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ABSTRACT

The method of using annihilation and creation operators in the theory
of atomic spectroscopy 1s examined in detall. Several examples of the effect
of configuration interaction on a configuration (nﬁ)N of equivalent electrons
are discussed. Illustrations are provided by drawing out the Feynman graphs
and interpreting them through the topologically equivalent angular-momentum
graphs of Jucys. The tensorial character of the anﬁihilation énd creation
operators is studied, and the connection between thelr reduced matrix elements
and fractional parentage coefficienﬁs is illustrated by several examples. The
introduction of gquasi-spin, together with operators of conjugation and comple-
mentarity, permits matrix elements of different configurations to be related.
A fofmal simplification takes place when triple tensors are used in the mani:
pulations. The annihilation and creation operators for a given né, taken with
all their commutators, are interpreted as the’infinitesimal operators of the

rotation group .in 8£ + 5 dimensions. Representations are discussed.
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I. INTRODUCTION

Theoretical analyses of atomic spectra~enjoy tWo advantages. The con-
tributions to the Hamiltonian are well defined, and the central-field approxi-
mation, on which the zero-order eigenfunctions are based, works extremely well.
Such improvements as can be made to the theory are essentially improvements in
technique; the basic framework of the theéry remains today virtually the same
as that described by Condon and Shortley in their classic work.l This is not
to say that the theory is insusceptible of significant development; indeed,
the work of Racah2~u has deeply influenced nuglear as well as atcomic spectros-
Ccopy. |

Cbnversely, progress in the treatment of the many-body problem in widely
differing fields may begrelevant to the theory of atomic spectra. It is the
purpose of this article to explore the applicability to atomic spectroscopy of
the méthod of ‘second quantization, an approach which has proved extremely
fruitful in the study of superconductivity5vand nuclear pairing forces,6 to
name but two apparently unrelated topics. Interest in applying this method to
nuclear;shell theory has been maintained since its value was pointed out by
Brink and Satchler.? Recent artiolesvby Wafanabe8 and by Lawson and Macfarlan69
have shown how matrix elements of operators in different configufations can be
related, thereby making transparent the origin of a number of formulae, that,

by the conventional methods of Racah, emerge from a study of fractional
1.0

Owing to the context of much of this work, it is not completely obvious
how the method can be exténded to atomic-shell theory, where the type of coup-
ling prevailing often makes it desirable to keep properties of operators and

eigenfunctions with respect to spin distinet from those with respect to orbit.
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In what follows, the notation is. chosen to be in line with that of atomic spec--
troscopy, and all the examples are selected from this field. lt is hoped that o

this will_emphasize the relevance of the method to the theory of atomic spectra.

' II. BASIC FORMULAE -

A. Annihilation and Creation Operators

‘The fundamenﬁal idea of the second~quantization method is . the trans—
ference to operators of properties that are ordinarily though£ of as being
characteristic -of eigenfunctlons. Suppose (@ B '?;v] denotes a normalized
N-electron determinantal product state, in which each Greek symbol is an abbre-

viation for the familiar quantum—number quartet (nﬂmpmz). Such a state is
t | ‘
%

-In other words, we make the identification.

replaced by a sequence of operators 8y * .. acting on the vacuum state |o).

o) = (@p - vl (1)

The adjoint signs are put on the opefators a to»conform to the traditional

definition; the adjoint of the equivalence (1) is | L | i

(0] ay'tt agay = (a @_...V}*, o - (2) '

where‘the asterisk denotes the complex conjugate. If the operators al and

a are to correctly'reproduce the properties of the’determinantal functions B ¥

(which change s1gn if two rous or columns are 1nterchanged), it is clear that

T
!

they must separately antlcommute‘
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a_*a ' + d1'agT' = 0
s (3)
a a +aa = 0
1 £

for all £ and 1. We must also require that our operators reproduce the

orthonormality conditions of two determinantal product states. Now, the integral

JB oo v (et ) ar o

«contains not only the leading term

5(&,&) S(ﬁ;n)'°° B(Vw))

but also terms of the type
'S(QJH) 6(6)&)"' B(V;w)i

coming from all possible permutations of the quantum numbers with respect‘to
the electrons. To generate such terms, we insist that, in addition to Eq. (3),

. t
the operators an and ag- satisfy the relations
+ + 3 ’ . .
ag an + an ag = 5(ﬂ3é), (5)
and also that.
aglO) bé o .. (6)

The term corresponding to (k) is

(0]a, > agag aghaq= ayf(0).
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By a contlnual use of Eq (5),~each opcrator o B . can be transferred gradu-

| ally to the rlght untll at last it operates on ]O), wlth a nul result. Each’
operation 1ntroduces a delta function, and the flnal sum corresponds exactly to

that required from the orthonormality of the eigenfunctions.

t

Since a TIO)-corresponds to {@), we call 8y @ creation operator.

The vacuum state is recovered if we operate on aa |O> with 3y owing to
Egs. (5) and (6) consequently 2y is called an annlhilation operator.
Equation (6) now appears as a statement that annihilation of an electron from'

T

the vacuum gives a nul result. The operators 8y and‘aB are identical to

= N

Ny and nB ~of Dirac.

' A number of interesting properties follow from the anticommutation
relations (3) and (5). By the process of transference of a; to the right,
we may show

(Z ag aé) 2y B .. aV+|O> = Niaafa Teo. aVT|Q>,

where the sum runs over all poss1ble states g The operator 2 agfaE ie there-~

~fore called the number operator. We also note that

so that any sequence‘of operators in which two identical_operators occur eide

by side is automatically zero,

¢
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B. Representation of Operators

Two kinds of operators occur in atomic spectroscopy: single-particle

operators of the type P = Zifi, and two-particle operators of the type

12

>3 815 In the language of second quantization, the first is expressed

-

L :
L a, (e|f|ma_, (n
-éﬂl E' k ‘ ’

P

i

and the second as

¢ = Z_m A ®
,n,C A ,

The subscripts 1 and 2 in the equivalence (8) refer to two electrons, making

it.cleaf how the quantum numbers ¢, n, {, and N are assigned.  Alternative

prescriptions, in which [t Ay and (& 7| are antisymmetfiied states, have been

given by Lane.6 It is séraightforward”to convince oneself that the new repre-

sentations for F and G reproduce the familiar expréssions for their matrix

13

elements. For example, the well known result

fla B Fs) ar - (altle) + (B]2]B)

can be equally well obtained from

?:ﬂ Ol a2, 2 2" 25" 1) 2] )

1
v

by repeated use of the anticommutation relations to transfer annihilation

‘operators to ‘the right.
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ITT. CONFIGURATION INTERACTION B | :

" A. ' Core Polarization
As'é-firéf éxample of the meihods_described in fhe previbus section,'
we study the disfortions or closedvshells of . s electrons produced by anlopen _ | .
sheil of the t&pe (nZ)N.' This effect is importanf in hyperfine-structure cal-
culations, since a small. admixture of unpaired s 'eleqtrdﬁs can produce a
éignificant contribution to the hyperfine structure produced by the nk
-electrons,'parficularly when ¥ > 0. We proéeed.according to éecond-order per=
turbation theory, and fix our attention on ﬁhe admixture into a c;osed shell
(n's)2 of'thevexcited configuration (n's)(nﬁé). The contribution of.this effect

to the hyperfine energy of a state |X) of (n's)g(nﬁ)N is given by

- z(x[zGQ/rij}y)<y[thx>/AE, ! - (9)
Y ' '

where |Y) is a state of (n's)(n"s)(nﬂ)N, where AE is the energy required to
excite an’ n's electron-into the n”s'shell;‘andrwhere Hh is the magnetic-
hyperfine operator,gg;. For the present case we need take only the Fermi

contaét term, for which
Q = (16m BBNHN/BI) f?‘aﬁi)gi’, |

where f 1s the Bohr magneton, BN the nuclear magneton,' uN the nuclear ' -

moment.(in nuclear mégnetohs), and I the nuclear:spin._ To evaluate (9)‘by
'vconventionalxmethods involvesvthe calculation.df‘~tﬁo matrikieleménﬁs, a pré—.
cess that ﬁéceésifétes a‘détailed kn6wledge’ofvthe states |X) and |Y)ﬂ The
use of annihilation and creatioh operators pro?idésré striking”ého;t—cﬁt in

this procedure. To clarify the method as far as podsibile,we use ag and agf
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T

for annihilating and creéating respectively an nf electron; bg ‘and bg for

an n's electron; and ¢, and ¢ T for an n'"s electron. The Greek suffixes

g £

are now contractions only for (msm2>'

The first step 1is to use the equivalences (7) and (8) to convert the
operators Q and Zez/rij to their second-quantized form. Since Qf is required
to connect a bra of (n's)(n"s)(nﬂ)N to a ket of (n‘s)g(nﬂ)N, it must include one

operator of the type ¢ T, and one of the type bn. This limits its form to the

3
following:

e . t e f) (o
Q = (16n BBNHN/)I) ancg (n aglﬁ(gjgin sn)bn.

The situation for the Coulomb interaction is a little more complicated. At least

} : t
one operator of the type Cy must appear, and also one of the type bB , for

otherwise we could not connect |X) to |Y>. Since we are studying the polariza-
N
)

tion produced by the shell (n# , the remaining operators must evidently be one

of the type .ad and one of the type aT+, for this is the only point left to
introduce the effect of the‘open shell. However, it should be ﬁoted in passing
that we could equally well make up ﬁhe full complement of four operators that
appears in the equivalence (8) by introducing dﬁf and dg, where dg anni-
hilates a state € of a closed shell (n"'ﬁ')uﬂ'+2 present in the atom. This
possibility leads to a nul result—which simply tells us that closed shells do
not produce core polarizationT The other possible combination, bxf and bu,

can also be ignored. . So we may make the equivalence
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b T ST R SO
Z??/rij, = VZbBTaT‘((D’Sﬂ)lgngT)gle./rlgl(nﬂd)l(nvsa)2>caao

i
O

N R DU NN
3a b .<(n21)l(n sﬁ)gye /rléy(n_sa)l(nﬁc)e)adc

x

ot
o

T. B

ZbeaTT((nfsB)l(nﬂw)Q{ez/rlgl(n"sa)l(nﬂq)g)goc

o+
o

a

- (10)

1 | : 2, L
+ %~;ébeB*((nZT)l(nﬂsB)E!e /r12}(n£0)l(n sq)g)caa0

i

. ' 2 i i N
Z]anbBT((nﬁr)l(n'sﬁ)E!e /rIE!(n ,soz)l\nﬂc)2>agcOZ

+ -

+ t . 1 2 : 2 " ;
ZgT bB'((nﬁT)l(n sB)gle /rlQ}(n o)l(n sa)g)caacv .
The second ferm, which can be dealt with by methéds completely analogous to
those that follow for the first term, leads to a nul result. We @herefore'drop
it at this point. (It corresponds to an intermediate state of (n's)(n"s)(n£)™
in"which thé»two s electrons are coupled to lS.) The sum over the inter-

- _ : , !
mediate states can be carried out by means.of the familiar closure procedure:lJr

sy] = 1.

Y
The question whether the kets .[Y)v form a_comﬁlete set or not is irrélevant,~
vsince,missing components are no% connected to ]X) by Qurlqperators,’and hence
contribute'nothing. Now that»the intermediate“states ére eliminated, the
creation and annihilation operatofs of the Coulomb iﬁteiaction and the hyperfine
operator Q can>be brbugﬁt tbgethér. ‘Using identificaﬁions'of'the tyﬁe

§ = Mgt s WE find SRR
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-2 Z[Zeg/rij}tY><Y19(AE)_l
v 5 !

U | )1

- B St )
2 L"“"”””W“““o(mST’msa> b(nsB’msc)_B(mﬂw’mﬂc’(Qﬂfl

11
a}BJO.}T)E)}T] ( )

-k
X R (nfn's,n"snt)(16m BBNuN/BIAE)
_ Copoy L Tt T
X Vg0 (00 (e laln) "oy 8 che, oy,
.. Where’ 'wy(O) denotes the amplitude of the eigenfunction y -at the nucleus,
and R is a -Slater intégral (see Condon and Shortleyl).
We are now in a position to manipulate the creation and annihilation
operators with the ald of the anticommutation relations. This is thoicrax of

the method. Thus

Now there’is no n"s electron in the configuration (n’s)e(nﬂ)N, and hence the

operator Cy acting to the right, gives a zero result. It follows that we may

make the replacement

N t t
aT.bB aocacg b —aaT

.f.
bB.aGbHS(a,g).;

Similarly,
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. ' . . v' ] T . ._ ] )
Since the shell (n“s)evis full, the operator bﬁ" acting to the right, also

gives a zero fesult. Thuslﬁhe final replacemént is given by

gty t t
T

b, ac.c

T ’ .
B o« b -) —’aT 365(%@5(5;“)'»‘

E 1

~The right-hand side of the equivalence (11) becomes

N Ef S a¢+<Tl$J0>ab’
1,0 S

where

s

I' = [16m SBNuﬁ/3IAE(2£¥1)] Rz(nﬂn‘s,n"snﬂ)wni (O)wnns(b).

“The operator (12) is a single-partiéle operator acting within the . n#

and is, in fact, equivaient to 2I'S.  Using the relations

~~

S = Lteg -4 = i(g"l):

where g is the Landé g factor, we see that the contribution AA to the hyper=-

shell,

fine -constant A df the effective Hamiltonian AI+J-for a given J level of

o

(nﬂ)N can be represented by

Mo = 2(g-1)T,

: .

in agreement with the result found bylconventionai_methods.

-/

&
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¢ B, The Rajnak-Wybourne Analysis

The most significant feature of the preceding section i1s the fact that
it is never necessary to specify the state IX) ofv(nﬂ)N. This advantage over
conventional methods becomes especially valunble when more complicated examples
of configuration interaction are considered. In a recent article,l6 Rajnak
and Wybourne study the various perturbations on the positions of the terms of
a configurationv(nﬂ)N. To illustrate the approach being developed here, we
choose as an example the perturbing effect of a configuration of the type
(nﬂ)Nﬂl(n'ﬂ') on the terms of (nﬁ)N. The procedure of Rajnak and Wybourne is
to calculate the general form for a matrix element of the Coulomb interaction
between & term of (nﬁ)N and one of (nﬁ)N-l(n'Z').‘ This is squared and divided
by the excitation energy AE. The resultant effect on the terms of (nﬂ)N‘of all
interactions of this kind is reproduced by an effective operator aéting solely
within the configufation. Their most striking result is that this effective
operator must contain a three~particle operator (whose amplitude may vanish in )
exceptional circumstances) as well as.a two~particle operator. However, the
necessity of defining states of both interacting configurations involves the
introduction of many quantum numbers (as well as fractional narentage coef-
‘ficients) that subsequently disappear when the effective operator is constructed.

- -

Progress in eliminating the superfluous mathematics in this calcula-

(k)

tion has been made by Stein.17 However, his operators z' ‘, which are defined
as being non-nul only when connecting (nf) to (n'2'), are equivalent to a
coupled produgt of an annihilation and a creation operator; so the treaﬁment.to
be presented here can be regarded as underlying Stein's approach. -

We use ag and a§+ for annihilating and creating respectively an né

electron, by and béf for an n'#' electron, ¢ and 'c€+ for an n"2&"

electron, ete. TFor the example in hand,'an electron n"£" belongs to a closed
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’

shell. As in Sec.ITI-A, a Gfeek suffix stands for the'coﬁple (mnmz”). To connect w
a bra (X| of (nﬂ)N'to a ket |Z) of (nﬁ)N_l(n'ﬂ’)} the equivalence analogous to .

“equivalence (10) is

ze/ry = 2 aa (k) wn e EICR)) N SIRERNCE)
‘_ﬁhere the sum.oﬁ the'rightfhand side runs over Ey T, X, and t. Terms that include
operators of the type agfeﬁTCXbC'can aiso connect (Xl to |Z). However, if the
-zero~-order eigenfdnctions.are determined by the Hartréé-Foc#fmethod, terms such

as these that in&olve rassive closed shells are taken into accquntviﬁ the central
potential. They will therefore be considered no further. The oberatorvconnect~
ing the bra (Z| of (nZ)N-l(n'Z')vto a ket [X') of (nﬂ)N is given by the equi-

valence .

D~
2 ey

)]_(ﬁze)f2>a€av (1)

it

) tpt .2 '
2, e (' @)y (nB) e /r

The operator Q  that should be set between (X| and |X') to give the
 second-order correction to (XIZ /r IX’) is given by | | , -
: o - 2,
. = - 2 (AE 2e [r,. |Z)(Z]| Ze .o
g o) 5, 102l 56,
When the sum over Z 1is carried out, the creation and annihilation. operators of -
equiﬁalences (15)'énd (14) are brought'together;_producing the sequence - o

Lt t t

a a.b,b 'a a a .

g N B
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By arguments similar to-those used in Sec. ITI-A, we immediately see that this can

be replaced by

agfanTaXagTaeaviﬁ(a,C),

that is, by

gTanfaéfaeaxay 8la,t). + (15)

a fan+a€ay 8(a,t) 8(\,B) + a

4

Without any detailed study of the coefficients of these terms, it is clear that
" the first part represents a two-particle operator acting solely within (nﬁ)N;
andAthe second part obviously corresponds to a three-particle operator. To

actually find the coefficients, we use equations of the type

. 5 '
_<(n'emsg'mﬂg)l(n'emsnmﬂ'r'])?lé /r]‘g,l,(n,’e ms(;mﬂt;)l(n'ems?xmﬁ?\>2>
[2 % &0 8 x £ W
= 3 ()| | L e e (e
k,q ~m£§ a ng/ \"‘m’gn -q mﬂ}\j '

(16)

_ k , .
%‘_ S(msg,msg) 5(m ’msk) R (nénf,n"£'nk),

ST

~where x =24 - ng-mzn;q. The notation of Condon and Shortieyl and Edmonds18
is used. A similar expression'is taken for the secondeoulombic matrix element
.in the product. The 3-3 symbols involving no other azimuthal quantum numbers

but £ are left untouqhed;.those that contain £' are manipulatéd by standard
tensor-operator techniques' in order to transfer £' from the 3= symbols to |

higher-order coupling coefficients. To describe our results, we write
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| n. R‘— '''''''''' ~.v k k! i{” ' 1
(), Ger) L (M) g | () (=1 ("

' vhere the amplitude of the unit tensors is given by

Mgy - 1.

Following Rajnak an’d,Wybourne,16 we also introduce the abbreviation

ptacrsone) = (e en (e e ge® e

. ’ . ] . ) .
x RS(nfnf,nfn'2') RS (nfnlnin'2')/aE.

The final result can now be stated as'follows. The effect of £he configuration

(nﬂ>N—l(n’ﬂ’) on the terms of (nﬂ)N can be exactly repfoduced to second-order

perturbation theory by the operatgr' Q, given by

k ‘k, k" ‘ L
0 = -3 [k"] P(kk';4L82")
e e v
A*:.agfgnfaﬁr<gnzg)l<n¢q;2<nza>5ﬁ(gl(kn>, Eé(k>,»35<kr>>

’_ (nh)‘l(nﬂ?\)e(nﬁe )Bv)aea}\ary
)k k' kv” Jk k' 'k'",‘ T " .
o ) P(rk302427) (-1)"

-S[k") ‘ .
Cde e el e ou o

x agtaf (), (a1 )+ 0, ) (m) (080 e

~ which acts solely within the states of (nf)Y, The traditional contraction -
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[x] = (2x+1) is used. vThe sums run over k, k', k", and all the Greek symbols.
At first sight, this result doés not appear to agree wifh that of Rajnak and
Wybourne. Their expression is written as the sum of three parts, and the last
two [called by them C(2) and C(3)]) both include the delta function 8(£,2'),
which is completely absent from Eq. (17> above. However, a closerexamination
reveals that these delta-function terms exactly cancel terms included in the
first part [i.e.,‘C(l)], and the residue turns out to be identical to Q. Their
statement O0f the result, which concludes Sec. IIT-D of their paper, is neverthe-
less incorrectly worded, and fails to account for terms of odd k" in the

second sun of Eq. (17).19

C. Graphical Methods

The examples of configuration interaction described in Secs. III-A and
ITI-B are relatively straightforward., In higher orders of perturbation theory
the situation becomes more complex, e;pecially-wheﬁ excitations from closed shells
are inciuded. To get an overall view of a particular perfurbation mechanism,
it is often useful to draw out the corresponding Feynman graph. A prescription
for doing this has been given by Goldstone.go The two graphs corresponaing to
the equivalences (13) and (1) are sketched iﬁ‘Fig. 1. The direction of
'increasing time is upwards. The first graph repreéents an interaction between

two particles that are scattered from states (n'£'t) and (nf\) to the states
(nft) and (nfn); the interaction itself is represented by a horizontal dotted

line. The direction of the arrows on the lines is appropriate to particles;
holes in closed shells would be represented by lines in the opposite direction.
The delta functions that result when the two quartets of operators are brought

together imply the identity of pairs of states. This is represented graphically
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by the union of thé cofrespondiqgllines;;:The graphs for the two'terms in the .
éxpresSion (iB) are dravn out in Fig..2; _The faé£ that the first graph corres-
ponds. to a two—partiélé.operator'is noﬁ obVious: tﬁo liﬁes enter at>the bottom
- of the graph and emerge at the top; The seéond graph corfesponds equally
obviously to a three-particlé operator. The number and variety of»thé;graphs '
incfeases when excitatioﬁs_from closed shells are considered. safronova aﬁd
Tolmachev have sketéhed all the 3L possible Feynman graphs that arise in second-
order perturbation theory for two electrons outside closed shelis.glr‘Not all
these graphs would appear in the reconstruction of the.analysis of Rajnak and
WybOUrne16 for the configuration (nﬂ)N,~since the ‘assumption of Hartréé—Fock
- elgenfunctions automatically eliminates the effect of_passiVe closed shells.

Apart from their ﬁse in representing in a succinct and striking way the
interaction m?chanism; the graphs contain sufficient information for & detailed
quantitative analysis. In other words, wé,can find the coefficients of the
operators in equations»like Eg. (17) pdrely}%rom a study ofnthe graphs. This
is‘p§ssible because_thé Feynmaﬁ graphs are'topologicaliy,identical to the angu-
lar momentum diagrams of Jucys, Levinsonas, and.Vanag;'as.22 To see this in a
simple case, we use the rules of these authors (Ref; 22,vp.56) to draw out in
Fig; % the diagram corrééponding to

2 ox £ \e ok 2

s (-1)Fe

| } ) (18)
a ng ~q -ng .mzn o} M gy

.This expression occﬁrs'in Eq. (16), since fbfiqs k- isveQen. It represents a
term in the matrix element of the.Coulomb intefactién that corrésPondé‘to the
firstvgraph of Fig._l;v Apart.from an}undifected dotted horizontal line in the
Feynman graph, the two figures are -identical. Topologicél’ equi?aléncéé of this

kind have been recognized for some time by Sanda_rs._;25 an explicit statement of
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ol i
the property has recently appeared in the literature. It follows that the
technique for analyzing the angular-momentum graphs can be directly applied to
the Feynman graphs.

As an example of the procedure, we verify the coefficient off the term

+
ag aT]

) k" k”
Fmte); )yl (a7 0, () (k) e (29)
. 22 .
which occurs in Eq. (17), by means of the rules of Jucys et al. ~ Tirst, the
analogous graph to Fig. 3 is constructed for the second Coulombic matrix ele=-

ment. The delta functions on the m, values and the sums over these quantities
o .

demand the union of these two graphs in Jjust the same way as for the Feynman

graphs. Thus, we arrive at the graph of Tig. L., " Now the 3-j symbols contained
in the expression (19), summed over the projection g" of k", and with a phase
" "

factor (—l)k 4 s correspond to the graph of Fig. 5. 1In the language of Jucys
et al., we contract the graph of Tig. h.with the graph of Fig. 5 in order to‘
find the coefficient. This involves changing the directions of the lines in
the diagram of Fig. 5, and then attaching the four free ends to the correspond-
ingly labelled lines of the diagram of Fig. 4. The result is given in Fig. 6.
This is immediateiy idenﬁified (Ref. 22, p. 60) as the following product of

6-3j symbols:

According to the rules, a factor [k"] must also be included; and the neglected

terms of the Coulombic matrix elemehts go to fofm’P(kk’;Eﬂﬂﬂ'). " A phase factor
. | v .
(-1) is required to balance the similar factor introduced in the construction

of the graph of Fig. 5. 1In this way, the second term on the right-hand side of

Eq. (17) is obtained from the graphs.
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Questions of phase have not beeﬁ édnsidered in complete detail'in this
~brief description. The ordering of the coiumns of the 3-j symbols is never-
theless represeﬂted by ﬁhe plus and minusvsigns against the vetices-iﬁ.FigSa'B,
,h’ and 5; and‘the pféscription of Jucys ét al. ensures thaf no ?hase informatipn
is lost in the wofking. "The reader is referred to their book for details. By
represehting the tﬁree—particle interaction as the Junction bf three dotted

lines (labelled k, k', and k" in the angular-momentum diagram),'the first term

on the right of Eq. (17) can be similarly checked.
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IV. TENSOR OPERATORS
A. Definitions
The appligations of the theory described.in.Sec. IIT depend only on the
most elementary properties of the creation and annihilation operatérs. A

large field for further study opens up when the tensorial character of these
operators is examined. A convenient way to find the tenSorial properties of

any operator is to study its commutation relations with respect to the com-
ponents of an angular-momentum vector (see Racahg). Two such vectors are of
use tb us: the total spin angglar momentum § and the total orbital angular

-momentum L. Of course, we must use equivalence (7) to put these momentum

vectors intd a convenient form. Letting the Greek symbols stand for the

quartets of quantum numbers, and, in particular, setting ¢ = (nﬂmsmz), we find

t t
[ = 8, (Elﬂzlq) a,a_ ] = mpa

£, n- o o

1

2 e (6100 2 e = (608) - mylnge1)) 5],

‘E,T] e
< . 1 t _ t.
[gunaé (& | SZITI> an)ac = mas
s .

e

[ = a§T<ngi!n> an,aoi] {s(s¥l) - ms(msil)}l/?a f,

£,M K

where p = (nﬁmsmzii) and T = (nﬂmstlnw),.vComparison.with the standard form
for the commutation relations satisfied by a double tensor25 reveal at once
that fof every n and £, the-[s][?q operators aoT(-ﬂs m < £,-s< mss s)

form the components of a‘double tensér of rank £ with respect to orbit and‘

s with respect to spin. (Of course, We know that s ='l/2, but it is convenient
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‘té retain the symbol s so'that the cdfrespondencé between spin and orbit.ié
always kept.in view.) As has beeﬁ seen in Secs. III;A and III—B; it.ié often
convénient to delete n and 4 from the Greék'suffix o, changing from ié* to
bT vwhen any distinétion is néceséary. .If'we do this, then we may‘follow the
usual'cdnventioﬁ of tensor algebfa by using bold—face.suffix~freeisymbols -gj,
p?, etec., ﬁo‘stand for the doublévtensors.
The énnihiiatibn dperators, as_ﬁhey étand, do not form the components

of a double tensor. However, if we define

a .= (—l)xa

20
g | ¢’ ( )
where o 2 (nﬂmsmﬂ); x ='s+ﬂ—mé-m£,-and' t = (nﬂ-ms—mﬂ), then it is found that
for every n and £, the [s][£] operators %c (-2< mzs £, -s< m < s) form
the components of a double tensorvof rank £ withvrespeCt to‘orbit.and s
with respect to spin. If we decide to suppress- n and . £, then we may repre-

sent the double tensor whose components are 'gc-simply by " a.

B. Coupling Procedures

Our basic tensors gT and g can be coupled accofding to the fémiliar'
rules of the theory of angular momentum. Suppose we set £ = w -(Kk) in equi-

g
. valence (7), where ;w“(.Kk)

i & double tensor whose amplitude is defimed by

 1/2'

MR,

S arar) = s(a,nt) 88,40 (K]

The convéntion [x] = (2x+1) is maintained. Two 3-j symbols arise when the

Wigner-EckartZtheqrem is used to evaluate (glfln), and a‘phase‘factor‘ié



¢ . W
N

* v
it i el

-21- UCRL~16098

introduced in replacing an by an operator of the type 50. These symbols and
‘their associated phase factors can be immediately interpreted as coefficients

Ny
that couple components of gf to components of g, with the result that equi-

valence (7) now reads (for a given né#)

(kk) . _  , .y@s+2f, ¢+ (kk) |
W ’( 1) (2 g)m . (21)
The operator W (k) is defined hy
e
EﬂKk) - Z(EﬂKR))i)
i

and is identical to the operator introduced in Ref. 25. Since 2s+2£ is always
odd, and since the equivalence (21) is valid for all components 7 and gq, we

may write

EﬂKk) z -(a' a

y (k) (22)

)

a remarkably simple result. 3By similar methods we may relate (gf‘g)(oo> to the

number operator (see Sec. II—A); and hence show. that the eigenvalues of‘(gf g)(OO)

are

-1/2 o,
N (s (a)"H

The anticommutation relations satisfiedAbylthe annihilation and creation

)
il

opérators lead to the result

afua)(Kk)

(g.gf)ggk> + (=1)BHHRemKk = S(K,O):6(k;0)[s];/2t£jl/2¢ /fg5)
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C. TFractional Parentége Coefficients‘

In this section we restrict our attention to configurations of the type

)N—l

'(nﬂ)N, where n and £ are fixed. A state |8) of (n# must be some

linear combination of determinantal product states, say

From the equivalence (1), we may evidently write

Qo0
il

8 = =a,.., abfaﬁ*-i-av*lo>.

Operating on both sides with ag*, we get

S e s oa to tatiigt
ag. lo> = Z‘ AOB. . ‘v ag a'a‘ aB. ,a‘v ]O>
T ZA {§GB°'fv}.

(XB.--V

Remembering that a déterminantal product state for N particles contains a ‘
o Sy -1/2 . |
normalizing factor (N!) , we obtain

yi-t

| e '
{gaB--+v} = (W) / z {oBeeev) (g, 0(-1)7 7.
In this expression, the subscript 1 indicates that electron 1 1s assigned
the quantum numbers §¢; the pfime.denotes that the electrons are to be taken in

the sequence

1, 2,004, i=1, i+l,..., N,
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Hence
LET I > 1=,
o 18 = 2 2 (0 ey,
. 1 :
and
—_ -1/2 ] - — '
©la,'18) = Mz ey, (o)
L5 i .
where (©| is a bra of (nﬁ)N. Now <®|6’,gi) is a number and must be inveri-

ant with respect to permutations of the electrons. On interchanging i and N,

we find

(6] - -(e].
and

where the d ouble prime implies the ordering

1,2, 000,i=1, i+1l,..., N-1,1i.

)N-i~l

- The phase factor (-1 represents the parity of this sequence with res-

pect to the natural ordering. Thus
0l8',e,) = (-1)"N6l8,¢)
! b i ) | b4 N )

and every term in the summation of Eq. (24) is the same. Hence

\

©la,118) = (-1 elE -
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The factorv(®|@;gN> is not quite a coefficient of fractional parentage (cfp),

since it still contains a dependence on the M quantum numbers. We vwrite .

OFyYMM , ©3F P MM, and ¢= ngmsmﬁ and factor out the vector-coupling (ve)

coefficients by means of the equation.
CIER Ey) = (V/{l[g]/) (LﬂIML.l.LMLﬂmﬁ)_(S'SSMS | SMSsmS-) .

Precisely similar VC coefficients arise when the Wigner-Eckarﬁ théorem is
: : thi= s . o - . ' . N
applied to (@]ag |©) (see Edmondsl8)2' This operation introduces a phase

>25+2£ (

(-1 which 1s replaced by -1) and a numerical factor. The cfp (W) are

finally found to satisfy the equation

wle'l7) - OYesienPedp. 0 (@)

If we take adjoints before using the Wigner-Eckart theorem, we get

- Y NX CLa1/2,~ - : |

@lalw) = (D ms1EnY2@ 0w, | (26)
where x = N+S-s-8+L-£4-L. Equation (25) corresponds.exactly with the result
obtained by Lawson and Macfarlane9 for the configurations jN when the replace~v

ment [S]{L] 59[J1 is made.

- Similar methods enable two-particle cfp to be related to the reduced
matrix elements of pairs of creation or annihilation operators. The analog

of Eq. (25) is
WlE 2 - me- s 20T, ), (27)
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~ N-2 -
where Y denotes a term of (nt) . The symbols k and k stand for the

. ' 2
total spin and total orbital quantum numbers for a term of (nﬂ) .

V. EXAMPLES

A. TIntroduction

We are now ready to apply the technigues of the Racah algebra to evaluate

&
the matrix elements of any operator involving a'

and a, since their reduced
matrix elements are known from Egs. (25) ana (26). For the purpése of illus~
trating the theory, we limit ourselves to examples that can be obtained from the

equation

(] () (K

[K]l/g[k]1/2(_l>S+K—.+-SY+L+k+Lx : . (o5

i 1] 1 11 1!
Yl E gy @ g,

]
}

D S S S #;k” k X'
X Y
|

5" ls' s”s’{

where ¢ = ¥SL, 'z y'S'L', and y" = y"S"L". The symbols <y represent addi-
tional quantum numbers that may be necessary to define the terms unambiguously.

Equation (28) is the extension to double tensors of Eq. (7.1.1) of Edmonds.18
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B. SingleFParticle Operators

: \ L. : K1t
As a first and very simple application of Eq._(28), ve identify EK

with g} aﬁd we suppose that the states % and. ¥'  both bglong to (nﬂ)N.
The states of ¢" must .all belong to.(hﬁ)N-l, and we write @,5,.;; in place
of ",8",... to keep the notation in line with that of Sec. IV-C. The two
reduced matrix clements in the summation of Eg. (28) become cfb,.and, with the

aid of the equivalence (22), we find

S )

- SIS LIk (112

£ x £

n |
ﬂL T Lfg' g

H

, s K 8
X = <w(lz?>($l}w*><.—1>xg. o
. W - s s s

i o ,.

where X = S+s+S+K+L+4+I+k. This is ideptical to the result found by conven-

5 .
tional methods. 6 Special cases of this equation have been used by Koster and

27 (11)

Nlelson™ ' to evaiuate matrix elements of ¥ (= E‘ll)/5) and of all tensors

' \
gﬁk> (= {2/[k]}l/2ﬂﬂ0k) for all configurations of the type pN) dh, and TN.

C. The Rajnak-Wybourne ITdentity

Making use of the anticommutation relatibns, we may show that

{Gif‘%)(Kk)gf}(KJk') _ (;l)k+gféfz-k!exftéf(gf‘é)(Kk)j(K’k’)

k+k

+ (1) {[k][K]/[;][ﬂ]Jl/eé(k'ﬁ) 8(k’,5)a' -
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The operator on the left is set between the bra (v| of (nﬁ) and the ket
') of (nﬂ)N—l. This procedure is repeated for the operators on the right of
the equation. We equate the results and pass to reduced matrix elements. Using

the equivalence (22) and Eq. (28), we get, with some rearrangement,

****** IIL L" x| Js s" « I
(k )" (" ) K"'"kﬁz ”] "1 N \
s (ylw -
z (vl lly Ll_d/)(‘ (S [L] \iﬂ o E( \is r 5,;(
| 55« T T x|
TN (o o Ttk 'es Yo N £
= @UR @R (0 ) ; (29)
Y,D - i Ik"ﬂ Li

s Y22 R0Tn sk, 8) slk,s) (-1)Y /(s

where y = S'4+L'+S+L+s. A special case of this equation was discovered empiri-
cally by Rajnak;28 a proof by coﬁventional methods appears in.the'appendix of
the article with Wybourne.l6 Our parameters (k'k') correspond to the symbols
(s£') of Rajnak and Wybourne. Since s 1is limited to the value 1/2, whereas
k' can also take on the value 3/2, Eq. (29) is a slightly more generai form

for the identity.

D. Decomposition of Two-Particle cfp

Application of Eq. (28) to the left-hand side of Eq. (27) yields at once

(|7, 47 (xx))

1]
X
%)

- - ZRlKE)D)Y2

v

(-0)* (wilw)(w lw

&
23]
[p14

e
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where X = S+S+L+T. Thi; result expresseé a two-particle cfp asva sum dfv
products of single-particle cfp."The fact that for ﬂg. the sum  k+k must be
even has been ﬁsed to simplify the pﬁase'factor. The conventional derivation
 of the equation would be to oreak off the Nth particle and then the (N-1)th,
- recoupling theilr angular momenta tq (kk). The minus sign that precedes the

: s+l
summation sign would appear as (-l)2 2 .

E. Redmond's Explicit cfp Formula

The power of our methods is well exemplified by the case'wiﬁh which a
i . o ' 2k L
recursion formula for cfp due to Redmond is derived. We merely put the opera-
‘ ] - - o
tors that appear in Eq. (23) between the states (y| and ~ |¢') of (né) l,»

and evaluate their reduced matrix elements by means of Eq. (28). The result is

- : _ N Z’s K 8 2 jl& X 4
N @)@ U0 s
- =) 2 EREUF-DY
L s kK si14 x 21 (30)
x (BUDIEIE Y2 (il
s 8§ 8\L T L'

+

5(,0) B(x,0) 5(F, ) (-1)“(Le)LA(EIEII2,

vwhere x = ;Si-*s-*s'dr'f%l?)‘-f-L', y = E—S—§'+iﬁﬂif’+K+k; and z = 28'42D". . Both sides
of Eq. (30) are now multiplied by

lé K S l £ x

=
o
s

(i) k) (1) S*08 "L (31)

s sv's"'? L 1 I
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and sums over kK and k are carried out. Replacing ¥ by the more detailed

description 7YSL, we find that the left—haﬁd side becomes

% (@] )yst) (vsL{ly )N, | | (32)
Yoo : , |

Since

Z n(ys'L ([91) | ysIMM )
¥ | |

obviously represents a linear combination of states with unique values of S,

L, MS’ and ML’ we can write it as

N [y'STMGM, ),

where, for real coefficients,
2 2 . -\ 2 :
N' = N° S (ysL{lyg")". (33)
Y oo _ '

.. The right-hand side of Eg. (30), multiplied by the expression (31), can be

summed over K and k without difficulty. The final result is
N (pl)y'sm)

o, L | o C t;g s.vsyg }f'g L'

T Blpy) s () 2 GG () ig B __—

’ '(// " o . .Y s .
o f

where t = S+S'4I+4L'. This is equivalent to Redmond's result; it expresses

N - ' ~
a cfp for (nf)” in terms of cfp for (nﬂ)N 1 To use it, a godparent ' is

selected and the products N'(y])y'SL) are determined for all possible .
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As Redmond showed for several configurétions of equivalent nucleons, a judi-
‘cious choice of godparent often forces +y' to assume the quality of a group-'
théoretical describtion; and Trom this starting point, orthogonal sets of cfp

‘that have well;defined gfoup—theoretical properties_can be generatéd by choos-

ing other suitable godparents. In Redmond's meﬁhod, the number N' had to be

determined from the condition.

PG e - .

7 ’ .

Our method gives Eq. (33) as an alternative, and it is readily yerifiédvfor
Redmond's examples that this eqdation is satisfied.jo Not only has the use of
annihilation and creation operators ailowed us to perforh a mqre‘compiete
analysis, but the extensive products of. vC coeffidienﬁs thét'Redmond intro-
ducesvhave'been entirely circumvented. (At.the same time, it should be mén- ,
tioned tﬁat a more direct aerivation of Redmond's reéﬁlt is giveh by Hassitt.Bl)
It can also be understood now.wﬁy the.cfpvfor the terms (210)(21)2H and
(210)(11)2H of £ can be thained directly by choosing the respective god-

3 3 2

: . 2
F of £, a curliosity noticed several years ago.

32

parents “H and For,

as may be ilmmediately seen by examining the Kronecker prbducts-of the repre-

2)

sentétlons (ulue) of G

((210)(21)2H{[3F) = ((210)(11)2H{]5H)'>=v 0.

It follows that for both H states, one of the two terms in the sum over -y
in Eq. (32) is zero; hence the sequeﬁce‘of_cfp'geheraﬁedvisfproportional to

the term remaining.
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VI. QUASI-SPIN
A. Seﬁioritx
The scope for further appiications becomes greatly widehed when a
creation operator and the corresponding annihilation operator are regarded as
two.aspects of a single entity. As a preliminary step to making this inter-

pretation, the following operators are introduced for a given (nf):

o, = L isitayPet 2,
o =4 e, (51)
o, = -+ wam P 2+ (@2

By expanding the scalar products, we may show that the operatdrs _Q+, Q_, and
Qz are identical to the operators 9.5 9» and qo introduced by Flowers and

oz _ . ‘
Szpikowski.j) The anticommutation relations can be used to derive the equations

[Q, Q] =

= QQZ,
[QZ, Q+} = Q+)
(Q,, &1 = -q_.

These are identical in form to the commutation reiatioﬁsvsatisfied by the com-

ponents® S _, 5., and Sz of the total spin §. To stress the correspondence,

+7

. the operators Q+, Q_, and QZ are said to'fqrm the components of the quasi-
spin Q. \

It has already been shown in Sec. IV-B that the eigenvalues of (Ef 2)(00)

-1/2. .- S : . g ,
are -N[S] / [2] 1/2; and from Eq. (23) we may deduce that the eigenvalues of
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(a +)(OO) are s]l/g[ﬁ]l/g—N[ *_l/é ]“l/ . Setting s = 1/2, wec conclu@e that

~n

the eigenvalues of Q%, which we denote by MQ, are given by

My = ‘-%(zﬁfl-m).
from.Eq. (27) it can bevseen'that tne'operator Q+vconnecta staﬁes of W_ andb
¥ for which the cfp (¢{1¢: )):is non—vanishing. Such cfp are pfecisely
the ones that Racah 1ntroduced to connect states of the same seniority..3 The
seniority number v is defined as.the number of electrens of the configurafion
(nﬁ)N in which a member of a string of connected staﬁes first makes its appear-
ance: avstring_begins.with a state of (n#)" and ends with one of (nﬁ)u£+2-v.

These configurations define the extrema»of-vMQ: and, denoting its maximum by

Q, we see at once that

Q- %(2£+1-v).

.Thus quasi-spin is merely_another way. of regarding seniority; and the specifi-

cation (QMQ)wcarries the same information as (vNN).

B; vTriple Tensors
The great advantage of "the quasi- spln formallsm over that of seniority

is that various states and operators can be examined for their quasi spin

‘_ character by using the well-known rules for deallng w1th tensor operators.

Following_Lawson and Macfarlane,9 we find that the two operators a ¥ andf

3
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a (for a given &) behave under commutation with @ 1like the two components

S

of & tensor of rank 1/2. 1In particular, a T

£

m = +1/2, and a, tom = -1/2. This is true for any cholce of  §. We may

£ q
say that the [s][£] components of gT and the [s][4] components of a together

corresponds to the component

. p _
form the [q][s][£] components of the triple tensor é@s ), where q = 1/2. The
anticommutation relations [Egs. (%) and (5)] are now completely described by

the equation

(as®)_ (asb) (as#)_ (as#) _ ,_ yx+l e . o
2y 2, tay, 2, = (-1) S(mq, mq)a(ms, ms)ﬁ(mz, mﬁ)
)

where A\ mé%@ﬁ;pz m;gmp,amlx=s+bm£m;m[

Since Q is totally scalar with respect to S and ‘L, properties.of
operators with-respeét to quaéi-spin are quite independeﬁt of their ordinary
tensorial properties. Hence we can easily extend our.cbupling techniques to
émbrace the quasi-spin description. The simplest compound tensor to construct v

is the following:

Kkk s£) . (qs#£)(Kxk
FlKKR) (alast) ,(ash)y (Kik)
: Y/

Special cases can be readily found by uncoupling the two tensors éﬁqs >. Thus,
we find

(100 -1/2

2$.( ) = v"gtz] / p)
and

“X(OlO) _ '_2[£]-1/g§ ’

théreby demonstrdting the close correspondence between spin and quasi-spin.. We

also find
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SrA

L((001) s g 0a1) (2051) 12,

For the hypothetical case of £ = 1/2, thé coefficient of L TDbecomes the same
as that of .§ or @ in the two previocus eQuationsf In the more general case,

we find, from the equivalence (21), that

(KKk)
X.
- 0mg. -

e a6

C(-1)¥1 2125k, 0)5(x,0)5(rr,0)5(q, 0).

For K+k+k even,

(Kkk) _[;g]l/,ga(K,o)ES(K,O)@(k,O)-

X
This result can be regarded as a statement of the anticommutation relations of

Eq. (35) in tensorial form.

C. Conjugation .

Let us postulate the existence of an operator .C for which

(as) 1o vy . (asd)
¢a, ¢ = (-1) & e

G7)
where g';v(mqmsmﬂ), N =.'(-mqmsm£), andvy = a-m . The part. -mq,Of y is

crucigl in preserving the - anticommutation relations‘(§5)'under the transformaQ

tion C; the part ¢ is included to avoid imégihary coefficients and also
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because it leads to analogous transformation equations for other operators.

For example, it can be shown from Eq. (35) that

JRke) (L))o (KKE) (58)

P - T-oma

The transformation of states under C can be found by considering the eigen-

values of YQZ and the effect of Q+ and Q_. It is convenient to impose the

unitary condition C*C = 1 so that normaliiation is preserved. We find

X
cler,) = (-1)7 |ea-My), (39)
TQ | Q
where x = Q—MQ. Just as in Eq. (37), the phase is to some extent arbitrary.
N Li+2-n |
The effect of C on a state of £’ is thus to produce a state of /£ with

the same set © (E‘wMSML) of quantum numbers. This is the operation of con~
, : . 4
Jugation; it has been introduced from a slightly different standpoint by Bell.5

- Our operator C corresponds to the feciprocal of Bell's bperator, as can be

seen by rewriting Eq. (37) in the form

. -1
catc™ = 2

| (40)
cgoet o= g

and comparing these equations to Egs. (5) and (6) of Bell.

Setting K =k =7 = g = 0 and X = 1 in Hq. (38), we at once obtain the

results

-1

CQC™ = -q
T

€QCT = -q
1

¢ Q—C— : Q-
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In other words, for Certesian components »Qu of Q,
~3

furthermore,

“The first equation shows that fhe cohjugation operator C is completely'analo—
gous to the time-reversal operator T, for whicth:LuTﬁ =_-_-Lu and T SuT T —Su;.
and_the second equation shows that C, like T, is an antilinear operator (see

55

Wigner or Messiah)6). Thus we have the interesting result that time-reversal

" is to spin what conjugation is to quasi-spin. For time-reversal, the ahalog of
Eq. (39) is
T|yemae) = - (1) |yeL-gnle )
SIS - BLtg 2
where w = S+I}"-?MS--MLf

'D. Reduced Matrix Elements

Equation (59>‘can be regarded as establishing the corréspondence between
particle states and hole states. With the aid of Eg. (38), we may make precise

the connection between matrix elements. All we have tovdo is to insert the unit

(Kkk) -

s o o ' : :
operators C C and-C lC before and after the operator X _ in a typical

. Omq
(real) matrix element. On transforming the.operator‘and also allowing ¢t ang

C +to act on the bra and the ket fespeéti&ely, we obtain
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(KKl\

(OqM IX >I@ QM)

(k1)

(-1)*(ea-,, !x(K k) g )

where x = Q~M +K+Q'-M For K+k+k odd (the only interesting case), We may use

N v (kk)

(36) to convert the operator to the more familiar form wﬂq . The Wigner-

Eckart theorem is now used to remove the dependence on MS, ML’ T, Oy MS’ and ML’

"and we arrive at the result

(£ ) 4y
' (L)
C o (en)Y (Rl (KD RNy s s (k,0)8(, o){LSJ[Ll[sj[ﬂ1Jl/2,

1 N '
where y = K+k+%(vf—v)+l._ Apart from the term E(v'~v) in the phase angle,

. o
Eq. (42) agrees with the corresponding equation of Racah.  The discrepancy is

rather interesting, since a phase angle identical to y is used by Jucys and

57

‘his collaborators. As they point dut, the difference arises because Racah

defined phases for states in the second half of a shell in terms of'holes rather

than of particles.

(as#)

A similar manipulation with a instead of leads in a

straightforward way to an equation‘relating a reduced matrix element of gf

(Kxk)
m
to

one of a. Interpreting these reduced matrix elements as cfp through Egs.(25)

and (26), we immediately obtain

Ly (] £
’ (43)

- {&fﬁﬁ?éw[y]}ye (5 Ty,
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where z = S+Sf—s+L+L’—ﬁ+%(v+v’+1). Like Eq. (hé), this equation agrees with the
38 |

cofresponding formula of Racah to within a phase.

E. The Wigner-Eckart Theorem
The most striking success of the guasl-spin formalism is the case with

which the dependence of matrix elements on N, the number of equivalent electrons

Q

number from which ‘N can be found, we can regard it in the same way as we are .

in a shell, can be determined. - Instead of interpreting M
accustomed to regard MS and NL. In complete analogy to the usual use of the
Wigner-Eckart theorem, we see, for example, that the dependence on' N of “the.
matrix element

(6| Xé?f;‘) |@er.%> |

is contained in the product P given by

o Lfexk ey
P .= (-1) , ) ,
‘ -M, 0 M
e Qf
where x = QfMQ. Two special cases of interest immediately arise: (i) K=0,

and k+k odd; (ii) K=1, with K+k even. In the first case, P = S(Q,Q’)[Q]-l/g

From Eq. (36), we deduce that all matrix elements of iy (k) for k+k odd are dia-
'gonal with’reSpect‘to éeniority and indepéndentrof N. The second case admits
of two distinct péssibilities; either Q'=Q or Q'=Qi1. Taking the first possi=
.biiity as an- example, we seé,vfor K+k eVen, that

s
1

simply as a quantum -

pimm e v s
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f%(2£+1—v) 1 %(2£+1—v)§
[ " .
i
1
il 24+1-N 0 s 20+1.~N
wuw wm B \5(2411) p(2A+1-M) |
(£ wHw Hﬁ'w /%{2£41-v, 1 %(2E+1_v)§
< 1
‘ i
{
\%(2ﬂ+l—v) 0 5%(22+1—v)f

1l

(2£41-N) /(2 4+1~v) .

The second possibility can be treated in an analogousAfashion. These results
were first obtained by Racah;3 derivations employing annihilation and creation
operators have been given by Watanabe8 and by Lawsonvand Macfariaﬁe.9
Two;particle operators can be handled with similar ease. We can
couple the operators fhaﬁ appear in the equivalence (8), so that the form G
takes (for a shell of equivalent electrons) is
1 s {@“ 2‘r>(/<k)('% Q)(Kk) }(OO)(zszlélgueKk).

K,k

. , :
@f )(Kk> and (@‘@ (k) are the components p = +1 and -1 respectively of

‘X(KKk). On making a detailed expansion, we find

(G a5 1% (5 ) 09 ()

6-1/2CX(lKkzx(lKk))(EOO) . 1/2 lKk)

{20 ’K(lxk))(loo)

000

+ 3—1/2(§(1Kk>%(1x}<>)c()ggo>.

The second term in the sum can be simplified by using the basic anticommutation

relations that the operators gﬁqsﬂ) satlisfy. The result is
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1kk Kk 100 v : K+k 1/2 -1
() (00 B100) 2y fapr 11 1P, 117
-~ - 000 _ » z
Since QZ must be diagonal with reépect‘to Q, we have the'intereéting'result
that matrix elements of SCalar two-particle operators that are off-diagonal
with reSpecf to seniority are proportional to an operator of rank 2 with res-
pect to'quasi¥spin. They must thus show a dependencé_on N contained in
Q 2 Q|
X S
("l> ‘ })
o \-.MQ'O MQ/

where x = Q-M Setting Q :‘%(2£+1“V) and Q' = %(2£+5-v), we find with the aid

o
of Edmond’S'tablesl8 for 3%-j symbols, for example, that

<z%1@lz%?>

(42+h=v=N) (L £+6=v-N) (N=v+L) N D nl o o
3Z<2ﬂ+e-v><§£+%§vsv A VJ /2 (#"ylal ),

]
| pm——y

where 3 and ' - réfer to states with seniorities v and v-l respectively.
An quiva]ent relation is givén byde;Shalit and Talmi.lo Their results for
Av=0 and 2 can be obtained by an analogous method. The most important example

of G ih atbmic spectroscopy is' the Coulbmb‘interaction.
Since cfp can be regarded as the reduced matrix elements of the tensor -

o £ T A
gﬁqs >, the dependence on N of these gquantities can be obtained by very similar
methods. For example, if y and 3y refer to states with seniorities v and

v+l respectively,
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(P 4
(/@v+2¥!/{.ll £V+l¢) ‘.
[Hetn-v) % S(26-v) )
, z
1 [, 11 | 1
- (_l)E(N-,V)ﬂ_ \\E(gzﬂ-N) 5 v-§(2z+2-1\r)’; %2_32
i T
/-‘-‘2"—(2£+1-v) % S(24-v) \. |
(%(%H) = -2(es-v)

1l

[ (-v) (ve2) /2m) /2,

5

in exact agreement with Eq. (58c) of Racah. Two-particle cfp can be treated

in an analogous fashion.

F. The Half~Filled Shell

When N=24+1, we may readily show that C commutes with

((ah a#‘)(Kk)(g\g\).(Kk)}(OO)’

the operational part of the Coulomb interaction. Hence the eigenvalues of C

25+1

may be used as additional labels to diétinguisﬂ the terms_of (n#) For the

half-filled shell, MQ=O.- Thus, from Eq. (59),“theveigenvalues of C are +1

 for states for which vz 24+l (mod 4) and -1 for states for which v = 2£-1 (mod
b).
(Kkk)

From Sec. VI-E, the matrix elements of X are seen to depend on

R

0 0 O
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Such a 3-j symbol is zero for Q+K+Q' odd. Excluding the special éase of the
totally écalar operatdr:(fér which K;k=0>, it can be seen from Eq, (36) that
' this condition is equivalent to the condition that .%(V+v') + k+k be odd. We thus
obtain the faﬁiliar-result59 that for né change of serlority (v=v;) all tensors.
for which k+k is eQen have nul matrixvelemehts; and that for a simple change.of
seniority (V—v’zié), all tensors fér thch K+k is odd have nul matrix elements.

The quasi-spin approach makes this remarkable result quite transparent.

G. Complementarity'

(qs£)

Thélvarious componehts bf thévtensor 2 can be reia£ed by>the
cbnjugation operator C (which changés.the'sign of mq) or by the time-reversal
| opérator‘ T’ (which changes the sign of m and mz). In view of the close para=-
lleiiém between spin and quasi—spin, a third éonhééfion betweenvthe components
of aquﬁ) irresistably suggésts itsélf. This corresponds to the interchange
m, € mos and is represented formally by an operator R for which

(as) <1 (ask) - (bh)

R a R = a s

3 : 4l

- where ig‘E‘(mqmsmz) and. q;;(msmqﬁﬂ). Unlike the corresponding equation for C,

no phase factor is necessary to maintain the anticommutation relations (35).
The implications of Eq. (4k) are not difficult. to work out. Thus, we

‘see immediately that

R X(KKk) gl X(KKk).
omg : Teq

When studying the effect of R on kets, it is convenient to impose the unitary

condition. RTR=1l. An examination of the eigenvalues of ‘§(loo) andix(o;o)leads
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to the result
Rly@r i) = (-1)"|ysug@ny) - | (45)

It is to be stressed that this transformation does not correspond to a mere
reordering of the quantum numbers; the quasi-spin for the ket onthe right is S
and the real spin is Q. For example, on setting vy = IML, Q=MQ50; and S=MS=5/2,

Eq. (45) becomes

rleT Onov=T, wg=5/2) = (1)1 Too,vee, Mg-o). (o)

Since R commutes with ,x(OOk), the phase angle t 1s independent of the purely

orbital description -y. Operation with X§é80> and Xégéo> revesls that &
must also be independent of Mg ‘and M Hence t = t(5,Q). Further precision

is impossible without a knowledge of the choice of phase made for the cfp.

The recognition of correspondences of the kind represented by Eq. (L6)
. " _ . S
dates back to the work of Racah. He observed that to every vy there corres-

ponds two couples v and S which are related by the equations

vl+ 282 = v2+ 281 = 2£+1.

If we replace the seniority numbers by the corresponding quasl-spin quantum
numbers, these equations become simply SE:Ql and Sl=Q2° In other words, if
- (QS) is one couple corresponding to a gi?en <, then the other is (5Q). This
is pfecisely the kind df relationshipvrepre;entéd in Eq. (L5). |

Just as Eq. (41) comes about by using the conjugation operator. c,

the use of the operator R leads to the result
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(vQMQSMS IX<KKK lv’_Q’MéS'MQ
" (57)
_ (KKK) | varmprgim:
= (-1)Y ('ySM _Q.(.qu [y'smia MQ>,-

where y = y(Q,S,Q’,S'). We nov set p=r=0 and use'Eq.l(56)-to introduce. the

(kk)

familiar tensors ¥ The sum K+k+k is taken to’ be odd, and the scaiar
K=k=0 isveXC1uded. We use the Wigner-Eckart theorem'to sepafate out the depen-
denee of the matrix elements of Eq. (h?) on the magnetic quantuﬁvnuﬁbers of the
rea; spin (Ms and Mé on the left-hand .side, MQ and Mé on the r’ight). - The

result. is

[ e K Q )
(KK) .
(vaMgSiw ll'y QNQS ) _ ()" \,:-1;1_@. : I;Ig’ -

(gl " [y stzar)

..’-I-"""’*"‘N
:g .
o.
=

e et

~Where gz = y+Q-MQ—S+MS.' We note that S, as well as representing the real SPin
of one state, defines the quas1-sp1n of another, S0 that we may wrlte,
Q= —(2£+l -vy ). for the first state, and S= ~(2£+l-v ) for the second.. This

permits the result to be expressed in a more striking fashion:

(ﬂNwls llw llz v vls )

s Wy vgsy)

=(24+1= = !
21(2 14v 1) K :21(2%1 _V1>\ ,,

R {
-él-(2£+l—N) 0 %(2‘/&4-1-&\1) }

L L :
i 5(24+1-v,) 5(24+1-v))

=

i1
\E(2£+;-N')

o)
1

%(2£+1-N')
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vwhere'K+K+k is odd, and the case when K=k=0 1s excluded. An equation of pre-
cisely this form has been derived from a detailed examination of determinantal

) 1 . .
product states,+o and subseqguently used 0 to evaluate the matrix elements of

27 s p“(2>

6
the hyperfine operator Eﬁlg)for Pul 5 from the existing tables
for f5. The derivation given here avoids a great deal of tedious algebra and

makes the origin of the final result more understandable.

VII. GROUPS

A. Root Figures

Lie's fundamental condition that must be satisfied if a collection of.
operafors are to form the infinitesimal operators.of a continuous group is
thet the commutator ef any two of the operatofs be equivalent to some linear
combination of the operators of the set. The 84+L operators ag+ and a
for a shell of equivelent electrons do not fulfill this requirement. However,
if we add to these the (4£+2)(84+3) distinct non-zero commutators that can be
formed from the basic annihilation and creation operators, then the eugmented
set is closed witﬁ respect to commutation among its members. The siﬁplest way
fo prove this result is to adopt the tripie—tensor formalism of Sec. VI;B and
use Eq. (35) repeatedly to simplify the commutetors.

To find the group corresponding tc the complete set of (4A+2)(84+5)

operatofs, we first select the 44+2 operators that are given by

where ¢ = (msm£>. The quantum numbers nf that define the shell are implicit

in all Greek suffixes. The operators H commute among themselves, and corres-

S
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| | by S
pond to the abstract operators Hi of Weyl. The remaining operators corres=-

pond to his %}’ The relatidns

define the covariant components o, of the roots @, which can be regarded

as vectors in the weight space spanned by the Ei. For us, ﬁhevweight.space

is (44+2)-dimensional. We now take the operators of the set, and test the
commutation with each of the Hg in turn.. For the simple annihilation and

creation operators, we find

[, » an*] - 5(g,n)aﬁf, (48)'
H,, o] = -5(sn)e . (49)
For the others, |
CINCAE RO +,a<_g,'»:>3_[a'n*,av“1>
[Hg.[an*;av]] = (8lem) - 6(§,v>)[anf,avi-,'
[Hg,[an;a;l]‘ o= (-8(, } ;6(§5v)}[aﬂ)av]e -

For the weight space, the metricvtensor g,k is Just Zﬁg,ak (see Weylul).
: _ . i : i

The components @ can be immediately read off from the flve commutation rela=

tions giveh above; the‘resglt is’

iy = 8(i,k)§16£+6)f
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ik
The inverse tensor gl is therefore given by
glk . 6(i,k)(162+6)_l.

The reason for introducing this quéntity is to allow us to form scalar products

of the type Q- = diﬁkglk (summation over i and k implied). The Lo+2

roots corresponding to the creation operators anT can now be seen from Eg.

(48) to be mutually orthogonal in. as much as for any two of them Q- = O.

They thus form a system of LZ+2 orthogonal vectors, which we write as Ei

1.

(i = l,2,...,h£+2). If an corresponds to a certain vector e , then a

K

corresponds to the vector - from Eq. (49). Similarly, the remaining commu-

e
~x’

tation relations lead to the roots %Si + Sk

of Sigﬂ). Now van der Waerden has shown'that to every root figure there corres-

(i % k, all possible combinations.

ponds only one Lie group.ug To find the group for our case, we have merely to

refer to van der Waerden's paper (or to the lecture notes of Racahh)) and see
what group corresponds to the system %ei, %iiégk' It turns out that the group

is R8£+5’ the rotation group in 84+5 dimensions.: (In Cartan's notation,

it is Bh£+2') This, then, is the group for which we have been searching.

B. Subgroups

Suppose that the 84+L4 simple operators of the type ag+ and &, are

discarded from the complete set of operators for R8£+5° The remaining
(84+3) (L£+2) operators are commutators of the type [anf,avf], [anf,av], and

[ag}avJ. These also satisfy’the basic condition that the commutator of any

two of them, such as
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can be expressed as a linear cOmbination ol the operators of the set;. They ..
»thérefore_form the’operatbrs for a suﬁgroup of R8£+5' 1The operatoré Hg. again
play the role ofﬁWeylfs operdtors _Hi, andvthe rpots are all 6f“the type

;gi;gk (i # k, all combinations of sign). As before, we turnt;otﬁe‘work'of
van der Waerden or Racah, ahd immediately find that the subgrou@ is R8ﬁ+h’ the
rotation group in-SZ;h dimensions.  (In Cartan's notation, it is Cﬁ2+2.> To

. . . . - e . . J 3

indicate that R8£+h is a subg*oupvof R8£+5’ we write R8E+5 R8£+M'
(as#), (as4):

g n

as a linear combination of the components of the tfiple‘tensors,x

can be expressed

 From Sec. VI-B, we may feadily'showrthat a
' (Kkk)

The

' s£)  (gsit ' . o
inverted product an(qs >a (as2) can be similarly expressed; in fact, the -

3

vector coupling coefficients can be made identical by a simple interchange of

magnetic quantum numbers. This introduces the phase (-1)%, where x = 2s+2q+24
(gs) , (asd)y

S T

R8£+h’ can thus be expressed as a linear combination of the components of

'X(KKK)

~K=-k-k. The commutator [a , which includes all the operators of
; but, owing to. the phase factor, only those tensors occur for whiéh
KKk is odd. Since they are linearly independent, ﬁe may equally well regard

"these tensors asvthé operators for R82+h' The ~reason for making thisvchahgel

(Kxk)

s

is that among the components X ‘are all the tensors that Racah used for his
celebrated za.'nalysisl’L of the configurations (nZ)N, so that we are now in a posi-
tion to consider subgroups of'R_8'£+LL that can be immediately identified with

‘Racah's groups. Before beginning, it is convenient™to write down the commuta=

tor of two of our operators for reference purposes:
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(kkx)  J(K'k'k")
[qu s szﬂqu ]
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(50
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O [ {
la o a | s s s |4 L Iy
s o '-

, " , " ) - " 1/2 (K"K"k”)
>§ {[kllx ][.K HeJ e " Mx] k' ke ]} o X g

This result can be obtained from a straightforward application of the anti-
commutation relations (555. In the first 6-j symbol, it is to be noted that
q étands for the quasi;spin (and, like s, is equal to 1/2); elsevhere a
refers to tﬁe projection of Xk.

Kk
X(K)for

prmq
which p= O. On putting p=p"=0 in Eq. (50), we see that p"=0 for the first 3-j

As a preliminary step, we consider only those components

symbol not to vanish. Hence these components form the operators: for a sub-

group of R8£+h° They do not shift the_quasi-spin guantum number M., and hence

. Q
act within a single configuration. There are (h2+2)2 of them, and they can be

regarded as the operators for Uhﬂ+2' We may reproduce Racah's decomposition

of this groub by first selecting the three components Xégéo> and the (2£+l>2
components X(KOk). These form the operators for SU, X U 5 this direct
00q - ) 2 24+1
product corresponds to the separation of the spin and orbital spaces. The
components X(KOk)Afor which K=0 arelthe operators for R and the three
) 00q 24+1°
operators of this collection for which k=1 span a further subgroup, R5' The

entire decomposition runs as follows:
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5 U D SU.xU

> : ,
38z+5 Rg a4l L 2+2 2 24+ - - ' .

- T . 7 ' g -
- SU2 bs R22+l ) SJQ X R5' : o : .

¥ .
X(KKk)_
omgq

These form the operators for the symplectic group Sphﬂ+2' On limiting « to :

Alternatively, we may select from the components those for which K=0.

1, we recover the operators for SUQ XFR2£+1. This alternative decomposition

may beirepresented‘by repj._acing‘S_U2 X U2ﬂ+l by Spu£+2 in the sequence (51)

(Kkk)

The use of the tensors X considerably widens the ch01ce of decom-

- position. In the first place, all thevsteps of the previous paragraph can be

repeated with spin and gquasi-spin interchanging roles. . The new'group—theore—
tical labelling of states that results from this is not of any special interest,
however, since we have already'introduced in.Sec. VI-G the operator R to-

exploit this interchange. But we can carry out a dlfferent and essentially

. symmetrical reduction of R82 I by 11m1t1ng the operators éﬁgk) to ééSO) ,
O 4
éﬂéo>, nd Xégoy) (where k is odd). This decomposition separates the quasi-

spin space, the spin space, and the orbital space at a single stroke.' It is

represented by

R82+h D SU2 X SU X R2£+1

Thus -~y of Eq. (45) can be interpreted as WTLML, where W stands for an

irreducible representation of R ' The symbol < is an additional quantum .

24+1"

number that must be included when two or more identical . . .values occur in the

reduction of W.
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c. Reprééentations

Since Ulw+2 and its subgroups coincide with the groﬁps used by Récah,
our interest centers on the two new groups R8ﬂ+5 and R8£+M'v The first contains
as its operators all the creation operators for a shell. Since all the states
of the configurations (nﬂ)N (0 < N < 4t+2) can be feproduced by -some combina-

‘ tion of Creation operators acting on ]O), it follows that this collection of
states, comprising every state of the“shell, can be regarded as the basis for
a representation of R82+5' This fepresentation cérresponds to an ensemble of

points in the weight space. To find the co-ordinates of the point correspond-

b5

ing to the determinantal product state {0B---v)}, we follow the usual procedure
and operate with each of the operators H, 2 in turn.’ The eigenvalues give the
.. )

.required co-ordinates. We begin by writing

Lot = T X
E[ag Jag]{aB...v} e (a a‘g - g)aa a‘B a

The operator a is gradually worked through the sequence of creation operators

S

so that it can act on lO) and give a nul result. If & 1is not contained in the
set (0B-++v), this procedure can be immediately carried out. The eigenvalue of

Hé in this pasé is simply ~l/2.' However, if £ 1s contained in the set
(aB---v), we can pass the product agfaF through the sequence of creation opera-
tors until it stands Jjust to the immediate left of the operator _agf. The

equatibn agfagé§+ == ag+ follows at once from the anticommutation relations.

In this case the eigenvalue of H, is 1- 1/2, that is, + 1/2. Thus every

g

determinantal product state corresponds to a point (or weight) of the type

(1/2, £ 1/2,...,% 1/2).
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There are 2&%42 neights of‘thispkind, one for'every state of the sheil; The
highest weight (1/2, 1/2,...1/2) seryes'toilabel the representation. In-the
language of Murnaghan,h6 this'representation is the simplest gpgn'representa-
8ﬂ+5- that is, the representatlon has the smallest dlmen51ona11ty of
those whose veights fall on the half-lntegral (rather than the- 1ntegral)
bco:ordinates. The representation is therefore 1rrednc1ble.

_Under the rednction R8£+5 —9R8£+;, the representation'(l/E; i/2,...,;/2> o
decomposes 1nto two 1rreduc1ble representatlons (1/2, 1/2)'f°)l/2 1/2) and
(1/2 1/2,...,1/2 1/2) of R8£ The flrst comprises those weights |
(t 1/2, = 1/2,...,_ 1/2) for which the number of p051t1ve signs is even; the
second'for nhich the number is odd. If the number of positive signs is even,
the states corresponding.to the weights mnst_be generated from the vacuum by
an even number of creation operators. In'other words, the representation ‘
(1/2, 1/2,...,1/2) comprises the states of (nﬂ) (nZ)?, (hz)“, etc.; nhereaS'v

'the representatlon (1/2, 1/2,...,1/2,-1/2 comprises‘the states of"(nﬂ);_(n2)5,
There is no way of connecting.the two_systems,lsince<the operators for R82+u
.either create a pair of electrons, annihilate a pair{'Or.leaVe the nunber of
electrons invariant | ”

The results of thls sectlon and of- Sec VIIﬂAare lllustrated in Fig. 7
for an ‘s shell. The four p0531ble states of such a shell form the repre- .
sentation (1/2,1/2) of R_. ThlS decomposes 1nto the tno representations

5

W v .
(1/2,1/2) ana (1/2, —1/2) of R The former embraces the two points (1/2, 1/2)

I
(for Js s)) and (-1/2, -1/2 (for ‘| s)) the 1atterthe pomts (1/2 -1/2) and

8£+5

spanned by the states of a shell must be as compact-as it is, since the condi=

(-1/2,1/2) (for ls,ms=.il/2)).' Tt is clear why ‘the representation of R

s St ot . . ' '
tion a, a, = Q implies that two steps in the same direction in the weight

£ %

space cannot lead to another point of the representation. The fact that



-
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electrons are fermions therefore plays a crucial role in determining the repre-

sentation in question.

D. Cohcluding Remarks

It is hoped that the preceding sections have.given some ides of the
povwer of methods involving annihilation and éreation operators. Not only are
they useful in deriving algebraic relations between matrix elements, fractional
parentage coefficients, and various coupling coefficients, but they are
parficularly valuable in perturbation-theory studies. The extension of ﬁhe
techniques of Section . II- to third and higﬁer order of perturbation
theory is straightforward, and the qualitative effect of a particular mechanism‘
on the ground configuration can be immediately grasped by constructing the
appropriate Feynman diaéram. The applicationé that have been'discussed‘in
detail have been for configurations of equivalent electrons of the type (nﬂ)N;
Mixed configurations would provide an éxtensive field for further developments.

I wish to thank Drs. N. K. Glendenning, R. Lawson, K. Rajnak, and .

B. G; Wybourne for helpful and stimuléting conversations. A special word of
appreciation is due to Dr. P. G. H. Sandars for particularly valuable and
pertinent comments. This wérk was done under fhe auspices oft the U. 8. Atomic

Energy Commission.
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The roots connect the weights of the representation; the subscripts a 
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Figure Captions -

' - t ot ' t .
Feynman graphs corresponding to a, a_a,b and ba a, aa_ . .

£ n A B. e

Graphs corresponding to-the two terms of expression (1%) in the

Angular-momentum diagram corresponding to expressioﬁ (18) in the : .
The silgns against the vertiées carry phase information.
Angular-momentum diagram for the prodﬁct of two pairs of 3=-j symbols.

Angular—momentumEdiagram corresponding to expression (19) in the

The result of contracting the diagram of Fig. Ut with that of Fig. 5.

The representation (1/2,1/2) of R, superposed on the root figuré;

>

and B are contractions for ms=<1/2 and m_= -1/2 respectively. For example,’

the operator aoj acting on lsv lS) connects the point (—l/2,~1/2) to

(1/2,-1/2), corresponding to the ket ]s,ms= 1/2).
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sponsored work. Neither the United States, nor the Com-
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or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

. As used in the above, "person acting on behalf of the
Commission"” includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
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