to graduate out-of-order when the 
prior instructions are not potential candidate for exceptions and do not impose control dependency. 
The problem of data dependency does not arise because that is already taken care of before exe-
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cution. In other words, if this instruction had data dependency with the prior instruction then this 
instruction would have never completed execution successfully. 

We have used a set of benchmarks from DSP and multimedia domains, and compiled them using 
the EXPRESS [1] compiler. We collected the statistics information using the SIMPRESS [4] cycle
accurate structural simulator, which models MIPS RlOOOO processor and memory subsystem. 

3.2 Results 

Table 2 presents a set of experiments we ran to study the performance improvement due to 
out-of-order graduation. First column shows the benchmarks used. Second column presents the 
total cycle counts needed for the benchmarks using in-order graduation. Column 3 presents the 
cycle counts needed to execute the benchmarks using out-of-order graduation. Column 4 shows 
the performance improvement. We observe an average performance improvement of 6.56%. 

As expected the performance decreases if the load instruction misses in the cache and stalls the 
decode stage when active list is full. Table 3 presents the performance improvement with varying 
cache hit ratio for the benchmark StateExcerpt. This result shows the impact only due to load 
instructions. The first column shows the cache hit ratio. Second column presents the cycle counts 
for different hit ratios during in-order graduation. Column 3 presents cycle counts for out-of-order 
graduation. The last column shows the performance improvement. When hit ratio is 1.00 (row 1 ), 
i.e., there is no cache miss, the load operation completes in 2 - 4 cycles and thereby allows the 
completed instructions to graduate soon. However when hit ratio is less than 1.00, implies there 
are load operations which stalls the decode stage for long time and holds the completed instruc
tions in the active list during in-order graduation. As a result we observe increased performance 
improvement when hit ratio decreases. We get 27% performance improvement for the benchmark 
StateExcerpt when all the load operation misses. This is the upper bound for this benchmark 
considering the active list size and load misses. , 

4 Summary 

We present here a study of performance impact of out-of-order graduation for MIPS RlOK 
processor. The basic observation is that the longer latency operations e.g., load, multiply, division 
etc. are holding the smaller latency instructions (completed execution) in active list. As a result 
the active list is getting full and hence decode is getting stalled. The performance impact becomes 
more observable when the load operation misses. 

A careful out-of-order graduation has shown 6.56% performance improvement on an average 
for DSM and multimedia kernels. The independent instructions, the potential candidate for out-of
order graduation, are generated due to software pipelining, loop index improvement, array index 
computation or loop termination check etc. We show that long latency operations contribute a lot 
to the performance loss. The load miss situation is noticeable. However we have not studied the 
impact of different memory subsystem [5] and thereby different load miss situation on out-of-order 
graduation. 
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Benchmarks In-order graduation Out-of-order graduation % improvement 
Hydro 518 478 7.72 
ICCG 1451 1353 6.75 

Inner Prod 339 313 7.67 
LinearEq 1641 1533 6.58 
TriDiag 492 456 7.32 
RecurEq 11701 11541 1.37 

StateExcerpt 543 458 15.65 
Integrate 1820 1684 7.47 
DiffPred 3058 2901 5.13 
FirstSum 312 296 5.13 
FirstDiff 221 205 7.24 

2DPartPush 12741 12700 0.32 
lDPartPush 2830 2586 8.62 
CondComp 9408 9342 0.70 
2DHydro 6460 5972 7.55 

CondRecur 830 704 15.18 
LL20 2109 1899 9.96 
LL21 3122 2932 6.09 
LL22 1086 975 10.22 
LL23 2802 2742 2.14 

FirstMin 460 460 0.00 
Compres 1724 1724 0.00 
Laplace 2116 2080 1.70 
Linear 830 704 15.18 

Lowpass 2821 2561 9.22 
Wavelet 433 409 5.54 

Average 6.56 

Table 2. Performance improvement due to out-of-order graduation 

Cache Hit Ratio In-order graduation Out-of-order graduation % improvement 
1.00 543 458 15.65 
0.99 8361 6586 21.23 
0.92 8319 6088 26.82 
0.00 8421 6147 27.00 

Table 3. Impact of cache misses on out-of-order graduation for benchmark StateExcerpt 
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When we try to schedule the operation~s differently in the Trailblaze scheduler [6] (in EXPRESS 
compiler) using the property of shorter independent instructions first, we do not get much perfor
mance improvement. In fact, at times it generates worse results. This is an interesting observation. 
This shows that the static scheduling will of no use for these benchmarks. 

Our future work involves studying the effect of the scheduling on bigger benchmarks and also 
how different scheduling techniques (e.g., smaller latency operations first etc.) interfere with dif
ferent active list size. 
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