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a b s t r a c t

Most of the tractable distributions currently available for modeling circular data are
symmetric around a modal direction, prominent among them the von Mises distribution.
Here we discuss a method of introducing asymmetry into any such symmetric circular
model and develop general classes of non-symmetric circular distributions. In particular,
we introduce and study a resulting variation of the classical von Mises distribution, along
with a biological application.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Directions in 2-dimensions can be represented as points on the circumference of a unit circle andmodels for representing
such data are called circular distributions. See for instance Jammalamadaka and SenGupta (2001, Chapter 2) for a
discussion of many such models. Most of these models are typically symmetric around some center and very few non-
symmetric distributions are available for describing circular data. Some recent papers (see e.g. Jammalamadaka and
Kozubowski (2003), Fernandez-Duran (2004), Gatto and Jammalamadaka (2007)) address this issue and provide classes
of asymmetric circular models. In this paper, we describe a broad class of models for the non-symmetric case and discuss an
application.

2. General method

As shown in Azzalini (2005), if f is density on the real line which is symmetric about a given point, say 0 without loss
of generality, and G is a distribution function such that G′ exists and is a density which is symmetric about 0, then it can
be seen that 2 f (x)G(w(x)) is a density over the real line for any odd function w. The resulting density is typically non-
symmetric. In Theorem 1, we adapt this idea to the circular case, resulting in asymmetric variations for any given symmetric
circular model. Recall that a circular pdf is a non-negative periodic function with period 2π , which integrates to one over
intervals of length 2π . For specificity, we will consider the distribution as being defined over the interval [−π, π) in this
discussion.

Theorem 1. Suppose that f and g are circular densities which are symmetric about 0 and G(θ) =
∫ θ
−π
g(α)dα. If w is an odd

function with |w(θ)| ≤ π and periodic i.e. w(θ) = w(θ + 2πk) for all integers k, then

fµ(θ) = 2 f (θ − µ)G(w(θ − µ))

is a circular density.
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Fig. 1. Graphs of f , the wrapped Cauchy distribution with µ = 0, and ρ = 0.25, and the generated distribution f0(θ) = f (θ) (1+ sin θ).

Proof. By Azzalini’s result, f0, (fµwithµ = 0) is a density on [−π, π) because f is a density on [−π, π) andw(θ) ∈ [−π, π)
for−π ≤ θ < π . But f0 is also a circular density because

f0(θ + 2πk) = f (θ + 2πk)G(w(θ + 2πk)) = f (θ)G(w(θ)) = f0(θ)

for all integers k. The result is proved by noting that fµ is a location change of f0. �

The method can generally be used to obtain skewed modifications of circular distributions that are symmetric about
some value, say µ, by observing that fµ is the symmetric density f (θ −µ) perturbed by the factor 2G(w(θ −µ)). Different
choices of G andw provide a wide selection of such densities. Note that ifw is identically 0 then fµ(θ) = f (θ − µ) because
the symmetry of g implies G(0) = 1/2.
An illuminating choice of G is the distribution function of the uniform distribution, G(θ) = (π + θ)/2π . For this case, we

have

fµ(θ) = f (θ − µ)
(
1+

w(θ − µ)

π

)
.

Here we get some idea of how the original symmetric distribution is being perturbed by this method. Suppose, for example,
that f is the density of the wrapped Cauchy distribution

f (θ − µ) =
1
2π

1− ρ2

1+ ρ2 − 2ρ cos(θ − µ)
for 0 ≤ ρ < 1 andw(θ) = π sin θ . The density fµ is given by

fµ(θ) =
1
2π

1− ρ2

1+ ρ2 − 2ρ cos(θ − µ)
(1+ sin(θ − µ)).

Fig. 1 contains a graph of the wrapped Cauchy distribution with ρ = 0.25 and µ = 0 along with the generated distribution
f0. The method thus produces a distribution which exhibits a pronounced skew.

3. Parametric families

By incorporating one or more parameters in the definition of w, we can introduce families of distributions. Judicious
choices of such parameters will lead to the original distribution as a member of the family with sufficient variation about
it to produce a useful family for modeling purposes. For example, if w(θ) = λπ sin(k θ) for some integer k, then we get a
family of distributions given by

2 f (θ − µ)G(λ π sin(k(θ − µ)))
for−1 ≤ λ ≤ 1. The choice of λ = 0 produces the original distribution because we must have G(0) = 1/2. Values of λ near
zero will produce small perturbations of the original distribution, with the variation in shape increasing as |λ| gets larger.
For example, again let f (θ − µ) be the wrapped Cauchy distribution, G be the uniform distribution function, and

w(x) = λπ sin(2θ). This produces a family of distributions given by

fλ(θ; ρ, µ, k) =
1
2π

1− ρ2

1+ ρ2 − 2ρ cos(θ − µ)
(1+ λ sin(2(θ − µ))).

Fig. 2 contains graphs of the family members with µ = 0, ρ = 0.1 and λ = 0, 0.5, 1.
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Fig. 2. Densities generated from the wrapped Cauchy distribution, fλ( · ; 0.1, 0, 2), for λ = 0, 0.5, and 1.

Fig. 3. Densities generated from the von Mises distribution, vλ(· ; 0, 0.5), for λ = 0, 0.1, 0.5, and 1.

4. An asymmetric version of the von Mises distribution

The von Mises, or circular normal, distribution plays a central role in the analysis of circular data. Its density is given by

v(θ;µ, κ) =
eκ cos(θ−µ)

2π I0(κ)
(1)

with parameters 0 ≤ µ < 2π and κ > 0. Here I0 is the modified Bessel function of the first kind of order 0. (Higher orders
will be identified through the subscript.) This density is symmetric about the directionµ. Themethod presented in Section 3
will now be used to extend this family to include some skewed alternatives.
Again using the uniform distribution, we define a three parameter family of densities using w(θ) = λπ sin θ with

−1 ≤ λ ≤ 1, given by

vλ(θ;µ, κ) =
eκ cos(θ−µ)

2π I0(κ)
(1+ λ sin(θ − µ)) . (2)

The choice of λ = 0 yields the von Mises distribution. Other values of λ generate skewed alternatives to the von Mises
distribution. Graphs of these distributions with µ = 0, κ = 0.5, and λ = 0, 0.1, 0.5, and 1 are presented in Fig. 3. Negative
values of λ skew the distribution in the opposite direction.
The trigonometric moments of these distributions are related to those of the vonMises distribution in an interesting way

as described in Theorem 2.
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Theorem 2. With ϕ∗p the pth trigonometric moment of the von Mises distribution in (1) and ϕp(λ) the pth trigonometric moment
of vλ( · ;µ, κ, λ) in (2), we have

ϕp(λ) = ϕ
∗

p + i(λ/2)e
ipµ (ϕ∗p−1 − ϕ∗p+1) for p = 0,±1,±2, . . . .

Proof.

ϕp(λ) =

∫ 2π

0
eipθ f (θ;µ, κ, λ)dθ

=

∫ 2π

0
eipθ
eκ cos(θ−µ)

2π I0(κ)
(1+ λ sin(θ − µ)) dθ

=

∫ 2π

0
eipθ
eκ cos(θ−µ)

2π I0(κ)
dθ +

∫ 2π

0
eipθλ sin(θ − µ)

eκ cos(θ−µ)

2π I0(κ)
dθ

= ϕ∗p + e
ipµ
∫ 2π

0
eipθλ sin(θ)

eκ cos(θ)

2π I0(κ)
dθ.

Now, using sin(θ) = i(e−iθ − eiθ )/2, we can rewrite the above as

ϕp(λ) = ϕ
∗

p + i(λ/2)e
ipµ
∫ 2π

0

(
ei(p−1)θ − ei(p+1)θ

) eκ cos(θ)
2π I0(κ)

dθ

= ϕ∗p + i(λ/2)e
ipµ (ϕ∗p−1 − ϕ∗p+1) . �

Using the results from page 38 of Jammalamadaka and SenGupta (2001), we may write

ϕ∗p = Ap(κ)e
ipµ,

where Ap(κ) = Ip(κ)/I0(κ). Thus, we find that the first trigonometric moment is given by

ϕ1(λ) = A1(κ)eiµ + i(λ/2)eiµ
(
1− A2(κ)ei2µ

)
.

Since we have a location model, the action on the first trigonometric moment from transforming the distribution can be
described though its action on any particular value of µ, say µ = 0, for which

ϕ1(λ) = A1(κ)+ i(λ/2) (1− A2(κ)) .

The length of ϕ1(λ) is√
A1(κ)2 +

λ2

4
(1− A2(κ))2.

Thus, we see that the length of this vector is greater than the length of ϕ∗1 , which is A1(κ). This is consistent with the linear
skew-symmetric results in that the skewed distribution has less variability than that of the original distribution. The angle
associated with ϕ1(λ) is given by

α(λ) = arctan
(
(λ/2)(1− A2(κ))

A1(κ)

)
.

Thus the mean direction of f ( · ;µ, κ, λ) is µ rotated by α(λ). Now, A1(κ) and (1 − A2(κ)) are both positive for κ > 0. In
addition, it can be shown that (1− A2(κ))/A1(κ) is a decreasing function of κ with

lim
κ→0+

1− A2(κ)
A1(κ)

=
π

2
.

Thus, the rotation about µ, namely α(λ), will be counterclockwise for 0 < λ ≤ 1 and clockwise for −1 ≤ λ < 0 with the
amount of rotation increasing with |λ|. This is consistent with linear skew-symmetric distributions in that the mean is an
increasing function of the skewing parameter. See also Umbach (2006).

5. An application

Rudolf Jander’s experiments concerning the direction chosen by ants in response to a stimulus has long provided
some interesting problems in modeling of circular distributions. See Jander (1957) for the original description of these
experiments. In particular, the data set of Example 4.4 on page 60 of Fisher (1993) has generated much interest. Fisher
clearly demonstrates that the von Mises distribution does not fit this data well. We come closer to an accurate model using
the asymmetric version of the von Mises distribution presented Section 4.
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The first step is to find the maximum likelihood estimates of the parameters µ, κ , and λ in model (2). This was carried
out withMathematicawith the following results in radian measure over (0, 2π):

µ̂ = 2.88081 (3)

κ̂ = 1.4361 (4)

λ̂ = 0.523646. (5)

Again usingMathematica, we find themaximum likelihood estimates of the parametersµ and κ of the vonMises distribution,
model (1), as:

µ̂ = 3.19637 (6)

κ̂ = 1.55763. (7)

The last values compare well with the results in Fisher (1993) that µ̂ = 183.1◦ = 3.19570 and κ̂ = 1.54.
To check the goodness of fit of models (1) and (2), we computed both the Kuiper and Watson statistics for each model.

These tests may be found in Jammalamadaka and SenGupta (2001). We computed these under the assumption that the
estimated values in (3)–(7) were the exact values, this assumption being justified by rather large sample size of n = 100.
Using the values in (3)–(5), the Kuiper statistic for model (2) has the value V100 = 11.2918. Using the values in (6) and (7),
the Kuiper statistic for model (1) has the value V100 = 12.5958. The smaller value of the statistics for model (2) indicates a
better fit. Using the values in (3)–(5), the Watson statistic for model (2) has the valueW 2100 = 0.296594. Using the values in
(6) and (7), the Watson statistic for model (1) has the valueW 2100 = 0.326112. The smaller value of the statistics for model
(2) indicates a better fit. Thus, we see that by either measure, the asymmetric model (2) provides a better fit to the data than
the von Mises distribution (1).
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