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Microbiome

Analysis of strain, sex, and diet‑dependent 
modulation of gut microbiota reveals candidate 
keystone organisms driving microbial diversity 
in response to American and ketogenic diets
Anna C. Salvador1,2, M. Nazmul Huda3,4, Danny Arends5,6, Ahmed M. Elsaadi1, C. Anthony Gacasan1, 
Gudrun A. Brockmann5, William Valdar7,8, Brian J. Bennett3,4 and David W. Threadgill1,2,9* 

Abstract 

Background  The gut microbiota is modulated by a combination of diet, host genetics, and sex effects. The magni-
tude of these effects and interactions among them is important to understanding inter-individual variability in gut 
microbiota. In a previous study, mouse strain-specific responses to American and ketogenic diets were observed 
along with several QTLs for metabolic traits. In the current study, we searched for genetic variants underlying differ-
ences in the gut microbiota in response to American and ketogenic diets, which are high in fat and vary in carbohy-
drate composition, between C57BL/6 J (B6) and FVB/NJ (FVB) mouse strains.

Results  Genetic mapping of microbial features revealed 18 loci under the QTL model (i.e., marginal effects that are 
not specific to diet or sex), 12 loci under the QTL by diet model, and 1 locus under the QTL by sex model. Multi-
ple metabolic and microbial features map to the distal part of Chr 1 and Chr 16 along with eigenvectors extracted 
from principal coordinate analysis of measures of β-diversity. Bilophila, Ruminiclostridium 9, and Rikenella (Chr 1) were 
identified as sex- and diet-independent QTL candidate keystone organisms, and Parabacteroides (Chr 16) was iden-
tified as a diet-specific, candidate keystone organism in confirmatory factor analyses of traits mapping to these 
regions. For many microbial features, irrespective of which QTL model was used, diet or the interaction between diet 
and a genotype were the strongest predictors of the abundance of each microbial trait. Sex, while important 
to the analyses, was not as strong of a predictor for microbial abundances.

Conclusions  These results demonstrate that sex, diet, and genetic background have different magnitudes of effects 
on inter-individual differences in gut microbiota. Therefore, Precision Nutrition through the integration of genetic 
variation, microbiota, and sex affecting microbiota variation will be important to predict response to diets varying 
in carbohydrate composition.
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Introduction
The gut microbiota has emerged as a key component 
underlying the application of precision nutrition and 
individualized dietary response. Gut microbiota utilizes 
nutrients passing through the gastrointestinal tract to 
perform biological functions, this in turn impacts host 
digestion, absorption, and metabolism of nutrients [1]. 
There is a consensus that a relationship exists between 
the microbes and their host. Although some studies have 
been performed in humans and livestock species, e.g., 
quails and hens [2, 3], the impact of inter-individual vari-
ability on how diet modulates gut microbiota composi-
tion remains underinvestigated [4, 5].

Previous studies from our group have demonstrated 
strong mouse strain-specific differences in response to 
American and ketogenic diets [6–9], especially between 
the C57BL/6 J (B6) and FVB/NJ (FVB) strains. The com-
position of gut microbiota is known to be influenced by 
both host genetics and environmental factors such as diet 
[9–11], which is considered one of the most potent regu-
lators of gut microbial composition. We have recently 
demonstrated that B6 is particularly susceptible to 
altered gut microbiota relative to A/J, FVB, and NOD/
ShiLtJ [9]. Furthermore, changes to bacterial abundance 
do not occur uniformly in response to diets varied in 
macro- and micronutrient composition because of dif-
ferences in substrate utilization between bacterial taxa 
[9, 12]. To determine what the composition of the “ideal” 
microbiome is, it would be pertinent to disentangle the 
effects of host genetics and host diet from the extra layers 
of complexity arising from differences in substrate utili-
zation by individual organisms and ultimately identify 
genes regulating interindividual differences in the com-
position of the gut microbiota [12, 13]. Until recently, few 
studies have considered the extent to which the combi-
nation of host genetics and diet modulate the abundance 
of specific bacterial taxa, and even fewer have considered 
how sex might add an additional layer of complexity to 
describing inter-individual variation in microbiota com-
position [14–18].

In this study, an intercross population (F2) was gener-
ated between B6 and FVB to investigate the strain-, sex-, 
and diet-dependent modulation of the gut microbiota. 
F2s were fed either an American or a ketogenic diet 
and fecal microbiota was quantified. The results provide 
evidence for 32 quantitative trait loci (QTL) that affect 
microbiota composition, but also significant diet and sex 
differences in the effect size of the QTL. In many cases, 
these were sex- and diet-independent QTL (i.e., marginal 
effect QTL that are not specific to diet or sex, y ~ sex + 
diet + sex:diet + [marker]), and in other cases, these were 
genotype- and diet-dependent (y ~ sex + diet + marker + [
marker:diet]) or genotype- and sex-dependent QTL (y ~ 

sex + diet + marker + [marker:sex]), which allowed us to 
characterize how much host genetics, sex, and diet affect 
specific gut microbiota, and provided insights into fac-
tors driving microbial diversity, which has implications 
for advancing precision nutrition through preclinical 
studies.

Methods
Animals and diets
B6 females were crossed with FVB males to generate F1 
mice and subsequently intercrossed to generate an F2 
population. Both parental strains were acquired from 
The Jackson Laboratory prior to generating the F2 pop-
ulation. F2s were randomized to five mice per cage and 
screened for their response to American (a powdered 
meal composed of 35% of energy from fat, 50% from car-
bohydrates) and ketogenic (a paste composed of 84% of 
energy from fat, 0% from carbohydrates) diets during a 
3-month feeding trial. Neither diet was irradiated prior 
to use. Detailed diet compositions are provided in Sup-
plementary Table S1.

For the feeding trials, 3–5  week-old mice were ran-
domly assigned to one of the two diet groups and allowed 
to eat ad  libitum. Half of the F2 mice were placed on 
American diet (102 males, 122 females) and half on 
ketogenic diet (126 males, 119 females). All protocols in 
this study were approved by the Texas A&M University 
Institution Animal Care and Use Committee (IACUC 
protocol number: 2022–0273) and animals were main-
tained in accordance with those guidelines at 22 °C under 
a 12-h light cycle with up to 5 mice per cage, in compli-
ance with the Guide for the Care and Use of Labora-
tory Animals published by the US National Institutes of 
Health. Detailed husbandry descriptions are provided 
in Supplementary Table S2 per ARRIVE guidelines for 
reporting housing and husbandry conditions. At the 
end of the feeding trial, mice were euthanized by carbon 
dioxide asphyxiation, blood was collected, and tissues 
and feces were harvested and immediately flash frozen in 
liquid nitrogen.

Microbiota phenotypes
Stool microbiota was analyzed by 16S rRNA V4 
sequencing methodology as reported previously [19]. 
In brief, total stool DNA was extracted using Zymo-
BIOMICS™ 96 MagBead DNA kit (Zymo Research, 
Irvine, CA) with an automated epMotion (Eppendorf, 
Hamburg, Germany) robotic system. About 100  mg 
of stool samples were placed in the ZR BashingBead™ 
Lysis Tube and homogenized using FastPerp24 bead 
beater (Millipore, Hayward, CA) at 6.5 HZ for 2  min. 
The lysate was centrifuged at ≥ 10,000 × g for 1 min and 
200  μl supernatant from lysis tube was transferred to 
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96 deep-well plate (Eppendorf, Hamburg, Germany) 
and loaded in an epMotion 5075t robotic system. Using 
epMotion, 600 μl ZymoBIOMICS™ MagBinding Buffer 
and 25 μl of ZymoBIOMICS™ MagBinding Beads were 
added to each well and was mixed well. After mix-
ing, the plate was placed on a magnetic stand and the 
supernatant was discarded. MagBinding Beads were 
washed with MagWash 1 and MagWash 2 and the DNA 
was eluted using 50 μl ZymoBIOMICS™ DNase/RNase 
free water. The DNA concentration was measured using 
NanoDrop One (Thermo Scientific, Petaluma, CA).

Mixed template amplicon library for the 16S variable 
region 4 (V4) was prepared according to the protocol 
from the Earth Microbiome Project (EMP_ (http://​
www.​earth​micro​biome.​org/​emp-​stand​ard-​proto​cols/) 
using the extracted stool total DNA and the primer 
sets (515F and barcoded 806R) [20]. The PCR mas-
ter mix, primer, and samples were plated using the 
epMotion. Appropriate NTC, extraction control, and 
pooled fecal sample were added to each plate. The 
PCR master mix was prepared consisting of 37.5 µl of 
GoTaq Green Master Mix (Promega, Madison, WI), 
3 µl of 25 mM MgCl2, 1.5 µl of 10 µM forward primer 
515F, and 25.5 µL of nuclease-free water. Then, 1.5 µl 
of 10  µM barcode-specific reverse primer 806R and 
6  µl of extracted stool DNA were added. PCR was 
performed in duplicate of 25µL under the following 
conditions: denaturation (1 cycle) at 94  °C for 3  min; 
amplification of 25 cycles at 94  °C for 45  s, 50  °C for 
60 s, and 72 °C for 90 s; and a final extension step cycle 
at 72  °C for 10  min. Amplicon DNA was multiplexed 
and purified using Wizard SV Gel and PCR Clean-Up 
System (Promega, Madison, WI). The amplicon library 
was sequenced using the Illumina MiSEQ platform 
with 2 × 250  bp paired-end sequencing. Sequences 
were de-multiplexed and exact amplicon sequence 
variants (ASV) in the 16S rRNA gene sequence were 
determined using the open-source software QIIME2-
DADA2 pipeline [21]. A total of 11,316,115 sequences 
with an average of 26,074 ± 13,697 (mean ± SD) 
sequences per sample were recovered after demul-
tiplexing. Taxonomy was assigned using the SILVA 
132 reference database [22] customized for 16  s V4 
(515F/806R) region of sequences at the threshold of 
99% pairwise identity. ASV belonging to mitochondria 
and chloroplast were filtered out from the ASV table. 
We performed a single rarefaction at a sequence depth 
of 4,500 sequences per sample. α-diversity (Shannon 
diversity index and observed species) and β-diversity 
(unweighted UniFrac, weighted UniFrac, Jaccard Index, 
and Bray Curtis) were calculated from the unfiltered 
ASV table. Any ASV not seen more than 5 times in at 
least 5% of the samples were removed for calculating 

differential bacteria abundance. 16S V4 Sequences are 
publicly available on the SRA database under the Bio-
project ID “PRJNA803237.”

Microbial traits are listed by both ASV ID and maxi-
mum taxonomic information for reference in Table  1. 
The rank of the maximum taxonomic information is 
described at first mention of all microbial traits within 
the text and indicated with a taxonomic rank in subse-
quent figures and tables (i.e., D0, Kingdom; D1, Phy-
lum; D2, Class; D3, Order; D4, Family; D5, Genus; D6, 
Species).

Metabolic phenotypes
The data analysis and collection methods for fat mass 
gain and serum HDL cholesterol concentration have 
been described previously [23]. Briefly, Echo magnetic 
resonance spectroscopy (MRI) (EchoMRI, Houston, TX, 
USA) was used to measure the fat and lean mass of all 
individuals. Using serum obtained from blood collected 
at the end of the feeding trial, total cholesterol, HDL, and 
LDL measurements were performed in duplicate using 
the EnzyChrom AF HDL and LDL/VLDL Assay kit (Bio-
Assay Systems, Hayward, CA, USA).

Genotyping
The genotyping analysis and collection methods have 
been described previously [23]. Briefly, the F2 popula-
tion was genotyped on the Mouse Universal Genotyp-
ing Array (MUGA) that includes 7854 SNP markers [24]. 
Markers that were not polymorphic between B6 and FVB 
were removed from the dataset and uncertain genotype 
calls for individuals (GenCall score quality metric < 0.7) 
were set to missing. The remaining markers were used to 
generate a genetic map to check for problematic markers 
and/or sample DNAs. After all corrections, 1667 markers 
were used for the association analyses. Updated MUGA 
marker annotation was obtained from Dr. Karl Broman 
(https://​kbrom​an.​org/​MUGAa​rrays/​new_​annot​ations.​
html).

Statistical analyses
Linkage analysis
For microbiota phenotypes, a core measurable microbi-
ota (CMM) was defined as those traits present in at least 
20% of the individuals. Thresholds ranging from 0.25 to 
10% have been applied for differential abundance analy-
ses by others [25–27]. For linkage analyses, more strin-
gent thresholds have been applied to define the CMM 
[28]. With this threshold, we expect to capture the antici-
pated 1:2:1 ratio among genotypes and most microbial 
traits in the F2 population. The CMM consists of 134 
ASVs. After determining organisms present in the CMM, 
absolute microbial abundances (counts) were quantile 

http://www.earthmicrobiome.org/emp-standard-protocols/
http://www.earthmicrobiome.org/emp-standard-protocols/
https://kbroman.org/MUGAarrays/new_annotations.html
https://kbroman.org/MUGAarrays/new_annotations.html
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normalized for linkage analyses. Normal quantiles were 
calculated with the preprocessCore R package from Dr. 
Ben Bolstad, version 1.46.0 (https://​github.​com/​bmbol​
stad/​prepr​ocess​Core).

QTL mapping was performed on metabolic and micro-
bial features (y) in all F2 mice from both sexes and diets, 
and linear models using ANOVA targeted three types of 
genetic effects: (1) QTL effects, whereby the effect of a 
marker SNP is tested after controlling for sex, diet, and 
sex by diet interaction, which we describe in the formula 
as y ~ sex + diet + sex:diet + [marker], where the term in 
brackets is the alternative but not the null model; (2) QTL 
by diet effects, using y ~ sex + diet + marker + [diet:marke
r]; and (3); QTL by sex effects, using y ~ sex + diet + marke
r + [sex:marker]. QTL peaks with a logarithm of the odds 
(LOD) greater than thresholds determined by 10,000 
permutations were considered genome-wide significant 
(p < 0.05, LOD > 4.00 microbial abundance, 3.90 measures 
of diversity) or highly significant (p < 0.01, LOD > 5.19 
microbial abundance, 4.68 measures of diversity) for all 
models. The thresholds applied to microbial abundance 
and measures of diversity reflect the average genome-
wide significant thresholds for all ASV present within the 
CMM and for all measures of diversity analyzed respec-
tively. A LOD drop of 1.5 LOD from the top marker was 
used to determine the 95% confidence intervals for each 
QTL. Linear models using ANOVA were used to check 
for any interactions between sex and/or diet with the top 
markers of each QTL. The variance explained by the top 
markers at each QTL in the combined model was calcu-
lated by dividing the sum of squares of the model includ-
ing the top marker by the total sum of squares of the 
model without QTL. The variance explained by the top 
markers at each QTL in the interactive models was calcu-
lated by dividing the sum of squares of the model includ-
ing the interaction between diet and the top marker or 
sex and the top marker by the total sum of squares of the 
model without QTL.

Several limitations exist in the available literature for 
microbiome QTL analysis including the current work. 
Microbial data is zero-inflated compositional data [29] 
and to-date no appropriate statistical method has been 
developed to transform and perform QTL analysis that 
fully addresses zero-inflation and compositional nature 
of the data. Zero-inflation might be the result of true bio-
logical variation or technical variation in current technol-
ogies for measuring abundances of organisms [30, 31]. Of 
note, normalizing quantiles does not force the data into 
a normal distribution but rather, makes the individual 
microbial features more similar in statistical properties. 
Classical approaches to data transformation, for example, 
the log transformation on individual ASV, similarly fail to 
achieve a normal distribution and otherwise substantially 

alter the distribution of only the non-zero data (zero data 
cannot be transformed). Another common approach 
to overcome these limitations is binary modeling of the 
presence or absence of specific organisms followed by 
linear modeling of specific organisms for only hosts iden-
tified with non-zero counts of that organism. However, 
this two-step approach is limited to single predictors 
and reduces power without addressing the zero-inflated 
and compositional nature of the data encountered in 
the one-step procedure. After careful consideration of 
these alternatives, we chose to use a combination of per-
mutation and preprocessCore’s quantile normalization 
across all ASV present in the CMM. Forcing the skewed 
data into the same distribution means that the data will 
behave similarly under permutation which allowed us to 
determine how unusual specific LOD scores were in the 
permutated data to identify appropriate thresholds of 
significance. We acknowledge a great deal of variation in 
methods used to normalize microbial features and even 
in the definition of the CMM as well as the great need to 
standardize these methods between investigators. Con-
tinued growth of statistical methods for zero-inflated 
compositional microbial data sets is needed. Our imple-
mentation has been made publicly available at https://​
github.​com/​annac​salva​dor/​Salva​dor_​Micro​biome_​2023.

Confirmatory factor analysis and structural equation 
modeling
Confirmatory factor analysis (CFA) was conducted 
with the lavaan R package for structural equation mod-
eling (SEM) from Dr. Yves Rosseel, version 0.6.9 (https://​
www.​jstat​soft.​org/​index.​php/​jss/​artic​le/​view/​v048i​02/​
2448) [32]. Initial models were selected based on infor-
mation from individual QTL models and correlations 
among traits within and between QTL models. All traits 
were collapsed into four, ordinal quantiles for CFA and 
diagonally weighted least squares estimator was used 
based on methods described elsewhere [33]. The final 
structural models illustrate QTL models for overlap-
ping microbial and metabolic traits and are refined to 
include only predictors for which pathway coefficients 
are significantly different from zero, indicating that each 
of the remaining predictors in the model is significantly 
associating with one or more endogenous or exogenous 
variable. Our implementation has been made publicly 
available at https://​github.​com/​annac​salva​dor/​Salva​dor_​
Micro​biome_​2023.

Candidate gene annotation
All genes within each significant QTL confidence interval 
were annotated with KEGG pathway identifiers. Candi-
date genes were furthered characterized by KEGG path-
ways related to glucose, insulin, fatty acids, adipocytes, 

https://github.com/bmbolstad/preprocessCore
https://github.com/bmbolstad/preprocessCore
https://github.com/annacsalvador/Salvador_Microbiome_2023
https://github.com/annacsalvador/Salvador_Microbiome_2023
https://www.jstatsoft.org/index.php/jss/article/view/v048i02/2448
https://www.jstatsoft.org/index.php/jss/article/view/v048i02/2448
https://www.jstatsoft.org/index.php/jss/article/view/v048i02/2448
https://github.com/annacsalvador/Salvador_Microbiome_2023
https://github.com/annacsalvador/Salvador_Microbiome_2023
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cholesterol, obesity, diabetes mellitus, metabolic syn-
drome, digestion and absorption of carbohydrates, fats, 
and proteins, the epithelial barrier, and the immune sys-
tem. A comprehensive list of KEGG pathway queries is 
provided in Supplementary Table S3. Transcript variants 
between the parental mouse strains were identified in 
genes annotated for selected KEGG pathways of inter-
est from the Mouse Genome Informatics Strains, SNPS, 
and Polymorphisms database. Tissue-specific expression 
was determined with Mouse ENCODE Transcriptome 
data, accessed through the National Library of Medicine 
National Center for Biotechnology database.

Results
Diet is a strong modulator of the gut microbiome
Diet explains a large proportion of variation in the abun-
dance of microbiota at the Phyla level irrespective to 
genetic background. Diet explains 64.79% of variation 
in abundance of Actinobacteria, 61.22% of variation in 
the abundance of Firmicutes, and 25.49% of variation in 
the abundance of Bacteroidetes (Supplementary Table 
S4). The relative abundance of Firmicutes in F2 on the 
ketogenic diet is nearly twice as high as in F2 on the 
American diet (Fig. 1). This increase in Firmicutes in F2 
on the ketogenic diet appears to occur at the expense of 
the relative abundance of Actinobacteria and Bacteroi-
detes (Fig. 1).

Principal coordinate analysis (PCoA) for measures of 
beta diversity revealed two distinct groups segregating 
at PC1. The Bray–Curtis index PCo1 and PCo2 describe 
31.1% and 16% of the variation in ASV respectively 
(Fig.  2A). The Jaccard Index PCo1 and PCo2 are nearly 
identical to the Bray–Curtis index and describe 21.3% 

and 10.6% of variation in ASV respectively (Supplemen-
tary Fig. S2). Unweighted UniFraction PCo1 and PCo2 
describe 10.7% and 6.2% of variation in ASV respec-
tively (Fig.  2B). Weighted UniFraction PCo1 and PCo2 
describe 51.1% and 31.2% of variation in ASV respec-
tively (Fig. 2C). Overlaying diet with the data illustrates 
two distinct groups roughly segregating PCo1 for all 
measures of beta diversity. However, alpha diversity, illus-
trated by the Shannon Diversity Index, does not depend 
on diet (Fig. 2D). Eigenvectors extracted from the PCo1 
and PCo2 from the Bray–Curtis index, Jaccard index, 
unweighted and weighted UniFractions, as well as values 
from the Shannon Diversity Index served as additional 
traits for linkage analysis below.

Microbial features are modulated by genetic loci
In the sex and diet-independent QTL model, which tests 
for marginal effect QTL after controlling for sex and diet 
(see the “Methods” section; y ~ sex + diet + sex:diet + [
marker]), 18 distinct QTL were detected for 15 unique 
microbial abundances (counts), there were 119 additional 
organisms remaining within the CMM that did not dis-
play a genetic linkage (Fig. 3, Table 1).

Asvq7, for the genus Rikenella overlaps with Asvq16 
and Asvq17 for Ruminiclostridium 9 and Bilophila gen-
era, respectively, as well as with the previously identified 
QTL for fat mass gain (Fmgq1) and serum HDL choles-
terol concentration (Hdlq1).

Apart from Coriobacteriaceae (Asvq1), diet appears 
to explain a more significant proportion of the varia-
tion in the abundance of these ASV despite this QTL not 
being diet specific. This is the only ASV with a QTL for 
which the top marker explains a greater proportion of 

Fig. 1  Relative abundance of microbiota and correlations at the phyla level (by diet). Relative abundance of Firmicutes in F2s on the ketogenic 
diet is nearly twice as high as the relative abundance of Firmicutes in F2s on the American diet at the expense of Actinobacteria, and Bacteroidetes 
for which the relative abundances are lower in F2s on the ketogenic diet
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the variation in the abundance of the organism than diet 
itself despite there being a significant effect of diet as well 
in this model (Table  1). For all the remaining loci iden-
tified under the QTL model, diet explains a greater pro-
portion of the variation than the top marker does at each 
QTL. This is particularly clear for Streptococcus where 
diet explains nearly 50% of the variation in abundance of 
two Streptococcus ASVs while the top markers at Asvq9 
and Asvq10 explain only 3.14% and 2.92% of the varia-
tion, respectively (Table 1).

Microbial features are modulated by diet‑specific genetic 
loci
The analysis for the interaction between QTL and diet 
detected 12 QTL for 11 unique microbial features, there 
were 123 organisms remaining within the CMM not dis-
playing diet-specific genetic linkage (Fig. 3, Table 1). Nine 

of these QTLs were distinct from the ones identified in 
the QTL model.

Of note, three diet-specific QTLs were identified that 
are identical or nearly identical to Asvq5, Asvq9, and 
Asvq10 that were identified in the QTL model for the 
same organisms. There are only modest differences in 
the 95% confidence intervals at Asvq9 and Asvq10 in the 
loci identified in the QTL and QTL by diet models. The 
top marker is unchanged between the QTL and QTL by 
diet models at all 3 loci so these loci will continue to be 
referred to as Asvq5, Asvq9, and Asvq10.

Interestingly, diet alone explains a greater proportion 
of the variation than the interaction between diet and the 
top marker at the diet-specific QTL for Muribaculeceae 
(Asvq19, Asvq20, Asvq21, Asvq22, Asvq5), Rikenellaceae 
RC9 Gut Group (Asvq23), Streptococcus (Asvq9, Asvq10), 
and the uncultured geneus of the Lachnospiraceae fam-
ily (Asvq27) (Table 1). The interaction between genotype 

Fig. 2  Beta diversity Principal Coordinate Analysis (PCoA). A Bray Curtis Index. PC1 and PC2 describe 31.1% and 16% of the variation in ASV 
respectively. B Unweighted UniFraction. PC1 and PC2 describe 10.7% and 6.2% of the variation in ASV respectively. C Weighted UniFraction. 
PC1 and PC2 describe 51.1% and 31.2% of the variation in ASV respectively. Overlaying diet with the measures of beta diversity illustrates two 
distinct groups, roughly segregating PC1 for all measures of beta diversity. D Shannon Diversity Index. The Shannon Diversity Index is not different 
between diet groups
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Fig. 3  Microbial QTL. Outer ring to inner ring: Significant QTL in the QTL model (black) for ASV associated with the genus Coriobacteriaceae 
UCG-002 on Chr 8 at Asvq1, the genus Enterohabdus on Chr 8 at Asvq2, multiple uncultured bacterium from the Muribaculaceae family on Chr 
14 at Asvq3 and Chr 17 at Asvq4 and Asvq5, the genus Alistipes on Chr 12 at Asvq6, the genus Rikenella on Chr 1 at Asvq7, the genus Rikenellaceae 
RC9 Gut Group on Chr 11 at Asvq8, the genus Streptococcus on Chr 8 at Asvq9 and Asvq10, the genus GCA-900066575 on Chr 9 at Asvq11, 
the genus Lachnoclostridium on Chr 1 at Asvq12 and Chr 13 at Asvq13, the genus Romboutsia on Chr 5 at Asvq14 and Chr 13 at Asvq15, the genus 
Ruminiclostridium 9 on Chr 1 at Asvq16, and the genus Bilophila on Chr 1 at Asvq17 and Chr 9 at Asvq18. Significant QTL in the diet specific model 
(blue) for ASV associated with multiple uncultured bacterium from the Muribaculaceae family on Chr 13 at Asvq19 and Asvq20, Chr 14 at Asvq21 
and Asvq22, and Chr 17 at Asvq5, the genus Rikenelleceae RC9 Gut Group on Chr 16 at Asvq23, the genus Parabacteroides on Chr 16 at Asvq24, 
the genus Lactobacillus on Chr 8 at Asvq25, multiple ASV from the Streptococcus genus on Chr 8 at Asvq9, and Asvq10, the uncultured genera 
from the family of Clostridiales vadinBB60 group on Chr 6 at Asvq26, and the Lachnospiraceae family on Chr 1 at Asvq27. A single significant QTL 
in the sex specific model (orange) for the genus Alistipes on Chr 13 at Asvq28; Previously identified QTL for metabolic traits and diversity measures 
in the combined model (black) and diet specific model (blue). Fat mass gain during the feeding trial on Chr 1 at Fmgq1, along with serum HDL 
cholesterol concentration after the feeding trial on Chr 1 at Hdlq1, Bray–Curtis and Jaccard measures of beta diversity at Bcpc2q and Jpc2q. 
Unweighted unifraction on Chr 8 at Uufpc2q, and weighted unifraction on Chr 16 at Wufpc1q. Fmgq1, Hdlq1, Bcpc2q, and Jpc2q overlap the same 
region of the genome as Asvq7, Asvq16, and Asvq17 for uncultured Rikenella, Ruminiclostridium, and uncultured Bilophila. Wufpc1q overlaps the same 
region of the genome for Asvq23 and Asvq24 for Rikenelleceae RC9 gut group and Parabacteroides 
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and diet appears to explain the greatest proportion of 
variation at Asvq24 for Parabacteroides (4.11%), Asvq25 
for Lactobacillus (4.22%), and Asvq26 for Clostridiales 
VadinBB60 Group (4.56%) (Table 1).

Microbial features are modulated by sex‑specific genetic 
loci
The QTL by sex analysis detected a single significant 
QTL for Alistipes on Chr 13 at 18.4 Mb (Asvq28) (Fig. 3, 
Table 1).

Sex explains 1.66% of variation in the abundance of 
Alistipes while the interaction between sex and the top 
marker at Asvq28 explains over 4% of variation in the 
abundance of this OTU (Table 1). Even in the sex-specific 
model of Asvq28, diet explains a greater proportion of the 
variation than either sex or the interaction between sex 
and the genotype.

Measures of beta diversity are genetically modulated
In the QTL model, three distinct QTL were identified 
for PCo2 of several measures of beta diversity including 
Bray–Curtis, Jaccard, and the unweighted UniFraction 
(Fig.  3, Table  2). The eigenvectors for both Bray–Curtis 
and the Jaccard index PCo2 map to Chr 1 at 177.5  Mb 
(Bcpc2q; p < 0.05, CI = 160.6–185.1  Mb; Jpc2q; p < 0.05, 
CI = 160.6 = 185.1  Mb), overlapping with Asvq7 (151.9–
193.3  Mb), Asvq16 (138–186.3  Mb), Asvq17 (144.5–
193.3  Mb) and previously identified QTL for fat mass 
gain (Fmgq1; 180–194.4  Mb) and serum HDL choles-
terol concentration (Hdlq1; 160.6–176.1  Mb) [23]. As 
noted above, PCo2 of Bray–Curtis and the Jaccard index 
appears to be modestly represented by alpha diversity. 
The remaining locus identified by the QTL model was 
for unweighted UniFraction PC2 at 53.7 Mb (Uwufpc2q; 
p < 0.05, CI = 43.4–62.8 Mb). No QTL were identified for 
the Shannon Diversity Index.

In the QTL by diet analysis, one additional QTL was 
identified for weighted UniFraction PC1 on Chr 16 at 
79.6  Mb (Wufpc1q; p < 0.01, 95% CI = 72.8–95.8  Mb), 
overlapping with Asvq23 and Asvq24 for the Rikenel-
leceae RC9 Gut Group and Parabacteroides (Asvq23; 
72.8–96.5 Mb, Asvq24; 72–96.5 Mb).

Candidate keystone species modulating the microbiome 
and physiological traits
A structural equation model (SEM) was built to illus-
trate the magnitude of the effects of each predictor in the 
models of Bilophila, Rikenella, Ruminiclostridium 9, and 
Bray–Curtis PCo2, all mapping to the distal part of Chr 
1 (Fig. 4A). Genotypes at Bcpc2q were chosen to model 
all traits mapping to the distal part of Chr 1 as Bcpc2q 
is contained inside of the confidence interval for the 
other three loci mapping to the distal region of Chr 1. 

The initial model was refined until path coefficients were 
all significantly different from zero, suggesting that each 
of the remaining predictors in the model is significantly 
associating with one or more of the other predictors 
(Table 3). The refined model suggests that the FVB/FVB 
genotype at Bcpc2q increases abundances of Bilophila, 
Ruminiclostridium 9, and Rikenella, and these three ASV 
are driving differences in the Bray–Curtis index PCo2 
(Fig. 4A). A covariance pathway is detected among abun-
dances of Bilophila and Ruminiclostridium 9 in addi-
tion to their individual, direct effects on the Bray–Curtis 
index. The inclusion of metabolic traits does not eluci-
date direct, indirect, or covariance pathways between 
the metabolic traits and specific organisms mapping to 
distal Chr 1. However, a covariance pathway is observed 
between the Bray–Curtis index PCo2 and the amount of 
fat mass gained.

Similarly, a SEM was built to illustrate the magnitude 
of effects of each predictor in the models of Parabacte-
roides, Rikenellaceae RC9 gut group, and weighted Uni-
Fraction PCo1, all mapping to distal Chr 16 (Fig.  4B). 
Genotypes at Wufpc1q were chosen for the model as the 
95% confidence interval for this locus is contained within 
the QTL of all other traits in this structural model. The 
path coefficients are again, all significantly different from 
zero (Table 3). The refined model suggests that the inter-
action between the FVB/FVB genotype and the Ameri-
can diet at Wufpc1q directly decrease abundances of 
Parabacteroides and the Rikenelleceae RC9 Gut Group. 
The abundance of Parabacteroides has a direct relation-
ship with the weighted UniFraction PCo1. A covariance 
pathway is detected among abundances of Parabacte-
roides and the Rikenelleceae RC9 Gut Group.

Identification of candidate genes at Asvq7, Asvq16, 
Asvq17, and Bcpc2q
Candidate genes that might elucidate the relationship 
between Rikenella, Ruminiclostridium 9, Bilophila, and 
the Bray–Curtis PCo2 were investigated. Bcpc2q is con-
tained inside of the confidence interval for the other 
three loci mapping to the distal region of Chr 1. Posi-
tional candidates at Bcpc2q that overlap with one or 
more metabolic KEGG pathways are summarized in 
Table  4. Out of 275 positional candidates at Bcpc2q, 35 
genes overlap with one or more KEGG pathways. Eleven 
out of the total 35 positional candidates harbor known 
non-synonymous transcript variants diverging between 
these strains. The presence of these non-synonymous 
transcript variants makes Aim2, Apoa2, Atp1a4, Cadm3, 
Cd244a, Cd48, F11r, Fcer1g, Mpz, Ndufs2, Sdhc, and Sell 
the primary candidate genes of interest in this region. Of 
these, F11r, Fcer1g, Ndufs2 and Sdhc are expressed in the 
intestine.
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Identification of candidate genes at Asvq23, Asvq24, 
and Wufpc1q
Candidate genes were investigated that might elucidate 
the relationship between Rikenelleceae RC9 Gut Group, 
Parabacteroides, weighted UniFraction, Asvq23, Asvq24, 

and Wufpc1q. Positional candidates at Wufpc1q that 
overlap with one or more metabolic KEGG pathways are 
summarized in Table 4. Out of 133 positional candidates 
at Wufpc1q 11 genes overlap with one or more metabolic 
KEGG pathways. However, none of the genes annotated 

Fig. 4  Graphical representation of SEM. Solid, single-headed arrows indicate the direction of paths and the weight of each arrow is proportional 
to the path coefficient (r) from the predictor to the variable and the percentage of variation in the variable that is explained by each predictor. 
Positive effects (green arrows) indicate that the FVB allele increases the trait; negative effects (red arrows) indicate that the FVB allele decreases 
the trait. Double-headed, blue arrows represent covariate pathways detected in the structural model of microbial features and measures of diversity
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with KEGG pathway from our query harbor known non-
synonymous transcript variants diverging between the 
two strains.

Discussion
This study provides evidence that abundances of gut 
microbiota are driven by unique combinations of effects 
from the host’s genetics, response to high fat diets varied 
in carbohydrate content, and sex. Many previous stud-
ies have compared the effects of control mouse diets to 
high fat diets where one or two representative ingredi-
ents contribute to the total fat, carbohydrate, and protein 
content of the diet [6]. The American and ketogenic diets 
used here more accurately recapitulate the diversity of 
ingredients found in human diets not only in terms of the 
macronutrient profile of human diets but also the fiber 
content and lipid profiles [6]. The diverse set of ingredi-
ents is particularly important to studies of the microbiota 
because of differences in substrate utilization between 
bacterial taxa. There is an abundance of literature sup-
porting the potent effects of diet on the abundance of 
gut microbiota driven by fiber, carbohydrate, protein, 
and lipid source and composition [9, 11, 12, 16–18, 34–
36]. Other studies have demonstrated that the effect of 
abnormal diets on gut microbiota might stifle the under-
lying effect of single gene mutations because diets are 
such a potent regulator of microbial abundances [16, 
37]. These authors have called for further study of diets 
varied in macronutrient content and study of more com-
plex genetic models. The current study has demonstrated 
that high fat diets varied in carbohydrate content con-
tinue to be commanding predictors of abundances of gut 
microbial abundances even in a more complex genetic 
model. We will highlight below many results for which 
genetic effects are likely dependent on specific ingredi-
ents in one of the two diets and discuss the importance 

of incorporating human-comparable diets into microbial 
studies.

Another unique feature of the current study is the 
incorporation of latent variables harbored in the PCoA 
of ASV data. Latent variables are those that are not 
directly observable in a model but can be inferred from 
other variables and can hold important information for 
interpreting biological relationships. PCoA of ASV data 
revealed that PCo1 captures the variance in ASV caused 
by diet while it was less clear what variance was captured 
by PCo2. Extraction of eigenvectors from these principal 
components is one way to incorporate information from 
the latent variables contained in the PCoA.

In this study, 18 loci diet and sex-independent loci were 
identified. Out of these loci, Coriobacteriaceae is the least 
influenced by diet. Coriobacteriaceae is the only ASV 
for which the top marker explains a greater proportion 
of the variation in the abundance of the organism than 
diet, suggesting that there is a genetic predisposition to 
having higher or lower abundances of Coriobacteriaceae. 
Coriobacteriaceae has previously been associated with 
host genetics and QTL regulating immune function and 
susceptibility to carcinoma and tumor development in 
mice [38, 39]. Coriobacteriaceae has been described as 
a dominant species in the mammalian gut and it is posi-
tively correlated with hepatic triglyceride concentration 
and non-HDL cholesterol concentration in mice [40].

A significant proportion of the variation in all other 
ASV with loci detected by the diet and sex-independent 
model is still driven by diet, especially for Streptococ-
cus at Asvq9 and Asvq10. Streptococcus belongs to the 
Firmicutes phylum. Fiber is a particularly important 
dietary component for modulating abundance of Fir-
micutes. When animals switch from a low fat/fiber rich 
plant diet to a high fat/high sugar diet, they experience a 
significant increase in the Firmicutes phylum along with 

Table 3  Conditioned linkage analysis and structural modeling of overlapping QTL

Confirmatory factor analysis and structural models

Variable Predictor Path 
coefficient 
(r)

t-statistic 
of path 
coefficient

Bray Curtis PC2 Diet 0.25  < 0.001

ecfbbfd673f8a3e1c34718d968e6b069 (Rikenella)  − 0.17 0.002

b89e2f23a606787577644904f2b6aed3 (Ruminiclostridium 9)  − 0.35  < 0.001

X18f60eae2c3a26bab8efa0f9823e31b4 (Bilophila)  − 0.24 0.014

X18f60eae2c3a26bab8efa0f9823e31b4 (Bilophila) Bcpc2q 0.26  < 0.001

b89e2f23a606787577644904f2b6aed3 (Ruminiclostridium 9) Bcpc2q 0.14 0.003

Serum HDL cholesterol concentration (ng/mL) Sex 0.48  < 0.001

Diet 0.19 0.003

Bcpc2q 0.40  < 0.001
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Table 4  KEGG Pathway annotation of positional candidate genes at Mtq7, Mtq8, Mtq13, Mtq14, and Pc1q 

QTL Model Phenotype Gene symbol (MGI) KEGG pathway

Bcpc2q Combined y ~ m + sex*diet Bray Curtis PC2 Aim2 Cytosolic DNA-sensing pathway (mmu04623)

Akt3 Adipocytokine signaling pathway (mmu04920)

Akt3 AMPK signaling pathway (mmu04152)

Akt3 Carbohydrate digestion and absorption (mmu04973)

Akt3 Chemokine signaling pathway (mmu04062)

Akt3 Epstein-Barr virus infection (mmu05169)

Akt3 Hepatitis B (mmu05161)

Akt3 Hepatitis C (mmu05160)

Akt3 HIF-1 signaling pathway (mmu04066)

Akt3 Influenza A (mmu05164)

Akt3 Insulin resistance (mmu04931)

Akt3 Insulin signaling pathway (mmu04910)

Akt3 Measles (mmu05162)

Akt3 Non-alcoholic fatty liver disease (NAFLD) (mmu04932)

Akt3 Osteoclast differentiation (mmu04380)

Akt3 Prolactin signaling pathway (mmu04917)

Akt3 Regulation of lipolysis in adipocytes (mmu04923)

Akt3 T cell receptor signaling pathway (mmu04660)

Akt3 Tight junction (mmu04530)

Akt3 Toll-like receptor signaling pathway (mmu04620)

Akt3 Tuberculosis (mmu05152)

Aldh9a1 Glycolysis/gluconeogenesis (mmu00010)

Alyref2 Herpes simplex virus 1 infection A (mmu05168)

Apoa2 PPAR signaling pathway (mmu03320)

Atp1a2 Bile secretion (mmu04976)

Atp1a2 Carbohydrate digestion and absorption (mmu04973)

Atp1a2 Mineral absorption (mmu04978)

Atp1a2 Protein digestion and absorption (mmu04974)

Atp1a4 Bile secretion (mmu04976)

Atp1a4 Carbohydrate digestion and absorption (mmu04973)

Atp1a4 Mineral absorption (mmu04978)

Atp1a4 Protein digestion and absorption (mmu04974)

Atp1b1 Bile secretion (mmu04976)

Atp1b1 Carbohydrate digestion and absorption (mmu04973)

Atp1b1 Mineral absorption (mmu04978)

Atp1b1 Protein digestion and absorption (mmu04974)

Cadm3 Cell adhesion molecules (mmu04514)

Cd244a Natural killer cell-mediated cytotoxicity (mmu04650)

Cd247 Natural killer cell-mediated cytotoxicity (mmu04650)

Cd247 T cell receptor signaling pathway (mmu04660)

Cd48 Natural killer cell-mediated cytotoxicity (mmu04650)

Ephx1 Bile secretion (mmu04976)

F11r Cell adhesion molecules (mmu04514)

F11r Leukocyte transendothelial migration (mmu04670)

F11r Tight junction (mmu04530)

Fasl African trypanosomiasis (mmu05143)

Fasl Allograft rejection (mmu05330)

Fasl Autoimmune thyroid disease (mmu05320)

Fasl Hepatitis B (mmu05161)
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Table 4  (continued)

QTL Model Phenotype Gene symbol (MGI) KEGG pathway

Fasl Herpes simplex virus 1 infection A (mmu05168)

Fasl Influenza A (mmu05164)

Fasl Measles (mmu05162)

Fasl Natural killer cell-mediated cytotoxicity (mmu04650)

Fasl Non-alcoholic fatty liver disease (NAFLD) (mmu04932)

Fasl Type I diabetes mellitus (mmu04940)

Fcer1g Natural killer cell-mediated cytotoxicity (mmu04650)

Fcer1g Tuberculosis (mmu05152)

Fcgr2b Measles (mmu05162)

Fcgr2b Osteoclast differentiation (mmu04380)

Fcgr2b Staphylococcus aureus infection (mmu05150)

Fcgr2b Tuberculosis (mmu05152)

Fcgr3 Leishmaniasis (mmu05140)

Fcgr3 Osteoclast differentiation (mmu04380)

Fcgr3 Staphylococcus aureus infection (mmu05150)

Fcgr3 Tuberculosis (mmu05152)

Fcgr4 Leishmaniasis (mmu05140)

Fcgr4 Natural killer cell-mediated cytotoxicity (mmu04650)

Fcgr4 Osteoclast differentiation (mmu04380)

Fcgr4 Staphylococcus aureus infection (mmu05150)

Fcgr4 Systemic lupus erythematosus (mmu05322)

Fcgr4 Tuberculosis (mmu05152)

H3f3a Systemic lupus erythematosus (mmu05322)

Hsd17b7 Ovarian steroidogenesis (mmu04913)

Hsd17b7 Steroid biosynthesis (mmu00100)

Hsd17b7 Steroid hormone biosynthesis (mmu00140)

Ifi202b Cytosolic DNA-sensing pathway (mmu04623)

Mpz Cell adhesion molecules (mmu04514)

Mpzl1 Cell adhesion molecules (mmu04514)

Ndufs2 Non-alcoholic fatty liver disease (NAFLD) (mmu04932)

Pex19 Peroxisome (mmu04146)

Rxrg Adipocytokine signaling pathway (mmu04920)

Rxrg PPAR signaling pathway (mmu03320)

Sdhc Non-alcoholic fatty liver disease (NAFLD) (mmu04932)

Sele African trypanosomiasis (mmu05143)

Sele Cell adhesion molecules (mmu04514)

Sell Cell adhesion molecules (mmu04514)

Selp Cell adhesion molecules (mmu04514)

Selp Staphylococcus aureus infection (mmu05150)

Sh2d1b1 Natural killer cell-mediated cytotoxicity (mmu04650)

Slamf1 Measles (mmu05162)

Tlr5 Inflammatory bowel disease (mmu05321)

Tlr5 Salmonella infection (mmu05132)

Tlr5 Toll-like receptor signaling pathway (mmu04620)

Xcl1 Chemokine signaling pathway (mmu04062)

Wufpc1q Diet specific y ~ sex + diet*m Weighted UniFraction PC1 Cldn14 Cell adhesion molecules (mmu04514)

Cldn14 Hepatitis C (mmu05160)

Cldn14 Leukocyte transendothelial migration (mmu04670)

Cldn14 Tight junction (mmu04530)
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a decrease in Bacteroidetes [17]. Dramatic shifts were 
observed in these phyla between American and ketogenic 
diet F2s irrespective of their genetic backgrounds. Our 
ketogenic diet is composed of twice as much soluble and 
insoluble fiber as the American diet, and this likely drives 
many of the differences in the abundance of OTUs from 

these phyla. The relative abundance of Firmicutes in F2s 
exposed to the ketogenic diet is nearly twice as high as 
F2s exposed to the ketogenic diet. It appears that this 
increase in Firmicutes in the F2s exposed to the ketogenic 
diet coincides with a decrease in the relative abundance 
of Bacteroidetes. Limited evidence suggests that a higher 

Table 4  (continued)

QTL Model Phenotype Gene symbol (MGI) KEGG pathway

Cldn17 Cell adhesion molecules (mmu04514)

Cldn17 Hepatitis C (mmu05160)

Cldn17 Leukocyte transendothelial migration (mmu04670)

Cldn17 Tight junction (mmu04530)

Cldn8 Cell adhesion molecules (mmu04514)

Cldn8 Hepatitis C (mmu05160)

Cldn8 Leukocyte transendothelial migration (mmu04670)

Cldn8 Tight junction (mmu04530)

Cxadr Viral myocarditis (mmu05416)

Ifnar1 Hepatitis B (mmu05161)

Ifnar1 Hepatitis C (mmu05160)

Ifnar1 Herpes simplex virus 1 infection A (mmu05168)

Ifnar1 Influenza A (mmu05164)

Ifnar1 Measles (mmu05162)

Ifnar1 Natural killer cell-mediated cytotoxicity (mmu04650)

Ifnar1 Osteoclast differentiation (mmu04380)

Ifnar1 Toll-like receptor signaling pathway (mmu04620)

Ifnar2 Hepatitis C (mmu05160)

Ifnar2 Herpes simplex virus 1 infection A (mmu05168)

Ifnar2 Influenza A (mmu05164)

Ifnar2 Measles (mmu05162)

Ifnar2 Natural killer cell-mediated cytotoxicity (mmu04650)

Ifnar2 Osteoclast differentiation (mmu04380)

Ifnar2 Toll-like receptor signaling pathway (mmu04620)

Ifngr2 Herpes simplex virus 1 infection A (mmu05168)

Ifngr2 HIF-1 signaling pathway (mmu04066)

Ifngr2 Inflammatory bowel disease (mmu05321)

Ifngr2 Influenza A (mmu05164)

Ifngr2 Leishmaniasis (mmu05140)

Ifngr2 Measles (mmu05162)

Ifngr2 Natural killer cell-mediated cytotoxicity (mmu04650)

Ifngr2 Osteoclast differentiation (mmu04380)

Ifngr2 Salmonella infection (mmu05132)

Ifngr2 Tuberculosis (mmu05152)

Il10rb Epstein-Barr virus infection (mmu05169)

Il10rb Tuberculosis (mmu05152)

Jam2 Cell adhesion molecules (mmu04514)

Jam2 Leukocyte transendothelial migration (mmu04670)

Jam2 Tight junction (mmu04530)

Ncam2 Cell adhesion molecules (mmu04514)

Sod1 Peroxisome (mmu04146)

Tiam1 Chemokine signaling pathway (mmu04062)
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Firmicutes to Bacteroidetes ratio is positively correlated 
with obesity while a decrease in this ratio has been asso-
ciated with inflammatory bowel disease [41]. However, 
controversy surrounds the association of the Firmicutes 
to Bacteroidetes ratio and health status [41].

Six diet-specific QTL were also identified under the 
QTL by diet model. Of note, all six diet-specific QTL 
are for microbial features from either the Firmicutes or 
Bacteroidetes phyla. These QTL include, Asvq19, Asvq20, 
Asvq21, Asvq22, and Asvq5 for Muribaculaceae (Bacte-
roidetes), Asvq23 for Rikenelleceae RC9 Gut Group (Bac-
teroidetes), Asvq24 for Parabacteroides (Bacteroidetes), 
Asvq25 for Lactobacillus (Firmicutes), Asvq9 and Asvq10 
for the Streptococcus genus (Firmicutes), Asvq26 for 
the family of Clostridiales vadinBB60 (Firmicutes), and 
Asvq27 for the Lachnospiraceae family (Firmicutes). This 
provides further support for previous findings suggesting 
that the ratio of Firmicutes to Bacteroidetes is relevant 
to metabolic disease states. Diet is the strongest predic-
tor for these ASV except for the abundances of Parabac-
teroides, Lactobacillus, and Clostridiales vadin BB60 (all 
Firmicutes). The gene-by-diet interaction is most promi-
nent for these three exceptions. Diet-specific QTL are the 
most clinically actionable observations as they identify a 
subgroup of the population that would be sensitive to a 
dietary intervention to modify the microbial trait. Loci 
identified by the sex- and diet-independent QTL and 
QTL by sex models are informative but do not provide 
the same type of direct avenue for intervention.

The American diet contains multiple sources of animal 
proteins, some of which contribute to the total fat content 
of the diet, while the main protein source in the ketogenic 
diet is casein. The fat component of the ketogenic diet is 
composed of equal parts butter and lard with a small por-
tion of corn and menhaden oils, while the fat component 
of the American diet is a more diverse mixture of primar-
ily butter as well as corn, menhaden, flaxseed, olive oil, 
and fat derived from the animal proteins. Lard-derived 
fat has been shown to reduce the abundance of Strepto-
coccus [11]. This may explain, in part, why we observe 
that FVB alleles on the American diet are associated with 
higher abundances of two Streptococci ASV.

For the only loci picked up by the QTL by sex model, 
Asvq28 for Alistipes, the strongest predictor in the model 
was again diet. Sex specificity for abundance of Alistipes 
has been established in studies of pre- and post-meno-
pausal women and men. Men were more likely than pre- 
or post-menopausal women to have higher abundances 
of Alistipes in their fecal samples [42]. The realized 
importance of sex as a biological variable has increased 
attention paid to the role of steroid hormones in devel-
opment of obesity and Metabolic Syndrome [23]. Plasma 
testosterone has also been linked to microbial features 

in men, and the post-menopausal microbiome becomes 
more similar to the male microbiome over time [42].

QTL for Rikenella (Asvq7), Ruminiclostridium 
(Asvq16), Bilophila (Asvq17), Bray–Curtis PCo2 (Bcpc2q), 
fat mass gained during the feeding trial (Fmgq1), and 
serum HDL cholesterol concentration (Hdlq1) overlap 
on the distal part of Chr 1 and QTL for the Rikenelleceae 
RC9 Gut Group (Asvq23), Parabacteroides (Asvq24) and 
weighted UniFraction PCo1 (Wufpc1q) overlap on Chr 
16. American or westernized diets are associated with 
increased abundances of Bilophila wadsworthia, which 
coincides with increased LDL cholesterol concentration 
and links this species of Bilophila to dyslipidemia and 
increased inflammation [43]. Gut microbiota signatures 
from overweight and obese patients have been associ-
ated with significant decreases in Rikenella and Para-
bacteroides species as well as increases in Ruminococcus 
species in the same subjects [44]. Rikenellaceae RC9 
gut group has been associated with lipid metabolism in 
response to high fat diets [15, 45]. Previous associations 
between these organisms and metabolic traits make the 
overlapping loci associated with them higher priority for 
future analyses.

As mentioned previously, gut microbiota utilizes nutri-
ents passing through the gastrointestinal tract. Microbial 
metabolism of these nutrients produces metabolites and 
microbial-derived metabolites known to impact meta-
bolic health [1]. These metabolites may represent latent 
variables linking the genomic region underlying Fmgq1, 
Hdlq1, Bcpc2q, Asvq7, Asvq16, and Asvq17 and each of 
their associated traits as well as Wufpc1q, Asvq23, and 
Asvq24 and their associated traits.

The SEM for traits mapping to distal Chr 1 illus-
trated direct effects of the FVB/FVB genotype at Bcpc2q 
increasing abundance of Bilophila and Ruminiclostridium 
9. A covariance pathway was detected between Bcpc2q 
and Rikenella and while the directionality of this relation-
ship was not defined by the model, this suggests that the 
FVB/FVB genotype at Bcpc2q also increased the abun-
dance of Rikenella. We observed direct effects of Biloph-
ila, Ruminiclostridium 9 and Rikenella on Bray Curtis 
PC2 in addition to the direct effect of diet. In addition to 
the direct effects of Bilophila and Ruminiclostridium 9, 
we identified a covariance pathway between these organ-
isms that likely contributes to the overall relationship 
of these microbiota with Bray–Curtis PC2. While the 
microbiota and metabolic traits appear to be indepen-
dently linked to Bcpc2q, another covariance pathway is 
observed between Bray–Curtis PCo2 and the amount of 
fat mass gained during the feeding trial. Taken together, 
these observations suggest that Bilophila, Ruminiclostrid-
ium 9, and Rikenella are driving differences in microbial 
beta diversity represented in Bray–Curtis PCo2, and the 
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overall composition of the microbiome may be corre-
lated with the amount of fat mass gained during the feed-
ing trial. Species that other species in an ecosystem rely 
heavily upon are referred to as keystone species and drive 
diversity within the ecosystem [46, 47]. These results sug-
gest that Bilophila, Ruminiclostridium 9, and Rikenella 
are candidate keystone species. The covariance pathway 
observed between the Bray–Curtis index PCo2 and the 
amount of fat mass gained might reflect a more complex 
relationship between the overall composition of the gut 
microbiota and its effects on metabolic features.

The SEM for traits mapping to distal Chr 16 illus-
trated direct effects of Wufpc1q interacting with diet 
on the abundances of Rikenellaceae RC9 Gut Group 
and Parabacteroides as well as a direct effect of diet and 
Parabacteroides on weighted UniFraction PCo1. Para-
bacteroides is a diet-specific, candidate keystone species. 
The observed a covariance pathway between these two 
organisms suggests Rikenellaceae RC9 Gut Group may 
be an additional candidate keystone species driving dif-
ferences in the composition of the microbiota in a diet-
specific manner.

Fluctuations in the abundance of these organisms 
would have dramatic consequences on other organ-
isms in the ecosystem. Bilophila, Ruminicostridium 9 
and Rikenella represent candidates for keystone species 
among the organisms mapping to the distal region of Chr 
1. Their direct effects on Bray–Curtis PCo2 detected in 
the structural equation model suggest abundances of 
these organisms drive differences in beta diversity. The 
proposed model lends itself to this speculation if the 
abundance of Bilophila has consequences for bile acid 
composition and abundances of other microbiota in the 
large intestine as described by others [48, 49]. We have 
previously demonstrated that the FVB/FVB genotype 
drives higher serum HDL cholesterol concentration 
at the locus Hdlq1, likely through Apolipoprotein A2 
(Apoa2) [23]. Apoa2 is also a primary candidate gene 
of interest within the confidence intervals for Asvq7, 
Asvq16, Asvq17, and Bcpc2q. HDL cholesterol is a pre-
ferred precursor to bile acid synthesis and secretion 
[50]. Despite there being no direct relationship observed 
between abundance of these organisms and metabolic 
traits in the current model, these basic biological asso-
ciations leave ample space for future analyses into what 
is likely a more complex network of latent variables tying 
together these microbial and metabolic traits. Additional 
candidate genes of interest that are expressed in the intes-
tines were identified within the Bcpc2q interval (F11r, 
Fcer1g, Ndufs2 and Sdhc). F11r and Fcer1g are found on 
KEGG pathways primarily related to the immune system 
while Ndufs2 and Sdhc are found on the Non-alcoholic 
fatty liver disease pathway (mmu04932).

Parabacteroides was also identified as a candidate key-
stone species among the organisms mapping to the dis-
tal part of Chr 16. We were unable to narrow the list of 
positional candidate genes at Wufpc1q harboring non-
synonymous transcript variants with the KEGG path-
ways included in the query. However, the vast majority 
of genes at Wufpc1q were annotated with the epithe-
lial barrier and immune system pathways such as Tight 
junction (mmu04530) and Inflammatory bowel disease 
(mmu05321) and related pathways. Other types of vari-
ants were present in genes within the Wufpc1q confi-
dence interval such as, synonymous transcript variants 
and intronic variants which may be of interest in future 
analyses. For example, Sod1 harbors an intron variant 
that diverges between the two strains and has previously 
been associated with both the ratio of Firmicutes to Bac-
teroidetes as well as obesity, providing direct evidence for 
variants in Sod1 regulating microbial diversity and a pos-
sible link to metabolic traits like obesity [51, 52]. Of note, 
Parabacteroides and Rikenelleceae RC9 gut group both 
belong to the Bacteroidetes phylum. Future work will 
focus on confirming causal relationships between candi-
date keystone species and measures of beta diversity.

Our report is limited in part by the choice to gener-
ate a unidirectional F1 and subsequently, F2 population. 
This precludes the ability to identify epistatic interactions 
between the autosomal genome and either the Y chromo-
some or the mitochondrial genome because only the B6 
mitochondrial genome and FVB Y chromosome is pre-
sent in our F2 population. However, this makes us more 
certain that the findings we have reported are not driven 
by the paternal chromosome nor the mitochondria. Also, 
the choice of the 16S V4 region per the EMP 16S analysis 
protocol described in the methods may limit which bac-
teria are identified. However, we were careful to report 
taxonomic assignments only up to the genus level with 
the understanding that taxonomic assignments after the 
genus level using a small 16S V4 region are not always 
reliable.

Conclusions
The current experiment identified organisms for which 
irrespective to genetic background, diet was the strongest 
predictor of gut microbiota, organisms for which com-
binations of sex, diet, and genotypes predictor the gut 
microbiota, as well as a single organism for which genetic 
background was the strongest predictor for bacterial, 
Coriobacteriaceae UCG-002. These results demonstrate 
the effect that sex, diet, and genetic background have 
on inter-individual differences in gut microbiota. While 
diet and genotype-dependent QTLs for microbial abun-
dance are the most clinically relevant regarding efforts to 
advance precision nutrition, diet-dependent observations 
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are likely related to specific ingredients in the diets which 
makes these observations heavily context dependent and 
difficult to recapitulate from investigator to investigator 
when non-human comparable ingredients are used in the 
preclinical setting. We observed that nearly all microbial 
QTL, even those that were identified under the QTL and 
QTL by sex models, were potently influenced by diet. 
As such, care should be taken to utilize diets composed 
of diverse ingredients in preclinical trials to better reca-
pitulate the host-microbiome environment in humans. 
Precision nutrition will be advanced through integra-
tion of genetic variation, microbiota variation, and sex in 
response to diets varied in carbohydrate composition to 
elucidate the composition of the “ideal” microbiome and 
personalized interventions to achieve that composition.
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