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Abstract

Despite the importance of biodiversity–ecosystem functioning (BEF) relationships

in ecology and conservation, relatively little is known about how BEF relation-

ships change across spatial scales. Theory predicts that change in BEF relation-

ships with increasing spatial scale will depend on variation in species composition

across space (β-diversity), but empirical evidence for this is limited. Moreover,

studies have not quantified the direct and indirect role the environment plays in

costructuring ecosystem functioning across spatial scales. We used 14 temperate-

forest plots 1.4 ha in size containing 18,323 trees to quantify scale-dependence

between aboveground tree biomass and three components of tree-species

diversity—α-diversity (average local diversity), γ-diversity (total diversity), and

β-diversity. Using structural-equation models, we quantified the direct effects of

each diversity component and the environment (soil nutrients and topography),

as well as indirect effects of the environment, on tree biomass across 11 spatial

extents ranging from 400 to 14,400 m2. Our results show that the relationship

between β-diversity and tree biomass strengthened with increasing spatial extent.

Moreover, β-diversity appeared to be a stronger predictor of biomass than

α-diversity and γ-diversity at intermediate to large spatial extents. The environ-

ment had strong direct and indirect effects on biomass, but, in contrast to diver-

sity, these effects did not strengthen with increasing spatial extent. This study

provides some of the first empirical evidence that β-diversity underpins the scaling
of BEF relationships in naturally complex ecosystems.

KEYWORD S
biodiversity, ecosystem functioning, net primary productivity, spatial scale, species diversity,
species turnover, temperate forest

INTRODUCTION

Syntheses of hundreds of biodiversity–ecosystem function-
ing (BEF) studies show that biodiversity contributes to the

magnitude and stability of ecosystem functions and
services (Balvanera et al., 2006; Cardinale et al., 2011;
Hooper et al., 2005). To date, most studies focused on how
a single component of biodiversity—species richness in
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local communities—influenced BEF relationships at small
spatial scales (e.g., in grassland plots ranging from <1 to
100 m2) (Cardinale et al., 2011; Tilman et al., 2014). Key
questions remain as to whether findings from small-scale
studies shed light on BEF relationships at broader scales
(Gonzalez et al., 2020; Isbell et al., 2018; Srivastava &
Vellend, 2005). As spatial scale increases, a combination of
local and regional processes—including local coexistence
mechanisms, dispersal limitation, and environmental
gradients—likely contribute to BEF relationships (Leibold
et al., 2017). Therefore, one of the largest unresolved chal-
lenges for BEF research is “the question of scale”
(Gonzalez et al., 2020)—how and why does the relation-
ship between biodiversity and ecosystem functioning
change with scale?

Scale dependence in BEF relationships can be under-
stood by determining how the contributions of local,
regional, and spatial components of biodiversity change
with increasing spatial extent (Gonzalez et al., 2020;
Isbell et al., 2018; Thompson et al., 2018). Total diversity
at a given extent (γ-diversity) can be partitioned into
local (α-diversity) and spatial (β-diversity) components
(Anderson et al., 2011; Chase et al., 2018), whose differen-
tial effects on ecosystem functioning can provide insights
into the roles of local and spatial processes for BEF relation-
ships (Isbell et al., 2018). At small spatial extents, α-diversity
can increase ecosystem functioning due to niche comple-
mentarity, which promotes local species coexistence (Liang
et al., 2015; Tilman et al., 2014). As spatial extent increases,
β-diversity can increase ecosystem functioning through spa-
tial niche complementarity when species sort across envi-
ronmental gradients (Barnes et al., 2016; Thompson
et al., 2021), even when α-diversity is low and species can-
not coexist locally (Catano et al., 2020; Hammill et al., 2018;
Winfree et al., 2018). The relative importance of α-diversity
and β-diversity can therefore provide insights into relation-
ships between γ-diversity and ecosystem functioning across
scales (Thompson et al., 2018).

Despite rising interest in the so-called question of scale
in BEF research, the importance of different components of
biodiversity in determining scale-dependent BEF relation-
ships in natural ecosystems remains unknown (Gonzalez
et al., 2020). First, relatively few empirical tests of scale
dependence in BEF relationships have been conducted, and
most come from aggregating small plots with similar envi-
ronmental conditions in experiments originally designed to
examine local species richness–productivity relationships
(e.g., Thompson et al., 2018). Such studies may underesti-
mate the role of β-diversity for ecosystem functioning in
landscapes with more heterogeneous environments
(Winfree et al., 2018). Second, most empirical BEF research
focuses on a single diversity component (α-, β-, or γ-diver-
sity) (Liang et al., 2016; Luo et al., 2019) and may not

capture the multidimensional nature of biodiversity change
relevant to real-world scenarios (McGill et al., 2015). For
example, species invasions and disturbance can homoge-
nize species composition by reducing β-diversity (Catano
et al., 2017; McKinney & Lockwood, 1999), even with no
net change in local species richness (Dornelas et al., 2014).
Third, diversity in natural ecosystems is structured by the
environment, yet BEF studies typically focus solely on
diversity effects. Therefore, the extent to which variation in
ecosystem functioning can be explained by the direct effects
of the environment (e.g., energy flux), the direct effects of
diversity (e.g., niche partitioning), or the indirect effects of
the environment by structuring diversity remains unclear.
These empirical gaps limit our understanding of the pro-
cesses underlying the scaling of BEF relationships in het-
erogeneous environments typical of natural ecosystems.

We provide one of the first empirical tests of the impor-
tance of the environment and α-, β-, and γ-diversity in the
scaling of biodiversity–biomass relationships in heteroge-
neous landscapes. Our study examined the effects of tree bio-
diversity on total aboveground tree biomass, a key ecosystem
property associated with carbon dynamics, productivity, and
several other ecosystem functions (Chisholm et al., 2013;
Lutz et al., 2018; Stephenson et al., 2014). We conducted our
study across 14 forest plots 1.44 ha in size in the Missouri
Ozarks in the United States, each encompassing strong soil
and topographic gradients. We used structural-equation
models (SEMs) to quantify how the relationships between
three diversity components (α-, β-, and γ-diversity), environ-
mental variables (soil nutrients and topography), and above-
ground tree biomass varied across 11 spatial extents ranging
from 400 to 14,400 m2. We predicted that α-diversity effects
would be positive but scale invariant because average
α-diversity is not expected to vary with increasing spatial
extent, that β-diversity effects would increase with spatial
extent because environmental heterogeneity should provide
more opportunities for spatial niche complementarity
(Thompson et al., 2021; Winfree et al., 2018), and that
γ-diversity effects would be nonlinear, initially increasing
with extent as new species are sampled across different envi-
ronments but weaken as species accumulation saturates
(Thompson et al., 2018). In contrast, we predicted that envi-
ronmental variation would be an important predictor of tree
biomass at all scales, both through direct effects and indirect
effects via its influence on species diversity.

METHODS

Study system

We conducted our study in late-successional (undisturbed
for ca. 80 years) oak-hickory forests at Tyson Research
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Center, an 800-ha environmental field station located in
the border region of the Ozark highlands, Missouri
(38�310 N, 90�330 W; mean annual temperature 13.58�C;
mean annual precipitation 957 mm). We established
14 forest plots each 1.44 ha (120 � 120 m) in size and each
containing strong environmental gradients (Appendix S1:
Figure S1). Each plot included three main habitats repre-
sentative of Ozark oak-hickory forests: (1) mesic east-to-
north-facing slopes, (2) hydric valleys with an intermittent
stream, and (3) xeric west-to-south-facing slopes. Tree spe-
cies composition and diversity vary strongly among these
habitats (Myers et al., 2013; Spasojevic et al., 2016). Within
the plots, elevational ranges varied from 15.5 to 32.3 m
and soil fertility ranged from wet, pH-neutral soils with
high macronutrient availability to dry, acidic soils with
high iron and aluminum concentrations (Figure 1a)
(Spasojevic et al., 2014). Therefore, each forest plot is a
replicate landscape including this environmental gradient.
Importantly, all plots are late-successional forests with
similar land-use and disturbance history, which minimizes
the potential confounding effects of history on contempo-
rary biodiversity–biomass relationships.

Tree biodiversity, aboveground biomass,
and environmental heterogeneity

In the period 2016–2017, we identified, mapped, and
measured the diameters of all woody stems (excluding
lianas) >1 cm diameter at breast height (dbh) within
each of the 14 forest plots following ForestGEO proto-
cols (Anderson-Teixeira et al., 2014). Each plot was

divided into 36 grid cells (20 � 20-m quadrats)
by installing permanent markers (rebar poles) at
the corners of each quadrat. We focused on stems
>2.5 cm dbh for which allometric equations were avail-
able to calculate aboveground biomass. We estimated
the biomass of each stem using species-specific allome-
tric regression equations from the U.S. Department
of Agriculture Database of Diameter-based Biomass
Regressions for North American Tree Species (Jenkins
et al., 2004):

bm¼ eβoþβ1ln dbhð Þ ð1Þ

where bm is the total aboveground biomass (kg), dbh is
the diameter at breast height (cm), and βo and β1 are spe-
cies-specific constants. We calculated biomass for 18,323
stems (range = 898 to 1487 stems/plot) of 43 species
(range = 22 to 29 species/plot) (Appendix S1: Table S1).
Aboveground live tree biomass ranged from 170 to
237 Mg/ha (mean: 213 � 17) across plots. Total tree bio-
mass in this forest is strongly and positively associated
with annual net primary productivity: 0.53 � 0.03 (mean
� SE), F1,98 = 184.8, p < 0.001, r = 0.8 (Appendix S1:
Figure S2).

We quantified environmental conditions within each
forest plot using 14 abiotic variables that strongly influ-
ence the distributions of tree species and functional com-
positions in these forests (Spasojevic et al., 2014, 2016).
We measured four topographic variables and 10 soil vari-
ables in 20 � 20-m quadrats in each forest plot (n = 36
quadrats/plot). Topographic variables included aspect,
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F I GURE 1 Environmental heterogeneity increases with spatial scale. (a) Map of soil resources and topography for one of the 14 forest

plots, 120 � 120 m (1.44 ha) in size, analyzed in this study. The 20 � 20-m grid projected onto the forest plot shows the spatial grain where

environmental variables were quantified. (b) Area-heterogeneity curve, where heterogeneity is the SD of environmental conditions (first

principal component from 14 soil and topographic variables) across 20 � 20-m quadrats in each spatial extent. Gray points and lines are

trends for each of the 14 plots, blue line is the mean trend and SE across all plots. Environmental maps for all 14 forest plots are provided in

the supporting information (Appendix S1: Figure S1).
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convexity, elevation, and slope (Spasojevic et al., 2014,
2016). Soil variables included seven exchangeable cations
(Al, Ca, Fe, K, Mg, Mn, Na), soil pH, plant-available phos-
phorus, and organic matter content. See Appendix S2 for
detailed soil sampling methods. We then used principal
component analysis (PCA) to reduce the dimensionality
of the environmental data. First, we normalized the raw
data by log-transforming Ca, Fe, Mg, Mn, Na, P, and
organic matter content and square-root transforming K,
then standardized the variables (Z-scores) before PCA.
Second, we extracted the first principal component axis
(PC1) to serve as our environmental variable in down-
stream analyses. PC1 explained 31% of the environmental
variation and is most strongly associated with a soil-
resource gradient spanning acidic soils with high Al
concentrations to more resource-rich alkaline soils
with higher concentrations of organic matter, K, Mg, and
P (Appendix S2: Figure S1). To visualize how environmen-
tal heterogeneity increases with extent in each plot
(Figure 1b), we calculated the standard deviation of envi-
ronmental conditions (first principal component from soil
and topographic variables) across quadrats at five spatial
extents (40 � 40 m, 60 � 60 m, 80 � 80 m, 100 � 100 m,
and 120 � 120 m).

Spatial sampling design and diversity
calculations

In each forest plot, we calculated the abundance of each
tree species (number of stems per species) and total
aboveground tree biomass (hereafter biomass) within
four 10 � 10-m subquadrats in each 20 � 20-m quadrat
(Figure 1a). We used a nested plot sampling design to cal-
culate tree diversity and biomass at 11 different spatial
extents, ranging from 20 � 20 m to 120 � 120 m for each
plot (Figure 2). Because spatial structure in environmen-
tal conditions can influence the rate of species and bio-
mass accumulation with increasing area depending on
starting location, we repeated this procedure starting
at every possible location for each spatial extent. For
example, for the 20 � 20-m sample extent shown in
Figure 2, we extracted the stems for each of the four
10 � 10-m subquadrats and assigned these to subsample
i1. We then systematically shifted the sampling extent
10 m and extracted the stems for the next four sub-
quadrats and assigned these to subsample i2. We repeated
this procedure until all possible subsamples for a
given spatial extent were recorded (Appendix S1:
Table S2). We fixed the spatial grain size at 10 � 10 m

α1 α2

α3 α4

Alpha diversity:
mean( 1, 2, 3, 4)

Gamma diversity

20 × 20 
subsample i121

20 × 20 
subsample i1

Beta diversity:

1−

F I GURE 2 Nested sampling design. Tree biomass, the topo-edaphic environment, and alpha, beta, and gamma diversity were averaged

across subsamples for each of the 11 spatial extents (shown in different colors) in each of 14 forest plots. For example, there are 121 total

subsamples of the 20 � 20-m extent. The gray dotted lines indicate 10 � 10-m cells (spatial grain). For a given extent in each forest plot,

alpha diversity is the mean tree diversity across 10 � 10-m cells in each extent; gamma diversity is the total tree diversity calculated after

summing species abundances across all cells in each extent; beta diversity is 1 – (alpha/gamma) and indicates variation in species

composition across cells in each extent.
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because this is the unit in which we censused trees and
corresponds to the scale at which prior studies showed
that conspecific and heterospecific trees interact strongly
(LaManna et al., 2016, 2017).

We calculated diversity using the probability of inter-
specific encounter (PIE) converted to an effective number
of species:

ENSPIE ¼ 1=
XS
i¼1

p2i

 !
ð2Þ

where S is the number of species and pi the proportional
abundance of each species in the sample. ENSPIE (equiva-
lent to inverse Simpson’s index) reflects the initial slope
of the species rarefaction curve and is insensitive to dif-
ferences in the number of individuals, thereby providing
a scale-independent diversity metric (Chase et al., 2018).
ENSPIE is ideal for evaluating the effects of diversity on
biomass because it integrates both species richness and
relative abundances, so it captures the role of dominant
species that disproportionately influence total biomass
(Chase et al., 2018). Within each of the 14 forest plots, we
calculated α-diversity (αPIE) as the mean ENSPIE across
the 10 � 10-m cells within each subsample for a given
spatial extent (Figure 2). We calculated γ-diversity (γPIE)
as the ENSPIE within each subsample for a given spatial
extent (i.e., after summing species abundances across all
10 � 10-m cells). We calculated β-diversity (βPIE) for each
subsample for a given spatial extent as 1 � αPIE/γPIE, a
scale-independent metric of β-diversity that reflects the
spatial aggregation of individuals within species (Chase
et al., 2018); a larger βPIE indicates greater variation in
species composition across space. Finally, we averaged all
variables over the subsamples for a given spatial extent in
each of the 14 forest plots.

Statistical analysis

We quantified the scale-dependent effects of biodiversity
and the environment on biomass through a two-step pro-
cess. First, we developed SEMs to quantify the direct
effects of each diversity metric on biomass, the direct
effect of the environment on biomass, and the indirect
effect of the environment through its effect on diversity
(Figure 3 inset). We fitted separate piecewise SEMs for
αPIE, βPIE, and γPIE at each scale (e.g., 11 spatial extents
ranging from 400 to 14,400 m2) using the R package
piecewiseSEM version 2.1.2 (Lefcheck, 2016), where each
forest plot is a replicate (n = 14) within the broader forest
landscape. Therefore, we fitted 33 SEMs: one for each
diversity metric at each of the 11 spatial extents.

Moreover, we fitted SEMs across forest plots to maintain
equal sample sizes for each spatial extent, which allowed
us to quantify biodiversity–biomass relationships across a
broader range of scales (400–14,000 m2) than prior stud-
ies. For example, Barry et al. (2021) quantified BEF scal-
ing relationships in a tropical forest plot from 25 to
400 m2; thus, their maximum spatial extent is equivalent
to our minimum spatial extent. The larger scales in our
study allowed us to capture a wider range of environmen-
tal conditions, where spatial niche partitioning is
expected to be especially important for structuring tree
species composition. We loge-transformed biomass to lin-
earize its relationship with diversity and the environment
and ensured that final bivariate relationships in each
SEM were approximately linear by plotting partial regres-
sion plots for each path (Appendix S1: Figures S3–S5).
We also inspected residual diagnostic plots for each SEM
(quantile-quantile plots for normality and fitted versus
residual plots for homogenous errors) to confirm that lin-
ear functions were appropriate. Next, we extracted the
standardized path coefficients from each SEM that repre-
sent the relative importance of biodiversity on biomass,
direct environmental effects on biomass, and indirect
environmental effects by structuring diversity. Last, we
plotted the SEM path coefficients across spatial extents to
evaluate the relative importance of different biodiversity
metrics and the environment for scaling biomass.

RESULTS

Relationships between tree biodiversity and aboveground
biomass varied across spatial extents (Figure 3). The rela-
tionships between biomass and all three diversity compo-
nents (αPIE, βPIE, γPIE) appeared to increase in strength
from intermediate (3600 m2) to large (14,400 m2) extents;
however, only relationships between biomass and βPIE
became consistently stronger at the largest extents com-
pared to the smallest extents (Figure 3; Appendix S1:
Figures S3–S5). Moreover, the direct effects of βPIE on
biomass at the two largest extents (12,100 m2: standard-
ized [std.] coefficient = 0.42, df = 11, p = 0.09; 14,400
m2: std. coefficient = 0.40, df = 11, p = 0.09) were about
twice as large as those for αPIE (12,100-m2: std. coeffi-
cient = 0.18, df = 11, p = 0.39 and 14,400-m2: std. coeffi-
cient = 0.17, df = 11, p = 0.39). Similarly, the direct
effects of βPIE on biomass at the largest extents were
about twice as large as those for γPIE (12,100 m2: std. coef-
ficient = 0.21, df = 11, p = 0.33 and 14,400 m2: std. coef-
ficient = 0.18, df = 11, p = 0.39). All diversity
components initially appeared to show weakening rela-
tionships with biomass when scaling up from small
(400 m2) to intermediate (3600 m2) extents. The
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unstandardized path coefficients and standard errors for
all SEMs are reported in Appendix S1: Tables S3–S5.

The environment had strong direct and indirect
effects on tree biomass at all spatial extents, but, in con-
trast to diversity, the direct effects of the environment on
tree biomass did not strengthen with increasing spatial
extent (Figure 3a–c). In the SEMs with βPIE, the
environment–biomass relationships became weaker with
increasing extent (Figure 3b). Moreover, the indirect
effects of the environment on tree biomass (i.e., via its
effects on βPIE) were strong but did not consistently
increase with spatial extent (Figure 3e). Therefore,
though the environment is among the most important
predictors of biomass at any extent, it is not responsible
for the change in diversity–biomass relationships across
scales. The amount of variation in biomass explained by
the SEMs varied from 50% to 65%, depending on the
diversity component and spatial extent (Appendix S1:
Tables S3–S5).

DISCUSSION

Numerous studies have explored the relationships
between biodiversity (typically species richness) and
ecosystem functioning at local scales (Balvanera
et al., 2006). In addition, a small number of recent studies
explored these relationships at regional scales (Hammill
et al., 2018; van der Plas et al., 2016; Winfree et al., 2018).
Yet relatively few empirical studies have tested direct
and indirect effects of the environment and β-diversity
on BEF relationships across a continuum of spatial
scales. Our results show that the relationship between
β-diversity and tree biomass strengthened with increasing
spatial extent. Moreover, β-diversity appeared to be a
stronger predictor of tree biomass than α-diversity and
γ-diversity at intermediate to large spatial extents. Envi-
ronmental conditions related to soil nutrients and topog-
raphy had strong direct and indirect effects on tree
biomass, but in contrast to diversity the relationship

esnopser
ytisrevi

D
)tneiciffeoc

htap.d tS(
esnopser

ssa
moiB

)tneiciffeoc
htap.dtS(

(a) (b) (c)

(d) (e) (f)

Spatial scale (m2 ×100)
Total biomass

Diversity
(α, β, or γ)

Environment
(PC1: soil resources)

F I GURE 3 Scale-dependent effects of three biodiversity metrics (αPIE, βPIE, and γPIE) and environmental conditions (soil and

topographic variables) on aboveground tree biomass. Each point is the effect size (standardized path coefficient) from a structural equation

model (SEM, see inset). A separate SEM was fitted for each diversity component (αPIE, βPIE, and γPIE) across forest plots (n = 14) at

11 different spatial extents (33 total SEMs). (a)–(c) Path coefficients for direct effects of environment (yellow) and biodiversity (purple) on

biomass. Larger positive values indicate stronger relationships between biomass and predictor variables (environment or diversity metrics).

(d)–(f) Path coefficients for effects of environment on biodiversity (blue; note we multiply by �1 for visualization purposes to more easily

compare the strength of these relationships to the other path coefficients). We used locally estimated scatterplot smoothing to visualize

trends in effects with increasing spatial scale.
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between the environment and tree biomass did not
strengthen with increasing spatial extent. These findings
provide some of the first empirical support for recent the-
ory (Thompson et al., 2018, 2021) suggesting that
β-diversity underpins the scaling of BEF relationships in
naturally complex ecosystems.

The increasingly strong relationship between
β-diversity and biomass at larger spatial extents (Figure 3)
could be related to the increase in topographic and
resource heterogeneity at these extents (Figure 1b). Met-
acommunity theory predicts environmental heterogeneity
will increase variation in species composition by selecting
for different species best adapted to local environmental
conditions (species sorting) (Leibold et al., 2004). Species
sorting is expected to maximize ecosystem functions like
productivity because species are filtered into environments
where their traits most efficiently convert resources into
biomass (Hammill et al., 2018; Leibold et al., 2017;
Winfree et al., 2018). Consistent with this mechanism, soil
resources and topography were an important predictor of
β-diversity, especially at larger spatial scales. Moreover, a
prior study of leaf functional traits at our site showed that
functional β-diversity and its associations with soil condi-
tions increase from small to large spatial extents,
suggesting traits may also contribute to scaling BEF rela-
tionships (Spasojevic et al., 2016). Our results provide sup-
port for recent theory that suggests β-diversity resulting
from spatial niche complementarity strengthens BEF rela-
tionships across spatial scales in heterogeneous ecosystems
(Gonzalez et al., 2020; Isbell et al., 2018; Thompson
et al., 2021). However, the effect of the environment on
β-diversity saturates at larger extents (Figure 3e), while the
direct effect of β-diversity on biomass continues to rise,
suggesting additional mechanisms may contribute to these
scaling relationships. For example, dispersal limitation or
other stochastic processes could contribute to patterns of
β-diversity at larger scales that are not related to environ-
mental conditions. Regardless, our results are likely to be
general because both environmental heterogeneity and
β-diversity increase with spatial scale in most natural eco-
systems (Isbell et al., 2017).

The relationship between γ-diversity and biomass also
increased with scale, but was generally weaker than the
relationship between biomass and β-diversity (Figure 3).
One potential reason for this is because as scale increases,
the correlation between γ-diversity and its constituent α-
and β-components decreases (Thompson et al., 2018). At
large scales, similar values of γ-diversity could be
explained by more permutations of species compositions
in local communities (Thompson et al., 2018), thereby
obscuring outcomes due to species sorting directly linked
to β-diversity. Additionally, the relatively small species
pool in our region (γ-diversity only varied between

22 and 29 species per forest plot) could also contribute to
weak relationships between γ-diversity and biomass. Our
study is consistent with others that generally found
γ-diversity, relative to β-diversity, to be a weaker predic-
tor of biomass dynamics at larger scales (Catano
et al., 2020; Hammill et al., 2018). However, we did not
find a strong hump-shaped relationship between
γ-diversity and biomass, as predicted by Thompson et al.
(2018). It is possible that the largest spatial extent in our
study, 1.44 ha, was not large enough to capture the scales
where saturation of species richness is strong enough to
decrease the slope of the BEF. Alternatively, the func-
tional form of BEF scaling relationships in our study may
differ because the theory is based on richness measures
that do not account for differences in species dominance
or relative abundances that we quantify here.

Despite decades of theory and experiments in local
communities demonstrating local biodiversity effects, we
found the relationship between α-diversity and biomass
was generally weak at all scales. This weak biodiversity
effect may be attributed to the 10 � 10-m resolution used
in our study: selection effects likely dominate at this
small scale because little environmental heterogeneity is
present. Also, the correlation between α-diversity and
biomass could be weak if environmental variables, rather
than diversity per se, directly influence biomass at these
scales (Gonzalez et al., 2020). For example, soil resources
and microclimate (e.g., temperature) could directly
increase plant productivity due to higher energy inputs
and faster individual growth rates regardless of the diver-
sity of the communities. Consistent with this interpreta-
tion, our results show that environmental conditions
related to soil nutrients were the most significant predic-
tor of biomass at smaller scales in these forests. Our
results suggest the need to include environmental compo-
nents and other dimensions of biodiversity to understand
variation in BEF relationships when moving from local
communities to larger scales.

Our study highlights three main avenues for future
research. First, though our results support predictions of
stronger β-diversity effects with increasing scale, they dem-
onstrate that certain aspects of BEF theory should be
adapted to, and tested within, natural landscapes. For
example, myriad assembly processes in natural ecosystems
could modify the scaling relationships between biodiver-
sity and ecosystem functions. Large-scale experiments
that manipulate spatial/regional processes, including
landscape-scale connectivity (Haddad et al., 2017),
regional dispersal and species pools (Catano et al., 2021),
and environmental heterogeneity (Reynolds et al., 2007),
could reveal mechanistic insights into the scaling of BEF
relationships in natural environments. Second, extensive
empirical research in a variety of ecosystems is needed
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before generalizations can be made concerning the
scale dependency of biodiversity effects. Though our
findings in a forest ecosystem mirror results from
aquatic mesocosms (Hammill et al., 2018) and recent
theory (Thompson et al., 2021), the processes underlying
variation in species composition (e.g., species sorting,
dispersal limitation, demographic stochasticity) are
likely to vary greatly between ecosystems (Barnes
et al., 2016; Myers et al., 2013) and may lead to distinct
BEF relationships. Third, it is unclear how the scaling of
biodiversity effects may differ for specific ecosystem
functions. We focused on total forest biomass because it
is a critical attribute that influences multiple ecosystem
processes in forests, including carbon dynamics and
primary productivity (Chisholm et al., 2013; Lutz
et al., 2018; Stephenson et al., 2014). Future studies that
explicitly focus on specific functions, such as net primary
productivity and how they are influenced by various
demographic processes (recruitment, growth, and mortal-
ity), could reveal novel insights into biodiversity effects on
ecosystem functioning, which could be missed when
focusing on aggregate properties like standing biomass
(Liang et al., 2005). Moreover, α- and β-diversity effects
may be stronger when considering multiple functions
simultaneously (Hautier et al., 2017; Pasari et al., 2013).

In conclusion, our findings suggest that spatial varia-
tion in species composition is among the strongest deter-
minants of BEF relationships at larger spatial scales.
Though BEF research has historically focused on how
random species loss influenced ecosystem functions at
small scales, it is becoming increasingly clear that envi-
ronmental change, species invasions, and environmental
management can alter the distribution of species in non-
random ways with or without net change in local species
richness (Dornelas et al., 2014). Therefore, understanding
change in both environmental conditions and species
composition, not just species richness, is critical for antic-
ipating the consequences of biodiversity change on eco-
systems across scales.
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