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1 Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States, 2 Institute for Immunology, 
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Skeletal muscle injury provokes a regenerative response, characterized by the de novo 
generation of myofibers that are distinguished by central nucleation and re-expression of 
developmentally restricted genes. In addition to these characteristics, myofiber cross-
sectional area (CSA) is widely used to evaluate muscle hypertrophic and regenerative 
responses. Here, we introduce QuantiMus, a free software program that uses machine 
learning algorithms to quantify muscle morphology and molecular features with high 
precision and quick processing-time. The ability of QuantiMus to define and measure 
myofibers was compared to manual measurement or other automated software programs. 
QuantiMus rapidly and accurately defined total myofibers and measured CSA with 
comparable performance but quantified the CSA of centrally-nucleated fibers (CNFs) with 
greater precision compared to other software. It additionally quantified the fluorescence 
intensity of individual myofibers of human and mouse muscle, which was used to assess 
the distribution of myofiber type, based on the myosin heavy chain isoform that was 
expressed. Furthermore, analysis of entire quadriceps cross-sections of healthy and mdx 
mice showed that dystrophic muscle had an increased frequency of Evans blue dye+ injured 
myofibers. QuantiMus also revealed that the proportion of centrally nucleated, regenerating 
myofibers that express embryonic myosin heavy chain (eMyHC) or neural cell adhesion 
molecule (NCAM) were increased in dystrophic mice. Our findings reveal that QuantiMus 
has several advantages over existing software. The unique self-learning capacity of the 
machine learning algorithms provides superior accuracy and the ability to rapidly interrogate 
the complete muscle section. These qualities increase rigor and reproducibility by avoiding 
methods that rely on the sampling of representative areas of a section. This is of particular 
importance for the analysis of dystrophic muscle given the “patchy” distribution of muscle 
pathology. QuantiMus is an open source tool, allowing customization to meet investigator-
specific needs and provides novel analytical approaches for quantifying muscle morphology.

Keywords: muscle regeneration, cross-sectional area, central nucleation, Duchenne muscular dystrophy,  
machine learning, histological analysis, myofiber typing, mdx
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INTRODUCTION

Acute trauma, prolonged periods of mechanical unloading or 
genetic mutations can all independently cause skeletal muscle 
cell death, atrophy, and changes in myofiber cross-sectional area 
(CSA). The resilience of skeletal muscle to overcome these 
environmental and genetic insults is partly attributed to its highly 
adaptive and regenerative capacity (Dumont et al., 2015). Although 
mechanical load influences myofiber CSA, muscle injury and 
regeneration provoke a larger variance in CSA because of the 
de novo formation of growing myofibers (Torres and Duchen, 
1987; McDonald et  al., 2015). In addition to their variance in 
CSA, developing myofibers express embryonic myosin heavy chain 
(eMyHC) and neural cell adhesion molecule (NCAM) during 
regeneration (Schiaffino et al., 1986; Dubois et al., 1994; Capkovic 
et  al., 2008; Rochlin et  al., 2010; Tedesco et  al., 2010; Dumont 
et  al., 2015). Thus, measuring the frequency or expression of 
regeneration markers and CSA is frequently used to quantitatively 
assess muscle regeneration (Covault and Sanes, 1985; Schiaffino et al., 
1986; Illa et  al., 1992; Dubois et  al., 1994; Charlton et  al., 2000; 
Capkovic et  al., 2008).

The manual quantification of myofiber type, CSA, and 
centrally nucleated fibers (CNF) by histological methods is 
time-consuming and prone to user bias, negatively affecting 
the quality of data. Further, quantifying protein expression 
by microscopy methods is difficult because several factors 
(sensitivity and dynamic range of the imaging system; specificity 
of the antibodies; technical anomalies; inappropriately 
performing image post-processing prior to image analysis) 
can comprise the proportional relationship between protein 
expression and fluorescence intensity. Recently, multiple groups 
have successfully developed software that addresses the above 
limitations for the semi-automated, morphometric analysis of 
healthy skeletal muscle. For example, the Semi-automatic 
Muscle Analysis using Segmentation of Histology (SMASH) 
method was developed as an open source MATLAB application 
that measures myofiber properties such as size (CSA and 
minimum Feret diameter), CNFs, and myofiber type in 
immunofluorescence-labeled images (Smith and Barton, 2014). 
More recently, MyoVision was developed to evaluate CSA, 
myofiber type, and myonuclear number (Wen et  al., 2017). 
Although MyoVision does not have the function to quantify 
CNFs, the software expands the automated potential of these 
aforementioned histological analyses by using algorithms that 
decrease the amount of user supervision.

Current software packages reliably assess the morphology 
of healthy muscle, in which morphometric features are uniform. 
However, the performance of a subset of these packages has 
not been validated in more complex model systems that vary 
greatly in morphology. Accurate assessment of diseased muscle 
[e.g., dystrophic muscle of the mdx mouse model of Duchenne 
muscular dystrophy (DMD)] is challenged by muscle necrosis 
and inflammation and constant tissue remodeling that contributes 
to large variance in myofiber size and increased interstitial 
tissue (Torres and Duchen, 1987; McDonald et  al., 2015). 
We found that these complex disease features hinder the ability 
of existing software from discerning a true myofiber from 

artifact. To circumvent this limitation, we developed QuantiMus, 
a machine learning-based tool that uses a support vector 
machine (SVM) algorithm (Artan, 2011) to define myofibers 
with high fidelity. QuantiMus can be  downloaded at https://
quantimus.github.io. QuantiMus was developed as a plugin for 
the software program Flika (Ellefsen et  al., 2014), which can 
be  downloaded at https://flika-org.github.io.

QuantiMus integrates the analytical features of previous 
morphometric software programs, such as measurement of 
CSA and CNFs (Smith and Barton, 2014; Wen et  al., 2017), 
with the capability to measure myofiber fluorescence intensity. 
Together, these features provide a single tool to simultaneously 
quantify fluorescence intensity, CNFs and CSA, and the use 
of machine learning algorithms reduces processing time and 
computing power. We compared the performance of QuantiMus 
to other semi-automated methods and validated that this tool 
accurately determined myofiber CSA and CNFs in healthy 
and diseased skeletal muscle. QuantiMus rapidly determined 
the proportion of type I  and II myofibers in healthy mouse 
and human skeletal muscle, and the CSA of each myofiber 
type. QuantiMus also quantified the frequency of Evans blue 
dye (EBD), NCAM, or eMyHC positive myofibers in dystrophic 
muscle, and measured their fluorescence intensity. Collectively, 
we  demonstrate the utility of QuantiMus as a tool for the 
rapid and rigorous quantification of multiple molecular and 
morphological features of skeletal muscle during homeostasis 
and disease.

MATERIALS

Ethical Approval
Deidentified frozen, muscle cross-sections from archived human 
muscle biopsies were provided by UCI pathology laboratory, 
and their identity remained confidential throughout the study. 
Prior to biopsy collection, participants were informed about 
the requirements and potential risks of the procedures before 
providing their written informed consent. Biopsies were collected 
from patients because of a suspected inflammatory myopathy, 
which after pathological assessment revealed no skeletal muscle 
involvement. The experimental procedures adhered to the 
standards in the latest revision of the Declaration of Helsinki 
and were approved by the Institutional Review Board at the 
University of California, Irvine (HS#2016-3191).

Animal Models
In compliance with the federal regulations, the use of mice in 
our study was approved by the University of California Irvine 
Institutional Animal Care and Use Committee. Mice were housed 
in a temperature-controlled facility under a standard 12  h 
light-12  h dark cycle with food and water provided ad libitum. 
C57BL/10 wildtype and C57BL/10ScSn-Dmdmdx/J (mdx) mice 
were originally obtained from Jackson laboratory (Bar Harbour, 
ME) and breeding colonies were maintained in-house. Mice 
were euthanized at 4  weeks of age with carbon dioxide using 
a gradual fill method per American Veterinary Medical Association 
guidelines, followed by cervical dislocation. For Evans blue dye 
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(EBD) injected mice, animals were interperitoneally injected with 
a 1% EBD solution at a dose of 50 mg/kg, 16 h before euthanasia.

Mouse Tissue Preparation
Quadriceps were isolated from 4-week-old WT and mdx mice. 
Quadriceps were embedded in optimal cutting temperature 
(O.C.T) compound (Sakaura Fine Tech, 25608-930), frozen in 
liquid nitrogen-cooled isopentane for 1  min and stored at 
−80°C. Eight-micron cross-sections were prepared on a Leica 
CM1950 cryostat, mounted on positively charged microscope 
slides, and stored at −80°C until the time of staining. Although 
most section thicknesses can be  accommodated, we  choose 
8  μm as the optimal thickness for image quantification in this 
study; sections less than 8  μm resulted in a larger occurrence 
of gaps in laminin labeling, whereas sections greater than 8 μm 
yielded artifactual laminin labeling that obscured the 
myofiber perimeter.

Immunofluorescence Labeling  
and Imaging
All immunofluorescent labeling procedures were performed 
with routine and validated protocols (Schiaffino et  al., 1986; 
Illa et  al., 1992; Capkovic et  al., 2008; Wen et  al., 2017). 
Sections were all labeled on the same day to eliminate inter-
experimental variation. Images were acquired in a manner to 
ensure that fluorescence signals were not saturated, and specificity 
of the stain was ensured by comparison to control sections 
in which the primary antibody was omitted. Fluorescently 
labeled sections were protected from light through the staining 
procedure and image acquisition. Further, the measurement 
of fluorescence intensity was done on unaltered images (i.e., 
native brightness and contrast settings were never manipulated). 
A RGB image was converted to its single channel components 
and saved as an eight-bit TIFF file for compatibility with the 
QuantiMus pipeline.

Myofiber Regeneration and Laminin
To quantify the frequency and CSA of regenerating myofibers, 
frozen cross-sections of mouse quadriceps were labeled with 
anti-laminin, anti-NCAM, and anti-eMyHC antibodies (Table 1). 
Briefly, cross-sections were fixed with 2% paraformaldehyde for 
5  min, and endogenous biotin was blocked with an avidin/
biotin blocking kit (Vector Laboratories) per manufacturer 
instructions. Following washes with 1X PBS, endogenous mouse 
IgG was blocked with Mouse-on-Mouse blocking reagent (Vector 
laboratories) for 1 h at room temperature (RT). Muscle sections 
were washed in 1X PBS and incubated for 5  min at RT in 
blocking buffer comprised of 1X Tris-buffered saline with 2.5% 
normal donkey serum. Primary antibodies against laminin, 
NCAM, and eMyHC were diluted in blocking buffer at 
concentrations described in Table 1 and were incubated with 
sections for 1  h at RT. Primary antibodies were detected by 
indirect immunofluorescence staining with Alexa 488- and 
Alexa 647-conjugated secondary antibodies (Table 1) for 1  h 
at RT, protected from light. For the detection of eMyHC 
labeling, sections were incubated with biotinylated anti-mouse 

antibodies for 10  min followed by labeling with Alexa 
594-conjugated streptavidin for 5  min. Sections were counter-
stained with 4′,6-diamidino-2-phenylindole, dihydrochloride 
(DAPI, Sigma, 1.2  nM in 1X PBS) for 10  min to visualize 
nuclei. For the staining of laminin in human muscle, sections 
were fixed as described above and were blocked with 5% 
normal donkey serum, 3% BSA and 0.05% Tween-20  in 1X 
Tris-buffered saline for 1  h. Blocking solution was removed 
and sections were stained with anti-laminin antibody for 1  h 
at RT. Sections were washed and stained with secondary 
antibodies and DAPI as described above.

Myofiber Typing
The immunofluorescent detection of myofiber expression of 
myosin heavy chain isoforms was performed as previously 
described (Wen et  al., 2017). Briefly, mouse quadriceps cross-
sections were air-dried for 10  min, rehydrated with 1X PBS, 
and were blocked with Mouse-On-Mouse blocking reagent (Vector 
laboratories) for 1  h at RT. Cross-sections were stained with 
type I, IIa, IIb MyHC-specific antibodies, and anti-laminin  
(Table 1) for 1.5  h. For human samples, antibodies against 
myofiber type IIx were used instead of type IIb (Table 1). To 
detect myofiber types and laminin, sections were stained with 
secondary antibodies Dylight 405 goat anti-mouse IgG2b, Cy2 
goat anti-mouse IgG1, Dylight 594 goat anti-mouse IgM, and 
anti-rabbit Alexa 647 (Table 1) to detect type I, IIa, IIb/x MyHC, 
and laminin staining, respectively. Sections were washed with 
1X PBS and mounted for imaging. All tissue sections were 
imaged with a Keyence BZ-X700 inverted fluorescence microscope 
with a 10X (human) or 20X (mouse) objective and were stitched 
using BZ-X Analyzer software (Keyence).

TABLE 1 | Antibodies used for histology.

Antibody/
labeling 
reagents

Vendor Clone Dilution Final (μg/ml)

eMyHC DSHB F.1652 30 0.6
NCAM SCBT H28-123 200 0.5
Rabbit anti-laminin Sigma Polyclonal 200 2.5
Biotin anti-mouse 
IgG

Jackson 
Immuno

Polyclonal 80 15

MyHC type I DSHB BA-D5 200 1.4
MyHC type IIa DSHB SC-71 200 1.9
MyHC type IIb DSHB BF-F3 200 2
MyHC type IIx DSHB 6H1 20 1.1
Streptavidin Alexa 
Fluor 594

Invitrogen Polyclonal 80 25.0

Anti-Rat Alexa 
Flour 488

Invitrogen Polyclonal 200 10

Anti-Rabbit Alexa 
Flour 647

Invitrogen Polyclonal 200 10

Anti-Mouse IgG 
2b DyLight 405

Jackson 
Immuno

Polyclonal 400 4.3

Anti-Mouse IgG1 
Cy2

Jackson 
Immuno

Polyclonal 400 4

Anti-Mouse IgM 
DyLight 594

Jackson 
Immuno

Polyclonal 400/1500a 3.8/1

aFinal dilution of 1:400 was used for mouse sections. 1:1,500 was used for human.
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FIJI Analysis
To define muscle myofibers, images of laminin-stained cross-sections 
were first imported into FIJI and converted to binary images using 
the “make binary” function. The FIJI “wand tool” (legacy mode, 
tolerance  =  0) was used to define the edge of operator-selected 
myofibers. The area (μm2) and minimum Feret diameter (μm) of 
these operator-selected myofibers were measured using the FIJI 
“measure” function. To manually define CNFs, DAPI-stained images 
were binarized and overlaid onto corresponding binarized images 
of laminin-stained sections. Operators used the FIJI “wand tool” 
(legacy mode, tolerance  =  0) to manually select CNFs. The CSA 
of CNFs was measured using the FIJI “measure” function.

Semi-automatic Muscle Analysis Using 
Segmentation of Histology Analysis
Because SMASH (version 5) requires RGB files for analysis, 
we  used FIJI to convert acquired eight-bit greyscale images 
to a RGB format. As previously described (Smith and Barton, 
2014), the detection of myofibers and CNFs using SMASH 
was performed using the following parameters: pixel size 
(μm/pixel)  =  1.216 (mouse) or 1.780 (human); segmentation 
filter  =  8 (mouse) or 25 (human); minimum fiber area  =  12 
(mouse) or 1,000  μm2 (human); and maximum fiber 
area  =  5000 (mouse) or 20,000  μm2 (human). For the 
determination of CNFs, the following settings were used: 
distance from edge  =  1.5  μm; nuclear size  =  5  μm2; and 
nuclear smoothing  =  5.

MyoVision Analysis
Images of laminin-stained sections were analyzed using 
MyoVision Basic (version 1) as previously described (Wen 
et  al., 2017). Various settings were tested, and the optimal 
following values were used: minimum area  =  10; maximum 
area  =  5,000 (mouse) or 50,000 (human); and pixel/μm  =  1. 
Myofiber size was manually converted to micrometer after export.

Determination of Accuracy and Variance
As previously described, accuracy for the number of defined 
myofibers, average CSA, and number of CNFs was determined 
by Eq. 1, where test software is defined as QuantiMus, MyoVision, 
or SMASH, and manual measurement are values obtained by 
FIJI analysis (Wen et  al., 2017).

Accuracy

Test Software Value Manual Measurement

Manual 
= −

−
1

| |

MMeasurement







×100%

 
   
  

(1)

Coefficient of variation (CV) is defined by Eq. 2.

 CV
Standard Deviation

Average
=








×100  (2)

Data are expressed as the average  ±  standard error of the 
mean (SEM) or individual replicate values where indicated.

Statistics
All statistical analyses were performed using GraphPad Prism 
Version 7.0 (GraphPad Software, Inc.). A two-way repeated 
measures ANOVA with a multiple comparison test (main 
column effect) was performed for fiber counting, CNF detection, 
and CSA accuracy measurements. A paired two-tailed t-test 
was performed for the analysis of the accuracy of CNF number 
and average area of CNFs. Statistical analysis for comparisons 
of WT and mdx measurements was performed using an unpaired 
two-tailed t-test with Welch’s correction.

METHODS

Overview of the QuantiMus Pipeline
The QuantiMus analysis pipeline is composed of five steps. 
Laminin-stained images of muscle cross-sections are first 
imported into the QuantiMus software. The “Fill Myofiber 
Gaps” function (Figure 1, Step 1) ensures accurate boundary 
definition by filling-in discontinuous regions of the laminin 
stain, which is used to define the myofiber perimeter and 
generate a binary image used in the myofiber detection 
function. The “Myofiber Detection” function accurately classifies 
regions of interest (ROI) as myofibers (Figure 1, Step 2), 
generating a classified image used in downstream functions. 
The “Centrally-Nucleated Fibers” function (Figure 1, Step 3) 
defines myofibers with centrally located nuclei by overlaying 
binarized images of laminin-corresponding DAPI-stained 
images onto the classified image. The “Measure Fluorescence” 
function of the QuantiMus pipeline (Figure 1, Step 4) allows 
users to measure myofiber fluorescence intensity emanating 
from immunofluorescence-labeled proteins. The “Save and 
Export Data” function is used to export processed data as 
an Excel sheet for further analysis and statistical testing 
(Figure 1, Step 5).

Segmentation of Myofibers
Image segmentation assists the automation of image analysis 
by partitioning pixels of similar characteristics to define the 
boundary of an object (Liu and Structures, 2009; Zaitoun and 
Aqel, 2015). However, structural deformities in the tissue or 
technical artifacts in the staining procedure that result in 
discontinuous boundaries prevents current segmentation methods 
to accurately determine the myofiber perimeter (Kostrominova 
et  al., 2013). To circumvent this limitation, we  developed an 
algorithm to fill discontinuous myofiber boundaries (i.e., “gaps”) 
by coupling thresholding techniques with novel methods 
we  developed and describe below.

The “Fill Myofiber Gaps” function is executed within the 
“Fill Myofiber Gaps” tab of the QuantiMus user interface 
(Figure 2A). TIFF images of laminin-stained sections  
(Figures 2B,C) are first imported and the user defines the 
myofiber boundary by manipulating the “Blue Threshold” 
and “White Threshold” sliders within the “Fill Myofiber 
Gaps” tab, such that the blue indicates the thickest possible 
boundary and white indicates the thinnest (Figures 2A,D). 
These slider settings are used to generate an evenly spaced 
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list of thresholding values that are sequentially applied to the 
original image to form a series of binary images. Contiguous 
pixels from the binary image resulting from the lowest threshold 
value are grouped together into regions that become seeds 
for segmented regions. Each region of pixels is compared to 
the corresponding region from the binary image generated 
with the next higher threshold value. If the area of a respective 
region exceeds a defined size and increases by more than 
20%, the region is considered to have exceeded the boundaries 
of the candidate myofiber and is erroneously “expanded.” In 
this case, a “white filler” (Figure 2E, yellow arrows) is inserted 
at the intersection of the original and “expanded” regions. 
These two steps – evaluating increases in candidate myofiber 
area and building borders when the increase is too large – 
are repeated for every region in each binary image of the 
series. Contiguous regions of pixels remaining at the end of 
this process are considered segmented regions and are fed 
into the next step of the QuantiMus pipeline. Binarization 
alone fails to resolve gaps within the myofiber perimeter, 
leading to the misclassification of adjacent myofibers as one 
combined region. An example of this is illustrated in Figure 
2F, where each colored region demonstrates the incorrect 
clustering of multiple fibers. The “Fill Myofiber Gaps” 
methodology fills in breaks within the myofiber boundary to 
generate a binarized image (Figure 2G) with “corrected” 
myofiber detection. Although breaks in non-myofiber regions 
may also be  filled in, these erroneously segmented regions 
are not classified as true myofibers during the “Myofiber 
detection” step (Figure 1 Step 2).

Binary Classification of Myofibers and 
Interstitial Space
The “Fill Myofiber Gaps” function yields a binary segmented image 
that contains contiguous regions of pixels that are converted to 
unique regions of interest (ROIs) in the “Define Myofibers” tab 
(Figure 3A). We  used a machine learning algorithm, a support 
vector machine (SVM), to accurately classify ROIs as myofibers. 
Initially, binary images are selected (Figure 3B) in the “Define 
Myofibers” tab, and the user manually classifies ROIs into two 
categories. As shown in Figure 3C, user-selected green ROIs are 
categorized as myofibers, whereas red ROIs are categorized as 
non-myofiber features (i.e., interstitial space or artifact). Four 
properties are determined for each ROI using functions from the 
open source scikit-image toolbox: area, eccentricity, convexity, and 
circularity (Van Der Walt et  al., 2014). Area is defined as the 
number of pixels within each ROI (Figure 3D, gray area). Eccentricity 
describes the ellipticity of a region and is defined as the focal 
distance (Figure 3E, green line) divided by the major axis length 
(Figure 3E, red line). Convexity is defined as the ratio between 
the area (Figure 3F, hatched area) and the convex area of a region 
(Figure 3F, blue area) which is the area of the smallest convex 
polygon that encloses the region. Circularity (Figure 3G) describes 
the roundness of a region and is calculated as in Eq. 3.

 Circularity
Area

Perimeter
=

⋅4
2

π  (3)

These properties are then used to train an SVM with a 
radial bias function as the kernel, which is implemented from 

FIGURE 1 | QuantiMus application workflow. The QuantiMus analysis pipeline is composed of five steps: (1) the “Fill Myofiber Gaps” function; (2) “Myofiber 
Detection” function; (3) “Centrally-Nucleated Fibers” function; (4) “Measure Fluorescence” function; and (5) “Save and Export Data” function.
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the open source scikit-learn library for machine learning in 
Python (Pedregosa et  al., 2012). The trained SVM can then 
be  applied to classify ROIs of the remaining image (Figure 
3H). Training data can also be  saved and later used to classify 
ROIs in binarized images of multiple muscle samples, reducing 
analysis time. Furthermore, the “Correction Filter” feature within 
the “Define Myofibers” tab provides a degree of flexibility that 
allows users to remove incorrectly classified myofibers (Figure 3A).

Defining Centrally Nucleated Fibers
In the “CNF” tab of QuantiMus (Figure 4A), a classified image 
from the “Myofiber Detection” function (Figure 4B) is selected 

and a corresponding binarized DAPI-stained image of the same 
area (Figure 4C) is overlaid (Figure 4D). Using functions from 
the scikit-image toolbox (Van Der Walt et  al., 2014), the area 
of myofibers (green ROIs) are eroded (Figure 4E, yellow regions) 
to exclude peripheral nuclei during the classification of CNFs. 
The degree of erosion is determined by a user-defined value 
from 0 to 99, where 99 is equal to approximately 99% myofiber 
erosion; 80 is used as the default (Figure 4A). If there is 
colocalization of the eroded myofiber ROI (Figure 4E, yellow 
regions) and DAPI signal, then a myofiber is classified as centrally 
nucleated. CNFs are then recolored to purple (Figure 4F), and 
myofiber CNF status is saved for later data export.

A
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FIGURE 2 | The “Fill Myofiber Gaps” function corrects gaps in myofiber boundaries that hinder single myofiber discrimination. (A) Screenshot of the QuantiMus 
user interface used for the “Fill Myofiber Gaps” function. (B) Representative image of a cross-section of 4-week-old mdx quadriceps, stained with anti-laminin 
antibody (white). (C) Zoomed in region of the cross-section in (B) (yellow box). (D) Interactive display showing thresholds set by the user with sliders in the Fill 
Myofiber Gaps Tab. (E) Myofiber gaps detected and filled by the algorithm (white regions highlighted by yellow arrows). (F) Binary image generated from the cross-
section in (C) that was not corrected with the “Fill Myofiber Gaps” function; colored regions indicate grouped ROIs incorrectly detected as one myofiber. (G) Binary 
image generated from the cross-section in (C) that was corrected using the “Fill Myofiber Gaps” function. Scale bar = 200 μm.
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Measuring Myofiber Fluorescence
The “Measure Fluorescence” function, selected in the “Measure 
Fluorescence” tab (Figure 5A), was used to measure the frequency 
of regenerating myofibers based on their expression of eMyHC, 
a marker of regeneration (Schiaffino et  al., 1986). Classified 

images (Figure 5B) are superimposed with fluorescently labeled 
eMyHC images (Figure 5C) to yield an overlay (Figure 5D). 
Scikit-image functions are used to measure the NCAM and 
eMyHC mean fluorescence intensity (MFI), defined as the 
average fluorescence intensity of all pixels within a given myofiber  
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H

FIGURE 3 | Classification of skeletal muscle myofibers. (A) Image of the QuantiMus user interface used to classify myofibers. (B) Binary image of quadriceps from 
4-week-old mdx mice generated during the “Fill Myofiber Gaps” function. (C) Binary image highlighting user-classified ROIs (an ROI is defined as any contiguous 
region of pixels) used to train the machine learning algorithm for subsequent automated ROI classification. Green ROIs = Myofibers, red ROIs = interstitial space and 
artifacts. (D–G) Properties used to classify regions as myofibers. (D) Area (gray) is the total number of pixels in the region. (E) Eccentricity is calculated by dividing 
the focal distance (f, green line) by the major axis length (m, red line). Focal distance is defined as the length between the foci and the major axis length is the longest 
diameter of a region. (F) Convexity of an ROI is calculated by dividing the area (hatched area) by the convex area (blue area). The convex area is defined as the area 
within the smallest convex polygon that can be drawn around a region. (G) Circularity is determined using Eq. 3 as shown. Area = gray region, perimeter = red 
boundary. (H) A representative final image rendered by automated classification subsequently used for myofiber quantification and downstream analysis. Scale 
bar = 200 μm.
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(Van Der Walt et  al., 2014). The “Determine Positive Fibers” 
feature (Figure 5A) is used to manually select a subset of 
myofibers in the overlay image (Figure 5D) with the lowest 
positive fluorescence signal (Figure 5E, yellow myofibers). These 
user-defined positive myofibers serve as a threshold to classify 
eMyHC positive myofibers in the entire cross-section; myofibers 
with an MFI equal to or greater than the threshold value are 
considered positive. After the algorithm completes the classification, 
positive myofibers are relabeled blue (Figure 5F). The MFI of 
all myofibers and the classification status (i.e., positive or not) 
is then saved for downstream analysis and data export.

Data Export
All measurements generated in earlier steps are saved for final 
data export. When applicable, the pixel/micron ratio is entered 
in the “Print Data” tab of QuantiMus (Figure 6). It is important 
to note that when analyzing stitched images, pixel/micron ratios 
are distinct for each image and should be recorded during acquisition. 
In the BZ-X Analyzer software (Keyence) used to acquire images 
in this study, this value is found in the pop-up window that is 
displayed when inserting a scale bar. Alternatively, the “Set Scale”’ 
function in FIJI can be  used to determine the pixel/micron ratio 
for images that contain scale bars inserted during acquisition. 

A

B DC

E F

FIGURE 4 | Detection of CNFs. (A) The QuantiMus user interface that is utilized for the detection of CNFs. (B) Representative cross-section of 4-week-old mdx 
mouse quadriceps previously classified using the “Myofiber Detection” function. (C) The corresponding DAPI image of the cross-section in (B). (D) The overlay of 
classified and DAPI images. (E) Eroded myofibers (yellow) generated during the “Centrally-Nucleated Fibers” function. (F) The “Centrally-Nucleated Fibers” function 
end-product provides an image with CNFs labeled purple. Scale bar = 200 μm.
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ROI number, myofiber area (μm2), minimum Feret diameter (μm), 
CNF classification, MFI, and regenerating myofiber classification 
are exported as an Excel (XLSX) file by clicking on “Print Data.”

RESULTS

Image Processing Time Using  
Multiple Methods
Assessing morphometric features of entire muscle cross-sections 
removes potential biases inherent to random-sampling techniques 

and is recommended by the TREAT-NMD (Nagaraju and 
Willmann, 2009). The manual assessment of an entire muscle 
cross-section is time consuming, and the requirement for high 
computational processing power by some analysis software 
makes these tools inaccessible to some users (Kostrominova 
et  al., 2013; Wen et  al., 2017). QuantiMus was developed for 
the accurate evaluation of entire muscle cross-sections without 
requiring large computational resources. A laptop computer 
containing 12.0 gigabytes of random access memory and a 
2.50 gigahertz critical processing unit (i7-6500U) was used to 
evaluate the processing time of an entire muscle cross-section 
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FIGURE 5 | Measurement of fluorescence intensity in single myofibers. (A) QuantiMus user interface that is utilized for measuring the myofiber mean fluorescence 
intensity (MFI) of an overlaid fluorescence image. (B) Classified image generated by the “Myofiber Detection” function. (C) Fluorescence image of anti-eMyHC antibody-
stained quadriceps. (D) Image in (C) is overlaid onto the corresponding classified image in (B). (E) User-defined eMyHC+ myofibers (yellow) are used as a threshold for the 
automated determination of remaining eMyHC+ myofibers. (F) eMyHC+ myofibers are relabeled blue following the “Determine Positive Fibers” step. Scale bar = 100 μm.
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using FIJI, SMASH, MyoVision or QuantiMus. 108 TIFF images 
of 4-week-old mdx mouse quadriceps taken with a 20x objective 
(1920 × 1440 pixels each) were stitched together with BZ-X 
Analyzer software to reconstruct the entire muscle cross-section. 
Our analysis showed that SMASH and QuantiMus had similar 
processing times, but QuantiMus classified myofibers and 
measured size with higher precision (Table 2). Using TIFF 
images, MyoVision was unable to complete image segmentation 
and myofiber measurement within a four-hour analysis time; 
this software could not process the image beyond the “Separated 
Seeds Step 10” step. It is important to note that MyoVision 
was able to processes a lower resolution PNG image of a full 
cross-section, however this analysis resulted in inaccurate 
myofiber detection and CSA measurements (data not shown). 
Together our analysis shows QuantiMus’ ability to rapidly assess 
morphology in a high content image of an entire muscle section.

Accuracy of Myofiber Classification and 
Cross-Sectional Area Measurement
We next tested the accuracy of QuantiMus in classifying 
myofibers and measuring CSA. QuantiMus was compared to 
SMASH, MyoVision and manual detection with FIJI, which 
was used to establish the ground truth. Due to the inability 
of MyoVision to completely process a stitched TIFF image of 
the entire muscle cross-section, we  used a single image of a 
representative field taken at 20X for further analysis. We found 
that all methods were accurate and detected a similar number 
of myofibers, although MyoVision overestimated the number 
of myofibers in WT mice (Figures 7A,B). We  also found that 
QuantiMus, MyoVision, and FIJI performed with similar accuracy 
when measuring the average myofiber CSA in WT mice but 
was overestimated by SMASH (Figures 7C,D). This observation 
is likely due to SMASH’s method of image segmentation where 
measured myofibers include some of the extracellular region 
leading to larger CSAs for each fiber (Smith and Barton, 2014). 
In mdx quadriceps, our analysis showed that the average size 

of myofibers defined by QuantiMus was similar to those 
measured with FIJI, but MyoVision grossly underestimated 
myofiber CSA (Figure 7C). We  anticipate this finding to be  a 
result of more ROIs of smaller size being inappropriately 
classified as true myofibers. As a result of over and underestimated 
CSA measurements, MyoVision and SMASH accuracies are 
variably influenced by different muscle conditions (i.e., healthy 
versus diseased muscle, Figure 7D). Taken together, although 
each program detected a similar number of myofibers, QuantiMus 
most accurately measured area across different muscle conditions.

We also assessed the ability of QuantiMus to accurately 
detect myofibers and measure myofiber CSA in de-identified 
tissue sections of archived human skeletal muscle. Biopsies 
were collected from patients with a suspected inflammatory 
myopathy, which after pathological assessment revealed no 
skeletal muscle involvement. We found that QuantiMus detected 
a similar number of myofibers compared to FIJI (Figure 7E) 
and was more accurate than MyoVision (Figure 7F), which 
detected fewer fibers (Figure 7E). We  also evaluated CSA in 
cross-sections of human muscle. Although QuantiMus measured 
a similar average CSA compared to manual measurement using 
FIJI, SMASH and MyoVision measured an artificially larger 
CSA, thus reducing their accuracy (Figures 7G,H). Collectively, 
these results validate QuantiMus as an accurate and reliable 
tool for the rapid and accurate assessment of CSA in mouse 
and human skeletal muscle.

Accuracy of Centrally Nucleated Fiber 
Classification and Cross-Sectional Area
We also compared the ability of QuantiMus and SMASH to 
accurately determine and measure CNFs. MyoVision was not 
included in the comparison, as this analytical feature is not 
available in its current version. All methods measured CNF 
number in 4-week-old mdx quadriceps with similar accuracy 
(Figures 8A,B). We  next determined the lower threshold of 
CNF size detection. Our analysis showed that the lowest CSA 

FIGURE 6 | Data export. QuantiMus user interface utilized for the export of saved data.
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determined by FIJI and QuantiMus was on average 51.16 ± 8.61 
and 50.32  ±  7.47  μm2, respectively. SMASH was unable to 
define CNFs smaller than on average 258.09  ±  22.48  μm2, 
likely explaining the overestimation of CSA (Figure 8C). 
Furthermore, this overestimation of CNF CSA by SMASH 
resulted in decreased accuracy (Figure 8D). The lower threshold 
of detection for CNF size led QuantiMus to reliably measure 
the CSA of CNFs (Figure 8D).

Myofiber Typing of Full Muscle  
Cross-Sections
Skeletal muscle is composed of multiple myofiber types that 
differ in their metabolic profiles and contractile properties, 
and can be  classified based on their expression of specific 
myosin heavy chain isoforms. We tested the ability of QuantiMus 
to assess the myofiber expression and distribution of specific 
myosin heavy chain isoforms to define the proportion of type 

TABLE 2 | Comparison of image processing times using different methods.*

Method Time (min)a Fibers/cross section CSA (μm2)b Min Feret (μm)c

FIJI 133 ± 21 6,699 ± 153 745.53 ± 12.69 24.49 ± 0.88
QuantiMus 7 ± 1 7,638 ± 5 710.73 ± 0.38 23.10 ± 0.00
SMASH 5 ± 0.5 8,630 ± 0 813.86 ± 0.00 26.51 ± 0.00
MyoVision Failedd N.D. N.D. N.D.

N.D., not determined. *Data are the average ± standard error of the mean of three independent analyses of one entire muscle cross-section.
aProcessing time (min) required to analyze myofiber size in full quadriceps cross-section image.
bAverage cross-sectional area (CSA).
cAverage minimum Feret diameter.
dAnalysis did not complete within a 4-h period.
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FIGURE 7 | QuantiMus accurately measures myofiber CSA and minimum Feret diameter. (A) The number of myofibers detected using FIJI, QuantiMus (QM), 
MyoVision (MV), and SMASH in 4-week-old WT and mdx quadriceps. (B) The percent accuracy of the number of myofibers detected by each method. (C) The 
average (Avg) CSA (μm2) of myofibers in (A). (D) The percent accuracy of average myofiber CSA for each method. Greater than 2,000 fibers from five representative 
fields, taken from two mice were used for each group. (E) The number of myofibers detected in human muscle. (F) The percent accuracy of myofiber classification 
for each method in (E). (G) The Avg CSA (μm2) detected by each method in (E). (H) The percent accuracy of average myofiber CSA for each method in (G). Over 
2,400 myofibers from six representative fields, taken from two patients were measured. Connected data points are indicative of a single image analyzed by each 
method. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 using a two-way repeated measures ANOVA with a multiple comparison test (main column effect). 
Statistics are compared to FIJI (A,C,E,G) or QM (B,D,F,H).

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kastenschmidt et al. QuantiMus: Muscle Histology Analysis Software

Frontiers in Physiology | www.frontiersin.org 12 November 2019 | Volume 10 | Article 1416

I, IIa, IIb, and IIx myofibers in entire cross-sections of WT 
mouse quadriceps (Figure 9A). As previously shown (Rederstorff 
et al., 2011), this analysis revealed that the majority of myofibers 
in quadriceps are type IIb fibers (70.3%), followed by type 
IIx (19.7%), type IIa (6.0%) and type I  (1.1%) (Figure 9B). 
A small proportion of “hybrid” myofibers that express more 
than one myosin heavy chain isoform were also detected  
(Figure 9B; Matsuura et al., 2007). The quantification of myofiber 
type-specific CSA revealed that Type IIb is the largest in mouse 
quadriceps (Figure 9C). The accumulation of endogenous IgG 
in injured myofibers, despite blocking with commercially available 
mouse-on-mouse blocking reagents, precluded the ability to 
accurately type myofibers in mdx mice (data not shown). 
We  also tested the ability of this tool to perform myofiber 
typing of various human muscles (Figure 9D). Our analysis 
showed the majority of myofibers in an entire muscle cross-
section of biceps brachii from patient 1 were type I  fibers 
(49.9%) followed by type IIa (22.4%) and IIx (18.2%) fibers 
(Figure 9E). The gastrocnemius of the second patient was 
primarily comprised of type I  fibers (34.5%) followed by type 
IIx (31.2%) and IIa (28.1%) fibers (Figure 9F). Additionally, 
hybrid myofibers that expressed more than one myosin heavy 
chain isoform were also detected (Figures 9E,F). The average 
CSA of each myofiber type was also measured in the biceps 
(Figure 9G) and gastrocnemius (Figure 9H). Together, this 
analysis shows the capacity of QuantiMus to measure myofiber 
type distribution and their myofiber type-specific CSA in entire 
skeletal muscle cross-sections of mouse and human.

Morphometric Analysis of Dystrophic 
Muscle Using QuantiMus
We also evaluated the ability of QuanitMus to assess the 
morphological features of dystrophic muscle, which contains 
more complex structural features (i.e., injured myofibers, varying 

myofiber size, and increased interstitial space). Evaluating 
myofiber injury provides a histological index of the severity 
of muscular dystrophy and is routinely evaluated by measuring 
the accumulation of Evans blue dye (EBD+) in injured myofibers 
(Straub et  al., 1997; Hamer et  al., 2002). We  tested the ability 
of QuantiMus to measure muscle injury in EBD-injected WT 
and mdx mice by assessing the frequency of EBD+ fibers and 
their fluorescence intensity within the entire quadriceps cross-
section. As shown previously (Straub et al., 1997), these studies 
revealed an increased proportion of injured fibers in mdx 
muscle compared to healthy controls (Figure 10A). Furthermore, 
we  measured the EBD fluorescence intensity of individual 
myofibers with the “Measure Fluorescence” function. Notably, 
we  found a broad range in the fluorescence intensity of EBD+ 
myofibers, which was absent in WT muscle (Figure 10B, inset).

QuantiMus was also used to histologically assess regeneration 
in healthy and dystrophic mouse muscle (Figure 10C). Using 
CNFs as an indicator of regeneration, we found the proportion 
of regenerating myofibers was elevated in mdx quadriceps 
and nearly absent in WT controls (Figure 10D; Torres and 
Duchen, 1987; McDonald et  al., 2015). Nascent myotubes 
and regenerating myofibers can also be distinguished by their 
expression of developmental genes like eMyHC (DiMario 
et  al., 1991) or NCAM (Capkovic et  al., 2008). We, therefore, 
used QuantiMus to quantify the frequency of eMyHC+ and 
NCAM+ regenerating myofibers. Our analysis showed that 
the proportion of both eMyHC+ and NCAM+ myofibers was 
elevated in dystrophic muscle (Figures 10E,F), consistent with 
the increased proportion of CNFs. Moreover, the individual 
myofiber MFI of eMyHC and NCAM was higher in mdx 
mice compared to WT, suggesting a relative increased expression 
of these markers in mdx quadriceps (Figures 10G,H). The 
use of mean or median fluorescence intensity as an indirect 
measure of protein expression is a common technique used 

A B C D

FIGURE 8 | Defining CNFs. (A) The number of CNFs detected using manual measurement (FIJI), QuantiMus (QM), and SMASH in 4-week-old mdx quadriceps. (B) 
The percent accuracy of QuantiMus and SMASH to detect CNFs in (A). (C) The average CSA (μm2) of CNFs detected by manual measurement (FIJI), QuantiMus, or 
SMASH. (D) The percent accuracy of QuantiMus and SMASH in measuring the CSA of detected CNFs compared to FIJI. Connected data points are indicative of a 
single image analyzed by each method. Five representative fields taken from two mice were used for analysis. **p < 0.01 using a two-way repeated measures 
ANOVA with a multiple comparison test (main column effect) (A,C) or an paired two-tailed t-test (B,D). Statistics are compared to FIJI (A,C) or QM (B,D).
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in a variety of semi-quantitative and quantitative platforms 
to report relative changes in protein or gene expression 
(McCabe et  al., 2005; Gonçalves et  al., 2011; Cirak et  al., 
2012; Banks et  al., 2014; Van Battum et  al., 2014; Omairi 
et  al., 2017; Guirado et  al., 2018; Guiraud et  al., 2019). 
We next evaluated the relationship between CSA and eMyHC 
(Figures 10I,J) or NCAM (Figures 10K,L) MFI and found 
no correlation in WT mice (Figures 10I,K). However, eMyHC 
and NCAM MFI and CSA were negatively correlated in mdx 
mice, with the smallest myofibers having the highest MFI 
for these markers (Figures 10J,L). We  also noted that there 

was a larger proportion of large NCAM+ myofibers (>1,000 μm2) 
that did not express eMyHC (compare Figures 10L,J), suggesting 
that the loss of eMyHC precedes the loss of NCAM as 
regenerating myofiber differentiate and grow. This observation 
also likely accounts for the increased proportion of NCAM+ 
myofibers compared to eMyHC+ myofibers in mdx mice 
(compare Figures 10E,F). The ability of QuantiMus to 
simultaneously measure CSA and MFI provided a novel analytic 
approach using linear regression analysis to quantify small 
myofibers expressing high levels of NCAM or eMyHC in 
regenerating muscle (Figures 10I–L).
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FIGURE 9 | Myofiber typing of mouse and human muscle. (A) Representative image of WT mouse quadriceps cross-sections stained with antibodies against 
myosin heavy chain-specific isoforms. Blue = type I, green = type IIa, red = type IIb. Fibers with no isoform present are defined as type IIx. (B) The proportion of each 
myofiber type. (C) The average (Avg) cross-sectional area (CSA) of each fiber type. Data are displayed as the average ± SEM from full section measurements of four 
WT mice. A total of 25,757 fibers were measured. (D) Representative image of human cross-sections stained with antibodies against myosin heavy chain-specific 
isoforms. Blue = type I, green = type IIa, red = type IIx. (E,F) The proportion of each fiber type in human biceps brachii (Bicep) or gastrocnemius (Gastroc). (G,H) The 
Avg CSA of each fiber type in both muscle groups. Data are measured from full cross-sections and are displayed as the average ± SEM CSA of each patient sample 
(G,H). 1,488 (Biceps) and 2,036 (Gastroc) fibers were measured. Scale bars = 100 (A) or 200 (D) μm.
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DISCUSSION

The histomorphological and molecular assessment of injured 
or diseased skeletal muscle historically required time-
consuming, manual methods. More recently, the histological 
evaluation of muscle tissue has been significantly accelerated 
by the development of semi-automated tools (Kostrominova 
et al., 2013; Smith and Barton, 2014; Wen et al., 2017; Reyes-
Fernandez et al., 2019). These methods are able to successfully 
measure uniform myofibers of healthy muscle. However, these 
methods are not readily adaptable to the highly variable 
terrain of diseased muscle. Here, we  introduce QuantiMus, 
a machine learning-based software, that addresses this and 
accelerates the histological evaluation of skeletal muscle. 
Benchmark comparisons validate this tool for the high-
throughput and semi-automated determination of CSA, CNFs, 
fluorescence intensity, and myofiber type of entire skeletal 
muscle cross-sections.

The implementation of unique segmentation and SVM-based 
classification algorithms advances current morphometric 

methods by enhancing the ability to define individual myofibers 
and assess muscle pathology of entire muscle cross-sections. 
SVMs have been previously utilized to segment images (Wang 
et  al., 2011, 2012) and classify objects (Adamiak et  al., 2016) 
by using descriptors in a trained image as inputs for its 
supervised learning methods (Nayak et  al., 2015). In the 
histological assessment of skeletal muscle, the SVM generates 
a complex nonlinear decision boundary between myofibers 
and other structural features, thereby removing the reliance 
on rigid user-defined parameters used by other methods that 
may lead to ROI misclassification. The novel development 
and implementation of the “Fill Myofiber Gaps” function also 
enhances accurate myofiber classification by “filling” artifactual 
gaps in the laminin-stained image used to define the myofiber 
perimeter. A binarized image with more precise boundaries 
is generated, consequently increasing the SVM’s ability to 
accurately classify ROIs as myofibers. An additional layer of 
accuracy has been added by implementing a semi-automated 
“Correction Filter” and a point-and-click user interface that 
allows investigators to manually change ROI status. These 
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FIGURE 10 | Morphometric analysis of dystrophic pathology in mdx mice. (A) Frequency of injured fibers (% EBD+) in entire quadriceps cross-sections of WT and 
mdx mice. (B) Histogram of muscle EBD expression showing individual myofiber EBD expression displayed as mean fluorescence intensity (MFI). n = 4 for each 
group. (C) Representative images of mdx mouse quadriceps cross-sections stained with DAPI (blue), NCAM (green), eMyHC (red), and laminin (white). The 
percentage of centrally-nucleated [CNF, (D)], eMyHC+ (E), and NCAM+ (F) fibers (of all fibers) in entire WT and mdx quadriceps cross-sections. (G,H) Histogram of 
eMyHC and NCAM expression showing individual myofiber expression displayed as MFI. Teal = WT, orange = mdx. (I–L) Linear regression analysis comparing 
eMyHC or NCAM MFI and myofiber CSA (μm2) in WT and mdx mice. Each dot represents a single myofiber. Red-dashed line corresponds to the equation generated 
by the linear regression analysis. n = 4 for each group. The boxed regions reflect data points that were above the background signal. Scale bar = 100 μm. AU = 
arbitrary units. Four-week-old mice were used. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 using an unpaired two-tailed t-test with Welch’s correction.
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features allow the removal of myofibers at the edge of the 
muscle cross-section or in areas with poor sectional integrity. 
Further, the point-and-click feature allows the addition of true 
myofibers that were missed during classification. Together, 
these features integrate to form an accurate and user-friendly 
method for segmenting skeletal muscle images and classifying 
myofibers for downstream analysis.

We also implemented a novel myofiber eroding feature 
that facilitates the accurate classification of regenerating, CNFs 
ranging widely in size. We  used an open-source algorithm 
(Pedregosa et  al., 2012) to erode each myofiber by a percent 
area that scales with changing CSA size. In contrast, the use 
of hard-set parameters prevents the accurate discernment of 
small CNFs. As a result, SMASH failed to detect CNFs smaller 
than 258.09  ±  22.48 μm2, which are prevalent in regenerating 
regions of dystrophic muscle (Torres and Duchen, 1987). 
We  attributed the increased CNF detection accuracy of 
QuantiMus to the erosion method, which is not adversely 
affected by heterogenous myofiber populations. Currently, the 
difficulty to resolve single nuclei in areas of high cellular 
density and overlapping nuclei limit our tool to detecting 
centrally-located nuclei. These limitations especially arise in 
settings of muscle inflammation, were infiltrating immune 
cells juxtaposed with myofibers make it difficult to discern 
infiltrating nuclei from peripheral myofiber nuclei. However, 
the ability to quantify peripheral nuclei in healthy muscle 
that lack densely compacted nuclei has been successfully 
performed (Wen et  al., 2017).

We coupled machine learning-based classification and 
fluorescence intensity measurement methods to evaluate muscle 
function by simultaneously assessing the morphology and 
molecular features of a myofiber. We  took rigorous measures, 
including labeling all sections on the same day; fluorescence 
signals were not saturated during image acquisition; specificity 
of the antibodies was validated, i.e., we used biological samples 
–mdx vs. WT– known to have increased expression of eMyHC 
and NCAM; fluorescently-labeled sections were protected from 
light; measurement of fluorescence intensity was done on 
unaltered images, to preserve a proportional relationship 
between MFI and protein expression. Combining these functions 
provided the capability to ascertain a relationship between 
myofiber size and eMyHC or NCAM fluorescence intensity 
at single-myofiber resolution. This becomes a critical analytical 
quality given that eMyHC+ and NCAM+ regenerating myofibers 
represent a minor fraction of total myofibers. Thus, small, 
but physiologically impactful changes in size or protein 
expression in this population may be  missed because of their 
low prevalence. Although previous studies characterized NCAM 
expression in regenerating muscle, they did not measure CSA 
(Illa et  al., 1992; Dubois et  al., 1994). Here, measuring CSA 
and NCAM expression permitted a linear regression analysis 
that revealed a negative correlation between NCAM expression 
and myofiber size, which was also true for eMyHC+ myofibers. 
The reduction of eMyHC and NCAM expression with increasing 
myofiber size in mdx mice is consistent with other studies 
showing that these markers of regeneration are down-regulated 
with myofiber differentiation and/or growth (Covault and 

Sanes, 1986; Dubois et al., 1994; Agbulut et al., 2003; Schiaffino 
et  al., 2015). Further, QuantiMus reliably identified a subset 
of very small myofibers expressing high levels of eMyHC 
and NCAM protein (Figures 10I–L green box), likely 
representing nascent myotubes present in mdx muscle (Charlton 
et al., 2000). Our study demonstrates that QuantiMus measures 
protein expression over a high dynamic range and accurately 
classifies small regenerating myotubes, to assess muscle 
regeneration with unprecedented sensitivity and accuracy.

QuantiMus was designed to segment and classify images 
for myofiber determination and measuring their fluorescence 
intensity. This design does not allow QuantiMus to measure 
unsegmented areas, preventing the quantification of injured 
or fibrotic areas over the entire cross-section. However, the 
“Measure Fluorescence” feature can be  used to quantify the 
frequency of necrotic myofibers and their uptake of Evans 
Blue dye by measuring the MFI (Straub et  al., 1997; Hamer 
et  al., 2002). Similar approaches have been used to measure 
muscle membrane injury following acute injury detected with 
procion orange (Tidball and Wehling-Henricks, 2007). As 
expected, QuantiMus revealed a greater than 15-fold increase 
in EBD+ injured myofibers in mdx mice compared to WT 
mice. Further, measuring the MFI of EBD of all myofibers in 
a cross-section revealed a broad range in the fluorescence 
intensity of EBD in dystrophic muscle. We  attribute this broad 
distribution to an increase in the number and/or size of lesions 
in the sarcolemma of a single myofiber that causes a larger 
and variable influx and accumulation of EBD. Measuring the 
MFI of EBD consequently becomes useful to measure injury 
when the frequency of injured myofibers is not different between 
experimental conditions, but the number of lesions per myofiber 
or size is significantly altered.

QuantiMus is an open-source software plug-in written in 
the Python programming language and is available at no cost. 
Python has a large open-source community that actively maintains 
a rich set of software libraries and packages that can be  used 
to customize the functionality of QuantiMus for investigator-
specific needs. The algorithms designed for QuantiMus were 
written to rapidly process high-content images and must 
be launched through the computer terminal, which may require 
some guidance to operate. To circumvent this limitation for 
novice users, we  have provided extensive instructions for 
installation and program start-up of QuantiMus at https://
quantimus.github.io.

Through extensive benchmarking, we  validated QuantiMus 
as a novel machine learning-based tool for quantitative skeletal 
muscle morphometry. QuantiMus quantified the frequency of 
centrally-nucleated, injured, and regenerating myofibers in 
whole cross-sections with high precision. Further, QuantiMus 
rapidly typed myofibers based on the expression of MyHC 
isoforms. The capability to simultaneously measure fluorescence 
intensity and cross-sectional area provided a novel analytical 
approach for quantifying myofiber injury and regeneration. 
In summary, QuantiMus operates with equal and for many 
parameters exceeds the performance of existing software in 
quantifying histological and molecular features of muscle disease 
in human and mouse.
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