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Abstract
Human immunodeficiency virus 1 (HIV-1) replicates through the integration of its viral DNA into the genome of human immune
target cells. Chronically infected individuals thus carry a genomic burden of virus-derived sequences that persists through
antiretroviral therapy. This burden consists of a small fraction of intact, but transcriptionally silenced, i.e. latent, viral genomes
and a dominant fraction of defective sequences. Remarkably, all viral-derived sequences are subject to interaction with host
cellular physiology at various levels. In this review, we focus on epigenetic aspects of this interaction. We provide a compre-
hensive overview of how epigenetic mechanisms contribute to establishment and maintenance of HIV-1 gene repression during
latency. We furthermore summarize findings indicating that HIV-1 infection leads to changes in the epigenome of target and
bystander immune cells. Finally, we discuss how an improved understanding of epigenetic features and mechanisms involved in
HIV-1 infection could be exploited for clinical use.
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Introduction

Human immunodeficiency virus type 1 (HIV-1) is a single-
stranded positive-sense RNA virus that replicates in CD4+

human immune cells. Prerequisite for productive replication
is the integration of the reverse transcribed viral DNA into the
genome of infected target cells. Integrated HIV-1-derived
double-stranded DNA is termed provirus and serves as a tem-
plate for all viral-derived replication components [1]. In the

vast majority of cases, acute infection induces replication-
associated cytopathic effects that lead to destruction of the
target cells. A small percentage of infected cells however enter
a state of latent infection. Such latent HIV-1 infection is char-
acterized by a largely transcriptionally silenced provirus and
by the absence of detectable mature viral gene products [2].

Combination antiretroviral therapy (cART) has been devel-
oped as a highly efficient treatment to suppress HIV-1 repli-
cation at various stages of the viral replication cycle.
However, because latency is a non-productive state of infec-
tion, latently infected cells escape targeting by cART. They
thus contribute to the so-called HIV-1 reservoir, which is re-
sponsible for the observed viral rebound in patients upon in-
terruption of antiretroviral treatment. Once infected, individ-
uals can hence never fully clear the virus [3]. This phenome-
non has been termed HIV persistence and leads to a state of
chronic HIV-1 infection. Around 20million people worldwide
are currently considered chronically HIV-1 infected [4].

HIV-1 proviral DNA in chronic infection shows a number
of characteristics. First, an estimated fraction of only around
3% of proviral sequences found in infected individuals on
cART is intact and replication competent, as assayed by quan-
titative viral outgrowth assays [5, 6]. Thus, the vast majority of
proviral DNA in chronic infection consists of defective se-
quences [5, 7–9]. These are thought to arise through the ac-
tivity of host restriction factors, errors in reverse transcription
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or RNA splicing and recombination events post integration.
While defective proviral sequences do not contribute to the
reservoir hurdling HIV-1 cure, they could play a role in path-
ogenesis of chronic infection. Aberrant transcripts that often
harbour translational competence have been reported from
proviruses with various defects [7, 9, 10]. These transcripts
represent abnormal HIV-RNA species detectable in infected
individuals on cART that result from transcription and alter-
native splicing of integrated proviral DNA with defects such
as hypermutations, small internal deletions or mutated major
splice donor sites. Although these aberrant transcripts do not
support a replicative viral life cycle, they can be translated to
viral proteins such as gag or give rise to novel chimeric HIV-
protein species. These proteins have been shown to be capable
of eliciting cytotoxic T-lymphocytic (CTL) responses and thus
postulated to induce immune activation [9, 10]. Chronic HIV-
1 infection is therefore characterized by presence of a proviral-
derived DNA burden integrated within the genomes of infect-
ed target cells. This burden is made up of a percentage of
replication-competent intact proviruses as well as a large frac-
tion of defective HIV-1-derived sequences.

The pathogenic impact of HIV-1 proviral-derived DNA
burden is likely dependent on the regulation of the viral se-
quences. Thus, we need to gain a comprehensive understand-
ing of (i) molecular pathways that regulate HIV-1-derived
DNA and (ii) the mechanisms that influence genomic
crosstalk between proviral DNA and the human target ge-
nome. This review will focus on the epigenetic aspects in-
volved in these processes.

The term epigenetics has originally been introduced to de-
scribe heritable features in cell identity and physiology that are
not linked to alteration in genetic sequence composition [11].
Today, the field of epigenetics investigates a broad variety of
mechanisms that collectively affect DNA-dependent activities
[12]. Of predominant interest have been epigenetic mechanisms
that determine transcriptional state and activities of gene ex-
pression. Chromatin, i.e. the totality of DNA-associated pro-
teins and RNAs, is considered the platform through which epi-
genetic regulation is exerted [13, 14]. This regulation is driven
through chemical modifications of DNA or chromatin compo-
nents or alterations in chromatin composition, which lead to
structural changes that influence accessibility of regulatory
DNA regions to for example transcriptional regulators or effec-
tor proteins. Furthermore, these modifications often serve as
recruitment platforms for binding of specific downstream effec-
tors. The most studied and first described epigenetic chromatin
features are covalent modifications of DNA bases and histone
proteins. These include cytosine methylation of CpG dinucleo-
tides (5mCpG) in DNA and post-translational modifications
(PTMs) of mainly N-terminal histone residues, such as methyl-
ation (me), acetylation (ac) or phosphorylation (phospho) [15,
16]. It has become evident that certain epigenetic features are
usually associated with either a transcriptionally active and

open or transcriptionally silent and condensed chromatin state,
termed euchromatin or heterochromatin, respectively [13, 14].
Unmethylated DNA, hyper-acetylated and hypo-methylated
histones located on promoter cis-regulatory elements are gen-
erally markers for euchromatin, whereas methylated DNA,
hypo-acetylated and hyper-methylated histones are considered
heterochromatin features. This is however a very simplistic
representation, since the position of one and the same PTM
within a histone can be associated with opposing activity states.
For example, trimethylation of lysine 4 in histone 3
(H3K4me3) generally marks active promoter regions, while
trimethylation of lysine 9 or trimethylation of lysine 27 in his-
tone 3 (H3K9me3, H3K27me3) demarcates a transcriptionally
repressed promoter. A large pool of epigenetic effector proteins
has been described, which are responsible for catalysing or
indeed removing specific modifications, such as DNA methyl-
transferases (DNMTs), histone methyltransferases (HMTs) or
histone acetyltransferases (HATs) for example. Overall, it is
today evident that epigenetic regulation is mediated by a dy-
namic and highly complex interplay of different epigenetic
marks and pathways that involve DNA, chromatin components
and in addition also higher-level features, such as for example
3D nuclear organization [13, 14, 17, 18].

A multitude of studies focusing on epigenetic mechanisms
in HIV-1 biology and in particular HIV-1 persistence was
initiated following the observation that HIV-1 latency contrib-
utes to the establishment of a reservoir that prohibits viral
elimination and thus a cure for HIV-1 infection. When
reviewing findings from these and ongoing studies, two points
should be noted. First, our current understanding of how pro-
viral activity is epigenetically regulated is largely based on
analysis of cellular HIV-1 infection models. This is due to
the relative paucity, lack of molecular markers and heteroge-
neous identity of latently HIV-1 infected cells in individuals
on cART, which largely prevents analysis of regulatory mech-
anisms in vivo or on patient-derived materials. Secondly, also
as a result of this technical hurdle, work was so far mainly
focused on understanding how epigenetic mechanisms influ-
ence integrated HIV-1 proviral DNA sequences. There are few
studies to date that have investigated epigenetic effects of
acute or latent HIV-1 infection on the host genome as a result
of proviral/human DNA crosstalk.

Chromatin landscape of the HIV-1 provirus
and its role in the control of viral gene
expression

Proviral HIV-1 double-stranded DNA, once integrated into the
host genome, is indissociable from cellular genes. As such, it
adopts a chromatin architecture. Since HIV-1 exploits the cel-
lular machinery for transcription of its own genes, the dynam-
ic changes in proviral chromatin architecture, especially at the
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5′ LTR that contains the viral promoter, are crucial for HIV-1
gene regulation.

Proviral chromatin architecture and the viral protein
Tat as a key modulator for HIV-1 transcription

To decipher the chromatin architecture of the HIV-1 provirus,
early experiments focused on mapping nucleosome deposi-
tion by measuring sensitivity to Dnase I and to micrococcal
nuclease (MNase) digestion. These experiments have shown
that, regardless of the integration site in the host genome,
nucleosomes are strictly deposited at specific positions in the
HIV-1 provirus (Fig. 1) [19–21]. In particular, the 5′ LTR is
embedded into two distinct nucleosomes (called nuc-0 and
nuc-1), separated by the two DNase I hypersensitive sites
DHS2 and DHS3 (Fig. 1) [20]. Mechanistically, the 5′ LTR
nuc-1 is actively positioned in a refractory sequence immedi-
ately downstream of the HIV-1 transcription start site (TSS)
by the cellular ATP-dependent chromatin remodelling BAF
complex [20, 21]. In this position, nuc-1 causes pausing of
cellular RNA polymerase II (RNAPII). It thus constitutes a
repressive barrier to the progression of the cellular transcrip-
tion machinery [20, 21]. As a consequence, while recruitment
of cellular transcription factors (TFs) and their associated
coactivators to the HIV-1 5′ LTR is sufficient to trigger the
initiation of viral transcription, the key rate-limiting step in
HIV-1 gene expression is transcriptional elongation [22, 23].

To overcome this elongation block, HIV-1 employs the
virally encoded Tat transactivator (Fig. 2). Tat initiates a cas-
cade of events that ends in disruption of nuc-1 and remodel-
ling of the chromatin structure of the 5′ LTR [22]. Briefly, the
Tat transactivator binds the TAR element, a 60-nt stem-loop

structure located at the 5′ end of all nascent HIV-1 transcripts.
This provokes the recruitment of the cellular positive tran-
scription elongation factor B (P-TEFb), composed of the
cyclin-dependent kinase Cdk9 and cyclins T [24]. Together
with other factors of a super elongation complex (SEC) [25],
the kinase component of P-TEFb directly targets RNAPII.
RNAPII pausing is therefore overcome and a productive form
of HIV-1 transcription is resumed. Importantly, this positive
regulatory circuit centered around Tat transactivation is
strongly regulated by Tat post-translational modifications
[22]. Tat acetylation on its lysine 28 (K28) residue by PCAF
(p300/CBP associated factor) promotes P-TEFb recruitment
[26], whereas acetylation on the lysine 50 residue (K50) by
p300/CBP and the lysine 51 residue (K51) by hGCN5 facili-
tates release of P-TEFb and transfer of Tat from the TAR
element to the elongation RNAPII complex, respectively
[27]. At the end of the elongation process, Tat deacetylation
by the histone deacetylase (HDAC) sirtuin 1 (SIRT1) allows
its dissociation from RNAPII and PCAF and its recycling to
initiate a new transactivation feedback loop (Fig. 2) [27].

Tat post-translational modifications thus determine its dif-
ferent roles in transactivation. Importantly they furthermore
also serve for the recruitment of cellular epigenetic modifiers
[27, 28]. Indeed, PCAF, p300/CBP and hGCN5 are well-
characterized HATs that not only acetylate Tat but are also
associated with extensive acetylation of histones H3 and H4.
This acetylation contributes to the establishment of a more
accessible chromatin environment in the vicinity of the 5′
LTR and thus favours transcription of HIV-1 genes [22, 28].
Furthermore, acetylation on Tat K50 causes recruitment of
PBAF that actively remodels nuc-1 and thereby allows
processive elongation [21].
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Fig. 1 Organization of the HIV-1 5′ long terminal repeat (LTR).
Schematic representation of HIV-1 genome structure (above) and
organization and nucleosome positioning at the 5′ LTR (below). The 5′
LTR is divided in four functional domains: modulatory region, enhancer,
core promoter and leader region. Transcriptional start site (TSS; black

arrow) and TAR element are marked. The LTR is embedded into two
nucleosomes nuc-0 and nuc-1. DNase I hypersensitive sites are
demarcated (DHS2, DHS3 and DHS4). Two CpG islands (CGIs)
surround the HIV-1 TSS. Numbers indicate base pair positions relative
to the TSS (position + 1)
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Epigenetic control of HIV-1 latency

The transcriptional competence of the HIV-1 provirus is
heavily controlled at the epigenetic level through exploitation
of cellular enzymes. During HIV-1 latency, transcriptional si-
lencing of viral gene expression is maintained by numerous
interrelated epigenetic mechanisms. These include histone

PTMs, modification of the DNA itself, as well as non-
coding RNA (ncRNA)-mediated epigenetic mechanisms.
Recently, considerable attention has also been paid to the role
of the chromatin state at the site of proviral integration as
means to control HIV-1 expression. Of note, while we will
here focus on the epigenetic control of HIV-1 latency, proviral
silencing is maintained along the entire spectrum of the gene
expression pathway, including at post-transcriptional and
translational levels [29].

Histone PTMs in the control of HIV-1 latency

In addition to nucleosome positioning discussed above, the
involvement of histone tail PTMs in HIV-1 latency has been
extensively studied [27, 30]. A wide variety of LTR-binding
cellular TFs act as transcriptional repressors through redun-
dant recruitment of cofactors and induction of epigenetic si-
lencing [27, 31]. For instance, during latency, NF-κB binding
sites in the 5′ LTR are occupied by the negatively acting
NF-κB homodimer p50-p50 that recruits class-I histone
deacetylase 1 (HDAC1) and establishes a heterochromatin
environment at the viral promoter [32]. Similarly, HDAC1 is
also recruited cooperatively by the host factors YY1 and LSF
(Fig. 3) [33, 34]. This redundant recruitment of one and the
same HDAC, as well as the recruitment of different classes of
HDACs by several independent mechanisms to the 5′ LTR
during latency, explains the success of using pan-HDAC in-
hibitors (HDACi) in HIV-1 latency reversing strategies [30,
35].

In addition to cumulative recruitment of one type of histone
modifier, some repressive cellular TFs also bridge different
histone modifications. This is the case for CTIP2 (COUP—
TF interacting protein 2)/BCL11B. In microglial cells, CTIP2
mediates at least one mechanism of HIV-1 gene repression
through recruitment of a multi-enzymatic chromatin-modify-
ing complex that establishes a heterochromatic environment at
the 5′ LTR, in a Tat-independent manner (Fig. 3) [36, 37].
Indeed, in these cells, CTIP2 is physically recruited to the
HIV-1 promoter by its interaction with Sp1 bound to the
GC-boxes of the 5′ LTR [38]. This recruitment is made pos-
sible by histone lysine-specific demethylase 1 (LSD1) also
bound to Sp1 sites [39]. LSD1 recruits the multicomponent
COMPASS complex that ultimately leads to the accumulation
of H3K4me3. Exceptionally, in the context of the HIV-1 pro-
moter, this accumulation is associated with transcriptional re-
pression [39]. In parallel, CTIP2 sequentially recruits
HDAC1/2 to deacetylate H3 and the histonemethyltransferase
(HMT) SUV39H1 (suppressor of variegation 3-9 homolog 1)
that promotes H3K9me3 [36]. Through its chromodomain,
heterochromatin protein 1 (HP1) recognizes H3K9me3,
which leads to further recruitment of SUV39H1. In this way,
heterochromatin spreads along the HIV-1 promoter further
stabilizing a state of latency [36].
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Fig. 2 Tat-mediated transactivation of HIV-1 transcription. In the absence
of Tat, binding of cellular TFs to the 5′ LTR is sufficient to initiate
transcription. However, RNAPII pauses after the synthesis of few
abortive transcripts due to the recruitment of NELF and DSIF. As soon
as Tat accumulates in the nucleus, it binds the TAR element and promotes
RNAPII transition to processive elongation. Tat acetylation by PCAF on
K28 allows P-TEFb recruitment and Cdk9-induced phosphorylation of
RNAPII CTD tail. Cdk9 also phosphorylates DSIF and NELF,
transforming the first in a positive elongation factor and releasing the
second. Acetylation of Tat on K50 by p300 facilitates P-TEFb release
and recruits PBAF that remodels the repressive nuc-1. Acetylation of Tat
on K51 by hGCN5 favours Tat transfer to the elongating RNAPII. At the
end of transcription, Tat is deacetylated by SIRT1, allowing its recycling
in a new feedback loop. Adapted from [27]
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Finally, interdependent recruitment of histone modifiers is
also postulated to occur during HIV-1 latency. For instance,
HMT EZH2, together with the EZH2-mediated H3K27me3
mark, have been reported at the viral promoter in both cell
lines and primary cell models for HIV-1 latency (Fig. 3)
[40]. While the mode of EZH2 recruitment to the latent 5′
LTR is still unclear, it could be functionally linked to other
epigenetic marks, especially to H3K9me2/3, as reported in
embryonic stem cells [41]. Accordingly, both EHMT1 (eu-
chromatin histone methyltransferase)/GLP and EHMT2/
G9a, which participate in HIV-1 latency by depositing
H3K9me2 on the HIV-1 promoter in latently infected T cell
lines [42–44], could be cooperatively recruiting EZH2.

DNA methylation in the control of HIV-1 latency

DNA methylation is a post-synthetic, reversible and heredi-
tary epigenetic mark that in mammals occurs predominantly
on cytosine residues in the context of CpG dinucleotides [45,
46]. Mechanistically, DNAmethylation of CpG dense regions
at gene promoters, termed CpG islands (CGIs), is in general
associated with repression of transcription, either directly or
indirectly [47]. DNAmethylation-mediated repression of viral
promoters has been involved in latency of several viruses [48],
including the bovine leukaemia virus (BLV) and the human T-
lymphotropic virus type 1 (HTLV-1) retroviruses [49, 50].
Early reports already established that DNA methylation

modulates HIV-1 gene expression [51, 52]. Two CGIs sur-
round the HIV-1 TSS (Fig. 1) and compelling evidence shows
that these two CGIs are hypermethylated in model T cell lines
and in primary cell models for HIV-1 latency [53–55].
Furthermore, in latently infected cell line models, hyperme-
thylation of the second HIV-1 promoter CGI provokes recruit-
ment of the Methyl-CpG Binding Domain Protein 2 (MBD2).
MBD2 is associated with the chromatin-modifying complex
NuRD that also contains HDAC2 (Fig. 3) [53].

Thus, DNA methylation is intimately linked to other epi-
genetic modifications and participates in the heterochromatic
silencing of the 5′ LTR in cellular models of latent infection.
However, primary cells from HIV+ individuals have been
found to be more heterogeneous concerning the DNA meth-
ylation status of the viral promoter. Some studies showed an
accumulation of HIV-1 promoter methylation [53, 54, 56],
whereas others disputed the existence or the relative contribu-
tion of HIV-1 promoter methylation to viral persistence [6, 57,
58]. The heterogeneous profiles reported by these studies are
likely due to several reasons. These include technical varia-
tions in sample analysis, variations in the nature of the provi-
rus and variations in the clinical characteristics of the patients.
For instance, one study showed that accumulation of methyl-
ation was especially low at the promoter of replication-
defective proviruses [6]. This might suggest differential epi-
genetic mechanisms of HIV-1 repression in replication-
competent and replication-defective reservoirs of HIV-1.
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Fig. 3 Epigenetic control of HIV-1 silencing during latency. HIV-1
silencing during latency is regulated through epigenetic mechanisms.
During latency, transcription factors redundantly recruit histone
modifiers. For instance, the negatively acting NF-κB homodimer p50-
p50 occupies cognate binding sites in the 5′ LTR and recruits HDAC1 and
HDAC2. In microglial cells, the cellular factor CTIP2 represses HIV-1
gene expression at least through three distinct modes. One of them is
depicted in the figure. CTIP2 and LSD1 bind the Sp1 sites in the 5′
LTR. CTIP2 sequentially recruits HDACs and the HMT SUV39H1 that
catalyses H3K9me3. This mark is recognized by HP1 that recruits further
SUV39H1 units spreading the heterochromatic H3K9me3 mark. In

parallel, LSD1 recruits the hCOMPASS complex, notably containing
the histone methyltransferase (HMT) SET1 that stimulates H3K4me3.
Furthermore, several HMTs (including G9a, GLP and EZH2) are
responsible for depositing H3K9me2/3 and H3K27me3, respectively;
their mode of recruitment to the HIV-1 promoter remains unclear. Two
CpG islands (CGIs) surround the HIV-1 TSS and are heavily methylated
by DNA methyltransferases (DNMTs), allowing the recruitment of
MBD2 and the associated NuRD complex (containing HDAC2) to the
second CGI. Recent reports show that the HIV-1-encoded antisense
transcript ASP-1 also contributes to epigenetic silencing through
promoting recruitment of Dnmt3, HDAC1 and EZH2 to the 5′ LTR
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Furthermore, the use of PCR-based methods to analyse meth-
ylation profiles, using bisulfite conversion coupled with se-
quencing, is inherently more difficult in clinical samples [59,
60]. Finally, clinical characteristics such as duration of infec-
tion [56] and duration of antiretroviral therapy treatment [61,
62] were both shown to positively associate with the accumu-
lation of HIV-1 promoter methylation. Further understanding
of the recruitment modes and modalities of DNMTs to the
HIV-1 promoter will likely provide more insights into the
current discrepant reports.

The contribution of ncRNAs to HIV-1 latency

Different classes of ncRNAs have been involved in epigenetic
control of gene expression through the recurrent formation of
RNA scaffolds that serve to recruit chromatin-modifying com-
plexes [63]. Regulatory ncRNAs can be classically classified
according to their size, with transcripts longer than 200 nt
termed long ncRNAs (lncRNAs). Smaller transcripts include
microRNAs (miRNAs) or piwi-interacting RNAs (piRNAs)
[64]. In mammals, gene expression by small ncRNAs in-
volves little chromatin structure regulation, with the exception
of certain piRNAs that promote methylation of transposons
and thereby suppress their activity during spermatogenesis
[63, 64]. On the contrary, multiple studies have demonstrated
a role for specific lncRNAs in controlling gene expression
through modelling of chromatin structure in homeostatic bio-
logical processes as well as diseases [65]. As for HIV-1 laten-
cy, several cellular lncRNAs have been shown to promote
latency, directly or indirectly. One example is the lncRNA
NRON that indirectly restricts HIV-1 gene expression by in-
ducing Tat proteasomal degradation [66].

It has been debated whether HIV-1 produces ncRNAs.
Some reports suggest that miRNAs can be derived from cer-
tain secondary RNA structures of the HIV-1 genome [67].
Furthermore, the ability of HIV-1 to transcribe its genome in
antisense from the 3′ LTR has long been suspected [68].
Indeed, both LTRs can function as transcriptional promoters,
even though the 5′ LTR initiates transcription more often,
which is believed to occlude transcription from the 3′ LTR
[69, 70]. Many studies have since confirmed the expression
of an antisense transcript that encodes the HIV-1 antisense
protein (ASP-1) from a reading frame located on the negative
strand in the env gene [70–72].While the function of the ASP-
1 protein remains unclear, two reports have recently highlight-
ed that the ASP-1 RNA is associated with epigenetic regula-
tion of the 5′ LTR in a similar manner to that of cellular
lncRNAs [73, 74]. It was shown that downregulation of the
ASP-1 transcript was associated with decreased recruitment of
DNMT3a, HDAC1 and EZH2 to the 5′ LTR, implicatingASP-
1 in HIV-1 epigenetic silencing [73]. In accordance, it was
recently found that ASP-1 RNA recruits EZH2 to the 5′
LTR, which provokes placement of the repressive

H3K27me3 mark, nuc-1 assembly and transcriptional silenc-
ing (Fig. 3). ASP-1 thus promotes viral latency [74].
Altogether, the HIV-1-encoded antisense transcript appears
to branch several epigenetic processes in maintaining a het-
erochromatic environment at the HIV-1 5′ LTR during latency.

Integration site–dependent regulation of proviral HIV-1 DNA

HIV-1 preferentially integrates within transcriptionally active
genes and within regions bearing enhancer marks [75–77].
Indeed, HIV-1 integration is controlled by cooperating viral
and cellular determinants, such as the cellular cofactor
LEDGF/p75 that recognizes H3K36me3 marks for targeted
HIV-1 integration [78, 79]. In this euchromatin context,
HIV-1 silencing may seem counter-intuitive and a highly
discussed open question is how the chromatin environment
at the integration site dictates heterochromatinization of the
HIV-1 provirus. Two phenomena that have been observed in
HIV-1 infected individuals on cART are remarkable in their
suggestion of a functional crosstalk between proviral-derived
sequences and the human genome at the site of proviral inte-
gration. First, chronically infected individuals present geno-
mic hotspots or recurrent integration genes, where proviral-
derived sequences are preferentially found [80–84]. This re-
sults from a reshaping of the initial integration site bias in
acute HIV-1 infection, which is determined by a number of
genetic, epigenetic and mechanistic features [8, 85]. Second, a
subset of proviral integration sites observed in chronic HIV-1
infection appears linked to clonal expansion of the targeted
cell [81–83, 86–88]. Such clonally expanded cells have been
found to carry intact as well as defective proviral sequences
and appear to be present in most studied cases of HIV-infected
individuals on cART [86, 89–91]. The mechanisms underly-
ing clonal expansion are to date elusive. Expansion mediated
by antigen- and cytokine-driven proliferation, a well-known
phenomenon in T cell biology, has been discussed [8, 87, 92].
Alternatively, there is increasing evidence that the genomic
locus at the proviral integration site and hence a functional
proviral/human DNA crosstalk could play a dominant role.
Several studies have shown that the genomic context influ-
ences HIV-1 proviral expression and inducibility [77, 93–98].
Recurrently found gene loci in chronic infection have been
proposed to offer a genetic and epigenetic environment that
promotes transcriptionally silent persistence of proviral ge-
nomes and therefore maintenance of the reservoir [99]. On
the other hand, proviral-derived sequences themselves could
alter expression of genes located nearby. Chimeric proviral/
human transcripts that arise from exaptation of the HIV-1 LTR
promoter region for transcription of human endogenous gene
products have indeed be observed [89, 100]. In this way,
proviral-derived DNA impacts on the host cell transcriptome
and influences host cell physiology and behaviour such as
differentiation, proliferation and/or survival and thereby
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stimulates expansion of the host cell clone [8, 82, 83, 85, 87].
This scenario could also explain observed clonal proliferation
of cells with largely defective proviruses and solo-LTRs that
are transcription/translation incompetent, cannot elicit im-
mune responses and therefore are unlikely to undergo
antigen-driven expansion [6, 81]. In this context, it is remark-
able that a number of recurrent integration sites found in
chronic infection are in gene loci associated with proliferative
control, cell differentiation or oncogenesis [82–84, 89].

Thus, while observations in HIV-1 chronically infected in-
dividuals point towards the importance of a functional
crosstalk between the HIV-1 provirus and its environment of
integration, the contribution of epigenetic mechanisms to this
crosstalk (i.e. in terms of hotspots of integration and of clonal
expansion) still needs to be further clarified.

Epigenetic regulation of HIV-1 latency establishment

Fuelled by therapeutic considerations, much attention has
been paid on how HIV-1 latency is epigenetically maintained
rather than how it is effectively established. Mathematic
modelling has emphasized that stochastic fluctuations of Tat
levels might act as a molecular switch in driving initial HIV-1
latency [101], independent of the activation state of infected
cells [102]. Indeed, the absence of Tat prevents epigenetic
remodelling of the 5′ LTR, especially of the repressive nuc-
1, and this contributes to maintenance of a heterochromatic
structure at the HIV-1 promoter [103]. Still, few studies have
addressed the epigenetic mechanisms involved in HIV-1 la-
tency establishment. This is mainly due to technical limita-
tions: the vast majority of current epigenetic profiling tech-
niques interrogates biological processes in a static rather than
a dynamic manner [104]. In addition and as mentioned before,
most mechanistic studies are performed in artificial models for
HIV-1 latency since work on primary patient-derived mate-
rials is very cumbersome and, especially in the context of
functional assays, this work is often not possible [105].

In a study focused on the kinetics of HIV-1 latency estab-
lishment, it has been found that HIV-1 latency is heteroge-
neously established in cell populations, either by immediate
silencing or by continuous decline in HIV-1 gene expression
[106]. While H3K9me3 accumulation on the 5′ LTR was not
different between the two cellular populations, 5′ LTRs that
underwent immediate silencing initially presented higher
levels of H3K27me3 [106]. Interestingly, also in the time-
dependent silenced population, H3K27me3 accumulated at
the LTR region [106]. This finding indicates a crosstalk be-
tween the H3K9me3 and H3K27me3 marks that appears im-
portant for latency establishment. Nucleosome positioning
and histone PTMs are therefore good candidates for early
events leading to HIV-1 latency. On the contrary, DNA meth-
ylation has been suggested to be a late event. Indeed, obser-
vations from various fields of science support the view that

DNAmethylation locks gene expression long-term rather than
initiating heterochromatic silencing [107, 108]. In accordance,
reports highlighting the temporal dimension in accumulation
of 5mCpG on 5′ LTR sequences in HIV-1-infected patients
[56, 61] suggest that this epigenetic mark does likely not con-
tribute to epigenetic establishment of HIV-1 latency.
Furthermore, cellular lncRNAs might be an early incentive
in HIV-1 silencing. Indeed, it is known that HIV-1 infection
is associated with changes in the landscape of ncRNAs in
infected cells [109]. These HIV-1-induced variations, as well
as natural variations of ncRNAs profiles among individuals
[110, 111], could thus constitute stimuli for establishing an
HIV-1 latency state. While a functional lncRNome-wide in-
terrogation of HIV-1 gene expression modulation is currently
still lacking, future research in this area holds the promise to
further our understanding of epigenetic features underlying
HIV-1 latency establishment. Finally, it is likely that depend-
ing on the integration site, different epigenetic mechanisms of
latency establishment might be at play [77, 112].

Changes of the cellular epigenome as a result
of HIV-1 infection

HIV-1 gene expression, as previously described, is actively
controlled through usage of the epigenetic machinery of in-
fected host cells. While much data has been gathered during
the past decades to decipher details of this interaction, we are
currently only beginning to understand converse effects of
HIV-1 infection, i.e. how host cell epigenomes and the
epigenomes of bystander immune cells are altered in response
to HIV-1 infection.

There are a number of possibilities for how such alterations
could be mediated, as examples of different viral infections
have shown [113]. First, viral proteins might inherently pos-
sess enzymatic activities of epigenetic modifiers. This has for
example been demonstrated for vSET, a protein of
Paramecium bursaria chlorella virus (PBCV-1), which codes
for a viral SET domain enzyme that catalyses deposition of the
repressive H3K27me3 mark on host cell chromatin [114].
Second, viral-encoded proteins could interact with epigenetic
players of infected cells and thereby alter their activity. This
results in a changed epigenomic profile of infected cells,
which could, for example, promote viral replication, a state
of viral latency or indeed alter the proliferative behaviour of
targeted cells. Examples for such scenario are found during
infection with human gamma herpesviruses Kaposi’s
sarcoma-associated virus (KSHV) and Epstein-Barr virus
(EBV) [113]. The KSHV-encoded latency-associated nuclear
antigen (LANA) interacts with SUV39H1 and DNMT3A to
induce transcriptional repression of a range of host genes [115,
116]. These changes have been proposed to induce epigenetic
reprogramming of infected cells, which can be associated with
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transition towards a transformed phenotype and explain
KSHV-associated tumour development [113]. In a similar
manner, various EBV-encoded nuclear antigen (EBNA) pro-
teins have been shown to functionally interact with the cellular
polycomb epigenetic repression complex to induce transcrip-
tional downregulation of tumour suppressor genes in infected
cells [113, 117]. As a third scenario, cellular epigenetic pro-
files could be altered as an indirect consequence of viral in-
fection. Innate cellular mechanisms sense viral infection and
initiate signalling cascades that eventually result in
epigenomic restructuring. In this case, epigenetic changes
might not only be seen in infected target cells but bystander
cells might equally be affected through infection-induced cy-
tokine signalling and an altered microenvironment. Through
this mechanism, chronic inflammation induced by hepatitis
viruses HBVand HCV has been proposed to result in aberrant
DNA methylation signatures in hepatocytes of infected livers
[118, 119].

In the case of HIV-1 infection, few studies have so far
focused on epigenetic changes on the host genome and further
mechanistic insights are yet to be uncovered. These studies
primarily addressed the cellular methylome, i.e. alterations in
the extent and pattern of 5mCpG in cellular genes in response
to HIV-1 infection. Notably, the analysis was mainly under-
taken in CD4+ T cells or peripheral blood mononuclear cells
(PBMCs) of HIV-1-infected individuals on ART, which in-
cluded infected, but to a large extent also bystander, non-
infected cells. At least in part, observed effects are thus likely
indirect effects of HIV-1 infection. A pioneering report two
decades ago also showed that HIV-1 infection results in in-
creased DNMT activity and de novo methylation of a single
CpG in the gamma interferon (IFN-γ) promoter [120]. This
provoked transcriptional downregulation of the cytokine as
important player for different immune functions [120]. The
same team further showed that HIV-1 infection was associated
with hypermethylation and reduced expression of p16INK4A, a
tumour suppressor gene [121]. These findings brought about
the idea that aberrant DNA methylation might be a conserved
mechanism of HIV-1 pathogenesis. Indeed, more recently, the
use of array-based genome-wide techniques for methylome
analysis has revealed that blood cells of HIV-1-infected indi-
viduals on ART are epigenetically altered in a characteristic
way, linking HIV-1 infection to premature ageing and abnor-
mal immune responses [122–124]. One study comparedmeth-
ylation patterns at over 26,000 genome-wide CpG sites vali-
dated as ageing markers and came to the conclusion that HIV-
1 infected individuals on cART showed an average epigenetic
ageing advancement of 4.9 years compared with healthy con-
trols [124]. The authors furthermore observed global deregu-
lation of the methylome across over 80,000 CpG sites, which
in addition to changes reminiscent of advanced age, also
showed local abnormalities specific for HIV-1 infection.
These include hypomethylation at the human leukocyte

antigen (HLA) locus, which indeed could suggest epigenetic
regulation in innate immune responses involved in HIV-1 in-
fection control [124]. Interestingly, it appears that antiretrovi-
ral therapy can alter observed methylome changes and thus
might influence premature ageing as well as onset and pro-
gression of comorbidities in HIV-1 infected individuals [123].

Although much remains to be analysed, these studies col-
lectively support the early finding that HIV-1 infection pro-
foundly alters the cellular methylome. Based on our under-
standing of epigenetic regulation as a complex interplay of
different features, it would be astonishing if methylome
changes would not be accompanied by genome-wide changes
of further epigenetic marks. Indeed, there is preliminary data
that HIV-1 infection also alters levels of several histone PTMs
[125, 126]. One study showed that HIV-1 infection ex vivo is
accompanied by strong fluctuations in histone PTM levels as
demonstrated by mass spectrometry and transcriptional profil-
ing of PTM-associated enzymes [126]. In accordance with the
findings on increased CpG methylation upon infection, a sec-
ond report suggested that global repressive histone marks,
such as H3K9me3 and H3K27me3 increase [125]. Notably,
these studies focused on acute infection ex vivo—data on
global histone PTM changes in chronically HIV-infected in-
dividuals has to our knowledge not yet been reported. This
will likely change in the near future with current advances in
sequencing technologies and the fast evolving protocols for
genome-wide histone PTM analyses on low cell numbers in
primary cells.

In conclusion, current pioneer works indicate that HIV-1
infection leads to long-term epigenetic reprogramming of tar-
get and bystander immune cells. While underlying molecular
mechanisms remain to be uncovered, this reprogramming
could play an important role not only in promoting HIV-1
persistence but also in the development of chronic HIV-1 dis-
ease and associated comorbidities.

Epigenetic targets in clinical approaches
to HIV-1 disease

The realization that cART, although efficiently controlling vi-
ral replication, could not eliminate HIV-1 from infected indi-
viduals has initiated a now decade-long search for clinical
strategies to achieve an HIV-1 cure. Efforts have mainly been
focused on targeting the latent HIV-1 reservoir responsible for
viral persistence. In addition, much work has been done to
find approaches to strengthen immunological defences to
HIV-1, such as for example through use of anti-HIV-1 broadly
neutralizing antibodies (bNAbs) or chimeric antigen receptor
(CAR) Tcells targeted to HIV-1-infected cells [127]. A second
avenue of research has focused on counteracting the state of
HIV-1 latency. This ‘shock and kill’ approach has been based
on the idea that forced reversal of proviral transcriptional
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repression (‘shock’) would lead to fast depletion of viral res-
ervoir cells, while ongoing cARTwould prevent new reservoir
seeding and immunological defences would clear reactivated
reservoir cells (‘kill’) [1]. Much effort has therefore been spent
on finding so-called latency reversing agents (LRAs), i.e.
compounds that have the capacity to induce proviral transcrip-
tion from silenced HIV-1 5′ LTR [128].

The first LRA compounds tested were the powerful
immune-activating interleukin-2 (IL-2) [129] and anti-CD3
antibodies [130], based on the observation that engagement
of the T cell receptor consistently activated HIV-1 production
in latently infected CD4+ T cells [35]. However, cART dis-
continuation after treatment with these antibodies resulted in
rapid plasma viral rebound in all patients [131]. Thanks to our
improved understanding ofmolecular mechanisms underlying
HIV-1 latency, a variety of different LRA classes has since
been developed (reviewed in detail in [128]). Of particular
clinical interest are a range of so-called epi-LRAs, i.e. agents
that reverse proviral latency through direct interference with
epigenetic silencing mechanisms at the 5′ LTR [35]. These
include inhibitors of histone deacetylases (HDACi), e.g.
Vorinostat and Panobinostat, inhibitors of histone methyl-
transferases (HMTi), e.g. Chaetocin, and inhibitors of DNA
methylation (DNMTi), e.g. 5-aza-2′-deoxycytidine [35].
Since epi-LRAs performed well in activation of latent HIV-1
ex vivo and importantly in a number of cases, these com-
pounds have already been FDA-approved for use in clinical
practice in the context of anti-cancer regimens, several trials
have been undertaken to investigate their potential in purging
the HIV-1 reservoir in chronically infected individuals.
However, although transient HIV-1 production has been ob-
served, no trials using individual LRA have so far succeeded
in significantly reducing HIV-1 reservoir size [132–134]. One
possible reason for these findings is the growing evidence that
HIV-reservoirs are of highly heterogeneous nature, not only
regarding cellular identities but also concerning cellular acti-
vation state and tissue type-dependent microenvironment
[135–137]. Therefore, combination of epi-LRAs with LRAs
targeting different cellular pathways, such as for example pro-
tein kinase C (PKC) agonists or positive elongation factor B
(P-TEFb)-releasing agents will likely be necessary for optimal
HIV-1 latency reversal in vivo [128]. A possibly even greater
challenge in the ‘shock and kill’ approach is the achievement
of a sufficient ‘kill’ of targeted reservoir cells. It has become
evident that intricate adjuvant immunotherapies will be re-
quired to eliminate newly activated cells and prevent prolifer-
ation of the reservoir [138, 139]. These hurdles have currently
somewhat halted the surge for ‘shock and kill’ in HIV cure
research and have allowed for alternative concepts to be
brought forward.

One such concept is the ‘block and lock’ strategy—an ap-
proach which promotes the idea of disarming HIV-1 reservoir
cells through blocking HIV-1 transcriptional activity and

locking the proviral promoter in a state of deep latency
[140]. This concept not only opposes the strategy of ‘shock
and kill’, it furthermore also complies with a growing percep-
tion in the field that full elimination of HIV-1 might clinically
not be achievable. Instead, therapeutic efforts should support a
sustainable remission, i.e. a state in which HIV-1-infected in-
dividuals are able to control the viral burden without need for
continuous cART. Since at its core, transcriptional activity of
the HIV-1 provirus is regulated through epigenetic mecha-
nisms, strategies for deep latency will need to target the pro-
viral epigenetic landscape for long-term, heritable silencing.
This has indeed been found for the most promising ‘block and
lock’ agent so far reported, the Tat inhibitor didehydro-
cortistatin A (dCA) [141–144]. dCA is an analog of the natu-
ral steroidal alkaloid cortistatin A, which prevents Tat/TAR
interaction and thus Tat-mediated transactivation of HIV-1
promoter through binding the TAR-binding domain of Tat.
In cellular HIV-1 latency models, treatment with dCA pro-
motes heterochromatinization of the HIV-1 5′ LTR, with an
increase of deacetylated H3 at nuc-1 and the recruitment of
repressive chromatin-modifying complexes to the HIV-1 pro-
moter [143]. In CD4+, T cells of HIV-1 positive individuals
dCA thus appear to induce a state of persistent latency—HIV-
1 transcriptional activity is blocked and increasingly becomes
refractory to reactivation by LRAs [144]. This finding has
been mimicked in a mouse model for HIV latency, where
dCA treatment reduced tissue HIV-1 RNA and although viral
rebound upon discontinuation of ART was still observed, re-
bound was delayed and quantitatively reduced [141]. Clinical
trials with dCA in humans have so far not been reported and
several questions, including potential viral mutation-based
drug resistances remain to be addressed [145, 146].
Nevertheless, the findings on dCA show that inhibitors of
Tat or indeed agents that mediate heterochromatinization of
the proviral LTR might in future be important components of
clinical approaches for sustainable remission in HIV-1
disease.

In this context, a second class of compounds, the so-called
LEDGINs, should be noted. LEDGINs are small molecules
that inhibit lens epithelial-derived growth factor (LEDGF)/
p75 cofactor for HIV-1 proviral integration [147]. LEDGINs
bind dimers of HIV-1 integrase and inhibit the interaction
between integrase and LEDGF/p75, which results in reduced
catalytic integrase activity and relocation of residual proviral
integrants out of transcription units, towards the inner nuclear
component into chromatin regions increasingly associated
with epigenetic marks of transcriptional silencing (e.g.
H3K9me3, H3K27me3) [148, 149]. This relocation propa-
gates a latent proviral phenotype which shows reduced acti-
vation potential by LRAs. Interestingly, LEDGINs also appear
to have an inhibitory effect on late events in the HIV-1 repli-
cation cycle: Viral particles produced in the presence of the
inhibitors show aberrant integrase multimerization, which
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leads to an impaired infection potential at several levels [148,
150]. As for dCA, future studies including trials in humans
will be necessary to evaluate the potential of LEDGINs in the
quest for HIV-1 remission.

Finally, observed changes in the genome-wide epigenetic
profile of HIV-1-infected and bystander immune cells repre-
sent a so far unexplored but possibly interesting target for
clinical approaches. This might, in particular, be the case for
alterations in the cellular methylome, which have already been
associated with a phenotype of ageing that might promote
HIV-1 associated comorbidities [124]. A more detailed mech-
anistic understanding of these alterations will, however, be
required, before clinical strategies, similar to the use of epi-
LRAs in the ‘shock and kill’ approach, can be followed. In
general, epigenetic therapies will likely play a role in future
innovative approaches to HIV-1 disease, but more work will
be needed to circumvent drawbacks of current epigenetic
drugs, such as for example toxicity effect due to the lack of
specificity [151].

Conclusions

The cellular epigenetic machinery plays an important role in
chronic infection with HIV-1. On the one hand, epigenetic
mechanisms are heavily involved in regulating transcriptional
silencing of the proviral-derived DNA burden. This regulation
is decisive particularly since transcriptional activity of intact
proviral genomes in reservoir cells results in viremic rebound
with grave clinical consequences. On the other hand, infection
with HIV-1 also appears to change the epigenomic landscape
of infected and bystander immune cells. This signature of
infection, whether directly or indirectly linked to the proviral
burden, could be an important cofactor in developing HIV-1
disease-associated morbidities. Many questions remain. It will
in future be necessary to broaden epigenetic studies on HIV-1
disease increasingly to primary cells and tissues of affected
individuals. Improvements also need to be done on mechanis-
tic aspects of epigenetic crosstalk, in particular in un-
derstanding how infection leads to reprogramming of
the human epigenome. Furthermore, it is to date unclear
whether and how epigenetic mechanisms might play a
role in observed phenomena of integration site recur-
rence and clonal proliferation of infected cells. In view
of the potential clinical importance of these phenomena,
in particular for the control of reservoir size and induc-
ibility, this aspect certainly deserves future interroga-
tions. Despite these open questions, our current under-
standing of the epigenetic regulation in chronic HIV-1 infec-
tion already holds a strong indication that pharmacological
agents able to interfere and modify these regulatory pathways
are promising candidates in future clinical strategies for sus-
tainable remission in HIV-1 infection.
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