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ABSTRACT: A robust method is needed to achieve high
yield all-catalytic conversion of recalcitrant lignocellulosic
biomass to transportation fuels while maximizing carbon
utilization from raw substrates. To accomplish this, we
developed an integrated strategy that combines homogeneous
and heterogeneous reactions with a treatment-extraction step
to coproduce 2-methylfuran (MF) and 2,5-dimethylfuran
(DMF) directly from hardwood poplar while maintaining high
catalyst activity. In the first step, poplar wood chips were
treated with dilute FeCl3 in THF−water at subpyrolytic
temperature to yield 93.5% furfural (FF) from xylan and
66.0% 5-hydroxymethylfurfural (HMF) from glucan. Concurrently, a highly pure lignin powder was obtained from the liquor by
precipitation upon room temperature vacuum recovery of THF from the water. Afterward, FF and HMF were extracted from
water into an organic phase consisting of toluene and 1,4-dioxane treated with Ca(OH)2. A second hydrodeoxygenation
reaction using Cu−Ni/TiO2 catalyst yielded 87.8% MF from FF and 85.6% DMF from HMF. Characterization of the lignin
product showed its molecular weight to be reduced by an order of magnitude from its native state as well as complete removal
of its native β-aryl ether linkages without hydrogen input or further heterogeneous catalytic processing. A 60% cumulative yield
of MF, DMF, and lignin products from the available carbon (xylan+glucan+lignin) in poplar was achieved, rivaling more mature
cellulosic ethanol strategies.

KEYWORDS: Biomass, Fractionation, Hydrodeoxygenation, Biofuels, Lignin

■ INTRODUCTION

Economic conversion of second generation lignocellulosic
feedstocks to transportation fuels has been an ongoing quest to
alleviate our dependence on petroleum and other fossil
resources.1,2 Using first generation feedstocks such as corn-
derived sugars and cane sugar syrups to produce fuel ethanol
poses food, water, and land sufficiency concerns, whereas
second generation feedstocks including forestry and agricul-
tural residues and energy crops can provide an abundant,
inexpensive resource for sustainable production of renewable
transportation fuels.3 Purely catalytic conversion of second
generation feedstocks can produce fungible fuels provided high
enough fuel yields can be achieved to be economic.4

Henceforth, a continuous integrated strategy is critically
needed that can achieve (1) high yield production of
renewable platform fuel precursors furfural (FF) and 5-
hydroxymethylfurfural (HMF), (2) extraction of the furanic
compounds, which are highly sensitive to acid/base moieties,
from the raw liquor into concentrated organic streams, and (3)
robust hydrodeoxygenation (HDO) of both FF and HMF to
methylated furan fuels.5−7 Several reports,8−17 including our
past studies,18 have demonstrated effective HDO of FF and
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HMF to methylated furans with promising yield; however, to
the best of our knowledge, no previous reports showed HDO
of extracted FF and HMF from pretreated lignocellulose
biomass over a stable supported non-noble metal catalytic
system.7,16,19−21 The reported HDO methods are unable to
achieve high yields from raw biomass streams due to significant
catalyst poisoning, mass transport limitations, and the need for
treatment of inorganic ions, and typically require expensive
highly purified sugar feedstocks to be compatible with exotic
supported noble-metal catalysts.22−26

Almost all advanced biofuel platforms based on biological
platforms only convert the carbohydrates to fuels while the
lignin (15−30% by weight) is used as a low value boiler fuel to
generate process heat and power. Furthermore, because lignin-
rich residues from biological processes are typically unrefined,
their value is limited to well under $50/dry ton, the price of
coal.27 Because nearly half the energy of some biomass
varieties, such as hardwoods, is contained in their lignin, higher
value uses for lignin can dramatically enhance the economic
competitiveness of cellulosic biofuels.28,29 Thus, a promising
route to improve the economics is development of efficient
methods to extract and depolymerize lignin from biomass as a
refined “technical” grade product before it is subject to
degradation, condensation, and contamination as an byproduct
that also interferes with carbohydrates conversion.29

Here, we present a high yield integrated strategy for
processing raw hardwood poplar and converting its sugars
directly into fungible fuels while achieving higher total carbon
utilization from the production of technical lignin. Specifically,
we employed a hybrid catalytic strategy that combines
homogeneous and heterogeneous methods, as outlined in
Scheme 1, to coproduce (1) the high octane gasoline-range
blendstocks methylfuran (MF) and dimethylfuran (DMF) at
high fuel yields comparable to ethanol fermentation and (2)
low molecular-weight technical lignin directly from pretreated
poplar wood chips. The strategy presented here maintains high
molar yields at each step, achieving an overall combined fuel

and lignin yield of 60% from the theoretically available xylan,
glucan, and acid-insoluble lignin present in the raw material.

■ MATERIALS AND METHODS
Poplar wood was kindly provided by the National Renewable Energy
Laboratory (NREL, Golden, CO) and was milled to obtain less than a
1 mm particle size using a laboratory mill (Model 4, Arthur H.
Thomas Company, Philadelphia, PA). The composition of poplar
wood was measured to be 45 ± 0.5% glucan, 14 ± 0.3% xylan, and 22
± 0.2% K-lignin using NREL laboratory analytical procedure in
triplicates.30 Other materials needed for biomass composition to total
100% were not characterized in this study as small amounts were
difficult to quantify using HPLC. THF (>99% purity, Fischer
Scientific, NJ) was used in all the CELF pretreatment reactions.
Hydrated ferric chloride catalyst was purchased from Sigma-Aldrich
(St. Louis, MO, US). 1,4-Dioxane and toluene (HPLC grade, Fisher
Chemicals) were used as solvents for FF and HMF extraction from
CELF stream and further for HDO reactions. In some runs FF (99.9%
pure, Sigma-Aldrich) and HMF (99.9% pure, Sigma-Aldrich) were
used as starting materials for HDO reactions. Cu(NO3)2 3H2O
(purity 99%, CAS: 10031-43-3, Aldrich, NJ), Ni(NO3)2 6H2O (purity
99.99%, Aldrich, St. Louis, MO) and TiO2 (P25, Batch No.
4161060398, NIPPON AEROSIL Co., LTD, Evonik, Degussa
GmbH) materials were used as precursors for synthesizing the
Cu(5%)−Ni(5%)/TiO2 catalysts. Detailed catalysts synthesis proce-
dure and characterization techniques were reported in our earlier
publications.31

Poplar Wood Pretreatment. All biomass pretreatment reactions
were performed in a 1 L Hastelloy Parr reactor (236HC Series, Parr
instruments Co., Moline, IL) equipped with a double-stacked pitch
blade impeller rotated at 200 rpm. The biomass reaction method
employed is called Cosolvent Enhanced Lignocellulosic Fractionation
(CELF) that employs THF as a miscible cosolvent with water to
significantly enhance solubilization of biomass and improve selectivity
of FF and HMF over water-only reactions. THF−water concen-
trations were varied from 1:1 (THF 50% v/v) to 7:1 (THF 87.5% v/
v). Biomass solid loadings were 5 wt % (40 g) based on dry weight
and were calculated based on the total mass of the reaction mixture. A
1 wt % loading of FeCl3·6H2O catalyst was added based on its
equivalent anhydrous mass in the THF−water cosolvent. Then, the
contents of the reaction were soaked overnight at 4 °C. All the
pretreatment reactions were heated using a 4 kW fluidized sand bath

Scheme 1. Process Flow Diagram of Integrated Hybrid Catalytic Conversion of Lignocellulosic Biomass to Methylated Furans
and Technical Lignina

aPercentage values reported below to each component black indicate the % theoretical yields based on carbon after each step from the glucans
(45%), xylans (14%), or lignin (22%) found in hardwood poplar whereas parenthesized yields values in red indicate individual molar yields
achieved at each step.
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(Model SBL-2D, Techne Princeton, NJ), and temperature was
controlled to within ±1 °C measured by an in-line thermocouple
(Omega, K-type). The sand bath was preheated to 380 °C to maintain
heat-up time less than four minutes. At the end of each reaction, the
reactor was quenched in a large water bath at room temperature. The
solids were then separated from the hydrolyzate using vacuum
filtration through a glass fiber filter paper (Fischer Scientific,
Pittsburgh, PA). The final mass and density of liquid fractions were
measured for mass balance and yield calculations. The liquid fractions
were analyzed by HPLC.
HMF and FF Extraction from CELF Stream to 1,4-Dioxane-

Toluene. After homogeneous CELF reaction, CELF liquor contained
FF, HMF, and solubilized lignin as well as other inorganic ions such as
iron ions and Cl−. Therefore, CELF liquor was first neutralized to pH
7 by adding slightly more than stoichiometric amounts of Ca(OH)2
(Figure S2). Toluene was added at 1:5 mass ratio to the neutralized
CELF liquor and the mixture was sonicated for 30 min. The solids
from the CELF stream were removed by vacuum filtration through
porous paper filter media and then THF was removed and recovered
by rotary evaporation at room temperature. 1,4-Dioxane was then
added to the mixture to induce phase separation and the liquids were
sonicated for 10 min to improve total extraction. After this step, more
than 90% of FF and 80−85% of HMF were extracted from CELF
stream to 1,4-dioxane−toluene (1:1 ratio) organic phase. Organic
phase was separated from aqueous phase by decanting and used for
secondary HDO reaction over Cu(5%)−Ni(5%)/TiO2 solid catalysts.
For better reactivity comparisons, FF and HMF concentration in 1,4-
dioxane−toluene (or) toluene stream were concentrated to 0.5 and
0.25 g in 25 mL respectively, in each reaction by adding additional FF
and HMF. Prior to HDO reaction, Cu(5%)−Ni(5%)/TiO2 catalysts
were reduced at 450 °C for 3 h. Without exposure to air, 0.3 g of
reduced catalysts was transferred into a 100 mL stainless-steel Parr
micro benchtop reactor (4590 Series, Parr instruments Co., Moline,
IL) containing 1,4-dioxane−toluene(1:1) and (or) toluene extracted
FF and HMF stream. The reactor was initially flushed with H2 and
then pressurized with H2 gas. Next, the reactor temperature was raised
to set values (200 to 240 °C), and reactions were conducted for 0.5−
8 h.
Catalyst Recyclability Study. 1,4-Dioxane−toluene organic layer

containing extracted FF and HMF was reacted in a 100 mL stainless-
steel Parr reactor with 0.3 g of freshly reduced catalyst at 450 °C for 3
h. In all recycle studies, required amounts of pure FF and HMF were
added to as extracted 1,4-dioxane−toluene stream to maintain the
same concentrations to 0.5 and 0.25 g in 25 mL, respectively. The
reactor was flushed with H2 and then pressurized with H2 to 35 bar.
Each reaction was conducted for 2 h at 220 °C. After completion of
the reaction, the reactor was cooled by quickly lowering it into a room
temperature water bath (25 °C) and depressurizing in the fume hood.
Then the catalyst was separated from the liquid by filtration and dried
at 105 °C for 3 h and then reused in four recycle experiments without
washing (or) regeneration. Regeneration of the used catalysts was
performed via calcination at 450 °C for 5 h followed by reduction
with pure H2 at 450 °C for 3 h.
Analytical Procedures. After pretreatment, obtained liquid

samples containing C6, C5 sugars, HMF, FF, levulinic acid (LA),
and formic acid were analyzed by an Agilent 1200 HPLC system with
a Bio-Rad Aminex HPX-87H column and RI detector along with
appropriate calibration standards and with an 5 mM sulfuric acid as an
eluent flow rate of 0.6 mL min−1. The chromatograms were integrated
using Empower 2 software package. After HDO reactions, solid
catalysts were separated and the liquid portion was analyzed by gas
chromatography (Agilent Technologies 7890A; column: DB-WAX
Ultra Inert, 30 m long × 0.320 mm internal diameter × 0.5 μm)
equipped with FID detector using the following program: hold at 30
°C for 1 min, increase from 30 to 100 °C at a ramp rate of 10 °C
min−1, hold at 100 °C for 2 min, increase from 100 to 250 °C at a
ramp rate of 25 °C/min, 0 min hold, increase from 250 to 325 °C at a
ramp rate of 25 °C min−1, and 1 min hold at 325 °C. Yields of the
final product were quantified by using calibration curves of standard
samples in the gas chromatograph. Mass balances accounting for

>95% of the carbon content were obtained in all experiments.
Reactant conversion and product yield were calculated as follows:

FF (or) HMF conversion%

1
moles of unreacted substrate (FF or HMF)

moles of substrate before reaction
100

i
k
jjjj

y
{
zzzz= − ×

(1)

yields
moles of the product produced

moles of HMF (or) FF before reaction
100= ×

(2)

■ RESULTS AND DISCUSSION
In the first step, poplar wood chips were reacted and liquified
in cosolvent mixtures of tetrahydrofuran (THF) with water
containing dilute FeCl3; this homogenous reaction step is also
known as the CELF pretreatment process.32 During this
reaction, both C5 and C6 sugars found within the hardwood
were both hydrolyzed to monomers and then codehydrated to
the fuel precursors FF and HMF, respectively (Scheme 1). The
high performance of the first homogeneous catalytic step was
owed to unique THF−water−biomass interactions during
CELF pretreatment that has been shown to enhance
cellulose33 and lignin34 solubilization, whereas the mild
Lewis acidity of FeCl3 promotes the kinetically favorable
open-chain dehydration of sugar monomers to FF and
HMF.35,36 FF and HMF losses to LA and formic acid were
minimized by optimizing reaction conditions applying the
following optimization strategy.
We optimized CELF liquefaction reactions over a range of

temperatures and reaction times, first while maintaining a 3:1
THF:water ratio of the co-solvent mixture, we determined that
180 °C for 20 min duration resulted in maximum FF/HMF
yields and solids liquefaction, while keeping LA formation low,
as shown in Figure S1. We then optimized the reaction based
on the cosolvent concentration by performing reactions from
1:1 THF:water to 7:1 THF:water ratios, achieving the highest
yields at a 4:1 co-solvent ratio with resulting yields of 93.5% FF
and 66.0% HMF simultaneously, as shown in Figure 1. To our
best knowledge, these FF/HMF yields are the highest reported
to date starting from biomass achieved using a one-pot process.
Simultaneously, the CELF reaction at these optimized reaction
conditions further resulted in over 94% total biomass solids

Figure 1. Dependence of yields of FF and HMF from poplar wood
chips and total liquefaction/solids conversion on THF:water (1:1 to
7:1, v:v) concentrations. Reaction conditions: 180 °C, 20 min, and 1
wt % FeCl3 loading. Legend: FF, furfural; HMF, 5-hydroxymethyl-
furfural; LA, levulinic acid; XYL, xylose; and GLC, glucose.
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solubilization primarily due to the solubilization of both sugar
and lignin fractions. After a neutralization step, the dissolved
lignin would later be precipitated as a fine solid powder upon
removal and recovery of low boiling THF from the CELF
liquor. This purified extracted biomass lignin can be identified
as “CELF lignin” with a recovered mass yield that was similar
to our previous reports.37,38 The lower temperatures required
for the CELF reaction compared to other thermochemical
approaches such as pyrolysis affords CELF the ability to reduce
undesirable co-product formation while selectively producing
furfurals that are considered valuable platform chemicals for
the production of renewable fuels and chemicals.39,40 The sub-
pyrolytic conditions further minimize any solid tar or char
formation and the CELF reaction does result in gas production
to simplify downstream processing.
After CELF reaction, Ca(OH)2 was added to treat the CELF

liquor, not only to neutralize the acidic moieties but also to
help precipitate iron hydroxide ions (Figure S2). The
recovered iron hydroxides could then be converted back into
iron chloride by acid treatment to be reused.35,41 Ca(OH)2 was
selected as it is inexpensive, abundant, and low hazardous and
was also reported to be an excellent extracting agent for lignin
from pretreated biomass stream at pH above 8.42,43 However,
in this study, we elected to neutralize the CELF liquor to pH 7
as a means to terminate any further acid−base catalyzed
reactions in the CELF liquor to prevent loss of FF and HMF.44

Iron hydroxide and Cl− species could detrimentally influence
subsequent recovery of FF and HMF by extraction from the
CELF liquor to an organic phase and also hurt catalyst stability
in downstream processing. Following base treatment and THF
recovery of the CELF liquor, we found that toluene addition as
an organic extractant resulted in immediate phase splitting
(organic/aqueous phase) and further precipitated remaining
soluble lignin and maintained inorganic ions in the aqueous
phase. However, the resulting HMF (<60%) and FF (<80%)
extraction from the aqueous phase using toluene alone was
poor due to the polar nature of HMF. In order to improve the
extraction of FF and HMF into the toluene, we found that
addition of 1,4-dioxane to the toluene−aqueous phase system

followed by sonication dramatically improved FF (∼90%) and
HMF (80−85%) extraction into the resulting 1,4-dioxane−
toluene phase.
Though the extraction efficiency of HMF and FF increased

with addition of 1,4-dioxane, it is important to note that some
Cl− ions can also be extracted into 1,4-dioxane due to its polar
nature. Without further purification, extracted FF and HMF
from CELF liquor was reacted over Cu−Ni/TiO2 catalysts
under HDO conditions. In our earlier reports, Cu(5 wt %)−
Ni(5 wt %)/TiO2 was shown as an active, selective, and stable
catalyst for HDO of pure FF and HMF to methylated furans
(i.e., MF and DMF).31 Characterization of the Cu−Ni particles
on TiO2 revealed that TiO2 promoted the formation of a near
surface alloy containing 80−85% of Cu and 15−20% of Ni.
The low amount of Ni at the catalyst surface enhanced
reactivity compared to monometallic Cu by promoting H2

dissociation, while maintaining the inherent selectivity of Cu
catalysts.31,18

Furthermore, strong Ni−TiO2 interactions promoted
stability of the catalysts against performance degradation by
metal sintering. Usually, HDO of FF to MF occurs through
furfuryl alcohol (FOL) as an intermediate, whereas HMF to
DMF occurs through either MFF or BHMF as an intermediate
(Scheme 1).45 For the Cu−Ni/TiO2 catalyst, HMF conversion
to DMF was observed to occur through MFF as an
intermediate instead of BHMF.31 The catalytic HDO of FF
and HMF extracted from the CELF liquor was first considered
as a function of solvent composition. Following HMF and FF
extraction using pure toluene, HDO was executed at 220 °C
where 26% of FF and 100% of HMF conversion were observed
after 2 h. However, the total yield of desired products waslow:
FOL+MF (9.8%) and MFF+DMF (91.2%). It is assumed that
the lower catalytic reactivity in toluene, compared to our
previous studies in pure 1,4-dioxane, was due to the nonpolar
nature of toluene. The HDO activity derived from 1,4-
dioxane−toluene extracted FF and HMF streams was lower
than for toluene alone, where diminished MF yields and HMF
conversion were seen in Figure 2a.

Figure 2. (a) HDO of toluene and 1,4-dioxane−toluene extracted FF and HMF reactions. Reactions were conducted with 25 mL of toluene (or)
1,4-dioxane−toluene extracted FF(0.5 g) and HMF(0.25 g) stream with 0.3 g of catalyst [Cu(5%)−Ni(5%)/TiO2] loadings, 0.1 of Ca(OH)2 = 0.1
g, temperature of 220 °C, H2 pressure of 35 bar and at 2 h. (b) As a function of time FF and HMF conversions over Cu−Ni/TiO2 catalysts.
Reactions were conducted at 25 mL of 1,4-dioxane−toluene extracted FF(0.5 g) and HMF(0.25 g), 0.1 g of Ca(OH)2, 0.3 g of catalyst loading, and
H2 pressure of 35 bar (at 25 °C). (c) 1,4-Dioxane−toluene extracted FF and HMF conversion and product yields as a function of recycles, R, over
Cu(5%)−Ni(5%)/TiO2 catalysts. Prior to regeneration (before R5), each catalyst was calcined at 450 °C for 5 h and reduced at 450 °C for 3 h
under H2 flow (50 mL/min). For the 6th recycle experiment, 0.1 g of Ca(OH)2 was added during the reaction. Reaction conditions were a 25 mL
of 1,4-dioxane−toluene extracted FF(0.5 g) and HMF(0.25 g) stream, catalyst loading of 0.3 g, temperature of 220 °C, H2 pressure of 35 bar (at 25
°C), and 2 h reaction time.
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While comparing the catalytic activity results of pure FF and
HMF in 1,4-dioxane−toluene stream (Figure S4-left) with 1,4-
dioxane−toluene extracted stream (Figure 2a), significant
difference in conversions and product yields were observed
without further treatment. It was hypothesized that the
diminished catalytic performance observed using 1,4-diox-
ane−toluene extraction, as compared to toluene alone, was due
to 1,4-dioxane driven extraction of trace Cl− ions from FeCl3
originating from the prior pretreatment step. To neutralize
acidic species and minimize Cl− extraction by the organic
phase, acidic species in the 1,4-dioxane−toluene extracted FF
and HMF stream were neutralized by Ca(OH)2. The addition
of 0.1 g of Ca(OH)2 to 25 mL of extracted liquid was
identified as the optimum quantity to promote catalytic activity
and selectivity in FF and HMF HDO, as shown in Figure S3
and Figure 2a, where 70% and 100% conversion of FF and
HMF and 41% and 51% MF and DMF yields were achieved,
respectively. Adding the same amount of Ca(OH)2 to the
toluene extracted stream also promoted catalytic reactivity and
selectivity, although Figure 2a shows that the influence of
Ca(OH)2 was not as significant as it was on the 1,4-dioxane−
toluene extracted stream. As known, 1,4-dioaxne is more polar
in nature and it can easily polarize (or activate) the carbonyl
groups in furanic compounds and further facilitate hydro-
genation reaction on metal active sites, whereas nonpolar
natured toluene could not polarize these carbonyl groups.
Thus, decreased activities were observed in the case with
toluene compared to 1,4-dioxane−toluene solvent.46,47

To demonstrate that Ca(OH)2 likely promoted reactivity by
neutralizing the influence of Cl− ions, NaCl in water solution
was added to a pure 1,4-dioxane−toluene solution containing
FF and HMF followed by executing the HDO reaction (Figure
S4). However, a significant drop in catalytic activity was
observed in the presence of NaCl. Separate experiments
performed with the addition of water without NaCl showed no
significant reduction reactivity,46 supporting the hypothesis
that Ca(OH)2 addition was necessary to neutralize and fix Cl−.
Thus, it is observed that 1,4-dioxane and toluene are needed to
maximize HMF and FF extraction efficiency from the CELF
liquor, whereas Ca(OH)2 neutralization minimized the
influence of extracted Cl− ions on the catalytic process.
HDO of 1,4-dioxane−toluene extracted FF and HMF was

conducted as a function of temperature and time to optimize
MF and DMF yields, see Figure S5 and Figure 2b. Though it
was observed that MF and DMF yields were maximized at 240
°C, a significant loss of HMF to unwanted byproducts (not
MFF or DMF) was observed, suggesting that reaction at lower
temperature and longer time would optimize DMF and MF
yields. Figure 2b shows the conversion and product yields from
HDO of 1,4-dioxane−toluene extracted FF and HMF at 220
°C with the addition of 0.1 g of Ca(OH)2 as a function of time.
It was observed that after 8 h reaction time, MF yields of 87.8%
and DMF yields of 85.6% could be achieved.
To examine the stability of the catalyst, recycle experiments

were conducted where reactions were executed for 2 h,
followed by separation of the catalyst and introduction of
freshly separated HMF and FF. Four sequential recycles (R1−
R4) were executed without additional treatment of the catalyst
or Ca(OH)2 addition, followed by regeneration of the catalyst
via calcination and reduction before a fifth recycle (R5) and
the addition of 0.1 g of Ca(OH)2 during a sixth recycle (R6).
From R1 to R4, FF conversion dropped by ∼20% in each
cycle, whereas HMF conversions were similar in R1 and R2

case but dropped for the R3 and R4 cycles. The significant
drop in FF conversion compared to HMF could be caused by
weaker adsorption of FF on catalyst active sites as compared to
HMF. HMF adsorption occurs through carbonyl (CO) and
alcohol (COH) groups on catalyst active sites, whereas FF
has only one carbonyl group. As a result of this difference in
adsorption energy of HMF and FF and the catalyst, Cl−

adsorption more effectively blocks FF adsorption and
conversion as compared to HMF. This effect was more
significant after the first recycle (R1) due to some of the
catalysts active sites already positioned by Cl− ions (R2 to R4).
Further, to identify whether the decay in reactivity was caused
by Cl− ions or more tradition mechanisms such as coking or
sintering, Figure 2c shows results for R5, where the catalyst was
regenerated, compared with R6, where additional Ca(OH)2
was added. It clearly observed that the loss in activity is caused
by presence of Cl− ions in the 1,4-dioxane−toluene stream
instead of carbon deposition or metal sintering and that this
could be addressed simply by adding Ca(OH)2 in each recycle.
Noteworthy is the crucial role of Ca(OH)2 addition not only
to improve conversion of raw organic streams but also to
neutralize the chlorinated acids, and enhanced the extraction of
lignin to aqueous phase.43 Further, it was reported that
pretreatment of lignin by adding Ca(OH)2 efficiently
controlled the melting and agglomeration of lignin particles
by eliminating the cross-linking reactions between phenolic
−OH, −CHO, and −COOH groups by forming calcium
hydroxyl phenoxides, phenolic calcium carboxylates, and
phenolic alcohols.42

The lignin was then precipitated from the CELF hydro-
lyzate, after recovery of THF by distillation, prepared at the
conditions optimized for producing FF and HMF (180 °C, 20
min, 4:1 THF/water, 1% FeCl3). The molecular weight,
relative abundance of the lignin interunit linkage (e.g., β-O-4)
and monolignol compositions (e.g., S/G ratio), and the
contents of free hydroxyl groups in lignin were determined by
gel permeation chromatography (GPC), heteronuclear single
quantum coherence (HSQC), and 31P nuclear magnetic
resonance (NMR) techniques, respectively. The functionality
and molecular weight of the CELF lignin were then compared
to native-like cellulolytic enzyme lignin (CEL) isolated from
poplar wood, with the results presented in Table 1.
Figures S6 and S7 present the aromatic and aliphatic regions

of HSQC NMR spectra of CEL and CELF lignin, respectively.
In the aliphatic regions, β-aryl ether (β−O−4) was the
dominant interunit linkage in poplar CEL along with minor
amounts of phenylcoumaran (β−5) and resinols (β−β).
However, only peaks associated β−β bonds were barely
detected above the noise level while the remaining peaks for
β−O−4 and β−5 were not apparent in CELF lignin. This
result was further reinforced by the semiquantitative analysis of
HSQC spectra shown in Table 1 that probably provides the
most important insights into the current lignin character-
ization. The cleavage of β−O−4 linkages in lignin is usually
accompanied with repolymerization reactions under acid
conditions.48−51 Sannigrahi et al. reported the depolymeriza-
tion by fragmentation of β−O−4 structures through a benzyl
carbocation intermediate and polymerization by acid-catalyzed
condensation between electron-rich carbon atoms such as
aromatic C6/C5 and the benzyl carbocation as the predom-
inant reactions in acid-catalyzed pretreatments.50 Meanwhile,
β−5 units could be converted to stilbenes through loss of the
γ-methylol group as formaldehyde.52 Although complete
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removal of β−O−4 interlinkages in lignin could be achieved
under conventional organosolv pretreatments at harsh pretreat-
ment conditions,53 one of the advantages of using THF as the
water cosolvent is that THF could preferentially solvate lignin
and the THF/water cosolvent mixture could act as a “theta”
solvent to prevent lignin aggregation or repolymerization while
facilitating lignin solubilization.34

GPC results indicated that CELF lignin had much lower
weight-average molecular weight (Mw) and number-average
molecular weight (Mn) compared to CEL, suggesting
significant lignin depolymerization during CELF pretreatment.
The polydispersity index (PDI) that indicates the distribution
of molecular mass in lignin suggested that CELF lignin had a
much higher uniformity or narrower molecular weight
distribution than CEL. The 31P NMR technique was applied
to determine the proportion of different types of hydroxyl
groups in CELF lignin after appropriate phosphitylation.54 As
shown in Table 1, the dominant aliphatic hydroxyl group signal
in CEL was significantly reduced by ∼73% after CELF
reaction; on the other hand, the contents of phenolic OH, and
especially the C5 substituted OH, were much higher in CELF
lignin compared to CEL. The drop in aliphatic OH could be
due to the above-mentioned loss of γ-methylol group as
formaldehyde.48 In addition, the oxidation of aliphatic hydroxyl
groups might have occurred as evident by the dramatic
increase in the carboxylic OH content. The increase in total
phenolic OH supports the HSQC NMR data indicating
significant cleavage of lignin interunit linkages during CELF
pretreatment. The relatively low content of aliphatic OH and
high content of phenolic OH are desired features for
potentially using CELF lignin as good antioxidant.55

■ CONCLUSIONS
In summary, high yield coproduction of CELF lignin and
methylated furans directly from poplar wood chips are
reported here by hybrid combination of homogeneous catalysis
followed by heterogeneous catalysis, respectively. In the first
homogeneous reaction step, the CELF reaction was performed

with THF−water mixture containing 1 wt % FeCl3 at 180 °C
for 20 min to achieve the highest coproduction yields of FF
(93.5%) and HMF (66.0%). The unique interactions among
biomass, THF, and water enabled enhanced solubilization of
cellulose and lignin in the THF−water system followed by
dehydration of sugars to FF and HMF. The resulting furfurals
were then efficiently partitioned and concentrated into a
Ca(OH)2 neutralized 1,4-dioxane−toluene stream for HDO
over Cu−Ni/TiO2 catalysts. Surface-rich Cu in Cu−Ni
bimetallic particles promoted selective HDO of FF and
HMF to 87.8% MF and 85.6% DMF, respectively, at 220
°C. Compared to poplar CEL, CELF lignin had significantly
lower molecular weight and higher phenolic OH contents. The
cleavage of β−O−4 interlinkages under acid conditions, along
with the unique interactions between lignin and THF−water
system are the major mechanisms of lignin breakdown during
CELF pretreatment.
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