Lawrence Berkeley National Laboratory Recent Work

Title

NMR IMAGING AND SPECTROSCOPY OF THE MAMMALIAN CENTRAL NERVOUS SYSTEM AFTER IIEAW ION RADIATION.

Permalink
https://escholarship.org/uc/item/7rt9k33g

Author

Richards, T.
Publication Date
1984-09-01

③ Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

T．Richards
（Ph．D．Thesis）

September 1984

Donner Laboratory

』。

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

NMR IMAGING AND SPECTROSCOPY OF THE MAMMALIAN CENTRAL NERVOUS SYSTEM AFTER HEAVY ION RADIATION

Todd Richards

Ph.D Disseration - September 1984

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

This work was supported by the Office of Health and Environmental Research of the United States Department of Energy under Contract DE-AC03-76SF00098.

TABLE OF CONTENTS

PAGE
ABSTRACT iii
SYMBOLS AND DEFINITIONS v
CHAPTER 1. - INTRODUCTION
l. 1 Purpose and scope 1
1.2 Acknowledgements 4
1.3 Background 6
1.3.1 Radiation biophysics of the CNS 6
1.3.2 Relationship between NMR relaxation 12 parameters and CNS pathology
CHAPTER 2. - SPIN-ECHO IMAGING WITH PROJECTION RECONSTRUCTION 17
2.1 Methods 17
2.2 Results 20
CHAPTER 3. - 2D, FOURIER TRANSFORM SPIN-ECHO IMAGING 28
3.1 Methods 28
3.2 Results 34
CHAPTER 4. - SATURATION RECOVERY IMAGING WITH 42
PROJECTION RECONSTRUCTION
4.1 Modification of the UCB-180 spectrometer 42
for tmaging
4.2 Phantom studies 50
4.3 Methods 53
4.3.1 Helium beam irradiation of the CNS 53
4.3.2 The NMR experiment 54
4.3.3 Tl relaxation time calculation 54
4.4 Results 57
CHAPTER 5. - SPIN-ECHO SPECTROSCOPY WITH RF 64ENERGY OPTIMIZATION
5.1 Localization in surface coil spectroscopy 65
5.2 Proton spectroscopy of irradiated rat brain 75
5.3 Results 76
CHAPTER 6. - 2D FOURIER TRANSFORM PROTON SPECTROSCOPY 82
6.1 Introduction 82
6.2 Instrumentation and computer software 82
6.3 Method 85
6.3.1 Magnetic field gradient orientation 85
6.3.2 The NMR experiment 86
6.4 Results 87
CHAPTER 7. - PROTON CHEMICAL SHIFTS OF AQUEOUS AND ORGANIC 94
FRACTIONS OF BRAIN EXTRACTS
7.1 Methods 94
7.1.1 Brain preparation 94
7.1.2 The NMR experiment 95
7.1.3 Calibration of NMR peak areas with 96
chemical concentration
7.1.4 Chemical shifts of isolated chemicals 98
7.2 Results 103
CHAPTER 8. - HISTOLOGY OF IRRADIATED BRAINS 112
8.1 Methods 112
8.2 Results 113
CHAPTER 9. - SUMMARY AND DISCUSSION 125
APPENDIX 133
Computer program listings 139
B IBLIOGRAPHY 220

NMR IMAGING AND SPECTROSCOPY OF THE MAMMALIAN CENTRAL NERVOUS SYSTEM AFTER HEAVY ION RADIATION

Todd Richards

ABSTRACT-

NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. In order to measure the NMR relaxation times, the following imaging techniques were used: spin-echo imaging with projection-reconstruction; 2D Fourier transform spin-echo imaging; and saturation recovery with projection reconstruction. The spectroscopic observations reported in this dissertation were made possible by developement of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. These technological developements were a major part of this work. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent using a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation-induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen
in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios (normalized to the methylene peak area) of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppm (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alterations were seen as early as 4 days after irradiation.

The major findings from 3 independent non-invasive measurement techniques on relaxation and spin density are: l)a decrease in spin density and T 1 relaxation on the irradiated side; 2) an increase in T 2 on the irradiated side; and 3) an increase in T l and spin density on the control side of irradiated brain relative to controls (4-14 days post-irradiation). Using the saturation recovery experiment with the surface coil, an increase in $T 1$ was measured on the irradiated side 81 days post-irradiation. The most likely explanation for the early decrease in $T 1$ of irradiated brain is that radiation causes chemical-bond breakage and protein conformational changes that would expose a greater amount of water to relaxation centers of both proteins and lipids. The time related changes in TI correlated with lipid changes measured in the organic fraction spectra at 4 and 81 days after irradiation. The increase in Tl on the control side of irradiated brains may be related to ventricular enlargement known to occur from examination of the histological sections.

SYMBOLS AND DEFINITIONS

2DFT

- two dimensional Fourier transform

A fmage - a parametric image calculated from several spin-echo intensity images by fitting the intensity values to the following equation pixel by pixel: $I(t)=A * \exp (-t / T 2)$ where $I(t)=$ spin-echo intensity for a given image pixel
$A=$ related to spin density if pulse interval is much greater than TI
$t=$ echo time after 90 degree rf pulse.
The A fitted values are displayed in the gray level image.

Al image - a parametric image calculated from two or more intensity images by varying the Tl dependent variable t and by fitting the intensity values to the equation pixel by pixel: $I(t)=A 1 *(1-\exp (-t / T 1))$
where $I(t)=$ intensity from Tl pulse experiment
Al $=$ related to spin density if pulse interval is much greater than TI
t = time delay between the two pulses during which the relaxation process occurs.

The Al fitted values are displayed in the gray level image.

Chapter 1. - INTRODUCTION

1.1 Purpose and scope

Abstract

rroton NMK otfers a promising new non-invasive method for evaluating the anatomical and chemical changes in radiation brain injury. Ionizing radiation disrupts chemical bonds and creates free radicals which eventually lead to changes in tissue chemistry and structure. The purpose of this research was to measure the proton relaxation time and related blochemical changes in CNS tissue after helium beam irradiation using nuclear magnetic resonance. The motivation for this research comes from cancer radiotherapy where the therapist needs to find a non-invasive way to quantitate the CNS tissue response to the radiation. Heavy ions are of special interest in the treatment of tumors because they have two important features: 1) the "Bragg peak effect" which allows a high killing dose to be localized to the tumor while sparing normal tissues lying in the treatment volume, and 2) a low OER (oxygen enhancement ratio) relative to X-rays which reduces the radioresistance of hypoxic cells (Blakely et al., 1984). The following scientific questions are posed:

1) What are the effects of heavy ion radiation on proton relaxation parameters (T1, T2, and spin density) of the CNS?
2) What are the molecular mechanisms that cause these parameters to change in irradiated tissue?

In order to answer these questions, techniques were studied and developed to make NMR measurements on CNS tissue (in vitro and in vivo). Once these techniques were understood, the NMR parameters were used in the assessment of heavy ion radiation damage to the CNS. The NMR parameters of interests are $T 1$ (spin-lattice relaxation time), T2 (spin-spin relaxation time), spin density, and the high resolution chemical shift spectrum. Proton spectroscopy was done in order to understand some of the radiation-induced chemical changes (proton resonances) that may be related to the proton $T 1$ relaxation time of the CNS •

This dissertation is divided into 9 chapters. Chaptes 2 through 4 describe three different NMR imaging techniques used to measure the relaxation parameters in vivo:

SPIN-ECHO IMAGING WITH PROJECTION RECONSTRUCTION (Ch 2)

2D FOURIER TRANSFORM SPIN-ECHO IMAGING (Ch 3)

SATURATION RECOVERY IMAGING WITH PROJECTION RECONSTRUCTION (Ch 4).

Chapters 5 through 7 describe different NMR spectroscopic techniques to measure the high resolution proton spectrum:

SPIN-ECHO SPECTROSCOPY WITH RF ENERGY OPTIMIZATION (Ch 5)

2D FOURIER TRANSFORM PROTON SPECTROSCOPY (Ch 6)

PROTON CHEMICAL SHIFTS OF AQUEOUS AND ORGANIC FRACTIONS OF BRAIN EXTRACTS (Ch 7).

In each of these chapters, the method and results are discussed, however a discussion of the implications of the results for radiation injury is reserved until chapter 9 (Summary and Discussion). Chapter 8 describes the correlation of the NMR results with conventional histological techniques.

First of all, I wish to thank my research advisor, Professor Thomas F. Budinger, who made it possible for me to do the research. The other thesis committee members have also been very helpful: Professors Paola S. Timiras and Cornelius A. Tobias. I thank Dr. Joseph Castro who encouraged and financially supported me during this work. The moral support of Dr. W. Lynn Richards, Alicia Richards, Joy Richards, and Julie Wilson was critical for the completion of this work. There were many different phases of this research and each phase was done with much appreciated personal assistance. I thank the following people:

NMR spectroscopy and imaging (UCB chemistry department, Latimer hall)Rudi Nunlist and Rich Mazzarisi

Helium beam irradiation (184 inch cyclotron)-
Dr. Katie Brennan, Dr. John Lyman, Julie Twitchel, Brian Moyer, Jay Joseph, Leal Kanstein, Fred Yeater, George Hampton, and James MacMullen NMR imaging at the Baylor College of Medicine, Houston, TexasDrs. M. Robert Willcott, R. Nick Bryan, Joseph Ford, Bub Wendt, Joseph Foster, and Nicholas Schneiders. NMR imaging at the Radiologic Imaging Laboratory, UCSF-

Drs. George Wesbey, and Barry Englestad
Brain extract preparation- Reese Jones, Jay Joseph, and Jeff Teckman Instruction and assistance in histological techniques- Virginia Havens Histopathological instruction (Brookside Hospital)- Dr. Kay Woodruff Machine shop (NMR rat probe fabrication)- E. (Pete) Dowling, Ed Chubak,
Chip Hollister, and Bud Deuberry
Electronic shop (gradient power supply fabrication)- Frank Upham, Blair
Jarrett, and John Gurule
Graphics and Figures- Robert Stevens and Flavio Robles Jr.
Computer software consultants- Drs. Samuel Pitluck and William Holley.
This work was supported by the office of Health and Environmental
Research of the United States Department of Energy under ContractDE-AC03-76SF00098.
1.3 BACKGROUND
1.3.1 Radiation biophysics of the CNS

The sequence of events in ionizing radiation damage can be divided into five categories 1) initial energy deposition; 2) primary chemical events; 3) secondary chemical events; 4) early biological damage; and 5) delayed biological damage. The first three categories are applicable to any biological tissue, but the last two sections are centered on the effects on the brain. NMR relaxation and spectroscopic parameters would be influenced by the biophysical effects of ionizing radiation which cause a change in the number of relaxation centers or a change in the chemical concentration of visible NMR resonances. The relationship between NMR relaxation parameters and the molecular environment is described in section 1.3.2.

1.3.2.1 Initial energy deposition

As ionizing radiation passes through biological tissue, it causes molecular ionization and excitation (Andrews, 1974). The pattern of energy deposition is different for heavy ion radiation than it is for X-rays. As a beam of X-rays passes through the tissue, it is exponentially attenuated because the photons are absorbed and deflected by electrons (compton scattering, photoelectric effect, etc.) and more energy is deposited at the beginning of the beam path than at the end (Andrews, 1974). On the other hand, as a beam of heavy ion particles passes through the tissue, most of the particles in the beam are not deflected or absorbed by the tissue until the beam reaches the end of its path and the amount of ionization caused by each particles increases
as it slows down (linear energy transfer is inversely proportional to the particle velocity squared).

1.3.2.2 Primary chemical events

The absorbed energy from the radiation is initially distributed among the tissue molecules approximately in proportion to the electron density of its constituents or with heavier atoms present, on the photoelectric absorption coefficient. The mammalian brain is composed of about 80% water and 20% organic molecules (Logan, 1961; Crowell, 1934). Therefore, most of the energy is deposited in the tissue water and the reactive chemical species from the radiolysis of water would be the most important. These species include ions, ion radicals, and free radicals. The most important reactive species are the hydrated electron, the hydroxyl radical, the hydrogen atom, and hydrogen peroxide. These species are very short lived (10E-3 seconds) and are either deactivated or react with other water products or macromolecules depending on proximity and oxygen content (Singh and Singh, 1982). The direct interaction of the radiation with the organic molecule results in organic free radicals, organic molecules in an exited state, free electrons, hydrogen atoms and organic ions (Singh and Singh, 1982).

1.3.2.3 Secondary chemical events

The reactive species mentioned in the previous section can react with oxygen, water, radicals, or macromolecules to form longer lived damaged molecules. Since most of the tissue is comprised of water, most of the damage is caused by the water derived reactive species which
diffuse through the tissue and react with the biologically important macromolecules. This secondary phenomenon is known as the indirect effect of radiation and occurs between $10 \mathrm{E}-10$ and $10 \mathrm{E}-3$ seconds. The products formed from these interactions would be organic peroxides, organic free radicals, organic hydroperoxides, and hydrogen peroxide (Singh and Singh 1982). The consequences of interaction with these products include: 1) DNA and RNA damage (Okada, 1979); 2) enzyme inactivation and activation (Altman, 1970), 3) oxidation of sulfides; 4) lipid peroxidation (Pritchard and Singh, 1968); and conformational changes in protein structure (Todo, 1982).

1.3.2.4 Early biological damage

The immediate biological effect of radiation at the cellular level is an alteration in the biochemical processes directing and controlling RNA synthesis, and the synthesis of proteins and lipids necessary for structure and metabolism of the cell. These effects occur between 10 seconds and 10 hours (Singh and Singh 1982). Damage done to DNA is particularly important because the same base-pair coded section is used many times in directing the cell's metabolism. For example, if damage was done to the section of DNA required to encode succinate dehydrogenase, then every time this enzyme is made from this section, it would be misfabricated and the effect would be amplified. The maintenance of DNA is so important that the cell responds to damage by 1nducing DNA repair mechanisms (Elkind,1971; Roberts,1975). Other early biological effects would be caused by membrane disruption (Singh and Singh, 1982).
1.3.2.5 Radiation brain injury - techniques and results

Techniques used for the study of radiation injury to the central nervous system can be divided into three categories: 1) histological chemical (invasive); 2) non-invasive; and 3) clinical methods.

Invasive methods include histochemistry (Haymaker, 1969), electron microscopy (Maxwell and Kruger, 1964), injection of radioactive tracers (Zeman and Samorarjski, 1971) and florescent dies (Van Dyke et al., 1962), and chemical isolation analysis (Egana, 1971). These techniques can only be used once per animal and cannot give dynamic information about the biological processes involved. However, experiments by invasive means have provided a wealth of information concerning the morphological and biochemical nature of the damage in the static condition.

Non-invasive techniques (in this case, non-invasive is defined as a method that does not require animal sacrifice) of measuring radiation damage include: 1) the penicillin-EEG method (Remler and Marcussen, 1981), 2) electroshock seizure induction (Rosenthal and Timiras, 1961), 3) positron emission tomography (Saunders and Budinger, 1984), 4) X-ray CT (Fike et al., 1984), and 5) nuclear magnetic resonance (Richards et al., 1983).

In addition to the invasive and non-invasive methods, observational procedures of clinical signs and symptoms have been used to divide radiations effects into three categories: l)acute reactions which occur during the course of irradiation treatment; 2)early delayed reactions which occur from a few weeks to a few months after irradiation; and
3)late delayed reactions which occur several months to years after Irradiation (Sheline, 1982). Edema is believed to be the major mechanism for the early acute reaction; demyelination is associated with transient and nonlethal neurological symptoms in the early delayed reaction; and radionecrosis and vascular abnormalities have been associated with the late delayed reaction (Sheline, 1982).

The effects of radiation on the CNS vary greatly from one animal species to the next and also are sensitive to irradiation parameters such as dose, dose rate, volume of tissue irradiated, time after irradiation, and the part of the brain irradiated. In the dose range from 1000 to 6000 rads, there are several histological changes that have been observed: edema (M1quel and Haymaker, 1967; Caveness, 1980), endothelial cell reactions (Lierse and Frank, 1967), altered blood brain barrier (Van Dyke et al, 1962; Remler and Marcussen, 1981), decreased regional blood flow (Tanaka et al., 1979), and glycogen accumulation (Miquel et al., 1966). Ordy and associates have recorded a reduction in alkaline phosphatase of endothelial cells of the mouse brain irradiated at 5000 rads. Functional effects of radiation include an increase in brain exitability (measured by the electroconvulsive threshold) after 500 rads and a decrease after 5000 or 10,000 rads proton radiation (Sherwood, Welch, and Timiras, 1967). Metabolic effects of radiation have been reported by Timiras et al., (1964) as measured by an increase in oxygen uptake and a decrease in carbon dioxide of the cortex after early postnatal whole-body x-radiation. Other biochemical effects
include changes in protein composition, a decrease in oxidative phosphorylation, and a decrease in glucose oxidation (Gerber and Altman, 1970)

The delayed reactions of the brain to radiation have puzzled scientists and clinicians for at least 30 years. Delayed radionecrosis is characterized by 1), an initial development of partial tissue necrosis; 2) a preceeding pathological silent interval ranging from months to years; 3) selective damage to certain central nervous system structures; and 4) a lesion that grows in volume as initially scattered foci enlarge and coalesce (Zeman and Samorajski, 1971). There are many reports of delayed radionecrosis in man as well as in experimental animals. The reaction is accompanied by: demyelination (Lampert et al., 1959, Caveness, 1980), degenerative changes in blood vessels (Zeman and Samorajski, 1971), functional changes in the vasculature (Moustafa and Hopewell, 1980), and complete cavitation and necrosis (Caveness, 1980). There are two theories that attempt to explain the phenomenon. Zeman and associates believe that the radiation directly effects the glial cells which then cause the progressive necrosis of the rest of the tissue (Zeman and Samorajski, 1971). These changes may come about by alteration in the proliferation of lysosomes and the release of proteolytic enzymes. On the other hand, Haymaker and his associates (1969) believe that the damage is caused indirectly by the effects on the CNS vasculature, which is important in providing vital nutrients to the cells and in inhibiting toxic chemicals from reaching the sensitive neurons. Other mechanisms proposed for the delayed manifestation of radiation damage are: 1) long lived peroxides; and 2) slow virus
induction; and 3) immune response to altered macromolecular structure (proteins and membranes).
1.3.2 Relationship between NMR relaxation parameters and CNS pathology

NMR relaxation parameters are sensitive to tissue pathology which result in a change in the structural state of tissue water. In this section, the molecular mechanisms and CNS pathology related to NMR relaxation times will be discussed.

The state of water in biological tissue is very different from the state of the molecules in pure water (Hazlewood, 1979; Mather-De Vre, 1979). Spin-lattice relaxation time (TI) is related to the structural state of the water in the tissue and it is characterized by the, rate at which energy is exchanged between the magnetic nuclei (hydrogen) and the lattice. NMR relaxation is not spontaneous, but is induced by interactions of protons with the time-varying magnetic fields of neighboring nuclei. The correlation time is related to the frequency of these local fields, and is defined as the time between molecular collisions. The collection of protons is exposed to a spectrum of changing (vibrating) magnetic fields (Fullerton et al., 1982). In order for effective energy exchange to take place, the frequency of the vibrations must be near the Larmor frequency. In this condition, the relaxation process occurs and the magnetic moment of the spin can align in the main magnetic field. As magnetic equilibrium is reached, the net magnetic vector grows along the main magnetic field, and the rate at which it grows is characterized by TI. In order to determine $T 1$, the sample is placed in a magnetic field, a radio-frequency pulse is applied
to tip the net magnetization vector away from alignment of the field, and then the amount of sample magnetization that has re-aligned in the main field is measured at several different delay times. Tl is calculated by fitting the data points to an exponential equation.

Spin-spin relaxation time (T2) is influenced by the rate at which spins exchange energy with each other and is characterized by the rate at which the nuclei dephase after an rf pulse is applied. In order to determine $T 2$, a radio-frequency pulse is applied to tip the net magnetization vector 90 degrees away from alignment of the field (called a 90 degree pulse), and then a 180 degree pulse is applied after a variable delay time. This 180 degree pulse causes the dephasing spins to refocus and form an echo (spin-echo) with an amplitude dependent on the inherent T 2 relaxation time. T 2 is calculated by fitting the echo amplitudes from several different delay times to a decaying exponential equation.

Molecular Environment

The relaxation times, $T 1$ and $T 2$, are sensitive to dynamic processes occurring at different frequencies (Ferrar and Becker, 1971). Tl is sensitive to motions which occur near the Larmor frequency (the characteristic NMR frequency of the main magnetic field) and T2 is sensitive to those frequencies which affect $T 1$ and also the local magnetic fluctuations at the lower frequencies (Ferrar and Becker, 1971). In pure liquid samples, the relaxation times are very long because the water molecules tumble around fast enough to average out the magnetic interactions. However, water in macromolecular solutions
divides into two compartments; free water and hydration (bound) water (Berendsen, 1975). The free water has the same characteristics of water In pure solutions (i.e., mobile and unrestricted). However, the water in the hydration layer of the macromolecules is more restricted, and in this state the magnetic interactions are not averaged out and energy exchange processes can occur more readily (Mathur-De Vre, 1979). Therefore, the TI relaxation rate is faster in the hydration layer than it is in the free water. Energy is readily exchanged between spins of the two compartments (bound and free) and this is described as rapid exchange. This condition has been shown to exist in protein solutions (Berendsen, 1975). The equation used to describe the relaxation time under conditions of rapid exchange is

$$
1 / T 1=f(1 / T l f)+h(1 / T / h)
$$

where $T 1$ observed T1 relaxation time
$f=$ fraction of free water
Tlf $=$ Tl relaxation time of free water
$h=$ fraction of hydrated water
Tlh $=$ Tl relaxation time of hydrated water
(Fullerton et al., 1982)

This equation describes a two component system; one component in which the water is freely rotating and one component in which the water is rigidly bound in the hydration layer. The fraction of water in the hydration layer affects the relaxation rates and is dependent on: 1) total water concentration, 2) type of protein in solution and its concentration (Kuntz, 1974), 3) the conformation of the protein (Dodson, 1984), and 4) the concentration of lipids (Gaggelli, 1982). The
presence of paramagnetic substances also affects relaxation parameters. Paramagnetic substances include iron complexes (Ashley et al., 1980), oxygen, and free radicals (Brasch, 1983).

At the cellular level, $T 1$ and $T 2$ are affected by malignant transformation, movement through the cell cycle, growth, differentiation, and exposure to chemicals which damage DNA (Kennedy, 1984; Beall, 1979).

CNS Pathology

NMR imaging is proving to be very valuable in studying diseases of the CNS (Bydder et al., 1982). However, little is known about the effects of ionizing radiation on the NMR relaxation parameters in the CNS. Several of the CNS reactions described in section 1.3 .1 have been observed on NMR images although the reactions were not induced by radiation. Edema causes an increased Tl relaxation time because the percentage of free water is increased (Asato et al., 1983; Go and Edzes, 1975, Naruse et al., 1982; Bakay et al., 1975; Bartkowski, 1983; Bradley, 1983). Demyelination, which results in a decrease of lipids and an increase in water content, causes $T l$ to increase (Bydder, 1982; Mills, 1982). The relationship between lipid content and Tl relaxation is not clear because the proton lipid resonance is very small in CNS tissue and does not contribute to the imaging signal. The origin of the normal low Tl in white matter relative to gray matter is probably due to the structural relation of water protons to membrane relaxation centers (lipids and membrane proteins). Hemorrhaging results in a greater amount of water exposed to paramagnetic iron (hemoglobin), and
the hemorrhagic lesion is usually characterized by a short $T l$ at the edge of the region and a long Tl in the center (Pennock et al., 1983; Sipponen, 1983). Infarction results in prolongation of T2 (Crooks, 1983; Bryan, 1983).

An experiment was performed in collaboration with Drs. Robert Willcott and Nick Bryan in order to measure radiation induced changes in spin echo intensity and $T 2$ relaxation time. The rats were irradiated in Berkeley and taken to the Baylor College of Medicine in Houston for the NMR imaging experiment.

2.1 Methods

The right hemisphere of the brain of 6 Sprague-Dawley rats (age 40 days) was irradiated using the helium beam at the 184 inch cyclotron (See Figure 2.1). The rats received 3000 rads in the plateau region of the beam with a dose rate of approximately 500 rads/min. The beam passed through the head in the posterior-anterior (PA) direction and a D-shaped collimator ($11.5 \times 16 \mathrm{~mm}$) was used to limit the radiation to one side of the brain. A diagnostic X-ray (AP) was taken of rat's head with a beam spot in order to accurately position the beam (See Figure 2.2). The beam range was 14.7 cm and therefore, the beam passed completely through the rat's head, depositing energy fairly uniformly along its path.

Two of the irradiated rats were imaged one week post-irradiation on a 4.7 Tesla Bruker spectrometer modified for imaging. One of the rats was anesthetized with nembutal and the brain was fixed in situ by perfusing 10% formalin into the left ventricle of the heart. After the

XBB 849-6803

Figure 2.2 - X-ray of rat head with beam spot. The beam was positioned to pass through the right side cerebrum with sparing of the cerebellum.
brain was thoroughly fixed, it was excised and kept in formalin solution until the imaging was performed. The other rat was anesthetized and the brain was excised without formalin fixation. The brain was then imaged within one hour after excision. Imaging was done using the projection reconstruction method with a modified Carr-Purcell-Meiboom-Gill pulse sequence which produced 16 echos (Schneiders et al, 1983). Slice selection was done with a carefully shaped rf pulse and selective saturation. The slice thickness was 1.5 mm (Schneiders et alo, 1983). Groups of four echos were averaged before back projection in order to improve signal to noise, and thus four images were produced for each experiment (Figure 2.3). The four spin-echo images were used to calculate T 2 images according to the following equation:

$$
\begin{equation*}
I(t)=A * \exp (-t / T 2) \tag{2.1}
\end{equation*}
$$

where $I=N M R$ intensity of spin echo
$t=t i m e$ of spin echo after 90 degree pulse
T2 $=$ spin-spin relaxation time
A is proportional to spin density and is influenced by rf strength and short T 2 components.

2.2 Results - Non-fixed brain

The four spin-echo intensity images from the non-fixed irradiated brain are shown at the top of Figure 2.4. From the intensity values of these images, $T 2$ and A images were calculated (bottom of Figure 2.4). The first spin-echo image shows a decrease in intensity on the irradiated side (Figure 2.5). However, this contrast between right and

IMAGE RECONSTRUCTION FROM A GROUP OF ECHOES

(CARR-PURCELL-SEQUENCE, MEIBOOM-GILL-MODIFICATION)

Figure 2.3 - NMR signal during the Carr-Purcell-Meiboom-Gill spin-echo train. The echos from group A are averaged to give an image strongly influenced by proton density and the echos from group D are averaged to give an image strongly influenced by long $T 2$ relaxation times. (Courtesy of Dr. B. Knuttel, Bruker Instruments) XBL 8210-3118

INTENSITY 1

INTENSITY 2

INTENSITY 3

A IMAGE

INTENSITY 4

T2 IMAGE

XBB 849-6804

I = A•EXP(-t/T2)

Figure 2.4 - Intensity and parametric images from non-fixed irradiated rat brain (3000 rads). [rradiated side is on viewer's right.

Spin Echo Image One Week Post-Irradiation

(A)

Coronal Section
(B)

XBB 820-9786
left sides of the brain is not seen in the other spin-echo images in Figure 2.4. In order to understand the spin-echo intensity contrast in these images, the average intensity from two regions of interests which represented the right and left cortex were defined and this average signal intensity was plotted as a function of spin-echo delay time (Figure 2.6). The calculated T2 and A values are shown below.

	A	T2 (msec)
left side (control) cortex	437.	59.0
right side (irrad.) cortex	276.	69.7

The irradiated side region had a longer $T 2$ than the control side; however, the control side had a larger computed A value. This explains why the radiation induced contrast was seen on the first spin-echo image and not on the others. The larger A value (related to spin density) on the control side of the brain is possibly due to an increase in total free water. From these data, there are three main facts:

1) The A value was greater on the control side than on the irradiated side cortex.
2) T2 relaxation time was greater on the irradiated side cortex (more mobile protons).
3) The decrease in intensity on the irradiated side image is due to lower spin density.

XBL 849-3687
Figure 2.6 - Plot of echo intensity vs. echo delay time from regions of interest of the control (boxes) and irradiated side (pluses) cortex. The solid line shows the computer fit through the data points using equation 2.1.
2.3 Results - Fixed brain

Two coronal sections from the formalin fixed brain were imaged. The top of Figure 2.7 shows coronal spin-echo, $T 2$, and A images at the level of the reticular formation, and the images show an increase in gray level intensity on the irradiated side. Although formalin fixation causes a reduction in both T 1 and T 2 relaxation time (Richards et al., 1982), the images still show contrast between irradiated and control sides of the brain. The sub-cortical structures are very low in intensity because the fixation process reduces the proton mobility. The calculated T2 values for the irradiated and control cortex are 49.2 and 40.1 msec, respectively. The bottom of Figure 2.7 shows the spin-echo, T2, and A images of the brain at the level of the anterior commissure, which was a region near the edge of the beam path. The intensity and the A image show a decrease on the irradiated side; however, the T2 image shows very little contrast between the two sides. The two main results from these data are:

1) Image contrast between irradiated and control side was still seen on the images of formalin-fixed brain.
2) T2 relaxation time was greater on the irradiated side (more mobile protons).

INTENSITY IMAGE

A IMAGE

T2 IMAGE

INTENSITY IMAGE

A IMAGE

T2 IMAGE

Figure 2.7 - Images of formalin-fixed irradiated brain (3000 rads) at two different levels of the brain. Irradiated side is on viewer's left.

CHAPTER 3. 2D FOURIER TRANSFORM SPIN-ECHO IMAGING

In collaboration with Drs. George Wesbey and Barry Englestad, an experiment was done to measure in vivo $T 1$ and $T 2$ proton NMR relaxation times of helium beam irradiated rat brains as a function of dose and time after irradiation.
3.1 Methods

The left hemisphere of the brain of 16 Sprague-Dawley rats (age 60 days) was irradiated according to the procedure described in section 2.1. Groups of rats received 1000,2000 , and 3000 rads, and a D-shaped collimator ($10 \times 13 \mathrm{~mm}$) was used to restrict the radiation to one side of the brain. Four rats served as controls.

Two or three rats from each radiation group were imaged 14 and 52 days at the small animal imager designed by Larry Crooks (Kaufman et al., 1982). The imager operated at 15 Mhz proton frequency and produced four spin-echo images for 5 different anatomical sections (total of 20 images per experiment). The images were produced using the 2 D -Fourier transform method with phase-encoding and selective excitation (Kaufman et al., 1982). Figure 3.1 shows an example of 5 sequential coronal images which included the eyes, brain, and spinal cord. Spin-echos were taken at 28 and 56 msec for both the .5 and 2 . second repetition rates (Figure 3.2). Figure 3.3 shows the four spin-echo intensity images for one coronal section which included the brain.

XBB 845-3978

Figure 3.1 - Five sequential spin-echo images using a 2 second repetition rate and 28 msec echo time.

Figure 3.2 - Spin-echo pulse sequence used for imaging. (Equation taken from Kaufman et al., 1982).

Figure 3.3 - Four intensity images (left) used to calculate the Tl image (upper right) and the T2 image (lower right).

Tl images were calculated by using the intensity values from the 28 msec echo from both the .5 second and 2 second repetition rate and then fitting the intensity values to the following equation:

$$
\begin{equation*}
I(t r)=A 1 *(1-\exp (-t r / T 1) \tag{3.1}
\end{equation*}
$$

```
where I = intensity
    tr = repetition time
    T1 = spin-lattice relaxation time
    Al = amplitude factor related to spin-density and flow.
```

The T2 images were calculated by using the intensity values from the 28 and 56 msec echo from the 2 second repetition rate and the intensity values were fit to equation 2.1.

Regions of interests which represented right and left sides of the cerebral cortex were chosen by l)automatically contouring the brain with a threshold detection routine (courtesy of Dr. Sam Pitluck) and 2) extracting pixels which lie immediately inside the contour on both sides of the brain. Figure 3.4 shows an image with the brain contour and regions of interests. The intensity values from the regions of interests were averaged and fit to the equation 2.1 and 3.1 to calculate T1 and T2.

Figure 3.4 - Spin-echo image of irradiated brain with brain contour and cortical regions of interest (boxes) chosen by automatic contouring (See text).

3.2 Results

Imaging-

As shown in Figure 3.5, an increase in $T 1$ of the control side of the 3000 rad rats can be seen in the Tl image; however, this effect was not seen on the Tl images of control rats. This increase was also seen using the projection imaging technique of chapter 4. Little contrast between the two sides was seen on the T2 images of irradiated and control rats. However, the $T 2$ values calculated from this technique were probably not accurate because of spin diffusion (Wesbey, 1984). The Al and spin-echo images of 3000 rad irradiated rats displayed a similar pattern: there was a decrease in intensity on the irradiated side with respect to the control side. This effect was also seen using the projection imaging technique (see section 4.3.3). In order to understand the contrast seen in the spin-echo images, a plot was made of repetition time versus intensity for regions of interest from both the irradiated side and the control side of the brain. The bottom of Figure 3.6 shows an example of the relaxation curve for one of the 3000 rad brains at 14 days after irradiation. The decrease in intensity on the irradiated side is not due to a difference in Tl, but rather a decrease in the Al value as shown in the relaxation curve. The relaxation curves are similar for the left and right sides of the control spin-echo image (top of Figure 3.6).

XBL 849-3686

Figure 3.6 - Plots of spin-echo intensity vs. repetition time for control brain (top) and irradiated brain (bottom). The solid line shows the calculated fit through the two data points using equation 3.1 .

Regions of interest-

Using the regions of interest shown in Figure 3.4, T1 and T2 values were calculated as a function of dose. At 14 days, $T 1$ increased with dose on the control side and decreased slightly with dose on the irradiated side (Figure 3.7). At 52 days, an increase in Tl on the control side was seen in 3 (T l value greater than 1200 msec) of the irradiated brain images. A decrease in Tl was seen on the irradiated side in 7 of the irradiated animals (Tl value less than 700 msec , as shown in Table 3.1). However, the spread of the Tl values was very large compared with the data at 14 days.

Table 3.1-Tl values at 52 days post irradiation. IRRADIATED SIDE

CONTROL SIDE

RAT NO.	DOSE	Tl (MSEC)	DOSE	Tl (MSEC)
1	3000.	584.	3000.	1035.
2	3000.	577.	3000.	1034.
3	3000.	691.	3000.	1054.
4	3000.	928.	3000 .	834.
5	2000.	972.	2000 .	742.
6	2000.	679.	2000 。	876.
7	2000.	622.	2000 。	1153.
8	1000.	630.	1000.	928.
9	1000.	705.	1000.	1453.
10	1000.	680.	1000 .	1260.
11	0.	817.	0 .	1044.
12	0.	930.	0 .	1145.
13	0.	796.	0 .	733.

NOTE: The control side region of interest possibly included CSF fluid which would explain why the Tl values of the left and right sides of control animal brains are not the same.

Figure 3.8 shows the dose-response curve for the Tl right/left ratio for both 14 and 52 days. The data at 14 days have much smaller error bars than the data at 52 days. The ratio of right cortex T 2 to left cortex

T2 was slightly shorter for the irradiated brains than for the controls (Figure 3.9).

In summary, the main results from these experiments are: 1) Tl and Al values decreased on the irradiated side; and 2) Tl and Al values increased on the control side of irradiated animals relative to control animals early after irradiation (14 days).

Figure 3.7 - Plot of helium beam radiatinn dose vs. T1 and T2 of both right (control side) and left (irradiated side) cerebral cortex 14 days post- irradiation. Insert: spin-echo image 14 days post-irradiation of a rat that received 3000 rads to the left side of the brain (see arrow). Contrast between cortical and sub-cortical areas is greater on the control side of the brain.

XBL838-3904
Figure 3.8 - Plot of dose vs. Tl right/Tl left ratio for both 14 days (dashed line) and 52 days (solid line) post-irradiation.

Figure 3.9 - Plot of dose vs. T2 right/T2 left ratio for both 14 days xBL838-3905
(solid line) and 52 days (dashed line) post-irradiation.

CHAPTER 4. SATURATION RECOVERY WITH PROJECTION RECONSTRUCTION
4.1 Modifications of the UCB-180 spectrometer for imaging.

The 180 MHz FT NMR spectrometer built by the UCB chemistry department (Bruker 4.3 Tesla wide bore magnet and Nicolet 1180 data system) was modified to perform projection-reconstruction imaging. The goal of this conversion was to obtain accurate Tl relaxation time measurements of selected regions of the rat brain in a non-invasive manner. In order to convert the spectrometer to perform the imaging experiment, modifications were made in three aspects of the spectrometer: 1) gradient power supply; 2) probe body and electronics; and 3) computer software.
4.1.1 Gradient power supply.

The spectrometer shim coils were used for the X, Y, and Z magnetic field gradients required for imaging, but the spectrometer shim coil power supply did not supply sufficient bipolar current. A new power supply was built by Frank Upham et al. with the following characteristics: 1) current output of $+/-3$ amps (used to achieve a magnetic field gradient strength of $3000 \mathrm{~Hz} / \mathrm{cm}$, see appendix for gradient calculation); 2) bipolar current source; and 3) current output controllable by computer DAC (digital to analog converter). During the imaging experiment, the power supply receives an analog signal from the computer and then supplies current to the gradient coils. The current magnitude is controlled by input analog signal level (see Figure 4.1).

XBL 849-3685
Figure 4.1 - Hardware for 2D-projection reconstruction.
4.1.2 Rat body holder and manual adjustments

A cylindrical lucite holder was fabricated to house the rat while inside the magnet (Figure 4.2). The lucite holder sits on top of 3 aluminum poles which are free to slide along the base aluminum plate (which is attached to the bottom of the magnet). One of the poles had alignment marks (spaced at 1 mm intervals) engraved on it to allow reproducible and flexible positioning of the rat brain in the Z direction of the magnet. With these adjustments, the section of brain of interest can be positioned in the most homogeneous part of the main magnetic field. A rotational adjustment is also possible by releasing the three screws on the bottom of the base plate. This makes it possible to position the sagittal axis of the rat brain along the X or Y magnetic field gradient. The entire assembly down to the base aluminum plate fits inside a cylindrical aluminum shell in order to shield from outside rf leakage.

4.1.3 Head Holder

A small lucite holder was designed for the rat head in order to immobilize the rat and reproducibly position the left and right hemispheres of the rat brain in the center of the magnetic field. The inside of the holder was cone shaped so that the head fits tightly against the holder. Figure 4.3 is an X-ray picture of the rat in the holder. A wire was placed around the front two incisors of the rat and attached to screws on the top of the holder which held the head firmly against the cone. The head holder was attached to the top plate by two adustable screws.

Figure 4.2 - NMR probe used for imaging and spectroscopy of the rat head in vivo.

Figure 4.3 - X-ray of rat in NMR probe.

4.1.4 RF electronic circuitry

Abstract

The electronic circuitry consists of 1) the RF coil, 2) the tuning and matching capacitors, and 3) high frequency SMA connector for rigid coax cable (Figure 4.4). The surface coil (Ackerman et al., 1980) was chosen because of its high sensitivity and ease of implementation. A two-turn elliptical shaped surface coil ($2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$) was tuned to the proton frequency (180 MHz) using a sweep wave generator, oscilloscope, and RF detector connected to the probe. The tuning and matching capacitors (Johansen variable capacitors) were adjusted while observing the resonant frequency on the oscilloscope. The SMA connection made it possible to easily change from the measurement of one nucleus to another by simply replacing the tuned coil.

4.1.5 Computer software

4.1.5.1 Data acquisition

In order to perform imaging by the projection reconstruction technique, the magnetic field gradients were controlled outside of the pulse programmer (Figure 4.1). The value of the X and Y DACs were controlled by software which changed the values after each projection. Subroutines written by Jean Delayre for the Nicolet 1280 computer were adapted for the 1180 computer. The subroutine basically sweeps the gradient angle through 180 degrees by incrementing the angle in the

Figure 4.4 - Radio-frequency electronics of the surface coil.
following equations:

```
XDAC = Cosine(angle)
YDAC = Sine(angle)
```

The Nicolet program NTCFTB. 180 was used to do the saturation recovery experiment. In this pulse sequence, the spins are saturated (i.e., no net magnetization left along the Z axis) first by giving several closely spaced " 180 " degree pulses at different phases and then a " 90 " degree rf pulse is applied after a variable delay time. The FID is acquired immediately after the 90 degree pulse and the amplitude of the signal is a measure of the magnetization that has re-aligned along the Z direction. The imaging gradient is left on during the pulse sequence. The steps in the computer program to perform the imaging experiment are 1 isted below:

1. The magnetic field gradient is reset and the angle increment is chosen (the number of projections is calculated from the angle increment).
2. The magnetic field gradient is turned on and incremented by an amount chosen in step 1.
3. The saturation recovery experiment is performed while the gradient is left on.
4. The free induction decay is digitized and stored in memory.
5. Steps 2 through 4 are re-executed until the gradient angle has swept through 180 degrees.

No Z gradient was used in these experiments. Slice selection and thickness were defined by the surface coil sensitive region as described in the phantom studies of section 4.2 .

4.1.5.2 Data transmission and image reconstruction.

The raw image data was transmitted over a phone line to the VAX computer where the image reconstruction was performed and displayed. New software was written on the VAX (program READNTC listed in the appendix) to interact with program IOTRAN (already existing) on the Nicolet computer. The data transfer occurs like this: program IOTRAN sends an $S O S$ character to the $V A X$ and then program READNTC returns an acknowledgement character. IOTRAN, then, proceeds to transmit the data, block by block, to the VAX. Software was also written to convert Nicolet 20-bit words to VAX words and put the data in the correct format for the reconstruction program (routine READ, see appendix). Image reconstruction was done by Fourier transforming the FIDs to get the gradient projections and then by performing the standard filtered back projection algorithm. The flow of NMR information from the rat brain to the image display hardware is shown in Figure 4.5.

4.2 Phantom studies

Two different phantoms were imaged to test the imaging process for accuracy in gradient projections, image reconstruction, and Tl relaxation time measurement. The phantom shown at the top of Figure 4.6 consisted of three 5 mm NMR tubes filled with water. The phantom was placed next to the elliptical-shaped surface coil and imaging was done

5 MM TEST-TUBES
 SURFACE COIL FILLED WITH WATER

SURFACE COIL IMAGE

XBB 849-6806

Figure 4.6 - Three test-tube phantom (top) and corresponding image (bottom).
at three different delay times (section 4.2.2). The bottom of Figure 4.6 shows the 3 second image of the phantom. There were some distortions in the image due to rf and main magnetic field inhomogeneities; however, the image still showed the three test-tubes very distinctly.

Another cylindrical water phantom was used to measure the image intensity uniformity and also the "slice thickness" defined by the two-turn elliptical shaped surface coil. Imaging was done in three orthogonal planes using projection gradients in the $X-Y$ plane, $Z-X$ plane, and the $Z-Y$ plane. The approximate slice thickness in the most sensitive region of the coil was calculated from the ZX image and was found to be $1.0+/-.2 \mathrm{~cm}$.

4.3 Methods

4.3.1 Helium beam irradiation of the CNS

The right hemisphere of the brain of 10 Sprague-Dawley rats (age71 days, weight- 200 grams) was irradiated using the helium beam produced at the 184 inch cyclotron (see section 2.1). Groups of rats received 3000 and 5000 rads in the plateau region of the beam. Five rats served as controls. A second group of 5 rats (age -84 days) was irradiated with 5000 rads so that imaging, histology, and brain extracts could be done at 4 days post-irradiation (time period of greatest decrease in Tl relaxation time of the irradiated side cortex.)

4.3.2 The NMR experiment.

The rats were imaged $4.5,11,25$ and 81 days after irradiation. The rats were anesthetized with 5 mg of pentobarbital and the elliptical shaped surface coil (section 4.1 .4) was placed on the rat's head over the brain. The rats were placed in the probe and the magnetic field was shimmed to give a proton water line-width of $40-60 \mathrm{~Hz}$. Imaging was then performed using the projection-reconstruction method with the saturation recovery procedure (see previous section for details). Saturation of the spins was achieved by giving several closely spaced " 180 " degree pulses at different phases. An image was produced at three different delay times; 1, 2, and 3 seconds (time between the saturation pulses and the " 90 " pulse). Figure 4.10 shows an example of the three different delay time images from one of the control rats.

4.3.3 TI relaxation time calculation.

Four regions of the brain were contoured using computer software (program RAM, Sam Pitluck). First, the image was displayed on the Ramtek and the brain was identified by the dark band of surrounding skull (See figure 4.7). Then, regions of cortex and subcortical structures were contoured as shown in figure 4.8. The intensity values inside the regions were averaged and fit to the equation:

$$
\begin{equation*}
I(t)=A(1-\exp (-t / T 1) \tag{4.1}
\end{equation*}
$$

where $I(t)$ - image intensity A - amplitude at infinite delay time t - delay time between the saturation pulse and the "90' T1 - Tl relaxation time.

Surface Coil Image

Figure 4.7 - Surface coil image and anatomical diagram with surface coil sensitive area boundary.

XBB 849-6807

Figure 4.8 - Surface coil image with regions of interest contours drawn on cortical and sub-cortical regions of the brain.

4.4 Results

At 4.5 days post-irradiation, 4 of the 5000 rad irradiated rats had a decreased Tl value on the irradiated side cortex and an elevated Tl on the control cortex relative to controls. The top of Figure 4.9 shows the three intensity images from an irradiated rat 4 days after irradiation. As seen in the relaxation curve from the bottom of Figure 4.9, the irradiated side cortex has a shorter $T 1$ and Al value than the opposite side of the brain. Figure 4.10 shows the result for one of the control animals where both sides of the brain had similar Tl and Al values. In Figure 4.11, the calculated Tl images for the irradiated and control animals are displayed side by side, and a bright T region can be seen on the control side of the irradiated animal. The bottom of Figure 4.12 shows the time progression results for the irradiated side cortex. Tl decreased with dose on the irradiated side at 4.5 days, and then as time progressed, the $T 1$ from the irradiated animals seemed to oscillate about the controls. At 81 days post-irradiation, the last time point measured, two of the rats had an increased $T l$ on the irradiated side cortex relative to controls. Each point on the plot is an average Tl value from 3 to 5 rats. The top of Figure 4.12 shows the results for the control side (left) cortex. The Tl values from the irradiated brains (bottom of Figure 4.12) were higher than controls at 4.5 days, dropped to the level of controls at 11 and 25 days post-irradiation, then climbed back up higher than controls at 81 days. For the irradiated side subcortex, there was a definite decrease in Tl as a function of dose at 81 days (Figure 4.13).

Control

Irradiated

Figure 4.11 - Intensity image (left) and Tl images (right) for control and irradiated side cortex.

XBL 849-3684

Figure 4.12 - Plots of time after irradiation vs. Tl for the control side cortex (top plot) and irradiated side cortex (bottom plot).

XBL 849-3683
Figure 4.13 - Plot of dose vs. Tl relaxation for the irradiated side subcortical region. Each point is the average of $3-5$ points +/-SEM.

The most important facts from these experiments are: 1) TI and Al
values decreased on the irradiated side cortex early after irradiation; 2) Tl increased on the control side; and 3) Tl values of irradiated animals changed with time after irradiation on both sides of the brain. These data are in conformity with the results of chapters 2 and 3 where different techniques were used to measure T , T 2 , and spin density.

CHAPTER 5. SPIN-ECHO SPECTROSCOPY WITH RF ENERGY OPTIMIZATION

High resolution NMR spectroscopy has been used by chemists for years to study chemical structure, bonding, and molecular interactions. The nuclei (protons) within a molecule resonate at different frequencies because the electron cloud shields them by different amounts from the main magnetic field depending on the chemical structure (James, 1977). Proton spectroscopy has recently been applied to study the biochemistry of intact tissues. For example, lactate metabolism has been studied in the brain (Behar et al., 1983; Behar et al. 1984) and muscle (Arus et al., 1984; Ugurbil et al., 1984). Histidine, lipids, phosphocreatine, and creatine have been studied in muscle (Yoshizaki, 1981, Arus et al., 1984) 。

This chapter discusses techniques and results from the in vivo spectroscopic measurement of the rat brain. Proton spectroscopy was done in order to observe changes in proton resonances which may be associated with the changes seen in proton $T 1$ relaxation time. Techniques were developed to make spectroscopic measurements of the rat brain in a non-invasive manner. Measurements were made on the same rats that were studied for proton relaxation by imaging methods.

5.1 Localization in surface coil spectroscopy

There are major problems in using the surface coil to measure NMR resonances of a structure that is a few layers deep within the sample. As shown in Figure 5.1, when the surface coil is placed next to the rat's head over the cerebrum, the brain lies $3-4 \mathrm{~mm}$ away from coil and the scalp and skull lie $1-3 \mathrm{~mm}$ away from the coil. Since the BI field drops off rapidly with distance away from the coil (Evelhock et al., 1984), the scalp tissue experiences a much greater radio-frequency field (B1) than does the brain. Therefore, in order to measure the spectrum of the brain with the surface coil non-invasively, a technique is needed which suppresses the strong signals from the scalp. Mapping the chemical shifts as a function of position can be achieved by performing the 2D- Fourier transform of the FIDs as a function of acquisition time and pulse duration (Garwood et al., 1984; Pekar et al., 1983; Hoult 1979; Cox and Styles, 1980; Haase et al., 1983). This would result in a set of spectra which represent chemicals from constant Bl field shells which surround the surface coil. In this chapter, we will show how it is possible to find the appropriate pulse duration for a given rf power and coil configuration to minimize the scalp tissue signal and augment the brain signal.

5.1.1 Computer simulation

The free induction decay signal from a pulsed Fourier transform spectrometer can be described by the following equation:

XBB 837-6633A

Figure 5.1 - X-ray of rat head in MNR probe (lateral view).

(Equation 5.1)

```
\(S 1(t, t p)=\sum B 1 * \sin (w 1 * t p) * \sin (w t+\phi) * \exp (-t / T 2 *-t p / T 2 p) * T l f * V\)
\(S 2(t, t p)=\sum B 1 * \sin (w 1 * t p) * \cos (w t+\phi) * \exp (-t / T 2 *-t p / T 2 p) * T 1 f * V\)
    Tlf \(=(1-\exp (-\tau / T 1) /(1-\cos (w l * t p) \exp (-\tau / T 1))\)
where:
    S1, S2 = signal of the quadrature phase components
    B1 = radio-frequency field component in the xy plane
    wl * tp = flip angle
    wl = Bl * factor
    \(t p=p u l s e\) duration
    \(\mathrm{w}=\) resonant offset from carrier frequency
    \(t=\) acquisition time
    \(\phi=\) phase
    T2* = dephasing time constant during FID
    \(T 2 p=\) dephasing time constant during the rf pulse
    Tl = spin-lattice time constant
        \(T=\) time between pulses
        \(V=\) volume element which has the same Bl
    (this equation was modified from Garwood et al., 1984)
```

The Fourier transform of the FIDs gives a set of frequency spectra with spectral intensity described by the following equation:
$S(t p)=B l i * \sin (w l * t p) * T l f$
(Chaillot et al, 1983)

Given a theoretical phantom of three different chemically shifted solutions placed at varying distances away from the surface coil, a pulse duration can be found which minimizes the signal from the first solution closest to the coil and maximizes the signal from the second solution. A computer simulation was done using equation 5.1 in order to see the relationship between the signal strength of the three different solutions and pulse duration. The NMR experiment was simulated in which
the FIDs were collected for several different pulse durations. The program (2DFT, see appendix) was written on the VAX (fortran) to perform the following: 1)calculate an FID matrix (64 X 64) for a phantom of three solutions described above where each solution has its own Bl field and frequency offset (w); 2)Fourier transform the matrix along the acquisition time axis; 3)transpose the matrix; 4)Fourier transform the matrix along the pulse duration axis; and 5)output all three matrices for $3 D$-display. Another program was written (ACMBI, see appendix) to display the matrices in $3 D$ on the Versatek plotter which used a $3 D$ plot package (Watkins, 1974). Figure 5.2 shows the FID matrix, the first FT matrix, and the second FT matrix. In the first FT matrix, it can been seen that the chemical shifted peaks from the different solutions oscillate at different rates as a function of pulse duration because they do not experience the same Bl field. A pulse duration can be found where the ratio of second solution signal to first solution signal is maximized.

An experiment was done with a real phantom (Figure 5.3) in order to verify the computer simulation. The phantom consisted of three capillary tubes filled with water, acetic acid, and tetramethylsilane (TMS) placed at 2,4 , and 6 mm away from the surface coil. The surface coil had two turns of copper wire with a diameter of 8 mm . Each of the chemicals resonates at different frequencies ($4.8,2.2,0$. ppm) so that the peak heights could be plotted separately as a function of pulse duration. The experiment was performed using 32 different pulse durations between 5 and 200 usec. Figure 5.4 shows the result after the FIDs are Fourier transformed. Notice that the water peak intensity

XBL 849-3682

Figure 5.2 - Computer simulation of pulse duration vs. acquisition time using the Bl field of a surface coil.

DEPTH PENETRATION WITH SURFACE COIL

Figure 5.3 - Three test-tube phantom used to test depth penetration with the surface coil.

CHEMICAL SHIFT FREQUENCY
XBL 838-11015

Figure 5.4 - Phantom proton spectrum as a function of pulse duration.
starts out with much higher peaks and goes through more cycles than the other peaks in the spectrum. As the water peak begins to go through a 180 degrees, the acetic acid peak approaches a maximum.

Another experiment was done with the help of Rudi Nunlist to determine the spatial selectivity of the surface coil using the following technique. A large homogeneous water phantom was placed in front of the surface coil and the static magnetic field gradient was positioned along the axis of the coil so that signal profile could be viewed as a function of distance away from the coil. The pulse duration was again varied 32 times and the FIDs were Fourier transformed to give the result shown in Figure 5.5. At very short pulse durations, the Fourier transform of the FID gives a profile close to the Bl field profile (as a function of distance away from the coil) because the flip angle is close to 0 degrees. However, as the pulse duration is increased, the water nearest the surface coil experiences a greater flip angle than the water further out and the maximum signal moves away from the coil. Along this same line of experiments, a 2 D image of the rat brain was measured using the same 8 mm coil. The result shown in Figure 5.6 shows a dark band at the surface of the head which represents the region of tissue that received a 180 degree pulse. This dark bank covers most of the scalp.

From the experiments described in section 5.1 , we see that the surface coil with the appropriate diameter and pulse duration can be used to minimize the NMR signal from the scalp.

Depth Sensitivity Measurement Using Static X-gradient (Rudi Nunlist)

Figure 5.5 - One dimensional spatial localization of NMR signal along xBL838-3937
the axis of the coil as a function of pulse duration.

SURFACE COIL IMAGE OF RAT BRAIN

REGION OF "180" DEGREE

 RF PULSEFigure 5.6 - Surface coil image of the rat brain with pulse duration adjusted to give a 180 degree at the scalp.

5.2 Proton spectroscopy of irradiated rat brain

5.2.1 The NMR experiment

Proton spectroscopy was measured in vivo on 9 rats (5-3000 rads, 4- controls, same group measured in chapter 3) at 7.3 months after irradiation using the 180 MHz spectrometer (described in section 4.1). The rats were anesthetized with nembutal and placed into the rat probe described in section 4.1. A two-turn surface coil (8 mm diameter) was placed on the head over the cerebrum. The field was shimmed using all off-axis and on-axis shims with the one-pulse sequence. The receiver gain was then reset for the spin-echo experiment to insure adequate $A D C$ dynamic range to detect brain chemicals other than water. A spin-echo pulse sequence was used with a delay time of 100 mseconds between the " 90 " and the " 180 " degree pulses with a 2.2 second repetition time. The spin-echo was used to suppress the water and remove the broad-line components of the tissue (Brown et al., 1977, Behar et al. 1984). Quadrature phase detection, phase cycling and 4 K data size collection were used while the signal was averaged 40-100 times. In a few instances, presaturation was used with the spin-echo experiment. The lipid and n-acetyl aspartate peaks were used to localize the signal to the brain because the proton spectrum of the brain has a small lipid peak (Pykett and Rosen, 1983) and a large n-acetyl aspartate peak (Behar et al., 1983). However, the opposite is true for the scalp and muscle proton spectrum. In fact, no n - acetyl aspartate peak is seen in muscle (Arus et al., 1984). The pulse duration was varied until the lipid peak

Abstract

was at a minimum, which indicated that the signal was primarily coming from the brain.

5.2.2 Computer software

Software was written on the VAX to quantitate the areas under the peaks. Program NTCFT2 (appendix) performed the following functions: 1) apodization of the FID ; 2) Fourier transformation of the FID; 3) zero and first order phase correction; 4) expansion of a selected region of the spectrum; 5) user-defined PPM offset using the bitpad; 6)peak area evaluation with automatic expansion of spectral regions near the peak of interest; and 7) integration over the curve defined in step 6 and disk output. The n-acetyl aspartate peak was set to 2.0 ppm and the following peak areas were analyzed: water (4.67 ppm); p-choline (3.2 ppm); total creatine (PCR+CR) (3.0 ppm) ; n-acetyl aspartate (2.0 ppm); and 1ipids (1.-1.7 ppm).

5.3 Results

5.3.1 Lipid and n-acetyl aspartate peak characteristics of the normal brain

The spin-echo spectrum from a short pulse duration has a large dominating lipid peak which originates from the scalp (bottom of Figure 5.7). As the pulse duration is increased, the lipid peak decreases while the n-acetyl aspartate peak increases. The top spectrum shows the result when a pulse duration is found which gives approximately a 180 degree pulse to the scalp and a 90 degree pulse to the brain. Figure

Figure 5.7 - Spin-echo proton spectrum of rat head as a function of pulse duration.
5.8 is the proton spectrum of the rat head when the pulse duration is optimized to give the smallest lipid peak with a relative peak height similar to the lipid peak in the excised brain spectrum.

5.3.2 Results with irradiated animals

Figure 5.9 shows an example of the in vivo proton spectra of control and irradiated animals. A decrease in p-choline (relative to $P C R+C R$) can be seen in the irradiated brain spectrum (middle spectrum) compared to the control (bottom spectrum). The spectrum was measured on one of the irradiated animals after the scalp was removed (top spectrum, Figure 5.9) to check the scalp signal-suppresion technique. The results of the computer analyzed peak areas are shown in Table 5.1.

Table 5.1 - PEAK AREA RATIOS RELATIVE TO WATER

CONTROL
$4.97+/-2.134 .48+/-1.14$ * 10E-3
$.808+/-.138$. 980 +/-. 186 * 10E-3
.868 +/-. 069 . 660 +/-. 076 * 10E-3

NOTE: All ratios were calculated by dividing the peak area of interest by the water peak area. The values shown are the average of 4 animals for the controls and 5 animals for the irradiated (7.3 months post-irr.) $+/-$ standard error of the mean.

For n-acetyl aspartate, quantitation of the area under the curve was difficult because the peak sat on top of the tail of the lipid and glutamate peaks. The standard error of the mean for the n-acetyl aspartate peak ratio and lipid peak ratio are very large. As seen in

Proton Spectrum of In-vivo Rat Brain (normal)

XBL839-4010

Figure 5.8 - Proton spectrum of rat head after rf pulse optimization to minimize the lipid peak from the scalp.

XBL 848-3316
Figure 5.9 - Proton spectra of irradiated rat brain (middle) compared to control (bottom) and to spectra of rat with scalp removed (top).
'Table 5.1, a decrease was observed in the p-choline peak area ratio in the irradiated animals compared to controls. Since a decrease in spin density was noted in chapters 2-4 on irradiated brain, normalization of the peak areas to water may give misleading results. Therefore, p-choline peak area ratios were also calculated relative to total creatine and a decrease in the p-choline was still seen in irradiated animals as shown below.

Control
P-choline peak area
ratio relative to
total creatine
cotal creatine

Irradiated
$.879+/-.14$

The main results of this chapter are: 1)the lipid peak and N-acetyl aspartate peak heights differ greatly between the brain and surrounding soft tissues of the head; 2)the surface coil with the appropriate diameter and pulse power and duration can be used to minimize the NMR signal arising from the scalp; and 3) a decrease in the p-choline resonance was found in 3000 rad animals 7.3 months post-irradiation relative to controls. In chapters 6 and 7, an increase was seen in the p-choline peak in 3000 and 5000 rad animals at earlier times after irradiation (4 days and 81 days). Therefore, the p-choline peak of the irradiated animals changed as a function of time after irradiation. A possible explanation of these results concerning brain lipids is given in chapter 9.

CHAPTER 6. 2D FOURIER TRANSFORM PROTON SPECTROSCOPY

6.1 Introduction

Chemical shift imaging is a new technique which allows the chemical shift information to be viewed as a function of position in the body (Brown et al, 1980; Maudsley et al., 1983; Pykett and Rosen, 1983). The 2 D Fourier transform (phase-encoded) chemical shift technique gives the highest resolution in chemical shift information. However, data acquisition takes many times longer than the non-chemical shift phase-encoding experiment where a read-out gradient is on during signal acquisition. A compromise was made in our experiments so that the data could be acquired in a reasonable amount of time (20 minutes): the chemical shift information was acquired as a function of one spatial dimension only and localization was done in the other dimensions using surface coil techniques described in chapter 5.

6.2 Instrumentation and computer software

The instrumentation for phase encoded proton spectroscopy used the same probe body and electronics described in section 4.1. However, additional modifications were made in the power supply and the computer software. The response times of the X, Y, and Z gradients were measured to access the practicality of implementing the phase encoding experiment. The details of the experiment are listed in the appendix (gradient field response time).

6.2.1 Power supply

Gates were added to the X and Y channels of the power supply (Figure 6.1) in order to do the phase encoding chemical shift experiment (Haselgrove et al., 1983) shown in Figure 6.2. The gates were required to pulse the gradient during the spin-echo experiment because the current level of the power supply is controlled outside of the pulse programmer. In other words, the computer controls the gradient strength through the DACs and the pulse programmer controls the time and duration of gradient pulse through the gates of the power supply. During the experiment, the spectrometer computer sends an analog signal to the power supply which is used to control the level of current that goes out to the gradient coils. However, the power supply only responds to the analog signal unless a second TTL gate signal is received.

6.2.2 Computer software

6.2.2.1 Data acquisition

The experiment shown in Figure 6.2 was implemented on the spectrometer by 1) writing a subroutine on the Nicolet computer which increments the X DAC value outside of the pulse programmer (See Figure 6.1); 2)connecting a TTL gate line from the computer to the power supply; and 3)writing a pulse sequence which turns the TTL gate on between the 90 degree and the 180 degree pulse of the spin echo.

Phase encoding method

Figure 6.1 - Hardware for the phase encoding experiment.

XBL 849-3674
Figure 6.2 - RF Pulse and gradient sequence for phase encoded spectroscopy. (From Haselgrove et al., 1983)

6.2.2.2 Data processing

The data are transmitted over the phone line to the VAX computer. The same software described in section 4.1 .3 .2 was used to convert the Nicolet words to VAX words and new software was written to perform the two-dimensional Fourier transformation (program NTCFTV). The program steps are: 1)apodization of the FID; 2)Fourier transformation of the FID; 3) phase correction of the spectra; 4)transposing of the matrix; 5)Fourier transformation in the second dimension; and 6)plotting of the spectra on the Versatek with the ppm scale.

6.3 Methods

6.3.1 Magnetic field gradient orientation

The direction of the X gradient was determined by placing two capillary tubes next the the surface coil. The probe was placed in the magnet and the field was shimmed. The X gradient was turned on and a one-pulse sequence was used to collect the FID. When the FID was Fourier transformed, two peaks were seen which represented the projection of the two capillary tubes relative to the X gradient. The probe assembly was rotated until the distance between the two capillary peaks was maximized. At this point, the plane of the surface coil was parallel to the X gradient direction.
6.3.2 The NMR experiment

Three to five rats from each radiation group (controls, 3000 rads, and 5000 rads) were measured with phase-encoded proton spectroscopy at 4, 25 , and 81 days post-irradiation. The animals were anesthetized with pentobarbital and an elliptical-shaped surface coil ($2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$) was placed over the rats head in order to receive signals form both hemispheres of the brain. Since each spectrum comes from a plane of tissue orthogonal to the direction of the gradient, the rat was oriented in the probe so that the phase-encoding gradient traversed the head from left ear to right ear (see Figure 6.4). With the gradient in this orientation, spectra from right and left sides of the brain could be studied separately. Using the pulse sequence described in section 6.1, the phase-encoding (X) gradient was incremented 32 times and the spin-echos were processed by the two -dimensional Fourier transform method.

Imaging was then performed using the projection-reconstruction technique described in chapter 4. The intensity image was used to: (1) determine which spectral planes contained the brain; and (2) determine the signal contribution of the extra-neural tissues for the selected plane.

6. 4 Results

6.4.1 Phantom studies

Phantom studies were performed in order to test the 2 D Fourier transform procedure both in data acquisition and data processing. A phantom consisting of three test-tubes were placed next to the surface coil as shown at the top of Figure 6.3. Chloroform, water, and acetic acid were chosen to fill the test-tubes because each chemical has a proton line at a unique chemical shift frequency. The phase-encoding experiment was then performed as described in section 6.2 .3 , and the FIDs were processed by the 2D Fourier transform program NTCFTV. The bottom of Figure 6.3 shows the result of the 2 D Fourier transform of the FIDs. The water and acetic acid peaks were well- resolved peaks both along the spatial axis and along the chemical shift axis. The chloroform peak was hard to see, possibly because of rf field and main field inhomogeneity. However, this broad peak was also seen after magnification of the 2 D matrix shown in Figure 6.3.

6.4.2 Radiation results

Figure 6.4 shows the phase-encoded proton spectra and the corresponding proton image from a control rat. Each spectrum comes from a plane of tissue perpendicular to the direction of the phase encoding gradient. The proton spectra A and D show large lipid peaks which come from the soft tissues next to the brain. The spectra B and C show a prominent N-acetyl aspartate peak and no lipid peak characteristic of normal brain. In Figure 6.5, an increase in the lipid signal (1-1.5

WATER

2D FOURIER TRANSFORM

XBL 849-3675
Figure 6.3 - Three test-tube phantom (top) and 3-5 plot (bottom) showing one-dimensional chemical shift imaging using the 2D Fourier transform technique.
Proton spectra of rat head
Surface coil image of rat head

1		1.00	1.00
	2.00	1.00	
	PPM		

Figure 6.4 - Surface coil image and phase encoded spectra of the rat head.

XBL 848-3315

Figure 6.5 - Phase encoded proton spectrum of irradiated brain compared ' to scalp and control spectrum.
$\mathrm{ppm})$ is seen in the spectra from the irradiated side of the 5000 rad rats 25 days post-irradiation. The phase-encoded spectra were also processed using the program NTCFT2 (section 5.2.2) to quantitate the areas under the following peaks: water, p-choline (81 days only), PCR+CR (81 days only), n-acetyl aspartate, and lipid peaks. Peak area ratios were calculated relative to water (Table 6.1). At 25 days, there was a large increase in the lipid peak area ratio on the right side of the 5000 rad brains. This radiation- induced change was also noticed qualitatively by viewing the spectra (Figure 6.5). At 81 days, a decrease in n-acetyl aspartate and total creatine peak area ratios was seen on the left side and a slight increase in p-choline was seen on the right side of irradiated brains (See table 6.1). These results assume that the area under the water peak remains constant. However, it has been shown in chapters $2-4$, that the spin density is not constant in irradiated brains; therefore, peak area ratios were also calculated relative to N-acetyl aspartate (Table 6.2). At 25 days an increase in the lipid peak area ratio was still seen on the right side of the brain.

TABLE 6.1
PEAK AREA RATIOS RELATIVE TO WATER FROM PHASE-ENCODED PROTON SPECTRA

DOSE
CHEMICAL
LEFT SIDE (CONTROL)
RIGHT SIDE (IRRAD.)

4 DAYS POST-IRRADIATION

0.	LIPIDS	$2.00+/-1.82$	$1.7+/-.37$
5000.	LIPIDS	$4.35+/-1.78$	$1.68+/-.54$
0.	N-ACETYL ASP	$1.61+/-.936$	$2.38+/-.41$
5000.	N-ACETYL ASP	$2.61+/-.69$	$3.00+/-2.41$

25 DAYS POST-IRRADIATION

0.	LIPIDS	$2.34+/-.74$	$.427+/-.048$
3000.	LIPIDS	$4.82+/-2.86$	$.253+/-.261$
5000.	LIPIDS	$2.58+/-1.0$	$14.9+/-.71$
0.	N-ACETYL ASP	$5.30+/-1.8$	$15.2+/-12.1$
3000.	N-ACETYL ASP	$4.63+/-.98$	$7.26+/-4.66$
5000.	N-ACETYL ASP	$3.55+/-1.35$	$9.76+/-4.32$

81 DAYS POST-IRRADIATION

0.	LIPIDS	$.968+/-.324$	$2.38+/-.79$
3000.	LIPIDS	$3.00+/-.531$	$.813+/-.23$
5000.	LIPIDS	$2.33+/-.49$	$2.83+/-1.8$
0.	N-ACETYL ASP	$5.93+/-2.11$	$9.92+/-1.15$
3000.	N-ACETYL ASP	$2.48+/-.636$	$5.22+/-1.35$
5000.	N-ACETYL ASP	$3.15+/-.79$	$5.46+/-3.0$
0.	PCR + CR	$.954+/-.39$	$.785+/-.22$
3000.	PCR + CR	$.779+/-.24$	$.438+/-.119$
5000.	PCR + CR	$.490+/-.0098$	$.522+/-.092$
0.			
3000.	P-CHO	$.835+/-.51$	$.933+/-.087$
5000.	P-CHO	$.816+/-.096$	$.948+/-.078$

NOTE: All values were calculated by dividing the peak area of interest by the peak area of water and multiplying by 1000 +/- S.E.M.

TABLE 6.2
PEAK AREA RATIOS RELATIVE TO N-ACETYL ASPARTATE FROM PHASE-ENCODED PROTON SPECTRA

DOSE
CHEMICAL
LEFT SIDE (CONTROL)
RIGHT SIDE (IRRAD.)

CHAPTER 7. PROTON CHEMICAL SHIFTS OF AQUEOUS AND
 ORGANIC FRACTIONS OF BRAIN EXTRACTS

Proton spectroscopy was performed on brain extracts in order to measure radiation-induced changes in concentrations of several different brain chemicals that could not be seen in vivo. Using a new extraction method we developed (Jones et al., 1984), both aqueous and organic brains extracts were prepared for high resolution proton spectroscopy. Tissues were used from rats which were imaged and measured with phase-encoding spectroscopy in vivo (chapters 4 and 6).

7.1 Methods

Proton spectroscopy was performed on brain extracts from five rats of the 4 day group and from six rats of the 3 month post- irradiation group. The irradiation procedure was-described in section 4.3 .

7.1.1 Brain preparation

Brain tissue was frozen in situ by pouring liquid nitrogen through a funnel directly onto the exposed skull of the anesthetized rat (Poten et al., 1973). Pieces of frozen brain were chiseled from the right and left sides of the cerebrum and the two sides were processed separately. The frozen brain samples were weighed and then homogenized in cold $1: 2$ chloroform - methanol (3 ml/gm brain tissue). 100 micro-liters (. 6 $\mathrm{mg} / \mathrm{ml}$) of 3 - (trimethylsilyl)-1 - propane - sulfonic acid; sodium salt (DSS) was added to the homogenate to act as a chemical shift
reference as well as a peak area standard for the aqueous phase. The single phase homogenate was vortexed with l:l chloroform - water (2 $\mathrm{ml} / \mathrm{gm}$ brain tissue). The added solvents forced the mixture to separate into 3 phases after centrifugation at 2900 rpm for 5 minutes. The organic and aqueous fractions were separated and frozen for storage. The fractions were lyophilized and reconstituted in 1 ml deuterium oxide for the aqueous phase and in 1 ml deuterated chloroform for the organic phase.

7.1.2 The NMR experiment

The reconstituted samples were placed in 5 mm NMR test-tubes and proton spectroscopy was performed on the 200 or 180 MHz spectrometer. Shimming was done automatically with the $Z 1, Z 2$, and $Z 3$ shims and manually with the X and Y shims. A one-pulse sequence was used with the following parameters: 70 degree flip angle; $16 k$ data points - aqueous, 8k data points - organic; quadrature phase cycling; quadrature phase detection; 2.05 second aquisition time; 5 second delay time; 60 transients - aqueous, 40 transients - organic; +/- 2000 hertz spectral width; sample spinning; and deuterium lock.

Data processing-

The FIDs were sent to the VAX computer by phone line (section 4.3) and program NTCFT2 (section 4.3) was used to quantitate the area under the peaks. For the aqueous fractions, the FIDs were apodized with 2 hertz line-broadening and the following peaks were analyzed: p-choline (3.22 ppm); total creatine (3.02 ppm); sarcosine (2.72 ppm);
glutamate (2.34 ppm); n-acetyl aspartate (2.00 ppm); GABA, acetate (1.90 ppm); alanine (1.48 ppm); and lactate (1.33 ppm). The chemical shifts were referenced to DSS (0.00 ppm). The peak area ratios in Table 7.4 were calculated relative to n-acetyl aspartate.

For the organic fraction, the FIDS were apodized with 4 hertz line-broadening and the following were analyzed: $5.37 \mathrm{ppm} ; 3.29 \mathrm{ppm}$; 2.84 ppm; $2.28 \mathrm{ppm} ;$ methylene 1.25 ppm ; terminal methyls $1.01 \mathrm{ppm} ;$. $882 \mathrm{ppm} ; .848 \mathrm{ppm}$; and .679 ppm . The chemical shifts were referenced to chloroform at 7.27 ppm. Peak area ratios in Table 7.6 were calculated relative to the methylene peak area.
7.1.3 Calibration of NMR peak areas with chemical concentration

In order to test the linearity of $N M R$ peak areas with concentration, a calibration curve was measured for sarcosine and methionine at 6 different concentrations. Bovine brain (1.2 grams) was homogenized and the extra amounts of sarcosine and methionine were added to the homogenate before the extraction procedure continued (section 7.1.1). The peak area ratios to DSS were calculated (section 7.1.2) and the following equation was to used to calculate the peak area responsible for the exogenous chemicals:

NMR conc. $=$ [peak area (met.)/ peak area (DSS)] - Xo * brain weight
where $X o=$ [peak area (endogenous met.)/peak area (DSS)] / brain weight The calibration curves, shown in Figure 7.l, are fairly linear with concentration except for the points near the origin. This curve could

XBL 849-3676

Figure 7.1 - Plot of added chemical weight vs. peak area ratio to DSS for sarcosine (2.72 ppm) and methionine (2.13 ppm).
then be used to calculate the actual concentration of sarcosine and methionine in the sample. To check the reproducibility of the peak area ratio measurement, the N-acetyl aspartate and $P C R+C R$ peaks were analyzed in all six spectra and the result is shown in Figure 7.2. These two curves should be flat because each test-tube contained similar pieces of homogenized brain.

7.1.4 Chemical shifts of isolated brain chemicals

Peak assignment of resonances observed in the proton spectrum of brain extracts was done using previous peak assignments found in the literature (Behar et al., 1983) and by measuring the proton spectrum on several chemicals known to be at relatively high concentrations in the brain (Biochemist's handbook, 1968). Table 7.1 shows the concentrations of several brain chemicals. Proton spectroscopy was measured separately for each of the following chemicals in aqueous solution: lactate, alanine, GABA, acetyl-l-glutamate, n-acetyl aspartate, glutamate, glutathione, glutamine, methionine, deanol, pyruvate, aspartate, sarcosine, creatine, phosphocreatine, creatinine, dimethyl glycine, choline, taurine, and betaine. Aqueous solutions were prepared for spectroscopy by placing the dry chemical in D2O (low solubility) or H2O (high solubility) and the pH was measured. Table 7.2 shows the chemical shifts (in ppm with reference to DSS $=0$.) of all 22 chemicals. Proton spectroscopy was also done on phosphatidyl ethanolamine, phosphatidyl serine, lysolecithin, and sphingomyelin dissolved in deuterated chloroform. The results of the chemical shifts and peak heights are

XBL 849-3677
Figure 7.2 - N-acetyl asp and PCR+CR peak area ratios for six different trials (normalized to brain weight). The values shown to the right of the curves are the average of six +/- SEM.

TABLE 7.1 - CONCENTRATIONS OF BRAIN CHEMICALS (LOW MOLECULAR WEIGHT) (From Biochemist's handbook, 1968; and Reichelt et al., 1969)

lecithin	15.7	$+/-.9 \mathrm{~g} / \mathrm{kg}$
glutamic acid	$1300-1700$	
glutamine	$480-780$	$\mathrm{mg} / \mathrm{kg}$
aspartic acid	$360-480$	$\mathrm{mg} / \mathrm{kg}$
GABA	$210-630$	$\mathrm{mg} / \mathrm{kg}$
alanine	$50-94$	$\mathrm{mg} / \mathrm{kg}$
taurine	$450-810$	$\mathrm{mg} / \mathrm{kg}$
acetyl-choline	2.7	$\mathrm{mg} / \mathrm{kg}$
total creatine	1300	$\mathrm{mg} / \mathrm{kg}$
glutathione	705	$\mathrm{mg} / \mathrm{kg}$
methionine	$10-14$	$\mathrm{mg} / \mathrm{kg}$
ATP	$1080-1325 \mathrm{mg} / \mathrm{kg}$	
phosphocreatine	$560-760$	$\mathrm{mg} / \mathrm{kg}$
phosphorylcholine	$66-81$	$\mathrm{mg} / \mathrm{kg}$
lactic acid	$134-244$	$\mathrm{mg} / \mathrm{kg}$
pyruvic acid	17.2	$\mathrm{mg} / \mathrm{kg}$
serine	$87-115$	$\mathrm{mg} / \mathrm{kg}$
histamine	4.3	$\mathrm{mg} / \mathrm{kg}$
n-acetyl aspartate	5.18	$\mathrm{umoles} / \mathrm{g}$
n-acetyl aspartyl-glu	.44	$\mathrm{umoles} / \mathrm{g}$
n-acetyl glutamate	.06	$\mathrm{umoles} / \mathrm{g}$
glutathione	1.10	$\mathrm{umoles} / \mathrm{g}$
aspartate	3.40	$\mathrm{umoles} / \mathrm{g}$
glutamate	9.85	$\mathrm{umoles} / \mathrm{g}$

TABLE 7.2 - CHEMICAL SHIFTS OF ISOLATED BRAIN CHEMICALS (AQUEOUS)

PPM	CHEMICAL	PPM	CHEMICAL
4.66	water	3.248	taurine
4.597	glutathione (pd 7.0)	3.214	taurine
4.566	glutathione	3.206	choline
4.536	glutathione	3.038	creatinine (pd 7.5)
4.414	n-acetyl asp (pd ~ 7.0)	3.032	GABA
4.395	n-acetyl asp	3.029	phosphocreatine (pd 7.3)
4.366	n-acetyl asp	3.023	creatine (pd 7.3)
4.346	n-acetyl asp	2.996	GABA
4.175	lactate (ph 7.0)	2.988	dimethyl glycine
4.137	lactate	2.958	GABA
4.128	acetyl-1-glu (pd 7.0)	2.957	glutathione (pd 7.0)
4.105	acetyl-1-glu	2.932	glutathione
4.099	lactate	2.921	glutathione
4.087	dimethyl glycine	2.777	aspartate
4.083	acetyl-1-glu	2.759	aspartate
4.064	choline	2.737	n-acetyl asp
4.062	acetyl-1-glu	2.723	sarcosine
4.060	lactate	2.718	n-acetyl asp
4.044	choline	2.717	aspartate
4.038	creatinine	2.677	aspartate
4.032	choline	2.659	n-acetyl asp
3.937	phosphocreatine	2.665	methionine
3.920	aspartate (ph 6.3)	2.640	n-acetyl asp
3.917	creatine	2.627	methionine
3.900	asp	2.591	methionine
3.880	asp	2.544	n-acetyl asp
3.878	methionine (pd 7.2)	2.522	deanol
3.862	asp	2.496	n-acetyl asp
3.846	methionine	2.490	deanol
3.816	methionine	2.481	glutamine
3.805	glutathione (pd 7.0)	2.467	n-acetyl asp
3.770	glutamate (ph 7.9)	2.460	deanol
3.769	glutathione	2.450	glutamine
3.745	glutamate	2.441	glutamine
3.742	glutathione	2.418	n-acetyl asp
3.737	glutamate	2.407	glutamine
3.712	glutamate	2.374	glutamate (ph 7.9)
3.693	deanol	2.372	pyruvate
3.661	deanol	2.319	GABA
3.630	deanol	2.339	glutamate
3.601	sarcosine (pd 7.5)	2.302	glutamate
3.550	choline	2.282	GABA
3.530	choline	2.264	acetyl-1-g1utamate
3.510	choline	2.247	GABA
3.438	taurine (ph 7.2)	2.224	acetyl-1-glutamate
3.401	taurine	2.215	methionine
3.376	taurine	2.209	glutathione
3. 338	betaine	2.208	deanol
3.279	taurine	2.187	acetyl-1-glutamate

TABLE 7.2 - CHEMICAL SHIFTS OF ISOLATED BRAIN CHEMICALS (AQUEOUS) (continued)

PPM CHEMICAL

2.185 methionine
2.180 glutamine
2.177 methionine
2.173 glutathione
2.15 methionine
2.149 glutamine
2.139 glutamate
2.138 glutathione
2.127 acetyl-1-glutamate
2.118 methionine
2.115 glutamate
2.108 glutamine
2.105 glutamate
2. 103 glutathione
2.08 glutamate
2.071 glutamine
2.04 glutamate
2.02 acetyl-1-glutamate
2.007 n-acetyl asp
1.921 GABA
1.906 acetyl-1-glutamate
1.885 GABA
1.87 acetyl-1-glutamate
1.847 GABA
1.483 alanine
1.477 alanine
1.331 lactate
1.297 lactate
0.0 DSS (reference)
shown in Table 7.3. The spectrum of sphingomyelin had very broad peaks at 3.5 and 1.7 ppm with a sharp peak at 1.26 ppa .

7.2 Results

Aqueous fraction:

The aqueous fraction spectra had much sharper lines than the organic because the aqueous fraction molecules were smaller and therefore they could tumble more freely. The spectrum shown in Figure 7.3 demonstrates the . 005 ppm resolution and the chemical information 'available from proton spectroscopy of brain extracts. In the region between 4.5 to 0 . ppm , the chemicals identified were DSS, lactate, alanine, GABA, n-acetyl aspartate, glutamate, aspartate, creatine, phosphocreatine, and p-choline. In the region between 10. to 6. ppm, the peaks have not been clearly identified but they may be the ring protons of histidine and ATP.

As shown in Tables 7.4 and 7.5 , at 4 days post-irradiation, on the controls side, an increase was seen in lactate, GABA+acetate, and PCR $+C R$. On the irradiated side, an increase was seen in GABA+acetate, PCR $+C R$, and P-choline relative to controls. At 3 months post-irradiation, on the controls side, an increase was seen in lactate, alanine (3000 rad), glutamate, and p- choline; and a decrease was seen In the GABA+acetate and alanine (5000 rad). On the irradiated side, an increase was seen in lactate, glutamate, $P C R+C R$, and $p-c h o l i n e ; ~ a n d ~ a ~$ decrease was seen in alanine (3000 rad) and GABA+acetate.

Table 7.3 - CHEMICAL SHIFTS OF ISOLATED CHEMICALS (ORGANIC) PHOSPHATIDYL ETHANOLAMINE PHOSPHATIDYL SERINE LYSOLECITHIN

PPM	PEAK HEIGHT	PPM	PEAK HEIGHT	PPM	PEAK HEIGHT
-5.370	263.82	--	$-=-$	-	
4.164	57.03	5.360	149.46	4.074	59.72
4.137	73.79	2.841	84.13	3.807	62.16
4.105	86.25	2.324	68.19	3.343	463.10
3.987	66.71	2.288	71.06	2.310	74.56
3.959	92.97	2.006	113.52	2.241	457.67
3.929	59.38	1.814	943.09	1.348	57.83
3.174	66.02	1.648	71.38	1.263	1524.8
3.165	65.24	1.591	95.61	1.177	55.48
2.841	119.2	1.258	1851.8	.913	65.48
2.814	133.07	1.171	97.52	.888	127.71
2.784	68.74	.886	232.5	.856	57.62
2.388	53.68	.855	107.22	.008	266.38

NOTE: The chloroform peak was used as a chemical shift reference at 7.27 ppm.

XBL 849-3678
Figure 7.3 - Protion spectrum of aqueous fraction of irradiated brain. Region 10. - 5.5 ppm is shown on the top and $4.5-1.2 \mathrm{ppm}$ is shown on the bot tom. (N-acetyl asp was set to 2.00 ppm for reference).

TABLE 7.4
AQUEOUS FRACTION PEAK AREA RATIOS TO N-ACETYL ASPARTATE

		4 DAYS	POST		3 MONT	POST	
CHEMICAL	CONTROL	5000C	50001	3000C	30001	5000C	5000I
LACTATE 1.33 PPM	$1.115+/-.025$. 37	. 14	. 28	. 26	. 082	.113
		. 071	$\begin{aligned} & .099 \\ & .066 \end{aligned}$.125	. 21	.117	
							.
ALANINE	1.032 +/-.004	. 023	. 042	. 045	. 030	. 030	. 035
1.48 PPM		. 032	. 022	. 036	. 023	. 027	
			. 023				
GABA+ACET	$1.033+/-.004$. 042	. 053	. 017	. 019	. 018	. 045
1.88 PPM		. 035	.035.042	.019	. 030	. 026	
			. 042				
GLUTAMATE	1.384 +/-. 055	. 37	. 44	. 45	. 52	. 46	. 39
2.34 PPM		. 40	.38.42	. 48	. 41	. 35	
			. 42				
PCR+CR	$11.25+/-.101$	1.57	1.28	1.21	1.57	1.6	1.19
3.02 PPM		1.28	1.58	1.35	1.30	1.1	
			1.38				
	1						
P-CHO	$.51+/-.038$. 53	. 92	. 55	. 65	1.05	. 63
3.21 PPM	\|	. 59	.61	. 67	. 80	. 62	

NUTE: 5000 C refers to 5000 rads control side of the brain and 5000 I refers to 5000 rads irradiated side of the brain. Control value is shown as the average of $8+/-$ SEM. All values were calculated by dividing the peak area of interest by the peak area of n-acetyl aspartate. Values from each individual animal are shown in columns 3 8. For example, in the 5000 I column, the peak area ratios for three different animals are shown for each chemical. These same data are displayed in Table 7.5 normalized to controls.

TABLE 7.5
AQUEOUS FRACTION PEAK AREA RATIOS TO N-ACETYL ASP NORMALIZED TO CONTROLS

.	4 DAYS POST		3 MONTHS POST			
CHEMICAL	5000C	50001	3000C	30001	5000C	5000I
LaCTATE						
1.30 PPM	1.93	. 89	1.74	2.01	. 86	. 98
ALANINE						
1.48 PPM	. 87	. 92	1.29	. 83	. 75	1.12
GABA+ACET						
1.90 PPM	1.18	1.33	. 55	. 74	. 68	1.37
GLUTAMATE						
2.34 PPM	1.00	1.07	1.22	1.22	1.06	1.02
PCR+CR						
3.03 PPM	1.14	1.13	1.02	1.15	1.08	. 95
P-CHO						
3.22 PPM	1.09	1.50	1.18	1.41	1.62	1.23

NOTE: Same as Table 7.4 except that the peak area ratios relative to n-acetyl aspartate are averaged and divided by the control peak area ratios in order to compare the irradiated values to controls.

Organic fraction:

The spectrum shown in Figure 7.4 is an example of the proton spectrum of the organic fraction of irradiated brain extract. The peaks in this spectrum represent the lipids of the brain. However, the heights of the peaks do not represent what would be seen in vivo because the lipid protons are more mobile in an organic solvent than as lipid bilayers in the myelin sheaths (Joffe et al, 1972). As shown in Tables 7.6 and 7.7 , a decrease in the peaks at 2.84 and 3.29 ppm and an increase in the peak at 2.28 ppm were seen at 4 days post-irradiation. At 3 months post- irradiation decreases were seen in terminal methyl peaks $(.68, .85, .881 .01)$ and at peaks $2.28,2.84$, and choline methyls (3.29 ppm).

The main results from this investigation are: l) increases were noted early after irradiation in lactate, GABA, PCR+CR, and $p-c h o l i n e$ peak area ratios relative to n-acetyl aspartate; 2) increases were noted late after irradiation in lactate, glutamate, and p-choline; 3) from the organic fraction spectra, decreases were noted on both sides of the brain at peaks 2.84 ppm (phosphatidyl ethanolamine, phosphatidyl serine), 3.29 ppm (lecithin) and the terminal methyls (5000 rads, 3 months post). These results show that radiation induces changes in brain energy metabolites and in lipid chemistry.

Figure 7.4 - Proton spectrum of organic fraction of irradiated brain. (Chloroform was set to 7.27 ppm for reference).

TABLE 7.6
ORGANIC FRACTION PEAK AREA RATIOS RELATIVE TO METHYLENE

CHEMICAL	CONTROL	4 DAY	POST	3 MONTHS POST				
		5000C	50001	3000C	30001	5000C	50001	
. 68 PPM	$1.041+/-.0015$. 039	. 042	. 037	. 038	. 037	. 038	
(not		. 041	. 037	. 045	. 043	. 041	. 032	
iden.)		. 041	. 037					
. 85 PPM	\| $.029+/-.0022$. 023	. 028	. 025	. 0081	. 030	. 030	
P-ETHAN		. 034	. 025	. 024	. 038	. 033	. 020	
P-SERINE	I	. 037	. 032					
LECITHIN								
. 88 PPM	$1.091+/-.0030$. 074	. 095	. 090	. 076	. 078	. 067	
P-ETHAN		. 098	. 088	. 059	. 105	. 082	. 091	
P-SERINE	1	. 11	. 096					
LECITHIN								
	I							
1.01 PPM	$\mid .037$ +/-.00093\|	. 039	. 038	. 036	. 036	. 032	. 030	
$\begin{aligned} & \text { (not } \\ & \text { iden.) } \end{aligned}$. 038	. 037	. 042	. 041	. 036	. 023	
		. 041	. 036					
2.03 PPM	$\mid .092+/-.0015$ \|	. 086	. 074	. 092	. 095	. 088	. 077	
P-ETHAN		. 093	. 098	. 088	. 103	. 095	. 095	
	1	. 096	. 091					
2.28 PPM	$\mid .095+/-.0012$ \|	. 131	. 20	. 092	. 084	. 079	. 078	
P-SERINE	\|		. 091	. 088	. 098	. 105	. 084	. 086
	1	. 069	. 085					
	\|							
2.84 PPM	1.10 +/-.0045	. 066	. 078	. 085	. 071	. 063	. 071	
P-Ethan		. 076	. 073	. 079	. 152	. 070	. 083	
P-SERINE	1	. 074	. 103					
3.29 PPM	1.063 +/-. 0012	. 051	. 067	. 062	. 057	. 048	. 052	
LECITHIN		. 060	. 057	. 063	. 077	. 053	. 056	
		. 061	. 062					
5.37 PPM	. 14 +/-. 0022	. 113	. 151	. 146	. 134	. 118	. 111	
P-ETHAN		. 140	. 133	. 160	. 164	. 126	. 157	
P-SERINE	1	. 139	. 145					

NOTE: 5000C refers to 5000 rads control side of the brain and 5000I refers to 5000 rads irradiated side of the brain. Control value is shown as the average of $8+/-$ SEM. All values were calculated by dividing the peak area of interest by the peak area of the methylene peak (1.26 ppm). Values from each individual animal are shown in columns 3 - 8. For example, in the $5000 I$ column, the peak area ratios for three different animals are shown for each chemical. These same data are displayed in Table 7.7 normalized to controls.

TABLE 7.7
ORGANIC FRACTION PEAK AREA RATIOS NORMALIZED TO CONTROLS

| PPM | 4 DAYS POST | | 3 MONTHS POST | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 5000 C | 5000 I | 3000 C | 3000 I | 5000 C | 5000 I |
| .68 | 0.98 | 0.94 | 1.01 | 0.99 | 0.95 | 0.86 |
| .85 | 1.09 | 0.99 | 0.85 | 0.79 | 1.10 | 0.87 |
| .88 | 1.02 | 1.02 | 0.82 | 0.99 | 0.88 | 0.87 |
| 1.01 | 1.07 | 1.01 | 1.06 | 1.04 | 0.92 | 0.72 |
| 2.03 | 0.99 | 0.95 | 0.97 | 1.07 | 0.99 | 0.93 |
| 2.28 | 1.02 | 1.32 | 1.00 | 1.00 | 0.86 | 0.87 |
| 2.84 | 0.72 | 0.84 | 0.82 | 1.11 | 0.66 | 0.77 |
| 3.29 | 0.91 | 0.98 | 0.98 | 1.06 | 0.80 | 0.86 |
| 5.37 | 0.95 | 1.04 | 1.11 | 1.09 | 0.89 | 0.98 |

NOTE: Same as Table 7.6 except that the peak area ratios relative to methylene are averaged and divided by the control peak area ratios in order to compare irradiated values to controls.

CHAPTER 8. HISTOLOGY OF IRRADIATED BRAINS

Histological techniques were used to evaluate the state of the irradiated brain tissue from rats which were previously imaged and measured with proton spectroscopy in vivo. Although pathology of radiation brain damage is well known using X-ray irradiation (Fajardo et al., 1982), there is very little literature concerning half brain helium beam irradiation. The histology was done in order to correlate cellular and structural changes with changes in the Tl relaxation time of the water signal in the brain.

8.1 Methods

Histology was performed on brains from rats sacrificed at the following intervals after irradiation; 4 -days, 2.7 months, and 7.3 months. Evans blue was injected (.6cc of 2% solution in saline) into the tail vein of the rat 20 minutes before sacrificing to measure the integrity of the blood-brain barrier. The brains were removed immediately after death, (except in one case (r3e) in which the brain was removed one hour after death), and placed in Tellyesniczky acetic alcohol formalin (Telly's solution) for 3 days. Then, they were placed In 60\% ethanol for one hour, 70% ethanol for one hour, and left in 80% for one week. The brains were embedded in paraffin and coronal sections were cut at 10 microns from the frontal cerebrum, mid- cerebrum, and hind-cerebrum areas. Selected sections were stained using the following techniques: hematoxylin and eosin; Mahon's myelin sheath stain, and

Vogt's method for nerve cell products (nissl). Figure 8.1 shows the hematoxylin and eosin sections from a control brain and Figure 8.2 shows the same sections using the Mahon's myelin sheath stain. Microscopic specimens were evaluated qualitatively for sites of tissue necrosis, demyelination, vessel wall thickening, gliosis, calcification, and hemorrhage. Alterations in the blood brain barrier were evaluated semi-quantitatively by counting the number of Evans blue stained spots on each side of the brain. The sections were also evaluated for gross anatomical changes such as ventricular enlargement and tissue swelling. Rat brain anatomy was identified using a rat brain atlas of coronal sections (Pellegrino et al., 1979).

8.2 Results

Early radiation damage-

The most consistent change in appearance between the irradiated and controls at 4 days and 3 months post-irradiation was an increase in Evans blue staining. The Evans blue spots were easily identified as purple regions on the hematoxylin and eosin sections viewed with dark field microscopy (See Figure 8.3). As shown in Table 8.1, there is an increase in the number of Evans blue spots both as a function of dose and time after irradiation. At 4 days after irradiation, the spots were mainly confined to the corpus callosum, however at 3 months, spots were also seen in the fimbria of the hippocampus, the internal capsule, and occasionally in the cerebral cortex. The myelin stained sections did not reveal any changes in myelin stain uptake for the 4 day and 3 month

CBB 849-6708

Figure 8.1 - Three coronal paraffin sections of a control brain at three different levels: top section passes through the caudate nucleus; middle section passes through the hippocampus; and bottom section passes through the reticular formation (Hematoxylin and eosin stain, macnification y 6.?).

CBB 849-6710

Figure 8.2 - Same as in Figure 8.1 except with Mahon's myelin sheath stain.

Figure 8.3 - Region from the internal capsule from the irradiated side of a rat that received 3000 rads (7 months post-irradiation). The purple areas (arrows) demonstrate Evans blue infiltration caused by blood-brain barrier alteration (HE stain, dark field micrograph, mag. X 130).

TABLE 8.1 - NUMBER OF EVANS BLUE STAINED SPOTS

FRONTAL MID HIND

| CONTROLS | $2.0+/-1.4$ | $.25+/-.25$ | 1.5 | $+/-.95$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | I | C | I | C | I | C |

3 MONTHS
3000 RADS
23. 15 .
6. 3.5
16. 6.5

5000 RADS
22. 14.5
32. 8.
16. 8.

7 MONTHS

3000 RADS
87. 1.

NOTE: Control values are show as the average of 4 values +/- S.E.M. Abbreviations: I - irradiated side; C - control side of the brain.
brains. The left ventrical on two irradiated brain sections (4 days post) and on one brain section (3 months post) was enlarged. Figure 8.4 shows an example of an irradiated rat that had an enlarged right ventrical which correlated with an increase in Tl relaxation time on the right side of the brain.

Late radiation damage-

Large lesions of radiation necrosis were seen in the brain sections at 7.3 months post-irradiation. The lesions were seen in the fimbria of the hippocampus, internal capsule and in the corpus callosum (See Figure 8.5). Figure 8.6 shows an example of a necrotic lesion in the internal capsule. The center of the lesion was devoid of blood vessels and no Evans blue staining was seen. However, at the edge of the lesion Evans blue staining was seen. Figure 8.3 shows the same region of brain as Figure 8.6 but with dark field lighting. Four spots of Evans blue can be seen around the periphery of the necrotic area. Demyelination was seen in the myelin stain sections (Figure 8.7) of irradiated animals but not in controls (Figure 8.8). Other radiation-induced changes included: calcification (Figure 8.9), vessel wall thickening, and gliosis.

In summary, no difference was seen between irradiated and control histological sections of the brain 4 days after irradiation, except for some Evans blue staining. As time after irradiation progressed, the Evans blue spots became more frequent and larger in the white matter. Demyelination was only seen in the myelin-sheath sections 7 months after irradiation. Ventricular enlargement was apparent in some animals at 3 months post-irradiation.

Figure 8.4 - Coronal section of brain from irradiated rat (5000 rads, 81 days post-irradiation). The irradiated side is on viewers right (HE stain, mag. X10).

Figure 8.5 - Nissl stained section of rat that received 30nn rad (7 months post-irradiation. The arrows pointed out regions of abnormal staining (Mag. y 1 C).

Figure 8.6 - Same as Figure 8.3 except with light field microscopy. The arrows point out the regions of Evans blue staining.

Figure 8.7 - Same region as in Figure 8.3 except with Mahon's myelin staining. Demonstration of demyelination (Mag. X130, phase contrast).

CBB 830-9837

Figure 8.8 - Region from the internal capsule from control rat. Demonstration of normal myelin staining (Mahon's myelin stain, mag. X130) 。

Figure 8.9 - Region from the fimbria of the hippocampus of a rat that received 3000 rads (7 months post-irradiation). Demonstration of calcification (HE stain, mag X130).

The observations reported in this dissertation were made possible by developement of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. These technological developements were a major part of this work. The methods include dual aqueous and organic tissue extraction technique for spectroscopy, depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, and phase-encoded proton spectroscopy of the living rodent using a surface coil.

From the experiments discussed in chapters 3 and 4 , consistent results were found: early after irradiation (4-14 days) Tl and spin density decreased with dose in the cortex of the irradiated side; and Il and spin density increased with dose in the cortex of the control side. At 4 days, accompanying the $T 1$ decrease, there were small foci of breaks in the blood- brain barrier of the white matter (corpus callosum) and changes in proton spectra of the lipids in the organic fraction of the brain extracts. Table 9.1 summarizes all of the results. We propose two hypotheses to explain these results.

Protein theory:

Ionizing radiation causes chemical-bond breakage and disruption that would expose a greater amount of tissue water to protein surfaces. Tl relaxation time is dependent on structural and motional ordering of

Table 9.1
SUMMARY OF RESULTS FOR IRRADIATED SIDE RELATIVE TO CONTROLS

$\begin{aligned} & \text { TIME } \\ & \text { DAYS } \end{aligned}$	\|DOSE	SPIN	\| T1	\|lactate	LIPI		$\mathrm{P}-\mathrm{CHO}$	Evans blue
	\|RADS	DENS.			\|EXT	VIVO		\# of spots
4	13000	NS	-10\%					
	15000	-48\%	\|-26\%	NS	$\mid-16 \%$ \|	NS	+50\%	+366\%
7	\| 3000	-36\%	I	1	11			
11	\| 3000		1+10\%			NS		
	15000		1+10\%		1 1	NS		
				I	I			
14	$\mid 1000$	NS	\| NS	1	I	I		
	12000	NS	\| NS	1	I			
	\| 3000	-25\%	1-13\%		1			
					1 1			
25	13000	NS	I NS		11	NS		
	15000	NS	\| NS		1 1	$+100+1$		
				1	11			
81	13000	NS	$\|+13 \% \mathrm{c}\|$	+101\%	\| NS	NS	+41\%	+1050\%
			$\|-10 \% s\|$					
	15000	NS	1+10\%c\|	NS	$\|-23 \% a\|$	NS	+23\%	+1000\%
			$\mid-14 \%$ \|		$\mid-14 \%$ \|			
220	13000		1 I		I		-40\%	+3350\%
			11		I			

NOTE: All values were calculated as a percent difference from controls. The spin density values were calculated relative to the control side of the irradiated brain, whereas the rest of the values were calculated relative to control animals. Abbreviations: NS - not significant; C cortex; S - subcortex; a meak at 2.84 ppm (phosphatidyl ethanolamine and phosphatidyl serine in organic solvent); b - peak at 3.29 ppm (lethicin in organic solvent). No entry means no measurement was made.
water in tissues (Mathur-De Vre, 1979) and therefore, an increase in the amount of water bound in the hydration layer of macromolecules would cause a decrease in Tl relaxation. Cross-relaxation between water protons and macromolecular protons provides an effective relaxation pathway for the water molecules that are held in the hydration layer in the immediate neighborhood of the macromolecular surface (Gaggelli et al., 1982). Radiation-induced protein damage has been reported (Egana, 1971) In aqueous solutions, and damage to metabolic machinery (enzymes) has been proposed (Haymaker, 1969) as an explanation for early glycogen. accumulation in the glial cells. Bakker et al. (1983) have also suggested that protein denaturation might be the cause of a Tl decrease in irradiated tissue. The following questions then arise: how much protein damage is caused by radiation at the $1000-10,000$ rad level, and $1 s$ it enough to account for the changes seen in $T l$ relaxation after irradiation of the rat brain? In an attempt to answer. these questions, aqueous solutions of albumin at several different concentrations were irradiated with X-rays (10,000 rads) and $T 1$ relaxation time was measured in the 180 Mhz spectrometer with the inversion-recovery pulse sequence before and after irradiation. The results are shown below.
Albumin conc. (mg/cc) Tl of irr. sol. (sec) Tl of control sol. (sec)

60. (1 trial)	1.98	1.92
98. (2 trials)	1.57	1.82
	1.60	1.75
150. (2 trials)	1.44	1.29
	1.39	1.32

The results shown here tend to complicate the issue because at 98 $\mathrm{mg} / \mathrm{cc}$ TL was decreased after irradiation, but at $150 \mathrm{mg} / \mathrm{cc} \mathrm{Tl}$ was increased after irradiation. Also, this experiment might not represent what would happen in vivo because of 1)the addition of other types of macromolecules in the tissue, and 2)cellular reactions to radiation. In any event, the Tl relaxation time of water in the CNS would change as a result of an increase in bound water due to either a conformational change in protein structure or a change in protein concentration.

Lipid theory -

NMR measurements were made on brain lipids in vivo (chapter 6) and in vitro (chapter 7) at different eimes after irradiation. In vitro measurements of lipids (organic fraction of brain extracts) were performed at 4 and 81 days after irradiation. In vivo measurements were made at 4, 11,25 , and 81 days after irradiation. The in vivo measurements did not correlate well with the $T 1$ relaxation times measurements because at 25 days after irradiation, when a large abnormal lipid peak was observed, the $T 1$ values of irradiated animals appeared to be normal. However, the in vitro observations did correlate with the Tl changes. At 4 days after irradiation, a decrease was seen in the peak area ratio (relative to methylene) at 2.84 ppm with no changes in peak area ratios at 3.29 ppm or at the terminal methyl groups. However, at 81 days when an increase in $T 1$ was observed, a new set of changes were measured in the organic fraction spectra. These changes include a decrease in the peak are ratios at $2.84 \mathrm{ppm}, 3.29 \mathrm{ppm}$, and the terminal methyl groups. Lipid membrane damage is evidenced by a decrease in the
the peak area ratio at 2.84 ppm of the organic fraction spectrum (resonance associated with phosphatidyl ethanolamine and phosphatidyl serine) and an increase in the p-choline resonance of the aqueous fraction (Table 9.1). Both phosphoryl choline and glycerol-3-phosphocholine (compounds which resonate at the p-choline frequency) are intermediates in the synthesis and possibly in the breakdown of phosphatidyl-choline. Therefore, an increase in the p-choline resonance might indicate membrane breakdown. Membrane damage was also indicated by Evans blue staining associated with damaged blood-brain barrier. These changes reflect structural alterations in the lipids and may be the result of the primary actions of radiation (e.g., lipid peroxidation) or of secondary reactions which act to disrupt membrane lipids (e.g'., cellular digestion of damaged membranes). A hydration layer of water molecules also forms around the polar moiety of the lipid membrane and an increase in membrane surface area could cause a decrease in $T l$ relaxation time. Gaggelli et al (1982) have observed an inverse relationship between TI relaxation time and both lecithin and rod outer segment (ROS) disk membrane concentration. They also observed a change in TI as a consequence of the action of light on the ROS membranes and they suggested that this might be the result of a change in conformation of membrane proteins. Kennedy (1984) has observed a decrease in $T 1$ and $T 2$ relaxation times of the muscle methylene peak after neutron irradiation of mice with no change in percent water content. He suggests that these early changes after irradiation may be caused by lipid peroxidation. A loosening of the myelin sheath caused by lipid structural changes could result in a greater fraction of bound water near the membrane surface. An
experiment that might shed light on this issue is to measure TI relaxation time of membrane preparations in aqueous solution before and after irradiation (C. Tobias, personal communication). If the radiation induces a decrease in Tl relaxation time of the water in vitro, then this would give evidence that the early Tl decrease in vivo may be caused by the "direct" result of radiation and not secondary radiation-induced cellular reactions.

The decrease in spin density on the irradiated side is probably due to a decrease in free water content or to decrease in the fast T2 relaxation component because the apparent spin density (measured by imaging techniques) is influenced by $T 2$.

On the control side of irradiated brains, an increase in $T 1$ relaxation was accompanied by ventricular enlargement, a decrease in
 an increase in lactic acid. Tanaka et al. (1979) also observed bilateral damage after irradiation of only the right occipital lobe in the monkey. According to Tanaka et al., brain swelling on the irradiated side of the brain caused compression of the contralateral hemisphere and enlargement of the contralateral ventricular system through embarrassment of the CSF system. A similar. mechanism may be occuring in hemi-brain irradiation of the rat. An increase in CSF fluid volume on the contralateral side could account for an increase in TI because CSF fluid has a much longer TI than surrounding brain tissue (Crooks et al, 1982). The increased lactate on the control side may have been caused by a greater amount of tissue glucose which reacted to form lactate under the anaerobic conditions. The lactate probably
formed in the brain after sacrificing the animal because the lactate peak was not seen in vivo in the proton spectrum (chapters 5 and 6). Lactate has been shown to accumulate in the brain in hypoxic conditions (Behar et al, 1984).

Some other early effects of radiation that could cause a decrease in Tl are glycogen accumulation (Maxwell -and Kruger, 1965) and the presence of free radicals (Singh and Singh, 1982). A test of the role of free radical mediated tissue damage on TI relaxation could be made by injecting free radical scavengers.

At 81 days, an increase in $T 1$ was seen on the irradiated side of two animals which had enlarged ventricles. Also, there was a decrease in Tl on the irradiated side subcortical region which was accompanied by breaks in the blood-brain barrier in the white matter (both in the internal capsule and corpus callosum). Both sides of the brain had decreases in p-serine and p-ethanolamine (2.84 ppm) peak area ratios (relative to methylene in organic solvent) and increased peak area ratios (relative to n-acetyl aspartate in aqueous solvent) in lactic acid and p-choline, and a decrease in GABA relative to controls. Egana observed a decrease in GABA after 500r whole-body irradiation (Egana, 1971). In the subcortical region of the irradiated side, the decrease in $T 1$ is probably due to l)breaks in the blood-brain barrier which permits an outpouring of protein-rich plasma constituents into the surrounding parenchyma (Tanaka et. al, 1979), and 2)astrocyte and oligodendrocyte reactions which act on the myelin sheaths (Kruger and Maxwell, 1966, Haymaker, 1969). At 7 months, although no imaging was done, an increase in Tl might be expected in the necrotic areas because
of edema. The change in p-choline may be related to a break down in membrane phosphatidyl choline.

The most likely explanation for the early decrease in TI of irradiated brain is that radiation causes chemical-bond breakage and protein conformational changes that would expose a greater amount of water to relaxation centers of both proteins and lipids. The time related changes in $T 1$ correlated with lipid changes measured in the organic fraction spectra at 4 and 81 days after irradiations. The increase in $T 1$ on the control side of irradiated brains may be related to ventricular enlargement known to occur from examination of the histological sections. Future experiments could be done to correlate Tl measurements of irradiated brain with water content at several times after irradiation. This dissertation has presented new observations on the effects of radiation on the CNS measured by nuclear magnetic resonance.
A. 1 Magnetic field gradient calculation

The spatial resolution of the projection-reconstruction NMR imaging experiment is dependent on the gradient field strength. Therefore, in designing the current output for the gradient power supply, the maximum current was calculated in order to achieve a given spatial resolution. Other factors which determine the spatial resolution are: 1) the signal to noise ratio (which is dependent on field strength, the number of transients, etc.); 2) the receiving coil radius, and 3) the line width of the sample. At 180 MHz proton frequency, we assumed that the limiting factors were the gradient strength and the line width of the sample. The following equation was used to calculate the gradient field strength:

Gradient $=($ Sample line width $(H z)) /\{S p a t i a l$ resolution desired (cm) \}

This equation applies only to the projection reconstruction technique and we assumed that the signal to noise ratio is not a limiting factor at 180 Mhz . To achieve a resolution of .01 cm , the gradient strength was calculated to be $3000 \mathrm{~Hz} / \mathrm{cm}$. This value was converted to current by calculating the frequency separation between two capillary tubes which were placed a known distance apart and the gradient was turned on at a known current. From this calibration, a value of 3 amps corresponded to a gradient field strength of $3000 \mathrm{~Hz} / \mathrm{cm}$.
In order to calculate the gradient strength necessary to achieve the same resolution for the phase encoding technique, the following equation was used:
(change in gradient) $=1$ / [spatial resolution * gradient pulse time]
Therefore, assuming the gradient pulse time was 10 msec and that the gradient can go negative as well as positive, the maximum field gradient needed was $5000 \mathrm{~Hz} / \mathrm{cm}$.

The response times of the X, X, and Z gradients were measure by performing the experiment shown in Figure A. 1 The gradient was turned on for one second (under gate control of the pulse programmer) and then a 90 degree pulse was given after a variable delay time. The FID was Fourier transformed without any filtering and the full-width half maximum was measured as function of delay time. The data was fit a multiple exponential equation. Figure A. 2 shows the results for the X gradient. The X and Y gradient response curve fit best to double exponential with long time components of 19.9 and 16.3 msec, respectively. The Z gradient response fit best to a triple exponential with a long time component of 1.8 seconds. This means that the Z shim coil is strongly coupled to the main magnet and possibly to the other shim coils. This coupling causes a perturbation in the main field. The conclusion was reached that phase encoding schemes could only work with the X and Y shims if the Z gradient is not switched during the NMR experiment.

XBL 849-3680
Figure A.1-Gradient and pulse sequence used to measure main magnetic field response time after gradient pulse.

XBL 849-3681
Figure A. 2 - Line width (related to gradient strength) time response after a magnetic field gradient pulse.

```
! Read.com
! Command file used to set up receiving terminal port
! to receive all characters without interpretation
!
$ SET TERM/NOECHO/NOAUTOBAUD/PASSALL/EIGHTBIT TT
$ RUN DRC:[TODD]readntc
$ SET TERM/ECHO/AUTOBAUD/NOPASSALL/NOEIGHTB IT TT
c
c READNTC.FOR
C
C program to read data from nicolet computer
c the following set of routines is used in the
c data transmission package:
c READNTC,INITTT,TTIO,CHHEAD,CHDATA,UNPACK
c
    BYTE HEAD(25)
    common / ttchan/tt_chan
    integer tt chan
    BYTE TEST(4)
C
    byte re(1000),SE(2)
c
    300
    CALL QIN2(RE,1,TT_CHAN,'WAIT") !read cntrl Z
    CALL QIN2(RE,1,TT_CHAN,'WAIT*) !read SOH (OOI)
    if(re(1).ne.l)stop
C
OPEN (UN IT=1 ,NAME=`DRC:[TODD]NTC.OUT",TYPE=`NEW",
    L
                FORM='UNFORMATTED')
            WRITE (1) (RE(1),i=1,2)
    101 format(1x,203)
C
    se(1)="214 !ACK CHARACTER
c
    121 call qout(SE,1,tt_chan,"WAIT")
C do jj=1,25
    CALL QIN2(RE,25,TT_CHAN,*WAIT*) !HEADER
    CALL CHHEAD(RE,IFSIZE,ISFLAG)
C ISFLAG=1
    IF (ISFLAG.EQ.1)THEN
        SE(1)="214
        WRITE(1)(RE(I),I=1,25)
        GO TO 120
            ELSE
        SE(1)=`377 !retransm1t the data
        GO TO 121
            ENDIF
C
    120 CONTINUE
C IFSIZE=607
ILOOP=IFSIZE/352
```

```
C 1loop=91
    ILAST=MOD(IFSIZE,352)
C ilast=0
    INC=1
C
    122 call qout(SE,l,tt_chan,*WAIT*)
            IF (INC.LE.ILOOP)THEN
        NDATA=352
    ELSE
        NDATA =ILAST +1
    ENDIF
    TYPE *,"NDATA",NDATA, ILAST, INC
    INDATA=NDATA
    NDATA =10
    IDLOOP=(NDATA/2)*5 !2 WORDS PACKED IN 5 BYTES
C
C THE BLOCK OF DATA IS FOLLOWED BY 3 BYTES CHECKSUM
C
C DO JJ=1,IDLOOP+3
    CALL QIN2(RE,IDLOOP+3,TT_CHAN,*WAIT") !DATA
    CALL CHDATA(RE,ISFLAG,NDATA+2)
    ISFLAG=1
C NDATA = INDATA
    IF(ISFLAG.EQ.1)THEN
        SE(1)="'214
        WRITE(i)(RE(I),I=1,IDLOOP+3)
        INC=INC+1
        IF(NDATA.EQ. (ILAST+1))GO TO 130 !FINISHED
        GO TO }12
        ELSE
        SE (1)="377
        GO TO }12
        ENDIF
    130 CLOSE (UNIT=1)
        GO TO 300
C
    stop
end
subroutine inittt
C
C
C
    common/ttchan/tt_chan
    integer tt_chan
    character inname*12
    call get_name_chan(*SYS$COMMAND*,Inname,inlength,tt_chan)
C
    Subroutine to initialize terminal port channel
    TYPE *,'TT_CHAN',TT_CHAN,INNAME,INLENGTH
    return
```

end

```
C
C SUBROUTINE TO UNPACK AND READ THE FILE SIZE AND CHECKSUM
C
    SUBROUTINE CHHEAD(HEAD,IFSIZE, ISFLAG)
C
C ISFLAG = I IF CHECKSUM EQUALS ISUM
C ISFLAG = O IF CHECKSUM DOES NOT EQUAL ISUM
C
BYTE HEAD (1000),FBYTE(5)
INTEGER IHD (25)
ISUM=0
IST=1
DO I=1,5
    DO IJ=1,5
    FBYTE(IJ)=HEAD((I-1)*5 + IJ)
    ENDDO
CALL UNPACK(FBYTE,IW1,IW2)
IHD (IST)=IW1
IST=IST+1
IHD (IST)= IW2
IST=IST+1
C
IF(I.LT.5)THEN
ISUM=ISUM+IW1+IW2
ELSE
ISUM=ISUM+IWI
ENDIF
IF(I.EQ.4)IFSIZE=[W1
IF(I.EQ.5)ICH=IW2
TYPE *,*IW1,IW2*,IW1,IW2
ENDDO !MAIN LOOP
C
IF(IFSIZE.GT.100000)IFSIZE=IHD(5) !.DAT FILE
I 20B IT=2**20
IRE=MOD (ISUM, I 2OB IT)
TYPE *,'ISUM,IRE',ISUM,IRE
IF(IRE.EQ.ICH)THEN
ISFLAG=1
ELSE
ISFLAG=0
ENDIF
C
RETURN
END
C
C PROGRAM TO READ OUTPUT FROM READNTC
```

C
C
C
C DATA- BYTE ARRAY CONTAINING THE DATA
C ISFLAG=1 IF CHECKSUM IS OKAY
C
C

C
BYTE DATA(1000),FBYTE(5)
ISUM=0
ILOOP $=$ NDATA $/ 2$
DO $\mathrm{I}=1$, ILOOP
DO IJ=1,5
FBYTE(IJ)=DATA ((I-1)*5 + IJ)
ENDDO
CALL UNPACK (FBYTE, IW1,IW2)
C TYPE *, ${ }^{\circ}$ IW1, IW2', IW1, IW2
IF(I.LT. ILOOP)THEN
ISUM $=$ ISUM + IW $1+$ IW2
ELSE
ISUM=ISUM+IW I
ENDIF
ENDDO
I20BIT $=2 * * 20$
IRE $=M O D$ (ISUM, I2OB IT)
TYPE *, 'ISUM, IRE', ISUM, IRE, I2OBIT
C
C
IF (IRE.EQ.IW2)THEN
ISFLAG=1
ELSE
ISFLAG=0
ENDIF
C
RETURN
END

C
C

SUBROUTINE UNPACK (FBYTE, LW1,IW2)
BYTE FBYTE(5),TEST(5),IT
C
IT=FBYTE(3)/16
C $\quad \operatorname{WRITE}(5,11)$ IT
11 FORMAT (1X, 'IT', 03)
CALL LIB $\$$ INSV (FBYTE (1) $, 12,8$, IW1)
CALL LIB $\$$ INSV (FBYTE (2) 4,8, IW1)
CALL LIBSINSV(IT, 0,4, IW1)
CALL LIBSINSV(FBYTE(3), 16,4,IW2)
CALL LIB\$INSV (FBYTE (4) , 8, 8, IW2)

CALL LIB\$INSV(FBYTE (5) , 0, 8, IW2) RETURN
END

PROGRAM UCBNMR

C PROGRAM TO CALCULATE TI AND AI IMAGES FROM IMAGE INTENSITY
do $k=1$, NPTSS
do $j=1,1 d i m$
$\operatorname{read}(k)(\operatorname{rbvec}(1, j, k), 1=1,1 d 1 m)$
enddo
enddo
close (unit=1)
close(unit=2)
close(unit=3)

VALUES PIXEL BY PIXEL

the following routines are used in this package:
UCBNMR,T2FIT2,CXFIT, VA04A,CALC2,CHISQ,FUNCTION

INTEGER*2 IBV(64, 64, 4), IVA(80), IVT2(80), IVT1(80), ibuf(256)
INTEGER*2 IZ (80) , IH (256), $\operatorname{IBA}(80), \operatorname{IBT}(80), \operatorname{IBIGT}(64,64), \operatorname{IBIGA}(64,64)$
CHARACTER*40 CFN1,cfn2,cfn3
COMMON /FUNC/IFUNC
DIMENS ION SVEC(4),X(4),Y(4),svec2(4),rbvec (128, 128,3)
dimension al(128),t1(128)
byte bb(48)
IDIM=128
NPTSS $=3$!NUMBER OF DELAY POINTS IN THE RELAXATION
1h(3) $=3$
TYPE *, ${ }^{\prime}$ ENTER THRESHOLD LIMIT*
ACCEPT *,RLIM
do $i=1$,
type *, enter name of image file 1°
$\operatorname{READ}(5,10)$ CFNI
type *, enter name of image file 2°
$\operatorname{READ}(5,10) \mathrm{CFN} 2$
type *, ${ }^{\circ}$ enter name of lmage file 3°
$\operatorname{READ}(5,10)$ CFN3
FORMAT (A)
OPEN (UNIT $=1$, NAME $=C F N 1, T Y P E={ }^{\circ} O L D^{\prime}$, FORM $=$ 'UNFORMATTED', READONLY)
read (1) !HEADER
OPEN (UNIT $=2$, NAME $=$ CFN 2, TYPE $={ }^{\circ}$ OLD', FORM $=$ 'UNFORMATTED', READONLY)
read (2) !HEADER
OPEN (UNIT=3, NAME=CFN3,TYPE='OLD', FORM='UNFORMATTED', READONLY)
read (3) !HEADER
read in the nmr image data
do $k=1$,NPTSS
do $j=1,1 d i m$
$\operatorname{read}(k)(\operatorname{rbvec}(1, j, k), 1=1,1 d i m)$
enddo
enddo
close(unit=1)
close (unit=2)
close (unit=3)

WRITE(4)LH

WRITE(II)IH

 \(X(1)=2000\). \(\quad\) TIME IN MSECONDS
 $X(2)=3000$.
$X(3)=3000$.
TYPE *, ${ }^{\prime} X^{\prime}, X$
C
fact=1000.
C TYPE *, ${ }^{\circ}$ ENTER THE STARTING ROW*
TYPE *,'ENTER THE ROW AND COLUMN OF THE POINT IN 320 SPACE'
READ (5,*)IROW, ICOL
C
IROW=IROW*(128./320.) !CONVERT TO 128 SPACE
ICOL=ICOL*(128./320.)
c
c
do $k=1$, NPTSS
SUM $=0$.
DO J=IROW, LROW +1
DO $I=I C O L, I C O L+1$
SUM=rbvec (I,J,k)+SUM
ENDDO
ENDDO
SVEC (K) $=$ SUM $/$ FACT
enddo
type *, ${ }^{\text {svec }}$,svec
CALL CHISQ(X,SVEC,NPTSS)
if(svec (1).1t.0.) svec (1) $=0$.
call t2fit2(x, svec,al(1),t1(1))
if (tl(1).gt. 3000.) tl(1)=0.
type *, ${ }^{\prime}$ al,t1', al(i), tl(i), $1, j$
continue
c
close(unit=4)
close(unit=11)
stop
end
c
C ROUTINE TO FIND TI AND AI PARAMETERS BY fitting the data to

SUBROUTINE T2FIT2(X1,SVEC,al,t1)
parameter na=3
dimension $p(5), e(5), \mathrm{Xl}(4), \mathrm{Yl}(4), \operatorname{SVEC}(4)$
common /func/ifunc
c
common/dat/npts, $x(n a), y(n a), S V E(N A), s y(n a)$
DO $\mathrm{I}=1, \mathrm{NA}$
$\mathrm{X}(\mathrm{I})=\mathrm{XI}$ (I)

```
    SVE (I)=SVEC (I )
    ENDDO
c
c
40 continue
    npts=3
C
c
c do 10 i=1,npts
11
c
c
c
1 0
c
C
C type 80, npts,((x(i),y(i),sy(i)),i=1,npts)
```



```
    l (1X,3F10.4))
C
C type 81, (p(1),i=1,n)
81 format( - STARTING PARAMETER VALUES P(I)= , 5F10.4)
C
file name -- cxfit.for
c escale -- factor determining stepsize ( =escale^e(i)? )
```

```
c iprint -- flag for print out (0,1,2) -- 0 for minimum P 0
c icon -- flag for convergence -- try =1
c maxit -- maximum number of iterations allowed
c
c
c
c
C type *,'Input fit control params -- ESCALE, IPRINT, ICON, MAXIT*
c accept *, escale,iprint,icon,maxit
C type *, 'Input fit accuracy required -- `,n,` E(I)s`
C \therefore accept *, (e(i),i=1,n)
c Set e's to default values (.01) if not already set
    do }10\textrm{i}=1,\textrm{n
    if(e(1).EQ. O.)e(i)= 0.01
    continue
c
C TYPE *,'E INCXFIT',E
    call va04a(x,e,n,ch1,escale,iprint,icon,maxit)
    return
    end
C FILE NAME -- VA04A.FOR
C SUBROUTINE TO DO NON-LINEAR LEAST SQUARES FITTING
C
    SUBROUTINE VAO4A(x,e,n,f,escale,iprint,icon,maxit)
C
C AUTHOR: M. J. D. POWELL
c
c
    dimension x(n),e(n)
    dimension w(500) ! Workspace dim =n*n+3*n (n=20 ok)
    dimension delx(20) ! OK for n up to 20
```

c

```
    dimension e(n),x(n)
    escale=1.
    iprint=2
    icon=1
    maxit=50
    lto=5 ! Lun for message OP -- set for terminal here
    1to=5
```



```
    ddmag=0.1*escale
    scer=0.05/escale
    jf=n*n+n
    jjj=jj+n
    k=n+1
    nfcc=1
    ind=1
    inn=1
    do 1 1=1,n
    do 2 j=1,n
    w(k)=0.
    if(i-j)4,3,4
    w(k)=abs(e(i))
    w(i)=escale
```

```
4
2
l
c
5
```



```
6
c
7
70
8
58
c
9
c
14
16
17
18
19
15
    k=k+1
    continue
    iterc=1
    continue
isgrad=2
call calcfid(n,x,f) ! Initial calc of chi-sq
fkeep=abs(f)+abs(f)
itone=1
tp=f
sum=0.
ixp=jj
do 6 1=1,n
1xp=1xp+1
w(ixp)=x(1)
continue
idirn=n+1
1line=1
dmax=w(iline)
dacc=dmax*scer
dmag=min(ddmag,0.1*dmax)
dmag=max(dmag, 20.*dacc)
ddmax=10.*dmag
go to (70,70,71), itone
dl=0.
d=dmag
fprev=f
1s=5
fa=f
damdl
dd=d-dl
dl=d
k=1dirn
do }91=1,
x(i)=x(i)+dd*w(k)
k=k+1
continue
fstore=f
call calcfid(n,x,f) ! Calculate chi-sq
nfcc=nfcc+1
go to ( }10,11,12,13,14,96)\mathrm{ , is
if(f-fa)15,16,24
if(abs(d)-dmax)17,17,18
d=d+d
go to 8
write(1to,19)
format(5x,44hVA04A maximum change does not alter function)
go to 20
fb=f
```


w(iline)=w(1line)/dd
iline=1line+l
if(iprint-1)51,50,51
C50 write(lto,52) iterc,nfcc,f,(x(i),i=1,n)
50 CONTINUE
52 format(/lx,9hiteration,15,115,16h function values,
1 10x,'f=*,el6.7/(1x,8el6.7))
go to (51,53),iprint
go to (55,38), itone
if(fprev-f-sum) 94,95,95
sum=fprev-f
j1l=1line
if(idirn-jj) 7,7,84
go to (92,72), ind
fhold=f
1g=6

```
```

ixp=jj
c
c
dd=1.
go to 58
96
112
dirn=1dirn-n
itone=3
k=idirn
ixp=jj
aaa=0.
c

```
```

do 59 i=1,n

```
do 59 i=1,n
```

do 59 i=1,n
ixp=1xp+1
ixp=1xp+1
ixp=1xp+1
w(ixp)=x(i)-w(ixp) :
w(ixp)=x(i)-w(ixp) :
w(ixp)=x(i)-w(ixp) :

```
continue
```

continue

```
continue
go to (112,87), ind
if(fp-f)37,37,91
d=2.*(fp+f-2.*fhold)/(fp-f)**2
1f(d*(fp-fhold-sum)**2-sum) 87,37,37
j=jil*n+1
if(j-jj) 60,60,61
do.62 i=j,jj
k=i-n
w(k)=w(1)
continue
do 97 i=jil,n
w(i-1)=w(i)
continue
```

```
    i=1,n
    1xp=1xp+1
    w(k)=w(1xp)
    if(aaa-abs(w(k)/e(1))) 66,67,67
        aaa=abs(w(k)/e(i))
    k=k+1
    continue
    ddmag=1.
    w(n)=escale/aaa
    lline=n
    go to 7
    1xp=jj
    aaa=0.
    f=fhold
    do }991=1,
    1xp=1xp+1
    x(1)=x(1)-w(1xp)
    if(aaa*abs(e(i))-abs(w(1xp))) 98,99,99
    aaa=abs(w(1xp)/e(i))
    continue
```

c

```
    fkeep=f
    call calcfid(n,x,f) ! Calc chi-sq again
    nfcc=nfcc+1
    ddmag=0.
    go to 108
    1f(f-fp) 35,78,78
    write(lto,80)
    format(5x,37hVA04A ACCURACY LIMITED BY ERRORS IN F)
    go to 20
    1nd=1
    ddmag=0.4*sqrt(fp-f)
        1sgrad=1
        iterc=iterc+l
        if(iterc-maxit) 5,5,81
c *****************
81 continue
c 81 write(lto,82) maxit
82 format(15,' iterations completed by VA04A*)
c ****************
110 f=fkeep
    do 111 i=1,n
        jjj=jjj+1
        x(1)=w(j.jf)
111 continue
    go to 20
    jil=1
    fp=fkeep
    1f(f-fkeep)105,78,104
    jil=2
```

 c
 c
c
c
101
104

```
    fp=f
    f=fkeep
105
    ixp=jj
c
113
C
    f11=2
    go to 92
106 if(aaa-0.1) 20,20,107
20 continue
c
c ***************
c write(lto,1000) (delx(1),1=1,n)
1000 format('0 final set of directions."/(1plOel2.4))
```



```
c
107 1nn=1
        go to }3
        end
file name -- calcfid.for
C
C
c Routine to calculate chi-square fit using data
c in vectors }x,y\mathrm{ and equation found in routine function
c
c n -- number of parameters (4 for this case)
c p -- parameter vector
c
c
c
c
c npts -- # of data points
c x -- independent variable -- time between 90 degree pulses
c y -- measured (depentent) variable -- NMR intensity
c
c
```

```
    CME=(FFUNC-SVEC (1))
    TYPE *,"FUNC",fFUNC,svec(I),X(I)
    TYPE *,'PARM',P(1),P(2),ch1
    SUM=(CME**2)
    CHI=CHI+SUM
    continue
    return
    end
    SUBROUTINE CHISQ(X,SVEC,NPTS)
    DIMENSION X(4),SVEC(4)
    COMMON /START/P(2)
C
C
    P(1)=SVEC (2)*1.5
    P(2)=1000.
    CHI=0.
    do 110 i=1,npts
    CALL FUNCTION (X (I),FUNC,P)
    TYPE *,'FUNC*,FUNC,SVEC(I),X(I)
    chi=(chi+(func - SVEC(1))**2)
    continue
    CHIl=SQRT (CHI)/SVEC(3)
    TYPE *,'CHII*,CHII
C
C ROUTINE CONTAINING THE EQUATION FOR FITTING
C
    SUBROUTINE FUNCTION(X,Y,P)
    DIMENSION P(2)
    YOFFSET=7.8
C
C
C Tl FUNCTIONS
C
c
    Y = P(1)*(1 - EXP(-X/P(2)) )
    Y=P(4)*(1 - 2. * EXP(-X/P(3)) ) + Y
    y=p(2) * (1-(1+p(3)*(1-\operatorname{exp}(-8./p(1))))*exp(-x/p(1)) )
    y=p(5) * (1-(1+p(6)*(1-\operatorname{exp}(-8./p(4)) ))*exp(-x/p(4)) ) +y
    T2 FUNCTIONS
    Y = P(1)*EXP (-X/P(2))
    Y=P(3)*EXP(-X/P(4)) +Y
    Y=P(5)*EXP(-X/P(6)) +Y
    Y = Y + YOFFSET
    TYPE *,'X,Y',X,Y
    SIN FIT FUNCTION
    Y = P(1)*S IND (X*P(2) + P(3))
    Y = Y * EXP(-X/P(4))
```

```
c drc:[sam.subs]odd,oncontour,link,cycle,-
drc: [sam.subs] odd, oncontour,link, cycle,-
```

c drc:[histct.new] culll, cull2, cull3,-
c DRC3: [TODD.NMR]T2FIT2,CXFIT, VA04A, CALC2,CHISQ,FUNCTION
$Y=Y+P(5)$
RETURN
END
program tlanal.for-
to take contours written by program ram and find
the average intensity value inside the contours for each delay
time image. Tl relaxation time is found by fitting the data
to the equation in routine function
the following routines are used in this package
tlanal,-
drc: [histct.new] culll,cull2,cull3,-
DRC3: [TODD.NMR]T2FIT2, CXFIT, VA04A, CALC2, CHISQ, FUNCTION
character cmaker*4,cdate*20,ans*3
character pname*20,date*23,dname*20 /. . /
data
real $\operatorname{vec}(128,128)$, rvec2 $(500,3), \operatorname{RSUM}(3)$
character*40 fn, cfn
integer*2 $\quad n r, x(2000), y(2000), x m n, x m x, y m n, y m x, n c h a r$
integer*2 lpts,1x(20),1y(20)
real ang1(20)
byte text $(10,20)$
data 1mask/-21846/
logical print
integer*2 ib(3000)
logical odd,oncontour
integer $x x$, count,sum, above,below
CHARACTER*40 CFN1,cfn2,cfn3
COMMON /FUNC/IFUNC
DIMENS ION SVEC (4), XFIT (4) ,svec2 (4), rbvec (128, 128, 3)
IDIM=128
NPTSS $=3$

TYPE *, 'ENTER FILE NAME ${ }^{\circ}$
$\operatorname{READ}(5,10) \mathrm{CFN} 1$
OPEN (UN IT $=13$, NAME $=$ CFN 1, TYPE $={ }^{\circ}$ OLD', FORM $={ }^{\circ}$ FORMATTED*)
do $i=1,6$
read (13,*)
enddo
TyPE *, enter name of image file 1°
$\operatorname{READ}(13,10)$ CFN 1

```
do i=1,4
read(13,*)
enddo
```

```
TYPE *,*ENTER NAME OF IMAGE FILE 2*
READ (13,10)CFN2
```

do k=1,NPTSS
do j=1,idim
read(k)(rbvec(i,j,k),i=l,idim)
enddo
enddo
close(unit=1)
close(unit=2)
close(unit=3)
C
C
c
C
c
c
c
ENCODE (1,1000,CFN (5:5))IFIL
FORMAT (IL)
OPEN(UN IT = 11, NAME =C FN, TYPE = ' OLD', FORM=' FORMATTED*,
I
ERR=36)
C
40 READ(11,*,END=37)D,T

```
```

GO TO 40
C
C COME hERE IF THE PlOT file has not been Created
C
36 OPEN (UNIT=11,NAME=CFN,TYPE=*NEW` ,FORM='FORMATTED*) 37 CONTINUE 2000 format(a) icode = str$upcase(fn,fn) open (unit=1,name=fn,status='old`,form='unformatted*)
read (1) nr, (x(i),y(1),i=1,nr)
close(unit=1)
c
c convert points to 128\times128 space
c
do i=1,nr
x(1)=nint (x(1)*128./320.)
y(i)=nint(y(1)*128./320.)
enddo
c
c
300 continue
if (x(1).eq.x(nr) .and. y(1).eq.y(nr)) then
nr = nr - 1
go to 300
endif
call culll(nr,x,y) ! clean up contour
call cull2(nr,x,y)
call cull3(nr,x,y)
c
310 continue
nre = nr
xmn = 500
ymn = 500
xmx =0
ymx = 0
do i=1,nrc
xmn = min(x(1),xmn)
xmx = max(x(i),xmx)
ymn =min(y(1),ymn)
ymx = max(y(i),ymx)
enddo
c

```
```

 ixl = xmn -1
    ```
    ixl = xmn -1
    iyl. = ymn - 1
    iyl. = ymn - 1
    fxu = xmx + 1
    fxu = xmx + 1
    iyu = ymx + 1
    iyu = ymx + 1
DO K=1,3
DO K=1,3
rsum(K)=0.
rsum(K)=0.
ENDDO
ENDDO
n1np=1
```

n1np=1

```
```

 do 400 j=1yl,iyu
 count =0
 xx = ixl
 do while (xx.le.ixu)
 if (.not.oncontour(xx,j,nrc,x,y)) then
 If (odd(count)) then ! pt inside contour
 DO K=1,3 !FOR THE THREE T1 DELAY TIMES
 rvec2(ninp,K)=RBVEC(xx,j,K)/1000.
 rsum(K)=rsum(K) + RBvec (xx,j,K)/1000.
 type *,'sum`, xx,j,RBvec(xx, f,K),ninp,rsum(K) ENDDO ninp=ninp+1 endif xx = xx + 1 else call link(xx,j,nrc,x,y,above,below) if ((above.eq.1) .and. (below.eq.1)) count=count + 1 sum = above + below if ((sum.ne.0) . and. (sum.ne.2)) then write (not, 1070) format(tS,'Error in filling algorithm; skipping to next row') go to 400 endif endif enddo continue 4 0 0 c DO K=1,3 SVEC(K)=rsum(K)/(ninp-1) type *,*average=`,SVEC,ninp-1
c
c find the st. dev.
C
rsum2=0.
do i=1,ninp-1
al=(rvec2(1,K)-SVEC(K))**2
rsum2=rsum2+al
enddo
f = rsum2/(ninp-2)
f=sqrt(f)
c
type *,'st.dev.*,f
ENDDO
C
C FIT THE DATA TO EXP TO FIND TI
C
CALL T2FIT2(XFIT,SVEC,Al,T1)
TYPE *,*Al,T1*,Al,Tl
write(11,*)dose,Tl,(SVEC(II),II=1,3)
C
199 continue
close (unit=3)
close(unit=11)

```
stop
end

PROGRAM BKPRO

C
C [todd.nmr]filt, rdplot,shlo, ramp,buter, HAN, -
C drc:[todd.centro] fname,talk,fill
C
c
C
C TYPE *, THIS PROGRAM IS SET UP TO DO A 128, 128 RECON MATRIX \({ }^{*}\)

PROGRAM USED TO TAKE OUTPUT FROM PROGRAM NTCFTV (OPTION AU) AND PERFORM A FILTERED BACKPROJECTION

THE FOLLOWING ROUTINES ARE USED IN THIS PACKAGE:
bkpro,bcd,[todd.centro]fft, -

DLMENS ION B(300000), \(\operatorname{PK}(512), \operatorname{PKK}(512)\)
DIMENSION PKI (512), IB (300000), IVEC(320), ft(512)
integer*2 ioutdat(256)
dimension a(512,512)
character*40 cfn
COMMON /DIMEN / IND, IB PAD, IDIM, JBPAD, JDIM, IF INAL
LOGICAL FIRST
open the parameter file
ópen(unit=12, name="proj•par", type="old", form='formatted")
read (14,55)cfn
format (a)
TYPE *, \({ }^{\circ}\) THIS PROGRAM IS SET UP TO DO A 128,128 RECON MATRIX•
type *, "Enter the number of bins per projection:"
read ( \(12, *\) ) idim
TYPE *, How many times smaller is this than the input array:"
read (5,*) ntime
NTIME=1
type *, enter the number of projections:"
read (12,*)nang
TYPE *, \({ }^{\circ}\) ENTER THE NUMBER OF CYCLES PER NANG•
READ (12,*)NCYC
type *, Enter the axis of rotation in pixels:
read (12,*) axis
type *, \({ }^{\circ}\) ax', axis
\(\mathrm{n}=128\)
PROJECTION DATA
\(R N=I D I M\)
\(N U=A L O G(R N) / A L O G(2\).

FOURIER TRANSFORM
type *, Enter file of projection data:
read (12,111)cfn
format (a)
type 111, cfn
```

C ZERO THE BACK-PROJECTION ARRAY
C
C
C BACK-PROJECT THE PROJECTION DATA
C
C
c
c
C call rdplot(ft,1d1m*2)
C
c
DO ICYC=1,NCYC
DO 21 I=1,NMAT
B(I)=0.
do np=1,nang
do 1=1,1d1m
pk(1)=0.
pki(1)=0.
pkk(1)=0.
enddo
c
c
C
C call rdplot(pk,1dim*2)
CALL FFT(PK,PKI,IDIM,NU,-1)
C call rdplot(pk,idim*2)
CALL FILT(PK,PKI,IDIM,ft)
C
TYPE *,'PROJECTION NO.`,NP read(2)(pkK(11),if=1,idim*NTIME) DO IJ=1,IDIM*NTIME,NTIME IJJ=(IJ/NTIME)+1 PK(IJJ)=PKK(IJ) ENDDO TYPE *,'PK`,(PK(II),II=1,IDIM)
call rdplot(pk,1dim*2)
CALL FFT(PK,PKI,IDIM,NU,1)

```
```

C CALL RDPLOT(PK,IDIM*2)
c WRITE(5,11) PK
c WRITE (5,12)PKI
11 FORMAT(' PK=',10F7.2)
12 FORMAT(` PKI =*,10F7.2) ANG=FLOAT (np)*ANG INC *PI/ l 80. C type *,* ang*,ang 2 CALL BCd(B,PK,ANG,N,AXIS) C enddo !end of main proj loop C C C C c C go to 62 cfn='test.out* 62 continue C open(unit=11, name=cfn,type=`new',form=*unformatted*)
loutdat(3)=3
write(ll)ioutdat
C
DO f=1,N
WRITE(1I)(A(II,J),II=1,N)
ENDDO
C
ENDDO ! FOR EACH CYCLO
close(unit=11)
close(unit=2)
STOP
END
SUBROUTINE BCD(B,P,TH,N,AXIS)
c
C
C
C
C
C
C
C B -THE BACK-PROJECTION ARRAY WHICH MUST BE SET TO
C
C
C TH -THE ANGLE IN RADIANS FOR THE PROJECTION

```
```

C N -THE LINEAR DIMENSION OF THE ARRAY B
C AXIS -THE PROJECTED LOCATION OF THE ROTATION AXIS IN THE
C
C
C
B(IJ)=B(IJ)+(float(k+l)-z)*p(k)+(z-float(k))*p(k+1)
|O IJL=IJL+N
C
RETURN
END
C
FILT.FTN
SUBROUTINE FILT(PK,PKI,IDIM,ft)
DIMENSION PK(512),PKI(512),FT(512),ra(2),fti(512)
BYTE FN(40)
DO 100 I=1,IDIM
PK(I)=PK(I)*FT(I)
PKI (I)=PKI (I)*FT (I)
RETURN
END
RDPLOT.FTN ROUTINE TO GET A FILE READY FOR PLOTTING IN THE
FAMOUS GPLOT PROGRAM. THE INPUT IS A VECTOR WHICH IS
TO BE PLOTTED AGAINST ITS INDEX
SUBROUTINE RDPLOT(RVEC,IDIM)
DIMENSION RVEC(IDIM)
OPEN PLOT FILE
C
OPEN(UN IT = 3,NAME='RDPLOT.PLT",TYPE=*NEW",FORM=* FORMATTED")
DO 100 I=1,IDIM
RI=I
WRITE(3,*) RI,RVEC(I)
CLOSE(UNIT=3)
FORMAT (2F10.3)
RETURN
END
subroutine shlo(x,ra,m)
c
c subroutine shlo generates the convolution funtion for
c convolution reconstruction of paralell beam data. this
c function is taken from the article by shepp and logan

```
```

C
,IEEE TRANS. NUCL. SCI. VOL. NS-21, (3), (1974).
C
C
C
C
c
C
c
c
dimension x(256),ra(2)
dimension flags(4)
data flags/2.,-1.,0.,0./
if(m.le.0)go to 12
c
type *,* x',x
return
c
12 do 14 i=1,4
14 x(i)=flags(i)
return
end
ramp filter
c
subroutine ramp(ft,idim)
c
c
d=1dim/4.
dinc=d/16.
do i=1,d
ft(i)=(i-1)*dinc
enddo
C
c
c
subroutine buter(ft,idim)
c
dimension ft(512)
c
C
freq=.12 * idim

```
c
ibeg=idim/2
\(11=2\)
do \(1=1 d i m, 1 \mathrm{beg},-1\)
\(f t(1)=f t(11)\)
\(11=11+1\)
enddo
return
end
C
c han filter:
c
c

C

C

C

C
ibeg=idim/2
\(11=1\)
do \(1=1 d i m\), ibeg, -1
\(f t(1)=f t(11)\)
\(11=11+1\)
enddo
return
end
C
.
    subroutine han(ft,idim)
dimension ft(512)

c
do \(1=1\), idim/2
enddo
c
freq=. 5*idim
pi=4. * atan(1.)
ha=0.
```

order=12.
do i=1,idim/2
ft(i)=sqrt(l./(1.+(i/freq)**order))*(i-1)
enddo

```
\(f t(1)=.5 *(1 .+\cos (p i * i / f r e q)) * 1\)

\section*{PROGRAM 2DFT}
        Program to simulate the 2 d Fourier transform experiment
        with variable pulse duration and acquisition time.
        The program calculates an FID matrix which is operated on
        by the 2D Fourier transform.
        The following routines are used in this package:
    2DFT,fft,FUNCTION,FIMA,TRANSPOSE,RPLOT,-
    power,OUTPUT
        dimension \(x(10000), y(10000), y 2(10000), \mathrm{U}(10000), \mathrm{V}(10000), \mathrm{P}(10)\)
        DIMENSION REAL (512,512,3),RIMA(512,512,3),pb(100),pw(100)
        CHARACTER*40 CFN
        type *, \({ }^{\circ}\) EnTER THE NAME OF FILE CONTAINING PARAMETERS*
        \(\operatorname{READ}(5,11) \mathrm{CFN}\)
        FORMAT (A)

    n=64
    type *, \({ }^{n} n^{n}, \mathrm{n}\)
    READ ( \(3, *\) ) NP, ( \(P(I), I=1, N P\) )
    read (3,*) ncomp, ((pb (i), pw(i)), \(1=1, n c o m p)\)
    TYPE *, ENTER THE NUMBER OF PARAMETERS AND THE PARAMETERS*
    TYPE *, \({ }^{\circ}\) PAR \(={ }^{\prime}, \mathrm{NP},(\mathrm{P}(\mathrm{I}), \mathrm{I}=1, \mathrm{NP})\)
    type *, ncomp,((pb(1),pw(1)),i=1,ncomp)
    do \(1=1\), ncomp
    \(\mathrm{pb}(1)=\mathrm{pb}(1) * 14\).
    enddo
    TYPE *, \({ }^{\circ}\) ENTER FLIP FACTOR (10.) \({ }^{\circ}\)
    READ (5,*)FFACT
    DO JJ=1,N
    INC=JJ-1
    PINC=INC*90./FFACT
    P(3)=pinc
    DO \(\mathrm{I}=1, \mathrm{n}\)
    \(X(1)=1-1\)
    func =. 1591549431 * width \(/((x(1)\)-averag \() * * 2+(w i d t h / 2) * * 2\).
    func \(=\) func*scale
        CALL FUNCTION(X (I),REAL (I,JJ, l), P,ncomp,pb,pw)
        WRITE \((9,100) \mathrm{X}(\mathrm{i}), \mathrm{Y}(\mathrm{I})\)
        CALL FIMA (X(I),RIMA(I,JJ, l), P,ncomp,pb,pw)
        WRITE(12,100)X(1),Y2(I)
    FORMAT (1F10.4,F10.3)
    ENDDO
    ENDDO
    CALL OUTPUT (REAL, 1)
C
C
TYPE *, \({ }^{\prime} N={ }^{\prime}, N\)
\[
\mathrm{fft}
\]
C \(\quad\) TYPE *, \(\operatorname{REAL}(I, J, 2)^{\circ},(\operatorname{REAL}(I, J, 2), I=1,128)\)
C ENDIF
    ENDDO
    CALL RPLOT (REAL, 2)
    CALL OUTPUT (REAL, 2)
C A REAL ARRAY AND AN IMAGINARY ARRAY EACH OF DIMENSION N ARE INPUTS TO THIS
C ROUTINE. NU IS THE POWER TO WHICH 2 IS RAISED TO GIVE N, I.E. N=2**NU
C WHEN IE \(=+1\), THE INVERSE TRANSFORM (E**+1) IS CALCULATED.
C WHEN IE \(=-1\), THE FORWARD TRANSFORM (E**-I) IS CALCULATED.
C INITIALIZATION
```

C do i=1,n
C X(I)=I
C WRITE(7,100)X(1),y(i)
C enddo
CALL TRANSPOSE (REAL,2)
CALL TRANSPOSE(RIMA,2)
CALL OUTPUT (REAL,2)
C CALL OUTPUT (RIMA, 2)
DO J=1,N
call FFT(REAL(1,J,2),RIMA(1,J,2),N,NU,IE)
prepare fft output
do i=1,n/2
REAL (I+N,J,3)=REAL (1,J,2)
REAL (I+N/2,J,3)=REAL (I+N /2,J,2)
y2(i+n)=y2(i)
enddo
C
C y(i)=y(n/2+1)
REAL(I,J,3)=REAL(N/2+I ,J,3)
y2(1)=y2(n/2+1)
enddo
C
ENDDO
CALL TRANSPOSE (REAL,3)
CALL OUTPUT (REAL, 3)
call power(real,rima,3)
C
C
stop
end
C ROUTINE CONTAINING THE REAL PART OF
C
THE EQUATION
SUBROUTINE FUNCTION(X,Ysum,P, ncomp,pb,pw)
DIMENSION P(10),pb(100),pw(100)
C
C
C
C
c
C
T2 FUNCTIONS
Y = P(1)*EXP (-X/P (2))
Y = P(3)*EXP(-X/P(4))+Y
SIN FIT FUNCTION

```
```

C
C
C P(1)=MAXIMUM AMPLITUDE OF SPIN
C PW(i)=RESONANT FREQUENCY OF SPIN
C P(3)=PHASE (RELATED TO FLIP ANGLE)
C P(4)=T2 STAR (FARRER AND BECKER)
C Pb
C
C
C
C
C
C ROUTINE CONTAINING THE IMAGINARY PART
C
C
SUBROUTINE F[MA(X,Ysum,P,ncomp,pb,pw)
DIMENSION P(10),pb(100),pw(100)
C
C
C
c Y = P(2)*(1 - 2. * EXP(-X/P(1)))
c Y = P(4)*(1 - 2. * EXP(-X/P(3))) +Y
C y = p(2)* (1-(1+p(3)*(1-\operatorname{exp}(-8./p(1))))*exp(-x/p(1)))
c
C
C T2 FUNCTIONS
C
C Y = P(1)*EXP(-X/P(2))
C Y = P(3)*EXP(-X/P(4)) +Y
C
C SIN FIT FUNCTION
C
C FIRST COMPONENT
C
C P(1)=MAXIMUM AMPLITUDE OF SPIN
C P(2)=RESONANT FREQUENCY OF SPIN
C P(3)=PHASE (RELATED TO FLIP ANGLE)
C P(4)=T2 STAR (FARRER AND BECKER)
C P(5)=B| FIELD
C
ysum=0.
do i = 1,ncomp

```
```

 FLIP=Pb(1) *P(3)
 Y=P(1)*pb(i)
 C TYPE *,'Y 1',Y
Y = Y * sind(flip) * SIND(X*Pw(i) -90.)
TYPE *,'Y 2',Y
Y=Y * EXP(-X/P(4))
TYPE *,*Y 3*,Y
ysum =ysum +y
enddo
C
C
RETURN
END
SUBROUTINE TRANSPOSE (REAL,NDIM)
DIMENSION REAL(512,512,3),TEMP(256,256)
C
C
C
IDIM=64
DO J=1,ID IM
DO I=1,IDIM
TEMP(I,J)=REAL (J, I, NDIM)
ENDDO
ENDDO
C
DO J=1,IDIM
DO I=1,IDIM
REAL (I, J,NDIM)=TEMP(I,J)
ENDDO
ENDDO
RETURN
END
SUBROUTINE RPLOT(REAL,NDIM)
DIMENSION REAL(512,512,3)
C
IDIM=64
RMAX=-100000.
DO J=1,IDIM
DO I=1,IDIM
RMAX=MAX(REAL (I, J,NDIM),RMAX)
IF(RMAX.EQ.REAL (I, J,NDIM))RIMAX=I
ENDDO
ENDDO
TYPE *,*RIMAX',RIMAX
C
OPEN(UNIT=2,NAME="RPLOT.OUT",TYPE=*NEW",FORM=* FORMATTED*)
C
DO I=1,ID IM
X=I
WRITE (2,10)X,REAL (RIMAX,I,NDIM)
ENDDO
FORMAT(2F10.3)
C

```
```

CLOSE(UNIT=2)
RETURN
END
SUBROUTINE power(REAL,rima,NDIM)
C
C ROUTINE to CALCULATE the modulus from the real
C
C
DIMENSION REAL(512,512,3),rima(512,512,3),temp(512)
CHARACTER*40 CFN
INTEGER*2 IVEC(256),IH(256)
IH(3)=1
C
idim=64
C
C
3 CFN(1:7)=' power.RAM*
C
4 CONTINUE
C
OPEN(UNIT=2,NAME=CFN,TYPE=`NEW',FORM='UNFORMATTED*) WRITE(2)IH !HEADER DO J=1,idim DO I=1,1dim tl=real(i,j,ndim)**2 + rima(i,j,ndim)**2 temp(i)=sqrt(tl) ENDDO write(2)(temp(1),i=1,idim) ENDDO CLOSE (UNIT=2) C RETURN END SUBROUTINE output(REAL,NDIM) C C ROUTINE TO OUTPUT MATRIX TO DISK FOR RAMTEK C OR VERSATEK DISPLAY C C DIMENSION REAL(512,512,3),rvec(256) CHARACTER*40 CFN INTEGER*2 IVEC(256),IH(256) IH(3)=1 idim=64 C C C GO TO (1,2,3)NDIM 1 CFN(1:7)='FID.RAM GO TO 4 CFN(1:7)=`FFI.RAM*
GO TO 4
CFN(1:7)='FF2.RAM*

```

C
4 CONTINUE
C
```

OPEN(UNIT=2,NAME=CFN,TYPE=`NEW`, FORM='UNFORMATTED')
WRITE(2)IH !HEADER
DO J=1,idim
DO I=1,1dfm
RVEC(I)=REAL (I,J,NDIM)
ENDDO
WRITE(2)(RVEC(I),I=1,IDIM)
ENDDO
CLOSE (UNIT=2)
RETURN
END

```
C
Program acmbl
c
c program to display two dimensional matrix on the versatek
c using the 3d plot package from acm computer journal
c
c The following routines are used in this package:
c acmBl,plot 3d,sys\$1ibrary:phasel/lib
    dimension mask(4000), vertex(16),outbuf(256),z(256),A(512,256)
    dimension xdata(256), zdata(256)
    DIMENSION B(200,200), Al \((200,200)\)
    CHARACTER*40 CFN
    \(\operatorname{sinc}(x)=\sin (x) / x\)
C
c First figure
c generate data running parellel to x-axis
        call plots(0.,0.,0.)
        call factor(.9)
        write(5,1000)
    1000 format('SEnter theta,phi: ")
    read (5,2000) theta,phi
    2000 format(2f10.0)
c
C
    TYPE *, \({ }^{\text {ENTER }}\) FILE NAME:
        \(\operatorname{READ}(5,152)\) CFN
        TYPE *,'ENTER X, Y DIMENSION OF INPUT'
        READ (5,*)IDIM, JDIM
        TYPE *,'ENTER INCREMENTS FOR X, \({ }^{\circ}\)
        READ (5,*)IXINC,IYINC
        TYPE *, \({ }^{\text {ENTER DIVIDING SCALE FACTOR FOR INPUT VALUES* }}\)
        \(\operatorname{READ}(5, *)\) FSCALE
        TYPE *, \(\cdot\) ENTER THE XSCALE*
        READ (5,*)XSCALE
C
    152 FORMAT (A)
```

 open (unit=2, name=Cfn,type='old",
 form="UNformatted",readonly)
 READ(2) !HEADER
 do 12 J=1,JDIM
 read (2) (A(I,J),I=1,IDIM)
 C TYPE *** A},(A(I,J),I=1, 100)
\$2 continue
C
C DO J=1,100,-1
C DO I=1,100,-1
C
A1(I,J)=A(101-I,101-J)
ENDDO
C ENDDO
C
JJ=1
II=1
DO J=1,JDIM
DO I=1,IDIM
B (I,J)=A(I,J)
ENDDO
ENDDO
DO J=5,8
TYPE *,'J',J
TYPE *,(B (I,J),I=50,150)
ENDDO
do 20 nline * 1,JDIM
do }10\mathrm{ npoint=1,IDIM
OUTBUF (NPOINT)=B (NPOINT,NLINE)/FSCALE
C type*,xdata(npoint),outbuf(npoint),zdata(npoint)
10 continue
c Plot each line as it is computed
z(1)=0.
xdata(1) = 0.
call plot3d(10,xdata,outbuf,z,XSCALE,4.,-.1,
nline, IDIM,phi,theta,4.6,3.,10.,mask,vertex)
20 continue
IANS=1
IF(IANS.EQ.1)THEN
GO TO 111
ENDIF
c Second figure
c Generate array of z components
do 30 nline=1, IDIM
z(nline) = -. 1*(nline-1)
30 continue
c Generate data running parallel to z-axis
do 50 nline = 1,IDIM
x = . 1*(nline-1)
do 40 npoinT=1,IDIM
OUTBUF(NPOINT)=A (NLINE,NPO INT)/FSCALE
4 0
continue
c Plot each line as it is computed
call plot3d(1011,x,outbuf,z,0.,4.,1.,

```
```

nline,IDIM, ph1,theta,4.6,3.,10.,mask,vertex)
50 continue
c Draw a frame on the figure
c call framer(3,vertex,mask)
60 continue
111 call plot(11.,0.,3)
call plot(1l.,0.,2)
call plot(0.,0.,999)
stop
end

```
```

```
NMR 1.COM
```

```
NMR 1.COM
Command filed used to invoke programs
Command filed used to invoke programs
to convert nicolet raw data files into
to convert nicolet raw data files into
vax readable files and reconstruct the image
vax readable files and reconstruct the image
P2=3
P2=3
INQUIRE FILENAME
INQUIRE FILENAME
COPY 'FILENAME FORO13.DAT
COPY 'FILENAME FORO13.DAT
run drc:[todd.nmr]ntcftv. }12
run drc:[todd.nmr]ntcftv. }12
LOOP:
LOOP:
RUN DRC3:[TODD.NMR]BKPRO
RUN DRC3:[TODD.NMR]BKPRO
del rea.out;
del rea.out;
P2=P2-1
P2=P2-1
IF P2.GT.O THEN GOTO LOOP
IF P2.GT.O THEN GOTO LOOP
del for000.dat;*
del for000.dat;*
DEL REA.OUT;*
DEL REA.OUT;*
PUR FORO13.DAT
PUR FORO13.DAT
MAIN PROGRAM NTCFTV
```

```
MAIN PROGRAM NTCFTV
```

```
```

PROGRAM TO TAKE THE NMR FID DATA AND PROCESS IN MANNER VERY SIMILAR

```
PROGRAM TO TAKE THE NMR FID DATA AND PROCESS IN MANNER VERY SIMILAR
TO NICOLET NTCFT PROGRAM, IE, FOURIER TRANSFORM, APODIZATION,
TO NICOLET NTCFT PROGRAM, IE, FOURIER TRANSFORM, APODIZATION,
PHASE CORRECTION, ETC. THE AU ROUTINE LINK IS SET UP FOR PROJECTION
PHASE CORRECTION, ETC. THE AU ROUTINE LINK IS SET UP FOR PROJECTION
DATA PROCESSING TO BE GIVEN TO PROGRAM BKPRO.
DATA PROCESSING TO BE GIVEN TO PROGRAM BKPRO.
THE FOLLOWING ROUTINES ARE USED IN THIS PACKAGE:
THE FOLLOWING ROUTINES ARE USED IN THIS PACKAGE:
NTCFTV,OUTRAM,NTCFTV.BDI/OPT, PHASEC, YSCALE,NTCDAT, FFT, -
NTCFTV,OUTRAM,NTCFTV.BDI/OPT, PHASEC, YSCALE,NTCDAT, FFT, -
ZOOM, APOD,AUTOPHASE,READ,CHDATA3,FOURIER, fourier2, POWER,buter,-
ZOOM, APOD,AUTOPHASE,READ,CHDATA3,FOURIER, fourier2, POWER,buter,-
HAN, FILT, FINDP ,CH 16, BAS,MID, SMOOTH, TRANS POSE, FOURIER3, PLOTNMR, -
HAN, FILT, FINDP ,CH 16, BAS,MID, SMOOTH, TRANS POSE, FOURIER3, PLOTNMR, -
PPM, headex, PRESPEC , PPM2, test2d, reverse,subsp,save,D3POI,-
PPM, headex, PRESPEC , PPM2, test2d, reverse,subsp,save,D3POI,-
[TODD.NMR]READOUT, UNPACK, CHHEAD, CHDATA2, CONVRT, INTCON,TEXTCON, -
[TODD.NMR]READOUT, UNPACK, CHHEAD, CHDATA2, CONVRT, INTCON,TEXTCON, -
DRC:[RAM]initrm,RMCROS,bell,upper,CLRPLN,TTIO,NEWP1,DASH,CIRCl,crvfit,-
DRC:[RAM]initrm,RMCROS,bell,upper,CLRPLN,TTIO,NEWP1,DASH,CIRCl,crvfit,-
DISPLAY/LIB,-
DISPLAY/LIB,-
DRC:[SAM.SUBS]MARK,VISUBS /LIB,-
DRC:[SAM.SUBS]MARK,VISUBS /LIB,-
    Eip"
    Eip"
    ROUTINES READ, APOD, FOURIER3, CH16, TRANSPOSE, AUTOPHASE, PRESPEC,
    ROUTINES READ, APOD, FOURIER3, CH16, TRANSPOSE, AUTOPHASE, PRESPEC,
    AND PPM2 ARE USED IN THE 2D FOURIER TRANSFORM ANALYSIS OF THE
    AND PPM2 ARE USED IN THE 2D FOURIER TRANSFORM ANALYSIS OF THE
    PHASE-ENCODED SPECTROSCOPY DATA
    PHASE-ENCODED SPECTROSCOPY DATA
    ROUTINES READ, FOURIER3, CH16, BAS, MID, AND POWER ARE USED IN
    ROUTINES READ, FOURIER3, CH16, BAS, MID, AND POWER ARE USED IN
    PREPARING PROJECTION DATA FOR IMAGE RECONSTRUCTION
    PREPARING PROJECTION DATA FOR IMAGE RECONSTRUCTION
PROGRAM NTCFTV
PROGRAM NTCFTV
INTEGER*2 IOUTDAT (256)
INTEGER*2 IOUTDAT (256)
COMMON /NMRDAT/DNMR(10000),ISIZE,YSC
COMMON /NMRDAT/DNMR(10000),ISIZE,YSC
COMMON /NMRDAT2/DNMR2(1024,512)
COMMON /NMRDAT2/DNMR2(1024,512)
COMMON /PPMNMR/PNMR (10000)
COMMON /PPMNMR/PNMR (10000)
COMMON /APOD/LB
COMMON /APOD/LB
COMMON /OPTION/OPT
COMMON /OPTION/OPT
character*I ans
```

character*I ans

```
!
```

 DIMENS ION PK(20000),PKI (20000),FT(512)
 CHARACTER*2 OPT
 CHARACTER*40 CFN
 type *,'Do you want to use ramtek?'
 read(13,3) ans
 C
C
C
30 TYPE *,'OPTIONS;'
TYPE *,*GA = GET NMR DATA FROM DISK EM = EXPONENTIAL APOD*
TYPE *,}\mp@subsup{}{}{\circ}\textrm{GC}=\textrm{GET NMR DATA FROM .DAT FILE ON DISK'
IYPE *,*GX = GET ASCII NMR DATA FROM DISK'
TYPE *,'ZO = ZOOM IN ON PART OF THE DATA`
TYPE *,*FT = FOURIER TRANSFORM PH = PHASE CORRECTION*
type *,'PC = AUTO PHASE , AU = LINK COMMANDS*
TYPE *,'SC = SCALE IN Y MO = EXIT'
FS = SYMMETRIC FID FILL BEFORE FT
MC= CALCULATE THE POWER SPECTRUM
bu=butterworth filter
ha= han filter
f3= fourier transform without zero
LV= LIST INTENSITY VALUES BETWEEN MARKS
LB = LINE BROADENING
CA = CHANGE ARTIFACT OF -16. ON FID
BC = BASE LINE CORRECTION
MA = MIDDLE POINT AVERAGE
SM = SMOOTHING 2 POINT
GI = LOAD IN TOTAL DAT FILE
G2 = LOAD IN A GIVEN BLOCK OF DAT FILE FOR PROCESS ING
TA = TRANSPOSE AND FT
11 = OUTPUT TO UNIT 11 FOR RAMTEK
PL = PREPARE FILE FOR PLOTTING
PM= RESCALE FOR PPM
PR= PREPARE 2D SPECTRA
READ (13, 10)OPT
FORMAT (A)
RETCODE = STR SUPCASE (OPT ,OPT)
C
IF(OPT.EQ.*GA'.OR.OPT.EQ.* GC*)THEN
CALL READOUT
CALL OUTRAM
ENDIF
C
format(a)
retcode=str\$upcase(ans,ans)
if(ans.eq." Y')then
CALL INITRM !INITIALIZE RAMTEK
CALL INITBP !INITIALIZE BITPAD
endif
DEFAULT VALUES
LB=10
Ipinc=3
c
1 0

```
```

 IF (OPT.EQ.*AU*)THEN
 OPEN(UNIT=12,NAME='REA.OUT',TYPE=`NEW`, FORM=*UNFORMATTED*)
 IOUTDAT(3)=3 !RAMTEK HEADER
 WRITE(12)IOUTDAT
 TYPE *, 'IPROJ, ,IIPROJ
 DO II=1,IIPROJ-1
 DO I=1,ISIZE*2
 DNMR (I)=DNMR2(I,II)
 ENDDO
 CALL CH16
 CALL BAS
 CALL APOD
 call fourier3
 C CALL AUTOPHASE
call mid
CALL OUTRAM
CALL POWER
CALL FOURIER
CALL MID
CALL SMOOTH
WRITE (12)(DNMR (JJ), JJ=1, IS IZE)
C
C
C
C
ormat(a)
write(12)cfn
close(unit=12)
IPINC=IPINC-I
IF(IPINC.GT.0)THEN
GO TO 56
ELSE
STOP
ENDIF
ENDIF
C
C
IF (OPT.EQ. 'G1*)THEN
56 CALL READ(IPROJ)
I IPROJ=[PROJ-1
GO TO 55
ENDIF
C
IF(OPT.EQ.'TA`) CALL TRANSPOSE(IIPROJ)
C
IF(OPT.EQ.*PR') CALL PRESPEC(IIPROJ)
C
IF(OPT.EQ.*G2*)THEN
TYPE *, ENTER THE BLOCK TO DISPLAY:*
READ(5,*)II
c

```

DO \(\mathrm{I}=1, \mathrm{IS}\) IZE*2
DNMR (I)=DNMR2 (I, II)
if (ans.ne. \(Y^{\prime}\) ) then
if(1.1t.isize)type \(*, i, \operatorname{pnmr}(1), \operatorname{dnmr}(1)\)
endif
ENDDO
CALL OUTRAM
ENDIF
C
IF (OPT.EQ.' PL') CALL PLOTNMR
C
IF (OPT.EQ.'11*)WRITE (11) (DNMR (I) , I=1, IS IZE)
C
IF (OPT.EQ. \({ }^{\circ}\) PM \({ }^{\circ}\) ) CALL PPM
C
C
C
C
IF (OPT.EQ. \({ }^{\text {GX }}\) ) CALL NTCDAT
C
IF (OPT.EQ.'LB')THEN
TYPE *,'LB=', LB
\(\operatorname{READ}(5, *) L B\)
ENDIF
C
IF (OPT.EQ. \({ }^{\circ} \mathrm{CA}{ }^{\prime}\) ) CALL CH16
C
IF (OPT.EQ. \({ }^{\circ} \mathrm{EM}^{\circ}\) )CALL APOD
C
IF (OPT.EQ. \({ }^{\circ} \mathrm{LV}^{\prime}\) ) CALL FINDP
C
IF (OPT.EQ. \({ }^{\text {M }}\) M \({ }^{\prime}\) ) THEN
CALL MID
CALL OUTRAM
ENDIF
C
IF (OPT.EQ. \({ }^{\circ} \mathrm{BC}^{-}\)) CALL BAS
C
IF (OPT.EQ.*SM \({ }^{\circ}\) )THEN
CALL SMOOTH
CALL OUTRAM
ENDIF
c
c
if (opt.eq. \({ }^{\circ}\) BU') THEN
C
IDIM \(=512\)
IS LZE \(=512\)
RN=IDIM
\(\mathrm{NU}=\mathrm{ALOG}\) (RN)/ALOG(2.)
C
c define the filter
CALL BUTER (FT, IDIM)
DO \(\mathrm{I}=1\), IDIM
DNMR (I) \(=\mathrm{FT}\) ( I )
ENDDO
C
CALL OUTRAM
\(\operatorname{READ}(5, *)\) JUNK
C
c
do \(1=1,1 \mathrm{dim}\) \(\mathrm{pk}(1)=0\).
pki(i)=0.
enddo
c
do \(1=240,270\)
pk(1)=1.
enddo
DO \(I=1, I D I M\)
DNMR (I) \(=\) PK ( I )
ENDDO
C
CALL OUTRAM
TYPE *, \({ }^{\prime}\) PK', (PK(II),II=1,IDIM)
c
CALL FFT (PK, PKI, IDIM,NU,-1)
DO \(\mathrm{I}=1\), IDIM
DNMR ( I )=PK (I)
ENDDO
C
CALL OUTRAM
READ (5,*)JUNK
CALL FILT(PK,PKI,IDIM,ft)
DO I=1,IDIM
DNMR (I) \(=\) PK (I)
ENDDO
C
CALL OUTRAM
\(\operatorname{READ}(5, *)\) JUNK
CALL FFT (PK,PKI,IDIM,NU,1)
C
DO \(I=1\), IDIM
DNMR (I)=PK (I)
ENDDO
C
CALL OUTRAM
C
```

 ENDIF
 C
IF(OPT.EQ.'MC`)CALL POWER
C
C
IF(OPT.EQ•*PC*)CALL AUTOPHASE
C
C
IF(OPT.EQ. 'FT')CALL FOURIER
C
C
C
C
C
C
IF(OPT.EQ.*MO*)STOP
C
C
GO TO 30
END
C
C PROGRAM TO READ OUTPUT FROM READNTC
C
SUBROUTINE READ(IIPROJ)
CHARACTER*40 CFN
COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
COMMON /OPTION /OPT
CHARACTER*2 OPT
BYTE HEAD(100), DATA(1000), FBYTE(5),AA(4),A2(4)
EQU IVALENCE (AA,IW1),(A2,IW2)
TYPE *,*ENTER FILE NAME*
READ (13,10)CFN
FORMAT (A)
OPEN(UN IT = 1,NAME = CFN,TYPE = 'OLD* ,FORM="UNFORMATTED*)
READ(1)(HEAD (I), I=1,2)
WRITE(5,11)(HEAD (I), I=1,2)
DO II=1,10
READ (I)(DATA (I), I=1, 25)
CALL CHHEAD(DATA,IFSIZE,ISFLAG)
TYPE *,'IFSIZE*,IFSIZE,ISFLAG
ISIZE=[FSIZE-351 !TO PASS TO OUTRAM
TYPE *,'ENTER THE SIZE OF THE ARRAY:*
READ(13,*)ISIZE
TYPE *,*ENTER THE TOTAL NUMBER OF PROJECTIONS*
READ (13,*)NPROJ
TYPE *,'ENTER THE STARTING BLOCK NOT COUNTING HEADER*

```

READ (13,*)IBLOCK

C
c ILOOP=IFSIZE/352
c \(\quad\) LLAST \(=\mathrm{MOD}\) (IFSIZE, 352)
1100p=NPROJ+1
ilast \(=0\)
TYPE *, ILOOP", ILOOP, ILAST
INC=1
ifproj=1
ist=1 !index for dnmr data array
C
CONTINUE
IF (INC.LE. ILOOP)THEN
NDATA \(=352\)
ELSE
NDATA \(=1\) LAST +1
ENDIF
IDLOOP \(=(\) NDATA \(/ 2) * 5 \quad!2\) WORDS PACKED IN 5 BYTES
C TYPE *, 'NDATA, IDLOOP'. NDATA. IDI.OND INr
RFan(I) (natal.t.t) t.tal (ninnp+?)
if(inc.ea. l)call headex (data rinfn)
rF([NC. GE. TRT.OCK+I ITHFN
CALL CHDATA3 (DATA, ISFLAG, NDATA+2, INC, iiprof, ist)
ENDIF
C TYPE *, \({ }^{\circ}\) ISFLAG* , ISFLAG
INC \(=1 N C+1\)
IF (NDATA.EQ. (ILAST+1))GO TO 130 !FINISHED
GO TO 122
C
CLOSE (UN IT=1) RETURN
END
C
c program to read header information from nmr data
c
C
C
C DATA- BYTE ARRAY CONTAINING THE DATA
C ISFLAG \(=1\) IF CHECKSUM IS OKAY
C NDATA- NUMBER OF DATA POINTS
c

BYTE DATA (1000), FBYTE(5), BB(60)
INTEGER ITEXT (100), IB (352)
COMMON /NMRDAT/DNMR (20000), ISIZE,YSC !NMR DATA
COMMON /OPTION /OPT
common /passppm/rinfo(10)
CHARACTER*2 OPT
REAL*8 RR
LSUM \(=0\)
IBST=1

C
ndata \(=352\)
ILOOP=NDATA/ 2
DO \(I=1\), LLOOP -1
IW \(1=0\)
IW2 \(=0\)
DO \(\mathrm{IJ}=1,5\)
FBYTE (IJ) \(=\) DATA ( \((\mathrm{I}-1)\) *5 + IJ)
ENDDO
CALL UNPACK (FBYTE, IW1,IW2)
C
C STORE THE UNPACKED BYTES FOR LATER PROCESS ING
C
IB ( IBST ) \(=\) IW 1
LBST=IBST+1
IB ( IBST ) \(=\mathrm{IW} 2\)
IBST=IBST+1
enddo
C
ir=1
TYPE *, \({ }^{\prime}\) number of sCans'
DO \(I=1,10\)
TYPE *, IB (I)
ENDDO
do \(1=323,331,2\)
type *, 1
call convrt(ib(i),ib(i+1),rr)
type *, sweep width', rr
rinfo(ir)=re
ir \(=1 \mathrm{r}+1\)
enddo
type *, rinfo
C FOR .DAT FILES FROM THE 180 SPECTROMETER
DO \(1 \mathrm{I}=75,101,2\)
CALL CONVRT(IB (II), IB (II +1 ), RR)
C \(\quad \operatorname{IF}(I I . E Q .75) \operatorname{WRITE}(7,726)\)
726 FORMAT(IX, D2-D7 = IN USEC')
IF (II.EQ.89.OR.II.EQ.91)THEN
WRITE \((7,728)\)
728 FORMAT (1X,'P1-P2 \(=^{\circ}\) )
WRITE (7,727)RR/1.25
ENDIF
C IF (II.EQ.97) WRITE \((7,729)\)
729 FORMAT (1X, DI VALUES ARE')
727 FORMAT (F20.9)
TYPE *, \({ }^{\prime}\) II,RR', II,RR/1.25
ENDDO
c
return
end

C PROGRAM TO READ OUTPUT FROM READNTC
C AND TO CHECKSUM OF THE 352 BLOCK DATA
C

C
C DATA- BYTE ARRAY CONTAINING THE DATA
C ISFLAG=I IF CHECKSUM IS OKAY
C NDATA- NUMBER OF DATA POINTS
C
BYTE DATA (1000), FBYTE (5), BB (60)
INTEGER ITEXT (100), IB (352)
COMMON /NMRDAT /DNMR (20000), ISIZE,YSC !NMR DATA
COMMON /NMRDAT2/DNMR2(1024,512)
COMMON /OPTION /OPT
CHARACTER*2 ORT
REAL*8 RR
ISUM=0
C
ILOOP \(=352 / 2\)
DO \(I=1\), ILOOP
IW \(1=0\)
IW2=0
DO \([J=1,5\)
FBYTE (IJ) \(=\) DATA \(((I-1) * 5+I J)\)
ENDDO
CALL UNPACK (FBYTE,IW1,IW2)
C
C
C FOR THE INTEGERS
C

IF (INC.GT.I)THEN
CALL INTCON (IW1,II2)
C
DNMR2 (ISTb, IPROJ) \(=1\) I 2
istb=1stb+1
type *, 'istb, dnmr", istb, dnmr(ist B)
c

CALL INTCON(IW2,II2)
C
DNMR 2 (ISTb, IPROJ) \(=\) II 2
ist \(b=1\) st \(b+1\)
IF (ISTB.GE.ISIZE*2)THEN
ISTB \(=1\)
\([P R O J=I P R O J+1\)
GO TO 110
END IF
END [F
ENDDO
C
110 RETURN
END

```

 IARR (I+20)=L IB $EXTZV (I-1,1,I2)
 ENDDO
 TYPE *,*IARR",(IARR(I),I=1,40)
 C
C
C
R=R+MANT(I)*2.0**(IEXP-I)
CONTINUE
C
IF(ISIGN.LT.0)'R=-R

```
```

RETURN
END
I2=11
RETURN
ELSE
DO I=20,31
CALL LIBSINSV(IBIT,I,1,ITEMP)
ENDDO
[2=1TEMP
ENDIF
C
C
C ROUTINE TO CONVERT 6 BIT ASCII NICOLET TO
C* VAX VMS ASCII
C
C
C ITEXI - INPUT INTEGER ARRAY FROM UNPACK WHERE EACH
C
C
C
C
C
C
C
C
C
IBIT=1 !TO INSERT TO THE 7TH BIT
DO INC=1,NEL
DO I=1,3
IPOS = (I-1)*6 !BIT POSITION OF INPUT INTEGER
IBPOS = (INC-1)*3 + I !BYTE POSITION OF OUTPUT CHARACTER
BI(IBPOS)=LIB SEXTZV (IPOS,6,ITEXT (INC))
IF(BI(IBPOS).LE.40)CALL LIB\$INSV(IBIT,6,1,BI(IBPOS))

```

IF (IB IT.EQ.0)THEN
```

 ENDDO
 ENDDO
 DO II=1,NEL
 DO I=1,3
 IRI=(II-1)*3
 IRR=(II)*3 + I
 BB (IRI+I)=B I (IRR-I)
 ENDDO
 ENDDO
 C
C
C PROGRAM TO UNPACK BITS FROM PROGRAM IOTRAN NICOLET
C
SUBROUTINE UNPACK(FBYTE,IW1,IW2)
BYTE FBYTE(5),TEST(5),IT
C
C WRITE(5,11)IT
11 FORMAT (1X,'IT',03)
CALL LIBSINSV(FBYTE(1),12,8,IW1)
CALL LIB$INSV(FBYTE(2),4,8,IW1)
 CALL LIBSINSV(IT,0,4;IW1)
 CALL LIB$INSV(FBYTE (3),16,4,IW2)
CALL LIBSINSV(FBYTE(4),8,8,IW2)
CALL LIB\$INSV(FBYTE(5),0,8,IW2)
RETURN
END
C
C SUBROUTINE TO UNPACK AND READ THE FILE SIZE AND CHECKSUM
C
SUBROUTINE CHHEAD(HEAD,IFSIZE,ISFLAG)
C
C ISFLAG = I IF CHECKSUM EQUALS ISUM
C ISFLAG = O IF CHECKSUM DOES NOT EQUAL ISUM
C
BYTE HEAD(1000),FBYTE(5)
INTEGER IHD(25)
ISUM=0
IST=1
DO I=1,5
DO [J=1,5
FBYTE(IJ)=HEAD ((I-I)*5 + IJ)
ENDDO
CALL UNPACK(FBYTE,IW1,IW2)
IHD (IST)=IW I
IST=IST+1
IHD (IST)=IW2
IST= [ST+1
C
IF(I.LT.5)THEN

```
```

 ISUM=ISUM+IW1+IW2
 ELSE
 ISUM=ISUM+IWl
 ENDIF
 IF(I.EQ.4)IFS.IZE=IWI
 IF(I.EQ.5)ICH=IW2
 TYPE *,'IW1,IW2*,IW1,IW2
ENDDO !MAIN LOOP
C
IF(IFSIZE.GT.100000)IFSIZE=IHD(5) !.DAT FILE
I 2OBIT=2**20
IRE=MOD (ISUM, I2OB IT)
TYPE *,' ISUM,IRE*,ISUM,IRE
IF(IRE.EQ.ICH)THEN
ISFLAG=1
ELSE
ISFLAG=0
ENDIF
C
RETURN
END
C
C SUB TO TAKE NMR DATA IN MEMORY, SCALE IT AND PUT IT UP ON THE
C
C
SUBROUTINE OUTRAM
C
COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
COMMON /XFACTOR/[FACT
COMMON /SPARAM/RMIN,SCALE,IOFFSET
DIMENSION DD (20000)
INTEGER*2 IV(4096),IOUT
C
c. TYPE *,*ISIZE*,ISIZE
RMIN=1000000.
RMAX=-1000000.
DO I=1,ISIZE
RMIN=MIN(RMIN,DNMR(I))
RMAX=MAX(RMAX;DNMR (I))
ENDDO
TYPE *,'RMIN,RMAX*,RMIN,RMAX
SCALE THE DATA
SCALE = (RMAX-RMIN)/400.
IF(YSC.NE.O.)SCALE=SCALE/YSC
LOFFSET=(512-400)/2
DO I=1, ISIZE
DD(I)=(DNMR(I) - RMIN)/SCALE
DD(I)=DD(I)+IOFFSET
DD(I)=512.-DD(I)

```

ENDDO

C
C
    IST=0
    DO I=1,ISIZE, IFACT
    IST=IST+1
    \(\operatorname{IV}(\mathrm{IST})=(\mathrm{IST} / 2)+1\)
    IST=IST+1
    TYPE *, \({ }^{\text {DD }}\), DD (I), IST
    rmin=1.el0
    do \(j J=1\), ifact
    rmin=min(rmin, dd(i+jj-l))
    \(\operatorname{IV}(\mathrm{IST})=\mathrm{NINT}(\mathrm{rmin})\)
    enddo
    iv(ist)=dd(i)
    IF(IV(IST).LE.0)IV(IST)=0
    IF(IV(IST).GT.511)IV(IST)=511
    ENDDO
C OUTPUT TO THE RAMTEK
    IF (ISIZE.LT. 511)THEN
        IOUT \(=\) ISIZE-1
    ELSE
        IOUT \(=510\)
    ENDIF
    TYPE *, \({ }^{\prime}\) IOUT', ,
    CALL RSET(IERR)
    CALL COP(IV(1),IV(2),IERR)
    CALL WV(IV(3), IOUT, IERR)
    RETURN
    END
C
C SUB TO PHASE CORRECT THE SPECTRUM
C
    SUBROUTINE PHASEC
C
FIT THE DATA ONTO 512X512 GRID
RFACT=ISIZE/512.
IF (RFACT.GT.1.)THEN
IFACT \(=I N T\) (RFACT)
R2=IFACT
    IF (RFACT.GT.R2)THEN
    IFACT=R2 + 1
    ELSE
    IFACT=R2
    END [F
    ENDIF
    IF (RFACT. LE. 1.) IFACT=1
C
C
C
```

COMMON /NMRDAT/DNMR (20000),ISIZE,YSC
DIMENSION PK(20000), PKI (20000)
common /phase/angsum, angbsum
INTEGER*2 IPLANE,OUT (2,2000)
CHARACTER*2 OP

```

C

C

C
IF (OP.EQ. \({ }^{\circ}\) PA \({ }^{-}\))THEN
ANG \(=\) (OUT ( 1,1 )-256)/5.
ELSE
ANGB \(=\) ( 0 UT ( 1,1 )-256)/5.
ANGB INC=ANGB/ISI2E
ENDIF
C
```

DO I=1, ISIZE
ADDANG =ANGB INC*I
ANGI=ANG+ADDANG
DNMR (I)=PK(I)*COSD (ANGI) - PKI (I)*SIND (ANG1)
DNMR (I+ISIZE)=PKI (I)*COSD(ANGI) + PK(I)*SIND (ANGI)
ENDDO

```

C
ANGSUM=ANGSUM+ANG
ANGB SUM=ANGB SUM+ANGB
C
TYPE *, \({ }^{\prime}\) TP, PA \(={ }^{\circ}\), ANGSUM
TYPE *,' \(\mathrm{TP}, \mathrm{Pb}={ }^{\prime}\), ANGBSUM
CALL OUTRAM
GO TO 100
C

END
```

C
C SUB TO SCALE THE DATA IN THE YDIRECTION
C
SUBROUTINE YSCALE
COMMON /NMRDAT/DNMR (20000),ISIZE,YSC
INTEGER*2 IPLANE,OUT (2, 2000)
DIMENSION DD(20000)
INTEGER*2 IV(1024),IOUT
DIMENS ION PK(20000),PKI (20000)
C
RMIN=1000000.
RMAX=-1000000.
DO I=1,ISIZE
RMIN=MIN(RMIN,DNMR(I))
RMAX=MAX (RMAX,DNMR (I))
ENDDO
C
TYPE *, "USE THE BITPAD TO SCALE THE Y AXIS*
TYPE *, SCALE = 1, FAR LEFT SCALE = 50, FAR RIGHT*
TYPE *,"HIT BOX LABELED 3 TO EXIT"
CONTINUE
C
NOUT=1
IPLANE = '2000
CALL BPOINTR(IPLANE,OUT,NOUT,ICODE) !READ FROM BITPAD
TYPE *,'OUT (1, 1)*,OUT (1, 1),OUT (2, 1)
IF(ICODE.EQ.3.)RETURN
C
C
YSC=OUT (1,1)/10.
C
C
C
END
SUBROUTINE FOURIER3
C ROUTINE USED IN 2DFT ... THIS ROUTINE DOES NOT ZERO EXTENT
C
C
COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
DIMENSION PK (40000),PKI (40000)
TYPE *,'DNMR',(DNMR(I),I=1,30)
C
C ZERO FILL
C
DO I=1,ISIZE
PK(I)=0.

```
```

PKI (I)=0.
ENDDO
C
C LOAD FID
C
DO I=1,ISIZE
PK(I)=DNMR (I)
PKI (I)=DNMR (I+(ISIZE))
TYPE *,'PK,PKI`,PK(I),PKI (I)
ENDDO
CALL OUTRAM
READ (5,*) I II
DO I=1,ISIZE
DNMR (I)=PKI (I)
ENDDO
CALL OUTRAM
READ(5,*)I II
ISIZE=ISIZE*2
C
iex-1
C TYPE *,'ISIZE INFFT',ISIZE
N=ISIZE
RN=N+1
nu=alog(rn)/alog(2.)
TYPE *,'N',N,NU,IE
cal1 FFT(PK,PKI,N,NU,IE)
C
c preparefft output
c
do }1=1,N/
PK(1+n)=PK(1)
PKI (i+n)=PKI (i)
enddo
C
do i=1,n
PK(1)=PK(n/2+1)
PKI (1)=PKI (n/2+1)
enddo
DO I=1,N
DNMR (I)=PK(N-I+1)
DNMR (I+ISIZE)=PKI (N-I+1)
ENDDO
C
ISIZE=ISIZE*2
CALL OUTRAM
ISIZE=ISIZE/2
RETURN
END
SUBROUTINE FFT(PK,PKI,N,NU,IE)
DIMENSION PK(40000),PKI (40000)
C A REAL ARRAY AND AN IMAGINARY ARRAY EACH OF DIMENSION N ARE INPUTS TO THIS

```
```

C ROUTINE. NU IS THE POWER TO WHICH 2 IS RAISED TO GIVE N,I.E. N=2**NU
C WHEN IE = +1, THE INVERSE TRANSFORM (E**+1) IS CALCULATED.
C WHEN IE=-1, THE FORWARD TRANSFORM (E**-I) IS CALCULATED.
C INITIALIZATION
N2=N/2
NU l=NU-1
K=0
DO 100 L=1,NU
102 DO 101 I=1,N2
P=IBITR(K/2**NUL,NU)
C THE FUNCTION IBITR EFFECTS A BIT REVERSAL, E.G.,IOIL REVERSED IS llOI
ARG=6.283185 *P / FLOAT (N)
C THIS IS THE MAIN TWIDDLE PHASE SHIFT
C=COS (ARG)
S=S IN (ARG)
IF (IE.GT.O) S=-S
Kl=K+1
KlN2=K1+N2
TPK=PK(K1N2)*C+PKI (KIN2)*S
TPKI=PKI (K1N2)*C-PK (KIN2)*S
PK(KIN2)=PK(K1)-TPK
PKI (K1N2)=PKI (K1)-TPKI
PK(KL)=PK(Kl)+TPK
PKI (KI)=PKI (KI) +TPKI
K=K+1
K=K+N2
IF (K.LT.N) GO TO 102
K=0
NUI=NU1-1
100 N2=N2/2
DO 103 K=1,N
I= IB ITR (K-1,NU)+1
IF (I.LE.K) GO TO 103
TPK=PK(K)
TPKI=PKI (K)
PK(K)=PK(I)
PKI (K)=PKI (I)
PK(I)=TPK
PKI (I)=TPKI
103 CONTINUE
IF (IE.LT.O) GO TO 104
DO 105 K=1,N
PK(K)=PK(K)/N
PKI (K)=PKI (K)/N
105 CONTINUE
104 CONTINUE
RETURN
END
FUNCTION IBITR(J,NU)
JI=J
IB ITR =0
DO 200 [=1,NU
J2= \ 1/2

```
```

 IB ITR = IB ITR * 2+(J 1-2*J 2)
 200
 J1=J2
 RETURN
 END
 C
C SUB TO ZOOM IN ON PART OF THE DISPLAYED DATA
C
C
C
C
C SAVE THE DATA
C
TYPE *,*TYPE L IF YOU WANT TO SAVE SPECTRA BEFORE ZOOM*
TYPE *,*TYPE 2 TO UNSAVE*
READ (5,*)ISAV
IF(ISAV.EQ.1)THEN
DO I=1,ISIZE*2
DSAV (I)=DNMR (I)
PSAV (I)=PNMR (I)
ENDDO
ISIZE2=ISIZE
ENDIF
C
IF(ISAV.EQ.2)THEN
DO I=1,ISIZE2
DNMR (I)=DSAV (I)
PNMR (I)=PSAV (I)
ENDDO
ISIZE=ISIZE2
CALL OUTRAM
ENDIF
type *,'type 1 for ppm seléction, type 2 for bitpad selection*
read(5,*)icho
if(icho.eq.1)then
type *,"Enter the ppm boundaries*
read(5,*)ppml,ppmr
do i=l,isize
type *,"pnmr",pnmr(i)
if(pnmr(i).ge.ppml)ledge=1
if(pnmr(I).ge.ppmr)iredge=i
enddo
type *;'ledge, iredge`,ledge,iredge
else

```

TYPE *, "USE THE BIT PAD TO SELECT REGION OF INTEREST*
TYPE *, 'ALONG THE X AXIS*
NOUT \(=1\)
LPLANE \(=\) " 2000
C
100 CONTINUE
C
TYPE *; \({ }^{\circ}\) CHOOSE THE LEFT EDGE*
CALL BPOINTR (IPLANE,OUT,NOUT, ICODE) !READ FROM BITPAD
C TYPE *, \({ }^{\circ} \operatorname{OUT}(1,1)^{\circ}, \operatorname{OUT}(1,1), \operatorname{OUT}(2,1)\)
CALL DELAY (80, IERR)
C
RSCA \(=1 F A C T\)
LEDGE \(=0 U T(1,1) * R S C A\)
TYPE *, \({ }^{\circ}\) CHOOSE THE RIGHT EDGE*
CALL BPOINTR (IPLANE, OUT, NOUT, ICODE) !READ FROM BITPAD
CALL DELAY (60, IERR)
TYPE *, \({ }^{\circ} \operatorname{OUT}(1,1)^{\circ}, \operatorname{OUT}(1,1), \operatorname{OUT}(2,1)\)
C
IREDGE \(=0 U T(1,1) \star R S C A\)
TYPE *, \({ }^{\circ}\) L R', LEDGE, IREDGE,RSCA
endif
C
C SAVE THE DATA
C
DO \(I=1\), \(\operatorname{IS}\) LZE*2
PK (I) =DNMR (I)
PKI (I)=PNMR (I)
ENDDO
IDIM=ISIZE
IS IZE=1REDGE-LEDGE+1
TYPE *, "ISIZE*, ISIZE
LST \(=1\)
DO \(I=L E D G E\), IREDGE DNMR (IST)=PK (I)
! REAL
PNMR (IST)=PNMR (I)
DNMR (IST+ISIZE) \(=\) PK (I + IDIM) ! IMAGINARY
C TYPE *, \({ }^{\circ}\) DNMR', DNMR (IST), IST
\(I S T=I S T+1\)
ENDDO
C
TYPE *, \({ }^{\circ}\) ISIZE IN ZOOM', ISIZE,YSC
CALL OUTRAM
C
C ISIZE \(=\) IDIM
C DO \([=1\), ISIZE*2
C \(\quad\) DNMR (I) \(=\mathrm{PK}(\mathrm{I})\)
C ENDDO
C
END

C
C SUB FOR APODIZATION OF FID

C

C

C

C

C

C

C
C
C
C
SUBROUTINE autophase
COMMON /NMRDAT/DNMR (20000),ISIZE,YSC
DIMENS ION PK (20000), PKI (20000)
INTEGER*2 IPLANE,OUT \((2,2000)\)
common /phase/angsum,angbsum CHARACTER*2 OP
C
C
DO \(\mathrm{I}=1\),ISIZE
PK (I) \(=\) DNMR (I)
PKI (I) \(=\) DNMR ( \(\mathrm{I}+\mathrm{IS}\) IZE)
ENDDO
C
ANG=angsum
ANGB INC=ANGBsum/ISIZE
C
DO I=1,ISIZE
ADDANG=ANGB INC*I
ANG \(1=A N G+A D D A N G\)
\(\operatorname{DNMR}(\mathrm{I})=\mathrm{PK}(\mathrm{I}) * \operatorname{COSD}(\operatorname{ANG} 1)-\mathrm{PKI}(\mathrm{I}) * \operatorname{SIND}(\operatorname{ANG} 1)\)
\(\operatorname{DNMR}(\mathrm{I}+\mathrm{IS}\) IZE \()=\operatorname{PKI}(\mathrm{I}) * \operatorname{COSD}(\operatorname{ANGI})+\mathrm{PK}(\mathrm{I}) \star \operatorname{S} \operatorname{IND}(\operatorname{ANGI})\) ENDDO
C
C
C TYPE *, TP, PA \(=^{\bullet}\), ANGSUM
C TYPE *, \({ }^{\prime} \mathrm{TP}, \mathrm{Pb}=^{\prime}\), ANGBSUM
CALL OUTRAM
C
```

 return
 END
 C
C SUB FOR APODIZATION OF FID
C
SUBROUTINE POWER
C
COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
COMMON /APOD/LB
C
C
DO I=1,ISIZE
DNMR (I)=(DNMR (I)**2 + DNMR (I+ISIZE)**2)**.5
ENDDO
C
c
C
CALL OUTRAM
RETURN
END
C
C SUBROUTINE TO CHANGE ARTIFACT IN RAW DATA
C
C
SUBROUTINE CHI6
C
COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
COMMON /APOD/LB
C
DO I=1,ISIZE*2
IF (DNMR (I).EQ.-16.)DNMR (I)=0.
ENDDO
C
c
C
RETURN
END
C
C SUB FOR BASE LINE CORRECTION
C DEFINE THE AREA TO AVERAGE
C
Il=ISIZE- (ISIZE/4)
I2=ISIZE*2- (ISIZE/4)
C
C
fiND tHE bASE LINE OfFSET FOR THE REAL PART
C
ISUM=0
DO I=II,ISIZE

```
```

ISUM=[SUM+DNMR (I)
ENDDO
C
C
C MAKE THE CORRECTION
C
DO I=1,ISIZE
DNMR (I)=DNMR (I)-A VER
ENDDO
C
C
FIND THE OFFSET OF THE IMAGINARY PART OF THE FID
C
IST=ISIZE +1
C
ISUM=0
DO I= L2, IS IZE
ISUM=ISUM+DNMR (I)
ENDDO
C
ADIV=(ISIZE*2)-I2 +1
AVER=ISUM/ADIV
C
DO I=IST,ISIZE*2
DNMR (I)=DNMR (I)+AVER
ENDDO
C
C
C
C
C
C
C
C
IS I=ISIZE/2
ISS=2
AVER=(DNMR (IS 1+ISS)+DNMR (IS I-ISS))/2.
RA=(DNMR (IS I+ISS) - DNMR(ISI-ISS))/4.
DO I=1,3
II=I+ISI-ISS
DNMR (II)=DNMR (IS I-ISS) + (RA*I)
ENDDO
C

```
```

IS I=[SIZE * 1.5

```
IS I=[SIZE * 1.5
RA=(DNMR(IS I+ISS) - DNMR(ISI-ISS))/4.
RA=(DNMR(IS I+ISS) - DNMR(ISI-ISS))/4.
DO I=1,3
```

DO I=1,3

```
```

 II=I+IS I-ISS
 DNMR (II)=DNMR (ISI-ISS) + (RA*I)
 ENDDO
 AVER=(DNMR (IS L+ISS)+DNMR(IS I-ISS))/2.
 DNMR (IS I)=AVER
 RETURN
 END
 C
 C
C
C
C
C IIPROJ- IS THE SECOND DIMENSION
C
COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
COMMON /NMRDAT2/DNMR2(1024,512)
DIMENSION DINS (512,512)
CHARACTER*I ANS
C
C
C
C
C. REALS
C
DO J=1,IIPROJ
DO I=NSTR,NEND
I I= I-NS TR +1
DINS (J,II)=DNMR2(I,J)
ENDDO
TYPE *,'DINS*,DINS (J,50),J
ENDDO
C
C
IMAGINARY
C
DO J=1,IIPROJ
DO I=NSTR,NEND
II=I-NSTR+1
DINS(J+IIPROJ,II)=DNMR2(I+ISIZE,J)
ENDDO
TYPE *,'DINS',DINS (J+IIPROJ,50),J+IIPROJ
ENDDO
C
C
C PUT BACK INTO DNMR2 FOR MAIN PROGRAM
C
DO J=1,NTOT

```
```

 DO I=1,IIPROJ*2
 DNMR2(I,J)=DINS (I,J)
 ENDDO
 ENDDO
 C
C
C FOURIER TRANSFORM
C
C
DO J=1,NTOT
DO JJ=1,ISIZE*2
DNMR (JJ)=0.
ENDDO
DO I=1,ISIZE
DNMR (I)=DINS (I,J) !REAL
DNMR (I+ISIZE)=DINS (I+IIPROJ,J) !IMAGINARY
ENDDO
C
C READ(5,*)IW
CALL FOURIER3
C READ (5,*)IW
C CALL POWER
C
C
C
DO I=1,ISIZE
DNMR 2(J, I)=DNMR (I)
DNMR2(J+NTOT,I)=DNMR (I+ISIZE)
DNMR2(J,I)=(DNMR2(J,I)**2 +DNMR2(J+NTOT,I)**2)**. 5
ENDDO
C
ENDDO
LS IZE=NTOT
WRITE(11)IH
DO I=1,128
WRITE(IL)(DNMR2(II, I), II=1,ISIZE)
ENDDO
C
RETURN
END
C
C SUB TO OUUTPUT A PLOT FILE

```
```

C FOR THE VERSATEK
C
SUBROUTINE PLOTNMR
C
COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
COMMON /PPMNMR/PNMR (20000)
C
C
DO [=1,ISIZE
WRITE(1,*)PNMR (I),DNMR (I)
ENDDO
C
CLOSE (UN IT=1)
RETURN
END
C
C
ROUTINE TO CALCULATE PPM SCALE FOR X AXIS
C
C
C
5 TYPE *,*ENTER XI AND CHEM. SHIFT*
READ (5,*,ERR=5)X1,CY1
xl=32
cyl=0.
TYPE *,'ENTER X2 AND CHEM. SHIFT*
READ(5,*)X2,CY2
CALCULATE PPM PARAMETERS
C
C B=(CY2-CY1)/(X2-X1)
ppmfac=1./rinfo(5) !to convert from hertz to ppm
facl=rinfo(2)/(ISZBEG) !to convert from pixel to hertz
B=PPMFAC*FAC I
type *,*facl,ppm`,facl,ppmfac
A=CY1+(B*XI)
USE THE PARAMETERS TO GET TO PPM
DO I=1,ISIZE2
PSAV (I)=A-(B*I)
ENDDO
C
RETURN
END

```

C
C PRESPEC.FOR
C IIPROJ- IS THE SECOND DIMENS ION
C
    COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
    COMMON /NMRDAT2/DNMR2 (1024,512)
    COMMON /PPMNMR/PNMR (20000)
    common /phase/angsum, angbsum
    DIMENSION DINS (512,512), IPHASVEC(9), \(\mathrm{PH} 2(9,2)\)
    CHARACTER*I ANS
    CHARACTER*40 CFN
    DATA IPHASVEC/1,10,12,14,16,18,20,28,32/
C
C
C
C
C FIND THE PHASE CORRECTED PARAMETERS FOR THE 5 SPECTRA
C
C PHASE CORRECT ALL THE SPECTRA BY LINEAR INTERPOLATION
C
C
C

C
    ROUTINE tO TAKE the 2 D MATRIX and PREPARE THE SPECTRA

    FOR PLOTTING
    SUBROUTINE PRESPEC(IIPROJ)
    INTEGER*2 IH(256)
    TYPE *, 'PHASE CORRECT THE FOLLOWING SPECTRA•
        ANGBSUM=0.
        DO JJ=1,9
TYPE *, 'ROW', IPHASVEC(JJ)
        DO \(\mathrm{I}=1\),ISIZE*2
        DNMR (I) =DNMR 2 (I, [PHASVEC (JJ))
        ENDDO
CALL OUTRAM
CALL AUTOPHASE
CALL PHASEC
PH2 (JJ, 1) =ANGSUM
PH2 (JJ, 2)=ANGBSUM
TYPE *, 'ANGSUM, , ANGSUM, ANGBSUM
ENDDO
DO I=1,ISI2E*2
DNMR (I) \(=\) DNMR2 \((\mathrm{I}, \mathrm{L})\)
ENDDO
ANGSUM=PH2(1,1)
ANGBSUM=PH2(1,2)

CALL AUTOPHASE

CALL PPM2 !FIND THE PPM SCALE
DO I=1,ISI2E
```

DINS (I, 1)=PNMR (I)
ENDDO
DO I=1,ISI2E*2
DNMR2 (I, l)=DNMR (I)
ENDDO

```
C
CALL PPM2 !FIND THE PPM SCALE
DO IJ=1, ISIZE
DINS (IJ, II)=PNMR (IJ)
ENDDO
DO IJ=1,ISIZE*2
DNMR2 (IJ, II) =DNMR (IJ)
ENDDO
I I = I I +1
ENDDO
ENDDOC
C OUTPUT TO DISK
TYPE *, "OUTPUT FILE NAME"
\(\operatorname{READ}(5,111) \mathrm{CFN}\)
111 FORMAT (A)
OPEN (UN IT \(=11\), NAME \(=C F N, T Y P E={ }^{\circ} N E W^{*}, F O R M={ }^{\circ}\) UNFORMATTED*)
WRITE(11)IH
DO \(I=1,32\)cc to output file for ramtek or 3-d plotting comment out the next twoc
write statements
c
c
c WRITE(II)(DINS(II,I),II=1,ISIZE)
WRITE (II) (DNMR2 (II,I), II=1, ISIZE)
ENDDO
CLOSE (UNIT=11)
C
C
RETURN
```

END
C
C SUB FOR APODIZATION OF FID
C
SUBROUTINE PPM2
C
COMMON /NMRDAT/DNMR (20000),ISIZE,YSC
COMMON /PPMNMR/PNMR (20000)
COMMON /PASSPM/ISZBEG
common /passppm/rinfo(10)
C
C TYPE *,'ENTER XI AND CHEM. SHIFT*
C READ(5,*)XI,CYI
RMAX =0.
DO I=1,ISIZE
RMAX=MAX(RMAX,DNMR (I))
IF(RMAX.EQ.DNMR (I))IMAR=I
ENDDO
XL=IMAR
CYI=4.68
C
C }\quad\textrm{LI}=3
C cyl=0.
c TYPE *, ENTER X2 AND CHEM. SHIFT'
c READ (5,*)X2,CY2
C
C
C
C B=(CY2-CY1)/(X2-X1)
ppmfac=1./rinfo(5) !to convert from hertz to ppm
facl=rinfo(2)/(ISZBEG) !to convert from pixel to hertz
B=PPMFAC*FACI
type *,'facl,ppm`, facl,ppmfac
A=CY1+(B*X1)
C
C USE THE PARAMETERS TO GET TO PPM
C
DO I=1,ISIZE
PNMR(I)=A-(B*I)
ENDDO
C
RETURN
END

```
C FINDP,CH16, BAS, SMOOTH, FOURIER3, PLOTNMR, READSP, GETAREA, -
C PPM,headex, reverse,subsp, save,ZOOM2,VIVSP, GETAREA2,-
C [TODD. NMR]READOUT, UNPACK, CHHEAD,CHDATA2,CONVRT, INTCON,TEXTCON,-
C DRC:[RAM]initrm,RMCROS,bell,upper,CLRPLN,TTIO,NEWPI,DASH,CIRC1,crvfit,-
C DISPLAY/LIB,-
C DRC: [SAM.SUBS]MARK,VTSUBS/LIB,-
C 'fip"

C

PROGRAM TO TAKE THE NMR FID AND PROCESS IN A MANNER VERY SIMILAR TO NICOLET NTCFT PROGRAM, IE, FOURIER TRANSFORM, APODIZATION, phase correction,
additional routines were added to find the area under the peaks WHOSE PPMS WERE LISTED IN FILE PPM.IN.

THE FOLLOWING ROUTINES ARE USED IN THIS PACKAGE:
NTCFT2, OUTRAM, NTC FTV.BD \(1 /\) OPT, PHASEC, YSCALE, FFT, -
ZOOM, APOD, AUTOPHASE , POWER, OUTPK, VIVSP2,-
FINDP, CH16, BAS, SMOOTH, FOUR IER3, PLOTNMR, READS P, GETAREA, -
PPM, headex, reverse, subsp, save, ZOOM2, VI VSP, GETAREA 2,-
[TODD. NMR]READOUT, UNPACK, CHHEAD,CHDATA2,CONVRT, INTCON,TEXTCON,-
DRC: [RAM] initrm,RMCROS, bell,upper,CLRPLN,TTIO,NEWPI,DASH,CIRC1, crvfit,-DISPLAY/LIB,-
DRC: [SAM.SUBS]MARK,VTSUBS/LIB,-
-fip

PROGRAM NTCFTV
INTEGER*2 IOUTDAT (256)
COMMON /NMRDAT/DNMR (20000),ISIZE,YSC
COMMON /PPMNMR/PNMR (20000)
COMMON /APOD/LB
COMMON /OPTION/OPT
character*l ans
DIMENSION PK (20000), PKI (20000), FT(512)
CHARACTER*2 OPT
CHARACTER*40 CFN
type *, 'Do you want to use ramtek?'
read (5,3)ans
format(a)
retcodestr\$upcase(ans,ans)
if(ans.eq. \(\mathrm{Y}^{\text {- }}\) )then
CALL INITRM ! INITIALIZE RAMTEK
CALL INITBP ! INITIALIZE BITPAD
endif
default values
\(\mathrm{LB}=10\)
pinc=3
TYPE *,'OPTIONS; \({ }^{\prime}\)
TYPE *, \({ }^{\circ}\) GA \(=\) GET NMR DATA FROM DISK EM \(=\) EXPONENTIAL APOD'
TYPE *, \({ }^{\circ}\) GC \(=\) GET NMR DATA FROM .DAT FILE ON DISK'
TYPE *, \({ }^{\circ}\) GX \(=\) GET ASCII NMR DATA FROM DISK'
TYPE *, \(2 \mathrm{ZO}=\) ZOOM IN ON PART OF THE DATA•
TYPE *, \(\mathrm{FT}=\) FOURIER TRANSFORM \(\quad \mathrm{PH}=\) PHASE CORRECTION \({ }^{\circ}\)
type \(*,^{\prime}\) PC \(=\) AUTO PHASE \(\quad A U=\) LINK COMMANDS \({ }^{\circ}\)
TYPE *,'SC \(=\) SCALE \(\mathrm{IN} Y \quad\) MO \(=\) EXIT \({ }^{\circ}\)
FS = SYMMETRIC FID FILL BEFORE FT
MC= CALCULATE THE POWER SPECTRUM
bumbutterworth filter
```

c ha= han filter
c f3= fourier transform without zero
C LV= LIST INTENSITY VALUES BETWEEN MARKS
C LB = LINE BROADENING
C CA = CHANGE ARTIFACT OF -16. ON FID
C BC = BASE LINE CORRECTION
C MA = MIDDLE POINT AVERAGE
C SM = SMOOTHING 2 POINT
C Gl = LOAD IN TOTAL DAT FILE
C DS = DISPLAY NEW SIZE
C EX = EXTRACT POINT FOR 3D FT
C G2 = LOAD IN A GIVEN BLOCK OF DAT FILE FOR PROCESSING
C TA = TRANSPOSE AND FT
C ll = OUTPUT TO UNIT ll FOR RAMTEK
C PL = PREPARE FILE FOR PLOTTING
c TS = test 2dft with 3 sines
C PM= RESCALE FOR PPM
c sr = spectral reverse
c sa= save spectra
c as = subtract two spectra
C GR = READ FORMATTED FILE
C AG = GET AREA
C OP = OUTPUT PEAK AREAS
C A2 = EXECUTE LINK 2
c
c
10 FORMAT(A)
RETCODE = STRSUPCASE (OPT,OPT)
C
IF(OPT.EQ.'DS*)THEN
TYPE *,'ENTER SIZE:*
READ (5,*)ISIZE
CALL OUTRAM
ENDIF
C
IF (OPT.EQ.'GA'.OR.OPT.EQ.'GC*)THEN
CALL READOUT
type *,'isize in ntc',isize
CALL OUTRAM
ISIZE=IS[ZE/2
ENDIF
C
5 TYPE *,'ENTER PPM FILE NAME'
READ (5,199)CFN
199 FORMAT (A)
OPEN(UNIT=13,NAME=CFN,TYPE='OLD', FORM=`'FORMATTED',ERR=5)
READ (13,*)NPEAKS
DO [=1,NPEAKS
CALL ZOOM2
call getarea

```

ENDDO

C

IF (OPT.EQ.'SM') THEN
CALL SMOOTH
CALL OUTRAM
ENDIF

CALL OUTPK
ENDIF

IF (OPT.EQ. \({ }^{\circ} \mathbf{A}^{\circ}\) ) CALL VIVSP
IF (OPT.EQ. \({ }^{\text {A3 }}\) ․)CALL VIVSP2
IF (OPT.EQ. \({ }^{\circ} \mathrm{GR}^{\circ}\) ) CALL READSP
IF (OPT.EQ. \({ }^{\circ}\) PL') CALL PLOTNMR

IF (OPT.EQ. \({ }^{\circ} \mathrm{PM}^{\circ}\) ) CALL PPM
OPTION FOR ASCII DATA FILES
IF (OPT.EQ. \({ }^{\circ}{ }^{\circ}{ }^{\circ}\) ) THEN
TYPE *, \(\mathrm{LB}={ }^{\bullet}\), LB
\(\operatorname{READ}(5, *) L B\)
ENDIF

IF (OPT.EQ. \({ }^{\circ}{ }^{\circ}\) ) CALL APOD

IF (OPT.EQ. \({ }^{\circ}\) LV•) CALL FINDP

IF (OPT.EQ.*BC')CALL BAS

\section*{-}

IF (OPT.EQ. \({ }^{\circ}\) MC') CALL POWER
IF (OPT.EQ.' \(2 O^{\circ}\) )CALL ZOOM
IF (OPT.EQ. \({ }^{\circ} \mathrm{PC}^{\circ}\) ) CALL AUTOPHASE
if(opt.eq. \({ }^{\text {F3* }}\) ) call fourier3

IF (OPT.EQ.• \(\mathrm{I}^{\circ}\) ) \(\operatorname{WRITE}(11)(\mathrm{DNMR}(\mathrm{I}), \mathrm{I}=1\), ISIZE)
```

 IF(OPT.EQ.*SC*)CALL YSCALE
 c
c
C
C
C
C
C
C
C
C ROUTINE TO OUTPUT PEAK AREAS TO DISK
C
SUBROUTINE OUTPK
CHARACTER*40 CFN
C
5 TYPE *, ENTER FILE NAME*
READ (5,10)CFN
10 FORMAT (A)
OPEN(UNIT=12,NAME=C FN,TYPE=*NEW*,FORM = ' FORMATTED* ,ERR=5)
TYPE *,'IPE",IPE
TYPE *,* PEAK`, PEAK(1,1),PEAK(1,2)
DO I=1,IPE
TYPE *,'PEAK', PEAK(I,1),PEAK(I, 2)
WRITE(12,*)PEAK(I,1), PEAK(I, 2)
ENDDO
C
CLOSE(UNIT=12)
RETURN
END
C
C SUB TO ZOOM IN ON PART OF THE DISPLAYED DATA
C
C
C
AND LIST THE INTENSITY VALUES AND FIND THE PEAKS
SUBROUTINE FINDP
COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
COMMON /PPMNMR/PNMR (20000)
COMMON /XFACTOR/IFACT
COMMON /OFFSET/LLEDGE,DSAV(20000),PSAV (20000),ISIZE2
COMMON /SPARAM/RMIN,SCALE,IOFFSET

```
```

DIMENSION PK(20000),PKI(20000),PEAKS (100,2)
INTEGER*2 IPLANE,OUT (2,2000), IM,JM
CHARACTER*2 OP
CHARACTER*1 ANS
CHARACTER*40 CFN

```
C
C
RSCA \(=\) IFACT
TYPE *, "USE THE BIT PAD TO SELECT REGION OF INTEREST"
TYPE *, \(A L O N G\) THE X AXIS*
NOUT \(=1\)
IPLANE \(=\) ' \({ }^{\prime} 2000\)
C
100 CONTINUE
C
TYPE *, \({ }^{\circ}\) CHOOSE THE LEFT EDGE*
CALL BPOINTR (IPLANE,OUT, NOUT, ICODE) !READ FROM BITPAD
C TYPE *, \({ }^{\circ} \operatorname{OUT}(1,1)^{\prime}, \operatorname{OUT}(1,1), \operatorname{OUT}(2,1)\)
CALL DELAY (80, IERR)
C
    LEDGE \(=0 \mathrm{UT}(1,1)\) *RSCA
    TYPE *, \({ }^{\circ}\) CHOOSE THE RIGHT EDGE*
    CALL BPOINTR (IPLANE,OUT,NOUT, ICODE) IREAD FROM BITPAD
    CALL DELAY (60, IERR)
    TYPE *, \({ }^{\circ} \operatorname{OUT}(1,1)^{\circ}, \operatorname{OUT}(1,1), \operatorname{OUT}(2,1)\)
C
    IREDGE \(=0 U T(1,1)\) *RSCA
C TYPE *, \({ }^{\circ} \mathrm{L} \mathrm{R}^{\bullet}\),LEDGE, LREDGE,RSCA
C
C
SAVE THE DATA
C
```

TYPE *,"TYPE I TO PRINT OUT VALUES"
READ (5,*)IPR
TYPE ***ENTER THE THRESHOLD*
READ (5,*)ITH
TYPE *,"PARAM*,RMIN,SCALE,IOFFSET
IDIFF=IREDGE-LEDGE
IPX=1
DO I=LEDGE, [REDGE
IF(IPR.EQ.1)TYPE *,'X, Y=`, I+LLEDGE-1, PNMR (I),DNMR (I)
LF (DNMR (I).LT.DNMR (I+1).AND.DNMR (I+1).lt.DNMR (I+2))THEN
if(dnmr(i+2).gt.dnmr(i+3).and.dnmr(I+3).gt.dnmr(i+4))then
it=1+2
LDD=(DNMR (it)-DNMR(It-l)) + (DNMR (it)-DNMR (it+l))
IF (IDD.GT.ITH)THEN
TYPE *,'PEAKS =',it+LLEDGE-1,PNMR(it),DNMR(it)
PEAKS (IPX,1)=PNMR (it)
PEAKS (IPX, 2)=DNMR (it)
IPX= IPX+1
IM=I/IFACT
SI=(DNMR(it)-RMIN)/SCALE
S2=S1+[OFFSET
JM=512 - NINT(S2)

```
```

 CALL WCS (0,IM,JM,.TRUE., .FALSE., IERR)
 CALL DELAY(60, IERR)
 ENDIF
 endif
 ENDIF
 ENDDO
 C
TYPE *, 'DO YOU WANT TO OUTPUT PEAKS TO DISK"
READ(5,101)ANS
FORMAT (A)
RETCODE=STR SUPCASE (ANS,ANS)
IF(ANS.EQ.'Y')THEN
TYPE *,'ENTER FILE NAME*
READ (5,101)CFN
OPEN(UNIT =1,NAME=CFN, TYPE = 'NEW* ,FORM=* FORMATTED*)
WRITE(1,*)IPX-1
DO I=1,IPX-1
WRITE(L,*)PEAKS (I, 1),PEAKS (I, 2)
ENDDO
ENDIF
C
REIURN
END
C
C ROUTINE TO READ IN TO MEMORY A FILE PREVIOUSLY
C
C
C
COMMON /NMRDAT/DNMR (20000),ISIZE,YSC
COMMON /PPMNMR/PNMR (20000)
COMMON /APOD/LB
CHARACTER*40 CFN
C
TYPE *,'ENTER FILE NAME'
READ (5,10)CFN
FORMAT (A)
OPEN(UNIT=11,NAME=CFN,TYPE=*OLD*,FORM=* FORMATTED*)
DO [=1,8192
READ(11,*,END=31)PNMR(I),DNMR(I)
ENDDO
IS IZE=I-1
C
CALL OUTRAM
C
RETURN
END
C
C OF PROGRAM NTCFTV. THESE FILES CONTAIN THE PHASE ENCODED SPECTRA.
C
C
CREATED BY ROUTINE PLOTNMR
SUBROUTINE READSP
CALL OUTRAM
C
RETURN
END
C ROUTINE WHICH OPERATES ON FILES CREATED BY ROUTINE PRESPEC
C OF PROGRAM NTCFTV. THESE FILES CONTAIN THE PHASE ENCODED SPECTRA.
C A SELECTED ROW FROM THIS FILE IS DISPLAY AND AREAS UNDER THE
C PEAKS ARE DEFINED WITH THE BIT PAD

```

C

C

C
SUBROUTINE VIVSP
COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
COMMON /PPMNMR/PNMR (20000)
CHARACTER*40 CFN

C READ (13,*)NSPEC ! NUMBER OF SPECTRA

DO \(I=1\), NSPEC
\(\operatorname{READ}(13,111) \mathrm{CFN}\)
write( 2,113 ) cfn
111 FORMAT (A)
READ (13,*) IROW
retcode=str§upcase (cfn,cfn)

READ (11)IH
TYPE *,' IROW=', IROW
DO J=1, IROW-1
READ(11)ISIZE
TYPE *, \({ }^{\prime}\) ISIZE', ISIZE
IF (ISIZE.GT. 150.AND.ISIZE.LT. 250)READ (11)
READ (11)
ENDDO
READ(11)ISIZE
\(\operatorname{READ}(11)(\operatorname{PNMR}(I I), I I=1\), ISIZE)
\(\operatorname{READ}(11)\) (DNMR (II), II=1, ISIZE)
CLOSE (UNIT=11)
CALL OUTRAM
C
CALL ZOOM
CALL YSCALE
READ (13,*)NPEAKS
DO JI=1,NPEAKS !EVALUATE FOUR PEAKS
CALL ZOOM2
Call getarear
ENDDO
C
ENDDO
CALL OUTPK
C
RETURN
END
C
C
C ROUTINE TO FIND THE AREA UNDER THE PEAKS
C
C
SUBROUTINE VIVSP2
COMMON /NMRDAT/DNMR (20000),ISIZE,YSC

COMMON /PPMNMR /PNMR (20000)
CHARACTER*40 CFN

C

C
C

C

C

C

C
C
C

C
READ(5,*)IXS
[=ISIZE/2
C
99

SUBROUTINE GETAREA

CHARACTER*2 OP
CHARACTER*1 ANS
CHARACTER*40 CFN


Routine to find the area under the peak by allowing the user to define the baseline with cursor control

COMMON /NMRDAT/DNMR (20000),ISIZE,YSC
COMMON /PPMNMR/PNMR (20000)
COMMON /XFACTOR/LFACT
COMMON /SPARAM/RMIN,SCALE, IOFFSET
COMMON /PEAKS/PEAK (500,2),IPE
DIMENS ION PK(20000),PKI (20000), PEAKS (100,2)
INTEGER*2 IPLANE, IM, JM, IV(4), IOUT

TYPE *, \({ }^{\text {ENTER THE X INCREMENT }}{ }^{\circ}\)
```

 IM=I/ IFACT
 Sl=(DNMR(I)-RMIN)/SCALE
 S2=S 1+LOFFSET
 JM=512 - NINT(S2)
 CALL WCS (0,IM, MM,.TRUE.,.FALSE., IERR)
 TYPE *,'tyPE L TO MOVE X AMOUNT TO THE LEFT'
 TYPE *,'tyPE 2 TO MOVE X AMOUNT TO THE RIGHT'
 TYPE *,'TYPE 3 TO ENTER FIRST POINT`
 TYPE *,'TYPE 4 TO ENTER SECOND POINT*
 READ (5,*)I I
 IF(II.EQ.3)GO TO 100
    ```
                                    !MOVE THE CURSOR
```

 IF(II.EQ.4)GO TO 200
 IF(II.EQ.1)I=I-IXS
 IF(II.EQ.2)I=I+IXS
 GO TO 99
 C
100 TYPE *,'POINT=',I,DNMR(I)
IPl=I
Bl=DNMR (I)
GO TO 99
C
200 TYPE *,`POINT2 = `, I,DNMR (I)
IP2=1
B2=DNMR (I)
C
C DRAW THE LINE FOR BASELINE SUBTRACTION
C
IV(1)=IP1/IFACT
IV (3)=IP2/IFACT
C
DI=(BI-RMIN)/SCALE
DI=DI+IOFFSET
DI=512. - DI
IV(2)=DI
C
D2=(B2-RMIN)/SCALE
D2=D2+1OFFSET
D2=512. - D2
IV(4)=D2
C
CALL COP(IV(1),IV(2),IERR)
IOUT=1
CALL WV(IV(3),IOUT,IERR)
im=256
jm=256
CALL WCS (0,IM,JM,.TRUE.,.FALSE.,IERR)
C
C CALCULATE THE AREA
C
IDIFF=[P2-IP1
DINC=(B2-B1)/IDIFF
RSUM=0.
DO I=1,IDIFF-1
TYPE *,'DNMR',IPI+I,DNMR(IPI+I)
RSUM=(DNMR (IPI+I)-(BI+DINC*I)) + RSUM
ENDDO
C
TYPE *,'RSUM=`,RSUM
C
C
SAVE THE AREA AND PPM FOR PEAK
C
RMAX=0.
DO I=IP1,IP2

```
```

RMAX=MAX(DNMR (I),RMAX)
IF (DNMR (I).EQ.RMAX) IMAX=I
ENDDO
C
C
C
C
C

```
    COMMON /NMRDAT/DNMR (20000),ISIZE,YSC
```

 COMMON /NMRDAT/DNMR (20000),ISIZE,YSC
 COMMON /PPMNMR/PNMR (20000)
COMMON /XFACTOR/IFACT
COMMON /SPARAM/RMIN,SCALE,IOFFSET
COMMON /PEAKS/PEAK(500,2),IPE
DIMENSION PK (20000), PKI (20000), PEAKS (100,2)
INTEGER*2 IPLANE, IM, JM, IV(4), IOUT
CHARACTER*2 OP
CHARACTER*1 ANS
CHARACTER*40 CFN
C
C
TYPE *,'ENTER THE X INCREMENT*
C
c READ (5,*)IXS
ixs=1
READ(13,*)PP
DO II=1,ISIZE
IF (PNMR(II).GE.PP)I=II
TYPE *,PNMR(II),PP,II,I
ENDDO
C I=ISIZE/2
9 9
C
IM=I/IFACT
TYPE *,'IM',IM,I,IFACT
SI=(DNMR (I)-RMIN)/SCALE
S2=S1+IOFFSET
JM=512 - NINT (S2)
CALL WCS(0, IM, JM,.TRUE.,.FALSE., IERR)

```
```

IPE=IPE+1

```
IPE=IPE+1
PEAK(IPE, 1)=PNMR (IMAX)
PEAK(IPE, 1)=PNMR (IMAX)
PEAK(IPE, 2)=RSUM
PEAK(IPE, 2)=RSUM
TYPE *,'IPE`,IPE
TYPE *,'IPE`,IPE
RETURN
END
SAME AS GETAREA EXCEPT THAT IT READS INPUT FROM
DISK FILE INSTEAD OF TERMINAL
C
SUBROUTINE GETAREA2
C
C
    CALL DELAY(60, IERR)
TYPE *, TYPE 1 TO MOVE X AMOUNT TO THE LEFT*
TYPE *, "TYPE 2 TO MOVE X AMOUNT TO THE RIGHT"
TYPE *,'TYPE 3 TO ENTER FIRST POINT*
TYPE *, TYPE 4 TO ENTER SECOND POINT*
```

```
READ (5,*)II
IF(II.EQ.3)GO TO 100
IF(II.EQ.4)GO TO 200
IF(II.EQ.1)I=I-IXS
IF(II.EQ.2)I=I+IXS
IF(II.EQ.5)I=I-3
IF(II.EQ.6)I=I+3
IF(II.EQ.7)I=I-10
IF(II.EQ.8)I=I+10
GO TO 99
C
    100 TYPE *,'POINT=`, I,DNMR(I)
        IPL=I
        BI=DNMR (I)
        GO TO 99
C
    200 TYPE *,'POINT2 = , I,DNMR(I)
        IP2=I
        B2=DNMR (I)
C
C DRAW THE LINE FOR BASELINE SUBTRACTION
C
IV(1)=IPI/IFACT
IV(3)=IP2/IFACT
C
DL=(BI-RMIN)/SCALE
DI=DI+IOFFSET
DI=512. - Dl
IV (2)=DI
C
D2=(B2-RMIN)/SCALE
D2=D2+1OFFSET
D2=512. - D2
IV (4)=D2
C
TYPE *,`IV,*,IV
CALL FGD("2000, IERR)
CALL MSK('`2000,IERR)
CALL COP(IV(1),IV(2),IERR)
IOUT=1
CALL WV(IV(3),IOUT,IERR)
1m=256
jur=256
    CALL WCS(0, IM, JM, .TRUE.,.FALSE., IERR)
C
C CALCULATE THE AREA
C
IDIFF=IP2-IP1
DINC=(B2-BI)/IDIFF
RSUM=0.
    DO I=1,IDIFF-1
c TYPE *,'DNMR',IPI+I,DNMR(IPI+I)
```

```
RSUM=(DNMR (IPI+I)-(BI+DINC*I)) + RSUM
ENDDO
C
C
C SAVE THE AREA AND PPM FOR PEAK
C
RMAX=0.
DO I=IP1,IP2
RMAX=MAX(DNMR (I ),RMAX)
IF (DNMR (I ).EQ.RMAX) IMAX=I
ENDDO
C
    IPE= [PE +1
    PEAK (IPE, L)=PNMR (IMAX)
    PEAK(IPE,2)=RSUM
    write(2,*)peak(ipe,1),peak(ipe,2)
    TYPE *, 'IPE*,IPE
C
    RETURN
    END
C
C SUB TO ZOOM IN ON PART OF THE DISPLAYED DATA
C READ ANSWERS FROM DISK FILE
C
C
    COMMON /NMRDAT/DNMR (20000),ISIZE,YSC
    COMMON /PPMNMR/PNMR (20000)
    COMMON /XFACTOR/IFACT
    COMMON /OFFSET/LEDGE,DSAV (20000),PSAV (20000), ISIZE2
    DIMENS ION PK(20000),PKI (20000)
    INTEGER*2 IPLANE,OUT (2, 2000)
    CHARACTER*2 OP
C
C
C
SAVE THE DATA
C
C
TYPE *,'TYPE 2 TO UNSAVE'
READ (5,*)ISAV
    ISAV=2
    IF(ISAV.EQ.1)THEN
    DO I=1,ISIZE*2
    DSAV(I)=DNMR (I)
    PSAV (I)=PNMR (I)
    ENDDO
    ISIZE2=ISIZE
    ENDIF
C
IF(ISAV.EQ.2)THEN
```

```
DO I=1,IS LZE2
DNMR (I)=DSAV (I)
PNMR (I)=PSAV (I)
ENDDO
ISIZE=ISIZE2
CALL OUTRAM
ENDIF
C read(5,*)icho
ICHO=1
if(icho.eq.1)then
    type *,"Enter the ppm boundaries"
    READ (13,*)PPMC
    PPML =PPMC+. }
    PPMR=PPMC-. }
    do i=1,isize
    type *,"pnmr*,pnmr(1)
    if(pnmr(i).ge.ppml) ledge=i
    if(pnmr(I).ge.ppmr)iredge=1
    enddo
type *,'ledge, iredge',ledge,iredge
else
```

TYPE *, USE THE BIT PAD TO SELECT REGION OF INTEREST*
TYPE *, ALONG THE X AXIS*
NOUT $=1$
[PLANE $=$ " 2000
C
100 CONT INUE
C
TYPE *, ${ }^{\circ}$ CHOOSE THE LEFT EDGE"
CALL BPOINTR (IPLANE, OUT, NOUT, ICODE) !READ FROM BITPAD
C
C
RSCA $=1 F A C T$
LEDGE=OUT (1,1) ${ }^{\text {R RSCA }}$
TYPE *, ${ }^{\text {CHOOSE THE RIGHT EDGE* }}$
CALL BPOINTR (IPLANE, OUT, NOUT, ICODE) !READ FROM BITPAD
CALL DELAY (60, IERR)
$C \quad$ TYPE *, ${ }^{\prime} \operatorname{OUT}(1,1)^{\circ}, \operatorname{OUT}(1,1), \operatorname{OUT}(2,1)$
C
IREDGE $=0$ UT $(1,1) *$ RSCA
TYPE *, ${ }^{\circ}$ L R^{\bullet}, LEDGE, IREDGE,RSCA
endif
C
C SAVE THE DATA
C
DO $I=1, \operatorname{ISIZE*2}$
PK (I) =DNMR (I)
PKI (I) = PNMR (I)
ENDDO

```
    IDIM=ISIZE
ISIZE=IREDGE-LEDGE+1
TYPE *,*ISIZE*,ISIZE
IST=1
DO I=LEDGE,IREDGE
DNMR (IST)=PK(I) !REAL
PNMR (IST)=PNMR (I)
DNMR(IST+ISIZE)= PK(I+IDIM) !IMAGINARY
TYPE *,"DNMR",DNMR(IST),IST
IST=IST+1
ENDDO
C
    TYPE *,'ISIZE [N ZOOM*,ISIZE,YSC
CALL OUTRAM
C
C ISIZE=IDIM
C DO I=1,ISIZE*2
C DNMR(I)=PK(I)
C
ENDDO
C
END
C
C ROUTINE TO REVERSE THE SPECTRUM IN MEMORY
C
SUBROUTINE reverse
C
COMMON /NMRDAT/DNMR(20000),ISIZE,YSC
COMMON /APOD/LB
dimension dtem(20000)
C
C
C
C
c
C
RETURN
END
```


B IBLIOGRAPHY

Abstract

Ackerman, J. J. H., T. H. Grove, G. G. Wong, D. G. Gadian, and G. K. Radda, Mapping of metabolites in whole animals by P-31 NMR using surface coils, Nature 283, 167-170, 1980.

Altman, K. I., G. B. Gerber, and S. Okada, In Radiation Biochemistry, Vol. I and II, Academic Press, New York, 1970.

Andrews, H. L., Radiation Biophysics, Prentice Hall, Englewood Cliffs, New Jersey, 1974.

Arus, C., M. Barany, W. M. Westler, J. L. Markley, HI NMR of intact tissues at 11.1 T, J. Magn. Res. 57, 519-525, 1984.

Asato, R., H. Hajime, T. Hashi, J. Hatta, M. Komoike, and T. Yazaki, Chronological sequence and blood-brain barrier permeability changes in local injury as assessed by nuclear magnetic resonance (NMR) from sliced rat brain. Stroke 14, 191-197, 1983.

Ashley, D. L., and F. H. Goldstein, The application of dextranmagnetite as a relaxation agent in the measurement of erythrocyte water exchange using pulsed nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Comun . 97, 114-120, 1980.

Bakay, L., R. J. Kurlank, R. G. Parrish, J. C. Lee, R. J. Peng, and H. M. Bartkowski, Nuclear magnetic resonance studies in normal and
edematous brain tissue, Exp. Brain Res. 23, 241-248, 1975.

Bakker, C. J. G. and J. Vriend, Proton spin-lattice relaxation studies of tissue response to radiotherapy in mice. Phys. Med. Biol. 28, 331-340, 1983.

Bartkowski, H. M., J. Bederson, M. Nishimura, K. Moon, L. H. Pitts, Nuclear Magnetic Resonance imaging and spectroscopy in experimental brain edema, Magnetic Resonance in Medicine 1, 98-99, 1983.

Beall P. T., Application of cell biology to an understanding of biological water. In Cell Associated Water, eds. W. Drost-Hansen, J. Clegg, pp. 271-362, Academic Press, New York, 1979.

Behar, K. L., J. A. den Hollander, M. E. Stromski, T. Ogino, R. G. Shulman, O. A. C. Petroff, and J. W. Prichard, High-resolution Hl nuclear magnetic resonance study of cerebral hypoxia in vivo, Proc. Natl. Acad. Sci. 80, 4945-4948, 1983.

Behar, K. L., D. L. Rothman, R. G. Shulman, O. A. C. Petroff, J. W. Prichard, Detection of cerebral lactate in vivo during hypoxemia by HI NMR at relatively low field strengths (1.9 T), Proc. Natl. Acad. Sci. 81, 2517-2519, 1984.

Berendsen, H. J. C., Specific interactions of water with biopolymers, In Water a comprehensive treatise, Vol. 5, Water in disperse systems, ed. F. Franks, pp. 293-330, Plenum Press, New York, 1975.

Biochemical handbook, ed. Cyril Long, pp. 640, D. Van Nostrand Company Inc, New York, 1968

Blicharska, B., Z. Florkowski, J. W. Hennel, G. Held, and F. Noack, Investigation of protein hydration by proton spin lattice relaxation time measurements, Biochimica et Biophysica Acta 207, 381-389, 1970.

Bradley, W. G., R. A. Yadley, R. R. Wycoff, The appearance of different forms of brain edema on NMR, Magnetic Resonance in Medicine 1 , 114-115,1983.

Brasch, R. C., Work in progress, methods of contrast enhancement for NMR imaging and potential applications, Radiology 147, 781-788, 1983.

Brown, F. F., I. D. Campbell, P. W. Kuchel, D. C. Rabenstein, Human erythrocyte metabolism studies by H1 spin echo NMR, FEBS Letters 82, 12-16, 1977.

Caveness, W. F., Experimental observation; delayed necrosis in normal monkey brain, In Radiation Damage to the Nervous System, ed. H. A. Gilbert and A. R. Kagan, pp. 1-38, Raven Press, New York, 1980.

Coniglio, J. G., J. T. Davis, F. Windler, V. Tsiung, Lipid metabolism in acute radiation infury - effects of radiation on brain biochemistry, In Response of the Nervous System to Ionizing Radiation, eds. T. J. Haley and R. S. Snider, pp. 377-387, Little, Brown, and Company, Boston, 1964.

Cope, F. W., Nuclear magnetic resonance evidence using D20 for structured water in muscle and brain. Biophys. J. 9, 303-319, 1969.

Cox S. J. and P. Styles, Towards biochemical imaging, J. Magn. Res. 40, 209-212, 1980 .

Crooks, L. E., Overview of NMR imaging techniques, In Nuclear Magnetic Resonance in Medicine, eds. L. Kaufman, L. E. Crooks, A. R. Margulis, pp. 30-52, Igaku-Shoin, New York, 1981.

Crooks, L. E., C. M. Mills, P. L. Davis, M. Brant-Zawadzki, J. Hoenninger, M. Arakawa, J. Watts, L. Kaufman, Visualization of cerebral and vascular abnormalities by NMR imaging. The effects of imaging parameters on contrast, Radiology 144, 843-852, 1982.

Crowell, C. D. et al., J. Dent. Res. 14, 25, 1934.

Dodson, C. M., P. A. Evans, K. L. Williamson, Proton NMR studies of denatured lysozyme, FEBS 168, 331-334, 1984.

Egana, E., Effects of ionizing radiation, In Handbook of Neurochemistry Vol. VI, Alterations of chemical equilibrium in the nervous system, ed. A. Lajtha, pp. 525-573, Plenum Press, New York, 1971.

Elkind and Painter, Proc. Fourth International conference on Peaceful Uses of Atomic Energy, Vol. 13, p.361, International Atomic Energy Agency, Vienna, 1971.

Evelhoch, J. L., M. G. Crowley, and J. J. H. Ackerman, Signal-to-noise optimization and observed volume localization with circular surface coils, J. Magn. Res. S6, 110-124, 1984.

Fajardo L-G, L. F., Pathology of Radiation Injury, Masson Publishing U. S. A., Inc., New York, pp. 216-230, 1982.

Ferrar, T. C., and E. D. Becker, Pulse and Fourier transform NMR, Academic Press, New York, 1971.

Fike, J. R., C. E. Cann, R. L. Davis, F. K. Borcich, T. L Phillips, L. B. Russell, CT analysis of canine brain: Effects of hemibrain X irradiation, Radiation Research (in the press), 1984.

Fullerton, G. D., J. L. Potter, N. C. Dornbluth, NMR relaxation of protons in tissues and other macromolecular water solutions, Magnetic Resonance Imaging, $1,209-288,1982$.

Gaggelli, I. N. Niccolai, G. Valensin, Hl-NMR relaxation investigation of water bound to bovine rod outer segment disk membranes, Biophys. J. 37, 559-561, 1982.

Garwood, M., T. Schleich, G. B. Matson, G. Acosta, Spatial localization of tissue metabolites by phosphorus-31 NMR rotating frame zeugmatography, J. Magn. Res. (in the press), 1984.

Gerber, G. B., and K. I. Altman, Tissues and body fluids, In Radiation

Biochemistry, Vol. II, eds. K. I. Altman, G. B. Gerber, S. Okakda, pp. $219-234$, Academic Press, New York, 1970.

Go, K. G., and H. T. Edzes, Water in brain edema, Arch. Neurol. 32, 462-465, 1975.

Haase A., C. Malloy, G. K. Radda, Spatial localization of high resolution P-31 spectra with a surface coil, J. Magn. Res. 55, 164-169, 1983.

Haselgrove, J. C., V. Harihara Subramanian, J. S. Leigh, Jr., L. Gyulai, B. Chance, In vivo one-dimensional imaging of phosphorus metabolites by phosphorus -31 nuclear magnetic resonance, Science 220, 1170-1173, 1983.

Hazlewood, C. F., A view of the significance and understanding of the physical properties of cell-associated water, In Cell Associated Water, eds. W. Drost-Hansen, J. Clegg, pp. 165-259, Academic Press, New York, 1979.

Haymaker, W., Effects of ionizing radiation on Nervous Tissue, In The Structure and Function of Nervous Tissue, ed. G. H. Bourne, Vol. III, Biochemistry and Disease, pp. 441-536, Academic Press, New York, 1969.

Hoult, D. I., Rotating frame zeugmatography, J. Magn. Res. 33, 183-197, 1979.

James, T. L., Nuclear Magnetic Resonance in Biochemistry; Principles and

Application, Academic Press, New York, 1975.

Joffe, S.,R. E. Block, Nuclear magnetic resonance studies suggestive of a lipid population tightly bound to myelin structural proteins, Brain Research 46, 381-390, 1972.

Jones, R. M., T. Richards, T. F. Budinger, Proton and carbon spectroscopy of lipids and aqueous metabolites extracted from brain, Scientific Meeting, In Scientific Program, Society of Magnetic Resonance In Medicine, Third Annual Meeting, August 13-17, 1984, New York, New York, pp. 395-396, 1984.

Kennedy, W. L., Work in progress, radiation-induced changes in $N M R$ relaxation times of tissue protons, In the press, 1984.

Klots, C. E., In Fundamental Processes in Radiation Chemistry, ed. P. Ausloos, pp. 1, Interscience, New York, 1968.

Kuntz, I. D. and W. Kauzmann, Hydration of proteins and polypeptides, Adv. Protein Chem. 28, 239-345, 1974.

Lampert, P. W., and R. L. Davis, Delayed effects of radiation on the human central nervous system, Neurology 14, 912-917, 1964.

Lierse, W. and D. Franke, Effects of X-irradiation on guinea pig brain, In Brain Edema, ed. I. Klatzo, pp. 639-644, Springer-Verlac, New York, 1967.

Logan, J. E., In Blood and Other Body Fluids, eds. P. L. Altman and D. S. Dittmer, Federation of American Society for Experimental Biology, Washington, D. C., pp. 329-328, 1961.

Mathur-De Vre, R., The NMR studies of water in biological systems, Prog. Biophs. Molec. Biol. 35, 103-134, 1979.

Maudsley, A. A., S. K. Hilal, H. E. Simon, and S. Wittekoek, Multi-nuclear application of chemical-shift imaging, Magnetic Resonance In Medicine $1,202-203,1984$.

Maxwell, D. S. and L. Kruger, Electron microscopy of radiation induced laminar lesions in the cerebral cortex of the rat, In Response of the Nervous System to Ionizing Radiation, eds. T. J. Haley and R. S. Snider, pp. 54-83, Little, Brown, and Company, Boston, 1964.

Maxwell, D. S. and L. Kruger, The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing paritcles, J. Cell Biol. 25, 141-157,

Maxwell, D. S. and L. Kruger, The reactive oligodendrocyte, Am. J. Anat. 118, 437-459, 1966.

Mills, C., S. Lukes, D. Norman, T. H. Newton, M. Braṇt-Zawadzki, L. Crooks, P. Sheldon, L. Kaufman, Normal and abnormal anatomy of the head, dependence on imaging technique and parameters, In Scientific Program, Society of Magnetic Resonance in Medicine, First Annual Meeting, August

16-18, 1982, Boston Massachusetts, pp. 107-108, 1982.

Miquel, J., W. Haymaker, Brain edema induced by particle and ultraviolet radiation, In Brain Edema, ed. I. Klatzo, pp. 615-631, Springer- Verlac, New York, 1967.

Moustafa, H. F. and J. W. Hopewell, Later functional changes in the vasculature of the rat brain after local X-irradiation, British Journal of Radiology 53, 21-25, 1980.

Naruse, S., Y. Horikawa, C. Tanaka, K. Hirakawa, H. Nishikawa, K. Yoshisaki, Proton nuclear magnetic resonance studies on brain edema, J. Neurosurg. 56, 747-752, 1982.

Okada, S., M. Imamura, T. Terashima, H. Yamaguchi, Radiation Research, Proceedings, Sixth International Congress of radiation research. Japan Association for Radiation Research, Tokyo, 1979.

Pekar, J., J. S. Leigh, B. Chance, Depth-resolved biochemical imaging with surface coils, Magnetic Resonance in Medicine 1 , 224, 1984.

Pellegrino, L. J., A. S. Pellegrino, A. J. Cushman, A Stereotaxic Atlas of the rat brain, Plenum Press, New York and London, 1979.

Ponten, U., R. A. Ratcheson, L. G. Salford, B. K. Siesjo, Optimal freezing conditions for cerebral metabolites in rats, Journal of Neurochemistry, 21, 1127-1138, 1973.

Pritchard, E. T. and H. Singh, Can. J. Biochem. Physiol. 39, 1231, 1961.

Pykett, I. L., and B. R. Rosen, Nuclear Magnetic Resonance: In vivo proton chemical shift imaging, Radiology 149, 197-201, 1983.

Reichelt, K. L. and F. Fonnum, Subcellular localization of n-acetyl aspartyl-glutamate, n-acetyl-glutamate, and glutathione in brain, Journal of Neurochemistry 16, 1409-1416, 1969.

Remler, M. P. and W. H. Marcussen, Time course of early delayed blood-brain barrier changes in individual cats after ionizing radiation, Experimental Neurology 73, 310-314, 1981.

Richards, T., T. F. Budinger, R. Nunlist, Proton NMR relaxation times of gray and white matter before and after tissue preservation, Scientific Meeting, In Scientific Program, Society of Magnetic Resonance in Medicine, First Annual Meeting, August 16-18, 1982, Boston Massachusetts, pp. 131-132, 1982.

Richards, T., T. F. Budinger, G. Wesbey, and B. Engelstad, Evaluation of heavy ion radiation damage to the rat brain using proton NMR imaging, Magnetic Resonance in Medicine, $1,234-235,1983$.

Roberts, J. J., In Advances in Radiation Biology, eds. J T. Lett and H. Adler, Vol. 7, p.211, Academic Press, New York, 1975.

Schneiders, N. J., H. Post, P. Brunner, J. Ford, R. N. Bryan, M. R.

Willcott, Accurate T2 NMR images, Med. Phys. 10, 642-645, 1983.

Sheline, G. E., Irradiation injury of the human brain: A review of clinical experience, In Radiation Damage to the Nervous System, eds. H. A. Gilbert and A. R. Kagan, Raven Press, New York, 1980.

Sherwood, N. M., G. P. Welch, P. S. Timiras, Changes in electroconvulsive thresholds and patterns in rats after x-rays and high-energy proton irradiation, Radiation Research 30, 374-390, 1967.

Singh, A. and H. Singh, Time scale and nature of radiation-biological damage: Approaches to radiation protection and post-irradiation therapy, Prog. Biophys. Molec. Biol. 39, 69-107, 1982.

Tanaka, A., H. Ueno, Y. Yamashita, and W. Caveness, Regional cerebral blood flow in delayed brain swelling following X-irradiation of the right occipital lobe in the monkey, Brain Research 96, 233-246, 1975.

Timiras, P. S., J. A. Moguilevsky, S. Geel, Respiratory gas exchange of cerebral cortex, hypothalamus, and aorta of adult rats after early postnatal whole-body x-radiation, In Response of the Nervous System to Ionizing Radiation, eds. T. J. Haley and R. S. Snider, pp. 365-376, Little, Brown, and Company, Boston, 1964.

Tobias, C. A., The use of accelerated heavy particles for production and stimulation in the central nervous system, In Response of the Nervous System to Ionizing Radiation, eds. T. J. Haley and R. S. Snider, pp.

325-343, Academic Press, New York, 1962.

Todo T., S. Yonei, and M. Kato, Radiation-induced structural changes in Human Erythrocyte membrane proteins revealed by sodium dodecyl sulfate/ polyacrylamide gel electrophoresis, Radiation Research 89, 408-419, 1982.

Ugurbil, K., M. Petein, R. Maidan, S. Michurski, J. N. Cohn, A. H. From, High resolution proton NMR studies of perfused rat hearts, FEBS Letters 167, 73-78, 1984.

Van Dyke, D. C., P. Janssen, C. A. Tobias, Fluoroscein as a sensitive, semi-quantitative indicator of injury following alpha particle irradiation of the brain, In Response of the Nervous System to Ionizing Radiation, eds. T. J. Haley and R. S. Snider, pp. 369-383, Academic Press, New York, 1962.

Watkins, S. L., Masked three-dimensional plot program with rotations, Communications of the ACM 17, 520-523, 1974.

Wesbey, G., M. Moseley, M. Hrovat, R. Ehman, Measurements of translational molecular self-diffusion in proton magnetic resonance imaging (MRI), Scientific Meeting, In Scientific Program, Society of Magnetic Resonance in Medicine, Third Annual Meeting, August 13-17, 1984, New York, New York, pp. 751-752, 1984.

Yoshizaki, K., Y. Seo, H. Nishikawa, High resolution proton magnetic

resonance spectra of muscle, Biochimica et Biophysica Acta, 678, 283-291, 1981.

Zeman, W. and T. Samorajski, Effects of irradiation on the nervous system, In Pathology of Irradiation, ed. C. C. Berdjis, pp. 213-276, William and Wilkins, Baltimore, 1971.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

