
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
WikiTrust: Content-Driven Reputation for the Wikipedia

Permalink
https://escholarship.org/uc/item/7rv812n5

Author
Adler, B. Thomas

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7rv812n5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

WIKITRUST: CONTENT-DRIVEN REPUTATION FOR THE WIKIPEDIA

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

B. Thomas Adler

June 2012

The Dissertation of B. Thomas Adler
is approved:

Professor Luca de Alfaro, Chair

Professor Scott Brandt

Professor Neoklis Polyzotis

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

B. Thomas Adler

2012

Contents

Contents iii

List of Figures viii

List of Tables x

Abstract xii

Dedication xiii

Acknowledgements xiv

1 Introduction 1

1.1 World Wide Collaboration . 1

1.2 Related Work . 3

1.3 The Problem . 4

1.4 Contributions of this Work . 7

1.5 Outline . 8

2 Definitions 10

2.1 General Notation . 10

2.2 Chapter 3 – Author Attribution . 11

iii

2.3 Chapter 4 – Contribution Quality . 12

2.4 Chapter 5 – Sizing Up Authors . 12

3 Author Attribution 13

3.1 Introduction . 13

3.2 Related Work . 16

3.3 Tracking Text Authorship . 20

3.4 Matching Text . 23

Optimizations . 27

Thoughts On Evaluation . 32

3.5 Conclusions . 33

4 Contribution Quality 35

4.1 Introduction . 35

4.2 Related Work . 39

4.3 Text Quality . 39

Text Decay Quality . 41

4.4 Edit Quality . 44

Edit Distances . 45

Edit Longevity . 47

Edit Longevity Quality . 54

4.5 Evaluation . 55

Difference Algorithms . 57

Match Quality Formulas . 58

Edit Distance Formulas . 62

Results . 64

iv

4.6 Additional Analysis . 74

Edit Longevity Outperforms Text Longevity 74

The Triangle Inequality . 76

4.7 Conclusions . 81

5 Sizing Up Authors 83

5.1 Introduction . 83

5.2 Related Work . 84

5.3 Primitives . 86

Quantity Measures. 87

Quality Measures. 89

5.4 Contribution Measures . 89

Number of Edits . 90

Text Only . 90

Edit Only . 90

Text Longevity . 91

Edit Longevity . 91

Ten Revisions . 92

Text Longevity with Penalty . 92

5.5 Implementation . 93

5.6 Analysis . 94

Comparing Measures . 101

Ranking Authors . 106

Bot Behavior . 108

Sources of Error . 111

Comparing Contributions . 112

v

5.7 Conclusions . 113

6 Reputation 115

6.1 Introduction . 115

6.2 Related Work . 116

6.3 A Content-Driven Reputation System 117

Text Contributions . 118

Edit Contributions . 120

Computing Content-Driven Reputation 123

6.4 Evaluation Metrics . 124

6.5 Experimental Results . 127

Precision and Recall . 129

Manual Annotation . 129

Comparison with Edit-Count Reputation 131

Text Age and Author Reputation as Trust Criteria 134

6.6 Conclusions . 135

7 Vandalism Detection 136

7.1 Introduction . 136

7.2 Related Work . 137

7.3 Experiment . 141

Classifier and Features . 142

7.4 Evaluation . 144

7.5 Conclusions . 147

8 Conclusion 149

8.1 Introduction . 149

vi

8.2 Summary of this Work . 151

Future Work . 153

8.3 Thoughts on Reputation . 155

A Basic Difference Implementation 158

B Faster Difference Implementation 164

C Basic Text Tracking Implementation 168

D Faster Text Tracking Implementation 170

E OCaml Diff Benchmarking Code 172

F Edit Longevity Parameter Rankings 187

Bibliography 203

vii

List of Figures

1.1 An example of vandalism which is not obvious to the casual reader 5

(a) coloring of an article before vandalism 5

(b) coloring of an article after vandalism 5

4.1 Depiction of how a text contribution survives through future revisions . . . 42

4.2 Text longevity is modeled as a geometric curve 43

4.3 Grad school is like hiking through the forest 48

4.4 How to measure useful effort . 49

(a) the grad student’s perspective 49

(b) the advisor’s perspective . 49

4.5 Edit distance triangles allow us to compute quality 51

(a) a good edit contribution . 51

(b) a bad edit contribution . 51

4.6 Quality is progress towards the future, divided by the work done 52

4.7 The text survival quality graphs for two articles 75

(a) article George W. Bush . 75

(b) article Santa Cruz Beach Boardwalk 75

4.8 Examples of three different styles for computing edit distance 77

(a) listing distance . 77

viii

(b) trace distance . 77

(c) alignment distance . 77

4.9 An example of when WikiTrust and Tichy differ in matching. 78

(a) WikiTrust uses the globally longest match 78

(b) Tichy uses best match from left-to-right 78

5.1 Measuring edit and text quality over revisions 95

5.2 Measuring total edit and text contribution over revisions 97

5.3 Measuring edit and text quality for all authors 99

5.4 Distribution of authors over number of edits 100

5.5 Edit quality of authors with one edit . 100

5.6 Comparing absolute edit size with edit longevity 104

5.7 Comparing absolute text contribution with text longevity 105

5.8 Comparing abslute text contribution with the punishing measure 105

5.9 Measuring short term text survival . 106

5.10 Comparing edit longevity with text longevity 107

5.11 Comparing edit longevity with the punishing function 108

5.12 Comparing edit longevity with the number of edits made 109

5.13 Measuring edit and text quality for bots 111

6.1 Text and edit contributions by reputation 128

7.1 Precision-Recall curve for vandalism detection 146

ix

List of Tables

3.1 Comparing the running times of diff algorithms 30

3.2 Comparing execution times of our basic and faster text tracking algorithms. 32

4.1 Summary of WikiTrust differencing optimizations. 58

4.2 Listing of optimizations used by each difference algorithm. 59

4.3 Comparison of diff algorithms using edit distance ed5 65

4.4 Comparison of diff algorithms using edit distance ed4 66

4.5 Comparison of diff algorithms using edit distance ed3 67

4.6 Comparison of diff algorithms using edit distance ed2 68

4.7 Comparison of diff algorithms using edit distance ed1 69

4.8 Average running time of difference algorithms 70

4.9 Performance of text longevity when varying match quality 74

5.1 Correlations between author contribution measures 102

6.1 Evaluation of WikiTrust on Italian and French Wikipedias 130

6.2 Performance of WikiTrust compared to manual annotation 132

6.3 Performance of WikiTrust compared to edit count 133

7.1 Confusion matrix for vandalism prediction 145

x

7.2 Comparison of vandalism detection systems 146

F.1 Results of edit longevity performance experiment 202

xi

Abstract

WikiTrust: Content-Driven Reputation for the Wikipedia

B. Thomas Adler

The Wikipedia was initially created to promote collaboration between writers be-

fore submitting their work to a peer review process, to address complaints about the

speed of peer review. Ironically, the criticism most widely levied against the Wiki-

pedia is the lack of accountability for authors, and the potential to misinform readers.

There is a large community around the Wikipedia project which actively fixes errors

as they are discovered, but an unending stream of vandals and spammers chip away at

the good will of volunteers who maintain the project for the collective good. We sug-

gest that vandalism detection systems can be used to help direct the volunteer effort on

changes more likely to be a problem, making more efficient use of the project’s human

resources.

We use edit distance to quantify the effort of authors, and propose automated meth-

ods to evaluate the quality of this effort and how they might be combined into an author

reputation system. We desire that an author’s reputation be correlated with the stability

of the text they contribute — low reputation should be a predictor of future author con-

tributions being edited or deleted. Reputation can then be another input to a vandalism

detection system.

Instead of measuring the “truth” of contributions, our quality ideas measure the

“group consensus” in a piece of text. As the article text stabilizes over time, we con-

clude that it has reached a form which most members of the community can reasonably

agree on. As group collaboration increases in prominence on the Internet, we feel that

this research will open the door on new applications and quality measures.

xii

To Pokey and Lala,

who both taught me what I really needed to learn.

Œ Œ Œ

xiii

Acknowledgements

Thanks to Luca, who never gave up when I needed him and stuck with me through the

ups and downs of the years. And to my labmates and co-authors, Marco, Vishwa, Ian,

Pritam, Leandro, Krish, and Axel: your moral (and research) support was invaluable at

so many points for keeping me engaged. Karen provided endless edits to my grammar

and diction, often to my chagrin. Thanks to each of you: I learned a great deal and

appreciate all that you shared with me.

There are a few heroes that saw me through the darkest hours; I am indebted to

you for your caring when mine failed me. And there are so many friends and family,

new and old, that were characters in this adventure and gave me their support and

encouragement and compassion. You all have my deepest thanks.

I am the luckiest one.

The text of this dissertation includes excerpts of previously published material;

copyright of this material remains with its respective holders and appears here with their

permission. Chapters 3, 4, and 6 expand on the initial paper presenting our content-

driven reputation ideas for the Wikipedia [2]. Chapter 5 is a reprint of our investigation

into contribution measures [5]. Chapter 7 covers similar ground as (and includes some

material from) two previously published works [4, 3]. Illustrations from PhD comics

are copyright Jorge Cham [16], with many thanks.

This work was supported in part by the Center for Information Technology Re-

search in the Interest of Society (CITRIS), and by the Institute for Scalable Scientific

Data Management (ISSDM).

xiv

Chapter 1

Introduction

1.1 World Wide Collaboration

The dot-com boom of the late 1990’s brought the open source movement into main-

stream consciousness, bringing with it the mantra “information wants to be free” [115].

In the midst of this environment, the Wikipedia1 first appeared. The Wikipedia is an

online encyclopedia using an open model of group collaboration where anyone can

contribute: when an article is displayed, any reader can click on an “edit” button to

modify the text as they see fit. Thanks to this openness, the Wikipedia has grown to

over 3.4 million articles and as of September 2011, is the seventh most visited site on

the web2. This large-scale group collaboration has become known as crowdsourcing.

By encouraging visitors to contribute their own content, sites adopting this model3 hope

to grow rapidly as users build on each others’ work [103].

The particularly open model of group collaboration that the Wikipedia embodies

1http://www.wikipedia.org

2According to Alexa traffic rankings, http://www.alexa.com
3For example, Flickr, YouTube, StackExchange and even Facebook.

1

in allowing anonymous contributions also receives much criticism about the potential

for misinformation [94, 93, 56, 46, 25, 99, 90, 97], both intentional and accidental. A

study comparing the quality of the Wikipedia against that of the Encyclopædia Brittan-

ica found that the number of errors in the Wikipedia is very near that of the curated

work [36], but this achievement is not attained by mere chance. As an online encyclo-

pedia, accuracy of information is a major concern, thus the Wikipedia community has

developed a process of eternal vigilance around screening edits: their volunteer RC Pa-

trol scans all recent changes and reverts edits that they do not consider suitable [117].

The important feature of the Wikipedia that enables this process is that all past versions

are kept for each article. Users can easily roll back an article to a previous version,

undoing the contributions of other users. A fundamental insight behind wiki develop-

ment is that, if well-intentioned and careful users outnumber ill-intentioned or careless

users in the community, then valuable content will predominate, since the undesired

contributions are easily undone [57].

Online communities have a typical lifecycle: a small community develops and ral-

lies around unifying principles; then the community grows and attracts a more diverse

group of members; finally, the relative anonymity of a large community encourages a

small “anti-social element.” The problem for the Wikipedia is how to keep these bad

actors at bay. Obvious vandalism is easy to identify and revert, but minor changes to

factual information can be quite insidious. For example, changing a date by a few days

is difficult for anyone to verify as a correction and not vandalism. Most famously, an

anonymous user created a new biography entry within Wikipedia with the following

text [94, 93, 92]:

“John Seigenthaler Sr. was the assistant to Attorney General Robert Kennedy

in the early 1960s. For a short time, he was thought to have been directly in-

2

volved in the Kennedy assassinations of both John, and his brother, Bobby.

Nothing was ever proven.”

This mixture of fact and fiction is very plausible given the mythic nature of the Kennedy

assassination, and it is impossible for casual readers to validate without checking ref-

erence materials.

1.2 Related Work

As the Wikipedia becomes a standard resource for the internet public, there is rising

interest in quality measures. A series of incidents shows that the Wikipedia can be ma-

nipulated, despite the “many eyes” reviewing the site: a prank biography [94, 93, 92];

congressional aides adjusting political biographies [56, 46, 25]; a user pretending to

be a professor [97]; and a slew of other self-interested parties making inappropriate

edits [11, 39, 71]. Articles have been written questioning the general credibility of

the Wikipedia [99, 90], and a scientific study addressing the question has been pub-

lished [36]. Should schoolchildren be allowed to use the Wikipedia as a resource when

they might encounter misinformation or foul language at any time [38, 73]?

Today, several lines of research are pursuing vandalism detection specific to the

Wikipedia [80]. These solutions all apply machine-learning techniques to annotated

data sets, treating the task as a “supervised learning” problem. When we started our re-

search, there were no annotated data sets available. We chose instead to track the work

of identified users and to compute a trust value for the text created, which we passively

reveal to readers by coloring the background of untrusted text. Another advantage of

tracking the actions of individuals is to correlate those actions into a signal which might

reveal bad actors.

3

The idea of assigning trust to specific sections of text of the Wikipedia articles as a

guide to readers has been previously proposed in the scientific literature [64, 22, 126],

as well as in white papers [52]; these papers also contain the idea of using text back-

ground color to visualize trust values. There is also a report on whether such a visual-

ization is useful to readers of the Wikipedia [62]; this report uses manually generated

colorings which ignores some of the subtleties specifically included in WikiTrust to

reduce the problem of habituating users to coloring [2].

Other studies of the quality of the Wikipedia have focused on trust as article-level,

rather than word-level, information. These studies can be used to answer the question

of whether an article is of good quality, or reliable overall, but cannot be used to locate

the portions of text within an article that deserve more scrutiny, as our work is able

to [1]. In Zeng et al. [127], which inspired [126], the revision history of a Wikipedia

article is used to compute a trust value for the entire article. In [31, 65], features derived

via natural language processing are used to classify articles according to their quality.

In [59], the number of edits and unique editors are used to estimate article quality.

The use of revert times for quality estimation has been proposed in [107], where a

visualization of the Wikipedia editing process as a history flow of text is presented; an

approach based on edit frequency and dynamics is discussed in [125]. A fast-growing

body of literature reports on statistical studies of the evolution of Wikipedia content,

including [107, 108, 74]; we refer to [74] for an insightful overview of this line of work.

1.3 The Problem

The Wikipedia’s continued success depends on ill-intentioned users not being able to

overwhelm the well-intentioned users. Communities are complicated systems, with

people constantly joining and leaving their membership. We can suppose that people

4

(a) Before the modification [113]. (b) Immediately after the modification [114].

Figure 1.1: An attempt to modify the spelling of the Danish Prime Minister’s last name,
from Fogh to Fjogh. The casual user, who does not speak Danish and happens to check
the version history, has little indication on which might be correct. This is a case of
vandalism (in Danish, a fjog is a fool) that is quite subtle and most users would not
even notice.

continue to join the Wikipedia community because most pages are substantially useful,

and users feel that their contributions add to the resource, giving them a sense of sat-

isfaction [9]. If the amount of vandalism occurring were to increase so that most users

were only repairing the Wikipedia, there would be much less satisfaction.

The key problem this community faces is in quickly identifying vandalism to pre-

vent the appearance (to casual users) of needing maintenance. The RC Patrol [117]

acts as a guardian, investing a large amount of human capital to scan all edits made to

the Wikipedia, searching for vandalism and other inappropriate edits. Still, it is pos-

sible to sneak vandalism by the RC Patrol; the article on South Pasadena, California

was vandalized in May 2008 to include a Nazi propaganda film, which persisted until

April 2009.4

Vandalism can be very hard to identify for inexperienced users. Consider the ex-

ample of Figure 1.1, which is an excerpt from the Politics of Denmark entry in the

English Wikipedia: an anonymous user substitutes “Fjogh” for “Fogh” in the Prime

Minister’s last name. This is a particularly subtle kind of vandalism, because it re-

quires knowledge of Danish (fjog translates to fool or goofy) to recognize this change

as anything more than a spelling correction. A sophisticated reader might recognize

4See Chapter 4 for more details.

5

the broken link as a hint on the true spelling, or even try to use Google to research the

name (both spellings return results, however). The level of effort to recognize the error

and to verify this relatively small detail is quite high.

Beyond vandalism, another issue that affects the perceived quality of the Wiki-

pedia are well-intentioned users that contribute very low-quality material. For instance,

material written from a neutral point of view5 promotes the Wikipedia as an impartial

resource that welcomes contributions from all parties. When a contribution does not

adhere to this standard, the bias detracts from the credibility of the article and can

discourage other users from participating in the community.

Historically, there are three inter-related approaches to attaching value to knowl-

edge. The most familiar method is formal publication by an organization that stakes

their reputation on the material; the Encyclopædia Britannica is one famous example.

To achieve their high quality, experts write the articles in the Encyclopædia Britannica

and then peers and an editorial staff review them. Peer review is a second approach

to the creation of knowledge; science extensively uses this method, but we distinguish

it from “formal publication” because only the actual authors stand behind the verac-

ity of the material being reported. Reputation is a third approach attaching value to

knowledge; people naturally ascribe reputations to other individuals and will accept

knowledge without verification from sources that they feel have a high enough reputa-

tion.

The overarching question for the Wikipedia is how do we maintain the good qual-

ity of articles? The historical approaches have all translated to online knowledge repos-

itories (e.g., Google Knol6 and Encyclopædia Britannica are based on formal publica-

5http://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view

6http://knol.google.com

6

tion, Nupedia [116] was based on peer-review, and Stack Exchange7 implements an

explicit reputation system). We propose that constructing an automated reputation sys-

tem for the Wikipedia would facilitate the detection of vandalism.

1.4 Contributions of this Work

This dissertation takes up the question of how to help readers of the Wikipedia un-

derstand the quality of an article. Our approach is to examine the revision history of

an article and summarize the evolution of text through a reputation system rating the

authors of the text.

We develop a quality measure to reflect the reaction of the community to an edit.

This quality measure is consistent with the less general “reverts are bad” notion used

in other works [95, 48, 8, 112], but is more nuanced in allowing a contribution to be

revised and still be considered as adding some value to the project. As part of construct-

ing this quality measure, we consider the author attribution problem for collaborative

works with a revision history, and a definition for edit distance applicable to measuring

contributions in the collaborative work.

Using the edit quality measure as a basis, we show how to construct a reputation

system for authors. We demonstrate that this reputation system has the useful property

of predicting the edit quality of future edits by the same author. With the availability

of annotated corpora for the vandalism detection problem, we also develop a machine

learning solution based on our WikiTrust technologies. We extract features based on

calculations made as part of the reputation system and show that the resulting predic-

tions perform competitively against other vandalism detection solutions.

7http://stackexchange.com

7

The programs resulting from this research are open source, available under the

BSD license from our project website: http://www.wikitrust.net/.

1.5 Outline

We start by defining some terminology and notation in Chapter 2 that will be used in

multiple later chapters. We then introduce the author attribution problem in Chapter 3.

To accord credit to authors for the work they do, it is first necessary to identify their

contribution properly. We extend a greedy text difference algorithm [85, 13] to account

for the existence of multiple authors and the possibility of restoring text from older

revisions.

Chapter 4 then looks at measuring the size of an author edit. The well-known an-

swer is to use edit distance [58], but we discover that the traditional formulation must

be adjusted to take into account the rearranging of text that some editors contribute.

We refine the definition to build on the result computed by the algorithm in Chapter 3,

and account for the rearranging and substitution of text. Finally, we conclude the foun-

dational elements by developing a measure of edit quality. We construct this measure

to estimate the approval or disapproval of later authors on the same article. By aggre-

gating the judgement of multiple later authors, we arrive at a value that represents the

community’s assessment of an edit.

In Chapter 5 we propose a simple model to combine quality measures into a mea-

sure of the positive value of an author’s contribution. Chapter 6 constructs a reputation

system out of the contribution measure, and evaluates the performance via several dif-

ferent metrics. Chapter 7 uses the reputation system as a feature for machine learning

in the vandalism detection problem, and compares the performance to other solutions

for the same problem.

8

In Chapter 8, we present some directions for future work, both within the specific

confines of the Wikipedia and a more general view of reputation as a form of personal-

ization.

9

Chapter 2

Definitions

The following terminology and notation is used throughout this work.

2.1 General Notation

A – the set of main Wikipedia articles. We use this term interchangeably with the

term pages, as each article appears as a single web page on the Wikipedia site.

For this work, we only consider articles that are in the NS0 (Main) namespace to

be in A. Talk and User pages, for example, are in other namespaces.

U – the set of registered Wikipedia users, plus a single anonymous user. Media-

Wiki stores IP address information for anonymous users, but due to the ambiguity

of tracking users this way, we map all anonymous use to the single anonymous

user.

V[a] – each article a ∈ A, has a history of versions describing how that article

has evolved over time. We denote the chronologically ordered list of all n > 0

10

revisions of article a by

V[a] = v1, v2, . . . , vn (2.1)

Version v1 is the first instantiation of the article, and version vn is the most re-

cent. A common pattern among Wikipedia editors is to save checkpoints of their

edits, so that there are several consecutive revisions by the same author. We filter

revisions to keep only the last in a sequence of consecutive revisions by the same

author. Thus, throughout this work, we assume that two consecutive revisions of

an article never have the same author.

V – the chronologically ordered list of all revisions, across all articles in A. That

is,

V = sorttime

[⋃
a∈A

V[a]

]
(2.2)

2.2 Chapter 3 – Author Attribution

Words(v) – gives the sequence of words that make up the content of version v;

see Definition 3.1.

RevAuthor(v) – every revision of an article has a user associated with the edit.

This function gives the user associated with v of an article. For anonymous users

(who are distinguished by IP address in MediaWiki), we map each to the single

anonymous user in U. (Definition 3.2.)

PrevRevs(v) – for v ∈ V[a], this is the ordered list of revisions previous to v in

V[a]; see Definition 3.3.

BestMatch(vi, r,PrevRevs(vi)) – a function that locates the best matching text

for the rth word of vi in the text of previous revisions. For further description and

11

development, see Equation 3.4 and the accompanying text.

da(i, j) – is the edit distance between revisions vi and vj of article a ∈ A. Chap-

ter 3 explores several possible definitions for edit distance.

TSurva(i, j) – for article a ∈ A, measures the amount of text introduced in

revision vi that survives to vj .

2.3 Chapter 4 – Contribution Quality

qntdecay(k) – the text decay quality of revision vk (we leave the article to which vk

belongs implicit in the context of usage), as given by the the n revisions after vk.

The value of this quality is given by the solution to Equation 4.2.

Jn
a (i) – a function that returns the set of judging revisions associated with revision

vi of article a ∈ A. A judging revision for revision vi is a revision vj such that

0 < j− i ≤ n and RevAuthor(vi) 6= RevAuthor(vj). Thus, the set is limited to,

at most, n filtered revisions which are nearest to vi in time. See Definition 4.6.

qa,nelong(k) – the edit longevity quality of revision vk ∈ V[a], as judged by up to n

judging revisions after vk. See Definition 4.7.

2.4 Chapter 5 – Sizing Up Authors

RevPos(vi) – the revisions of an article form a chronological sequence; this func-

tion gives back the position of the revision in the sequence of revisions for the

single article.

12

Chapter 3

Author Attribution

3.1 Introduction

The Wikipedia is both a collaborative work and a versioned document; it is uniquely

the largest such work in colloquial language. Programming projects (especially open

source projects) are also collaborative and versioned — which makes for an interesting

analogy because many of the same questions can be asked:

1. Who contributed how much to the project?

2. How much do the different components interact?

3. How do the components evolve over time?

4. How many components are there in the project?

This chapter expands on ideas originally described in [2].

13

Of these questions, we focus on determining who contributed how much to the project;

as a user contributes more, they gain experience in the community mores, and our

working assumption is that their future contributions will be more valuable. That is,

our first principle was to give credit to users for the words that they write: more words

would lead to more credit.

In the field of software engineering, the question of “who contributed how much”

is generally answered by the measure Source Lines of Code (SLOC).1 Computing

who added which lines of text is achieved by applying a basic text difference algo-

rithm [68, 105, 13] to two consecutive revisions. The output of the algorithm allows

us to determine which lines were added and deleted at each edit, and to attribute the

insertions as contributions by the author of the second revision. In principle, the same

technique works in the case of tracking authorship on the Wikipedia and should be easy

to implement.

There are a few problems with this initial model. The most obvious is that lines are

too coarse grained a unit for tracking the evolution of English prose; editors frequently

come in and revise phrases or even specific words, so it is necessary to compute dif-

ferences at a finer granularity; we chose to work with white-space delimited words.

A bigger problem is that text is not only inserted or deleted; it can also be copied or

moved around. Variations on text difference algorithms can detect moved and copied

text, but to whom should we attribute this text: the author who created the original text,

or the editor who rearranged it into its final form?

To answer this last question, let us consider a fairly extreme example. Suppose

user Alice creates a new article and writes a page of text for it. Vanessa is a vandal and

decides to blank the article, i.e., she deletes all the text for the article, but not the article

1http://en.wikipedia.org/wiki/Source_lines_of_code

14

itself. Robert is part of the RCPatrol, and he notices that the article has been tampered

with, so he restores all the text back to Alice’s version. Now who should receive credit

for writing the text: Robert or Alice?

We call this the author attribution problem for revision collaborative works; and

in the context of the Wikipedia it seems obvious that Robert’s work is valuable mainte-

nance, but that Alice is the true “author” of the text. Thus, a better model of attribution

(than just giving credit to the person who inserted the text most recently) would instead

give credit to the author who originally created the text. For example, the WikiTravel2

site creates a tree representing the version history of an article: two consecutive ver-

sions have a parent-child relationship in the tree, except when the second version is

identical to an earlier version; versions that are identical are merged into a single node

in the tree, which is attributed to the author of the earliest such version [82] (see [30, 87]

for similar variations on organizing revisions). Using this revision tree, the WikiTravel

site computes the authors of the article as being the set of authors starting from the most

recent version and following parent links to the root of the tree.3

Given this framework, a second example is now easier to analyze for attribution:

Since 27 November 2001, the economist Anders Fogh Rasmussen has been

Prime Minister to Denmark [113]. As Prime Minister to Denmark, the

economist Anders Fogh Rasmussen leads the government with the consent

of Queen Margrethe II.

Alice wrote the first sentence of this example, and Robert added the italicized text, but

Robert’s content repeats much of the same information as in Alice’s sentence. Clearly,

2http://wikitravel.org

3Note that WikiTravel computes a set of authors as a requirement of the license agreement that
applies to contributed content, so the problem is more than an academic one.

15

a model of attribution which simply tracks insertions and deletions is too simple, as

Robert would receive credit for words that are not his own.

We present a method for computing text authorship based on first computing a

difference between multiple previous revisions and the target revision. From our two

examples, we see already that the differencing algorithm must allow matching over

multiple past revisions, as well as supporting multiple copies of the same block of

text. Computing these differences in the context of the Wikipedia requires efficiency to

avoid unwieldy CPU requirements or execution times of several months; to this end, we

resort to a method based on greedy differencing algorithms [85, 13]. Using a greedy

algorithm for computing the difference, we are able to find matches of old text and

propagate authorship information to the target revision fast enough to maintain a trust

annotated copy of the Wikipedia in real-time on a single workstation.

3.2 Related Work

Traditionally, the author attribution problem is one of identifying the anonymous au-

thor of a work, based on characteristics of writing style and word choice [50]. Our

context is different: we analyze a revisioned collaborative document, where the author

of each revision is known. The difficulty in our situation is determining how to assign

“credit” for words when they might be a reintroduction of older text. To approach this

problem, we consider difference algorithms as a starting point.

Finding the difference between two strings is a long-studied problem known as

string-to-string correction [110]. Initial work in computer science on this problem re-

volved around finding the Longest Common Subsequence (LCS) [42], which identifies

16

the sequence of symbols4 in common between the two strings. From there, it is easy

to identify the optimal set of insertions, deletions, and replacements to transform one

string to the other. The well-known UNIX diff utility [47] is based on this algorithm.

Myers shows that LCS and shortest edit script are equivalent to finding shortest/longest

paths in an edit graph [68].

There are a score of variations on the basic problem of comparing strings; an

excellent survey of the field is presented in [89]. An important concept emphasized

in [89] is that difference and distance analyses generally take one of three forms: trace,

alignment and listing. Traces are used to represent the common units (e.g., letters or

words) between the source and target strings.

B I R D

| | \

B O R E D

Alignments also find the commonality between the source and target strings, but allow

more flexibility in the specification of the non-common portions.

B – I R – D B I – R – D

B O – R E D B – O R E D

Listings are the most general of all, being organized as a sequence of elementary edit

operations to transform the source string into the target string.

BIRD Delete I

BRD Insert O

BORD Insert E

BORED

4Note that the symbols need not be contiguous.

17

The original string-to-string correction problem statement only permitted inser-

tion, deletion, and substitution operations, but other applications (for instance, spelling

correction) require allowing transposition of characters to be an available operation.

Lowrance and Wagner [61] tackle this natural extension, and produce an algorithm to

solve it using restricted traces which allow simple transpositions. Wagner later de-

velops another algorithm which allows unrestricted traces, essentially calculating the

listing distance [109, 89].

Our solution for WikiTrust greedily selects the best match (according to some cri-

teria we define later) from the set of all possible matches between the set of strings,

marks the match, and then proceeds to find the next available best match. The gen-

eral principle is the same as that used in the Smith-Waterman algorithm [96] (also [89,

Ch. 10]) for local sequence alignment, which iteratively locates the best local align-

ment between two nucleotide sequences.5 Our solution is a specialization that does not

allow insertions and deletions within a best match (in the context of Smith-Waterman,

the score for an insertion or deletion would be −∞). While we forbid insertions and

deletions to be components of a best match, we still have other preferences on match-

ing: we prefer matches to be similarly situated in their strings. To achieve this, we

modify the overall score of a proposed match to take into account the position of the

match in the source and target strings.

Concerned with storing deltas as part of a revision control system, Tichy inves-

tigates the idea of finding the shortest edit script as the primary goal in solving the

string-to-string correction problem. As part of achieving that goal, Tichy introduces

block moves that describe a section of text in the source string as exactly matching

5Nucleotide sequences are more commonly referred to as DNA sequences, represented as sequences
of A, C, T, and G to represent the nucleotide base pairs. Matching between two sequences of DNA is
important for understanding, among other things, the similarities and differences between species.

18

a section of text in the target string [105]. This is the same notion as transpositions

by Lowrance and Wagner [61], but Tichy is optimizing for shortest edit script where

there is no penalty for transpositions of blocks of characters. (It should also be noted

that “shortest” specifically depends on the encoding of a block as a single edit opera-

tion.) Tichy’s algorithm loops through the target string and greedily chooses the longest

match from the source string, which Tichy proves as generating the shortest edit script

transforming the source to the target string. This greedy solution is refined by subse-

quent work in several ways: indexing on string prefixes [72], efficient generation of

deletion operations [85], and restricting block moves to be in sequence [13]. Our work

evolved from this line of research, but incorporates the notion of best match in a way

not dissimilar to that found in the Smith-Waterman algorithm [96].

Our work presents a different dimension of the string-to-string correction problem.

In previous formulations, solutions are optimized for abstract performance character-

istics (e.g., running time or edit distance [23, 58]); these solutions sometimes result in

edit scripts which are confusing to human readers. This confusion arises from “unnat-

ural” edit scripts that ignore boundaries at the sentence or paragraph level to achieve

efficiency, in contrast to how humans think of content at multiple levels of abstrac-

tion. For WikiTrust, our interest in string-to-string correction is in trying to estimate

the amount of effort put forth by editors, so we prefer edit scripts which are more likely

to describe the actions taken by human editors rather than those which are most effi-

cient. To achieve this, we use the block moves of Tichy [105], but rather than using

greedy selection of the longest match given a specific starting location, we perform a

global greedy selection of the best match (e.g., the longest match) anywhere within

the source and target strings, reminiscent of the Smith-Waterman algorithm [96]. Fong

and Biuk-Aghai extend the WikiTrust work by applying the hierarchical differencing

19

idea of Neuwirth et al. [70] to our differencing algorithm, and additionally classify

components of the edit script according to common behaviors of Wikipedia editors.

Historians of computer science will note a relation to transclusions [69]. Nelson’s

vision for hypertext included the notion of micropayments to authors, which required

detailed and manual attributions of text. We propose automatically detecting attribu-

tion (equivalently, transclusions of portions from earlier revisions) in the context of a

revisioned document edited by multiple authors.

3.3 Tracking Text Authorship

To answer the question of which author contributed what text to a collaborative docu-

ment we consider the problem, without loss of generality, for a single article a ∈ A,

with n > 0 revisions given by

V[a] = [v1, v2, . . . , vn].

We define the content of version vi as being a sequence of li ≥ 0 words for all 0 < i ≤

n, given by:

Words(vi) = [w1, w2, . . . , wli]. (3.1)

For us, a word is a whitespace-delimited sequence of characters in the Wiki markup

language: we work at the level of such markup language, rather than at the level of the

HTML produced by the wiki engine. We also desire a function that gives the author of

a revision; for a user u ∈ U that edited and committed article a when version vi−1 was

the previous version which user u edited to create vi, we define:

RevAuthor(vi) = u. (3.2)

20

The MediaWiki software associates user u to version vi in the database (or the IP ad-

dress, in the case of anonymous users), so that this information is readily available.

We conceive the problem of author attribution as a recursive relation: the attribu-

tion of words in some version of the document depends on the attribution of matching

words from earlier versions. At an abstract level, we can discover the inductive step

by examining the first several versions. Clearly, for v1, we have the author of the edit,

RevAuthor(v1), as the author of each individual word. To track the authorship of

words in v2, there are two cases:

1. A sequence of words in v2 also exists in v1. In this case, we retain the original

authorship of the words, RevAuthor(v1).

2. A sequence of words in v2 does not also exist in v1. In this case, the sequence

must have been inserted by RevAuthor(v2), and we assign authorship accord-

ingly.

Word authorship in v3 is similar to the situation in v2, with an additional case:

1. A sequence of words in v3 also exists in v2. In this case, we retain the original

authorship of the words that was determined for v2.

2. A sequence of words in v3 does not also exist in v2, but does exist in v1. Again,

we retain the original authorship of the words, as it was determined for v1.

3. A sequence of words in v3 does not exist in any previous revision. This sequence

must have been inserted by RevAuthor(v3).

The general flavor of the computation is now clear, but to describe it more pre-

cisely, we need some additional definitions. For a given revision, we need to know the

21

ordered list of revisions earlier than vi:

PrevRevs(vi) = [vj : 0 < j < i] (3.3)

And for some particular word wr which is the rth word of Words(vi), we need a func-

tion which will return the location of the so-called “best match” from a list of earlier

revisions:

BestMatch(vi, r,PrevRevs(vi)) =

(vk, s) for a best match ws occurring in vk.

∅ if there is no match.
(3.4)

where vk ∈ PrevRevs(vi) since we are only interested in matches with earlier revi-

sions; we will better describe this calculation in the next section.

This definition of BestMatch() is extremely general in that it only defines the

inputs and outputs of the function; it merely says that word wr of vi matches with

some other word ws of vk, where vk is in the past of vi. There is no restriction, in

this definition, that ws be the earliest (or latest) match in the history of revisions, or

that it even be the exact same word (as in the case of misspellings). The details of the

strategy to rank matches and determine the best match are application dependent, and

you can imagine many refinements to how matches are made. For example, consider the

word “score”: in isolation it is fairly unmemorable, but as part of the quotation “four

score and seven years ago” it becomes a signature that allows nearly any American

schoolchild to identify the author. We felt that identifying this “context” for a word

was important to correctly finding matches, so WikiTrust gives preference to matching

contiguous sequences of text. This is described in more detail in the next section.

We can use the same idea of a recursive relation to define the author of each word

22

wj ∈Words(vi):

TxtAuthor(vi, j) =

TxtAuthor(vk, s), if BestMatch(vi, j,PrevRevs(vi))

= (vk, s)

RevAuthor(vi), if there is no best match text.
(3.5)

3.4 Matching Text

Our overall goal is to track text evolution, by which we mean observing how text shifts

around and is added to or deleted from — understanding how it is changed from version

to version by examining the differences. This is exactly the output from algorithms

solving the string-to-string correction problem.

The simplest string-to-string correction algorithms note only insertions and dele-

tions, but we are also interested in noting whether text has been copied (or even just

moved) to another part of the article so that we can assign authorship correctly. We

think several properties are desirable when determining how text is reorganized:

• When text is duplicated within an article, we prefer to assign authorship to the

author of the original copy. This prevents a vandal from duplicating text and

then deleting the original copy. To achieve this goal, we must use an algorithm

that allows block moves of text and allows the same source text to be matched

multiple times in the target revision.

• If the same text is found multiple times in both the previous and new revision,

there are multiple ways to describe how the text has evolved. We would like

to give preference to the most plausible explanation: that the text was not rear-

23

ranged. To do so, we prefer to match chunks of text in the same relative order in

their respective document versions.6

• We do not want to over-reward the first author to use common words (e.g., “the,”

“of”).

• When text is deleted in one version and then restored in a later version, we prefer

the original author. This prevents edit wars or vandalism from disrupting the

authorship of text.

• When looking for matches, we prefer to match against chunks of text which

have been live most recently. That is, when matching against text from multiple

revisions, we prefer to match against the most recent revision that is a good fit.

This property accounts for editors who review the recent history of an article and

restore text that was deleted, as often happens when vandalism occurs.

• We prefer longer matches.

As described in Section 3.2, there is extensive literature on matching text between

two strings. Existing algorithms use somewhat different specifications than we have

outlined above, generally optimizing for the size of the edit script or for the longest

matches, and always only from a single source string to the target string. To achieve

our goals, we develop a variation of the greedy algorithms by modifying the greedy

step; instead of selecting a match based on length, we use a notion of match quality.

The procedure for our greedy-based differencing algorithm7 is:

6This might seem irrelevant, given that duplicated text is given the same author. This property
becomes important when computing the edit distance from one version to another, where text in the
same relative position does not increase the edit distance. If the difference reflected block moves that
crossed over each other, then there might be a positive edit distance contributed by the swapping of
equivalent text, depending on the definition of edit distance used.

7Appendix A lists a Perl language implementation of this basic algorithm.

24

1. Compute all possible matches (of every length):

Matches(va, vb) = {(i, j, k) | ∃i ∈ N,∃j ∈ N,∃k ∈ N . (0 ≤ f < k,

Words(va) = [p1, p2, . . . , pla],

Words(vb) = [q1, q2, . . . , qlb] .

pi+f = qj+f)}.

2. For each match, compute a quality score and insert the match into a priority

queue, so that the highest quality matches will be drawn first.

3. Draw a match out of the priority queue. If any part of the match has already

been previously matched in the target string, then discard this match. Otherwise,

record the match as a block Move from the source string to the target string.

Repeat this step until the priority queue is empty.

4. Check for all unmatched blocks of text in the source string and record them as

Delete operations in the final edit script.

5. Check for all unmatched blocks of text in the target string and record them as

Insert operations in the final edit script.

Building our list of matches (as given by Matches) roughly follows the work of

other greedy differencing algorithms [85, 13]: build a hashtable of string prefixes that

stores the list of locations where each prefix can be found in the source string. Then

consider each position of the target string(s) by finding the list of matching string pre-

fixes from the hashtable. For each match, find the extent of the match (beyond the

length of the string prefix) and add every matching substring into the priority queue as

a separate match.

25

The key to matches meeting the list of criteria we have defined at the beginning of

this section is in the quality function.8 To prefer matches where the blocks are in similar

positions, we can select a quality function which compares the relative positions of a

match. Consider a source string of length l1 and a target string of length l2, with a match

occuring between them of length k at position i1 in the source and i2 in the target; then

we can define a quality to preserve the ordering of blocks as:

qblock = −
∣∣∣∣i1 + k/2

l1
− i2 + k/2

l2

∣∣∣∣ (3.6)

This formula computes the midpoint of each match and compares the relative positions

within the full strings; qblock will be zero when the matches are in the same relative

position and decreases as the blocks move away from each other.

More important than matching blocks not crossing each other, we prefer to match

longer pieces of text. To achieve this, we use a tuple to represent the quality. Given

that a match has a length of k, we can represent preferring longer matches over non-

crossing blocks as (k, qblock). The use of a tuple for the priority reflects that we prefer

matches of longer length, before considering the issue of match quality.

So far, this discussion has applied equally to the task of computing a difference

between two strings and the problem of computing text authorship. In the latter, we

actually need to compute matches with multiple previous revisions to account for text

that was deleted and then later restored. We describe these previous revisions as chunks

of text, and number them so that chunk 0 is the most recent revision. As stated before,

we prefer matches with more recent revisions than with older revisions; if we let c be the

8Except for multiple matching of source blocks, which cannot be handled by the quality function.
The source in Appendix A enables this feature by a flag.

26

chunk number that a match comes from, one possible quality tuple is (−c, k, qblock).9

Once we have an edit script that defines how text evolves from previous revisions

to the target (current) revision, we can then propagate authorship from the previous

revisions to the target. A simple procedure for this would be:

1. Assign authorship of all words in the target to the current author.

2. Compute the edit script describing the text evolution from previous revisions.

3. For each block move in the edit script, extract the authorship from the source

chunk and propagate it to the target.

Optimizations

The Wikipedia is a huge corpus of documents, and processing speed is a crucial factor

in doing timely analysis. We can take a few steps to reduce the size of the computa-

tion we have described so far. Some optimizations that we have implemented for the

differencing step are:

min words We can reduce the number of potential matches examined by the algorithm

by requiring a minimum number of words to match before a string will be added

to the priority queue. WikiTrust accomplishes this by indexing word tuples in the

hashtable of matches computed for the greedy algorithm; for edit distances, we

index word pairs, and for text authorship we track word triples.

This works out well, because we prefer not to reward authors that are the first

to insert very common words or expressions into an article. The ideal solution

9There are other possible quality tuples (e.g., (k,−c, qblock), if the absolute longest match is pre-
ferred), and understanding the ramifications of choosing different quality functions we leave to future
research.

27

would use language analysis to determine n-gram frequencies and compute a

score (e.g., tf-idf [49]) for words and phrases.

max matches The hashtable constructed for the greedy algorithm is used to find the

initial string prefixes for all possible matches. If there are too many matching

string prefixes (for example, a common phrase such as “to the” might appear

many times within a single article), then we believe that the string prefix is too

common to really be considered to have been authored by a single individual.

WikiTrust ignores string prefixes which have more than 50 matches.

longest match Put only the longest possible match onto the priority queue, instead of

every possible match (that is, don’t place substrings of the longest match onto the

priority queue). This saves a lot of CPU and memory by not having to store these

substrings in the priority queue. Also, since the longest match is likely to be the

one that is actually selected, there is a savings from not having to remove the

substrings from the priority queue later. The complication of this optimization

is that if a string on the priority queue has been partly matched by an earlier

selection, then the residual non-matched parts of the string need to be placed into

the priority queue for possible selection later. This makes the assumption that

the quality function always prefers longer matches over shorter matches, so that

we encounter matches from the priority queue in the correct order. Appendix B

demonstrates this modification.

prev matches An optimization that we later implemented on top of longest match is

prev matches: if a potential starting position for matched text is part of a longer

match, then the previous position would have been in the set of matches returned

by the index of matching positions. That is, if we are examining position j in the

28

target string and are considering match Move(i,j), we know that it was part of a

longer match if i − 1 is one of the matches returned for position j − 1. In this

case, we do not need to examine the match.

header/trailer When users edit an article, the beginning and end of the article are

not likely to change much. If the first few words of an article are the same from

one revision to the next, it is reasonable to conclude that they are a match without

having to test other possible sources of block moves from the article; this fits well

with our desire that the resulting edit script try to match a human description of

the edit. This pre-matching of the heading and trailing portions of the article

can significantly reduce the number of potential matches that are computed in

the initial step of the algorithm. Some care should be taken in the handling of

authorship; if the header or trailer is duplicated elsewhere in the article, then the

original authorship still needs to be retained.

To give an idea of the value of the optimizations, we implemented some variations

of the text differencing algorithms and measured the execution time on differencing of

the initial filtered revisions of the article Santa Cruz Beach Boardwalk. We used the

well-known Tichy algorithm with its own optimizations [105, 72, 85] as a baseline,

and called this diff1. The most basic implementation of the WikiTrust algorithm we

called diff9; it places every potential match (including substrings of longer matches)

on a priority queue before processing for matches, and implements the header/trailer

optimization. For diff8, we instead incorporate the longest match optimization which

places only the longest matching sections (that is, no substrings of longer matches are

considered) onto the priority queue. Our fourth variation is diff5, which includes the

header/trailer, prev matches, and longest match optimizations. The numbering of

these algorithms is to remain consistent with the evaluation done in Chapter 4; see

29

Source Target Num Tichy WikiTrust WikiTrust WikiTrust
Rev Rev Words diff1 diff5 diff8 diff9

8741260 12175065 587 128µs 514µs 808µs 526,492µs
12175065 14057051 589 125µs 120µs 791µs 133µs
14057051 17039312 588 122µs 127µs 893µs 131µs
17039312 20060015 588 117µs 123µs 1111µs 132µs
20060015 20551181 588 129µs 153µs 1053µs 136µs

Table 3.1: The execution times of four text differencing algorithms implemented in
OCaml, three of which are variations of the WikiTrust algoritm, on the initial filtered
revisions of the article Santa Cruz Beach Boardwalk. The particularly slow difference
for diff9 is typical for cases where both the beginning and end of an article are edited,
defeating the header/trailer optimization; in this case, an image was added near the
beginning and a category was added to the end.

Table 4.2 for a breakdown of algorithm variations in that context. See Appendix E for

the specific implementation details of each algorithm; some representative run times are

shown in Table 3.1. The difference in run times between diff8 and diff9 reveal that the

header/trailer optimization is the most significant in reducing the run time; notice that

diff1 (the Tichy-based algorithm) performs extremely well without the header/trailer

optimization, but also doesn’t really benefit from including it (revealed by timings in

Table 4.8).10

There are additional optimizations we can make for computing text authorship, as

well. A very simple step is to reduce the size of the list of previous revisions given

by PrevRevs(vi). As defined in Section 3.3, PrevRevs(vi) is the ordered list of all

previous revisions, [v1, v2, . . . , vi−1]. We use the full list of previous revisions to ensure

that restored text is assigned to the right author. In practice, the history of an article can

extend to several thousand revisions, but an editor is likely only to look back a small

number of revisions when searching for text to restore. We arbitrarily limit the list of

10The Tichy algorithm matches the initial “header” of the target revision as its first step, so the
header/trailer optimization does not significantly reduce the work performed by the algorithm.

30

previous revisions to ten:

PrevRevs(vi) = [vj : max(1, i− 10) ≤ j < i] ,

but observe that better selections can be made, as described in [17].

We can further speed up tracking authorship by reducing the number of potential

matches, similar to the optimization for the differencing algorithm. If we assume that

the quality function always prefers matches from more recent revisions to matches

from older revisions (as is the case with (−c, k, qblock) as a quality function), then we

can construct the edit script piecewise by differencing only a single revision at a time.

When looking at older chunks, the fact that the target has already been partially matched

will reject many potential matches. Appendix C shows an implementation of the basic

text tracking algorithm, and Appendix D shows our optimization; Table 3.2 shows

representative running times.

An additional optimization we can make is again with respect to the handling of

the previous revisions. In defining the matching algorithm, we give preference to more

recent versions before falling back to matches against older revisions. Let us consider

the case where a piece of text does not match in the most recent revision vk, but does

match in some earlier revision vi, so that we have i < k. Since the text does not match

in any vj for i < j ≤ k, the text must have been deleted in vi+1 and never restored. The

size of deleted text in any revision is typically much smaller than the size of the live

text, so our final optimization is to check for matches against the deleted text rather than

the full live text of previous revisions. Note that this can change the size of matches

that are found if a piece of text only partially matches deleted text, so that the quality

function might not select matches in a preferred way.

31

Target Previous WikiTrust WikiTrust
Rev Revs BasicTextTracking FasterTextTracking

12175065 1 12.50s 13.93s
14057051 2 36.52s 2.49s
17039312 3 68.79s 3.61s
20060015 4 144.42s 3.14s
20551181 5 933.44s 21.50s

.
24358877 10 5064.09s 26.94s
25306944 10 6717.15s 33.74s
34009105 10 6480.42s 3.14s

Table 3.2: Comparing the execution times of our basic and fast text tracking algorithms,
both written in Perl, on selected versions of the article Santa Cruz Beach Boardwalk.
Note that Perl is an interpreted language, slower than the OCaml implementation evalu-
ated in Table 3.1 and Chapter 4. We present this data to give a flavor for the importance
of the optimizations. The faster text tracking algorithm reduces amount of work done
by only matching against one revision at a time, eliminating potential matches found in
other revisions.

Thoughts On Evaluation

Historically, text differencing algorithms are judged on the complexity of the algorithm,

or how the memory usage scales with the size of the inputs, or in the size of the resulting

edit script. These are important concerns, especially in the context of trying to process

the over 1.5TB of data that make up the revision history of the English Wikipedia.

Our goal is more than efficiency, however; we are trying to measure the work done by

authors of a collaborative work. People are far from efficient, so our solution attempts

to simply model a human conception of how text is rearranged and reinstated from

previous revisions.

The problem we are faced with, then, is how to evaluate this measure; do our

calculations correlate well with human intuition? Is it even possible to survey a large

number of people to generate edit scripts describing the transformation from one revi-

32

sion to the next, or can edit scripts only be generated by video taping editors caught

in the act? Although we do not evaluate the performance of our difference algorithm

directly for this metric, we speculate that it might be possible to indirectly evaluate

the performance by examining and evaluating a different problem which uses a differ-

ence algorithm as a basis. We investigate this idea in the evaluation of our edit quality

measures, presented in the next chapter.

3.5 Conclusions

The problem of tracking text authorship across multiple revisions is not well-studied.

We have proposed several criteria to define preferable matches, but other possible for-

mulations might be equally valid.

A significant problem in defining the criteria for a good solution to tracking au-

thorship is the handling of short matches. For example, consider the two-word match

“of the,” where adjacent words are not part of the same match. Most people would de-

scribe the two words as completely unoriginal (to be discarded via a stop-word list [53],

or possibly always to be part of some larger phrase), so that a match so small should

always be discarded. Incorporating the n-gram frequency into the match quality score

would be one way to avoid giving away credit for phrases commonly used as a unit in

the language.

Now consider the case of a larger n-gram: suppose there is a match of the phrase

“the President of the United States” between a new revision and some older revision.

We have just suggested that statistically improbable phrases are good candidates for as-

cribing authorship to the first person to introduce the phrase into an article. For exam-

ple, in an article about Caltech, the first person to add text describing a commencement

speech by “former President of the United States, Bill Clinton” should certainly get

33

credit for any appearance of the phrase “President of the United States” in later revi-

sions. What about when this phrase appears in an article titled “President of the United

States?” If we apply the same rule, the first person to introduce the phrase might receive

much credit if the phrase is used many times throughout the article. Clearly, there is

some threshold frequency within a single article where a phrase is no longer original.

The challenge illustrated by these two issues is that the notion of authorship really

revolves around both ideas and specific words reflecting those ideas. Until natural

language understanding makes more progress, this seems like a problem that heuristics

will have to address (e.g., as is done in tf-idf [49]). How does one compare two different

text tracking algorithms? How would we discover other cases that demonstrate where

our specifications of the solution are incomplete? These are open problems outside the

scope of this work.

Our own work has chosen to balance a faster implementation with the need to

model a human view of text differencing, and in this chapter we have presented some

basic algorithms to solve text differencing and author tracking in the context of an edit

history. After including several optimizations, we have achieved run times of about a

week to process several years of article history for the English Wikiedia.

34

Chapter 4

Contribution Quality

4.1 Introduction

One of the key problems in trying to build a reputation system for the Wikipedia is

that, while a massive amount of data is available, there is little information about how

well different users or articles are performing. Having such data is important because

we would like one aspect of the reputation system to be descriptive of the community

behavior seen in practice. To describe an edit as bad or good, we have to know what

the community thinks of it.

One obvious way to do this is to examine reverts in the article history. A revert

undoes the action of one or more edits, usually leaving the article in a state exactly

matching an older version. For example, if user Alice vandalizes an article by blanking

it, user Bob can revert her changes by restoring the article to the state before Alice’s

edit. If there are constructive edits after a bad edit, it is also possible to selectively undo

This chapter expands on ideas originally described in [2].

35

just the bad edits. When a revert happens, it is a clear indication that some member

of the community believes that the reverted edit is completely inappropriate, so many

researchers use this as an indicator of community feedback [2, 95, 48, 8].

There are two issues with using reverts and undos as measures of community

feedback. The first is that there are no definitive annotations1 indicating that reverts or

undos have occurred, but computation can detect them.2 The second, more significant

issue is that reverts and undos are a very blunt feedback mechanism; they indicate only

complete disapproval. There are no gradations in this evaluation, which does not make

it a good measure for the quality of a revision, except for judging the very worst edits.

When we started the WikiTrust project in 2006, our initial thought was to use page

views to get a measure of how well reviewed an article is. Since the Wikipedia works

due to the collective action of everybody reading the articles, we expected that pages

that receive a lot of views would be more accurate because of the higher collective

amount of scrutiny received; the more eyes looking over the text, the better reviewed

the article would be. (At the time, we abandoned this line of thinking because page view

information was not available. Since then, Priedhorsky et al. show how page views can

be estimated from some available data sets [81]. Log files are also now available3 and

have a user-friendly front-end4 for simple queries.) Our experiences during the course

of this research is even bleaker than that: plentiful shallow review is not equivalent to

deeper review, and more eyes does not mean that anyone will take the effort to correct

a mistake. For example, the South Pasadena, California page was vandalized in May

1When using the MediaWiki software, a standard notation appears in edit comments, but this is not
100% reliable, as reverts can be effected manually.

2Detecting undos can be fairly expensive, so it is typical to restrict checking to a limited number of
older revisions.

3http://dammit.lt/wikistats/

4http://stats.grok.se/

36

20085 to add the film “Triumph of the Will” as being filmed in that city; it was not

corrected until April 2009.6 This is remarkable because the Nazi propaganda film is

well known in film studies, and South Pasadena is in the Los Angeles area, where film

studies is very popular. We know from the data available now that roughly 75 people

a day read this article, so we have to wonder at how this error might have persisted for

nearly a year.

The data from the history of revisions seemed to be our only data source for com-

munity sentiment, so we began to examine edits and attempt manually to track how

each edit fared in its future. Although there is a great deal of variation in edits, this

examination led us to the hypothesis that text contributions might follow a pattern of

exponential decay. That is, if an edit is not very good, the bulk of it will be removed

right away, with small amounts more being removed in subsequent edits until some ker-

nel of the original edit stabilizes and becomes a fixture within the article. This became

our text quality measure, explored further in Section 4.3.

Of course, not all useful work consists of adding text to the Wikipedia. The RC

Patrol and other maintainers all do work that involves deleting text or editing and re-

arranging text contributed by others, and any measure that only looks at how text is

added will not capture it. How does one go about measuring how much of a delete is

preserved in future revisions? We could answer this by treating it as the complement

of insertion (that is, counting words restored from the delete as a penalty to the origi-

nal delete), but measuring word rearrangement was a completely different beast. The

answer came in thinking of the evolution of an article like a drunken walk along a road

5http://en.wikipedia.org/w/index.php?title=South_Pasadena,
_California&oldid=211466067

6http://en.wikipedia.org/w/index.php?title=South_Pasadena,
_California&oldid=282177714

37

from one village to the next: there is a definite start and a definite end, but the steps

along the way do not always form a neat path and might even drift off the road for a

time. Defining a measure of forward progress led to our second quality measure, edit

quality, which we explain in Section 4.4.

Our motivation for the edit quality measure is that the future versions of an article

represent a consensus by the community about which contributions were useful and

which were not. Each later author is implicitly making a commentary about the existing

text when they decide to make an edit. This sort of inference is very like the idea of

revealed preferences in economics [88, 106], in which consumer preference is inferred

from data about their actual purchases. Similar to the economic setting, a valid criticism

of our inference is that later authors do not necessarily review the entire article or its

recent history, and so might not be making decisions about all past contributions. We

believe that modeling user attention — so that there is greater belief in our inference for

text near the edits made, and less belief for portions of the article not modified — can

improve our confidence in the inference made. We leave the exploration of this idea to

future work.

The analogy to software engineering raised in Chapter 3 suggests a host of po-

tential quality measures, such as understandability, completeness, and reliability [121].

The difficulty of these measures is that they cannot be measured in a programmatic

way. (As an example, the reliability of the Wikipedia was compared to that of the En-

cyclopædia Brittanica by employing experts to review hand-selected articles from both

reference works [36].)

38

4.2 Related Work

Some of the literature studying Wikipedia uses the notion of edit quality as a basis for

some other research goal, and so they use the gross measure of detecting reverts to

signal a poor quality edit [2, 95, 48, 8]. The WikiTrust project introduces the idea of

text and edit longevities [2], which are finer grained than a binary classification and

are the subject of this chapter. Similar to the notion of text longevity is the idea of

Persistent Word Revision per word [43, 44] (PWRpW), which counts the number of

revisions that added words survive and normalizes that sum by the number of words

added (that is, it computes the average number of revisions that added words survive).

PWRpW differs from text longevity in that it is essentially computing the area under

the curve of text survival (such as that depicted by Figure 4.1), whereas text longevity

is trying to model the shape of the curve (see Figure 4.2).

At a broader view, quantifying the quality of an edit is strongly related to the

problem of detecting vandalism. Many machine learning models produce a probability

that an edit should be classified as vandalism, and this probability can be directly taken

as a quality score. We refer the interested reader to Section 7.2 for a discussion of the

literature around this view of the problem.

4.3 Text Quality

When first approaching the topic of measuring the quality of contributions made by

users, our thinking (shaped by some of the public discussion surrounding contribu-

tions [102]) focused on the text being added by users. The basic assumption of a repu-

tation system is that past performance is a reliable indicator of future performance, so

we were asking the question “does text added by some users survive longer than text

39

by other users?” Note that there are other possible measures of quality, for example:

what size is the contribution, what is the reading level of the text [34, 41], how good is

the grammar, and does the text seem to be related to the topic of the article [48]. We

decided not to tackle these kinds of quality measures, both for the difficulty of natu-

ral language processing and because such methods would require significant work for

each language we wanted to support. Measuring survival has the advantage that it is

relatively cheap to compute and works the same way across most languages.

To calculate how long a piece of text survives, we need to track the authorship of

units of text7, and then compute authorship again in later versions of the article to find

those words with an authorship dating back to the revision we are trying to determine

the quality of. In Chapter 3, we describe how to track text authorship for the text in an

article a ∈ A. Just tracking authorship is not enough for tracking survival, since we

need to know what specific revision a word came from. Let us define another recursive

relation, like for TxtAuthor() in Definition 3.5, which defines the revision where a

word was first introduced. For a word wj , the j th word of Words(vi) (where vi ∈ V[a]),

we define:

TxtSrcRev(vi, j) =

TxtSrcRev(vk, s), if BestMatch(vi, j,PrevRevs(vi))

= (vk, s)

i, if there is no best match text.

Now we can define the text survival of words to be the number of words introduced in

7For the WikiTrust project, we opted to use a granularity of words to reduce computational require-
ments.

40

vm still present in vn:

TSurva(m,n) = |{j : ∃j ∈ Z . (TxtSrcRev(vn, j) = m)}| (4.1)

Text Decay Quality

In the abstract, our goal is to define some measure that we can compute for revisions

that quantifies an estimate of the quality of the revision. There are many possible ways

to define quality measures, which is the subject of research on vandalism detection (see

Section 7.2 for background on that topic). As an example, a simple quality measure

would be the heuristic that inappropriate words added as part of an edit would indicate

that the revision is of poor quality.

For the purpose of building a reputation system, we want a measure that provides

some insight into the community perception of the quality of the edit. Having defined

the notion of text survival, a very simple quality measure could be “what fraction of

the text added in a revision survives ten revisions later?” We discuss some variations

of these quality measures in Chapter 5, but present one novel quality measure here.

In trying to understand how text contributions evolve, we decided to limit our

exploration to what happens to the text over the following ten revisions. Many contri-

butions follow the simplest model: they are either removed completely right away (a

revert), or they are perfectly preserved for the following ten revisions. Some contri-

butions, however, are only partially preserved, and might even be partially restored as

part of their evolution. Figure 4.1 gives a pictorial representation of how some text in-

troduced at revision vk might evolve over the next seven revisions; in this example, the

figure shows that some text was restored in revision vj . We say that author Aj judges

the work of author Ak by deciding how much text to preserve, delete, or restore. If

41

Figure 4.1: A graphical depiction of how a text contribution survives through future
revisions. An author, Ak, adds Tk = TSurv (k, k) words in revision vk. In subsequent
revisions, some of those words are deleted and partially restored. We say that a later
author, Aj , implicitly judges author Ak by choosing how many of Ak’s words to keep
or delete or restore; Tj = TSurv (k, j) is the number of words that were introduced in
vk still present or live, in vj .

author Aj works on a different part of the article, she is still implicitly deciding that the

current revision of Ak’s work is okay.8

Measuring the fraction of text introduced in revision vk that survives to revision

vj (i.e., computing TSurv (k, j)/TSurv (k, k)) gives useful information, but what if

the author of vj happens to be a vandal that blanks the page? One idea would be to

average the text survival over the next several revisions (an idea explored in Chapter 5),

but we were struck by the observation that after some initial churning, text seems to

stabilize and then only slowly change as time progresses. We propose that one way to

model this evolution of text over time is as a geometric sequence with a common ratio

between zero and one; see Figure 4.2 for how such a sequence could approximate the

text survival over several revisions. The intuition behind a geometric model is that if an

edit is “bad,” then most of the text will be removed right away. As time passes, the size

8Some better model of user attention would be useful for tempering the amount of judgement we
infer from Aj when they are focused elsewhere in the article.

42

Figure 4.2: To calculate the text longevity of the contribution of Tk words, we model
the text survival as a geometric curve and compute a single number that describes how
the text evolves over several revisions. Value α is the solution to the function in Eq. 4.2
based on the geometric series.

of the edits decreases and the text tends to stabilize into a form that people can agree

on until it eventually no longer changes.

To measure the overall quality of a single text contribution made in revision vk ∈

V[a], we need to compute the common ratio that best describes the sequence of n text

survival values, TSurv (k, j), after vk, where k < j ≤ k + n. Let us call this common

ratio the text decay quality, qntdecay(k). To compute qntdecay(k), we want to solve the

following equation:

n∑
i=0

TSurv (k, k + i) = TSurv (k, k) + qntdecay(k) · TSurv (k, k)

+ (qntdecay(k))
2 · TSurv (k, k) + . . .

+ (qntdecay(k))
n · TSurv (k, k)

= TSurv (k, k) ·
n∑

i=0

(qntdecay(k))
i

= TSurv (k, k) ·
1− (qntdecay(k))

n+1

1− qntdecay(k)

43

To solve this for qntdecay(k), we can use Newton’s method to solve for the zero of

the related function:

f(α) = −(1− αn+1) · TSurv (k, k) + (1− α) ·
n∑

i=0

TSurv (k, k + i) (4.2)

where α = qntdecay(k). Newton’s method involves making repeated estimations of the

form

αj+1 = αj −
f(αj)

f ′(αj)

which we initiate with α0 = 0. For efficiency reasons, we limit the number of iterations

taken to a small number (five in our live system) since we are only estimating the

quality, and high precision is not very useful.

The beauty of this quality measure is that it varies between zero for text that is

immediately deleted, and one, for text that is completely preserved. Values in between

the two extremes reflect the fact that there was some debate among the community

about what text to preserve in the article.

4.4 Edit Quality

The problem with measuring text contribution quality alone is that it measures only

one kind of user behavior: inserting of text. Another important behavior of users is to

rearrange text (possibly with minor edits) so that it improves the flow or readability of

the text. In traditional publishing, this is a function provided by the editor — and both

content creation and editing for grammar and style are valuable to the quality of the

final product. Is there any notion equivalent to text survival for edits? In struggling to

answer this question, we first had to measure the size of an “edit contribution,” which

44

naturally led us to the edit distance [23, 58, 105, 20, 89] measure.

Edit Distances

Edit distance [23, 58] is typically used as a way to measure how many insertions, dele-

tions, and replacements are needed to transform one string into another (the collection

of these operations is called an edit script), and is usually defined as the sum of the

number of those operations (that is, the size of the edit script). Other formulations ex-

ist for edit distance, and within the context of the WikiTrust project, we were already

computing text differences as part of our author tracking algorithms, so we chose to

define the distance between two revisions in terms of the edit script generated by our

greedy text matching algorithm from Chapter 3. The elements making up the edit script

generated by WikiTrust are:

• Move(i1, i2, k) – a block of text of length k words which matches between the

source string and target string. The match starts at position i1 in the source string,

and starts at position i2 in the target string.

• Delete(i, k) – the text starting at position i and extending for length k words

was deleted from the source string.

• Insert(i, k) – the text starting at position i and extending for length k words was

inserted into the target string.

If we let E(m,n) be the edit script set of elements describing the transformation

from the source string Words(vm) to the target string Words(vn), then we can define

terms for the total amount of insertions and deletions by summing over all the matching

45

elements:

Itot(m,n) =
∑

Insert(i,k)∈E(m,n)

k

Dtot(m,n) =
∑

Delete(i,k)∈E(m,n)

k

We must take more care in quantifying how much movement was involved in an edit;

simply summing the size of each Move operation is not sufficient, because our edit

script includes all matching text as these operations. What we would like is to only

count those blocks of text that were actually rearranged. Let lm = |Words(vm)| and

ln = |Words(vn)|. Each time a block of text of length k exchanges position with

a block of text of length k′, we count this distance as k · k′/max(lm, ln). Thus, a

word that moves across k′ other words contributes k′/max(lm, ln) to the distance; the

contribution approaches 1 as the word is moved across the whole document. The total

contribution from Move operations is then given by:

Mtot(m,n) =
∑

Move(i1,i2,k)∈E(m,n)
Move(i′1,i

′
2,k

′)∈E(m,n)
i1<i′1 ∧ i2>i′2

k · k′

max(lm, ln)

We then define the edit distance between revisions vm and vn as

d(m,n) = max(Itot(m,n), Dtot(m,n)) +Mtot(m,n)−
1

2
min(Itot(m,n), Dtot(m,n))

(4.3)

46

The motivation for this formulation of edit distance is to try to account for replacements,

which appear within the edit script as both insertion and deletions — but the position

information required to match them is not preserved by the difference algorithm. By

subtracting a correction term, we make the assumption that edits with both insertions

and deletions make some replacements, which are being counted in both types of edit.

Edit Longevity

Given a method to measure the size of an edit contribution, the problem still remains of

how to compute whether that contribution is preserved in future revisions. An idea we

considered is summing the edit distances of sequential revisions, and comparing that

against the edit distance between the first and last revisions. This has the problem that it

roughly assumes that all contributions are completely preserved or completely reverted,

but the idea of mapping out the edit distances of multiple revisions led to another idea

that we favor.

Instead of trying to measure whether an edit is preserved, let us ask the question,

“does this edit move us in the direction of the future of the article or does it move us

away from the future?” Let us consider a physical analogy to see how this might work:

suppose that grad school was as simple as a hike through the Forest of Research, with

graduation on the far side of it (see Figure 4.3). The grad student starts off on a direct

path towards graduation, but inevitably gets lost and wanders deep into the forest. At

some point, the advisor gets involved and rescues the grad student, guiding him towards

graduation. There are three distances that are involved in this scenario:

1. the work done by the grad student, from the start to the point where he is rescued,

2. the work done by the advisor, from the point of rescue until graduation, and

47

Figure 4.3: Grad school can be likened to hiking through a forest, where the grad
student inevitably leaves the direct path and ends up far from his intended goal. When
the advisor steps in with advice and guides the grad student to graduation, we ask
the question “how much useful work did each contribute by their efforts?” (Character
illustrations courtesy of [16].)

3. the direct path distance from start to graduation.

Our original question then becomes, “how much of the grad student’s work contributes

towards his reaching graduation?” From the grad student’s perspective (Figure 4.4a),

this is easy: a triangle is formed by the three distances, and to calculate the “use-

ful work” one merely drops a normal from the point of rescue to the direct path; the

remaining distance represents the contribution of the advisor. What if the student over-

shoots his target, so that the “forward progress” is more than the minimum necessary?

In the physical setting, the student has not reached the goal so we should reject

48

(a) The grad student measures his “forward progress” in the traditional way: by dropping a normal
to the direct path.

(b) The advisor measures the useful effort of the grad student by subtracting his own total effort
from the minimum effort that should have been necessary. From the advisor’s perspective, his
own effort is completely useful, and would have been unnecessary if the grad student had followed
the path as directed.

Figure 4.4: How should we calculate the useful effort that the grad student in Figure 4.3
contributed towards his own graduation? Here are two perspectives on how to measure
that.

49

any computation that discounts the advisor’s contribution. Reasoning that his time

and expertise directly and efficiently contribute to guiding the student to the goal, the

advisor proposes a different scheme (see Figure 4.4b) for computing the grad student’s

contribution: take the minimum work necessary to go from start to graduation and then

subtract the amount of effort put in by the advisor. This has the effect of discounting

the effort of the grad student, rather than the advisor, and has the benefit of a natural

interpretation of when a contribution has “forward” (instead of “backward”) progress.

Applying this metaphor back to the Wikipedia, we must take into consideration

three revisions: the one being evaluated, one in its past, and one in its future. We say

that the edit being evaluated was useful if it brings the article closer to how it will look

in the future. Of course, an author can “overshoot the future” by adding a mixture of

content, some of which is kept and some of which is rejected; the efforts of the author

are discounted by the amount of work that subsequent authors must do to transform

article into its final (that is, some future) state, so that even a situation of overshooting

the future has a reasonable interpretation.

Figure 4.5 visually represents two cases in evaluating revision vk, using vk−1 and

vj (where j > k) as guide posts for the general path that the evolution of the article is

taking. If a contribution moves us in the general direction of the future but has some

extraneous text that is deleted (for example), we get the case shown in Figure 4.5a:

the distance d(k, j) is smaller than the distance d(k − 1, j). If the edits of vk do not

contribute at all to the future of the article, then we have the case shown in Figure 4.5b:

the distance d(k, j) is larger than the distance d(k − 1, j).

So now we have a very simple analysis of comparing d(k, j) with d(k−1, j) to tell

us whether the quality of revision vk is good or bad (at least with respect to vk−1 and vj).

We would like to have more gradation in a quality measure than just the two extremes;

50

(a) Graphical representation of a good
edit contribution.

(b) Graphical representation of a bad edit
contribution.

Figure 4.5: To measure the quality of version vk, we also look at the previous version
vk−1 and some future version vj . The three versions form a triangle, using edit dis-
tance [23, 58] to define the separation between each other. Intuitively, we know that
when vk is good, the distance to the future, d(k, j), will be shorter than if vk is bad.
(When vk is bad, more editing is required to bring it back to a better version, plus the
editing to bring it to the future.)

we would like to know how good or bad an edit is. To answer this question, we thought

that a good measure would be to compare the total work done by RevAuthor(vk), with

the amount of progress made towards the future. That is, if an author writes a 600 word

essay about a topic, but only 20 words are actually kept in the article, then the original

600 word contribution must have been pretty bad. Instead, if 300 words remain in the

article (half of them), then the contribution could be said to be so-so.

We propose that a good way to measure this judgement of the author of vk by the

author of vj , which we call edit longevity, is:

ELong (k, k − 1, j) =
d(k − 1, j)− d(k, j)

d(k − 1, k)
, (4.4)

It compares the “useful progress” d(k−1, j)−d(k, j) with the “total work” d(k−1, k).

Figure 4.6 presents the graphical interpretation of the quantities involved. For reverted

51

Figure 4.6: Quality is measured by calculating how much progress is made towards the
future version of the article, and dividing that by the amount of work done during the
edit.

edits, the ratio ELong (k, k − 1, j) is −1, since all the work goes into increasing the

distance between vk and vj . For preserved edits, ELong (k, j) is close to 1.

Note that here and in our original work on this topic [2], the reference revision

from the past is always the revision immediately before the revision being evaluated.

In practice, the revision immediately before might be vandalized, so that the path from

vk−1 to vj does not actually represent the overall trajectory of edits for the article.

Another work dealing with the robustness of reputation [17] addresses this shortfall.

Also, it is sometimes the case that a revision is created with no changes (or with changes

only in whitespace), so that we have d(k−1, k) = 0; in this case, we ignore the triangle

and do not compute a longevity score for revision vk.

The Reverse Triangle Inequality

The insight leading to Definition 4.4 is that the edit distance measure induces a topo-

logical space that relates every revision to every other revision. Using that model for

52

our intuition, we can describe the evolution of an article from its creation to the most

recent revision as a trajectory in the space. This is very much like a drunken walk along

a road from one place to another; there is a clear start and a clear end, but an inebriated

pedestrian won’t follow a straight line. Using the straight line between start and end

as a reference, we can measure the pedestrian’s forward progress, as well as how much

wasted effort he puts into moving sideways along the road. Figure 4.6 is applying that

analogy in our edit distance based topology, and shows one way to measure the forward

progress.9

Continuing with the physical intuition of how revisions can be related to each

other, the reverse triangle inequality [122] allows us to put bounds on the value of

Definition 4.4. The reverse triangle inequality states that any side of a triangle is greater

than the absolute value of the difference of the other two sides:

|d(k − 1, j)− d(k, j)| ≤ d(k − 1, k) (4.5)

The two sides of this equation are exactly the two terms of our fraction, so that we can

conclude that edit longevity varies from −1 to +1.

There is just one problem with this analysis: it depends on the triangle inequality

holding. Unfortunately, this is not actually the case; we adjust for this by limiting

the result to the range −1 to +1, with any value beyond that range being capped to

the closest value within the range. Section 4.6 contains further discussion around this

aspect of edit distance and our edit longevity definition.

9In trying to measure “the useful work done” there is the temptation to use the projection of d(k −
1, k) onto d(k − 1, j) by computing the angles involved. This isn’t correct because of the possibility
of overshooting the future. For example, an author might contribute completely good text but include
an extra paragraph that is removed in the next revision; in this case, the triangle formed collapses to a
straight line and we have d(k − 1, k) > d(k − 1, j).

53

Edit Longevity Quality

Our strategy for turning edit longevity into a quality measure is to compute an average

of edit longevity from several different perspectives. Edit longevity requires two land-

marks to base a judgement on: some revision in the past of the version being judged,

and some revision in its the future. For simplicity, we choose the revision immedi-

ately previous to the one being evaluated as the landmark in the past. That is, if we

are evaluating vk, then we choose vk−1 as one of the reference points. Our motivation

for choosing only a single previous revision as a reference point is that past revisions

cannot be making any implicit statements about a revision that has not happened yet.10

Our central idea for extracting community sentiment from the revision history of

an article is to examine what happens to an author’s contribution as the article continues

to evolve. We say that later versions of the article act as judges of the contribution,

because each later author implicitly makes the decision to delete or revise existing text

in the article. For text quality we used the ten following revisions as judges, but this

allows the possibility for the author being judged to act as his own judge. We address

this issue in the case of turning edit longevity into a quality by defining a map

J : A× V× Z→ 2V

which, for an article a ∈ A, returns the set of up-to n versions that act as judges to

version vk ∈ V[a], with the proviso that the author of vk does not act as his own judge:

Jn
a (k) = {j : j ∈ Z . 0 < j − k ≤ n ∧ RevAuthor(vk) 6= RevAuthor(vj)} (4.6)

10In hindsight, the previous revision might have been blanked or otherwise vandalized, so that mul-
tiple previous revisions should actually be considered. See [17] for alternative methods of choosing
landmark revisions for estimating the evolution of an article.

54

With our reference points for the past and future selected, we can define the aver-

age edit longevity as follows:

qa,nelong(k) =
1

|Jn
a (k)|

·
∑

i∈Jn
a (k)

ELong (k, k − 1, i) (4.7)

4.5 Evaluation

A large challenge in creating quality measures is the problem of evaluating the perfor-

mance of the measure. “Quality” is an imprecise notion by itself, because it necessarily

must be evaluated with respect to some attribute. For example, within the Wikipedia

we might evaluate the quality of a contribution along any of these dimensions:

• grammar

• diction

• neutral point of view

• factual correctness

Our text and edit longevity measures try to go one step further into the fuzzy world of

human evaluations by using later edits as a basis for inferring sentiment about earlier

edits. Is this a valid inference to make? How can such a question be answered?

The surest way to measure sentiment would be to interview users as they are mak-

ing edits to the Wikipedia and documenting their thought processes as they read an

article and make the decision to edit an article — but this would require an enormous ef-

fort to collect enough data for performance evaluation. We propose that we can grossly

measure the sentiment of the community by recognizing that there is a generally agreed

55

upon standard of articles being of “encyclopedic quality” which allows people to rec-

ognize vandalism when they see it. Accepting that premise suggests that we can use

the PAN-WVC-10 corpus [78] as a manually annotated data set for such an evaluation.

The PAN-WVC-10 corpus was used to compare the performance of solutions for

the First International Competition on Wikipedia Vandalism Detection (PAN-WVD

2010) [80]; We use it in a similar way here to compare how well our quality mea-

sures are able to predict vandalism within the corpus, but with an important distinction:

we use information “from the future” to calculate our quality values for the annotated

revisions. Standard vandalism detection tools make their determination immediately

as the edit is made, so that any vandalism can be quickly repaired by other users. The

necessity for a quick classification precludes waiting for future edits or rating to corrob-

orate the edit being judged; we term this variation of the problem immediate vandalism

detection. By construction, our two longevity metrics use later edits to measure the

quality of the revision being judged; we call this the historical vandalism detection

problem. Historical vandalism detection has its own set of important applications, such

as selecting high quality revisions for DVD compilations or for presentation to school

children.

The PAN-WVC-10 corpus contains 32,439 edits, where each revision was manu-

ally reviewed by at least three annotators to assign a label of either “regular” or “van-

dalism.” We used the dump of the English Wikipedia from January 30, 2010 to extract

the text of each annotated revision, along with the revision before and the ten filtered

revisions following so that we could compute our text longevity and edit longevity

measures for each annotated edit.

We used the straight-forward transformation to convert each quality score from its

normal range into the range [0, 1], to be interpreted as a probability that the named revi-

56

sion was the result of vandalism. As in the PAN-WVD 2010 competition [80], we use

the perf11 package to evaluate the performance of our quality measures by computing

the areas under the receiver operating characteristic curve12, and the precision-recall

curve.

Difference Algorithms

The formula for edit distance we defined in Section 4.4 is calculated from the operations

within the edit script describing the transformation from the source revision to the target

revision. This edit script is highly dependent on the algorithm used to compute the

difference between the revisions. To provide a more complete picture of how the choice

of difference algorithms affects the performance of the quality measures, we present an

evaluation of some variations of the algorithms. Our evaluation for this chapter was

implemented in OCaml for performance reasons; the OCaml source representing these

algorithms appears in Appendix E.

The basis for the WikiTrust method of text differencing is a greedy algorithm in-

spired by the work of Tichy [105]. As described in Chapter 3, our goal was to create

an edit script that more closely followed a human understanding of the text transfor-

mation, rather than trying to optimize for shortest edit script. This led us to change

the greedy step to be globally greedy; that is, we always prefer the longest unmatched

sequence of words from anywhere in the source and target strings. This differs from

the greedy step of the Tichy method, where the target string is constructed from left to

right by selecting the longest match for the next unmatched position in the target. To

judge the efficacy of this choice, we implement both methods as part of our evaluation.

11http://osmot.cs.cornell.edu/kddcup/software.html

12http://en.wikipedia.org/wiki/Receiver_operating_characteristic

57

min words minimum length of match from source to target.
max matches maximum number of matching substring prefixes.

longest match only place longest match onto priority queue.
prev matches use matches from previous position to determine longer match.

header/trailer match beginning and end of article first.

Table 4.1: Summary of WikiTrust differencing optimizations. See Section 3.4 for a
detailed explanation of each optimization.

For the Tichy method, we implement the optimizations suggested by Obst [72] and

Reichenberger [85].

In Section 3.4, we propose several different optimizations to improve the running

time of the WikiTrust method and we include a few combinations of these optimizations

in our evaluation; see Table 4.1 for a summary of the optimizations, and Table 4.2 for a

matrix of how we labeled the combinations of optimizations in our evaluation. Note that

we also include for comparison diff6 and diff7, which are the exact implementations

of the WikiTrust differencing algorithm used in our production service. These two

implementations are based on the same ideas explained in Chapter 3, but use code

originally written for [2] with extra optimizations not described here.13

Match Quality Formulas

The match quality formula is the key to our greedy algorithm choosing matches which

meet the desired properties outlined in Chapter 3. We experimented with the nine defi-

nitions enumerated below, which take as parameters the length of the match (parameter

k), the matching positions in the source and target revisions (parameters i1 and i2), and

13Both functions are in file chdiff.ml and can be examined from our Github repository at http:
//www.github.com/collaborativetrust/WikiTrust. Algorithm diff6 corresponds to
function edit_diff_core, and diff7 corresponds to function edit_diff_live.

58

Algorithm m
in

w
or

ds

m
ax

m
at

ch
es

he
ad

er
/tr

ai
le

r

lo
ng

es
tm

at
ch

pr
ev

m
at

ch
es

Description
diff1 3 50 Tichy method
diff2 3 50 x Tichy method
diff3 3 50 x x WikiTrust method
diff4 3 50 x x WikiTrust method
diff5 3 50 x x x WikiTrust method
diff6 3 50 x x WikiTrust method, production
diff7 3 50 x x x WikiTrust method, production
diff8 3 50 x WikiTrust method
diff9 3 50 x WikiTrust method

Table 4.2: Listing of optimizations used by each difference algorithm. See Table 4.1
for a one-line summary of each optimization. Note that diff9 results are not presented
in this chapter because of its prohibitive running time; some results at the revision level
are given in Table 3.1.

the total length of each revision (parameters l1 and l2); a “chunk index” (parameter c14)

is also passed to the match quality function, but is only used in the computation of text

longevity. The match qualities computed by our system are tuples, with lexicographi-

cally smaller tuples considered to be of higher quality.

The initial set of match quality functions we present form the baseline functions

of what could be used in conjunction with the standard greedy algorithms for text dif-

ferencing. They use the length of the match and the chunk index in various combina-

tions. In these, and later match quality functions we define, we mark with a dagger (†)

those functions which are not compatible with the assumption that longest matches are

14The chunk index refers to which chunk a block of text comes from. Chunk 0 refers to the full text
of the older revision being compared. Chunk 1 refers to text from the revision previous to that which
was deleted in the edit that resulted in the revision of chunk 0. Chunk 2 refers to deleted text from the
revision previous to the revision of chunk 1, and so on. This is an optimization described in Section 3.4
for more efficient calculation of text authorship. In computing the edit distance, differences are only
computed between two revisions, so we always have c = 0.

59

preferred, used in our longest match optimization to the difference algorithms. The

implementation of each match quality function can be examined in Appendix E; the

function names are of the form quality_#.

mq1 This version uses a match quality tuple of (−k, c, 0).

mq2 This version uses a match quality tuple of (−k,−c, 0), changing the sign of the

chunk index to instead prefer matches with older revisions. Since the chunks

older than chunk 0 are only fragments of deleted text, potentially longer matches

in more recent text will be missed; for that reason, we expect this match qualiy

function to perform worse than mq1.

mq3 This version uses a match quality tuple of (c,−k, 0), making the matching revi-

sion the dominant factor. †

mq4 This version uses a match quality tuple of (−c,−k, 0), reversing the preference

for matches in the most recent revision. We expect this match quality function to

perform worse than mq3. †

The next set of match quality functions we present are based on the match quality

described in the original WikiTrust publication [2].

mq5 Define

q :=
k

min l1, k2
− 0.3 ·

∣∣∣∣∣∣∣∣∣∣∣
i1 +

k

2
l1
−
i2 +

k

2
l2

∣∣∣∣∣∣∣∣∣∣∣
The match quality tuple generated by mq5 is (0,−c,−q). † This is exactly the

match quality used in [2].

60

mq6 As with mq5, define

q :=
k

min l1, l2
− 0.3 ·

∣∣∣∣∣∣∣∣∣∣∣
i1 +

k

2
l1
−
i2 +

k

2
l2

∣∣∣∣∣∣∣∣∣∣∣
To make mq5 compatible with the longest match optimization to the difference

algorithm, we introduce the match length as the primary discriminant: the match

quality tuple for mq6 is (−k,−c,−q).

mq7 This is a modification of mq6 to change the priority of the chunk index. Define

q :=
k

min l1, k2
− 0.3 ·

∣∣∣∣∣∣∣∣∣∣∣
i1 +

k

2
l1
−
i2 +

k

2
l2

∣∣∣∣∣∣∣∣∣∣∣
The match quality tuple is (−k, c,−q).

The difficulty in working with the original WikiTrust match quality functions,

mq5-mq7, is that the definition of q is doing too much. It tries to balance length

of the match as a fraction of the document length, against the relative positioning of

the matches. To get this balance right requires much experimentation across many

documents, and even then might require revision as the dynamics of group collaboration

in a document change over time. As part of the longest match optimization for the

difference algorithm, it became necessary to separate the concern for match length

from that of relative positioning, resulting in our current scheme of tuples to represent

the match quality. This final set of match quality functions tests two variations of that

idea:

61

mq8 This is the quality function used in the live production WikiTrust system. Define

q′ :=

∣∣∣∣∣∣∣∣∣∣∣
i1 +

k

2
l1
−
i2 +

k

2
l2

∣∣∣∣∣∣∣∣∣∣∣
This computes the midpoint of each end of the match, and then compares their

relative positions within the source and target revisions. The closer to the same

relative position each end of the match is, the closer to zero q′ gets. The final

match quality tuple used is (−k,−c, q′).

mq9 This modification of mq8 changes the priority of the chunk index to test the effect

on text longevity.

q′ :=

∣∣∣∣∣∣∣∣∣∣∣
i1 +

k

2
l1
−
i2 +

k

2
l2

∣∣∣∣∣∣∣∣∣∣∣
The final match quality tuple returned is (−k, c, q′).

Edit Distance Formulas

The edit longevity measure uses edit distance as a proxy for the amount of work that

an author puts into an edit. We tested the following definitions of edit distance to

understand how this choice impacts the quality of the results.

ed1 This edit distance computes the sum of the lengths of insertions and deletions, that

is, the amount of text which is either added or deleted from one revisions to the

next:

Itot +Dtot

62

ed2 Traditionally, edit distance functions incorporate all the elements of an edit script.

We define this edit distance to compute the sum of the lengths of insertions,

deletions, and move operations.

Itot +Dtot +Msum

where

Msum(m,n) =
∑

Move(i,j,k)∈E(m,n)

k

Note that any text15 which appears in both revisions which are being compared

will be counted as a move operation, even if it has not relocated within the docu-

ment. For example, if there is no difference between two revisions of an article,

the edit script will consist of a single Move operation that is the size of the revi-

sions. Thus, we expect that this function will perform poorly because it will be

dominated by the size of the article.

ed3 The WikiTrust difference algorithms do not keep track of replacements in the text;

instead, a replacement appears in the edit script as both a deletion and corre-

sponding insertion at the same point in the text. We modify ed1 to apply a cor-

rection factor which assumes that some part of the work is always a replacement:

Itot +Dtot −
min(Itot, Dtot)

2

ed4 This is the edit distance described in Section 4.4, first proposed in the original

15Technically, this should be “most text,” because of the min words optimization.

63

WikiTrust paper [2].

max(Itot, Dtot)−
min(Itot, Dtot)

2
+Mtot

ed5 This is the edit distance computation used in the live production system of Wiki-

Trust. It models the matches between the two strings as a graph and uses con-

nected components to try to ascertain when an insertion and deletion pair are

actually replacements. We include the evaluation of this edit distance formula

for comparison purposes, but detailing the specifics of this algorithm falls out-

side the scope of this work. Interested readers can examine the source code,

available at Github,16.

Results

A complication in our evaluation is our restricted setting of filtered revisions, where se-

quential revisions by the same author are filtered out to leave only the last revision in the

sequence. This would limit us in evaluating the performance of our quality measures,

so we modified the system in the following way: we do not filter the specific revisions

annotated in the PAN-WVC-10 corpus, or the immediately preceding revision (even

when they have the same author), but we do filter revisions after the annotated revision

in the usual way. Even with this loosening of the revision filtering, several revisions are

still not evaluated for quality; the two primary reasons for no evaluation are a lack of

subsequent edits to base the evaluation on, or the revision was not substantially different

from the previous revision.17

16http://www.github.com/collaborativetrust/WikiTrust

17That is, when d(k − 1, k) = 0. This typically happens when there are only whitespace changes
from one revision to the next, but some of the proposed edit distance measures don’t consider the entirety

64

Edit Longevity

Diff MatchQuality PR-AUC
diff2 mq6789 47.279%
diff2 mq1234 47.258%
diff3 mq5 47.231%
diff5 mq5 47.231%
diff8 mq5 47.198%
diff4 mq5 47.198%
diff3 mq6789 47.192%
diff5 mq6789 47.192%
diff2 mq5 47.171%
diff3 mq1234 47.152%
diff8 mq6789 47.140%
diff4 mq6789 47.140%
diff4 mq1234 47.124%
diff8 mq1234 47.111%
diff5 mq1234 47.095%
diff6 mq1234 47.041%
diff1 mq6789 47.037%
diff1 mq5 47.035%
diff1 mq1234 46.990%
diff6 mq6789 46.943%
diff7 mq1234 46.583%
diff6 mq5 46.552%
diff7 mq6789 46.539%
diff7 mq5 46.100%

Table 4.3: Performance of difference algorithms for edit distance ed5. Where multiple
match quality functions resulted in the same performance, they have been grouped
together; for example, mq6789 represents mq6, mq7, mq8, and mq9.

The chief measure of performance that we consider is the area under the precision-

recall curve (PR-AUC); we summarize the data here, with the full data available in Ap-

pendix F. We chose this as the primary measure because it gives better discrimination

between predictive models for the PAN 2010 corpus, as explained in [80]. In the case

of the edit script and will have a higher incidence where the distance from the previous revision is zero.

65

Diff MatchQuality PR-AUC
diff4 mq5 39.279%
diff8 mq5 39.279%
diff4 mq6789 39.251%
diff8 mq6789 39.251%
diff4 mq1234 39.187%
diff8 mq1234 39.162%
diff6 mq1234 39.129%
diff5 mq5 39.109%
diff3 mq5 39.109%
diff3 mq6789 39.091%
diff5 mq6789 39.091%
diff6 mq6789 39.059%
diff5 mq1234 39.022%
diff3 mq1234 39.010%
diff1 mq6789 38.790%
diff1 mq5 38.783%
diff1 mq1234 38.728%
diff2 mq1234 38.670%
diff2 mq6789 38.664%
diff2 mq5 38.659%
diff6 mq5 38.559%
diff7 mq6789 37.785%
diff7 mq1234 37.652%
diff7 mq5 37.289%

Table 4.4: Performance of difference algorithms for edit distance ed4. Where multiple
match quality functions resulted in the same performance, they have been grouped
together; for example, mq6789 represents mq6, mq7, mq8, and mq9.

66

Diff MatchQuality PR-AUC
diff1 mq6789 44.464%
diff1 mq5 44.456%
diff1 mq1234 44.450%
diff4 mq5 44.240%
diff8 mq5 44.240%
diff2 mq5 44.155%
diff4 mq6789 44.141%
diff8 mq6789 44.141%
diff4 mq1234 44.122%
diff6 mq1234 44.106%
diff8 mq1234 44.099%
diff5 mq5 44.067%
diff3 mq5 44.067%
diff7 mq6789 44.052%
diff6 mq6789 44.042%
diff2 mq1234 44.022%
diff2 mq6789 44.020%
diff7 mq1234 43.988%
diff5 mq12346789 43.970%
diff3 mq6789 43.970%
diff3 mq1234 43.935%
diff7 mq5 43.889%
diff6 mq5 43.774%

Table 4.5: Performance of difference algorithms for edit distance ed3. Where multiple
match quality functions resulted in the same performance, they have been grouped
together; for example, mq6789 represents mq6, mq7, mq8, and mq9.

of our variations, PR-AUC is highly correlated with ROC-AUC, so the choice does not

largely impact the ordering of the different algorithms. Our methodology for calculat-

ing PR-AUC and ROC-AUC is important to make clear: a standard evaluation (as was

used in the PAN-WVD 2010 competition) requires predictions for all 32,439 edits in

the PAN-WVC-10 corpus; we measure the performance for each combination of pa-

rameters only according to the number of revisions that a prediction is available for,

which varies in a range from 27,500 to 28,500. As mentioned previously, we will not

67

Diff MatchQuality PR-AUC
diff7 mq6789 30.210%
diff7 mq1234 30.193%
diff7 mq5 30.146%
diff5 mq5 30.034%
diff3 mq5 30.034%
diff3 mq6789 30.020%
diff5 mq6789 30.020%
diff6 mq5 30.015%
diff3 mq1234 30.010%
diff5 mq1234 30.008%
diff2 mq6789 29.986%
diff6 mq6789 29.983%
diff6 mq1234 29.963%
diff2 mq12345 29.962%
diff4 mq1234 29.897%
diff8 mq5 29.895%
diff4 mq5 29.895%
diff8 mq6789 29.893%
diff4 mq6789 29.893%
diff8 mq1234 29.892%
diff1 mq6789 29.847%
diff1 mq5 29.836%
diff1 mq1234 29.803%

Table 4.6: Performance of difference algorithms for edit distance ed2. Where multiple
match quality functions resulted in the same performance, they have been grouped
together; for example, mq6789 represents mq6, mq7, mq8, and mq9.

calculate a prediction when the edit distance from the previous revision is zero, or when

there are no suitable judging revisions after the edit being judged. By computing the

performance according to the number of revisions for which a prediction is available

there is a slight bias towards parameter combinations which make fewer predictions,

but this allows comparison of each combination in their best possible light without the

distortion of a default guess when there is not enough data.

The most striking thing about the results presented in Appendix F is the clustering

68

Diff MatchQuality PR-AUC
diff7 mq6789 43.033%
diff7 mq1234 43.015%
diff7 mq5 43.002%
diff6 mq1234 42.891%
diff6 mq6789 42.843%
diff6 mq5 42.744%
diff2 mq5 42.665%
diff1 mq5 42.662%
diff5 mq5 42.617%
diff3 mq5 42.617%
diff5 mq1234 42.561%
diff3 mq1234 42.541%
diff5 mq6789 42.535%
diff3 mq6789 42.535%
diff1 mq1234 42.512%
diff1 mq6789 42.502%
diff2 mq6789 42.460%
diff2 mq1234 42.437%
diff4 mq5 42.415%
diff8 mq5 42.415%
diff4 mq1234 42.355%
diff8 mq6789 42.344%
diff4 mq6789 42.344%
diff8 mq1234 42.332%

Table 4.7: Performance of difference algorithms for edit distance ed1. Where multiple
match quality functions resulted in the same performance, they have been grouped
together; for example, mq6789 represents mq6, mq7, mq8, and mq9.

69

by edit distance (and to a much lesser extent, of difference algorithm) that occurs.

Clearly revealed is that use of ed5 leads to the most superior predictions, while ed2

makes the worst predictions (and ed4, the second worst). These results align with

the intuition that the choice of edit distance function measures of the amount of effort

done by an author in making an edit; the more closely that choice matches the human

intuition, the better the ability to compute how much effort is useful. In particular, ed2

was expected to perform poorly because its inclusion of all Mov operations leads to a

value that is dominated by the size of the revisions, and ed5 tries the hardest to estimate

the amount of effort that goes into rearranging blocks of text.

In Tables 4.3 through 4.7, we present the predictive performance of the algorithms,

controlling for edit distance. We find that match qualities mq1-mq4 and mq6-mq9

are always grouped together (shown in the tables as mq1234 and mq6789). That is

because these match qualities only differ from each other in how they treat the chunk

index, which is not used in the edit longevity computation.

Diff Avg Run Time Std Dev RT
diff2 95m 0.57m
diff1 95m 0.64m
diff5 159m 6.53m
diff3 209m 6.51m
diff7 211m 50.05m
diff4 241m 13.10m
diff8 334m 13.91m
diff6 389m 105.54m

Table 4.8: Average running time of difference algorithms.

The typical measure used to compare difference algorithm is the running time,

which we also measured. We find in Appendix F that the running time is usually little

affected by either the match quality or the edit distance calculations, so we summarize

70

the results in Table 4.8 by computing the average and standard deviation of running

times. The running time measured is the time required to run the WikiTrust analysis

on the reduced corpus that includes the PAN-WVC-10 revisions; this includes the time

to compute both edit longevity and text longevity for each revision, but not the time to

sort the resulting statistics and generate reputation scores for authors. (Text longevity

uses a fixed difference algorithm and only varies the match quality function, so that it

is essentially a constant overhead in the time.) The most striking feature of Table 4.8 is

the unusually large standard deviations of diff6 and diff7. These two algorithms turn

out to have a bimodal distribution.

In terms of predictive performance of the difference algorithms themselves, there

is no clear winner. The top two edit edit distance functions, ed5 and ed3, work best

with the variations of the Tichy method of differencing — but even considering only

ed5 (Table 4.3) and ed3 (Table 4.5), the ranking between diff1 and diff2 is exchanged.

Even more telling, diff1 gives the worst performance in the entire experiment when

combined with ed2 (Table 4.6), implying that no single difference algorithm is the best

choice for the WikiTrust application.

With respect to the different optimizations, Table 4.8 provides some insights. The

most notable conclusion is that Reichenberger’s variation of the Tichy difference algo-

rithm is faster than the WikiTrust greedy algorithm by nearly a factor of two.18 With

hindsight, we expect this sort of result because while both algorithms inspect every

possible match and then mark the actual match as used, the WikiTrust algorithm addi-

tionally re-traverses each match to verify it or search for residual matches.

In our original justification for the longest match optimization, we argued that it

18The live production version of our WikiTrust code includes another technique for speeding up the
difference computation, so that the performance more closely rivals the runtime of the Reichenberger
versions.

71

would save CPU time to not have to test all the partial matches. We attempted to test this

idea by implementing a version of the WikiTrust algorithm without the longest match

optimization, and found that the memory requirements were too great to execute on

our machines. Although the optimization is clearly a useful one to make, we note that

Table 4.8 shows that the Tichy algorithm with optimizations (diff1 and diff2) still has

a significant advantage in runtime performance, and very similar vandalism prediction

performance compared to the WikiTrust variations.

The ordering of diff3, diff4, and diff5 allows us to infer that the header/trailer

optimization is more beneficial than the prev matches optimization. Incorporated into

the Tichy algorithm, the header/trailer optimization makes little difference to the run-

ning time.

The caveat to the use of the header/trailer optimization is that it can lead to dif-

ferent edit scripts being computed to describe the transformation from one revision to

the next. Our hypothesis was that the header/trailer optimization more naturally con-

forms to a human description of how to transform one revision into another, leading

to improved predictions of vandalism; this is not born out by the data in Tables 4.3

through 4.7. There are three pairs of difference algorithms that are the same except

for the use of the header/trailer optimization: diff1/diff2, diff4/diff5, and diff6/diff7.

Examining the data, there is no clear advantage to including or not including the head-

er/trailer optimization in terms of predictive ability, but it does make a significant

improvement in the running time for the WikiTrust difference algorithms.

We proposed the prev matches optimization with the expectation that it would re-

duce the memory requirements of the algorithm without substantially changing the per-

formance with respect to predictive ability. Comparing diff5, which implements prev

72

matches, with diff3, which does not, we find that the predictive ability is slightly differ-

ent for match qualities mq1 through mq4. We examined this difference more carefully

and found that the priority queue implementation will sometimes return matches in a

different (but equivalent with respect to the priority) order. Match quality mq8 is de-

fined in a way that eliminates this reordering possibility, and we see that diff3 and diff5

always perform the same in this case.

During our exploration of the differences between diff5 and diff3, we also found

that the prev matches optimization interacts with the max matches optimization. By

ignoring overly common string prefixes, the “previous match” list is empty for the next

starting position after the common string prefix. If there is a long match which spans

several overly common prefixes, prev matches loses track that it is traversing a region

which already had a longer match and needlessly adds smaller matches to the priority

queue, creating extra work. The timing information presented in Table 4.8 reveals that

prev matches still has the advantage, but there are perhaps more performance gains to

be had here.

Text Longevity

For measuring the performance of text longevity, we fixed the text matching algorithm

to be the one used in the live production system of WikiTrust, which is a variation of

the difference algorithm diff7.19 Also, the edit distance formula does not affect the text

longevity calculation, so our only significant parameter is match quality; results are

presented in Table 4.9. Each variation made predictions for 28,453 revisions.

The match quality function has only a very small influence on the performance,

19The source code implementing this functionality is available from Github, http://
www.github.com/collaborativetrust/WikiTrust, and corresponds to the function
text_tracking in file chdiff.ml.

73

mirroring the small influence it has on edit longevity. We believe this is because the

possible edit scripts for each edit due to the different match quality functions have a

high degree of overlap; that is, the different algorithms generally produce the same edit

script except for very minor differences.

Match Quality PR-AUC ROC-AUC
mq5 29.312% 85.980%
mq4 29.298% 85.972%
mq3 29.271% 85.962%
mq2 29.241% 85.950%
mq1 29.236% 85.948%
mq8 29.235% 85.949%
mq6 29.235% 85.949%
mq9 29.218% 85.942%
mq7 29.218% 85.942%

Table 4.9: Comparison of text longevity performance using multiple match quality
functions, sorted by PR-AUC.

4.6 Additional Analysis

The results presented in the last section raised two additional questions. In comparison

to edit longevity, the performance of≈29.26% PR-AUC by text longevity is quite poor;

why does text longevity not do so well as edit longevity? Our second question is about

the triangle inequality: how important is it that our edit distance function satisfy this

property to be a good predictor of vandalism?

Edit Longevity Outperforms Text Longevity

As part of our investigation, we started looking at specific instances of text longevity

values. In Figure 4.7, we see the text survival for two different contributions; both

74

do seem to have the general “exponential” shape that we previously described. Also

computed in each figure is the text longevity measure based on the 20 revisions shown

in each graph, but notice that the text longevity computed for Figure 4.7a doesn’t exhibit

the curve we expect. Instead of following the text survival, the curve goes below the

level of text which survives each revision.

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

Text survival for rev 8574490
survival quality = 0.779

(a) The text survival graph for the text contributed
early in the history of article George W. Bush.

 618

 620

 622

 624

 626

 628

 630

 632

 0 5 10 15 20

Text survival for rev 8741260
survival quality = 0.999

(b) The text survival graph for the text
initially contributed as part of the article
Santa Cruz Beach Boardwalk.

Figure 4.7: The text survival quality of two different articles, computed based on 20 re-
visions. The majority of the editing happens in the revisions immediately after the
initial edit, in these two cases.

The explanation for this discrepancy turns out to be a flaw in our thinking about

the original model. While the text survival for contributions does seem to have an

exponential look to it, exponentials do not approach some fixed non-zero value — they

approach zero. In order to fit the curve to closely follow the points of text survival,

the last value (in the case of the data shown in Figure 4.7a, the amount of text that

survives after the 20th revision) should be taken as the “zero reference point” which

is subtracted from all the values. Applying our exponential curve fitting technique to

these new values will give a much better approximation to the data. The problem with

this better fit is that it changes the meaning of a score of zero; instead of meaning that

the text was immediately deleted, a score of zero would mean that the text immediately

75

reached its final survival level. In other words, we would be measuring how quickly

the text stabilizes, rather than how much agreement there was that the text belonged in

the article.

The Triangle Inequality

The intuition behind our formulation of edit longevity relies on the metaphor analogiz-

ing the distance between two revisions with the work or effort that an author puts into

making the edit from one revision to the other; in particular, it is the triangle inequality

(one of the metric properties of distance) that allows us to say that we can compute

how much effort was useful in bringing the article closer to how it appears in a future

revision.

We have explored the use of several different definitions of the edit distance to

represent this effort, but noted that the triangle inequality did not completely hold;

see [89] for a summary of known conditions under which the triangle inequality holds

for listing, alignment, or trace distances.

Our difference algorithm makes use of Tichy’s block moves [105], which amounts

to computing the trace that matches the source string to the target string. That matches

are allowed between any parts of the two strings is equivalent to allowing transpositions

as well as the usual insert and delete operations; the difference we compute does not

support substitutions of one word with another. There is previous research on allowing

transpositions [61, 109, 89] in computing edit distance; the goal of our work differs

from this earlier work in that we prefer to select longest matches rather than minimizing

the total edit distance computed.

The various proposals for edit distance that we investigated are computations de-

rived from the edit script we compute. Tichy’s original counter-example shows that

76

(a) Listing distance is computed by finding the
shortest edit script.

(b) Simple trace distance is computed by
establishing a correspondence between the
source and target strings, such that trace lines
do not cross.

(c) Alignment distance is computed by finding
an alignment which results in the minimum
number of insertions and deletions.

Figure 4.8: Examples of the three different methods typically used to compute edit
distance. See [89] for an in-depth discussion on the distinctions between these methods.

globally greedy algorithms such as ours do not compute the minimum edit script (see

Figure 4.9), making it unlikely that our proposed edit distance formulas guarantee the

triangle inequality.

We present in Appendix F data on the frequency with which the triangle inequality

holds for the various combinations of difference algorithms and edit distance formulae;

only formula ed2 never violates the triangle inequality. This is relatively easy to see by

an enumeration of the cases, but it is instructive to examine ed1 first.

To show that ed1 does not satisfy the triangle inequality, we note that the definition

Itot +Dtot

77

(a) The matching obtained using the Wiki-
Trust method of determining all matches and
selecting the longest matches first.

(b) The matching obtained using the Tichy
method of scanning the target string from left-
to-right and selecting the longest match found
in the source string.

Figure 4.9: An example of how the matching between a source string and target string
can differ between WikiTrust’s greedy preference for the longest match anywhere be-
tween the two strings, and Tichy’s processing of the target string from left-to-right and
selecting the longest match for the given starting position in the target string. The Wiki-
Trust algorithm describes the match as three operations, while the Tichy algorithm is
able to match with two operations. This example is based on Tichy’s original example
demonstrating that a globally greedy algorithm does not result in the minimum number
of operations [105].

is amenable to the weighted operation notation used throughout [89]. In this notation,

an insertion of word x is said to contribute weight w(φ, x) to the final edit distance,

and deletion of word x contributes weight w(x, φ). We extend the notation to represent

the contribution of a Move operation on x as w(x, x). Edit distance ed1 can then be

described as the following assignment of weights:

w(φ, x) = 1

w(x, φ) = 1

w(x, x) = 0

For convenience, we represent the situation where a word is in neither the source nor

target revision as w(φ, φ) and assign it a weight of zero.

We consider three revisions, just as we did in analyzing edit longevity in Fig-

78

ure 4.5: vk−1, vk, and vj . To verify the triangle inequality,

d(k − 1, k) + d(k, j) ≥ d(k − 1, j),

we enumerate the possible cases of word x existing in each revision:

1. word x exists in revision vk−1, but not in vk nor vj . This translates into deletion

operations for d(k − 1, k) and d(k − 1, j), so that we have

w(x, φ) + w(φ, φ) ≥ w(x, φ),

which is true.

2. word x exists in revision vk, but not in vk−1 nor vj .

w(φ, x) + w(x, φ) ≥ w(φ, φ).

3. word x exists in revision vj , but not in vk−1 nor vk.

w(φ, φ) + w(φ, x) ≥ w(φ, x).

4. word x exists in revision vk−1 and vk, but not in vj .

w(x, x) + w(x, φ) ≥ w(x, φ).

5. word x exists in revision vk−1 and vj , but not in vk.

w(x, φ) + w(φ, x) ≥ w(x, x).

79

6. word x exists in revision vk and vj , but not in vk−1.

w(φ, x) + w(x, x) ≥ w(φ, x).

7. word x exists in all of revisions vk−1, vk, and vj .

w(x, x) + w(x, x) ≥ w(x, x).

All of these statements are true, so it would seem that edit distance ed1 satisfies the

triangle inequality. The complication arises in the requirement that there be a minimum

number of words to be considered a Move operation. This restriction means that it is

possible for a word to exist in both revisions, but be considered a Deletion and Insertion.

For example, if word x exists in all three revisions, a different possible analysis is:

w(x, x) + w(x, x) ≥ w(x, φ) + w(φ, x),

which does not hold true, and thus the triangle inequality sometimes will break down.

The proof that edit distance ed2 always satisfies the triangle inequality follows a

similar analysis, but using different weights:

w(φ, φ) = 0

w(φ, x) = 1

w(x, φ) = 1

w(x, x) = 1

These weights result in every statement holding true (even the alternative analysis when

80

a word match is lost because of the minimum words requirement) so that the full trian-

gle inequality also holds true.

Examining the performance of ed2 in Appendix F, we note that it was far from

the best performing definition of edit distance in terms of predicting vandalism in the

PAN-WVC-10 dataset. Although using an edit distance formulation that satisfies the

triangle inequality is desirable, it is neither necessary nor sufficient to achieve good

performance. The goal of an edit distance function in our context is to estimate the

amount of effort that an author expends in creating an edit from one revision to another.

We chose to follow a model which prefers the longest possible match between source

and target revisions, but another viable route is to minimize the amount of text which

is rearranged (i.e., minimize the number of transpositions) [109]. We leave as an open

question how to best characterize the work that an author does.

4.7 Conclusions

We propose two measures of revision quality computed from Wikipedia’s revision his-

tory. The measure text longevity is based on an intuitive model of computing the text

added by authors at each revision and detecting how much of that text remains within

the article in subsequent revisions; to account for the variation in the amount of pre-

served text over the subsequent revisions, we model the change as a geometrically

decaying process and compute the decay rate as a single value to describe the variation.

The measure edit longevity was developed to address the reality that authors also delete

and rearrange text, and that these are valuable contributions to the Wikipedia. We use

edit distance [58] to describe the amount of effort that an author puts into making a

revision to an article; this is the basis for computing edit longevity, which estimates the

amount of effort by an author that brings the article text closer to some future version

81

of the article.

We evaluate these two measures using the PAN-WVC-10 dataset, which is manu-

ally annotated to indicate which revisions are vandalism and which are well-intentioned

edits, and treat each as a predictor of vandalism. We find that edit longevity performs

much better than text longevity. Overall, these results are encouraging for using edit

longevity and text longevity as signals for inferring the community feedback of an au-

thor’s edit. Knowing the quality of edits, we can build an author reputation system

upon these signals; we describe such a system in Chapter 6.

82

Chapter 5

Sizing Up Authors

5.1 Introduction

History is filled with examples of partnerships, people collaborating to create some-

thing larger than they could achieve on their own; but how do you value the contri-

butions of the individuals? How do we say whether Apple benefited more from the

technical designs of Steve Wozniak or the design intuition of Steve Jobs? The reality

is that the very notion of what is a contribution depends on perspective and relative

priorities of importance. When multiple authors work on a single book, how do you

measure who did the work, and how should the revenue be split?

Today, online collaboration is growing by leaps and bounds, fostered under the

name Web 2.0: “the activities of users generating content (in the form of ideas, text,

videos, or pictures) could be harnessed to create value” [123]. In Silicon Valley,

we hear examples every day of companies built atop the contributions of their users:

This chapter presents material previously pubished as [5].

83

Google, Facebook, Twitter, Flickr, to name a few famous ones. For the most part,

these sites operate under a motto of “more is better,” and only a few sites try to esti-

mate a quality of contributions (e.g., Amazon and eBay). These sites are distinct from

the Wikipedia, because although users generate content, and even collaborate in some

sense, they don’t actually work on the same content.

Within the Wikipedia community, there has been some discussion about measuring

contributions [111, 102], in the context of whether some restrictions would improve the

overall quality of the Wikipedia. Another motivation for understanding contributions

by users is for attribution purposes: the Creative Commons license that the Wikipedia

content is available under requires attribution of all authors, which is currently taken to

include spammers and other vandals. When wikis [57] are used in a corporate setting,

measuring contributions can also be a proxy for the productivity of workers.

In this chapter, we examine multiple ways that contributions can be defined within

the Wikipedia. We explore the distribution of users under these different measures, and

make some observations.

5.2 Related Work

From our point of view, measuring contributions to a collaborative work seems most

like the software engineering practice of counting source lines of code to estimate pro-

grammer effort and productivity [91, 32]. There are several other productivity measures

that have roots in the manufacturing process [28], such as measuring the number of de-

fects or customer satisfaction [104].

The problem of measuring contributions to the Wikipedia seems to have first arisen

in the context of trying to understand the process by which knowledge is accumulated

and organized in such a large group collaboration (a discussion informed by such works

84

as [14, 9, 101, 84]). Wales conducted a survey in December 2004 which finds that half

the edits within the Wikipedia are made by only 2.5% of logged in users [111]. Swartz

challenged back that edit counts capture only one part of the story; counting the size of

edits presents a different picture, and this has policy implications for the Wikipedia in

how it decides to encourage more contributions [102].

In trying to ascribe a source to the many contributions that make up the Wikipedia,

Anthony et al. measure the survivability of an edit by looking at the percentage of char-

acters retained in later edits [7]. The authors use the entire content of the version being

evaluated (since the author could have made edits to any part of the content), which

distinguishes their measure from those we developed in Chapter 4 that are designed

to track only the changes done specifically by the author being evaluated. Given that

caveat, they find that “Good Samaritans” (one-time anonymous users) have the highest

quality contributions overall.

Kittur et al. take up the question of whether elite or common users contribute more

content, analyzing both the number of edits made by authors and the total size of the edit

differences [54]. Their data suggests that both measures point to the same conclusion:

that elites dominated content-generation in the early history of the Wikipedia, but the

workload had shifted to the common users by mid-2006. The opposite conclusion is

reached by Ortega et al., who revisit the question of how contributions (as measured by

edit counts) are distributed over the Wikipedia user base and use Gini coefficients to

quantify the concentration of core contributors [75].

Many other works exist that are, in the abstract, considering author contributions.

In practice, we find that most works use edit count as their contribution measure [125,

12, 100, 74, 98, 76]. We suspect that this is due to the relative simplicity of counting

edits versus computing text differences.

85

Our own work differs from previous research in two important ways. First, we

propose that there are multiple measures that can represent the “size” of a contribution.

Second, and more importantly, we observe that not all contributions of the same size

have equivalent “quality.” As an example, consider the addition of the sentence “UC

Santa Cruz rocks your socks” to an article. This contribution of six words is considered

equivalent to other legitimate contributions, but actually is a negative contribution in

that it creates more work for some other author (who must delete it). We explore

variations of both size and quality.

5.3 Primitives

In order to construct functions that compute the contributions of authors, we need some

primitives to work with. Our view is that any sizing up of the work or productivity of

Wikipedia authors must take into account the fact that not all contributions are positive;

approximately 7% of edits are vandalism [79, 78]. We propose that besides measuring

the magnitude of work done by an author, to gauge the productivity of authors towards

the goal of producing a useful reference requires tempering that magnitude with a qual-

ity measure. One way to achieve this is to factor the two together as “quantity · quality,”

with the following desirable property for quality: it should be signed, where positive

values are towards a common goal and negative values are away from that goal.

We define various measures of author contribution, taking into account the amount

of text added or edits performed by the author and the quality of those changes. We

would like to measure contributions both in absolute terms, as the amount of text that

was added by an author or the amount of edits made by an author, and in relative terms,

where we take into account the quality of the edits. The contributions of all authors is

cumulative over the entire revision history of the Wikipedia; for our experiments, we

86

picked revisions of all articles previous to October 1, 2006.

For every article, a ∈ A, in the Wikipedia, we consider each version vi ∈ V[a]

to be edited by the author Ai = RevAuthor(vi). Each of the subsequent authors

Ai+1, Ai+2, . . . can either retain, or remove, the changes performed by Ai in bringing

version vi−1 to vi. These authors who edit article a after vi are implicitly providing feed-

back on the content of vi, and hence act as judges of the contribution made by author

Ai. We therefore define Jn
a (i) to return the set of up to n next revisions after vi, such

that the author of each v ∈ Jn
a (i) is restricted to RevAuthor(v) 6= RevAuthor(vi). It

should be noted that other formulations of Jn
a (i) are possible, such as the one proposed

in [17] where only high-reputation authors are selected as judges.

Recalling that

V[a] = [v1, v2, . . . , vn],

we define RevPos(vi) = i; note that a is implicit in vi, since a revision is part of the

history of some specific article. Crucially, to define contribution formulas for each user,

we also define the map

E : U× A→ 2V,

which, given a user u ∈ U and an article a ∈ A, returns the set of revisions that were

created by user u for article a.

Quantity Measures.

We would like to measure the size of an author’s contribution when they create version

vi of some article a ∈ A. The most obvious quantity that can be measured is counting

how many words the author added in version vi, which can be computed from the text

difference in going from vi−1 to vi. If we let I(vi−1, vi) represent the number of words

87

that were inserted in going to version vi, our first quantity measure to measure the size

of a text contribution is:

txt (vi) = TSurva(i, i) = I(vi−1, vi),

which is a specific case of the more general definition in Equation 4.1.

As we have previously noted, counting only the words added in an edit ignores

the fact that some users of Wikipedia do maintenance work in the form of rearranging

text or removing vandalism. To capture this extra behavior, we would like to also

measure what words were deleted in the edit, vi−1 vi, as well as how many words

were rearranged. This is known in the literature as the edit distance between versions

vi−1 and vi. There are several ways to compute edit distance [58, 105], usually based

on insertions and deletions of characters.1 Our formulation is instead based on words

as the fundamental unit, to more closely approximate how people perceive edits. We

define the edit distance in terms of the following quantities:

• I(vi−1, vi) is the number of words that are inserted,

• D(vi−1, vi) is the number of words that are deleted, and

• M(vi−1, vi) is the number of words that are moved, times the fraction of the

document that they move across,

which can be computed according to the text differencing algorithm described in Chap-

ter 3. The size of the edit contribution for vi is then given by:

d(vi) = da(i− 1, i) = max(I,D)− 1

2
min(I,D) +M,

1The careful reader will observe that the definition of txt (vi) is actually an edit distance as well,
albeit one which ignores deletions and text rearrangement.

88

which is a specialization of the more general edit distance in Equation 4.3.

Quality Measures.

In addition to the quantity measures defined above, we need multiple quality measures

to choose from. We start with the two quality measures derived in Chapter 4:

• q10tdecay(i) is the value that best describes the text survival of text inserted in version

vi over the next ten revision as an exponential decay, defined in Section 4.3.

This value ranges from 0 for completely removed text, to 1 for text which is

completely preserved.

• q10elong(i) is the average edit longevity of the contribution of version vi as judged

by up to ten judges in the immediate future. This value ranges from −1 for

completely reverted edits, to +1 for completely preserved edits. See Section 4.4

for the development of this measure.

A third way to measure the quality of a text contribution is to simply sum the

fraction of text that remains over the succeeding ten revisions:

q10tsurv(i) =
1

TSurv (i, i)
·

 ∑
v∈J10(vi)

TSurv (i,RevPos(v))

This value generally ranges from 0 for text which is immediately removed, to +10 for

text which completely survives all ten revisions.

5.4 Contribution Measures

We now present several potential contribution measures in the form of “quality · quan-

tity,” using the building blocks described in the last section.

89

Number of Edits

The simplest quantitative measure of contribution for authors is to compute the number

of revisions they authored. In previous works, this is referred to as the number of edits

made by an author [111, 125, 54, 98], or simply the edit count. We define this precisely

for some user u ∈ U as:

NumEdits(u) =
∑
a∈A

∑
v∈E(u,a)

1 · 1.

Text Only

Another very natural measure of author contribution is to count up how many words

were added by each author, during the course of all their revisions. Since there is no

quality measure involved, we refer to this measure as TextOnly, and define it for each

u ∈ U as:

TextOnly(u) =
∑
a∈A

∑
v∈E(u,a)

1 · txt (v).

We refer to this measure as the absolute text contribution measure.

Edit Only

Correcting grammar, polishing the structure of article, and reverting vandalism are all

chores [12] which must be done to keep the Wikipedia presentable. We note that mea-

suring the size of the change in each revision is able to reward both authors who write

new text, as well as authors who polish existing text. To achieve thisTo achieve this,

weee measure the edit distance between the version vi being evaluated and version vi−1

that immediately preceeded it as the size of the change. The EditOnly measure is thus

90

defined for all u ∈ U as:

EditOnly(u) =
∑
a∈A

∑
v∈E(u,a)

1 · d(v).

We refer to this measure as the absolute edit contribution measure.

Text Longevity

The next level of sophistication is to incorporate non-constant quality measures into

the calculation of contribution. We desire the text longevity of a revision to be the

amount of original text that was added by the author RevAuthor(vi) for a revision vi,

discounted by the text quality measure q10tdecay(vi), which describes how the text decays

over the next several revisions.

TextLongevity(u) =
∑
a∈A

∑
v∈E(u,a)

q10tdecay(v) · txt (v)

Edit Longevity

Similar to the text longevity measure, we define the edit longevity of a revision vi as the

edit contribution, discounted by the average edit quality measure q10elong(vi). As with all

the measures, we accumulate contributions based on edit longevity over all revisions

edited by each user u ∈ U:

EditLongevity(u) =
∑
a∈A

∑
v∈E(u,a)

q10elong(v) · d(v)

91

Ten Revisions

A simpler method for measuring how useful newly inserted text is, is to simply add

up how many words survive over the next ten revisions. Large contributions are thus

richly rewarded, if they survive; smaller contributions have a slightly better chance of

surviving for the entire ten revisions, thus encouraging change — but not too much

change.

We consider the ten revisions that follow any revision vi of an article, and accumu-

late the amount of text contribution that was made in vi that remained in each of those

ten subsequent revisions of the article. We call this measure TenRevisions and define it

for each u ∈ U as follows:

TenRevisions(u) =
∑
a∈A

∑
v∈E(u,a)

q10tsurv(v) · txt (v).

Text Longevity with Penalty

A last variation that we propose is to combine text longevity with edit longevity in such

a way that authors of new content are rewarded, but vandals are actively punished for

both inserting and deleting text. Text longevity, as we have defined it, already does not

reward vandals — vandals either insert no text, or the text they insert is immediately

removed; both cases result in a text longevity of zero for the revision. Vandals are

still able to accumulate positive contributions from other revisions, however, while

disrupting other authors with their vandalism. To counteract this, we can punish vandals

when their work is reverted by referring to when the edit longevity quality is negative.

92

This leads to the following definition of our punishing measure for every u ∈ U:

TextLongevityWithPenalty(u) =

TextLongevity(u) +
∑
a∈A

∑
v∈E(u,a)

min(0, q10elong(v)) · d(v).

5.5 Implementation

As part of our research into author reputation and text trust [2, 1], we have created

a modular tool for processing XML dumps from the Wikipedia. It analyzes all the

revisions of a page, filtering down the revisions to remove consecutive edits by the

same author, and computing differences between revisions to track the author of each

word and measure how the author might have rearranged the page. These results can be

passed to any of several modules to do additional processing; we use the tool to reduce

the enormous collection of data down to a much smaller statistics file. We process

the statistics file with a second tool, which we instrumented to calculate the various

contribution measures we have defined.

Our analysis is based on main namespace (NS_MAIN) article revisions from the

Wikipedia dump of February 6, 2007, which we process to create a reduced statistics

file. The statistics file contains information about every version, including the amount

of text added, the edit distance from the previous version, and information about how

the edit persists for ten revisions into the future. To ensure that each version we con-

sidered had revisions after it, we consider only versions before October 1, 2006. After

further processing on the file, we used R [83], an open source statistics package, to

analyze the resulting data.

Bots. During the course of our analysis, we found that some authors were extraor-

93

dinary outliers for multiple measures. Some investigation into the most extreme cases

revealed that bots were making automated edits to the Wikipedia, and that a few bots

dwarfed manual labor in the edit based measures EditLongevity and EditOnly. We also

found that there are bots that improve content, and bots that vandalize it. We chose to

identify bots as those with a username which ends in the string “bot;” While this does

not include every bot (especially the ones that vandalize), it is a useful first approxima-

tion. We found 614 bots in total as of October 1, 2006.

Vandals. There is a similar problem in trying to define vandals, since such authors

don’t register themselves as such. For our purposes, we decided to define a vandal as

someone who, on average, makes an edit which is completely reverted. Precisely, we

define a vandal who meets one of two criteria: q10tdecay < 0.05, or q10elong < −0.9. We

justify this choice in the next section.

5.6 Analysis

We begin our analysis with some information about the data we are analyzing. Our re-

duced statistics file includes over 25 million revision records. Figures 5.1 and 5.2 were

created by drawing a random sample of 5 million records, due to memory limitations

of the software package.

In Figure 5.1, we show the frequency distribution of the two quality measures

q10tdecay and q10elong over the revisions we sampled. We see both measures are heavily

biased towards +1, indicating that most revisions to the Wikipedia are generally con-

sidered useful by succeeding authors. This confirms the intuition that more “good peo-

ple” than “bad people” must contribute, otherwise the Wikipedia would have a difficult

time maintaining the community which continues to extend the online encyclopedia in

a useful way.

94

Text Quality

lo
g
(F

re
q
u

e
n
c
y
)

0.0 0.4 0.8

0
5

1
5

Edit Quality

lo
g
(F

re
q
u
e
n
c
y
)

−1.0 0.0 0.5 1.0

0
5

1
5

Figure 5.1: This graph shows the text quality q10tdecay and edit quality measure q10elong for
5 million randomly selected records of each type.

95

Delving directly into the data for text quality, we observe that 10% of the revisions

made had q10tdecay ≤ 0.05 while 66.67% of the revisions had q10tdecay > 0.95. When

q10tdecay = 0, the text is immediately deleted in the next revision, so we can infer that

these revisions are the work of vandals. When we look at the size of contributions

made, we noticed that 6% of the amount of new text added had q10tdecay = 0, whereas

76.21% of the new text added had q10tdecay > 0.95. From this we conclude that authors

mostly add good new text.

The data is less stark for edit quality. When we looked at revisions, we saw that

1.9% of the revisions had q10elong ≤ −0.9, whereas 51.12% had q10elong > 0.9. In fact,

84.71% of revisions had positive edit quality. When taking the size of each edit (the edit

contribution) into account, we noticed that 7.5% of the edit contributions had q10elong ≤

−0.9, whereas 61.39% had q10elong > 0.9. Moreover, 1.6% of the edit contributions were

immediately reverted. From these statistics, we conclude that authors mostly do good

edits, but that contributions are massaged a bit by later editors.

Figure 5.2 shows the absolute text and edit contributions, txt (vi) and d(vi), for

the sets of sampled revisions. It is important to note that these two graphs are using

the logarithm of the size of contribution, along the x-axis; edit sizes can fall below +1,

due to the way we compute edit distance. For moved words, they are included as a

fraction of how much of the document they move across; if words are replaced with an

equivalent number of words (as can happen with synonyms replaced for clarity), the net

contribution to edit distance is zero. Thus, the frequency count for edit sizes between 0

ad 1 suggests that a good fraction of revisions involve rearranging of text. Beyond that,

we can conclude that contributions, as measured by text added or by edit distance, are

predominantly under 100 words.

In Figure 5.3 we show the average edit quality and average text quality for all non-

96

log(Text Added)

F
re

q
u
e
n
c
y

0 2 4 6 8

0
e
+

0
0

1
e
+

0
6

log(Edit Size)

F
re

q
u
e
n
c
y

0 2 4 6 8 10

0
8
0

0
0
0
0

Figure 5.2: This graph shows the absolute text and edit contributions on a log scale, for
5 million randomly selected records of each type.

97

anonymous authors. In order to compute this, we took all revisions created by each

author and took an average of the text and edit qualities of those revisions. We notice

that 15.9% of authors had q10tdecay ≤ 0.05 and 6.3% of authors had q10elong ≤ −0.9. These

are shown by the bars on the left extreme of the histograms in Figure 5.3. This sharp

increase in the number of authors at the lowest end of our quality measures, combined

with our previous analysis of revisions and contributions with respect to quality, gives

us some justification to define vandals as those authors who have either q10tdecay ≤ 0.05

or q10elong ≤ −0.9 on average. The identification of vandals can be made more precise

using more sophisticated analysis of our data, as is done in Chapter 7.

During our investigations comparing the proposed measures, we found an unusu-

ally large fraction of non-anonymous authors having scores relatively close to zero.

This suggested that many users had made a relatively small number of revisions, and

that the absolute text and edit contributions of the revisions tended to be small, or that

the quality tended towards zero. This is consistent with the power law distribution for

edits per author (Lotka’s law) detected by [108]; we confirmed the distribution for our

data (shown in Figure 5.4) and observed that 362,461 authors made only one edit: over

46% of the total 777,223 authors we tracked. In Figure 5.5 we show the edit quality

measure for these authors. In contrast to the edit quality distribution over all authors

from Figure 5.1, we notice that the edit quality for these authors are almost evenly

distributed across the entire quality range (except for the two extreme values).

98

Text Quality [users]

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

5
0

0
0

0

Edit Quality [users]

F
re

q
u

e
n

c
y

−1.0 −0.5 0.0 0.5 1.0

0
1

0
0

0
0

0

Figure 5.3: This graph shows the average text quality q10tdecay and the average edit quality
measure q10elong over all non-anonymous authors.

99

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100

U
s
e

rs

Number of Edits

Figure 5.4: The distribution of the number of edits that each author made. Over 46%
of the non-anonymous authors make a single edit in the main English Wikipedia.

Edit Quality [singles]

lo
g

(F
re

q
u

e
n

c
y
)

−1.0 −0.5 0.0 0.5 1.0

0
4

8
1

2

Figure 5.5: This plot shows the q10elong of the non-anonymous authors who made only a
single edit.

100

Comparing Measures

We next present the correlations between the various measures in Table 5.1. These are

correlations with respect to the amount of contributions made by all non-anonymous

authors, excluding those we’ve classified as vandals. From the correlation table, we

notice that text based measures are better positively correlated with each other. Sim-

ilarly, the edit based measures are better positively correlated with each other as we

expected. The measures EditLongevity and EditOnly are highly correlated as borne

out by the fact that a large percentage of the edits are of good quality. We notice

that the same is true for TextLongevity and TextOnly. The correlation between Text-

LongevityWithPenalty and the absolute measure EditOnly is low, demonstrating that

TextLongevityWithPenalty penalizes authors for bad edits, gives no credit to good ed-

its, and accumulates the quality discounted text contribution measure TextLongevity.

Therefore, authors need to contribute high quality text, while ensuring that they have

no bad edits to get a high score on TextLongevityWithPenalty. TenRevisions being a

text contribution measure, is highly correlated with the other text contribution measures

TextOnly and TextLongevity. NumEdits is positively correlated with all measures as

we would expect, since the majority of contributions are deemed good by each of the

quality measures.

While TextOnly and EditOnly appear to be reasonable measures of author con-

tribution, we have found evidence that vandals accrue large contributions against these

measures. For instance, we found that author 1065172 is at the 99th percentile when

measured using TextOnly, but is nearly at the bottom of the ranks, at 0.000001 per-

centile when we look at his TextLongevityWithPenalty measure. We found five revi-

sions in which this author added new text, but four of those were immediately reverted.

The only revision that was kept around was a one word addition to a page! From the ed-

101

M
ea
su
re
s

E
d
it
L
on
g

E
d
it
O
n
ly

N
u
m
E
d
it
s

T
en
R
ev
s

T
ex
tL
on
g

T
ex
tO
n
ly

T
ex
tW

P
en

E
d
it
L
on
g

1.
00

0
0.

99
9

0.
28

0.
07

0
0.

07
5

0.
16

-0
.3

2
E
d
it
O
n
ly

0.
99

9
1.

00
0

0.
29

0.
07

1
0.

07
7

0.
16

-0
.3

3
N
u
m
E
d
it
s

0.
28

3
0.

28
6

1.
00

0.
36

1
0.

41
7

0.
45

0.
27

T
en
R
ev
s

0.
07

0
0.

07
1

0.
36

1.
00

0
0.

98
3

0.
96

0.
89

T
ex
tL
on
g

0.
07

5
0.

07
7

0.
42

0.
98

3
1.

00
0

0.
98

0.
90

T
ex
tO
n
ly

0.
15

8
0.

16
4

0.
45

0.
96

3
0.

98
3

1.
00

0.
82

T
ex
tW

P
en

-0
.3

20
-0

.3
26

0.
27

0.
88

6
0.

89
7

0.
82

1.
00

Ta
bl

e
5.

1:
T

hi
s

ta
bl

e
gi

ve
s

th
e

pa
ir

w
is

e
co

rr
el

at
io

ns
of

th
e

di
ff

er
en

tm
ea

su
re

s
w

e
ha

ve
de

fin
ed

in
th

is
ch

ap
te

r,
ex

am
in

in
g

on
ly

no
n-

an
on

ym
ou

s
us

er
s

th
at

ar
e

no
tc

la
ss

ifi
ed

as
va

nd
al

s.

102

its made by this author, we saw that he is a spammer. On the other hand, the author was

below the 25th percentile when measured by TextLongevity. Using the EditLongevity

measure, this author was below the 0.001 percentile; among the lowest in rank. There-

fore, we argue that the measures that discount TextOnly and EditOnly by a text or edit

quality measure are more indicative of the “useful” work added to the Wikipedia. We

argue that NumEdits is not as good a measure, since vandals and bots can easily make

large numbers of bad edits.

We present two figures, Figure 5.6 and Figure 5.7, which have been restricted to

a region containing the bulk of the data points. In Figure 5.6, we see a vee shape,

which separates the authors into two groups: those that have positive edit quality and

those that have negative edit quality, as measured by q10elong . The worse the quality of

edits made by authors the less they accumulate of the EditLongevity measure, whereas

the EditOnly measure, being oblivious to edit quality, attributes the same contribution

to an author whose contributions persists as it does to an author whose contributions

do not. On the negative side of EditLongevity, there are points that represent vandals,

who edit large sections of existing pages, which are then immediately reverted. Clearly,

EditOnly ranks some of these authors very highly, whereas EditLongevity is able to

distinguish them and rank them very low.

In Figure 5.7, we see a similar vee shape; in this case, TextLongevity cannot

go below zero as the text quality measure is always non-negative, so vandals, by our

definition, receive no contribution. As before, the measure that incorporates quality can

distinguish vandals from non-vandals and attribute a contribution measure to authors

that is proportional to the merit of their contribution.

Of the various measures we introduced, TextLongevityWithPenalty is perhaps

the one with the least tolerance, since by this measure, the only way an author can ac-

103

cumulate contribution is by adding new text that persists and by making edits that are

judged to be of good quality. Further, this measure does not reward authors for good

edits, but penalizes them for bad edits. In Figure 5.8, we plot TextOnly against Text-

LongevityWithPenalty. We see the vee shape, with vandals falling on a noticeable

line in the fourth quadrant, that has no TextOnly contribution. Since almost all new

text added by vandals is immediate reverted, and their edits always have low quality,

we notice that they get low negative TextLongevityWithPenalty contributions. In fact,

we noticed that the bottom ten authors by rank when measured according to TextLong-

evityWithPenalty were all vandals with the exception of AntiVandalBot. We explain

this in the subsection on bots.

-4⋅10
5

-2⋅10
5

 0⋅10
0

 2⋅10
5

 4⋅10
5

 0⋅10
0

 1⋅10
5

 2⋅10
5

 3⋅10
5

 4⋅10
5

 5⋅10
5

 6⋅10
5

 7⋅10
5

E
d
it
L
o
n
g

EditOnly

Figure 5.6: Comparing the absolute edit contribution, EditOnly, of a user with the edit
longevity, EditLongevity. Notice that authors who are “all bad” are easily identifiable
– and sometimes quite prolific.

104

 0⋅10
0

 5⋅10
4

 1⋅10
5

 2⋅10
5

 2⋅10
5

 2⋅10
5

 3⋅10
5

 0⋅10
0

 5⋅10
4

 1⋅10
5

 2⋅10
5

 2⋅10
5

 2⋅10
5

 3⋅10
5

 4⋅10
5

 4⋅10
5

T
e
x
tL

o
n
g

TextOnly

Figure 5.7: Comparing the absolute text contribution, TextOnly, with the contribution
as measured by text longevity, TextLongevity. We see that large contributors are either
“all bad” or nearly “all good.”

-2⋅10
5

-1⋅10
5

 0⋅10
0

 1⋅10
5

 2⋅10
5

 3⋅10
5

 4⋅10
5

 0⋅10
0

 5⋅10
4

 1⋅10
5

 2⋅10
5

 2⋅10
5

 2⋅10
5

 3⋅10
5

 4⋅10
5

 4⋅10
5

T
e
x
tW

it
h
P

u
n
is

h

TextOnly

Figure 5.8: Comparing the absolute text contribution of an author, TextOnly, with their
contribution as measured by TextLongevityWithPenalty.

105

 0⋅10
0

 5⋅10
5

 1⋅10
6

 2⋅10
6

 2⋅10
6

 0⋅10
0

 5⋅10
4

 1⋅10
5

 2⋅10
5

 2⋅10
5

 2⋅10
5

 3⋅10
5

 4⋅10
5

 4⋅10
5

T
e
n
R

e
v
s

TextOnly

Figure 5.9: This graph compares how much text is initially added by a user (along the
x-axis), with how much of the text survives over the next ten filtered revisions (along
the y-axis). The higher up the y-axis a point is, the more text that survived all ten
revisions. Most authors add under 100,000 words, and about half of what they add
survives.

Ranking Authors

A different direction we explored was how these different measures end up ranking

different authors. Since the contribution measures varied over such a wide range of

values, with most people within a smaller region around zero, we hoped that ranking

the authors would give us better insight into how the measures differed.

To this end, we computed the percentile rank (rounded up to the next even value

for clarity in the image) of all non-anonymous authors, including those that we had clas-

sified as vandals, and then plotted them in 3-dimensional histograms; see Figures 5.10

and 5.11. An important point to remember about Figures 5.10 and 5.11 is that the low-

lying regions of the graph are rarely zero — there are roughly between one and ten

authors at each intersection, but this is so small compared to the areas that correlate

106

that we cannot see it on the graph. Both figures show a high degree of correlation that

wasn’t evident from the correlation scores in Table 5.1. Figure 5.10 shows that Text-

Longevity and EditLongevity generally agree in the ranking of users, except for the

lowest scorers of TextLongevity. The lowest scorers of TextLongevity all receive a

score of zero, but the “fence” seen in the figure is an indication of the fact that there

are an enormous number of users which TextLongevity ranks equivalently but Edit-

Longevity is able to further distinguish between. By contract, Figure 5.11 shows that

TextLongevityWithPenalty roughly agrees with EditLongevity for all users except for

a thin branch that score zero under TextLongevityWithPenalty but get a positive score

under EditLongevity. This thin branch represents the group of users which do not add

text, but instead only rearrange it or delete vandalism.

 0

 20

 40

 60

 80

 100

EditLong
 0

 20
 40

 60
 80

 100TextLong

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

Figure 5.10: EditLongevity vs TextLongevity

We also include a 3-dimensional histogram comparing the percentile rankings as

107

 0

 20

 40

 60

 80

 100

EditLong
 0

 20
 40

 60
 80

 100TextWithPunish

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

Figure 5.11: EditLongevity vs TextLongevityWithPenalty

determined by EditLongevity and NumEdits, in Figure 5.12. The “rows of fences”

we see in Figure 5.12 are due to the large number of authors who make only a handful

of edits; the NumEdits measure neither distinguishes them from each other, nor is it

capable of distinguishing good contributions from bad contributions. This last point is

important, that even users in the lowest percentile of EditLongevity can be rated very

highly by NumEdits— demonstrating that it is much easier to game the NumEdits

measure to achieve a high rank, while doing bad work.

Bot Behavior

There are several bots operating on the contents of the Wikipedia. Many bots are

sanctioned by the community, and do useful chores such as automatically removing

text which is likely to be vandalism, correcting spelling, and adding geographical

108

 0

 20

 40

 60

 80

 100

EditLong
 0

 20
 40

 60
 80

 100NumEdits

 0
 5000

 10000
 15000
 20000
 25000
 30000

Figure 5.12: EditLongevity vs NumEdits

data. There are also bots which are created to vandalize pages, and sometimes well-

intentioned bots run amock and accidentally vandalize pages as well. During the course

of comparing the various contribution measures with each other, we found several bots

(both good and bad) which were obvious outliers in the data. To analyze bots as a

group, we selected all users which included the “Bot” moniker in their username; this

self-identification does include some malicious bots, but obviously favors selection of

good bots.

The edit and text quality measures for all bots are similar to that of all authors

shown in Figure 5.1. We noticed that bots create a large number of revisions with high

quality. We found that 69.56% of the revisions made by bots have a text quality measure

of q10tdecay > 0.95. The percentage of revisions made by bots with q10tdecay ≤ 0.05 was

9.2%. We found that 66.92% of the new text added by bots were with q10tdecay > 0.95 and

109

14.14% of the new text added by bots were with q10tdecay = 0, which means they were

immediately reverted. Similarly, on the edit contributions of bots we found that 54.42%

of the revisions with edits made by bots were of high edit quality, with q10elong > 0.9. The

number of revisions having q10elong < −0.9 being negligible, only 1% by our analysis.

When we counted all edit revisions that had a negative edit quality we saw that 12.73%

of the revisions were judged to be of poor quality with q10elong < 0. We found that 93.3%

of the edit contributions made by bots had positive edit quality and the remaining 6.4%

had negative edit quality. As we would expect from a selection of bots which is biased

towards good bots, 65.20% of the edit contributions made by bots had q10elong > 0.9,

indicating that the work is generally regarded as high quality. The contributions with

q10elong < −0.9 are 1.8%. This indicates that a large part of the text additions made by

bots and a large part of the edit contributions made by bots survive indefinitely.

Furthermore, our analysis indicates that bots make large amounts of edit contribu-

tions compared to text contributions; the ratio of the size of edits EditOnly to the size of

new text TextOnly for all bots is 11.61. Since the penalizing measure TextLongevity-

WithPenalty does not credit authors for good edits but reduces their TextLongevity

contributions, by the amount of their bad edits as measured by EditLongevity, we no-

tice that edits judged as being of poor quality overwhelm the smaller text contributions

of bots in general, and AntiVandalBot in particular, resulting in a small overall contri-

bution. We also note here that SmackBot did much better on this measure. SmackBot

contributes more text than AntiVandalBot. Most of its edits are of smaller size than

AntiVandalBot. Since they have similar quality measures, AntiVandalBot ends up with

a lower score on TextLongevityWithPenalty when compared to SmackBot.

110

Text Quality [all]

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

0
0

0
0

0
1

5
0

0
0

0
0

Text Quality [AntiVandalBot]

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

0
0

0
1

5
0

0
0

Text Added [AntiVandalBot]

F
re

q
u

e
n

c
y

0 2 4 6 8 10 12

0
5

0
0

0
1

5
0

0
0

Edit Quality [all]

F
re

q
u

e
n

c
y

−1.0 −0.5 0.0 0.5 1.0

0
4

0
0

0
0

0
1

0
0

0
0

0
0

Edit Quality [AntiVandalBot]

F
re

q
u

e
n

c
y

−1.0 −0.5 0.0 0.5 1.0

0
2

0
0

0
0

5
0

0
0

0

Edit Size [AntiVandalBot]

F
re

q
u

e
n

c
y

0 2 4 6 8 10 12

0
1

0
0

0
0

2
0

0
0

0

Figure 5.13: This graph shows the edit quality measure q10elong and text quality q10tdecay
for all bots. A quality measure of 1 indicates that all the changes were preserved. A
quality measure of 0 for text quality (and −1 for edit quality) indicates that all the
changes were reverted in the very next revision. The histograms on the left are for all
bots. The ones on the right are the quality measures and the absolute amounts of text
and edit contributions for AntiVandalBot.

Sources of Error

Since we use filtered revisions, namely we collapse all consecutive revisions by the

same author, and since we treat all anonymous authors identically, consecutive edits

made by anonymous authors cannot be distinguished. We therefore discard all anony-

mous authors from our analysis: in any case, we are not measuring their contributions,

as they cannot be individually attributed. We have noticed that there are anonymous au-

thors who do good work on the Wikipedia, but at this point we have not implemented a

mechanism to attribute them a contribution measure.

111

We ignore the time difference between edits. When pages receive many views with

little editing, it suggests that the article is substantially correct; perhaps later edits are

due to changing facts, and not because of poor quality. Articles which are the subject

of current events are particularly likely to have their edit quality misjudged. Relatedly,

grouping revisions by author ignores the fact that edits separated by days or months are

less related and have most likely been reviewed by others.

Comparing Contributions

Defining multiple contribution measures affords us the opportunity to examine and

quantify the user behaviors over the large scale of edits performed. We looked at the

list of all blocked authors. 2 We separated them from the others with the objective

of determining how many of these authors met our definition of vandals. We were

surprised to note that over 51% of authors had q10tdecay > 0.95 and 39% of authors had

q10elong > 0.9. In fact, over 47% of the blocked authors make text contributions that have

an average text quality over 0.95. Similarly, over 32% of the these authors make edit

contributions that have an average edit quality over 0.9. We note that 11.2% of these

authors qualify as vandals by our measure, based on their average edit quality and

24.9% qualify as vandals based on their average text quality. But a large percentage of

the authors in the blocked authors list are not vandals, as determined by our definition.

For example, authors 3362 and 10784 are both blocked, but are over the 99th percentile

on EditLongevity, TextLongevity and TextLongevityWithPenalty.

The highest ranks across all contributions were secured by authors 3903 and An-

tiVandalBot. Author 3903 had the top rank with respect to measures TextOnly, Text-

2Retrieved on May 8, 2008, directly from the Wikipedia database. It corresponds to the data available
at http://en.wikipedia.org/wiki/Wikipedia:List_of_banned_users.

112

Longevity, TextLongevityWithPenalty and TenRevisions. AntiVandalBot had the

top rank with respect to the measures EditLongevity and EditOnly. Interestingly,

SmackBot was the second highest scorer after author 3903 on measures TextLongevity

and TextLongevityWithPenalty.

5.7 Conclusions

As group collaboration becomes more prevalent, the problem of how to compute au-

thor contributions becomes increasingly relevant. Our motivation was to explore simple

models of user behavior that can be incorporated into reputation systems (e.g., [2]), but

we feel that factoring in a notion of quality alongside quantity can also be revealing in

studies about user behavior and the amount of useful information added to the Wiki-

pedia because it cancels out the work of vandals and the work of those who fix the

vandalism. We have presented and compared several possible ways to measure author

contribution, including two measures popularized by previous works. What we dis-

covered is that there is substantial agreement between the measures for clear cases of

valuable contributions, and varying results for authors making questionable contribu-

tions.

There are several measures we have defined that have a desirable property, namely,

giving credit where it is due and making sure that authors who make short-lived contri-

butions get a low score. We believe that TextLongevity or EditLongevity are equally

viable as contribution measures, depending on what behavior should be encouraged in

users.

The EditLongevity measure is a very interesting measure in our opinion. This

measure uses edit distance (as counted in words) to measure the size of the contribu-

tion while taking into account the longevity of that contribution, quantified using the

113

edit quality measure q10elong . Since the edit quality measures how much an edit takes

a page towards a future version of that page, we find this a good way of measuring

contribution. The TextLongevityWithPenalty measure is good at identifying vandals,

but fails as a good contribution measure as it does not always reward good edits (such

as those authors who revert vandalism).

As a side effect of our analysis and comparison, we were able to identify some un-

usual author behaviors. We discovered that the highest contributor by our edit measures

was a bot, the second highest contributor by TextLongevity and TextLongevityWith-

Penalty was again a bot, and that there are evil bots which create a significant amount

of vandalism. We also discovered that making large and good text and edit contribu-

tions are not always sufficient to be in good standing on the Wikipedia.

There are several directions for future work on measuring author contributions.

Our approach has been to consider content-driven quality measures, where no human

judgements are necessary, focusing on various measures of longevity. Other quality

measures are equally viable, such as a “thumbs-up or thumbs-down” rating system

for contributions, and the challenge is in both defining them and interpreting the results

within context. For example, we have described long-lived content as “good,” but might

have also described the content as having reached a group consensus. Factoring quality

measures into contribution measures can be useful in other collaborative endeavors

such as source code archives, or even forum postings. Again, interpretation should be

approached with care; for example, a wiki on current events might value short-lived

content. Finally, although we have observed that there is general agreement between

the measures we have examined, the differences between them highlight groups of

users who behave unusually. We have tried to explain a few of the prominent groups,

but there is still much to understand about various behaviors that users exhibit.

114

Chapter 6

Reputation

6.1 Introduction

An obvious way to build a reputation system would be to build one modeled on eBay or

Amazon’s rating system: elicit votes from users on the quality of a revision or the work

of an author. We had several concerns about this style of system: lack of adoption,

Sybil attacks through puppet votes, block voting by cliques of users, and disrupting

the current user experience of the Wikipedia community. This led us to the idea of

implicit voting through actions already taken by the community as part of their normal

activities, an idea related to revealed preferences [88]. For example, reading an article

and not making an edit to it is an implicit vote (though perhaps not a strong one) that the

article is of good quality; the more page views an article has, the more we can believe

that there are no errors in it. We call reputation systems that do not use explicit input

from users, but instead depend on the actual content, content-driven.

This chapter reprints material originally published as [2].

115

The simplest idea for a content-driven reputation system would measure how much

text an author contributed. During the course of our research, however, we realized

that there are two distinct ways that authors contribute to the Wikipedia: by adding

new content, and by revising existing content. Both are important to consider, since

several users will adopt one contribution style and not the other. In Chapter 5, we

propose several different ways to measure the contribution of authors. Two of those

models, TenRevisions and EditLongevity, are the foundation of the reputation system

analyzed in this chapter. There are several constants in our final model, which were

assigned values by optimizing for the heuristic that author reputation at the time of an

edit should be correlated with the edit longevity of that revision. We use the quality

measures developed in Chapter 4 to evaluate the performance of our reputation system.

There are several possible applications of computing a reputation value for authors

(for example, to grant or deny editing rights to crucial pages [10]); within the WikiTrust

project, we use reputation to drive a trust system for Wikipedia content [1].1 The fact

that authors can only comment on other authors by making contributions themselves

discourages users from attacking each other in an unproductive way, because they risk

their own reputation in the process.

6.2 Related Work

The work most closely related to this one is [127], where the revision history of a

Wikipedia article is used to compute a trust value for the article. Dynamic Bayesian

networks are used to model the evolution of trust level over the revisions. At each edit,

the inputs to the network are a priori models of trust of authors (determined by their

1This trust coloring is publicly available through our Firefox plugin: https://addons.
mozilla.org/en-US/firefox/addon/wikitrust/

116

Wikipedia ranks), and the amount of added and deleted text. The paper shows that

this approach can be used to predict the quality of an article; for instance, it can be

used to predict when an article in a test set can be used as a featured article. In that

work, author trustworthiness is taken as input; we compute author reputation as output.

Several approaches for computing text trust are outlined in [64]. A simpler approach to

text trust, based solely on text age, is advocated in [22].

Reputation systems in e-commerce and social networks has been extensively stud-

ied [86, 27, 51, 33]; the reputation in those systems is generally user-driven, rather than

content-driven as in our case. Related is also work on trust in social networks [40, 37],

as well as search ranking for web pages [55, 77]. Vandalism detection is a closely

related problem; we view reputation as an input to a vandalism detection system and

discuss this application in Chapter 7.

Our work is a form of analysis on the evolution of text over time; other research

has also investigated such evolution. The history flow of text contributed by Wikipedia

authors has been studied with flow visualization methods in [107]; the results have been

used to analyze a number of interesting patterns in the content evolution of Wikipedia

articles. Work on mining software revision logs [60] is similar in its emphasis of in-

depth analysis of revision logs; the aim there, however, is to find revision patterns

and indicators that point to software defects, rather than to develop a notion of author

reputation.

6.3 A Content-Driven Reputation System

We propose a content-driven reputation system in order to preserve the current user

experience of the Wikipedia. There are two behaviors that we choose to promote as

desirable: contributing text to articles, and editing text. Adding text to articles is a

117

necessary behavior for the Wikipedia to acquire new knowledge and continue to expand

existing articles. However, adding text is not sufficient to make the Wikipedia a useful

resource — the text must be edited for formatting and readability, and vandalism must

be removed, so the removal and rearrangement of text is also very important.

To measure text contributions and the amount of editing performed by an author,

we examine only the revision history of each article and use the text differencing algo-

rithm of Chapter 3 to assist in computing these values. Deriving implicit judgements

from the history was an important challenge in this work, and our reputation system

builds upon the ideas developed in Chapter 4 for judgements. Thus, the central premise

of our analysis is the notion that later authors of an article are implicitly judging the

work of earlier authors. In order to reduce the negative impact of vandals, we scale the

computed judgement by the reputation of the judge, so that high-reputation judges have

a larger influence on improving the reputation of the author being judged. This limits

the damage that vandals can cause by creating multiple anonymous accounts.

Text Contributions

We deem a text contribution to be useful to the Wikipedia if it survives over multiple

revisions. That is, if later editors choose to preserve the text, then implicitly they are

voting that the contribution was of good quality. We would like to increase the reputa-

tion of the author making the text contribution by an amount relative to the size of their

contribution (thus encouraging larger contributions), but also factoring in the reputation

of the judge so as to reduce the weight of low-reputation users (who might be vandals).

Formally, for an article, a ∈ A, we consider two versions, vi, vj ∈ V[a], where

i < j so that Ai = RevAuthor(vi) is the author we are adjusting the reputation of, and

Aj = RevAuthor(vj) is the author making the implicit judgement, where we choose

118

j such that Ai 6= Aj .2 The amount of text contributed in vi that survives to vj is then

given by TSurva(i, j), as defined in Equation 4.1. Thus, we propose the following rule:

Rule 1. (reputation update due to text survival)

We update the reputation of RevAuthor(vi) by considering each of the ten

following revisions as judges,3 vj ∈ J10
a (i), and update the reputation by

the amount:

cscale · ctext ·
TSurva(i, j)

TSurva(i, i)
· (TSurva(i, i))

clen · log(1 +R(vj)),

where j = RevPos(vj) is the version position of vj in V[a] (and conse-

quently, 0 < j − i ≤ 10), cscale > 0, ctext ∈ [0, 1], and clen ∈ [0, 1] are

parameters, and where R(vj) is the reputation of RevAuthor(vj) at the

time vj is performed.

In this rule, TSurva(i, j)/TSurva(i, i) is the fraction of text introduced at version vi

that is still present in version vj; this is a measure of the “quality” of vi. The quan-

tity log(1 + R(vj)) is the “weight” of the reputation of RevAuthor(vj); that is, how

much the reputation of RevAuthor(vj) lends credibility to the judgements made by

RevAuthor(vj). In Chapter 5, we saw that for any measure we investigated, only a few

regular contributors dominate the majority of users by several orders of magnitude. We

therefore use a logarithmic weight for reputation to ensure that the feedback coming

2Recall from the definition of V[a] in Chapter 2 that the revisions are filtered so that there are no
consecutive revisions by the same author. Where the same author edits multiple revisions in a row, only
the most recent is kept. This has the effect of collapsing multiple checkpoint revisions into a single edit.

3See Definition 4.6.

119

from new authors is not completely overridden by the feedback coming from the dom-

inant contributors. The parameters cscale, ctext and clen were determined experimentally

via an optimization process, described in Section 6.4. The parameter clen ∈ [0, 1] is an

exponent that specifies how to take into account the length of the original contribution:

if clen = 1, then the increment is proportional to the length of the original contribution;

if clen = 0, then the increment does not depend on the length of the original contribu-

tion. The parameter cscale specifies how much the reputation should vary in response

to individual feedback. The parameter ctext specifies how much the feedback should

depends on residual text (Rule 1) or residual edit (Rule 2, presented later).

To give feedback on a revision, the rule considers at most 10 successive versions.

This ensures that contributors to early versions of articles do not accumulate dispropor-

tionate amounts of reputation. We considered basing the limit on time, rather than on

the number of versions, but each Wikipedia article has its own rate of change: using the

number of versions ensures that fast and slow-changing pages are treated in a similar

fashion.

Edit Contributions

Similar to text contributions, we define edit contributions to be useful if they survive

revision by multiple later authors. We use the notion of edit longevity defined in Equa-

tion 4.4 as a guide to the quality judgement made by RevAuthor(vj) of the work by

RevAuthor(vi):

ELonga(i, i− 1, j) =
da(i− 1, j)− da(i, j)

da(i− 1, i)

120

Intuitively, this formula computes whether the work in going from version vi−1 to ver-

sion vi brings the article closer to how the article will look in the future (as seen from

the point of view of version vj). If the edit distance, d(), satisfies the triangular inequal-

ity, then ELonga(i, i− 1, j) ∈ [−1, 1]; for many choices of d(), the triangle inequality

is not satisfied, so we restrict the value of ELong () to be in the range [−1, 1] by fixing

the value to the closest endpoint when it falls outside of the range. For two consecu-

tive edits vi, vi+1, if vi is completely undone in vi+1 (as is common when vi introduces

spam or is some other kind of vandalism), then ELonga(i, i − 1, i + 1) = −1; if vi+1

completely preserves the work of vi, then ELonga(i, i− 1, i + 1) = +1. Values in be-

tween the two extremes represent how much of the edit is preserved or undone through

revisions up to and including vj .

Note that ELonga(i, i−1, j) < 0 only when da(i−1, j) < da(i, j), that is, when vj

is closer to the version vi−1 (the preceding version), than to version vi. In other words,

RevAuthor(vj) votes to lower the reputation of RevAuthor(vi) only when the preced-

ing vi−1 is more like vj than vi is. We use the following rule for updating reputations

based on edit contributions.

Rule 2. (reputation update due to edit survival)

We update the reputation of RevAuthor(vi) by using the three following

revisions as judges, vj ∈ J3
a(i), to compute the following value:

q =
cslack · da(i− 1, j)− da(i, j)

da(i− 1, i)

where j = RevPos(vj). Since q is undefined when da(i−1, i) = 0, we take

that to be a special case where no reputation should accrue to the author

121

of version vi (i.e., we set q = 0 in that case). We also define a punishing

function

p(q) =

1 if q ≥ 0,

cpunish if q < 0.

The reputation of RevAuthor(vi) is then increased according to the fol-

lowing formula:

q · p(q) · cscale · (1− ctext) · (da(i− 1, i))clen · log(1 +R(vj))

In this rule, cpunish ≥ 1, cslack ≥ 1, cscale > 0, ctext ∈ [0, 1], and clen ∈ [0, 1]

are parameters, and R(vj) is the reputation of RevAuthor(vj) at the time

version vj is created.

We constructed this rule to use a modified form of Equation 4.4; the parameter cslack,

when it is greater than one, is used to spare ai from punishment when the revision from

vi−1 to vi is only slightly counterproductive. On the other hand, when punishment is

incurred, its magnitude is magnified by the amount cpunish, raising the reputation cost of

edits that are later undone. We see amplifying the punishment as being instrumental to

making the threat a credible one. Without amplification, a rogue contributor could use

the reputation gained in one part of the Wikipedia to constantly destroy a small set of

articles elsewhere. Amplification makes this harder to achieve.

The parameters cslack and cpunish, as well as cscale, ctext and clen, were determined via

an optimization process described in Section 6.4.

122

Computing Content-Driven Reputation

We compute the reputation for Wikipedia authors as follows. We examine all revisions

in chronological order, thus simulating the same order in which they were submitted to

the Wikipedia servers. We initialize the reputations of all authors to the value 0.1; the

reputation of anonymous authors is fixed to 0.1. We choose a positive initial value to

ensure that the weight, log(1+r), of an initial reputation, r = 0.1, is non-zero, priming

the process of reputation computation. This choice of initial value is not particularly

critical (the parameter cscale may need to be adjusted for optimal performance, if this

initial value is changed). As the revisions are processed,we use Rules 1 and 2 to de-

termine which authors are being judged by the revision being process, and update the

reputations of those authors accordingly. When updating reputations, we ensure that

they never become negative, and that they never grow beyond a bound cmaxrep > 0. The

constant cmaxrep prevents frequent contributors from accumulating unbounded amounts

of reputation, and becoming essentially immune to negative feedback. The value of

cmaxrep was also determined via optimization techniques, as described in Section 6.4.

Wikipedia allows users to register and create an author identity whenever (and

as often as) they wish. As a consequence, we need to make the initial reputation of

new authors very low, close to the minimum possible (in our case, 0). If we made the

initial reputation of new authors any higher, then authors, after committing revisions

that damage their reputation, would simply re-register as new users to gain the higher

value. An unfortunate side-effect of allowing people to obtain new identities at will is

that we cannot presume that people are innocent until proven otherwise: we have to

assign to newcomers the same reputation as proven offenders.4 This is a contributing

4Perhaps a way out of this conundrum is to use the methods of vandalism detectors (discussed in
Section 7.2) to determine an initial reputation based on other factors about the edit.

123

factor to our reputation having low precision; many authors who have low reputation

still perform very good quality revisions, as they are simply new authors rather than

proven offenders.

6.4 Evaluation Metrics

In developing a reputation system, one must ask “what is it intended to signal?” For

WikiTrust, our hope was that a high reputation would signal that edits made by the

author were likely to be of good quality, while a low reputation would signal that the

edit was of poor or unknown quality. Evaluation of the system becomes the crucial

factor, so that users can compare one system to another.

We evaluate our reputation system by using the quality measures of Chapter 4 to

define two binary classifications, and then calculate our reputation system’s precision

and recall for correctly classifying each revision according to those classifications. We

observe that both text longevity and edit longevity are computed based on the evolution

of the article text after the time that revision vi is created, while R(vi) is computed

based on events before the time of vi, so that a comparison between them isn’t predis-

posed to showing a correlation.

To formally define this framework, we take the view that revisions are generated by

a probabilistic process, with V as the list of outcomes from that process. We associate

with each revision a probability mass (a weight) proportional to the number of words

affected by the edit. This compensates for our setting of filtered revisions, where we

combine consecutive revisions made by the same author; in such a setting, the unit

of a “revision” is somewhat arbitrary, while weighting scales with the net amount of

work done by each author. Each of our two quality measures has a weighting that is

appropriate to it; given vi ∈ V[a], for some article a ∈ A, where i = RevPos(vi) as

124

usual, we define the probability mass to scale a revision by as:

ρe(vi) = da(i− 1, i), for edit longevity.

ρt(vi) = TSurva(i, i), for text longevity.

We define our categories by choosing a partition for each measure, and define three

random variables Se, St, L : V 7→ {0, 1} as follows:

• We say that the new text added in version vi is short-lived text if q10tdecay(i) is at

the low end of the range. We define St(vi) = 1 if q10tdecay(i) ≤ 0.2, and St(vi) = 0

otherwise.5 This indicates that at most 20% of new text, on average, survives

from one version to the next.

• We say that the edit performed in taking version vi−1 to version vi is a short-

lived edit if q3elong(i) is low. Specifically, Se(vi) = 1 if q3elong(i) ≤ −0.8, and

Se(vi) = 0 otherwise.6

• We also partition revisions according to whether they are low-reputation or not.

We define low-reputation similarly to the quality measures, as L(vi) = 1 if

log(1 + R(vi)) ≤ log(1 + cmaxrep)/5; L(vi) = 0 otherwise, and again we have

chosen a partition that represents the lowest 20% of the range after logarithmic

scaling. Note that the reputation of RevAuthor(vi) does not actually change

at the time of version vi’s creation; the reputation of the author of a revision is

adjusted as judges become available.

5Recall that q10tdecay(i) is given by the solution to Equation 4.2.

6The quality, q3elong(i), is given by Definition 4.7.

125

The precision prect and recall rect for short-lived text, and the precision prece and recall

rece for short-lived edits, are defined as:

prect = Pr(St=1 | L=1) rect = Pr(L=1 | St=1)

prece = Pr(Se=1 | L=1) rece = Pr(L=1 | Se=1).

These quantities can be computed as usual; for instance,

Pr(Se = 1 | L = 1) =

∑
v∈V Se(v) · L(v) · ρe(v)∑

v∈V L(v) · ρe(v)
.

We also define the boost that knowing reputation gives to predicting a short-lived

revision:

booste =
Pr(Se = 1 | L = 1)

Pr(Se = 1)
=

Pr(Se = 1, L = 1)

Pr(Se = 1) · Pr(L = 1)

boostt =
Pr(St = 1 | L = 1)

Pr(St = 1)
=

Pr(St = 1, L = 1)

Pr(St = 1) · Pr(L = 1)

Intuitively, booste indicates how much more likely than average it is that edits produced

by low-reputation authors are short-lived. The quantity boostt has a similar meaning.

Our last indicators of quality are the coefficients of constraint [19, 21]:

κe = Ie(Se, L)/He(L) κt = It(St, L)/Ht(L),

where Ie is the mutual information of Se and L, andHe is the entropy of L; similarly for

It(St, L) and Ht(L). The quantity κe is the fraction of the entropy of the edit longevity

which can be explained by the reputation of the author; this is an information-theoretic

measure of correlation. The quantity κt has an analogous meaning.

126

To assign a value to the coefficients cscale, cslack, cpunish, ctext, clen, and cmaxrep, we

implemented a search procedure, whose goal was to find values for the parameters that

maximized a given objective function. We applied the search procedure to the Italian

Wikipedia, reserving the French Wikipedia for validation once the coefficients were

determined. We experimented with κe and prece · rece as objective functions, and they

gave very similar results.

6.5 Experimental Results

To evaluate our content-driven reputation, we considered two Wikipedias:

• The Italian Wikipedia, consisting of 154,621 articles and 714,280 filtered revi-

sions; we used a snapshot dated December 11, 2005.

• The French Wikipedia, consisting of 536,930 articles and 4,837,243 filtered re-

visions; we used a snapshot dated October 14, 2006.

In both Wikipedias, we studied only NS_MAIN pages, which correspond to ordinary

articles (other pages are used as comment pages, or have other specialized purposes).

Moreover, to allow the accurate computation of our quality measures which require

multiple judges, we used only revisions that occurred before October 31, 2005 for the

Italian Wikipedia, and before July 31, 2006 for the French one. Our algorithms for com-

puting content-driven reputation depend on the value of six parameters, as mentioned

earlier. We determined values for these parameters by searching the parameter space to

optimize the coefficient of constraint κe, using the Italian Wikipedia as a training set;

127

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6 7 8 9
log (1 + reputation)

Italian Wikipedia, edit
Italian Wikipedia, text
French Wikipedia, edit
French Wikipedia, text

Figure 6.1: Percentage of text and edit contributed to the Italian and French Wikipedias,
according to author reputation. The data includes anonymous authors.

the values we determined are:

cscale = 13.08 cpunish = 19.09 clen = 0.60

cslack = 2.20 ctext = 0.60 cmaxrep = 22026

Figure 6.1 provides a breakdown of the amount of edits and text additions per-

formed, according to the reputation of the author. We find an essentially bimodal distri-

bution: the overwhelming majority of revisions are authored by the lowest and highest

reputation users in the system. Note the similarity to the results of Chapter 5, especially

Figures 5.1 and 5.3; we again see a bimodal distribution with an immediate drop-off

beyond the lowest reputation, and an upwards trend for frequency as we move towards

the higher end of the reputation spectrum. We believe that this might reflect the bi-

modal behavior of the community; many users tend to make only a small number of

edits, and a few users contribute a great deal (see Figure 5.4).

128

Precision and Recall

We analyzed the Italian and French Wikipedias using the parameter values discovered

by our optimization procedure. The results are summarized in Table 6.1. The results are

better for the larger French Wikipedia; in particular, our reputation’s ability to predict

short-lived edits is better on the French than on the Italian Wikipedias. We are not sure

whether this depends on different dynamics in the two Wikipedias, or whether it is due

to the greater age (and size) of the French Wikipedia. We see that edits performed by

low-reputation authors are four times as likely as the average to be short-lived.

Manual Annotation

To investigate how many of the edits had a short life due to bad quality, we asked a

group of seven volunteers to rate revisions made to the Italian Wikipedia. We selected

the revisions to be ranked so that they contained representatives of all 4 combinations

of high/low reputation author, and high/low longevity. We asked the volunteers to rate

the revisions with +1 (good), 0 (neutral), and −1 (bad); in total, 680 revisions were

ranked. The results, summarized in Table 6.2, are striking. Of the short-lived edits

performed by low-reputation users, fully 66% were judged bad. On the other hand, less

than 19% of the short-lived edits performed by high-reputation users were judged bad.

We analyzed in detail the relationship between user reputation, and the percentage of

short-lived text and edits that users considered bad. Using these results, we computed

the approximate recall factors on the Italian Wikipedia of content-driven reputation for

bad edits, as judged by users, rather than short-lived ones:

• The recall for short-lived edits that are judged to be bad is over 49%.

• The recall for short-lived text that is judged to be bad is over 79%.

129

Pr
ec

is
io

n
R

ec
al

l
B

oo
st

C
oe

ff
.o

fc
on

st
r.

E
di

t
Te

xt
E

di
t

Te
xt

E
di

t
Te

xt
E

di
t

Te
xt

pr
ec

e
pr

ec
t

re
c e

re
c t

bo
os

t e
bo

os
t t

κ
e

κ
t

E
xc

lu
di

ng
an

on
ym

ou
sa

ut
ho

rs
:

Fr
en

ch
W

ik
ip

ed
ia

23
.9

2%
5.

85
%

32
.2

4%
37

.8
0%

4.
21
×

4.
51
×

7.
33

6.
29

It
al

ia
n

W
ik

ip
ed

ia
14

.1
5%

3.
94

%
19

.3
9%

38
.6

9%
4.
03
×

5.
83
×

3.
35

7.
17

In
cl

ud
in

g
an

on
ym

ou
sa

ut
ho

rs
:

Fr
en

ch
W

ik
ip

ed
ia

48
.9

4%
19

.0
1%

82
.8

6%
90

.4
2%

2.
35
×

2.
97
×

25
.2

9
23

.0
0

It
al

ia
n

W
ik

ip
ed

ia
30

.5
7%

7.
64

%
71

.2
9%

84
.0

9%
3.
43
×

3.
58
×

19
.8

3
17

.4
9

Ta
bl

e
6.

1:
Su

m
m

ar
y

of
th

e
pe

rf
or

m
an

ce
of

co
nt

en
t-

dr
iv

en
re

pu
ta

tio
n

fo
rt

he
It

al
ia

n
an

d
Fr

en
ch

W
ik

ip
ed

ia
s.

130

These results clearly indicate that our content-driven reputation is a very effective tool

for spotting, at the moment they are introduced, bad contributions that will later be

undone. There is some margin of error in this data, as our basis for evaluation is a small

number of manually-rated revisions, and human judgement on the same revisions often

contained discrepancies.

The fact that so few of the short-lived edits performed by high-reputation authors

were judged to be of bad quality points to the fact that edits can be undone for reasons

unrelated to quality. Many Wikipedia articles deal with current events; edits to those

articles are undone regularly, even though they may be of good quality. Our algorithms

do not treat in any special way current-events pages. Other Wikipedia edits are admin-

istrative in nature, flagging pages that need work or formatting; when these flags are

removed, we classify it as text deletion. Furthermore, our algorithms do not track text

across articles, so that when text is moved from one article to another, it is classified as

deleted from the source article.

From Table 6.1, we note that the precision is low, by search standards. Our prob-

lem, however, is a prediction problem, not a retrieval problem, and thus it is intrinsi-

cally different. The group of authors with low reputation includes many authors who

are good contributors, but who are new to the Wikipedia, so that they have not had time

yet to build up their reputation.

Comparison with Edit-Count Reputation

We compared the performance of our content-driven reputation to another basic form

of reputation: edit count. It is commonly believed that, as Wikipedia authors gain ex-

perience (through revision comments, talk pages, and reading articles on Wikipedia

131

Reputation Judged bad Judged good
Short-lived edits:

Low [0.0–0.2] 66 % 19 %
Normal [0.2–1.0] 16 % 68 %

Short-lived text:

Low [0.0–0.2] 74 % 13 %
Normal [0.2–1.0] 14 % 85 %

Table 6.2: User ranking of short-lived edits and text, as a function of author reputation,
for the Italian Wikipedia. We presented edit differences to a test group of users, and
asked users to rate whether the edit was good or bad. In square brackets, we give
the interval where the normalized value log(1 + r)/ log(1 + cmaxrep) of a reputation r
falls. The precentages do not add to 100%, because users could also rank changes as
“neutral”.

standards), the quality of their submissions goes up.7 Hence, it is reasonable to take

edit count, that is, the number of edits performed, as a form of reputation. We compare

the performance of edit count, and of content-driven reputation, in Table 6.3. The com-

parison does not include anonymous authors, as we do not have a meaningful notion

of edit-count for them. According to our metrics, content-driven reputation performs

slightly better than edit-count reputation on both the Italian and French Wikipedias.

We believe that one reason edit-count based reputation performs well in our mea-

surements is that authors, after performing edits that are often criticized and reverted,

commonly either give up their identity in favor of a “fresh” one, thus zeroing their edit-

count reputation and “punishing” themselves, or stop contributing to the Wikipedia

altogether.8 However, we believe that the good performance of edit count is an artifact,

due to the fact that edit count is applied to an already-existing history of contributions.

Were it announced that edit count is the chosen notion of reputation, authors would

7See [44] for an analysis that refutes this assumption, however.
8This is consistent with the conclusions presented in [44].

132

Pr
ec

is
io

n
R

ec
al

l
B

oo
st

C
oe

ff
.o

fc
on

st
r.

E
di

t
Te

xt
E

di
t

Te
xt

E
di

t
Te

xt
E

di
t

Te
xt

pr
ec

e
pr

ec
t

re
c e

re
c t

bo
os

t e
bo

os
t t

κ
e

κ
t

It
al

ia
n

W
ik

ip
ed

ia
:

C
on

te
nt

-d
riv

en
re

pu
ta

tio
n

14
.1

5
3.

94
19

.3
9

38
.6

9
4.

03
5.

83
3.

35
7.

17
E

di
tc

ou
nt

as
re

pu
ta

tio
n

11
.5

0
3.

32
19

.0
9

39
.5

2
3.

27
4.

91
2.

53
6.

35
Fr

en
ch

W
ik

ip
ed

ia
:

C
on

te
nt

-d
riv

en
re

pu
ta

tio
n

23
.9

2
5.

85
32

.2
4

37
.8

0
4.

21
4.

51
7.

33
6.

29
E

di
tc

ou
nt

as
re

pu
ta

tio
n

21
.6

2
5.

63
28

.3
0

37
.9

2
3.

81
4.

34
5.

61
6.

08

Ta
bl

e
6.

3:
Su

m
m

ar
y

of
th

e
pe

rf
or

m
an

ce
of

co
nt

en
t-

dr
iv

en
re

pu
ta

tio
n

ov
er

th
e

It
al

ia
n

an
d

Fr
en

ch
W

ik
ip

ed
ia

s.
A

ll
da

ta
ar

e
ex

pr
es

se
d

as
pe

rc
en

ta
ge

s.
A

no
ny

m
ou

s
au

th
or

s
ar

e
no

ti
nc

lu
de

d
in

th
e

co
m

pa
ri

so
n.

Pr
ec

is
io

n
is

th
e

pr
ob

ab
ili

ty
th

at
th

e
te

xt
or

ed
it

lo
ng

ev
ity

is
lo

w
,g

iv
en

th
at

th
e

re
pu

ta
tio

n
is

lo
w

.
R

ec
al

li
s

th
e

pr
ob

ab
ili

ty
th

at
th

e
re

pu
ta

tio
n

is
lo

w
,g

iv
en

th
at

th
e

te
xt

or
ed

it
lo

ng
ev

ity
is

lo
w

.

133

most likely modify their behavior in a way that both rendered edit count useless, and

damaged the Wikipedia. For instance, it is likely that, were edit count the measure

of reputation, authors would adopt strategies (and automated robots) for performing

very many unneeded edits to the Wikipedia, causing instability and damage. In other

words, edit count as reputation measure has very little prescriptive value that would

benefit the Wikipedia. In contrast, we believe our content-driven reputation, by prizing

long-lasting edits and content, would encourage constructive behavior on the part of

the authors.

Text Age and Author Reputation as Trust Criteria

The age of text in the Wikipedia is often considered an indicator of text trustworthiness,

the idea being that text that has been part of an article for a longer time has been vetted

by more contributors, and thus, it is more likely to be correct [22]. We were interested

in testing the hypothesis that author reputation, in addition to text age, can be a useful

indicator of trustworthiness, especially for text that has just been added to a page, and

thus that has not yet been vetted by other contributors. Let fresh text be the text that has

just been inserted in a Wikipedia article. We considered all text that is fresh in all the

Italian Wikipedia, and we measured that 3.87 % of this fresh text is deleted in the next

revision. In other words, Pr(deleted | fresh) = 0.0387. We then repeated the measure-

ment for text that is both fresh, and is due to a low-reputation author: 6.36 % of it was

deleted in the next revision, or Pr(deleted | fresh and low-reputation) = 0.0636. This

indicates that author reputation is a useful factor in predicting the survival probability

of fresh text, if not directly its trustworthiness. Indeed, as remarked above, since text

can be deleted for a number of reasons aside from bad quality, author reputation is most

likely a better indicator of trustworthiness than these figures indicate. We investigate a

134

method for computing the “reputation of text” that is based on the ideas presented here

in [1].

6.6 Conclusions

In this chapter, we propose a reputation system for authors to allow us to make an

educated guess at the quality of a revision when it is first made. This reputation system

is build atop notions developed as quality measures in Chapter 4, which are in turn built

atop a difference algorithm defined in Chapter 3.

To validate the effectiveness of the WikiTrust reputation system, we evaluate a

variety of measures. We find that short-lived text and short-lived edits are correlated

with low-reputation, and that manual examination of the edits by a small group of

reviewers has high agreement with the assessment by our reputation system. We also

compare favorably against a reputation based purely on the number of edits made by

authors (the so-called edit count reputation [22]), but without the same exposure to

simple reputation attacks such as breaking up a large edit into smaller edits.

135

Chapter 7

Vandalism Detection

7.1 Introduction

The Wikipedia is a shared resource of the global community, but it depends on the

continuing participation of volunteers to keep it current and relevant. Anyone can edit

the Wikipedia: this is both its strength and its weakness. The Wikipedia was initially

a side-project of Nupedia, to facilitate collaboration on content before entering a more

formal peer-review process [116]. The parent project languished in comparison to the

Wikipedia because of this difference in process. Today, companies such as Facebook

have recognized this strategy and incorporated “frictionless sharing” into their own

services. The price paid by the Wikipedia for this increased participation is the need

to guard against vandalism. Multiple studies have found that roughly 7% of edits are

vandalism [79, 78]. To combat the vandalism, a group of volunteers scan the list of

recent changes to catch obvious damage quickly [117].

This chapter updates the results published as [4], and includes material published in [3].

136

In the chapters leading to this one, we have detailed the technologies necessary to

build a content-driven reputation system for authors. We first constructed a difference

algorithm to compute the work done in a revision, doing so in a way which models

how users think about the units of language, while maintaining performance such that

the entire English Wikipedia could be evaluated in a tractable amount of time. We then

proposed two methods for evaluating the quality of the work done by the users in their

revisioning: text longevity and edit longevity. Finally, we use these quality measures

as the basis for rules in a reputation system. The output of this reputation system is an

estimate of the balance of past positive contributions over past negative contributions,

which we evaluate as a predictor of the future quality of revisions by the same author.

As part of the PAN 2010 Workshop on vandalism detection1, a competition was

organized to test vandalism detection systems with a single evaluation measure. Our

research group submitted a system based on features derived from WikiTrust [4], leav-

ing out the actual reputation scores due to our lack of historical reputation values for

authors. In this chapter, we revisit that work and update it by including the reputation

score of authors at the time of their edits.

7.2 Related Work

Wikipedia’s official statement of vandalism defines it as “a deliberate attempt to com-

promise the integrity of Wikipedia.”2 It is, of course, impossible to know the motiva-

tions of individuals, so this definition relies on human intelligence to determine vandal-

ism on a case-by-case basis — that is, “I know it when I see it,”3 but there is no precise

1http://www.webis.de/research/events/pan-10, Task 2
2http://en.wikipedia.org/wiki/Wikipedia:Vandalism

3Justice Potter Stewart in Jacobellis v. Ohio, 378 U.S. 184 (1964)

137

definition. Some researchers have undertaken the task of more formally defining a tax-

onomy of vandalism [107, 81, 18], but nearly all research on vandalism detection uses

one of a small number of (convenient) definitions for purposes of obtaining an anno-

tated corpus: manual annotation uses human intelligence to infer the intentions of

the editor [79, 18, 112, 78], reverts are notations by the community when it feels that

vandalism has taken place [95, 48, 8], rollbacks are disapprovals by Wikipedia Admin-

istrators [112], and edit quality generalizes the idea of measuring the sentiment of the

community [2, 29]. There is an obvious variation from manual to automatic annotation

in these choices, but there is another difference between them: external judgement from

outside the Wikipedia community, internal explicit judgement from within the commu-

nity, and internal implicit judgement based on actions by the community. Ultimately,

it is the community itself which decides what is vandalism (e.g., observe the stark con-

trast between the communities of Slashdot4 and Hacker News5), and this community

standard is likely to change over time (often described as the “signal-to-noise” ratio of

the community; examples of changing communities include USENET and Slashdot).

This argues strongly in favor of automated methods for measuring the reaction of the

community, and highlights the idea that vandalism detection is a specialized form of

trying to measure the “noise” in a community.

The earliest attempts at vandalism detection within the Wikipedia come directly

from the user community, and try to encode a human intuition of vandalism detection

into an expert system (some examples include [118, 120, 119, 15]). The largest dis-

advantage to this class of solutions is that building an expert system requires extensive

human labor to produce the manual annotation and analysis required to derive custom

4http://slashdot.org

5http://news.ycombinator.com

138

rules. Primarily, the rules developed are based on features of the actual content of the

edit rather than on metadata (e.g., an edit containing profanity is indicative of vandal-

ism).

The idea that the content reveals the intent of the author is a natural one, and has

been investigated by several different research groups (e.g., [79, 95, 29, 48, 18]). Cast-

ing the problem as a binary classification problem to be solved by machine learning,

Potthast et al. [79] manually identify and inspect 301 incidents of vandalism to gen-

erate a feature set based on metadata and content, and build a classifier using logistic

regression. Smets et al. [95] applies the “naive bayes” machine learning technique to

a bag-of-words model of the edit text. Chin et al. [18] delve deeper into the field of

natural language processing by constructing statistical language models of an article

from its revision history. (On the topic of manual annotation, they also describe how

supervised active learning can help the training process by requesting annotations for

examples which will make a significant difference to the algorithm.)

A different way of looking at the content approach is the realization that appro-

priate content somehow “belongs together,” and one way to measure that is through

compression of the successive revisions of an article [95, 48]. If inappropriate content

is added to the article, then the compression level is lower than it would be for text

which is similar to text already in the article. This is much more powerful than the

bag-of-words model, because phrases are significant and lead to better compression;

nonsensical sentences that include some key words will not compress as well. A sig-

nificant drawback of these compression techniques is that they require manipulation of

the content of a large number of revisions from the article being edited.

Content-based analysis has the burden of having to inspect potentially large edits,

but the alternative is to depend on the paucity of information available in the metadata

139

— many previous works have some small dependence on metadata features [79, 29, 8],

but only as far as it encoded some aspect of human intuition about vandalism. Drawing

inspiration from other areas of research, West et al. [112] published good results based

entirely on metadata (some of which is processed into reputations) that indicate there

is more relatedness between vandals than is readily apparent to the human eye. One

particularly interesting result was that using IP geolocation to cluster users led to better

predictions.

A systematic review and organization of features appears by Potthast et al. [80] as

part of the competition associated with the PAN 2010 Workshop on vandalism detec-

tion. Belani [8] includes several metrics for evaluating predictors, and Potthast et al.

take up the discussion with a thorough comparison of nine competitors using both the

area under the precision-recall curve and the area under the receiver operating charac-

teristic curve. Potthast et al. conclude their analysis by building a meta-classifier based

on the nine entries and discover that the result performs significantly better than any

single entry.

User reputation systems [127, 64, 2] have been proposed as an underlying technol-

ogy for vandalism prevention or detection, and the second place entry in the PAN 2010

competition was a system based on the WikiTrust project [4]. In that entry, the Wiki-

Trust user reputation system was not directly used due to not having a historical record

of the reputation values. The work presented in this chapter updates the results of [4]

by tracking the historical user reputation values and using that as an additional feature

to the machine learning algorithm.

The winner of the PAN 2010 competition, by a notable margin, was an entry by

Mola-Velasco [66] that extended the features originally proposed by Potthast et al. [79].

This entry was composed of 21 features (the largest in the competition) that compre-

140

hensively model the content of the edit, including features that rated use of language,

formatting of text, compressibility with earlier text, spelling, and the size of the edit.

A follow-up work to the PAN 2010 competition explores the complementary na-

ture of the features used by Mola-Velasco [66], WikiTrust [4], and West [112]. That

work improves on earlier results, and categorizes features according to the difficulty of

analysis [3].

7.3 Experiment

To test our user reputation system’s effectiveness, we evaluate its performance as part of

a vandalism detection system. The PAN-WVC-10 is a corpus of 32,439 edits manually

annotated by at least three people as part of an Amazon Mechanical Turk task [78]. Of

these edits, 2,394 (7.97%) were classified as vandalism.

Our goal is to incorporate the WikiTrust user reputations in building a model to

predict vandalized edits in the PAN-WVC-10 corpus. We modified the WikiTrust code

base to output the reputation score of each author over time, creating a chronology of

reputation scores. This revised code was used to process the English Wikipedia dump

of 30-Jan-2010, which includes the time period of edits from the PAN-WVC-10 corpus.

Using the timestamp of each edit in the PAN-WVC-10 corpus, we locate its po-

sition in the chronology and then work backwards to find the most recent reputation

score of the author that appears before the edit was made. These reputation scores are

then merged with the collection of features used by the WikiTrust submission in the

PAN 2010 competition [4], and used to build a model to predict whether an edit is van-

dalism. The analysis we present here considers only zero-delay vandalism detection;

that is, detecting vandalism using only features which are available at the moment an

edit is made.

141

Classifier and Features

Our vandalism detection tool uses the open source machine learning package Weka [45]

to build and evaluate a prediction model from our features. In the original PAN 2010

competition, we used an alternating decision tree (ADTree) classifier [4] because it per-

formed well and generates models that are easy to interpret. As part of our collaboration

in combining multiple vandalism detection systems [3], we evaluated the performance

of the WikiTrust features6 using a random forest classifier and discovered that the per-

formance was increased. Anonymous users have no reputation in the WikiTrust system,

and receive a reputation score of zero within the feature set.

As in [3], we use the random forest algorithm (set to create 500 trees) to build our

prediction model. We select a set of features based on the information that is readily

available within the pre-existing WikiTrust system, and only those which are available

at the instant an edit is made. The purpose of our experiment is to answer the question,

“does the WikiTrust reputation computation provide information about whether an edit

is vandalism?” In order to make that judgement, we use the same features chosen in [4]

and add the WikiTrust reputation score. The total set of features we used are:

• Author reputation [Reputation]. Vandalism tends to be performed predom-

inantly by anonymous or novice users, both of which have reputation zero in

the system. This is the only feature which is new, compared to the experiment

conducted in [4].

• Author is anonymous [Anon]. The Wikipedia software associates either a user-

name or an IP address with every edit. WikiTrust only tracks registered user-

names, and records every other edit as an anonymous edit. Vandalism is of-

6In addition to the zero-delay features described in [4], we also included a feature measuring the
length of the article for [3].

142

ten committed under the cover of anonymity, although many good edits are also

made anonymously.

• Time interval since the previous revision [Logtime_prev]. We compute the

quantity log(1+ t), where t is amount of time since the preceding revision of the

same article.

• Hour of day when revision was created [Hour_of_day]. We expect that the

time of day at which the revision was created might have some influence on

the frequency of vandalism. This did not have much influence in our previous

work [4], but a more sophisticated version proved to contain much informa-

tion [112].

• Delta [Delta]. This feature measures the edit distance d(vi, vi−1) between the

revision being examined and the previous revision in the same article.

• Revision comment length [Comment_len]. The length of the comment at-

tached to the revision. It seems unlikely that vandals would provide a comment,

so we included it as a trivial feature to compute.

• Previous text reputation histogram [P_prev_hist0 . . . P_prev_hist9]. When-

ever a revision is created, WikiTrust computes a separate reputation for each word

of the article, where the reputation is an integer in the interval 0, . . . , 9 (see [1] for

details of how we calculate text reputation). The reputation of a word indicates

how much the word has been revised by other reputable authors; in particular,

words that are inserted or moved by authors without reputation (including both

novice and anonymous authors) are assigned a reputation of zero. When the re-

vision is created, WikiTrust also computes a ten column histogram detailing how

143

many words of the revision have each of the ten possible reputation values, and

stores the histogram in the database in an entry associated with the revision. We

normalize the histogram (so that the columns sum to one) of the previous revision

in the same article history.

• Current text trust histogram [Hist0 . . . Hist9]. The values of the text trust

histogram for the current revision, without any normalization.

• Histogram difference [L_delta_hist0 . . . L_delta_hist9]. For each possible text

trust value i ∈ {0, . . . , 9}, we also computed the value of

log(1 + |h(i)− h−(i)|) · sign(h(i)− h−(i)), (7.1)

where h is the text trust histogram for the current revision, and h− is the text trust

histogram for the previous revision.

7.4 Evaluation

The results of the PAN 2010 competition [80] provide a benchmark for vandalism de-

tection systems. Although the receiver operating characteristic was used to judge the

competition, the analysis provided by Potthast et al. suggests that the precision-recall

curve provides better discriminatory power between models due to the larg class im-

balance between vandalized and regular edits. We evaluate our predictions using both

methods and place them into the context of other previously published results.

In Table 7.1, we present the confusion matrix as determined by the Weka package

during stratified ten-fold cross validation. Predicting that an edit is a regular contribu-

tion has a precision of 95.4% and recall of 98.4%; in predicting vandalism, our model

144

classified as
actual class Regular Vandalism

Regular 29428 467
Vandalism 1430 957

Table 7.1: The confusion matrix for predicting edits of the PAN-WVC-10 corpus as
regular edits or the work of vandals, during stratified ten-fold cross validation. Note
that there is a large class imbalance in the distribution of how edits are truly classified.

is only able to achieve a precision of 67.2% and recall of 40.1%. Figure 7.1 shows

the corresponding precision-recall curve of the resulting predictions. Calculating other

evaluation measures for classification problems, we get the following performance for

classifying edits as vandalism:

Positive Predictive Value = 67.2%

Sensitivity = 40.1%

Specificity = 98.4%

Accuracy = 94.1%

Receiver operating characteristic curves are typically used to evaluate the perfor-

mance of binary classification algorithms but they give optimistic results when there is

a large class imbalance [24], which we see in Table 7.2. The area under the precision-

recall curve gives another perspective, which is correlated with the ROC for the results

we present; the table includes values from other published results to provide a greater

context for the evaluation. From this data, we can answer our motivating question: does

including reputation as a feature result in better predictions? Adding revision metadata

features and using the random forest algorithm as a classifier results in a significant im-

145

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

WikiTrust+rep

Figure 7.1: Precision-Recall curve for a vandalism detection system based on features
from the WikiTrust system, including reputation. This extends the previous WikiTrust
results for immediate vandalism detection [4] by including the reputation of authors at
the time of each edit.

System AUC-PR AUC-ROC
PAN 2010 WikiTrust [80] 0.49263 0.90351
STiki (Metadata) [3] 0.52534 0.91520
PAN 2010 WikiTrust + metadata [3] 0.61047 0.93647
PAN 2010 WikiTrust + reputation 0.61152 0.94257
Mola-Velasco (NLP) [3] 0.73121 0.94567
Mola-Velasco + topic [67] 0.7541 n/a
PAN’10 Meta Detector [80] 0.77609 0.95689
M-V + WT + STiki [3] 0.81829 0.96902

Table 7.2: Comparison of various vandalism detection systems. The results of this
chapter are labeled “PAN 2010 WikiTrust + reputation,” to indicate that it builds on the
results collected for and presented in [80] by including the author reputation score at
the time of each edit.

146

provement over the original WikiTrust results [4] (shown in the third line of Table 7.2).

Replacing the revision metadata features with author reputation does even better still,

answering our motivating question in the affirmative.

The feature set in [4] includes a field indicating whether or not each edit is done by

an anonymous user. The inclusion of reputation in our current experiment results in an

increase in performance, from which we infer that the reputation system is providing

information about registered users and the experience they have accrued in editing the

Wikipedia.

7.5 Conclusions

Our experiment of this chapter starts with the data used by the WikiTrust submission

in the PAN 2010 vandalism detection task [4], and compares the performance achieved

in [80] with the performance achieved by adding author reputation as a feature. The

result is a notable increase in predictive ability, demonstrating the value of maintaining

author reputation scores as described in Chapter 6. The current system is limited to

tracking reputations only for registered users, but we are still able to achieve a precision

of 67.2% and recall of 40.1% during stratified ten-fold cross validation. Due to the large

class imbalance, there’s the possibility that the stratification leads to small training sets

that don’t cover the diversity of behaviors exhibited by vandals, limiting the predictive

ability of machine learning algorithms.

Although the results of our experiment were quite positive, there are several fur-

ther avenues that can be explored. West et al. [112] create reputations for several differ-

ent “entities” based on edit metadata (e.g., article reputation, category reputation, and

country reputation based on IP geolocation), but the entities and method of computing

reputation are completely different from the choices made within WikiTrust. The idea

147

of using geographic entities can be applied in WikiTrust to create “author reputations”

for anonymous authors, which we speculate will improve the performance further.

As shown in [3], the construction of features is complementary between WikiTrust

and STiki, and performs very well when combined, but the actual formulas employed

to compute reputation are ad hoc in nature. Is there some principle by which reputation

algorithms can be constructed to give better results? Or a set of design choices that

can be laid out [26] with known benefits and costs? How can we choose the scope of

entities to construct reputations for? We leave these questions open to pursue in future

works.

148

Chapter 8

Conclusion

8.1 Introduction

The Future is inevitable.

History abounds with examples when the time was ripe for a particular idea. Some

famous instances are the development of calculus (by Leibniz and Newton), the theory

of evolution (by Darwin and Wallace), and the invention of the integrated circuit (by

Kilby and Noyce).

When our group began work on this research into reputation systems for the Wiki-

pedia, it was focused on the question of how to tell “good guys” from “bad guys” on

the Wikipedia. Right away, the investigation expanded to edit quality, and the question

of what is quality in a collaborative work where there is no single guiding hand. We

then realized that our work was a way to quantify the consensus of a group of people.

This is a powerful view, not only because of the potential applications, but also because

now we know that it is possible to make such a measurement. Economists long ago dis-

covered “revealed preferences” as a way to surreptitiously measure the internal world

of the mind [88, 106], and this work widens that doorway.

149

It was some years later that I began work at Fujitsu Labs of America, using statis-

tics for word usage models and medical trials, when I came to a new realization. In

the flood of the data deluge (which Wikipedia analysis falls smack into the middle of),

statistical summaries are how we abstract that data and come to an “understanding” of

it. Our reputation system is a manifestation of our rough understanding of the kind of

useful Wikipedia content we aim to promote. And so I came to think that statistics will

be the most important field in the 21st century.

Most recently, our work on vandalism detection and my work with the emerging

Quantified Self group1 has led me to realize that data mining is the new face of statis-

tics; simple summarization of so much data is not useful, but data mining gives us the

power to pull at the different threads of individuality and cluster like with like. We go

from summaries to context-dependent probabilities.

Through a chance conversation with Bayesian statistician Owen Martin, these

thoughts gelled into the notion that reputation was not just some number of stars by

your name — it is the probability that you will do or say something, given the context

of your demographics (i.e., the background culture that helped shape you), your past

history and the present moment. That is, the models built by data mining algorithms are

a form of reputation constructed around the description of user behavior.2 This work is

just the first fumbling footsteps in that line of thinking.

1http://quantifiedself.com

2Reputation systems are both descriptive and prescriptive [2]. Machine learning algorithms compute
a description of past behavior but don’t appear to include a prescriptive component; the key to reconciling
these views is in the choice of what to predict. For example, predicting whether an edit will be “long
lived” naturally takes negative behaviors into account.

150

8.2 Summary of this Work

The creation of a collaborative repository of knowledge is one of those inevitable ideas;

we have been striving towards it for all of civilization. Our history is one of ever in-

creasing communication and collaboration in our ambition to master our environment,

from books and libraries, to the telephone and the Internet. The Wikipedia seems a

natural result of this history. And perhaps just as inevitably, there are people who seek

to mar the collective goals of the Wikipedia for their own gain and amusement.

The goal of our research was to develop a reputation system that could assist users

by flagging content added by users who did not have a good track record, making the

task of understanding the short-term history of an article easier to grasp with a glance.

In working towards that goal, this research makes the following contributions:

1. Two methods for determining the “quality” of a contribution. We evaluate these

methods (and the underlying difference algorithms) using the PAN 2010 vandal-

ism detection corpus, and find that both measures perform much better than a

random vandalism detector. Our text longevity measure uses authorship informa-

tion to compute the amount of contributed text and how it survives over future

revisions (its “rate of decay”). Our edit longevity measure uses edit distances to

estimate how much “work” of an edit goes to making an article more like a future

instance of the article.

2. A reputation system for authors, which adjusts the reputation of an author based

on quality feedback from later authors using the ideas of text and edit longevity.

Our evaluation shows that content by low-reputation authors is four times as

likely as the average to be short-lived, and that better precision-recall can be

achieved when used as part of a vandalism detection system.

151

During the course of developing and studying these primary contributions, we

have also had several smaller accomplishements with enabling other technologies based

on our reputation data:

text reputation Our group developed a reputation system for text [1], and created a

visualization tool that is available to users as a Firefox plugin.3

vandalism detection The work of Chapter 7 grew out of an entry into a vandalism

detection competition. That effort led to a joint publication [3] presenting re-

sults that outperformed previously published results. Our features have also been

incorporated into the STiki vandalism detection tool [124].

revision selection The Wikipedia Offline project published a CD-ROM of a selection

of Wikipedia content, which is distributed to school children across America.

Due to space constraints, the project only selects one revision for each article, but

manually reviews each choice to check for vandalism or questionable changes.

We developed a system based on our vandalism detection work (and coining the

term “historic vandalism detection”) to identify revisions that were likely to be

vandalism, narrowing the list of revisions that needed manual review.

As part of this work, we also investigated text difference algorithms and outlined

several design issues in how author attribution is determined in a collaborative doc-

ument. With respect to text difference algorithms, we ultimately discovered that the

difference algorithm did not have a very dramatic impact on the performance of the

edit longevity measure (shown in Tables 4.3 to 4.7); we would have achieved substan-

tially similar results simply using the fastest performing algorithm.

3https://addons.mozilla.org/en-US/firefox/addon/wikitrust/

152

Future Work

A critical part of the training received in graduate school is the ability to ask questions

that creatively expand on your existing work. There are a great number of questions

left to explore in the context of WikiTrust, some of which are described here.

category reputation This is probably the one idea that we hear the most from audi-

ences. A person can be an expert in one area but not another, but some people

don’t recognize their lack of expertise. By keeping track of separate reputa-

tion scores for every category, the system should be more able to predict the

longevity of an edit. It is worth noting that, within the Wikipedia community,

there are those editors which specialize in grammar and style rather than subject

areas, so that there is some extra work that must go into classifying the type of

edit (e.g., [35]). Note that the STiki project [112] includes “category reputation”,

but it tracks a reputation for each category globally; here we mean that reputa-

tion is multidimensional and an author can have differing reputations in different

categories.

reputation as probabilities This view of reputation clarifies how to best interpret the

results. It also introduces the significant question of how should probabilities be

adjusted as new information becomes available. Owen Martin’s work on estimat-

ing bug counts provides a nice example: you are trying to build a rocketship, and

you run many tests to try to uncover bugs [63]. If the test succeeds, your estimate

of the number of bugs (which is a form of reputation: “what is the probability that

the system will fail?”) goes down. If the test fails, how do revise your estimate

of the number of bugs? And once the engineers have fixed the problem, can you

be sure they haven’t introduced new problems?

153

contribution types Some users contribute text while others perform maintenance du-

ties, which we were able to identify by comparing different metrics in Chapter 5.

Categorizing contributions by these metrics can help in the awarding of barnstars,

but also might be useful as additional features in a vandalism detection system.

match quality Our greedy text differencing algorithm uses a match quality function

to prioritize which matches are preferable according to the criteria described in

Chapter 3. The evaluation in Chapter 4 suggests that as long as length is the pri-

mary discriminant, there is not too much difference between the different quality

functions. The evaluation used is one based on the resulting predictive ability of

edit quality, but is there some better way to evaluate a difference algorithm whose

aim is to model the human view of a text edit?

authorship We devised an algorithm for determining the “authorship” of words in

revisioned documents.4 This algorithm is a refinement of existing difference al-

gorithms already well-known in the literature, but we additionally outline some

of the design considerations for this particular application. As described in the

concluding remarks of Chapter 3, there are further refinements to be considered

in how to assign authorship in a collaborative work. Identifying common idioms

in the language (e.g., through the use of tf-idf [49]) and common phrases within a

topic area are two cases where authorship needs to be more carefully considered.

The greatest challenge here is determining a suitable evaluation for comparing

solutions.

4This work is being explored further by the German chapter of the Wikipedia:
http://de.wikipedia.org/wiki/Benutzer:NetAction/WikiTrust

154

8.3 Thoughts on Reputation

What is reputation? We know that it is a value, because your reputation goes up and

down. It can be good or bad.

What is less obvious is that reputation is multidimensional. Some writers have a

good reputation for writing engaging essays (e.g., Malcolm Gladwell), and some have a

good reputation for writing good children’s fiction (e.g., J. K. Rowling), but most of us

would be doubtful if Gladwell and Rowling were to swap careers. Interestingly, we also

relate reputation between dimensions — for example, someone with a good reputation

for civic involvement and hard work we also presume to have a high reputation in

regards to his behavior at home (for example, marital fidelity).

After so many years of working with reputation, I have come to believe that inter-

nally we use reputation as something like a probability (as in reliability theory). That

is, all other things being equal, reputation is the chance that you will meet some stan-

dard of performance in a situation that calls for it. The trick is that things are never

“equal” from situation to situation, so that there are unknown components of a reputa-

tion that we construct from what we know of a person’s background and culture. The

most direct example of this is racial stereotyping applied to a stranger.

Although reputation might lead us to jump to incorrect conclusions about some-

one based on limited information, they also help us to filter and sort through the over-

whelming amount of information we are presented with each day. A modern appli-

cation of reputation is in sorting search results, as Google does with their PageRank

algorithm [77]. We see the same sort of technology being used by companies such as

Facebook to provide a personalized experience to users, in the form of automatic selec-

tion of stories to highlight or better targeting of advertising. We are only at the tip of the

iceberg for how these reputation systems can improve the quality of information we are

155

presented with. Imagine if these same ideas could be applied to other problems [26],

such as peer review of academic papers to promote the discovery and discussion of

non-mainstream works [6], or job candidate evaluation through references to discover

the hidden context that each reference brings to their evaluation via their social graph

and job history!

156

Appendices

157

Appendix A

Basic Difference Implementation

Perl module WikiTrust::BasicDiff presents the bare essence of how our differencing

algorithm works.

package W i k i T r u s t : : B a s i c D i f f ;
use s t r i c t ;
use w a r n i n g s ;

use c o n s t a n t FASTER => 1 ;

use W i k i T r u s t : : Tuple ;
use W i k i T r u s t : : P r i o r i t y Q ;
use L i s t : : U t i l qw (min) ;
use Carp ;

our $VERSION = ’ 0 . 0 1 ’ ;

sub new {
my $ c l a s s = s h i f t @_;
my $ t h i s = b l e s s {

q u a l i t y => \& m a t c h _ q u a l i t y ,
d s t => [] ,
minMatch => 3 ,

} , $ c l a s s ;
$ t h i s −> i n i t () ;

158

re turn $ t h i s ;
}

sub i n i t {
my $ t h i s = s h i f t @_;
$ t h i s −>{heap } = W i k i T r u s t : : P r i o r i t y Q −>new () ;
$ t h i s −>{m a t c h e d _ d s t } = [] ;

}

sub se t_minMatch {
my $ t h i s = s h i f t @_;
$ t h i s −>{minMatch } = s h i f t @_;

}

Parse a s t r i n g i n t o a l i s t o f words .
For t h i s demo , we o n l y s p l i t on w h i t e s p a c e ,
b u t t h e f u l l Ocaml v e r s i o n i n t e r p r e t s w i k i
markup t o b e t t e r d i s t i n g u i s h " words " .
sub p a r s e {

my ($ t h i s , $ s t r) = @_;
c o n f e s s "No s t r i n g d e f i n e d " i f ! d e f i n e d $ s t r ;
my @words = s p l i t (/ \ s + / , $ s t r) ;
re turn \ @words ;

}

S e t t h e d e s t i n a t i o n s t r i n g t h a t we are
t r y i n g t o t r a n s f o r m i n t o .
sub t a r g e t {

my $ t h i s = s h i f t @_;
my $ s t r = s h i f t @_;
$ s t r = $ t h i s −>p a r s e ($ s t r , @_) i f ! r e f $ s t r ;
$ t h i s −>{ d s t } = $ s t r ;
re turn $ t h i s −>{ d s t } ;

}

sub m a t c h _ q u a l i t y {
my ($chunk , $k , $i1 , $l1 , $i2 , $ l 2) = @_;
my $pos1 = (2* $ i 1 + $k) / $ l 1 ;
my $pos2 = (2* $ i 2 + $k) / $ l 2 ;
t h e c l o s e r t o zero , t h e b e t t e r
my $q = abs ($pos1 − $pos2) ;
The Heap : : P r i o r i t y module works much f a s t e r
i f we use f l o a t s i n s t e a d o f t u p l e s t o s o r t

159

t h e e n t r i e s . . .
re turn (−$chunk *10000) + $k − $q i f FASTER ;
re turn W i k i T r u s t : : Tuple−>new(−$chunk , $k , −$q) ;

}

C re a t e a hash t a b l e i n d e x e d by word ,
which g i v e s t h e l i s t o f l o c a t i o n s where
t h e word appears i n t h e i n p u t l i s t .
sub make_index {

my ($ t h i s , $words) = @_;
my $ idx = { } ;
f o r (my $ i = 0 ; $ i < @$words−1; $ i ++) {

my $w1 = $words−>[$ i] ;
my $w2 = $words−>[$ i + 1] ;
$idx−>{$w1 , $w2} = [] i f ! e x i s t s $idx−>{$w1 , $w2 } ;
push @{ $idx−>{$w1 , $w2} } , $ i ;

}
re turn $ idx ;

}

sub compute_heap {
my ($ t h i s , $chunk , $w1 ,

$sk ipmatch , $eachk , $maxk) = @_;
my $w2 = $ t h i s −>{ d s t } ;
my $ l 1 = s c a l a r (@$w1) ;
my $ l 2 = s c a l a r (@$w2) ;
my $ idx = $ t h i s −>make_index ($w1) ;
my $prev_ma tches = [] ;
f o r (my $ i 2 = 0 ; $ i 2 < @$w2−1; $ i 2 ++) {

For e v e r y unmatched word i n w2 ,
f i n d t h e l i s t o f matches i n w1
next i f $ t h i s −>{m a t c h e d _ d s t }−>[$ i 2] ;
my $matches = $idx−>{ $w2−>[$ i 2] , $w2−>[$ i 2 +1] } | | [] ;
foreach my $ i 1 (@$matches) {

Do we want t o s k i p t h i s match f o r some re aso n ?
next i f $sk ipmatch −>($chunk , $i1 , $i2 , $p rev_ma tches) ;
f o r each match , compute a l l t h e l o n g e r s t r i n g s
t h a t match s t a r t i n g a t t h i s p o i n t .
Note t h a t we a l r e a d y know $k == 0 i s a match
my $k = 0 ;
do {

f o r each p a r t i a l match , c a l l $eachk
$eachk−>($chunk , $i1 , $l1 , $i2 , $l2 , $k + 1) ;
$k ++;

160

} whi le ($ i 1 + $k < $ l 1 && $ i 2 + $k < $ l 2
&& ($w1−>[$ i 1 +$k] eq $w2−>[$ i 2 +$k])) ;

And f i n a l l y , c a l l $maxk f o r t h e maximal match .
Note t h a t $eachk w i l l a l s o have been c a l l e d f o r
t h i s same l e n g t h o f match .
$maxk−>($chunk , $i1 , $l1 , $i2 , $l2 , $k) ;

}
$p rev_ma tches = $matches ;

}
}

Given t h e s o u r c e s t r i n g we are t r y i n g t o t r a n s f o r m from ,
b u i l d t h e heap o f matches t o t h e d e s t i n a t i o n s t r i n g .
sub b u i l d _ h e a p {

my ($ t h i s , $chunk , $ s r c) = @_;
$ s r c = $ t h i s −>p a r s e ($s rc , @_) i f ! r e f $ s r c ;
$ t h i s −>compute_heap ($chunk , $s rc ,

sub { re turn 0 ; } , # n e v e r s k i p match
sub {

my ($chunk , $i1 , $l1 , $i2 , $l2 , $k) = @_;
re turn i f $k < $ t h i s −>{minMatch } ;
my $q = $ t h i s −>{ q u a l i t y }−>($chunk , $k ,

$i1 , $l1 , $ i2 , $ l 2) ;
$ t h i s −>{heap}−> i n s e r t ($q ,

W i k i T r u s t : : Tuple−>new ($chunk , $k , $i1 , $ i 2)) ;
} ,
sub { }

) ;
}
r e t u r n a r e g i o n o f [s t a r t , end) which
has $ t e s t −>() f a l s e f o r t h e whole i n t e r v a l
sub s c a n _ a n d _ t e s t {

my ($ t h i s , $ len , $ t e s t) = @_;
re turn undef i f $ l e n <= 0 ;
my $ s t a r t = 0 ;
whi le ($ s t a r t < $ l e n && $ t e s t −>($ s t a r t)) { $ s t a r t ++; }
re turn undef i f $ s t a r t >= $ l e n ;
my $end = $ s t a r t +1 ;
whi le ($end < $ l e n && ! $ t e s t −>($end)) { $end ++; }
re turn ($ s t a r t , $end) ;

}

sub p r o c e s s _ b e s t _ m a t c h e s {
my ($ t h i s , $mul t ima tch , $chunks , $chunkmatch) = @_;

161

my @ e d i t S c r i p t ;

whi le (my $m = $ t h i s −>{heap}−>pop ()) {
my ($chunk , $k , $i1 , $ i 2) = @$m;
my $matched1 = $chunkmatch−>[$chunk] ;
have any o f t h e s e words a l r e a d y been matched ?
my ($ s t a r t , $end) = $ t h i s −>s c a n _ a n d _ t e s t ($k ,

sub { $matched1−>[$ i 1 +$_ [0]]
| | $ t h i s −>{m a t c h e d _ d s t }−>[$ i 2 +$_ [0]] }) ;

next i f ! d e f i n e d $ s t a r t ; # whole t h i n g i s matched
i f ($end − $ s t a r t == $k) {

t h e whole s e q u e n c e i s s t i l l unmatched
my $match =

W i k i T r u s t : : Tuple−>new (’Mov ’ , $chunk , $i1 , $i2 , $k) ;
push @ e d i t S c r i p t , $match ;
and mark i t matched
f o r (my $ i = $ s t a r t ; $ i < $end ; $ i ++) {

$matched1−>[$ i 1 + $ i] = $match
i f ! $ m u l t i m a t c h ;

$ t h i s −>{m a t c h e d _ d s t }−>[$ i 2 + $ i] = $match ;
}

}
}
re turn \ @ e d i t S c r i p t ;

}

sub cover_unmatched {
my ($ t h i s , $matched , $l , $ e d i t S c r i p t , $mode) = @_;

my $ i = 0 ;
whi le (1) {

my ($ s t a r t , $end) = $ t h i s −>s c a n _ a n d _ t e s t ($ l ,
sub { $matched−>[$ i +$_ [0]] }) ;

l a s t i f ! d e f i n e d $ s t a r t ;
push @ $ e d i t S c r i p t ,

W i k i T r u s t : : Tuple−>new ($mode , $ i + $ s t a r t , $end−$ s t a r t) ;
$ i += $end ;
$ l −= $end ;

}
}

sub r e p l a c e m e n t _ s c a n {
my ($ t h i s , $ e d i t S c r i p t , $matched , $ len , $chunks) = @_;

162

}

Compute t h e e d i t s c r i p t t o t r a n s f o r m s r c i n t o d s t .
sub e d i t _ d i f f {

my $ t h i s = s h i f t @_;
my $ s r c = s h i f t @_;
$ s r c = $ t h i s −>p a r s e ($s rc , @_) i f ! r e f $ s r c ;

$ t h i s −> i n i t () ;
$ t h i s −>b u i l d _ h e a p (0 , $ s r c) ;
my $matched_chunks = [[]] ;
$matched_chunks −>[0]−>[s c a l a r (@$src)−1] = undef ;
my $ e d i t S c r i p t = $ t h i s −>p r o c e s s _ b e s t _ m a t c h e s (0 , [$ s r c] ,

$matched_chunks) ;
$ t h i s −>r e p l a c e m e n t _ s c a n ($ e d i t S c r i p t , $ t h i s −>{m a t c h e d _ d s t } ,

s c a l a r (@{ $ t h i s −>{ d s t } }) , $matched_chunks) ;
$ t h i s −>cover_unmatched ($matched_chunks − >[0] ,

s c a l a r (@$src) , $ e d i t S c r i p t , ’ Del ’) ;
$ t h i s −>cover_unmatched ($ t h i s −>{m a t c h e d _ d s t } ,

s c a l a r (@{ $ t h i s −>{ d s t } }) , $ e d i t S c r i p t , ’ I n s ’) ;
re turn $ e d i t S c r i p t ;

}

1 ;

163

Appendix B

Faster Difference Implementation

Perl module WikiTrust::FasterDiff presents a modification to WikiTrust::BasicDiff

which computes only the longest matches and their residuals.

package W i k i T r u s t : : F a s t e r D i f f ;
A f a s t e r d i f f , which assumes t h a t l o n g e r
matches are a lways p r i o r i t i z e d b e f o r e
s h o r t e r matches .
use s t r i c t ;
use w a r n i n g s ;

use W i k i T r u s t : : Tuple ;
use W i k i T r u s t : : B a s i c D i f f ;

S e t u p our b a s e c l a s s ; t h i s f i l e o n l y has o v e r r i d e s
our @ISA = qw (W i k i T r u s t : : B a s i c D i f f) ;

Given t h e s o u r c e s t r i n g we are t r y i n g t o t r a n s f o r m from ,
b u i l d t h e heap o f matches t o t h e d e s t i n a t i o n s t r i n g .
sub b u i l d _ h e a p {

my $ t h i s = s h i f t @_;
my $chunk = s h i f t @_;
my $ s r c = s h i f t @_;
$ s r c = $ t h i s −>p a r s e ($s rc , @_) i f ! r e f $ s r c ;
my %matched ;

164

$ t h i s −>compute_heap ($chunk , $s rc ,
sub {

my ($chunk , $i1 , $i2 , $p rev_ma tches) = @_;
The ’ prev match ’ o p t i m i z a t i o n :
r e t u r n (grep { $ i 1 − 1 == $_ } @$prev_matches) > 0;
re turn $matched { $chunk , $i1 , $ i 2 } ;

} ,
sub {

I f we want t o keep s m a l l matches , t h e n we
can mark t h e match r i g h t away . For W i k i T r u s t ,
we don ’ t want s m a l l matches , so t h i s f u n c t i o n
does n o t h i n g .
OLD CODE:
my ($chunk , $i1 , $ l1 , $i2 , $l2 , $k) = @_;
remember t h a t $k i s t h e l e n g t h o f t h e match
$matched { $chunk , $ i 1+$k−1, $ i 2+$k−1} = 1;

} ,
sub {

my ($chunk , $i1 , $l1 , $i2 , $l2 , $k) = @_;
s k i p s h o r t matches
re turn i f $k < $ t h i s −>{minMatch } ;

mark t h e p o s i t i o n s as matched ; n o t n e c e s s a r y f o r
t h e ’ prev matches ’ o p t i m i z a t i o n
foreach my $ i (0 . . $k−1) {

$matched { $chunk , $ i 1 +$i , $ i 2 + $ i } = 1 ;
}

my $qfunc = $ t h i s −>{ q u a l i t y } ;
my $q = $qfunc−>($chunk , $k , $i1 , $l1 , $i2 , $ l 2) ;
$ t h i s −>{heap}−> i n s e r t ($q ,

W i k i T r u s t : : Tuple−>new ($chunk , $k , $i1 , $ i 2)) ;
}

) ;
}

T h i s i s e x a c t l y t h e same as i n t h e p a r e n t c l a s s , e x c e p t
f o r when a r e g i o n has a l r e a d y been p r e v i o u s l y matched .
In t h a t case , we c o n s t r u c t t h e r e s i d u a l matches and add
them t o t h e heap . For t h i s t o work p r o p e r l y , we must have
t h a t t h e q u a l i t y measure p u t s l o n g e r matches b e f o r e
s h o r t e r matches .
sub p r o c e s s _ b e s t _ m a t c h e s {

my ($ t h i s , $mul t ima tch , $chunks , $chunkmatch) = @_;

165

my $ l 2 = @{ $ t h i s −>{ d s t } } ;

my @ e d i t S c r i p t ;

whi le (my $m = $ t h i s −>{heap}−>pop ()) {
my ($chunk , $k , $i1 , $ i 2) = @$m;
my $w1 = $chunks−>[$chunk] ;
my $matched1 = $chunkmatch−>[$chunk] ;
my $ l 1 = @$w1;
have any o f t h e s e words a l r e a d y been matched ?
my ($ s t a r t , $end) = $ t h i s −>s c a n _ a n d _ t e s t ($k ,

sub { $matched1−>[$ i 1 +$_ [0]]
| | $ t h i s −>{m a t c h e d _ d s t }−>[$ i 2 +$_ [0]] }) ;

next i f ! d e f i n e d $ s t a r t ; # whole t h i n g i s matched
i f ($end − $ s t a r t == $k) {

t h e whole s e q u e n c e i s s t i l l unmatched
my $match = W i k i T r u s t : : Tuple−>new (

’Mov ’ , $chunk , $i1 , $ i2 , $k
) ;
push @ e d i t S c r i p t , $match ;
and mark i t matched
f o r (my $ i = $ s t a r t ; $ i < $end ; $ i ++) {

$matched1−>[$ i 1 + $ i] = $match
i f ! $ m u l t i m a t c h ;

$ t h i s −>{m a t c h e d _ d s t }−>[$ i 2 + $ i] = $match ;
}

} e l s e {
found an unmatched s u b r e g i o n , b u t i t ’ s
l e s s than t h e s i z e we were hop ing f o r .
So we must add t h e s m a l l e r matches back
i n t o t h e heap . . . s t a r t i n g w i t h t h e match
we j u s t found .
do {

my $newK = $end − $ s t a r t ;
s k i p too−s h o r t matches
i f ($newK >= $ t h i s −>{minMatch }) {

my $qfunc = $ t h i s −>{ q u a l i t y } ;
my $q = $qfunc−>($chunk , $newK ,

$ i 1 + $ s t a r t , $ l1 , $ i 2 + $ s t a r t , $ l 2) ;
$ t h i s −>{heap}−> i n s e r t ($q , W i k i T r u s t : : Tuple−>new (

$chunk , $newK , $ i 1 + $ s t a r t , $ i 2 + $ s t a r t
)) ;

}

166

$ i 1 += $end ;
$ i 2 += $end ;
$k −= $end ;
($ s t a r t , $end) = $ t h i s −>s c a n _ a n d _ t e s t ($k ,

sub { $matched1−>[$ i 1 +$_ [0]]
| | $ t h i s −>{m a t c h e d _ d s t }−>[$ i 2 +$_ [0]] }) ;

} whi le (d e f i n e d $ s t a r t) ;
}

}
re turn \ @ e d i t S c r i p t ;

}

1 ;

167

Appendix C

Basic Text Tracking Implementation

Perl module WikiTrust::BasicTextTracking presents the bare essence of text tracking.

package W i k i T r u s t : : B a s i c T e x t T r a c k i n g ;
use s t r i c t ;
use w a r n i n g s ;

use c o n s t a n t DEBUG => 0 ;

use W i k i T r u s t : : F a s t e r D i f f ;
use W i k i T r u s t : : Word ;
use Carp ;

our @ISA = qw (W i k i T r u s t : : F a s t e r D i f f) ;

sub new {
my $ c l a s s = s h i f t @_;
my $ s e l f = W i k i T r u s t : : F a s t e r D i f f −>new (@_) ;
$ s e l f −>{minMatch } = 3 ;
b l e s s $ s e l f , $ c l a s s ;

}

When we p a r s e a s t r i n g i n t o words , we a c t u a l l y want
t o t a g each word w i t h a r e v i d . La ter , we w i l l a s s i g n
p ro pe r r e v i d s t o each word .
sub p a r s e {

168

my ($ t h i s , $ s t r , $ r e v i d) = @_;
my $words = $ t h i s −>SUPER : : p a r s e ($ s t r) ;
my @words = map { W i k i T r u s t : : Word−>new ($_ , $ r e v i d) }

@$words ;
re turn \ @words ;

}

sub f i x _ a u t h o r {
my ($ t h i s , $ s c r i p t , $ p r e v r e v s) = @_;
foreach my $match (@ $ s c r i p t) {

my $mode = s h i f t @$match ;
c o n f e s s " Bad mode : $mode " i f $mode ne ’Mov ’ ;
my ($chunk , $i1 , $i2 , $ l e n) = @$match ;
r e j e c t s m a l l matches
code : n e x t i f $ l e n < $ t h i s −>{minMatch } ;
f o r (my $ i = 0 ; $ i < $ l e n ; $ i ++) {

$ t h i s −>{ d s t }−>[$ i 2 + $ i]−>[1] =
$ p r e v r e v s −>[$chunk]−>[$ i 1 + $ i]− >[1] ;

}
}

}

sub t r a c k _ t e x t {
my ($ t h i s , $ p r e v r e v s) = @_;
$ t h i s −> i n i t () ;
my $chunk_matches = [] ;

B u i l d a heap o f match ing chunks f o r a l l t h e p r e v i o u s r e v s .
f o r (my $chunk = 0 ; $chunk < @$prevrevs ; $chunk ++) {

$chunk_matches −>[$chunk] = [] ;
my $ s r c = $ p r e v r e v s −>[$chunk] ;
$ t h i s −>b u i l d _ h e a p ($chunk , $ s r c) ;

}

And t h e n f i n d t h e b e s t matches
my $ e d i t S c r i p t = $ t h i s −>p r o c e s s _ b e s t _ m a t c h e s (1 ,

$ p r e v r e v s , $chunk_matches) ;
$ t h i s −> f i x _ a u t h o r ($ e d i t S c r i p t , $ p r e v r e v s) ;

re turn $ t h i s −>{ d s t } ;
}

1 ;

169

Appendix D

Faster Text Tracking Implementation

Perl module WikiTrust::FasterTextTracking presents a modification that assumes the

quality function always prefers matches in more recent chunks.

package W i k i T r u s t : : F a s t e r T e x t T r a c k i n g ;
Assume t h a t more r e c e n t chunks are a lways
p r e f e r r e d by t h e q u a l i t y f u n c t i o n .
use s t r i c t ;
use w a r n i n g s ;

use W i k i T r u s t : : B a s i c T e x t T r a c k i n g ;

our @ISA = qw (W i k i T r u s t : : B a s i c T e x t T r a c k i n g) ;

Compute t h e e d i t s c r i p t t o t r a n s f o r m s r c i n t o d s t . But we
o n l y care abou t mov o p e r a t i o n s , so don ’ t compute t h e INS
and DEL o p e r a t i o n s .
sub e d i t _ d i f f {

my ($ t h i s , $chunk , $ s r c) = @_;
Don ’ t c a l l $ t h i s −> i n i t () because we want t o m a i n t a i n t h e
m a t c h e d _ d s t data , which i s t r a c k i n g which words have
a l r e a d y been matched i n t h e t a r g e t s t r i n g . The heap
i t s e l f w i l l a l r e a d y be empty , because
$ t h i s −>p r o c e s s _ b e s t _ m a t c h e s () a lways d e a l s w i t h t h e
e n t i r e heap .

170

$ t h i s −>b u i l d _ h e a p ($chunk , $ s r c) ;
my $ e d i t S c r i p t = $ t h i s −>p r o c e s s _ b e s t _ m a t c h e s (

1 , $ s r c , []
) ;
re turn $ e d i t S c r i p t ;

}

sub t r a c k _ t e x t {
my ($ t h i s , $ p r e v r e v s) = @_;

$ t h i s −> i n i t () ;
S i n c e we p r e f e r chunks w i t h more l i v e n e s s , we do
matches i n a s e r i a l f a s h i o n
f o r (my $chunk = 0 ; $chunk < @$prevrevs ; $chunk ++) {

my $ s r c = $ p r e v r e v s −>[$chunk] ;
my $ s c r i p t = $ t h i s −> e d i t _ d i f f ($chunk , $ s r c) ;
$ t h i s −> f i x _ a u t h o r ($ s c r i p t , $ p r e v r e v s) ;

}
re turn $ t h i s −>{ d s t } ;

}

1 ;

171

Appendix E

OCaml Diff Benchmarking Code

OCaml language version of the text differencing algorithms used in the evaluation sec-

tion of Chapters 3 and 4.

TYPE_CONV_PATH "UCSC_WIKI_RESEARCH"

open E d i t l i s t ; ;

type word = s t r i n g
type h e a p _ e l = i n t * i n t * i n t
type i n d e x _ t = ((word * word) , i n t) Hash tb l_bounded . t

e x c e p t i o n Heap_Too_Large

(* * T h i s i s t h e maximum number o f matches f o r a
* word p a i r t h a t we t r a c k . I f a word p a i r has
* more than t h i s number o f matches , we d i s r e g a r d
* them a l l , as we c l a s s i f y t h e word p a i r as n o t
* s u f f i c i e n t l y d i s t i n c t i v e .
*)

l e t max_matches = 50
l e t max_heaplen = r e f 1000
l e t thumper_min_copy_len = 3

172

module Heap = Coda . P r i o r i t y Q u e u e
type m a t c h _ q u a l i t y _ t = Coda . m a t c h _ q u a l i t y _ t

(* Q u a l i t y f u n c t i o n s f o r matches .
* l i s t h e l e n g t h o f t h e match .
* l e n 1 and l e n 2 are t h e two l e n g t h s (i n number o f
* words) o f t h e p i e c e s b e i n g compared .
* i 1 and i 2 are t h e two s t a r t i n g p o i n t s .
* c h 1 _ i d x i s t h e chunk number .
* The lower t h e q u a l i t y , t h e more t h e match i s
* c o n s i d e r e d , as e l e m e n t s are * removed s t a r t i n g
* from t h e l o w e s t from t h e p r i o r i t y queue .
*)

l e t q u a l i t y _ l i v e (l : i n t) (i 1 : i n t) (l e n 1 : i n t)
(i 2 : i n t) (l e n 2 : i n t) (ch1_ idx : i n t)

: m a t c h _ q u a l i t y _ t =
l e t i1 ’ = (f l o a t _ o f _ i n t (2 * i 1 + l)) / . 2 . in
l e t l en1 ’ = f l o a t _ o f _ i n t l e n 1 in
l e t i2 ’ = (f l o a t _ o f _ i n t (2 * i 2 + l)) / . 2 . in
l e t l en2 ’ = f l o a t _ o f _ i n t l e n 2 in
l e t q = a b s _ f l o a t ((i1 ’ / . l en1 ’) −. (i2 ’ / . l en2 ’))
in
(− l , −ch1_idx , q)

l e t q u a l i t y _ 1 (l : i n t) (i 1 : i n t) (l e n 1 : i n t)
(i 2 : i n t) (l e n 2 : i n t) (ch1_ idx : i n t)

: m a t c h _ q u a l i t y _ t = (− l , ch1_idx , 0 . 0)

l e t q u a l i t y _ 2 (l : i n t) (i 1 : i n t) (l e n 1 : i n t)
(i 2 : i n t) (l e n 2 : i n t) (ch1_ idx : i n t)

: m a t c h _ q u a l i t y _ t = (− l , −ch1_idx , 0 . 0)

l e t q u a l i t y _ 3 (l : i n t) (i 1 : i n t) (l e n 1 : i n t)
(i 2 : i n t) (l e n 2 : i n t) (ch1_ idx : i n t)

: m a t c h _ q u a l i t y _ t = (ch1_idx , −l , 0 . 0)

l e t q u a l i t y _ 4 (l : i n t) (i 1 : i n t) (l e n 1 : i n t)
(i 2 : i n t) (l e n 2 : i n t) (ch1_ idx : i n t)

: m a t c h _ q u a l i t y _ t = (−ch1_idx , −l , 0 . 0)

l e t q u a l i t y _ 5 (l : i n t) (i 1 : i n t) (l e n 1 : i n t)
(i 2 : i n t) (l e n 2 : i n t) (ch1_ idx : i n t)

: m a t c h _ q u a l i t y _ t =

173

l e t i1 ’ = (f l o a t _ o f _ i n t (2 * i 1 + l)) / . 2 . in
l e t l en1 ’ = f l o a t _ o f _ i n t l e n 1 in
l e t i2 ’ = (f l o a t _ o f _ i n t (2 * i 2 + l)) / . 2 . in
l e t l en2 ’ = f l o a t _ o f _ i n t l e n 2 in
l e t l ’ = f l o a t _ o f _ i n t l in
l e t c o r r e c t i o n = 0 . 3 * . a b s _ f l o a t ((i1 ’ / . l en1 ’)

−. (i2 ’ / . l en2 ’)) in
l e t q = l ’ / . (min len1 ’ len2 ’) −. c o r r e c t i o n
in
(0 , −ch1_idx , 0 . 0 −. q)

l e t q u a l i t y _ 6 (l : i n t) (i 1 : i n t) (l e n 1 : i n t)
(i 2 : i n t) (l e n 2 : i n t) (ch1_ idx : i n t)

: m a t c h _ q u a l i t y _ t =
l e t i1 ’ = (f l o a t _ o f _ i n t (2 * i 1 + l)) / . 2 . in
l e t l en1 ’ = f l o a t _ o f _ i n t l e n 1 in
l e t i2 ’ = (f l o a t _ o f _ i n t (2 * i 2 + l)) / . 2 . in
l e t l en2 ’ = f l o a t _ o f _ i n t l e n 2 in
l e t l ’ = f l o a t _ o f _ i n t l in
l e t c o r r e c t i o n = 0 . 3 * . a b s _ f l o a t ((i1 ’ / . l en1 ’)

−. (i2 ’ / . l en2 ’)) in
l e t q = l ’ / . (min len1 ’ len2 ’) −. c o r r e c t i o n
in
(− l , −ch1_idx , 0 . 0 −. q)

l e t q u a l i t y _ 7 (l : i n t) (i 1 : i n t) (l e n 1 : i n t)
(i 2 : i n t) (l e n 2 : i n t) (ch1_ idx : i n t)

: m a t c h _ q u a l i t y _ t =
l e t i1 ’ = (f l o a t _ o f _ i n t (2 * i 1 + l)) / . 2 . in
l e t l en1 ’ = f l o a t _ o f _ i n t l e n 1 in
l e t i2 ’ = (f l o a t _ o f _ i n t (2 * i 2 + l)) / . 2 . in
l e t l en2 ’ = f l o a t _ o f _ i n t l e n 2 in
l e t l ’ = f l o a t _ o f _ i n t l in
l e t c o r r e c t i o n = 0 . 3 * . a b s _ f l o a t ((i1 ’ / . l en1 ’)

−. (i2 ’ / . l en2 ’)) in
l e t q = l ’ / . (min len1 ’ len2 ’) −. c o r r e c t i o n
in
(− l , ch1_idx , 0 . 0 −. q)

l e t q u a l i t y _ 8 (l : i n t) (i 1 : i n t) (l e n 1 : i n t)
(i 2 : i n t) (l e n 2 : i n t) (ch1_ idx : i n t)

: m a t c h _ q u a l i t y _ t
= q u a l i t y _ l i v e l i 1 l e n 1 i 2 l e n 2 ch1_ idx

174

l e t q u a l i t y _ 9 (l : i n t) (i 1 : i n t) (l e n 1 : i n t)
(i 2 : i n t) (l e n 2 : i n t) (ch1_ idx : i n t)

: m a t c h _ q u a l i t y _ t =
l e t i1 ’ = (f l o a t _ o f _ i n t (2 * i 1 + l)) / . 2 . in
l e t l en1 ’ = f l o a t _ o f _ i n t l e n 1 in
l e t i2 ’ = (f l o a t _ o f _ i n t (2 * i 2 + l)) / . 2 . in
l e t l en2 ’ = f l o a t _ o f _ i n t l e n 2 in
l e t q = a b s _ f l o a t ((i1 ’ / . l en1 ’) −. (i2 ’ / . l en2 ’))
in
(− l , ch1_idx , q)

l e t m _ q u a l i t y _ f u n c = r e f q u a l i t y _ l i v e

l e t s e t _ m a t c h _ q u a l i t y (i : i n t) =
i f i = 0 then m _ q u a l i t y _ f u n c := q u a l i t y _ l i v e
e l s e i f i = 1 then m _ q u a l i t y _ f u n c := q u a l i t y _ 1
e l s e i f i = 2 then m _ q u a l i t y _ f u n c := q u a l i t y _ 2
e l s e i f i = 3 then m _ q u a l i t y _ f u n c := q u a l i t y _ 3
e l s e i f i = 4 then m _ q u a l i t y _ f u n c := q u a l i t y _ 4
e l s e i f i = 5 then m _ q u a l i t y _ f u n c := q u a l i t y _ 5
e l s e i f i = 6 then m _ q u a l i t y _ f u n c := q u a l i t y _ 6
e l s e i f i = 7 then m _ q u a l i t y _ f u n c := q u a l i t y _ 7
e l s e i f i = 8 then m _ q u a l i t y _ f u n c := q u a l i t y _ l i v e
e l s e i f i = 9 then m _ q u a l i t y _ f u n c := q u a l i t y _ 9

l e t m a k e _ i n d e x _ d i f f (words : word a r r a y) : i n d e x _ t =
l e t l e n = Array . l e n g t h words in
l e t i d x = Hash tb l_bounded . c r e a t e (1 + l e n)

(10 * max_matches) in
f o r i = 0 t o l e n − 2 do

l e t w o r d _ t u p l e = (words . (i) , words . (i + 1)) in
Hash tb l_bounded . add i d x w o r d _ t u p l e i

done ;
i d x ; ;

l e t g e t _ m a t c h e s matched i d x w o r d _ t u p l e =
i f Hash tb l_bounded .mem i d x w o r d _ t u p l e then b e g i n

l e t a l l _ m a t c h e s =
Hash tb l_bounded . f i n d _ a l l i d x w o r d _ t u p l e in

l e t f i l t i = matched . (i) = 0 in
l e t matches = L i s t . f i l t e r f i l t a l l _ m a t c h e s in
i f (L i s t . l e n g t h a l l _ m a t c h e s) > max_matches then b e g i n

(* t o o many , so empty l i s t *)

175

Hash tb l_bounded . r e m o v e _ a l l i d x w o r d _ t u p l e ;
[] ;

end e l s e matches ;
end e l s e [] ; ;

(* T h i s f u n c t i o n i s d i r e c t l y based on t h e
* code i n c l u d e d i n Re ichenberger1991 , b u t
* m o d i f i e d t o r e s p e c t t h e v a l u e s i n matched1 / 2 .
*)

l e t b u i l d _ r e i c h e n b e r g e r
(w1 : word a r r a y) (w2 : word a r r a y)
matched1
matched2
l 1 l 2 =

l e t e d i t s c r i p t = r e f [] in
l e t i dx2 = m a k e _ i n d e x _ d i f f w2 in
l e t o l dPos = r e f 0 in
l e t a d d S t a r t = r e f 0 in
l e t emitAdd () =

i f ! a d d S t a r t < ! o ld Pos then b e g i n
l e t k = ! o ldPo s − ! a d d S t a r t in
e d i t s c r i p t := Del (! a d d S t a r t , k) : : ! e d i t s c r i p t ;
f o r i = ! a d d S t a r t t o ! o ldPos−1 do

matched1 . (i) <− ! o ld Pos − i ;
done ;

end
in
whi l e ! o ld Pos < l 1 − 2 do

(* f o r e v e r y unmatched word i n w1 ,
* f i n d l i s t o f matches i n w2 *)

i f matched1 . (! o l dPo s) = 0 then b e g i n
l e t w o r d _ t u p l e = (w1 . (! o l dPos) , w1 . (! o l dPo s + 1)) in
l e t matches = g e t _ m a t c h e s matched2 idx2 w o r d _ t u p l e in
l e t i 1 = ! o ld Pos in
l e t heap = Heap . c r e a t e () in
l e t p r o c e s s _ m a t c h (i 2 : i n t) =

l e t k = r e f 1 in
whi l e i 1 + ! k < l 1 && i 2 + ! k < l 2
&& w1 . (i 1 + ! k) = w2 . (i 2 + ! k) do

k := ! k + 1 ;
done ;
l e t q = ! m _ q u a l i t y _ f u n c ! k i 1 l 1 i 2 l 2 0 in
i g n o r e (Heap . add heap (! k , i1 , i 2) q) ;

in

176

L i s t . i t e r p r o c e s s _ m a t c h matches ;
i f n o t (Heap . i s _ e m p t y heap) then b e g i n

l e t m = Heap . t a k e heap in
l e t (copyLen , i1 ’ , c o p y S t a r t) = m. Heap . c o n t e n t s in
i f copyLen >= thumper_min_copy_len then b e g i n

emitAdd () ;
e d i t s c r i p t := Mov (! o ldPos , c o p y S t a r t , copyLen)

: : ! e d i t s c r i p t ;
f o r i = 0 t o copyLen − 1 do

l e t nextMatch = copyLen − i in
matched2 . (c o p y S t a r t + i) <− nextMatch ;
matched1 . (! o l dPos + i) <− nextMatch ;

done ;
o l dPos := ! o l dPo s + copyLen ;
a d d S t a r t := ! o ldPo s ;

end e l s e
o l dPos := ! o l dPo s + 1 ;

end e l s e
o l dPos := ! o l dPo s + 1 ;

end e l s e b e g i n
i f ! a d d S t a r t < ! o ld Pos then emitAdd () ;
o l dPos := ! o l dPo s + matched1 . (! o l dPo s) ;
a d d S t a r t := ! o ldPo s ;

end ;
done ;
(* we can s k i p t h e f i n a l emitAdd , s i n c e

* cover_unmatched w i l l c l e a n u p *)
e d i t s c r i p t ; ;

l e t compute_heap
(w1 : word a r r a y) (w2 : word a r r a y)
matched1 matched2
s k i p m a t c h eachk maxk =

l e t l 1 = Array . l e n g t h w1 in
l e t l 2 = Array . l e n g t h w2 in
l e t i dx1 = m a k e _ i n d e x _ d i f f w1 in
l e t p r e v _ m a t c h e s = r e f [] in
l e t i 2 = r e f 0 in
whi l e ! i 2 < l 2 − 1 do

l e t s k i p = matched2 . (! i 2) in
i f s k i p = 0 then b e g i n

l e t w o r d _ t u p l e = (w2 . (! i 2) , w2 . (! i 2 + 1)) in
l e t matches = g e t _ m a t c h e s matched1 idx1 w o r d _ t u p l e in
l e t p r o c e s s _ m a t c h (i 1 : i n t) =

177

i f n o t (s k i p m a t c h i 1 ! i 2 p r e v _ m a t c h e s) then b e g i n
l e t k = r e f 1 in
eachk i 1 l 1 ! i 2 l 2 ! k ;
whi le i 1 + ! k < l 1 && ! i 2 + ! k < l 2
&& w1 . (i 1 + ! k) = w2 . (! i 2 + ! k) do

eachk i 1 l 1 ! i 2 l 2 (! k + 1) ;
k := ! k + 1 ;

done ;
maxk i 1 l 1 ! i 2 l 2 ! k

end
in
L i s t . i t e r p r o c e s s _ m a t c h matches ;
p r e v _ m a t c h e s := matches ;

end e l s e p r e v _ m a t c h e s := [] ;
i 2 := ! i 2 + (max 1 s k i p)

done ; ;

(* *
* T h i s v e r s i o n o n l y p u t s t h e l o n g e s t matches i n t h e heap ,
* and i t o n l y c h e c k s t h e l i s t o f p r e v i o u s matches
* from t h e l a s t match t o s e e i f a new match
* s h o u l d be added .
*)

l e t b u i l d _ h e a p _ f a s t p m
(w1 : word a r r a y) (w2 : word a r r a y)
matched1 matched2 =

l e t heap = Heap . c r e a t e () in
l e t s k i p m a t c h i 1 i 2 p r e v _ m a t c h e s =

(* i f (i1 −1) i s i n prev_matches , t h e n we ’ ve
* a l r e a d y i n v e s t i g a t e d a l o n g e r match
* s t a r t i n g a t (i1 −1, i2 −1) (or even e a r l i e r) ,
* so we can s k i p t h i s one *)

L i s t .mem (i 1 − 1) ! p r e v _ m a t c h e s
in
l e t eachk i 1 l 1 i 2 l 2 k = () in
l e t maxk i 1 l 1 i 2 l 2 k =

i f k >= thumper_min_copy_ len then b e g i n
l e t q = ! m _ q u a l i t y _ f u n c k i 1 l 1 i 2 l 2 0 in
i g n o r e (Heap . add heap (k , i1 , i 2) q) ;

end
in
compute_heap w1 w2 matched1 matched2 s k i p m a t c h eachk maxk ;
heap

178

(* * T h i s v e r s i o n o n l y p u t s t h e l o n g e s t match i n t o
* t h e heap , b u t u s e s a h a s h t a b l e t o keep t r a c k o f
* what matches have been made , r a t h e r than j u s t
* c h e c k i n g t h e p r e v i o u s l i s t o f matches .
*)

l e t b u i l d _ h e a p _ f a s t h a s h
(w1 : word a r r a y) (w2 : word a r r a y)
matched1 matched2 =

l e t l e n 1 = Array . l e n g t h w1 in
l e t l e n 2 = Array . l e n g t h w2 in
l e t matched = H a s h t b l . c r e a t e (l e n 1 + l e n 2) in
l e t heap = Heap . c r e a t e () in
l e t s k i p m a t c h i 1 i 2 p r e v _ m a t c h e s =

l e t i d x = (i1 , i 2) in
t r y H a s h t b l . f i n d matched i d x
with Not_found −> f a l s e

in
l e t eachk i 1 l 1 i 2 l 2 k = () in
l e t maxk i 1 l 1 i 2 l 2 k =

i f k >= thumper_min_copy_ len then b e g i n
f o r i = 0 t o (k−1) do

l e t i d x = (i 1 + i , i 2 + i) in
H a s h t b l . r e p l a c e matched i d x t r u e

done ;
l e t q = ! m _ q u a l i t y _ f u n c k i 1 l 1 i 2 l 2 0 in
i g n o r e (Heap . add heap (k , i1 , i 2) q) ;

end
in
compute_heap w1 w2 matched1 matched2 s k i p m a t c h eachk maxk ;
heap

(* * T h i s v e r s i o n o f heap b u i l d i n g i s t h e s l o w e s t ,
* because i t i n c l u d e s e v e r y s i n g l e p o s s i b l e match
* i n t h e heap , n o t j u s t t h e l o n g e s t p o s s i b l e
* match . T h i s ends up u s i n g a v e r y l a r g e amount
* o f memory ; on t h e o r d e r o f g i g a b y t e s , v e r s u s
* t h e r o u g h l y 500MB t h a t t h e l o n g e s t−match
* v e r s i o n u s e s f o r t h e PAN2010 e v a l u a t i o n .
*)

l e t b u i l d _ h e a p _ s l o w
(w1 : word a r r a y) (w2 : word a r r a y)
matched1 matched2 =

l e t heap = Heap . c r e a t e () in
l e t s k i p m a t c h i 1 i 2 p r e v _ m a t c h e s = f a l s e

179

in
l e t eachk i 1 l 1 i 2 l 2 k =

i f k >= thumper_min_copy_ len then b e g i n
l e t q = ! m _ q u a l i t y _ f u n c k i 1 l 1 i 2 l 2 0 in
i g n o r e (Heap . add heap (k , i1 , i 2) q) ;

end
in
l e t maxk i 1 l 1 i 2 l 2 k =

(* a l r e a d y done i n eachk *)
()

in
compute_heap w1 w2 matched1 matched2 s k i p m a t c h eachk maxk ;
heap

(* *
* Find a r e g i o n where ’ t e s t ’ i s 0 ,
* and r e t u r n t h e bounds o f t h a t r e g i o n .
* The ’ t e s t ’ parame te r o t h e r w i s e t e l l s
* us an upper bound on how f a r forward
* we can s a f e l y s k i p .
*)

l e t s c a n _ a n d _ t e s t l e n t e s t =
l e t rec f i n d _ s t a r t c u r s t a r t =

i f c u r s t a r t >= l e n then c u r s t a r t
e l s e b e g i n

l e t i n c r = t e s t c u r s t a r t in
i f i n c r = 0 then c u r s t a r t
e l s e f i n d _ s t a r t (c u r s t a r t + i n c r)

end
in
l e t rec f i n d _ f i n i s h c u re nd =

i f c u r en d >= l e n then c u r en d
e l s e b e g i n

l e t i n c r = t e s t cu r e n d in
i f i n c r > 0 then c u r en d
e l s e f i n d _ f i n i s h (c u re nd + 1)

end
in
l e t s t a r t = f i n d _ s t a r t 0 in
l e t f i n i s h = f i n d _ f i n i s h (s t a r t + 1) in
i f s t a r t >= l e n then (−1 , −1)
e l s e (s t a r t , f i n i s h)
; ;

180

l e t p r o c e s s _ b e s t _ m a t c h e s heap matched1 matched2 l 1 l 2 =
l e t e d i t s c r i p t = r e f [] in
l e t r e c o r d _ m a t c h i 1 i 2 k =

e d i t s c r i p t := Mov (i1 , i2 , k) : : ! e d i t s c r i p t ;
f o r i = 0 t o k−1 do

l e t nextMatch = k − i in
matched1 . (i 1 + i) <− nextMatch ;
matched2 . (i 2 + i) <− nextMatch ;

done
in
l e t m a k e _ t e s t i 1 i 2 =

l e t i s _ m a t c h e d o f f s e t =
max matched1 . (i 1 + o f f s e t) matched2 . (i 2 + o f f s e t)

in
i s _ m a t c h e d

in
l e t rec a d d _ s m a l l e r i 1 i 2 s t a r t f i n i s h l i m i t =

i f s t a r t >= 0 then b e g i n
l e t k = f i n i s h − s t a r t in
l e t i 1 = i 1 + s t a r t in
l e t i 2 = i 2 + s t a r t in
i f k >= thumper_min_copy_ len then b e g i n

l e t q = ! m _ q u a l i t y _ f u n c k i 1 l 1 i 2 l 2 0 in
i g n o r e (Heap . add heap (k , i1 , i 2) q)

end ;
(* compute range f o r n e x t p o s s i b l e sub−match *)
l e t i 1 = i 1 + k in
l e t i 2 = i 2 + k in
l e t l i m i t = l i m i t − f i n i s h in
l e t i s _ m a t c h e d = m a k e _ t e s t i 1 i 2 in
l e t (s t a r t , f i n i s h) = s c a n _ a n d _ t e s t l i m i t i s _ m a t c h e d in
a d d _ s m a l l e r i 1 i 2 s t a r t f i n i s h l i m i t

end e l s e ()
in
l e t h e a p l e n = Heap . l e n g t h heap in
i f h e a p l e n > ! max_heaplen + 1000 then b e g i n

max_heaplen := h e a p l e n ;
p r i n t _ e n d l i n e

(P r i n t f . s p r i n t f " new max heap : %d " ! max_heaplen) ;
f l u s h s t d o u t ;

end ;
i f h e a p l e n > 1000000 then b e g i n

r a i s e Heap_Too_Large ;
end ;

181

whi le n o t (Heap . i s _ e m p t y heap) do
l e t m = Heap . t a k e heap in
l e t (k , i1 , i 2) = m. Heap . c o n t e n t s in
l e t (s t a r t , f i n i s h) = s c a n _ a n d _ t e s t k (m a k e _ t e s t i 1 i 2) in
i f s t a r t >= 0 then b e g i n

i f f i n i s h − s t a r t = k then b e g i n
(* t h e whole s e q u e n c e i s s t i l l unmatched *)
r e c o r d _ m a t c h i 1 i 2 k

end e l s e b e g i n
(* found an unmatched s u b r e g i o n , b u t i t ’ s f o r l e s s

* than t h e s i z e we were hop ing f o r . So we must add
* t h e s m a l l e r matches back i n t o t h e heap . . . s t a r t i n g
* w i t h t h e match we j u s t found . *)

a d d _ s m a l l e r i 1 i 2 s t a r t f i n i s h k
end ;

end ;
done ;
e d i t s c r i p t
; ;

l e t cover_unmatched matched l e n e d i t S c r i p t op =
l e t i = r e f 0 in
l e t l = r e f l e n in
l e t c o m p l e t e = r e f f a l s e in
whi l e n o t ! c o m p l e t e do

l e t t e s t x = matched . (! i + x) in
l e t (s t a r t , f i n i s h) = s c a n _ a n d _ t e s t ! l t e s t in
i f s t a r t >= 0 then b e g i n

l e t t u p l e = op (! i + s t a r t) (f i n i s h − s t a r t) in
e d i t S c r i p t := t u p l e : : ! e d i t S c r i p t ;
i := ! i + f i n i s h ;
l := ! l − f i n i s h ;

end
e l s e c o m p l e t e := t r u e

done ;
e d i t S c r i p t
; ;

l e t m a t c h _ e n d p o i n t (w1 : word a r r a y) (w2 : word a r r a y)
matched1 matched2 xform1 xform2 =

l e t l 1 = Array . l e n g t h w1 in
l e t l 2 = Array . l e n g t h w2 in
l e t k = min l 1 l 2 in
l e t rec f i n d _ f i r s t _ n o n m a t c h x =

182

i f x >= k then k
e l s e b e g i n

l e t i 1 = xform1 x in
l e t i 2 = xform2 x in
i f matched1 . (i 1) > 0 | | matched2 . (i 2) > 0

| | w1 . (i 1) <> w2 . (i 2)
then x
e l s e f i n d _ f i r s t _ n o n m a t c h (x + 1)

end
in
l e t nonmatch = f i n d _ f i r s t _ n o n m a t c h 0 in
i f nonmatch > 0 then b e g i n

l e t e n d p o i n t 1 = max (xform1 (−1)) nonmatch in
l e t e n d p o i n t 2 = max (xform2 (−1)) nonmatch in
f o r i = 0 t o nonmatch − 1 do

matched1 . (xform1 i) <− abs (e n d p o i n t 1 − i) ;
matched2 . (xform2 i) <− abs (e n d p o i n t 2 − i) ;

done ;
l e t b e g i n p t 1 = min (xform1 0) (xform1 (nonmatch −1)) in
l e t b e g i n p t 2 = min (xform2 0) (xform2 (nonmatch −1)) in
[Mov (b e g i n p t 1 , b e g i n p t 2 , nonmatch)] ;

end e l s e []
; ;

l e t match_heade r (w1 : word a r r a y) (w2 : word a r r a y)
matched1 matched2 =

l e t xform1 x = x in
l e t xform2 x = x in
m a t c h _ e n d p o i n t w1 w2 matched1 matched2 xform1 xform2
; ;

l e t m a t c h _ t r a i l e r (w1 : word a r r a y) (w2 : word a r r a y)
matched1 matched2 =

l e t l 1 = Array . l e n g t h w1 in
l e t l 2 = Array . l e n g t h w2 in
l e t xform1 x = l 1 − x − 1 in
l e t xform2 x = l 2 − x − 1 in
m a t c h _ e n d p o i n t w1 w2 matched1 matched2 xform1 xform2
; ;

l e t m a t c h _ n o t h i n g (w1 : word a r r a y) (w2 : word a r r a y)
matched1 matched2 = []

l e t makeDel i l = Del (i , l)
l e t makeIns i l = I n s (i , l)

183

l e t c o r e _ d i f f w1 w2 mkHeader m k T r a i l e r m k E d i t S c r i p t =
l e t l 1 = Array . l e n g t h w1 in
l e t l 2 = Array . l e n g t h w2 in
l e t matched1 = Array . make l 1 0 in
l e t matched2 = Array . make l 2 0 in
l e t h e a d e r = mkHeader w1 w2 matched1 matched2 in
l e t t r a i l e r = m k T r a i l e r w1 w2 matched1 matched2 in
l e t e d i t S c r i p t =

m k E d i t S c r i p t w1 w2 matched1 matched2 l 1 l 2 in
l e t e d i t S c r i p t = cover_unmatched matched1 l 1

e d i t S c r i p t makeDel in
l e t e d i t S c r i p t = cover_unmatched matched2 l 2

e d i t S c r i p t makeIns in
h e a d e r @ ! e d i t S c r i p t @ t r a i l e r

l e t d i f f _ 1 (w1 : word a r r a y) (w2 : word a r r a y) =
l e t myCore w1 w2 matched1 matched2 l 1 l 2 =

b u i l d _ r e i c h e n b e r g e r w1 w2 matched1 matched2 l 1 l 2 in
c o r e _ d i f f w1 w2

m a t c h _ n o t h i n g m a t c h _ n o t h i n g
myCore

l e t d i f f _ 2 (w1 : word a r r a y) (w2 : word a r r a y) =
l e t myCore w1 w2 matched1 matched2 l 1 l 2 =

b u i l d _ r e i c h e n b e r g e r w1 w2 matched1 matched2 l 1 l 2 in
c o r e _ d i f f w1 w2

match_heade r m a t c h _ t r a i l e r
myCore

l e t d i f f _ 3 (w1 : word a r r a y) (w2 : word a r r a y) =
l e t myCore w1 w2 matched1 matched2 l 1 l 2 =

l e t heap =
b u i l d _ h e a p _ f a s t h a s h w1 w2 matched1 matched2 in

p r o c e s s _ b e s t _ m a t c h e s heap matched1 matched2 l 1 l 2
in
c o r e _ d i f f w1 w2

match_heade r m a t c h _ t r a i l e r
myCore

l e t d i f f _ 4 (w1 : word a r r a y) (w2 : word a r r a y) =
l e t myCore w1 w2 matched1 matched2 l 1 l 2 =

l e t heap = b u i l d _ h e a p _ f a s t p m w1 w2 matched1 matched2 in
p r o c e s s _ b e s t _ m a t c h e s heap matched1 matched2 l 1 l 2

184

in
c o r e _ d i f f w1 w2

m a t c h _ n o t h i n g m a t c h _ n o t h i n g
myCore

l e t d i f f _ 5 (w1 : word a r r a y) (w2 : word a r r a y) =
l e t myCore w1 w2 matched1 matched2 l 1 l 2 =

l e t heap = b u i l d _ h e a p _ f a s t p m w1 w2 matched1 matched2 in
p r o c e s s _ b e s t _ m a t c h e s heap matched1 matched2 l 1 l 2

in
c o r e _ d i f f w1 w2

match_heade r m a t c h _ t r a i l e r
myCore

l e t d i f f _ 8 (w1 : word a r r a y) (w2 : word a r r a y) =
l e t myCore w1 w2 matched1 matched2 l 1 l 2 =

l e t heap = b u i l d _ h e a p _ f a s t h a s h w1 w2 matched1 matched2 in
p r o c e s s _ b e s t _ m a t c h e s heap matched1 matched2 l 1 l 2

in
c o r e _ d i f f w1 w2

m a t c h _ n o t h i n g m a t c h _ n o t h i n g
myCore

l e t d i f f _ 9 (w1 : word a r r a y) (w2 : word a r r a y) =
l e t myCore w1 w2 matched1 matched2 l 1 l 2 =

l e t heap = b u i l d _ h e a p _ s l o w w1 w2 matched1 matched2 in
p r o c e s s _ b e s t _ m a t c h e s heap matched1 matched2 l 1 l 2

in
c o r e _ d i f f w1 w2

match_heade r m a t c h _ t r a i l e r
myCore

l e t d i f f _ f u n c = r e f d i f f _ 1

l e t s e t _ d i f f (i : i n t) =
i f i = 1 then d i f f _ f u n c := d i f f _ 1
e l s e i f i = 2 then d i f f _ f u n c := d i f f _ 2
e l s e i f i = 3 then d i f f _ f u n c := d i f f _ 3
e l s e i f i = 4 then d i f f _ f u n c := d i f f _ 4
e l s e i f i = 5 then d i f f _ f u n c := d i f f _ 5
e l s e i f i = 8 then d i f f _ f u n c := d i f f _ 8
e l s e i f i = 9 then d i f f _ f u n c := d i f f _ 9

185

l e t e d i t _ d i f f (words1 : word a r r a y) (words2 : word a r r a y)
: e d i t l i s t = ! d i f f _ f u n c words1 words2

186

Appendix F

Edit Longevity Parameter Rankings

Presented here is the complete rankings of each parameter variation explored for the

evaluation of edit longevity presented in Chapter 4. In addition to the fields described

in Chapter 4, we also collected some additional measures of the work being done by

the various combinations of parameters.

Num Revs is how many PAN-WVC-10 revisions predictions were made for. We

would like this to be as high as possible, but WikiTrust will skip calculating a quality

for a revision if it believes the edit distance from the previous revision is 0; this is

because the calculation includes a division. In hindsight, it might be better to inspect

the edit script directly to determine when there is no change compare from the previous

revision. When there is no change between revisions, each difference algorithm will

identify a single Mov operation. This begs the question of how to compute the edit

longevity when the edit distance is zero; a reasonable choice would be setting the edit

longevity to zero when the edit distance is zero. This choice indicates that there is no

bias toward believing that the revision is either high- or low-quality.

Another measure of work (that is strongly related to the number of revisions for

which predictions are made) is the number of triangles which are evaluated, Total Tri-

187

angles, as illustrated by Figure 4.6. Each side of the triangle is calculated in the com-

putation for edit longevity (see Eq. 4.4). The column Bad Triangles counts how many

of the triangles evaluated fail to satisfy the triangle inequality.

With respect to the triangle inequality, the data shows that it is not a necessary

property in order to achieve good performance. In fact, the combination of using a

greedy approach to generating the edit script (which might not generate the shortest

edit script) and our unusual definitions of edit distance make the triangle inequality

an unlikely property. See [89] for discussion about when the triangle inequality might

hold, especially in the more difficult case of including transpositions.

188

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

2
m

q9
ed

5
47

.2
79

%
91

.8
81

%
27

,7
30

96
m

85
2,

04
0

18
0,

62
4

di
ff

2
m

q8
ed

5
47

.2
79

%
91

.8
81

%
27

,7
30

96
m

85
2,

04
0

18
0,

62
4

di
ff

2
m

q7
ed

5
47

.2
79

%
91

.8
81

%
27

,7
30

96
m

85
2,

04
0

18
0,

62
4

di
ff

2
m

q6
ed

5
47

.2
79

%
91

.8
81

%
27

,7
30

97
m

85
2,

04
0

18
0,

62
4

di
ff

2
m

q4
ed

5
47

.2
58

%
91

.8
72

%
27

,7
30

96
m

85
2,

04
0

18
2,

55
3

di
ff

2
m

q3
ed

5
47

.2
58

%
91

.8
72

%
27

,7
30

96
m

85
2,

04
0

18
2,

55
3

di
ff

2
m

q2
ed

5
47

.2
58

%
91

.8
72

%
27

,7
30

96
m

85
2,

04
0

18
2,

55
3

di
ff

2
m

q1
ed

5
47

.2
58

%
91

.8
72

%
27

,7
30

96
m

85
2,

04
0

18
2,

55
3

di
ff

5
m

q5
ed

5
47

.2
31

%
91

.9
55

%
27

,7
30

16
7m

85
2,

04
0

17
1,

26
5

di
ff

3
m

q5
ed

5
47

.2
31

%
91

.9
55

%
27

,7
30

21
7m

85
2,

04
0

17
1,

27
1

di
ff

8
m

q5
ed

5
47

.1
98

%
91

.9
05

%
27

,7
31

34
9m

85
2,

04
3

16
5,

80
4

di
ff

4
m

q5
ed

5
47

.1
98

%
91

.9
05

%
27

,7
31

25
5m

85
2,

04
3

16
5,

81
2

di
ff

5
m

q9
ed

5
47

.1
92

%
91

.9
41

%
27

,7
30

16
5m

85
2,

04
0

16
7,

27
7

di
ff

5
m

q8
ed

5
47

.1
92

%
91

.9
41

%
27

,7
30

16
5m

85
2,

04
0

16
7,

27
7

di
ff

5
m

q7
ed

5
47

.1
92

%
91

.9
41

%
27

,7
30

16
6m

85
2,

04
0

16
7,

27
7

di
ff

5
m

q6
ed

5
47

.1
92

%
91

.9
41

%
27

,7
30

16
6m

85
2,

04
0

16
7,

27
7

di
ff

3
m

q9
ed

5
47

.1
92

%
91

.9
41

%
27

,7
30

21
5m

85
2,

04
0

16
7,

27
7

di
ff

3
m

q8
ed

5
47

.1
92

%
91

.9
41

%
27

,7
30

21
5m

85
2,

04
0

16
7,

27
7

di
ff

3
m

q7
ed

5
47

.1
92

%
91

.9
41

%
27

,7
30

21
6m

85
2,

04
0

16
7,

27
7

di
ff

3
m

q6
ed

5
47

.1
92

%
91

.9
41

%
27

,7
30

21
6m

85
2,

04
0

16
7,

27
7

di
ff

2
m

q5
ed

5
47

.1
71

%
91

.8
55

%
27

,7
30

97
m

85
2,

04
0

18
3,

24
4

di
ff

3
m

q4
ed

5
47

.1
52

%
91

.8
92

%
27

,7
30

20
3m

85
2,

04
0

17
1,

07
3

di
ff

3
m

q3
ed

5
47

.1
52

%
91

.8
92

%
27

,7
30

20
3m

85
2,

04
0

17
1,

07
3

di
ff

3
m

q2
ed

5
47

.1
52

%
91

.8
92

%
27

,7
30

20
2m

85
2,

04
0

17
1,

07
3

di
ff

3
m

q1
ed

5
47

.1
52

%
91

.8
92

%
27

,7
30

20
3m

85
2,

04
0

17
1,

07
3

di
ff

8
m

q9
ed

5
47

.1
40

%
91

.8
87

%
27

,7
31

34
6m

85
2,

04
3

16
1,

75
7

di
ff

8
m

q8
ed

5
47

.1
40

%
91

.8
87

%
27

,7
31

34
6m

85
2,

04
3

16
1,

75
7

189

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

8
m

q7
ed

5
47

.1
40

%
91

.8
87

%
27

,7
31

34
8m

85
2,

04
3

16
1,

75
7

di
ff

8
m

q6
ed

5
47

.1
40

%
91

.8
87

%
27

,7
31

34
8m

85
2,

04
3

16
1,

75
7

di
ff

4
m

q9
ed

5
47

.1
40

%
91

.8
87

%
27

,7
31

25
2m

85
2,

04
3

16
1,

76
4

di
ff

4
m

q8
ed

5
47

.1
40

%
91

.8
87

%
27

,7
31

25
2m

85
2,

04
3

16
1,

76
4

di
ff

4
m

q7
ed

5
47

.1
40

%
91

.8
87

%
27

,7
31

25
4m

85
2,

04
3

16
1,

76
4

di
ff

4
m

q6
ed

5
47

.1
40

%
91

.8
87

%
27

,7
31

25
4m

85
2,

04
3

16
1,

76
4

di
ff

4
m

q4
ed

5
47

.1
24

%
91

.8
30

%
27

,7
31

22
7m

85
2,

04
3

16
5,

06
1

di
ff

4
m

q3
ed

5
47

.1
24

%
91

.8
30

%
27

,7
31

22
7m

85
2,

04
3

16
5,

06
1

di
ff

4
m

q2
ed

5
47

.1
24

%
91

.8
30

%
27

,7
31

22
7m

85
2,

04
3

16
5,

06
1

di
ff

4
m

q1
ed

5
47

.1
24

%
91

.8
30

%
27

,7
31

22
7m

85
2,

04
3

16
5,

06
1

di
ff

8
m

q4
ed

5
47

.1
11

%
91

.8
29

%
27

,7
31

32
0m

85
2,

04
3

16
4,

94
9

di
ff

8
m

q3
ed

5
47

.1
11

%
91

.8
29

%
27

,7
31

32
0m

85
2,

04
3

16
4,

94
9

di
ff

8
m

q2
ed

5
47

.1
11

%
91

.8
29

%
27

,7
31

32
0m

85
2,

04
3

16
4,

94
9

di
ff

8
m

q1
ed

5
47

.1
11

%
91

.8
29

%
27

,7
31

32
0m

85
2,

04
3

16
4,

94
9

di
ff

5
m

q4
ed

5
47

.0
95

%
91

.8
82

%
27

,7
30

15
3m

85
2,

04
0

17
1,

15
9

di
ff

5
m

q3
ed

5
47

.0
95

%
91

.8
82

%
27

,7
30

15
3m

85
2,

04
0

17
1,

15
9

di
ff

5
m

q2
ed

5
47

.0
95

%
91

.8
82

%
27

,7
30

15
3m

85
2,

04
0

17
1,

15
9

di
ff

5
m

q1
ed

5
47

.0
95

%
91

.8
82

%
27

,7
30

15
3m

85
2,

04
0

17
1,

15
9

di
ff

6
m

q4
ed

5
47

.0
41

%
91

.8
04

%
27

,7
30

27
3m

85
2,

04
0

16
5,

04
8

di
ff

6
m

q3
ed

5
47

.0
41

%
91

.8
04

%
27

,7
30

27
3m

85
2,

04
0

16
5,

04
8

di
ff

6
m

q2
ed

5
47

.0
41

%
91

.8
04

%
27

,7
30

27
2m

85
2,

04
0

16
5,

04
8

di
ff

6
m

q1
ed

5
47

.0
41

%
91

.8
04

%
27

,7
30

27
3m

85
2,

04
0

16
5,

04
8

di
ff

1
m

q9
ed

5
47

.0
37

%
91

.7
96

%
27

,7
31

97
m

85
2,

04
3

16
0,

92
7

di
ff

1
m

q8
ed

5
47

.0
37

%
91

.7
96

%
27

,7
31

97
m

85
2,

04
3

16
0,

92
7

di
ff

1
m

q7
ed

5
47

.0
37

%
91

.7
96

%
27

,7
31

97
m

85
2,

04
3

16
0,

92
7

di
ff

1
m

q6
ed

5
47

.0
37

%
91

.7
96

%
27

,7
31

97
m

85
2,

04
3

16
0,

92
7

di
ff

1
m

q5
ed

5
47

.0
35

%
91

.7
81

%
27

,7
31

97
m

85
2,

04
3

16
5,

99
8

190

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

1
m

q4
ed

5
46

.9
90

%
91

.7
76

%
27

,7
31

96
m

85
2,

04
3

15
9,

55
6

di
ff

1
m

q3
ed

5
46

.9
90

%
91

.7
76

%
27

,7
31

96
m

85
2,

04
3

15
9,

55
6

di
ff

1
m

q2
ed

5
46

.9
90

%
91

.7
76

%
27

,7
31

96
m

85
2,

04
3

15
9,

55
6

di
ff

1
m

q1
ed

5
46

.9
90

%
91

.7
76

%
27

,7
31

96
m

85
2,

04
3

15
9,

55
6

di
ff

6
m

q9
ed

5
46

.9
43

%
91

.8
42

%
27

,7
30

47
6m

85
2,

04
0

15
7,

36
2

di
ff

6
m

q8
ed

5
46

.9
43

%
91

.8
42

%
27

,7
30

47
7m

85
2,

04
0

15
7,

36
2

di
ff

6
m

q7
ed

5
46

.9
43

%
91

.8
42

%
27

,7
30

48
9m

85
2,

04
0

15
7,

36
2

di
ff

6
m

q6
ed

5
46

.9
43

%
91

.8
42

%
27

,7
30

48
8m

85
2,

04
0

15
7,

36
2

di
ff

7
m

q4
ed

5
46

.5
83

%
91

.7
42

%
27

,7
30

15
6m

85
2,

04
0

17
1,

39
7

di
ff

7
m

q3
ed

5
46

.5
83

%
91

.7
42

%
27

,7
30

15
6m

85
2,

04
0

17
1,

39
7

di
ff

7
m

q2
ed

5
46

.5
83

%
91

.7
42

%
27

,7
30

15
6m

85
2,

04
0

17
1,

39
7

di
ff

7
m

q1
ed

5
46

.5
83

%
91

.7
42

%
27

,7
30

15
6m

85
2,

04
0

17
1,

39
7

di
ff

6
m

q5
ed

5
46

.5
52

%
91

.7
09

%
27

,7
30

49
3m

85
2,

04
0

16
4,

46
1

di
ff

7
m

q9
ed

5
46

.5
39

%
91

.7
61

%
27

,7
30

25
3m

85
2,

04
0

16
2,

92
2

di
ff

7
m

q8
ed

5
46

.5
39

%
91

.7
61

%
27

,7
30

25
3m

85
2,

04
0

16
2,

92
2

di
ff

7
m

q7
ed

5
46

.5
39

%
91

.7
61

%
27

,7
30

25
9m

85
2,

04
0

16
2,

92
2

di
ff

7
m

q6
ed

5
46

.5
39

%
91

.7
61

%
27

,7
30

25
9m

85
2,

04
0

16
2,

92
2

di
ff

7
m

q5
ed

5
46

.1
00

%
91

.6
48

%
27

,7
30

26
1m

85
2,

04
0

17
0,

91
2

di
ff

1
m

q9
ed

3
44

.4
64

%
91

.7
06

%
27

,6
62

96
m

85
0,

60
3

39
,0

32
di

ff
1

m
q8

ed
3

44
.4

64
%

91
.7

06
%

27
,6

62
96

m
85

0,
60

3
39

,0
32

di
ff

1
m

q7
ed

3
44

.4
64

%
91

.7
06

%
27

,6
62

96
m

85
0,

60
3

39
,0

32
di

ff
1

m
q6

ed
3

44
.4

64
%

91
.7

06
%

27
,6

62
96

m
85

0,
60

3
39

,0
32

di
ff

1
m

q5
ed

3
44

.4
56

%
91

.7
18

%
27

,6
63

96
m

85
0,

63
4

42
,1

17
di

ff
1

m
q4

ed
3

44
.4

50
%

91
.7

04
%

27
,6

64
95

m
85

0,
62

1
39

,5
56

di
ff

1
m

q3
ed

3
44

.4
50

%
91

.7
04

%
27

,6
64

95
m

85
0,

62
1

39
,5

56
di

ff
1

m
q2

ed
3

44
.4

50
%

91
.7

04
%

27
,6

64
95

m
85

0,
62

1
39

,5
56

di
ff

1
m

q1
ed

3
44

.4
50

%
91

.7
04

%
27

,6
64

95
m

85
0,

62
1

39
,5

56

191

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

8
m

q5
ed

3
44

.2
40

%
91

.7
17

%
27

,6
85

34
8m

85
1,

10
5

29
,4

73
di

ff
4

m
q5

ed
3

44
.2

40
%

91
.7

17
%

27
,6

85
25

4m
85

1,
10

5
29

,4
71

di
ff

2
m

q5
ed

3
44

.1
55

%
91

.6
57

%
27

,6
62

96
m

85
0,

67
0

54
,8

06
di

ff
8

m
q9

ed
3

44
.1

41
%

91
.6

83
%

27
,6

85
34

5m
85

1,
08

7
25

,9
67

di
ff

8
m

q8
ed

3
44

.1
41

%
91

.6
83

%
27

,6
85

34
5m

85
1,

08
7

25
,9

67
di

ff
8

m
q7

ed
3

44
.1

41
%

91
.6

83
%

27
,6

85
34

7m
85

1,
08

7
25

,9
67

di
ff

8
m

q6
ed

3
44

.1
41

%
91

.6
83

%
27

,6
85

34
7m

85
1,

08
7

25
,9

67
di

ff
4

m
q9

ed
3

44
.1

41
%

91
.6

83
%

27
,6

85
25

1m
85

1,
08

7
25

,9
67

di
ff

4
m

q8
ed

3
44

.1
41

%
91

.6
83

%
27

,6
85

25
1m

85
1,

08
7

25
,9

67
di

ff
4

m
q7

ed
3

44
.1

41
%

91
.6

83
%

27
,6

85
25

3m
85

1,
08

7
25

,9
67

di
ff

4
m

q6
ed

3
44

.1
41

%
91

.6
83

%
27

,6
85

25
3m

85
1,

08
7

25
,9

67
di

ff
4

m
q4

ed
3

44
.1

22
%

91
.6

77
%

27
,6

84
22

7m
85

1,
07

9
26

,6
33

di
ff

4
m

q3
ed

3
44

.1
22

%
91

.6
77

%
27

,6
84

22
6m

85
1,

07
9

26
,6

33
di

ff
4

m
q2

ed
3

44
.1

22
%

91
.6

77
%

27
,6

84
22

6m
85

1,
07

9
26

,6
33

di
ff

4
m

q1
ed

3
44

.1
22

%
91

.6
77

%
27

,6
84

22
6m

85
1,

07
9

26
,6

33
di

ff
6

m
q4

ed
3

44
.1

06
%

91
.7

35
%

27
,6

69
27

2m
85

0,
63

6
20

,3
15

di
ff

6
m

q3
ed

3
44

.1
06

%
91

.7
35

%
27

,6
69

27
2m

85
0,

63
6

20
,3

15
di

ff
6

m
q2

ed
3

44
.1

06
%

91
.7

35
%

27
,6

69
27

1m
85

0,
63

6
20

,3
15

di
ff

6
m

q1
ed

3
44

.1
06

%
91

.7
35

%
27

,6
69

27
1m

85
0,

63
6

20
,3

15
di

ff
8

m
q4

ed
3

44
.0

99
%

91
.6

74
%

27
,6

84
31

9m
85

1,
07

9
26

,5
94

di
ff

8
m

q3
ed

3
44

.0
99

%
91

.6
74

%
27

,6
84

31
9m

85
1,

07
9

26
,5

94
di

ff
8

m
q2

ed
3

44
.0

99
%

91
.6

74
%

27
,6

84
31

9m
85

1,
07

9
26

,5
94

di
ff

8
m

q1
ed

3
44

.0
99

%
91

.6
74

%
27

,6
84

31
9m

85
1,

07
9

26
,5

94
di

ff
5

m
q5

ed
3

44
.0

67
%

91
.7

42
%

27
,6

88
16

6m
85

1,
21

8
38

,1
79

di
ff

3
m

q5
ed

3
44

.0
67

%
91

.7
42

%
27

,6
88

21
6m

85
1,

21
8

38
,1

80
di

ff
7

m
q9

ed
3

44
.0

52
%

91
.7

58
%

27
,6

35
25

2m
85

0,
06

0
46

,7
40

di
ff

7
m

q8
ed

3
44

.0
52

%
91

.7
58

%
27

,6
35

25
2m

85
0,

06
0

46
,7

40

192

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

7
m

q7
ed

3
44

.0
52

%
91

.7
58

%
27

,6
35

25
8m

85
0,

06
0

46
,7

40
di

ff
7

m
q6

ed
3

44
.0

52
%

91
.7

58
%

27
,6

35
25

8m
85

0,
06

0
46

,7
40

di
ff

6
m

q9
ed

3
44

.0
42

%
91

.7
37

%
27

,6
69

47
6m

85
0,

63
6

18
,9

15
di

ff
6

m
q8

ed
3

44
.0

42
%

91
.7

37
%

27
,6

69
47

5m
85

0,
63

6
18

,9
15

di
ff

6
m

q7
ed

3
44

.0
42

%
91

.7
37

%
27

,6
69

48
8m

85
0,

63
6

18
,9

15
di

ff
6

m
q6

ed
3

44
.0

42
%

91
.7

37
%

27
,6

69
48

8m
85

0,
63

6
18

,9
15

di
ff

2
m

q4
ed

3
44

.0
22

%
91

.6
35

%
27

,6
62

95
m

85
0,

65
3

54
,0

59
di

ff
2

m
q3

ed
3

44
.0

22
%

91
.6

35
%

27
,6

62
95

m
85

0,
65

3
54

,0
59

di
ff

2
m

q2
ed

3
44

.0
22

%
91

.6
35

%
27

,6
62

95
m

85
0,

65
3

54
,0

59
di

ff
2

m
q1

ed
3

44
.0

22
%

91
.6

35
%

27
,6

62
95

m
85

0,
65

3
54

,0
59

di
ff

2
m

q9
ed

3
44

.0
20

%
91

.6
37

%
27

,6
62

95
m

85
0,

67
0

52
,0

77
di

ff
2

m
q8

ed
3

44
.0

20
%

91
.6

37
%

27
,6

62
95

m
85

0,
67

0
52

,0
77

di
ff

2
m

q7
ed

3
44

.0
20

%
91

.6
37

%
27

,6
62

96
m

85
0,

67
0

52
,0

77
di

ff
2

m
q6

ed
3

44
.0

20
%

91
.6

37
%

27
,6

62
96

m
85

0,
67

0
52

,0
77

di
ff

7
m

q4
ed

3
43

.9
88

%
91

.7
69

%
27

,6
35

15
6m

85
0,

06
0

48
,3

81
di

ff
7

m
q3

ed
3

43
.9

88
%

91
.7

69
%

27
,6

35
15

6m
85

0,
06

0
48

,3
81

di
ff

7
m

q2
ed

3
43

.9
88

%
91

.7
69

%
27

,6
35

15
5m

85
0,

06
0

48
,3

81
di

ff
7

m
q1

ed
3

43
.9

88
%

91
.7

69
%

27
,6

35
15

5m
85

0,
06

0
48

,3
81

di
ff

5
m

q9
ed

3
43

.9
70

%
91

.7
08

%
27

,6
88

16
4m

85
1,

20
1

34
,7

42
di

ff
5

m
q8

ed
3

43
.9

70
%

91
.7

08
%

27
,6

88
16

4m
85

1,
20

1
34

,7
42

di
ff

5
m

q7
ed

3
43

.9
70

%
91

.7
08

%
27

,6
88

16
5m

85
1,

20
1

34
,7

42
di

ff
5

m
q6

ed
3

43
.9

70
%

91
.7

08
%

27
,6

88
16

5m
85

1,
20

1
34

,7
42

di
ff

5
m

q4
ed

3
43

.9
70

%
91

.7
01

%
27

,6
88

15
2m

85
1,

20
1

35
,5

71
di

ff
5

m
q3

ed
3

43
.9

70
%

91
.7

01
%

27
,6

88
15

2m
85

1,
20

1
35

,5
71

di
ff

5
m

q2
ed

3
43

.9
70

%
91

.7
01

%
27

,6
88

15
2m

85
1,

20
1

35
,5

71
di

ff
5

m
q1

ed
3

43
.9

70
%

91
.7

01
%

27
,6

88
15

2m
85

1,
20

1
35

,5
71

di
ff

3
m

q9
ed

3
43

.9
70

%
91

.7
08

%
27

,6
88

21
4m

85
1,

20
1

34
,7

42

193

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

3
m

q8
ed

3
43

.9
70

%
91

.7
08

%
27

,6
88

21
4m

85
1,

20
1

34
,7

42
di

ff
3

m
q7

ed
3

43
.9

70
%

91
.7

08
%

27
,6

88
21

5m
85

1,
20

1
34

,7
42

di
ff

3
m

q6
ed

3
43

.9
70

%
91

.7
08

%
27

,6
88

21
5m

85
1,

20
1

34
,7

42
di

ff
3

m
q4

ed
3

43
.9

35
%

91
.6

97
%

27
,6

88
20

2m
85

1,
20

1
35

,5
20

di
ff

3
m

q3
ed

3
43

.9
35

%
91

.6
97

%
27

,6
88

20
2m

85
1,

20
1

35
,5

20
di

ff
3

m
q2

ed
3

43
.9

35
%

91
.6

97
%

27
,6

88
20

2m
85

1,
20

1
35

,5
20

di
ff

3
m

q1
ed

3
43

.9
35

%
91

.6
97

%
27

,6
88

20
1m

85
1,

20
1

35
,5

20
di

ff
7

m
q5

ed
3

43
.8

89
%

91
.7

26
%

27
,6

35
26

0m
85

0,
06

0
53

,9
00

di
ff

6
m

q5
ed

3
43

.7
74

%
91

.6
54

%
27

,6
70

49
2m

85
0,

65
4

24
,4

83
di

ff
7

m
q9

ed
1

43
.0

33
%

91
.5

24
%

27
,6

35
25

2m
85

0,
06

0
52

,2
21

di
ff

7
m

q8
ed

1
43

.0
33

%
91

.5
24

%
27

,6
35

25
2m

85
0,

06
0

52
,2

21
di

ff
7

m
q7

ed
1

43
.0

33
%

91
.5

24
%

27
,6

35
25

8m
85

0,
06

0
52

,2
21

di
ff

7
m

q6
ed

1
43

.0
33

%
91

.5
24

%
27

,6
35

25
8m

85
0,

06
0

52
,2

21
di

ff
7

m
q4

ed
1

43
.0

15
%

91
.5

39
%

27
,6

35
15

6m
85

0,
06

0
53

,9
09

di
ff

7
m

q3
ed

1
43

.0
15

%
91

.5
39

%
27

,6
35

15
6m

85
0,

06
0

53
,9

09
di

ff
7

m
q2

ed
1

43
.0

15
%

91
.5

39
%

27
,6

35
15

5m
85

0,
06

0
53

,9
09

di
ff

7
m

q1
ed

1
43

.0
15

%
91

.5
39

%
27

,6
35

15
5m

85
0,

06
0

53
,9

09
di

ff
7

m
q5

ed
1

43
.0

02
%

91
.5

03
%

27
,6

35
26

0m
85

0,
06

0
59

,8
73

di
ff

6
m

q4
ed

1
42

.8
91

%
91

.4
56

%
27

,6
69

27
2m

85
0,

63
6

22
,7

60
di

ff
6

m
q3

ed
1

42
.8

91
%

91
.4

56
%

27
,6

69
27

2m
85

0,
63

6
22

,7
60

di
ff

6
m

q2
ed

1
42

.8
91

%
91

.4
56

%
27

,6
69

27
1m

85
0,

63
6

22
,7

60
di

ff
6

m
q1

ed
1

42
.8

91
%

91
.4

56
%

27
,6

69
27

1m
85

0,
63

6
22

,7
60

di
ff

6
m

q9
ed

1
42

.8
43

%
91

.4
60

%
27

,6
69

47
5m

85
0,

63
6

21
,2

87
di

ff
6

m
q8

ed
1

42
.8

43
%

91
.4

60
%

27
,6

69
47

5m
85

0,
63

6
21

,2
87

di
ff

6
m

q7
ed

1
42

.8
43

%
91

.4
60

%
27

,6
69

48
8m

85
0,

63
6

21
,2

87
di

ff
6

m
q6

ed
1

42
.8

43
%

91
.4

60
%

27
,6

69
48

7m
85

0,
63

6
21

,2
87

di
ff

6
m

q5
ed

1
42

.7
44

%
91

.3
99

%
27

,6
70

49
2m

85
0,

65
4

27
,3

92

194

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

2
m

q5
ed

1
42

.6
65

%
91

.3
36

%
27

,6
62

96
m

85
0,

67
0

63
,9

51
di

ff
1

m
q5

ed
1

42
.6

62
%

91
.3

46
%

27
,6

63
96

m
85

0,
63

4
48

,9
56

di
ff

5
m

q5
ed

1
42

.6
17

%
91

.4
00

%
27

,6
88

16
6m

85
1,

21
8

43
,5

92
di

ff
3

m
q5

ed
1

42
.6

17
%

91
.4

00
%

27
,6

88
21

6m
85

1,
21

8
43

,5
93

di
ff

5
m

q4
ed

1
42

.5
61

%
91

.3
66

%
27

,6
88

15
2m

85
1,

20
1

40
,2

26
di

ff
5

m
q3

ed
1

42
.5

61
%

91
.3

66
%

27
,6

88
15

2m
85

1,
20

1
40

,2
26

di
ff

5
m

q2
ed

1
42

.5
61

%
91

.3
66

%
27

,6
88

15
2m

85
1,

20
1

40
,2

26
di

ff
5

m
q1

ed
1

42
.5

61
%

91
.3

66
%

27
,6

88
15

2m
85

1,
20

1
40

,2
26

di
ff

3
m

q4
ed

1
42

.5
41

%
91

.3
62

%
27

,6
88

20
2m

85
1,

20
1

40
,1

53
di

ff
3

m
q3

ed
1

42
.5

41
%

91
.3

62
%

27
,6

88
20

2m
85

1,
20

1
40

,1
53

di
ff

3
m

q2
ed

1
42

.5
41

%
91

.3
62

%
27

,6
88

20
2m

85
1,

20
1

40
,1

53
di

ff
3

m
q1

ed
1

42
.5

41
%

91
.3

62
%

27
,6

88
20

1m
85

1,
20

1
40

,1
53

di
ff

5
m

q9
ed

1
42

.5
35

%
91

.3
68

%
27

,6
88

16
4m

85
1,

20
1

39
,3

56
di

ff
5

m
q8

ed
1

42
.5

35
%

91
.3

68
%

27
,6

88
16

4m
85

1,
20

1
39

,3
56

di
ff

5
m

q7
ed

1
42

.5
35

%
91

.3
68

%
27

,6
88

16
5m

85
1,

20
1

39
,3

56
di

ff
5

m
q6

ed
1

42
.5

35
%

91
.3

68
%

27
,6

88
16

5m
85

1,
20

1
39

,3
56

di
ff

3
m

q9
ed

1
42

.5
35

%
91

.3
68

%
27

,6
88

21
4m

85
1,

20
1

39
,3

56
di

ff
3

m
q8

ed
1

42
.5

35
%

91
.3

68
%

27
,6

88
21

4m
85

1,
20

1
39

,3
56

di
ff

3
m

q7
ed

1
42

.5
35

%
91

.3
68

%
27

,6
88

21
5m

85
1,

20
1

39
,3

56
di

ff
3

m
q6

ed
1

42
.5

35
%

91
.3

68
%

27
,6

88
21

5m
85

1,
20

1
39

,3
56

di
ff

1
m

q4
ed

1
42

.5
12

%
91

.2
90

%
27

,6
64

95
m

85
0,

62
1

45
,2

45
di

ff
1

m
q3

ed
1

42
.5

12
%

91
.2

90
%

27
,6

64
95

m
85

0,
62

1
45

,2
45

di
ff

1
m

q2
ed

1
42

.5
12

%
91

.2
90

%
27

,6
64

95
m

85
0,

62
1

45
,2

45
di

ff
1

m
q1

ed
1

42
.5

12
%

91
.2

90
%

27
,6

64
95

m
85

0,
62

1
45

,2
45

di
ff

1
m

q9
ed

1
42

.5
02

%
91

.2
90

%
27

,6
62

96
m

85
0,

60
3

44
,7

23
di

ff
1

m
q8

ed
1

42
.5

02
%

91
.2

90
%

27
,6

62
96

m
85

0,
60

3
44

,7
23

di
ff

1
m

q7
ed

1
42

.5
02

%
91

.2
90

%
27

,6
62

96
m

85
0,

60
3

44
,7

23

195

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

1
m

q6
ed

1
42

.5
02

%
91

.2
90

%
27

,6
62

96
m

85
0,

60
3

44
,7

23
di

ff
2

m
q9

ed
1

42
.4

60
%

91
.2

94
%

27
,6

62
95

m
85

0,
67

0
60

,1
29

di
ff

2
m

q8
ed

1
42

.4
60

%
91

.2
94

%
27

,6
62

95
m

85
0,

67
0

60
,1

29
di

ff
2

m
q7

ed
1

42
.4

60
%

91
.2

94
%

27
,6

62
96

m
85

0,
67

0
60

,1
29

di
ff

2
m

q6
ed

1
42

.4
60

%
91

.2
94

%
27

,6
62

96
m

85
0,

67
0

60
,1

29
di

ff
2

m
q4

ed
1

42
.4

37
%

91
.2

85
%

27
,6

62
95

m
85

0,
65

3
62

,1
85

di
ff

2
m

q3
ed

1
42

.4
37

%
91

.2
85

%
27

,6
62

95
m

85
0,

65
3

62
,1

85
di

ff
2

m
q2

ed
1

42
.4

37
%

91
.2

85
%

27
,6

62
95

m
85

0,
65

3
62

,1
85

di
ff

2
m

q1
ed

1
42

.4
37

%
91

.2
85

%
27

,6
62

95
m

85
0,

65
3

62
,1

85
di

ff
8

m
q5

ed
1

42
.4

15
%

91
.3

02
%

27
,6

85
34

8m
85

1,
10

5
34

,1
44

di
ff

4
m

q5
ed

1
42

.4
15

%
91

.3
02

%
27

,6
85

25
4m

85
1,

10
5

34
,1

42
di

ff
4

m
q4

ed
1

42
.3

55
%

91
.2

68
%

27
,6

84
22

6m
85

1,
07

9
30

,4
87

di
ff

4
m

q3
ed

1
42

.3
55

%
91

.2
68

%
27

,6
84

22
6m

85
1,

07
9

30
,4

87
di

ff
4

m
q2

ed
1

42
.3

55
%

91
.2

68
%

27
,6

84
22

6m
85

1,
07

9
30

,4
87

di
ff

4
m

q1
ed

1
42

.3
55

%
91

.2
68

%
27

,6
84

22
6m

85
1,

07
9

30
,4

87
di

ff
8

m
q9

ed
1

42
.3

44
%

91
.2

71
%

27
,6

85
34

7m
85

1,
08

7
29

,8
01

di
ff

8
m

q8
ed

1
42

.3
44

%
91

.2
71

%
27

,6
85

34
5m

85
1,

08
7

29
,8

01
di

ff
8

m
q7

ed
1

42
.3

44
%

91
.2

71
%

27
,6

85
34

7m
85

1,
08

7
29

,8
01

di
ff

8
m

q6
ed

1
42

.3
44

%
91

.2
71

%
27

,6
85

34
7m

85
1,

08
7

29
,8

01
di

ff
4

m
q9

ed
1

42
.3

44
%

91
.2

71
%

27
,6

85
25

1m
85

1,
08

7
29

,8
01

di
ff

4
m

q8
ed

1
42

.3
44

%
91

.2
71

%
27

,6
85

25
1m

85
1,

08
7

29
,8

01
di

ff
4

m
q7

ed
1

42
.3

44
%

91
.2

71
%

27
,6

85
25

3m
85

1,
08

7
29

,8
01

di
ff

4
m

q6
ed

1
42

.3
44

%
91

.2
71

%
27

,6
85

25
3m

85
1,

08
7

29
,8

01
di

ff
8

m
q4

ed
1

42
.3

32
%

91
.2

64
%

27
,6

84
31

9m
85

1,
07

9
30

,4
50

di
ff

8
m

q3
ed

1
42

.3
32

%
91

.2
64

%
27

,6
84

31
9m

85
1,

07
9

30
,4

50
di

ff
8

m
q2

ed
1

42
.3

32
%

91
.2

64
%

27
,6

84
31

9m
85

1,
07

9
30

,4
50

di
ff

8
m

q1
ed

1
42

.3
32

%
91

.2
64

%
27

,6
84

31
9m

85
1,

07
9

30
,4

50

196

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

8
m

q5
ed

4
39

.2
79

%
88

.4
49

%
27

,7
31

34
8m

85
2,

04
3

26
,2

89
di

ff
4

m
q5

ed
4

39
.2

79
%

88
.4

49
%

27
,7

31
25

5m
85

2,
04

3
26

,2
87

di
ff

8
m

q9
ed

4
39

.2
51

%
88

.4
31

%
27

,7
31

35
4m

85
2,

04
3

22
,6

55
di

ff
8

m
q8

ed
4

39
.2

51
%

88
.4

31
%

27
,7

31
34

5m
85

2,
04

3
22

,6
55

di
ff

8
m

q7
ed

4
39

.2
51

%
88

.4
31

%
27

,7
31

34
7m

85
2,

04
3

22
,6

55
di

ff
8

m
q6

ed
4

39
.2

51
%

88
.4

31
%

27
,7

31
34

7m
85

2,
04

3
22

,6
55

di
ff

4
m

q9
ed

4
39

.2
51

%
88

.4
31

%
27

,7
31

25
1m

85
2,

04
3

22
,6

55
di

ff
4

m
q8

ed
4

39
.2

51
%

88
.4

31
%

27
,7

31
25

1m
85

2,
04

3
22

,6
55

di
ff

4
m

q7
ed

4
39

.2
51

%
88

.4
31

%
27

,7
31

25
3m

85
2,

04
3

22
,6

55
di

ff
4

m
q6

ed
4

39
.2

51
%

88
.4

31
%

27
,7

31
25

3m
85

2,
04

3
22

,6
55

di
ff

4
m

q4
ed

4
39

.1
87

%
88

.4
01

%
27

,7
31

22
7m

85
2,

04
3

25
,7

49
di

ff
4

m
q3

ed
4

39
.1

87
%

88
.4

01
%

27
,7

31
22

6m
85

2,
04

3
25

,7
49

di
ff

4
m

q2
ed

4
39

.1
87

%
88

.4
01

%
27

,7
31

22
7m

85
2,

04
3

25
,7

49
di

ff
4

m
q1

ed
4

39
.1

87
%

88
.4

01
%

27
,7

31
22

6m
85

2,
04

3
25

,7
49

di
ff

8
m

q4
ed

4
39

.1
62

%
88

.4
00

%
27

,7
31

31
9m

85
2,

04
3

25
,7

01
di

ff
8

m
q3

ed
4

39
.1

62
%

88
.4

00
%

27
,7

31
31

9m
85

2,
04

3
25

,7
01

di
ff

8
m

q2
ed

4
39

.1
62

%
88

.4
00

%
27

,7
31

31
9m

85
2,

04
3

25
,7

01
di

ff
8

m
q1

ed
4

39
.1

62
%

88
.4

00
%

27
,7

31
31

9m
85

2,
04

3
25

,7
01

di
ff

6
m

q4
ed

4
39

.1
29

%
88

.2
99

%
27

,7
30

27
2m

85
2,

04
0

26
,9

31
di

ff
6

m
q3

ed
4

39
.1

29
%

88
.2

99
%

27
,7

30
27

2m
85

2,
04

0
26

,9
31

di
ff

6
m

q2
ed

4
39

.1
29

%
88

.2
99

%
27

,7
30

27
2m

85
2,

04
0

26
,9

31
di

ff
6

m
q1

ed
4

39
.1

29
%

88
.2

99
%

27
,7

30
27

1m
85

2,
04

0
26

,9
31

di
ff

5
m

q5
ed

4
39

.1
09

%
88

.4
54

%
27

,7
30

16
6m

85
2,

04
0

33
,6

66
di

ff
3

m
q5

ed
4

39
.1

09
%

88
.4

54
%

27
,7

30
21

6m
85

2,
04

0
33

,6
66

di
ff

5
m

q9
ed

4
39

.0
91

%
88

.4
36

%
27

,7
30

16
5m

85
2,

04
0

30
,1

34
di

ff
5

m
q8

ed
4

39
.0

91
%

88
.4

36
%

27
,7

30
16

5m
85

2,
04

0
30

,1
34

di
ff

5
m

q7
ed

4
39

.0
91

%
88

.4
36

%
27

,7
30

16
6m

85
2,

04
0

30
,1

34

197

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

5
m

q6
ed

4
39

.0
91

%
88

.4
36

%
27

,7
30

16
5m

85
2,

04
0

30
,1

34
di

ff
3

m
q9

ed
4

39
.0

91
%

88
.4

36
%

27
,7

30
21

4m
85

2,
04

0
30

,1
34

di
ff

3
m

q8
ed

4
39

.0
91

%
88

.4
36

%
27

,7
30

21
4m

85
2,

04
0

30
,1

34
di

ff
3

m
q7

ed
4

39
.0

91
%

88
.4

36
%

27
,7

30
21

5m
85

2,
04

0
30

,1
34

di
ff

3
m

q6
ed

4
39

.0
91

%
88

.4
36

%
27

,7
30

21
5m

85
2,

04
0

30
,1

34
di

ff
6

m
q9

ed
4

39
.0

59
%

88
.3

30
%

27
,7

30
47

8m
85

2,
04

0
20

,0
77

di
ff

6
m

q8
ed

4
39

.0
59

%
88

.3
30

%
27

,7
30

47
6m

85
2,

04
0

20
,0

77
di

ff
6

m
q7

ed
4

39
.0

59
%

88
.3

30
%

27
,7

30
48

8m
85

2,
04

0
20

,0
77

di
ff

6
m

q6
ed

4
39

.0
59

%
88

.3
30

%
27

,7
30

48
8m

85
2,

04
0

20
,0

77
di

ff
5

m
q4

ed
4

39
.0

22
%

88
.3

98
%

27
,7

30
15

2m
85

2,
04

0
33

,7
68

di
ff

5
m

q3
ed

4
39

.0
22

%
88

.3
98

%
27

,7
30

15
2m

85
2,

04
0

33
,7

68
di

ff
5

m
q2

ed
4

39
.0

22
%

88
.3

98
%

27
,7

30
15

2m
85

2,
04

0
33

,7
68

di
ff

5
m

q1
ed

4
39

.0
22

%
88

.3
98

%
27

,7
30

15
2m

85
2,

04
0

33
,7

68
di

ff
3

m
q4

ed
4

39
.0

10
%

88
.4

05
%

27
,7

30
20

2m
85

2,
04

0
33

,6
14

di
ff

3
m

q3
ed

4
39

.0
10

%
88

.4
05

%
27

,7
30

20
2m

85
2,

04
0

33
,6

14
di

ff
3

m
q2

ed
4

39
.0

10
%

88
.4

05
%

27
,7

30
20

2m
85

2,
04

0
33

,6
14

di
ff

3
m

q1
ed

4
39

.0
10

%
88

.4
05

%
27

,7
30

20
2m

85
2,

04
0

33
,6

14
di

ff
1

m
q9

ed
4

38
.7

90
%

88
.2

09
%

27
,7

31
96

m
85

2,
04

3
37

,0
04

di
ff

1
m

q8
ed

4
38

.7
90

%
88

.2
09

%
27

,7
31

96
m

85
2,

04
3

37
,0

04
di

ff
1

m
q7

ed
4

38
.7

90
%

88
.2

09
%

27
,7

31
96

m
85

2,
04

3
37

,0
04

di
ff

1
m

q6
ed

4
38

.7
90

%
88

.2
09

%
27

,7
31

96
m

85
2,

04
3

37
,0

04
di

ff
1

m
q5

ed
4

38
.7

83
%

88
.1

98
%

27
,7

31
96

m
85

2,
04

3
38

,7
63

di
ff

1
m

q4
ed

4
38

.7
28

%
88

.1
92

%
27

,7
31

95
m

85
2,

04
3

37
,4

24
di

ff
1

m
q3

ed
4

38
.7

28
%

88
.1

92
%

27
,7

31
95

m
85

2,
04

3
37

,4
24

di
ff

1
m

q2
ed

4
38

.7
28

%
88

.1
92

%
27

,7
31

95
m

85
2,

04
3

37
,4

24
di

ff
1

m
q1

ed
4

38
.7

28
%

88
.1

92
%

27
,7

31
95

m
85

2,
04

3
37

,4
24

di
ff

2
m

q4
ed

4
38

.6
70

%
88

.2
80

%
27

,7
30

95
m

85
2,

04
0

56
,9

68

198

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

2
m

q3
ed

4
38

.6
70

%
88

.2
80

%
27

,7
30

95
m

85
2,

04
0

56
,9

68
di

ff
2

m
q2

ed
4

38
.6

70
%

88
.2

80
%

27
,7

30
95

m
85

2,
04

0
56

,9
68

di
ff

2
m

q1
ed

4
38

.6
70

%
88

.2
80

%
27

,7
30

95
m

85
2,

04
0

56
,9

68
di

ff
2

m
q9

ed
4

38
.6

64
%

88
.2

63
%

27
,7

30
96

m
85

2,
04

0
54

,2
14

di
ff

2
m

q8
ed

4
38

.6
64

%
88

.2
63

%
27

,7
30

96
m

85
2,

04
0

54
,2

14
di

ff
2

m
q7

ed
4

38
.6

64
%

88
.2

63
%

27
,7

30
96

m
85

2,
04

0
54

,2
14

di
ff

2
m

q6
ed

4
38

.6
64

%
88

.2
63

%
27

,7
30

96
m

85
2,

04
0

54
,2

14
di

ff
2

m
q5

ed
4

38
.6

59
%

88
.2

25
%

27
,7

30
96

m
85

2,
04

0
54

,3
54

di
ff

6
m

q5
ed

4
38

.5
59

%
88

.1
23

%
27

,7
30

49
2m

85
2,

04
0

26
,8

83
di

ff
7

m
q9

ed
4

37
.7

85
%

88
.0

77
%

27
,7

30
25

3m
85

2,
04

0
33

,4
81

di
ff

7
m

q8
ed

4
37

.7
85

%
88

.0
77

%
27

,7
30

25
2m

85
2,

04
0

33
,4

81
di

ff
7

m
q7

ed
4

37
.7

85
%

88
.0

77
%

27
,7

30
25

8m
85

2,
04

0
33

,4
81

di
ff

7
m

q6
ed

4
37

.7
85

%
88

.0
77

%
27

,7
30

25
8m

85
2,

04
0

33
,4

81
di

ff
7

m
q4

ed
4

37
.6

52
%

88
.0

26
%

27
,7

30
15

6m
85

2,
04

0
40

,7
67

di
ff

7
m

q3
ed

4
37

.6
52

%
88

.0
26

%
27

,7
30

15
6m

85
2,

04
0

40
,7

67
di

ff
7

m
q2

ed
4

37
.6

52
%

88
.0

26
%

27
,7

30
15

5m
85

2,
04

0
40

,7
67

di
ff

7
m

q1
ed

4
37

.6
52

%
88

.0
26

%
27

,7
30

15
6m

85
2,

04
0

40
,7

67
di

ff
7

m
q5

ed
4

37
.2

89
%

87
.9

20
%

27
,7

30
26

0m
85

2,
04

0
41

,9
85

di
ff

7
m

q9
ed

2
30

.2
10

%
85

.1
76

%
28

,4
48

25
2m

87
4,

14
3

0
di

ff
7

m
q8

ed
2

30
.2

10
%

85
.1

76
%

28
,4

48
25

2m
87

4,
14

3
0

di
ff

7
m

q7
ed

2
30

.2
10

%
85

.1
76

%
28

,4
48

25
8m

87
4,

14
3

0
di

ff
7

m
q6

ed
2

30
.2

10
%

85
.1

76
%

28
,4

48
25

8m
87

4,
14

3
0

di
ff

7
m

q4
ed

2
30

.1
93

%
85

.1
82

%
28

,4
48

15
6m

87
4,

14
3

0
di

ff
7

m
q3

ed
2

30
.1

93
%

85
.1

82
%

28
,4

48
15

6m
87

4,
14

3
0

di
ff

7
m

q2
ed

2
30

.1
93

%
85

.1
82

%
28

,4
48

15
5m

87
4,

14
3

0
di

ff
7

m
q1

ed
2

30
.1

93
%

85
.1

82
%

28
,4

48
15

5m
87

4,
14

3
0

di
ff

7
m

q5
ed

2
30

.1
46

%
85

.1
68

%
28

,4
48

26
0m

87
4,

14
3

0

199

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

5
m

q5
ed

2
30

.0
34

%
85

.3
09

%
28

,4
48

16
6m

87
4,

14
3

0
di

ff
3

m
q5

ed
2

30
.0

34
%

85
.3

09
%

28
,4

48
21

6m
87

4,
14

3
0

di
ff

5
m

q9
ed

2
30

.0
20

%
85

.2
81

%
28

,4
48

16
5m

87
4,

14
3

0
di

ff
5

m
q8

ed
2

30
.0

20
%

85
.2

81
%

28
,4

48
16

5m
87

4,
14

3
0

di
ff

5
m

q7
ed

2
30

.0
20

%
85

.2
81

%
28

,4
48

16
6m

87
4,

14
3

0
di

ff
5

m
q6

ed
2

30
.0

20
%

85
.2

81
%

28
,4

48
16

6m
87

4,
14

3
0

di
ff

3
m

q9
ed

2
30

.0
20

%
85

.2
81

%
28

,4
48

21
5m

87
4,

14
3

0
di

ff
3

m
q8

ed
2

30
.0

20
%

85
.2

81
%

28
,4

48
21

5m
87

4,
14

3
0

di
ff

3
m

q7
ed

2
30

.0
20

%
85

.2
81

%
28

,4
48

21
5m

87
4,

14
3

0
di

ff
3

m
q6

ed
2

30
.0

20
%

85
.2

81
%

28
,4

48
21

5m
87

4,
14

3
0

di
ff

6
m

q5
ed

2
30

.0
15

%
85

.2
06

%
28

,4
48

49
3m

87
4,

14
3

0
di

ff
3

m
q4

ed
2

30
.0

10
%

85
.2

69
%

28
,4

48
20

2m
87

4,
14

3
0

di
ff

3
m

q3
ed

2
30

.0
10

%
85

.2
69

%
28

,4
48

20
2m

87
4,

14
3

0
di

ff
3

m
q2

ed
2

30
.0

10
%

85
.2

69
%

28
,4

48
20

2m
87

4,
14

3
0

di
ff

3
m

q1
ed

2
30

.0
10

%
85

.2
69

%
28

,4
48

20
2m

87
4,

14
3

0
di

ff
5

m
q4

ed
2

30
.0

08
%

85
.2

68
%

28
,4

48
15

2m
87

4,
14

3
0

di
ff

5
m

q3
ed

2
30

.0
08

%
85

.2
68

%
28

,4
48

15
2m

87
4,

14
3

0
di

ff
5

m
q2

ed
2

30
.0

08
%

85
.2

68
%

28
,4

48
15

2m
87

4,
14

3
0

di
ff

5
m

q1
ed

2
30

.0
08

%
85

.2
68

%
28

,4
48

15
2m

87
4,

14
3

0
di

ff
2

m
q9

ed
2

29
.9

86
%

85
.2

83
%

28
,4

48
96

m
87

4,
14

3
0

di
ff

2
m

q8
ed

2
29

.9
86

%
85

.2
83

%
28

,4
48

96
m

87
4,

14
3

0
di

ff
2

m
q7

ed
2

29
.9

86
%

85
.2

83
%

28
,4

48
96

m
87

4,
14

3
0

di
ff

2
m

q6
ed

2
29

.9
86

%
85

.2
83

%
28

,4
48

96
m

87
4,

14
3

0
di

ff
6

m
q9

ed
2

29
.9

83
%

85
.1

36
%

28
,4

48
47

6m
87

4,
14

3
0

di
ff

6
m

q8
ed

2
29

.9
83

%
85

.1
36

%
28

,4
48

47
6m

87
4,

14
3

0
di

ff
6

m
q7

ed
2

29
.9

83
%

85
.1

36
%

28
,4

48
48

8m
87

4,
14

3
0

di
ff

6
m

q6
ed

2
29

.9
83

%
85

.1
36

%
28

,4
48

48
7m

87
4,

14
3

0

200

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

6
m

q4
ed

2
29

.9
63

%
85

.1
21

%
28

,4
48

27
2m

87
4,

14
3

0
di

ff
6

m
q3

ed
2

29
.9

63
%

85
.1

21
%

28
,4

48
27

2m
87

4,
14

3
0

di
ff

6
m

q2
ed

2
29

.9
63

%
85

.1
21

%
28

,4
48

27
2m

87
4,

14
3

0
di

ff
6

m
q1

ed
2

29
.9

63
%

85
.1

21
%

28
,4

48
27

2m
87

4,
14

3
0

di
ff

2
m

q5
ed

2
29

.9
62

%
85

.2
86

%
28

,4
48

96
m

87
4,

14
3

0
di

ff
2

m
q4

ed
2

29
.9

62
%

85
.2

70
%

28
,4

48
95

m
87

4,
14

3
0

di
ff

2
m

q3
ed

2
29

.9
62

%
85

.2
70

%
28

,4
48

95
m

87
4,

14
3

0
di

ff
2

m
q2

ed
2

29
.9

62
%

85
.2

70
%

28
,4

48
95

m
87

4,
14

3
0

di
ff

2
m

q1
ed

2
29

.9
62

%
85

.2
70

%
28

,4
48

95
m

87
4,

14
3

0
di

ff
4

m
q4

ed
2

29
.8

97
%

85
.2

50
%

28
,4

48
22

6m
87

4,
14

3
0

di
ff

4
m

q3
ed

2
29

.8
97

%
85

.2
50

%
28

,4
48

22
7m

87
4,

14
3

0
di

ff
4

m
q2

ed
2

29
.8

97
%

85
.2

50
%

28
,4

48
22

6m
87

4,
14

3
0

di
ff

4
m

q1
ed

2
29

.8
97

%
85

.2
50

%
28

,4
48

22
6m

87
4,

14
3

0
di

ff
8

m
q5

ed
2

29
.8

95
%

85
.2

73
%

28
,4

48
34

8m
87

4,
14

3
0

di
ff

4
m

q5
ed

2
29

.8
95

%
85

.2
73

%
28

,4
48

25
5m

87
4,

14
3

0
di

ff
8

m
q9

ed
2

29
.8

93
%

85
.2

49
%

28
,4

48
34

6m
87

4,
14

3
0

di
ff

8
m

q8
ed

2
29

.8
93

%
85

.2
49

%
28

,4
48

34
6m

87
4,

14
3

0
di

ff
8

m
q7

ed
2

29
.8

93
%

85
.2

49
%

28
,4

48
34

7m
87

4,
14

3
0

di
ff

8
m

q6
ed

2
29

.8
93

%
85

.2
49

%
28

,4
48

34
7m

87
4,

14
3

0
di

ff
4

m
q9

ed
2

29
.8

93
%

85
.2

49
%

28
,4

48
25

1m
87

4,
14

3
0

di
ff

4
m

q8
ed

2
29

.8
93

%
85

.2
49

%
28

,4
48

25
1m

87
4,

14
3

0
di

ff
4

m
q7

ed
2

29
.8

93
%

85
.2

49
%

28
,4

48
25

3m
87

4,
14

3
0

di
ff

4
m

q6
ed

2
29

.8
93

%
85

.2
49

%
28

,4
48

25
3m

87
4,

14
3

0
di

ff
8

m
q4

ed
2

29
.8

92
%

85
.2

47
%

28
,4

48
31

9m
87

4,
14

3
0

di
ff

8
m

q3
ed

2
29

.8
92

%
85

.2
47

%
28

,4
48

32
0m

87
4,

14
3

0
di

ff
8

m
q2

ed
2

29
.8

92
%

85
.2

47
%

28
,4

48
31

9m
87

4,
14

3
0

di
ff

8
m

q1
ed

2
29

.8
92

%
85

.2
47

%
28

,4
48

31
9m

87
4,

14
3

0

201

D
iff

M
at

ch
Q

ua
lit

y
E

di
tD

is
t

PR
-A

U
C

R
O

C
-A

U
C

N
um

R
ev

s
R

un
Ti

m
e

To
ta

lT
ri

an
gl

es
B

ad
Tr

ia
ng

le
s

di
ff

1
m

q9
ed

2
29

.8
47

%
85

.2
22

%
28

,4
48

96
m

87
4,

14
3

0
di

ff
1

m
q8

ed
2

29
.8

47
%

85
.2

22
%

28
,4

48
96

m
87

4,
14

3
0

di
ff

1
m

q7
ed

2
29

.8
47

%
85

.2
22

%
28

,4
48

96
m

87
4,

14
3

0
di

ff
1

m
q6

ed
2

29
.8

47
%

85
.2

22
%

28
,4

48
96

m
87

4,
14

3
0

di
ff

1
m

q5
ed

2
29

.8
36

%
85

.2
42

%
28

,4
48

96
m

87
4,

14
3

0
di

ff
1

m
q4

ed
2

29
.8

03
%

85
.2

01
%

28
,4

48
95

m
87

4,
14

3
0

di
ff

1
m

q3
ed

2
29

.8
03

%
85

.2
01

%
28

,4
48

95
m

87
4,

14
3

0
di

ff
1

m
q2

ed
2

29
.8

03
%

85
.2

01
%

28
,4

48
95

m
87

4,
14

3
0

di
ff

1
m

q1
ed

2
29

.8
03

%
85

.2
01

%
28

,4
48

95
m

87
4,

14
3

0
Ta

bl
e

F.
1:

C
om

pa
ri

so
n

of
ed

it
lo

ng
ev

ity
pe

rf
or

m
an

ce
,s

or
te

d
by

PR
-A

U
C

.

202

Bibliography

[1] B. Thomas Adler, Krishnendu Chatterjee, Luca de Alfaro, Marco Faella, Ian Pye,
and Vishwanath Raman. Assigning trust to Wikipedia content. In Proceedings
of the 4th International Symposium on Wikis, WikiSym 2008. ACM Press, 2008.

[2] B. Thomas Adler and Luca de Alfaro. A content-driven reputation system for
the Wikipedia. In Proceedings of the 16th International World Wide Web Con-
ference, WWW 2007. ACM Press, 2007.

[3] B. Thomas Adler, Luca de Alfaro, Santiago M. Mola-Velasco, Paolo Rosso, and
Andrew G. West. Wikipedia vandalism detection: Combining natural language,
metadata, and reputation features. In Alexander Gelbukh, editor, CICLing 2011:
Proceedings of the 12th International Conference on Intelligent Text Process-
ing and Computational Linguistics, volume 6609 of Lecture Notes in Computer
Science, pages 277–288. Springer Berlin / Heidelberg, 2011.

[4] B. Thomas Adler, Luca de Alfaro, and Ian Pye. Detecting Wikipedia vandalism
using WikiTrust. In Martin Braschler and Donna Harman, editors, Notebook
Papers of CLEF 2010 LABs and Workshops, 22-23 September, Padua, Italy,
September 2010.

[5] B. Thomas Adler, Luca de Alfaro, Ian Pye, and Vishwanath Raman. Measuring
author contributions to the wikipedia. In Proceedings of the 4th International
Symposium on Wikis, WikiSym 2008. ACM Press, 2008.

[6] Bo Adler, Luca de Alfaro, and Ian Pye. Redesigning scientific reputation. The
Scientist, 24(9):30, September 2010.

[7] Denise Anthony, Sean W. Smith, and Tim Williamson. Explaining quality in
Internet collective goods: Zealots and Good Samaritans in the case of Wiki-
pedia. http://web.mit.edu/iandeseminar/Papers/Fall2005/
anthony.pdf, November 2005. (Retrieved on 6-Mar-2011.).

[8] Amit Belani. Vandalism detection in Wikipedia: a bag-of-words classifier ap-
proach. Computing Research Repository (CoRR), abs/1001.0700, 2010.

203

[9] Yochai Benkler. Coase’s Penguin, or Linux, and The Nature of the Firm. Yale
Law Journal, 112(3), December 2002.

[10] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.
In Proceedings of the 1996 IEEE Symposium on Security and Privacy, SP ’96,
pages 164–173. IEEE Computer Society, 1996.

[11] John Borland. See who’s editing Wikipedia — Diebold, the CIA, a campaign,
August 2007. http://www.wired.com/politics/onlinerights/
news/2007/08/wiki_tracker.

[12] Moira Burke and Robert Kraut. Taking up the mop: identifying future Wiki-
pedia administrators. In Extended Abstracts Proceedings of the 2008 Conference
on Human Factors in Computing Systems, CHI 2008, pages 3441–3446. ACM,
2008.

[13] Randal C. Burns and Darrell D.E. Long. A linear time, constant space differ-
encing algorithm. In Proceedings of the 16th IEEE International Performance,
Computing, and Communications Conference, IPCCC 1997, pages 429–436.
IEEE International, 1997.

[14] Brian Butler, Lee Sproull, Sara Kiesler, and Robert Kraut. Community effort
in online groups: Who does the work and why. In Weisband and Atwater, ed-
itors, Leadership at a Distance: Research in Technologically-supported Work.
Lawrence Erlbaum Associates, 2002.

[15] Jacobi Carter. ClueBot and vandalism on Wikipedia, 2008. [Online; accessed
2-Nov-2010].

[16] Jorge Cham. The origin of the theses, 2009. [Online; accessed 5-Mar-2012].

[17] Krishnendu Chatterjee, Luca de Alfaro, and Ian Pye. Robust content-driven
reputation. In Proceedings of the 1st ACM Workshop on Security and Artificial
Intelligence, AISec 2008. ACM Press, 2008.

[18] Si-Chi Chin, W. Nick Street, Padmini Srinivasan, and David Eichmann. Detect-
ing Wikipedia vandalism with active learning and statistical language models.
In WICOW ’10: Proceedings of the Fourth Workshop on Information Credibility
on the Web, Apr 2010.

[19] Clyde H. Coombs, Robyn M. Dawes, and Amos Tversky. Mathematical Psy-
chology: An Elementary Introduction. Prentice-Hall, 1970.

[20] Graham Cormode and S. Muthukrishnan. The string edit distance matching
problem with moves. ACM Transactions on Algorithms, 3(1):2:1–2:19, February
2007.

204

[21] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. J. Wiley
& Sons, 1991.

[22] Tom Cross. Puppy smoothies: Improving the reliability of open, collaborative
wikis. First Monday, 11(9), September 2006.

[23] Fred J. Damerau. A technique for computer detection and correction of spelling
errors. Communications of the ACM, 7(3), March 1964.

[24] Jesse Davis and Mark Goadrich. The relation between Precision-Recall and
ROC curves. In ICML’06: Proceedings of the 23rd International Conference on
Machine Learning, pages 233–240. ACM, 2006.

[25] Matthew Davis. Congress “made Wikipedia changes”. BBC News, Feb. 9, 2006.

[26] Luca de Alfaro, Ashutosh Kulshreshtha, Ian Pye, and B. Thomas Adler. Reputa-
tion systems for open collaboration. Communications of the ACM, 54(8):81–87,
August 2011.

[27] Chrysanthos Dellarocas. The digitization of word-of-mouth: Promises and chal-
lenges of online reputation systems. Management Science, 49(10):1407–1424,
October 2003.

[28] W. Erwin Diewert and Alice O. Nakamura. Concepts and measures of produc-
tivity: An introduction. In Lipsey and Nakamura, editors, Services Industries
and the Knowledge Based Economy. University of Calgary Press, 2005.

[29] Gregory Druck, Gerome Miklau, and Andrew McCallum. Learning to predict
the quality of contributions to wikipedia. In WikiAI’08: Proceedings of the Work-
shop on Wikipedia and Artificial Intelligence: An Evolving Synergy, pages 7–12.
AAAI Press, 2008.

[30] Michael D. Ekstrand and John T. Riedl. rv you’re dumb: Identifying discarded
work in Wiki article history. In Proceedings of the 5th International Symposium
on Wikis, WikiSym 2009. ACM Press, 2009.

[31] William Emigh and Susan C. Herring. Collaborative authoring on the Web: A
genre analysis of online encyclopedias. In HICSS ’05: Proceedings of the 38th
Hawaii International Conference on System Sciences, page 99a. IEEE Computer
Society, 2005.

[32] Robert E. Park et al. Software size measurement: A framework for counting
source statements. Technical Report CMU/SEI-92-TR-020, Carnegie Mellon
University, September 1992.

205

[33] F. Randall Farmer and Bryce Glass. Building Web Reputation Systems. O’Reilly
Media, Inc., 2010.

[34] Rudolph F. Flesch. A new readability yardstick. Journal of Applied Psychology,
32:221–233, 1948.

[35] Peter Kin-Fong Fong and Robert P. Biuk-Aghai. What did they do? deriving
high-level edit histories in wikis. In Proceedings of the 6th International Sym-
posium on Wikis, WikiSym 2010. ACM Press, 2010.

[36] Jim Giles. Internet encyclopedias go head to head. Nature, 438:900–901, 2005.

[37] Jennifer Ann Golbeck. Computing and Applying Trust in Web-Based Social
Networks. PhD thesis, University of Maryland, 2005.

[38] Preston Gralla. U.S. senator: It’s time to ban Wikipedia in schools, libraries.
http://blogs.computerworld.com/4598/u_s_senator_its_
time_to_ban_wikipedia_in_schools_libraries. [Online;
accessed 15-Nov-2010].

[39] Virgil Griffith. Wikiscanner: List anonymous wikipedia edits from interesting
organizations. http://wikiscanner.virgil.gr/.

[40] R. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Propagation
of trust and distrust. In Proceedings of the 13th International Conference on
World Wide Web, WWW ’04, pages 403–412. ACM, 2004.

[41] Robert Gunning. The Technique of Clear Writing. McGraw-Hill International
Book Co., New York, NY, 1952.

[42] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1999.

[43] Aaron Halfaker, Aniket Kittur, Robert Kraut, and John Riedl. A judy of your
peers: Quality, experience and ownership in wikipedia. In Proceedings of the
5th International Symposium on Wikis, WikiSym 2009. ACM Press, 2009.

[44] Aaron Halfaker, Aniket Kittur, and John Riedl. Don’t bite the newbies: How
reverts affect the quantity and quality of wikipedia work. In Proceedings of the
7th International Symposium on Wikis, WikiSym 2011. ACM Press, 2011.

[45] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten.
The WEKA data mining software: An update. SIGKDD Explorations, 11(1),
2009.

206

[46] Martin Hickman and Genevieve Roberts. Wikipedia — separating fact from
fiction. The New Zealand Herald, Feb. 13 2006.

[47] J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison.
Computing Science Technical Report 41, Bell Laboratories, 1976.

[48] Kelly Y. Itakura and Charles L.A. Clarke. Using dynamic Markov compression
to detect vandalism in the Wikipedia. In Proceedings of the 32nd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’09, pages 822–823. ACM Press, 2009.

[49] Karen Spärck Jones. A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of Documentation, 28(1):11–21, 1972.

[50] Patrick Juola. Authorship attribution. Foundations and Trends in Information
Retrieval, 1(3):233–334, December 2006.

[51] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigen-
trust algorithm for reputation management in P2P networks. In Proceedings of
the 12th International Conference on World Wide Web, WWW ’03, pages 640–
651. ACM, 2003.

[52] Raymond King. Contributor ranking system, 2007. White paper available from
http://trust.cse.ucsc.edu/Related_Work.

[53] Daniel Kinzler. Personal communication, January 2011.

[54] Aniket Kittur, Ed Chi, Bryan A. Pendleton, Bongwon Suh, and Todd Mytkowicz.
Power of the Few vs. Wisdom of the Crowd: Wikipedia and the rise of the
Bourgeoisie. Alt.CHI, 2007.

[55] Jon .M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46(5):604–632, 1999.

[56] Evan Lehmann. Rewriting history under the dome. The Sun, Jan. 27, 2006.

[57] Bo Leuf and Ward Cunningham. The Wiki Way. Quick Collaboration on the Web.
Addison-Wesley, 2001.

[58] V. I. Levenshtein. Binary codes capable of correcting insertions and reversals.
Soviet Physics Doklady, 10:707–710, 1966.

[59] Andrew Lih. Wikipedia as participatory journalism: Reliable sources? Metrics
for evaluating collaborative media as a news resources. In Proceedings of the
5th International Symposium on Online Journalism, 2004.

207

[60] Benjamin Livshits and Thomas Zimmermann. Dynamine: Finding common
error patterns by mining software revision histories. SIGSOFT Software Engi-
neering Notes, 30(5):296–305, September 2005.

[61] Roy Lowrance and Robert A. Wagner. An extension of the string-to-string
correction problem. Journal of the Association for Computing Machinery,
22(2):177–183, April 1975.

[62] Teun Lucassen and Jan Maarten Schraagen. Evaluating WikiTrust: A trust sup-
port tool for Wikipedia. First Monday, 16(5), May 2011.

[63] Owen Martin. Personal communication, January 2011.

[64] Deborah L. McGuinness, Honglei Zeng, Paulo Pinheiro da Silva, Li Ding,
Dhyanesh Narayanan, and Mayukh Bhaowal. Investigation into trust for col-
laborative information repositories: A Wikipedia case study. In Proceedings of
the WWW ’06 Workshop on Models of Trust for the Web, MTW ’06, 2006.

[65] Brian Mingus, Trevor Pincock, and Laura Rassbach. Using natural lan-
guage processing to determine the quality of Wikipedia articles. In Wikima-
nia, Taipei, Taiwan, 2007. http://wikimania2007.wikimedia.org/
wiki/Proceedings:BM1.

[66] Santiago M. Mola Velasco. Wikipedia vandalism detection through machine
learning: Feature review and new proposals. In Martin Braschler and Donna
Harman, editors, Notebook Papers of CLEF 2010 LABs and Workshops, 22-23
September, Padua, Italy, September 2010.

[67] Santiago M. Mola-Velasco. Wikipedia vandalism detection. In WWW 2011:
Proceedings of the 20th International World Wide Web Conference, pages 391–
396. ACM Press, 2011.

[68] Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorith-
mica, 1(2):251–266, 1986.

[69] Theodor Holm Nelson. Literary Machines. Mindful Press, 1981.

[70] Christine M. Neuwirth, Ravinder Chandhok, David S. Kaufer, Paul Erion, James
Morris, and Dale Miller. Flexible diff-ing in a collaborative writing system. In
Proceedings of the 1992 ACM Conference on Computer-Supported Cooperative
Work, CSCW 1992, pages 147–154. ACM, 1992.

[71] Yuki Noguchi. Palin’s Wikipedia entry gets overhaul. All Things Considered,
Aug. 29, 2008.

208

[72] Wolfgang Obst. Delta technique and string-to-string correction. In ESEC 1987:
Proceedings of the 1st European Software Engineering Conference, volume 289
of Lecture Notes in Computer Science, pages 64–68. Springer, 1987.

[73] Lynn Olanoff. School officials unite in banning Wikipedia. The Seattle Times,
Nov. 21 2007.

[74] Felipe Ortega and Jesus M. Gonzalez-Barahona. Quantitative analysis of the
Wikipedia community of users. In Proceedings of the 3rd International Sympo-
sium on Wikis, WikiSym 2007, pages 75–86, New York, NY, USA, 2007. ACM.

[75] Felipe Ortega, Jesus M. Gonzalez-Barahona, and Gregorio Robles. On the in-
equality of contributions to wikipedia. In Proceedings of the 41st Annual Hawaii
International Conference on System Sciences, HICSS 2008. IEEE Computer So-
ciety, 2008.

[76] José Felipe Ortega Soto. Wikipedia: A quantitiative analysis. PhD thesis, Uni-
versidad Rey Juan Carlos, Madrid, Spain, 2009.

[77] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageR-
ank citation ranking: Bringing order to the web. Technical Report 1999-66,
Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[78] Martin Potthast. Crowdsourcing a Wikipedia vandalism corpus. In Proceedings
of the 33rd International ACM SIGIR Conference, SIGIR 2010, pages 789–790.
ACM Press, Jul 2010.

[79] Martin Potthast, Benno Stein, and Robert Gerling. Automatic vandalism de-
tection in Wikipedia. In Proceedings of the 30th European Conference on IR
Research (ECIR ’08), volume 4956 of LNCS, pages 663–668. Springer-Verlag,
2008.

[80] Martin Potthast, Benno Stein, and Teresa Holfeld. Overview of the 1st Interna-
tional Competition on Wikipedia Vandalism Detection. In Martin Braschler and
Donna Harman, editors, Notebook Papers of CLEF 2010 LABs and Workshops,
22-23 September, Padua, Italy, September 2010.

[81] Reid Priedhorsky, Jilin Chen, Shyong K. Lam, Katherine Panciera, Loren Ter-
veen, and John Riedl. Creating, destroying, and restoring value in Wikipedia. In
Group’07: Proceedings of the International Conference on Supporting Group
Work, 2007.

[82] Evan Prodromou. personal communication, 2007.

209

[83] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2007.
ISBN 3-900051-07-0.

[84] Joseph Reagle. Wikipedia as an open content community. http://reagle.
org/joseph/2004/behav/wikipedia.html, 2004. (Retrieved on 6-
Mar-2011.).

[85] Christoph Reichenberger. Delta storage for arbitrary non-text files. In Proceed-
ings of the 3rd International Workshop on Software Configuration Management,
pages 144–152. ACM, 1991.

[86] Paul Resnick, Richard Zeckhauser, Eric Friedman, and Ko Kiwabara. Reputation
systems. Communications of the ACM, 43(12):45–48, 2000.

[87] Mikalai Sabel. Structuring wiki revision history. In Proceedings of the 3rd
International Symposium on Wikis, WikiSym 2007. ACM Press, 2007.

[88] P. A. Samuelson. A note on the pure theory of consumer’s behavior. Economica,
25(17):61–71, 1938.

[89] David Sankoff and Joseph B. Kruskal, editors. Time Warps, String Edits, and
Macromolecules: the Theory and Practice of Sequence Comparison. CSLI Pub-
lications, 1999.

[90] Stacy Schiff. Know it all: Can Wikipedia conquer expertise? The New Yorker,
Jul. 31, 2006.

[91] Herman P. Schultz. Software management metrics. Technical Report AD-A196
916, MITRE, May 1988.

[92] Katharine Q. Seelye. A little sleuthing unmasks writer of Wikipedia prank. The
New York Times, Dec. 11, 2005.

[93] Katharine Q. Seelye. Snared in the web of a Wikipedia liar. The New York Times,
Dec. 4, 2005.

[94] John Seigenthaler. A false wikipedia ‘biography’. USA Today, Nov. 29 2005.

[95] Koen Smets, Bart Goethals, and Brigitte Verdonk. Automatic vandalism detec-
tion in Wikipedia: Towards a machine learning approach. In WikiAI’08: Pro-
ceedings of the Workshop on Wikipedia and Artificial Intelligence: An Evolving
Synergy, pages 43–48. AAAI Press, 2008.

[96] T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195–197, 1981.

210

[97] BBC Staff. Fake professor in Wikipedia storm. BBC News, Mar. 6, 2007.

[98] Klauss Stein and Claudia Hess. Does it matter who contributes: a study on
featured articles in the german wikipedia. In Proceedings of the 18th conference
on Hypertext and hypermedia, HT ’07, pages 171–174, New York, NY, USA,
2007. ACM.

[99] Randall Stross. Anonymous Source Is Not the Same as Open Source. New
York Times, March 2006. http://www.nytimes.com/2006/03/12/
business/yourmoney/12digi.html.

[100] Bongwon Suh, Ed H. Chi, Aniket Kittur, and Bryan A. Pendleton. Lifting the
veil: improving accountability and social transparency in Wikipedia with wiki-
dashboard. In Proceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems, CHI ’08, pages 1037–1040, New York,
NY, USA, 2008. ACM.

[101] James Surowiecki. The Wisdom of Crowds: Why the Many are Smarter Than
the Few and How Collective Wisdom Shapes Business, Economies, Societies and
Nations. Doubleday, 2004.

[102] Aaron Swartz. Who writes Wikipedia? http://www.aaronsw.com/
weblog/whowriteswikipedia, September 2006. (Retrieved on 6-Mar-
2011.).

[103] Chris Taylor. Why commercial Wikis don’t work. http://money.
cnn.com/2007/02/21/magazines/business2/walledgardens.
biz2/index.htm, February 2007. (Retrieved on 9-May-2008.).

[104] Geoff Tennant. SIX SIGMA: SPC and TQM in Manufacturing and Services.
Ashgate Publishing, 2001.

[105] Walter F. Tichy. The string-to-string correction problem with block move. ACM
Transactions on Computer Systems, 2(4):309–321, 1984.

[106] Hal R. Varian. Revealed preference. In M. Szenberg, L. Ramrattan, and
A. Gottesman, editors, Samuelsonian Economics and the 21st Century. Oxford
University Press, 2006.

[107] Fernanda B. Viégas, Martin Wattenberg, and Kushal Dave. Studying cooperation
and conflict between authors with history flow visualizations. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 575–
582. ACM Press, 2004.

[108] Jakob Voß. Measuring wikipedia. In Proceedings of the 10th International
Conference of the ISSI, 2005.

211

[109] Robert A. Wagner. On the complexity of the extended string-to-string correc-
tion problem. In Proceedings of the 7th Annual ACM Symposium on Theory of
Computing, STOC 1975. ACM, 1975.

[110] Robert A. Wagner and Michael J. Fischer. The string-to-string correction prob-
lem. Journal of the Association for Computing Machinery, 21(1):168–173, Jan-
uary 1974.

[111] Jimmy Wales. Wikipedia, emergence, and the wisdom of crowds.
http://lists.wikimedia.org/pipermail/wikipedia-l/
2005-May/021764.html, May 2005. (Retrieved 6-Mar-2011.).

[112] Andrew G. West, Sampath Kannan, and Insup Lee. Detecting Wikipedia van-
dalism via spatio-temporal analysis of revision metadata. In EUROSEC’10:
Proceedings of the Third European Workshop on System Security, pages 22–28,
2010.

[113] Wikipedia. Politics of denmark — Wikipedia, the free encyclope-
dia, September 2006. http://en.wikipedia.org/w/index.php?
title=Politics_of_Denmark&oldid=77625823.

[114] Wikipedia. Politics of denmark — Wikipedia, the free encyclope-
dia, September 2006. http://en.wikipedia.org/w/index.php?
title=Politics_of_Denmark&oldid=77692452.

[115] Wikipedia. Information wants to be free — Wikipedia, the free encyclopedia,
2008. [Online; accessed 21-Feb-2011].

[116] Wikipedia. Nupedia — Wikipedia, the free encyclopedia, 2008. [Online; ac-
cessed 21-Feb-2011].

[117] Wikipedia. Wikipedia: Recent changes patrol — Wikipedia, the free encyclope-
dia, 2008. [Online; accessed 21-Feb-2011].

[118] Wikipedia. User:antivandalbot — Wikipedia, the free encyclopedia, 2010. [On-
line; accessed 2-Nov-2010].

[119] Wikipedia. User:cluebot — Wikipedia, the free encyclopedia, 2010. [Online;
accessed 2-Nov-2010].

[120] Wikipedia. User:martinbot — Wikipedia, the free encyclopedia, 2010. [Online;
accessed 2-Nov-2010].

[121] Wikipedia. Software quality — Wikipedia, the free encyclopedia, 2011. [Online;
accessed 13-Mar-2011].

212

[122] Wikipedia. Triangle inequality — Wikipedia, the free encyclopedia, 2011. [On-
line; accessed 27-Apr-2011].

[123] Wikipedia. Web 2.0 — Wikipedia, the free encyclopedia, 2011. [Online; ac-
cessed 5-Mar-2011].

[124] Wikipedia. Wikipedia:stiki — Wikipedia, the free encyclopedia, 2011. [Online;
accessed 8-Oct-2011].

[125] Dennis Wilkinson and Bernardo Huberman. Cooperation and quality in Wiki-
pedia. In Proceedings of the 3rd International Symposium on Wikis, WikiSym
2007, pages 157–164. ACM Press, 2007.

[126] Honglei Zeng, Maher A. Alhossaini, Richard Fikes, and Deborah L. McGuin-
ness. Mining revision history to assess trustworthiness of article fragments. In
Proceedings of the 2nd International Conference on Collaborative Computing:
Networking, Applications, and Worksharing, COLLABORATECOM, 2006.

[127] Honglei Zeng, Maher A. Alhoussaini, Li Ding, Richard Fikes, and Deborah L.
McGuinness. Computing trust from revision history. In Proceedings of the 2006
International Conference on Privacy, Security and Trust, 2006.

213

