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a b s t r a c t 

Geophysical data can help to discriminate among multiple competing subsurface hypotheses (conceptual 

models). Here, we explore the merits of Bayesian model selection in hydrogeophysics using crosshole 

ground-penetrating radar data from the South Oyster Bacterial Transport Site in Virginia, USA. Implemen- 

tation of Bayesian model selection requires computation of the marginal likelihood of the measured data, 

or evidence, for each conceptual model being used. In this paper, we compare three different evidence 

estimators, including (1) the brute force Monte Carlo method, (2) the Laplace-Metropolis method, and (3) 

the numerical integration method proposed by Volpi et al. (2016). The three types of subsurface models 

that we consider differ in their treatment of the porosity distribution and use (a) horizontal layering with 

fixed layer thicknesses, (b) vertical layering with fixed layer thicknesses and (c) a multi-Gaussian field. 

Our results demonstrate that all three estimators provide equivalent results in low parameter dimensions, 

yet in higher dimensions the brute force Monte Carlo method is inefficient. The isotropic multi-Gaussian 

model is most supported by the travel time data with Bayes factors that are larger than 10 100 compared 

to conceptual models that assume horizontal or vertical layering of the porosity field. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Geophysical methods are used widely in near-surface applica-

ions, because of their innate ability to infer, with high resolution,

he properties and spatial structure of the subsurface. Geophysical

ata, for instance, warrant a detailed characterization of the hy-

rologic properties of the vadose zone and aquifers ( Binley et al.,

010; 2015; Hubbard and Linde, 2011; Hubbard and Rubin, 2005 ).

ost published studies in the hydrogeophysical literature rely on

 single conceptual representation of the subsurface, without re-

ourse to explicit treatment of the actual uncertainty associated

ith the choice of a single conceptual model ( Linde, 2014; Linde

t al., 2015 ). Geophysics-based model selection has received rela-

ively limited attention, which is somewhat surprising, as geophys-

cal data contain a wealth of information about the structure of the

ubsurface. In contrast to current practice, we should not rely only

n a single conceptualization and parameterization of the subsur-
∗ Corresponding author. 
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ace, but instead determine as well the proper spatial arrangement

f variables of interest such as porosity and moisture content. One

pproach of doing this is to implement model selection, and use

he geophysical data to provide guidance about which represen-

ation of the subsurface is most supported by the available data

mong a set of competing conceptual models ( Linde, 2014 ). Such

n approach will not only enhance the fidelity of our subsurface

nvestigations, but will also further promulgate and disseminate

he importance of geophysical data in hydrologic and environmen-

al studies. By providing knowledge about suitable geostatistical

escriptions of the subsurface, model selection might also help in

losing the gap in scale between plot-based geophysical investiga-

ions and the much larger spatial domains relevant to water re-

ources management, contaminant transport and risk assessment.

n this way, geophysics is used to define an appropriate geostatisti-

al model that can later be used to produce unconditional geosta-

istical realizations at larger scales. 

Many different approaches have been suggested in the statis-

ical literature to help select the ”best” model among a group of

ompeting hypotheses. This includes frequentist and Bayesian so-

utions. The application of such approaches to geophysical studies

http://dx.doi.org/10.1016/j.advwatres.2017.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2017.02.006&domain=pdf
mailto:Carlotta.Brunetti@unil.ch
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v  
has its own special challenges. For instance, a parameter-rich, but

geologically-unrealistic model may fit the data equally well or per-

haps even better than a more parsimonious model with more ap-

propriate conceptualization of the subsurface ( Rosenkrantz, 1977 ).

What is more, the decision about which model is favoured, is also

heavily influenced by the choice of the models’ prior parameter

distribution, even for geophysical data comprised of many different

measurements. With the use of an inappropriate prior the model

can be made to fit the data arbitrarily poorly, changing fundamen-

tally our opinion about which model should be favoured, a phe-

nomenon known as the Jeffreys–Lindley paradox ( Jeffreys, 1939;

Lindley, 1957 ). 

To describe accurately this trade-off between model complex-

ity and goodness of fit, we here use Bayesian model selection, and

investigate in detail the denominator in Bayes theorem. This nor-

malizing constant, referred to as the evidence, marginal likelihood

or integrated likelihood, conveys all information necessary to de-

termine which of the competing subsurface models (given their

prior parameter distributions) is most supported by the geophys-

ical data. The conceptual model with the largest evidence over the

prior model space is the one that is most supported by the experi-

mental data. The foundation of Bayesian model selection originates

from Jeffreys ( Jeffreys, 1935; 1939 ) and builds on the principles of

Occam’s razor, that is, parsimony is favoured over complexity. In

other words, if two models exhibit a (nearly) equivalent fit to the

data, the model with the least number of ”free” parameters is pre-

ferred statistically ( Gull, 1988; Jefferys and O. Berger, 1992; Jeffreys,

1939; MacKay, 1992 ). Statisticians prefer the use of so-called Bayes

factors ( Kass and Raftery, 1995 ) to quantify the odds of each model

with respect to every other competing model. This Bayes factor of

two models A and B, is equivalent to the ratio of the evidences

of both models. The larger the value of this ratio, the stronger the

support for hypothesis A. In cases when the evidence values are of

similar magnitude (e.g., within the same one or two orders of mag-

nitude), then it is recommended to use Bayesian model averaging

to combine predictions from different conceptual models and, thus,

obtain a more appropriate description of posterior parameter un-

certainty ( Hoeting et al., 1999 ). 

Another distinct advantage of Bayesian model selection is that

model comparison is relative to the existing conceptual models

at hand, and consequently, the ”true” model does not have to be

part of the ensemble considered for hypothesis testing. To para-

phrase Box and Draper (1987) : All our conceptual models are wrong,

but some are useful. It is the task of Bayesian model selection to

determine which of the considered conceptual models is the most

useful. Of course, the answer to which model is most useful de-

pends critically on the purpose and intended goal of model ap-

plication. Within the realm of model selection we can, however,

answer the question of which model is most supported by the

available data. Yet, this task is not particularly easy for subsurface

models, as the integral of the posterior parameter distribution is,

in general, high-dimensional and without analytic solution. This

probably explains why Bayesian model selection is seldom used

in hydrogeophysics and near-surface geophysics. Instead, we have

to resort to numerical methods to approximate the value of the

evidence for each competing conceptual model. Gelfand and Dey

(1994) suggest that the integral of the posterior distribution can

be estimated via numerical integration using, for instance, Monte

Carlo methods ( Hammersley and Handscomb, 1964 ), asymptotic

solutions (e.g., Bayesian information criterion, BIC) ( Schwarz et al.,

1978 ) or Laplace’s method ( De Bruijn, 1970 ). In the field of geo-

physics, BIC ( Dettmer et al., 2009 ), annealed importance sampling

( Dettmer et al., 2010 ) and the deviance information criterion, DIC,

( Spiegelhalter et al., 2002; Steininger et al., 2014 ) have been used

for calculation of the evidence. 
b  
In a separate line of research, transdimensional (or reversible

ump) Markov chain Monte Carlo (MCMC) methods ( Green, 1995 )

re receiving a surge of attention to determine the optimal com-

lexity (number of parameters) in geophysical modeling investi-

ations (e.g., Bodin and Sambridge (2009) ; Bodin et al. (2012) ;

ambridge et al. (2006) ; Steininger et al. (2014) ). In reversible jump

CMC, the number of model parameters is treated as an unknown

nd parsimony is preferred as this method incorporates directly

he evidence in its calculations which makes it extremely efficient

or model selection. Notwithstanding this progress made, transdi-

ensional MCMC is poorly adaptable to situations with multiple

ifferent conceptual models that each use a different geologic de-

cription (structure) of the target of interest ( Chib and Jeliazkov,

001 ). Moreover, this method performs relative ranking of the con-

idered conceptual models, which implies that the whole inversion

rocedure must be re-run if additional candidate models are to be

onsidered at a later stage. 

In the field of hydrology, metrics such as Akaike’s information

riterion (AIC) ( Akaike, 1973 ), BIC, and Kashyap’s information cri-

erion (KIC) ( Kashyap, 1982 ) are used widely to select the most

dequate model ( Li and Tsai, 2009; Marshall et al., 2005; Tsai

nd Li, 2008; Ye et al., 2010 ). A recent study by Schöniger et al.

2014) elucidates that AIC and BIC do a rather poor job in ranking

ydrologic models. The authors of this study therefore concluded

hat AIC and BIC are a relatively poor proxy of the evidence. The

ame study found that the brute force Monte Carlo method pro-

ides the most accurate and bias-free estimates of the evidence.

et, this method is not particularly adequate in high dimensions

nd for peaky posteriors. What is more, the brute force Monte

arlo method is known to be affected by the so-called curse of di-

ensionality which degenerates the evidence estimates and make

hem unusable in high dimensions ( Lewis and Raftery, 1997 ). In

ases where reliable brute force Monte Carlo integration is infeasi-

le, Schöniger et al. (2014) promote the use of KIC for model se-

ection, evaluated at the maximum a-posteriori (MAP) density pa-

ameter values of the posterior distribution. Note that the KIC is

 simple transform of evidence estimates obtained by the Laplace-

etropolis method ( Lewis and Raftery, 1997 ). 

The purpose of this study is twofold. In the first place, we in-

estigate to what extent evidence estimates and Bayes factors de-

ived for moderately high parameter dimensionalities (i.e., up to

05 unknowns) can be used to perform Bayesian model selec-

ion in synthetic and real-world case studies. For this purpose,

e compare evidence estimates computed by (1) the brute force

onte Carlo method ( Hammersley and Handscomb, 1964 ), (2) the

aplace-Metropolis method ( Lewis and Raftery, 1997 ) and (3) the

aussian mixture importance sampling (GMIS) estimator of Volpi

t al. (2016) . This latter method approximates the evidence by im-

ortance sampling from a Gaussian mixture model fitted to a large

ample of posterior solutions generated with the DREAM (ZS) al-

orithm ( Laloy and Vrugt, 2012; Vrugt, 2016; Vrugt et al., 2008 ).

hen, we present an application of Bayesian model selection to

ubsurface modeling using geophysical data from the South Oyster

acterial Transport Site in Virginia (USA) ( Chen et al., 20 01; 20 04;

ubbard et al., 2001; Linde et al., 2008; Linde and Vrugt, 2013 ).

hese data consist of travel time observations made by crosshole

round-penetrating radar (GPR), and exhibit small measurement

rrors typical of most near-surface geophysical sensing methods. 

. Theory and methods 

.1. Bayesian inference with MCMC 

Given n measurements, ˜ Y = { ̃  y 1 , . . . , ̃  y n } , and a d -dimensional

ector of model parameters, θ = { θ1 , . . . , θd } , it is possible to

ack out the posterior probability density function (pdf) of the
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Table 1 

Interpretation of Kass and Raftery (1995) for the Bayes 

factor of two conceptual models η1 and η2 . 

2 log B (η1 ,η2 ) B (η1 ,η2 ) Evidence against η2 

0 to 2 1 to 3 barely worth mentioning 

2 to 6 3 to 20 positive 

6 to 10 20 to 150 strong 

> 10 > 150 very strong 
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arameters, p( θ| ̃  Y ) , via Bayes theorem 

p( θ| ̃  Y ) = 

p( θ) p( ̃  Y | θ) 

p( ̃  Y ) 
, (1)

here, p( θ) signifies the prior pdf, L ( θ| ̃  Y ) ≡ p( ̃  Y | θ) , denotes the

ikelihood function, and p( ̃  Y ) is equivalent to the marginal likeli-

ood, or evidence. The larger the likelihood the better the model,

( θ) , explains the observed data, ˜ Y . Bayesian model selection

an be carried out for any type of likelihood function. However,

n this work, we conveniently assume that the error residuals,

( θ) = { e 1 ( θ) , . . . , e n ( θ) } , are normally distributed with constant

ariance and negligible covariance. These three assumptions lead

o the following definition of the likelihood function: 

 ( θ| ̃  Y , σ˜ Y ) = 

(√ 

2 πσ 2 ˜ Y 

)−n 

exp 

[ 

−1 

2 

n ∑ 

h =1 

(
F h ( θ) − ˜ y h 

σ˜ Y 

)2 
] 

, (2)

here σ˜ Y 
denotes the standard deviation of the measurement

ata error. This entity can be fixed a-priori by the user if deemed

ppropriate, or alternatively, the measurement data error can be

reated as nuisance variable and the value of σ˜ Y 
is inferred jointly

ith the d -vector of model parameters, θ. The Gaussian likelihood

unction of Eq. (2) has found widespread application and use

n the field of geophysics, nevertheless it is important to stress

hat the error residuals hardly ever satisfy the rather restrictive

ssumptions of normality, constant variance, and lack of serial

orrelation. The Gaussian likelihood in Eq. (2) is sufficient, though,

o illustrate the power and usefulness of Bayesian model selection.

The prior pdf, p( θ) , quantifies our knowledge about the ex-

ected distribution of the model parameters before considering the

bserved data. The evidence, p( ̃  Y ) , acts as a normalization con-

tant of the posterior distribution, and for fixed model parameteri-

ations, is therefore often ignored in Bayesian inference. The poste-

ior pdf, p( θ| ̃  Y ) , for a given conceptual model, quantifies the prob-

bility density of a vector with parameter values given the initial

nowledge embedded in the prior distribution and the informa-

ion provided by the measurement data via the likelihood. In the

bsence of closed-form analytic solutions of the posterior distribu-

ion, MCMC methods are often used to approximate this distribu-

ion using sampling ( Hastings, 1970; Metropolis et al., 1953; Robert

nd Casella, 2013; Vrugt, 2016 ). 

.2. Evidence and Bayes factor 

Bayesian hypothesis testing uses Bayes factors ( Kass and

aftery, 1995 ) to determine which conceptual model is most sup-

orted by the available data, and prior distribution. These Bayes

actors quantify the odds of two competing models. For the time

eing, let us assume that we have two competing hypotheses, η1 

nd η2 , that differ in their spatial description of the main variable

f interest, say porosity. The first hypothesis (model) could assume

orizontal layering of the porosity field, whereas the second model

dopts a multi-Gaussian description of the spatial configuration of

he porosity values. Now the Bayes factor (”odds”) of η1 with re-

pect to the alternative hypothesis, η2 , or B (η1 ,η2 ) 
, can be calcu-

ated using 

 (η1 ,η2 ) = 

p( ̃  Y | η1 ) 

p( ̃  Y | η2 ) 
, (3) 

hich is simply equivalent to the ratio of the evidences, p( ̃  Y | η1 )

nd p( ̃  Y | η2 ) , of the two conceptual models. It then logically fol-

ows that the Bayes factor of model two, or the alternative hypoth-

sis η2 , is equal to the reciprocal of B (η1 ,η2 ) 
. 

The evidence (scalar) of a given conceptual model, ηl , is defined

s the (multidimensional) integral of the likelihood function over
he prior distribution 

p( ̃  Y | ηl ) = 

∫ 
L ( θl , ηl | ̃  Y ) p( θl | ηl ) d θl l = 1 , 2 . (4)

n practice, it is often not necessary to integrate over the entire

rior distribution, as large portions of this space are made up of ar-

as with a negligible posterior density whose contributions to the

ntegral of Eq. (4) are negligibly small. Instead, we can restrict our

ttention to those areas of the parameter space occupied by the

osterior distribution. 

It should be evident from the above that models with large

ayes factors are preferred statistically. Indeed, the subsurface con-

eptual model with largest value of its evidence is most supported

y the geophysical data, ˜ Y . In practice, however the computed

ayes factors might not differ substantially from unity and each

ther to warrant selection of a single model. Bayes factors differ

ost from each other if relatively simple models are used with

idely different characterizations of the subsurface as their flex-

bility is insufficient to compensate for epistemic errors due to im-

roper system representation and conceptualization. This inability

ntroduces relatively large differences in the models’ quality of fit,

nd consequently their Bayes factors, which simplifies model selec-

ion. Highly parameterized models on the contrary, have a much

mproved ability to correct for system misrepresentation, thereby

aking it more difficult to judge which hypothesis is preferred sta-

istically. Nevertheless, poor conceptual models should exhibit rel-

tively low Bayes factors in response to their relatively low likeli-

oods. 

The Bayes factor is a sufficient statistic for hypothesis testing,

et renders necessary the definition of ”formal” guidelines on how

o interpret its value before we can proceed with model selection.

able 1 articulates an interpretation of the Bayes factor as advo-

ated by Kass and Raftery (1995) . This interpretation differentiates

our (increasing) levels of support for proposition η1 relative to η2 .

n general, the evidence in favor of η1 increases with the value of

ts Bayes factor. Thus, the larger the value of B (η1 ,η2 ) 
, the more the

ata ̃  Y supports the hypothesis η1 relative to η2 , and the easier it

ecomes to reject this alternative hypothesis. It is suggested that

he Bayes factor must be larger than 3 (or smaller than 1/3) to

iscriminate positively among two competing hypotheses. 

Unfortunately, the integral in Eq. (4) cannot be derived by ana-

ytic means nor by analytic approximation, and we therefore resort

o numerical methods to calculate the evidence of each conceptual

odel. In the next section, we review briefly three different meth-

ds for estimating the evidence, including the brute force Monte

arlo method (BFMC), the Laplace-Metropolis (LM) method and the

aussian mixture importance sampling (GMIS) approach recently

eveloped by Volpi et al. (2016) . 

.2.1. Brute force Monte Carlo method 

The BFMC method ( Hammersley and Handscomb, 1964 ) ap-

roximates the evidence in Eq. (4) as an average of the likelihoods

f N different samples drawn randomly from the (multivariate)

rior distribution ( Kass and Raftery, 1995 ) 

p BFMC ( ̃  Y ) ≈ 1 

N 

N ∑ 

i =1 

L ( θi | ̃  Y ) . (5)
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The validity of this estimator is ensured by the law of large num-

bers, and the standard deviation of the evidence can be monitored

using the central limit theorem ( James, 1980 ). Many published

studies have shown that this estimator works well for rather par-

simonious models with relatively few fitting parameters. Indeed,

for such models it is not that difficult to sample exhaustively the

prior parameter distribution, and to evaluate the likelihood func-

tion for each of these points. Unfortunately, the computational re-

quirements of this BFMC method become rather impractical for

parameter-rich models as many millions or even billions of model

evaluations are required to characterize adequately the likelihood

surface. 

2.2.2. Laplace-Metropolis method 

The LM method ( Lewis and Raftery, 1997 ) builds on the as-

sumption that the posterior parameter distribution is characterized

adequately with a (multi)normal distribution 

p LM 

( ̃  Y ) ≈ (2 π) d/ 2 | H ( θ∗) | 1 / 2 p( θ∗) L ( θ∗| ̃  Y ) , (6)

where θ∗ denotes the mean of this distribution, and | H ( θ∗) | 1 / 2 sig-

nifies the determinant of the Hessian matrix at θ∗. The two terms

(2 π ) d /2 and p( θ∗) L ( θ∗| ̃  Y ) scale the density of the normal distribu-

tion so as to consider explicitly the effect of parameter dimension-

ality, and quality of fit, on the evidence, respectively. This estimator

is derived from an asymptotic approximation of the evidence and

uses a quadratic Taylor series expansion around θ∗. This deriva-

tion appears in Lewis and Raftery (1997) , and interested readers

are referred to this publication for further details. The mean of the

multinormal distribution, θ∗, is assumed equivalent to the MAP so-

lution of the posterior parameter distribution, and the Hessian ma-

trix, H ( θ∗) , is computed from the J posterior samples, θ j , as fol-

lows ( Rousseeuw and Van Zomeren, 1990 ) 

H ( θ∗) = 

1 

J − 1 

J ∑ 

j=1 

( θ j − θ∗) T ( θ j − θ∗) . (7)

For a large enough sample, the Hessian matrix converges to the

posterior covariance matrix. 

The KIC ( Kashyap, 1982 ) 

KIC θ∗ = −2 log (p LM 

( ̃  Y )) (8)

is closely related to the LM approach, with θ∗ assumed equivalent

to the MAP solution. 

2.2.3. Gaussian mixture importance sampling 

As third and last method we consider the GMIS evidence es-

timator developed recently by Volpi et al. (2016) . This method

uses multidimensional numerical integration of the posterior pa-

rameter distribution via bridge sampling (a generalization of im-

portance sampling) of a mixture distribution fitted to samples of

the target derived from MCMC simulation with the DREAM algo-

rithm ( Vrugt, 2016 ). This approach has elements in common with

the BFMC method, yet draws samples directly from the poste-

rior distribution, rather than the prior distribution (as in BFMC)

to approximate the evidence. One would therefore expect a much

higher sampling efficiency of the GMIS method. The use of a Gaus-

sian mixture distribution allows GMIS to approximate as closely

and consistently as possible the actual posterior target distribu-

tion. Indeed, this distribution can be multimodal, truncated, and

”quasi-skewed” - properties that can be emulated with a mixture

model if a sufficient number of normal components is used. The

Expectation-Maximization (EM) algorithm is used to construct the

Gaussian mixture distribution ( Dempster et al., 1977; Hoogerheide

et al., 2012 ). Let us assume that MCMC simulation with DREAM has

produced J realizations, � = { θ1 , . . . , θJ } , of the d -variate poste-

rior parameter distribution under hypothesis, η . We approximate
1 
hese samples’ probability density function, p( θ| ̃  Y ) , with a mixture

istribution 

 ( θ, K) = 

K ∑ 

k =1 

αk f k ( θ;μk , �k ) , (9)

f K > 0 multivariate normal densities, f k (·| μk , �k ) in R 

d , where

k , μk and �k signify the scalar weight, the d -dimensional mean

ector, and the d × d -covariance matrix of the k th Gaussian com-

onent. The weights, or mixing probabilities, must lie on the unit

implex, �K , that is, αk ≥ 0 and 

∑ K 
k =1 αk = 1 , and the �k ’s must

e symmetric, �k (θi , θ j ) = �k (θ j , θi ) , and positive semi-definite. 

The Expectation-Maximization (EM) algorithm ( Dempster et al.,

977; Hoogerheide et al., 2012 ) is used to determine the val-

es of the d mix -variables of the mixture distribution, � =
 α1 , . . . , αK , β1 , . . . , βK } , where each βk = { μk , �k } characterizes

he mean and covariance matrix of a different normal density of

he mixture, and k = { 1 , . . . , K} . This algorithm maximizes the log-

ikelihood, log { L ( �| �, K )}, of the mixture density 

og { L (�| �, K) } = 

J ∑ 

j=1 

log 

{ 

K ∑ 

k =1 

αk f k ( θ j ;μk , �k ) 

} 

, (10)

y alternating between an expectation (E) step and a maximiza-

ion (M) step, until convergence of the values of � is achieved

or a given number of components, K . The optimum complexity

f the mixture distribution is determined via minimization of the

ayesian information criterion, or BIC 

IC (K) = −2 log { L (�| �, K) } + d mix (K) log (J) . (11)

his criterion strikes a balance between quality of fit (first-term)

nd the complexity of the mixture distribution (second term). In

ractice, we use different values for K and then select the ”opti-

al” mixture distribution by minimizing the value of the BIC cri-

erion, or ̂ 

 = arg min 

K∈ N + 
BIC (K) , (12)

here N + is the collection of strictly positive integer values. 

The optimal mixture distribution now serves as importance

ensity, q ( θ, ̂  K ) , in GMIS to estimate the marginal likelihood,

p GMIS ( ̃
 Y ) . To this end, we draw at random from the im-

ortance distribution, Q( θ, ̂  K ) , a total of N different samples,

 θ
imp 
1 

, . . . , θ
imp 
N 

} . We then evaluate each of these N parameter vec-

ors in our hypothesis (conceptual model), and calculate their

nnormalized posterior densities, p( θimp 
r ) L ( θimp 

r | ̃  Y ) , where r =
 1 , . . . , N} . The evidence, p GMIS ( ̃

 Y ) , is now computed by GMIS as

 weighted mean of the ratios of the samples’ unnormalized pos-

erior densities and corresponding importance densities ( Perrakis

t al., 2014 ) 

p GMIS ( ̃  Y ) ≈ 1 

N 

N ∑ 

r=1 

p( θimp 
r ) L ( θimp 

r | ̃  Y ) 

q ( θimp 
r ) 

. (13)

his concludes our description of the GMIS estimator. We refer in-

erested readers to Volpi et al. (2016) for a more detailed treatment

nd explanation of the theory, concepts, and main building blocks

f GMIS. This paper also documents a diverse set of case studies

up to d = 100 ) which evaluate and benchmark the performance of

MIS against other commonly used evidence estimation methods. 

.3. Evidence estimation in practice 

The posterior distribution and the MAP solution that is used by

he LM ( Section 2.2.2 ) and GMIS ( Section 2.2.3 ) methods are de-

ived from MCMC simulation using the DREAM (ZS) algorithm ( Laloy

nd Vrugt, 2012; Vrugt, 2016; Vrugt et al., 2008 ). This multi-chain
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ethod creates proposals on the fly from an historical archive of

ast states using a mix of parallel direction and snooker updates.

e refer the reader to Linde and Vrugt (2013) ; Lochbühler et al.

2014) ; 2015 ); Rosas-Carbajal et al. (2013) ; 2015 ) for various geo-

hysical case-studies in which this algorithm is used. For the ac-

ual field application, we use a hierarchical Bayesian formulation,

n which the data error, σ˜ Y 
in Eq. (2) is jointly estimated with the

odel parameters (e.g., Rosas-Carbajal et al. (2013) ). For numeri-

al reasons we work with a log-likelihood formulation of Eq. (2) .

 total of four chains were deemed sufficient for 25 parameters,

ve chains were used for model dimensions between 26 and 64,

nd eight chains for models with more than 65 parameters. The

umber of generations varied between 20 0,0 0 0 and 50 0,0 0 0 de-

ending on the dimensionality of the target distribution. The scal-

ng factor, β0 of the jump rate was tuned to achieve an adequate

cceptance rate and the univariate ̂ R -diagnostic ( Gelman and Ru-

in, 1992 ) was used to judge when convergence had been achieved

f the DREAM (ZS) algorithm to a limiting distribution. 

We report the evidence estimates of the BFMC method us-

ng three different sample sizes involving N = 10 5 , N = 10 6 and

 = 10 7 samples in Eq. (5) . In GMIS, we use a total of N = 10 5 im-

ortance samples ( Eq. (13) ). We repeat each of these two numeri-

al experiments ten times, and summarize the mean evidence and

ssociated range in the results section. Lastly, in the case of the

M method, we report the evidence computed as the mean of the

stimates on the different Markov chains ( Van Haasteren, 2013 ) to-

ether with the range. 

.4. Conceptual subsurface models 

To demonstrate the usefulness of model selection in a hydro-

eophysical setting, we consider two common parameterizations

or the porosity structure, (a) horizontal layering with fixed thick-

ess of each layer, hereafter referred to as Lh, and (b) a multi-

aussian model, coined MG. In addition to these, we also consider

ertical layering of the porosity, using fixed layer thicknesses, ab-

reviated Lv. This parameterization is rather unusual and uncom-

on, but serves herein to illustrate that a poor conceptual model

xhibits low odds. We also compare and juxtapose much finer dis-

retizations of the two layered models and considered three dif-

erent variants of the multi-Gaussian model involving horizontal

nisotropy (MGha), vertical anisotropy (MGva) and isotropy (MGis).

he multi-Gaussian model we use herein is adopted from Laloy

t al. (2015) , but under the assumption of a known geostatisti-

al model. The method developed by Laloy et al. (2015) gener-

tes a zero-mean stationary multi-Gaussian field through the cir-

ulant embedding method (CEM) of the covariance matrix together

ith a dimensionality reduction which is useful when dealing with

nely discretized fields. The dimensionality is reduced by generat-

ng two low-dimensional vectors of standard normal random num-

ers (i.e., in our case, each vector has 50 dimensionality reduction

 DR ) variables) which are subsequently resampled to the original

imension through a one-dimensional Fast Fourier Transform inter-

olation ( Laloy et al. (2015) ). This method decreases substantially

odel dimensionality, and, as a consequence, lowers significantly

he computational cost of MCMC simulation to sample the target

istribution. 

.4.1. Petrophysics and forward modelling 

The case-studies considered herein focus on porosity estimation

sing first-arrival travel time data from crosshole GPR. We use the

etrophysical relationship by Pride (1994) to link the geophysical

roperties (i.e., radar slowness, s ) to the hydrologic properties of

rimary interest (i.e., porosity, φ) in a water saturated media 

 = 

√ 

φm c −2 [ ε w 

+ (φ−m − 1) ε s ] , (14) 
here ε w 

= 81 (-) denotes the relative permittivity of water, c =
 · 10 8 (m/s) is the speed of light in a vacuum, εs (-) signifies the

elative permittivity of the mineral grains and m is a unitless ce-

entation index. We use the non-linear 2D travel time solver ( time

d ) of Podvin and Lecomte (1991) to compute first-arrival travel

imes from slowness fields obtained by applying the petrophysical

elationship of Eq. (14) to each porosity field. 

. Illustrative toy example 

To benchmark the different evidence estimators of Section 2.2 ,

e first consider an illustrative example involving a simple cross-

ole GPR experiment. A total of 10 transmitter and receiver an-

ennas are placed at multiple different depths (uniform intervals)

n boreholes located in the left and right side of the domain, re-

pectively (see Fig. 1 a). This results in a total of 100 different

ransmitter-receiver antenna pairs. The spatial domain that neces-

itates porosity characterization covers an area of 7.2 m × 7.2 m.

o warrant accurate model simulations, a spatial discretization of

.04 × 0.04 m is considered. We contaminate the n = 100 first-

rrival travel time data with Gaussian white noise using a mea-

urement error, σ˜ Y 
= 2 ns. This comparatively high error level was

hosen to facilitate comparison with the BFMC method, which is

nown to work better in the presence of large measurement er-

ors. This leads to a likelihood function that is less peaked, and,

onsequently, a posterior distribution that is more dispersed as it

ill distribute more evenly the probability mass over the param-

ter space. The ”true” porosity field of the subsurface is made up

f four different layers of equal thickness with porosity values of

.3, 0.45, 0.35 and 0.4, in the downward direction, respectively (see

ig. 1 a). We varied the number of horizontal layers of constant

hickness from d = 1 to d = 16 , and assume a uniform prior dis-

ribution for the porosity, φ, of each respective layer using upper

nd lower bound values of 0.25 and 0.50, respectively. The petro-

hysical parameters of Eq. (14) are assumed fixed using values of

 = 1 . 5 and ε s = 5 , respectively. 

Fig. 1 b–e presents the posterior mean porosity field derived

rom the DREAM (ZS) algorithm for four different model conceptual-

zations. The two layer model ( Fig. 1 b) is an overly simplistic repre-

entation of the true porosity field which is, by construction, per-

ectly described by the conceptual model with four layers shown

n Fig. 1 c. The posterior mean porosity field of the six layers model

resented in Fig. 1 d exhibits a relatively poor agreement with the

eference porosity field. Finally, the porosity values for the eight

ayer model ( Fig. 1 e) correspond rather closely with their counter-

arts of the reference field ( Fig. 1 a). The bottom panel, in Fig. 1 f–i,

isplay the posterior standard deviation of the porosity estimates

or the different layers of our four model conceptualizations. As

xpected, the uncertainty of the porosity estimates increases with

he number of layers that are used in our subsurface characteriza-

ions. 

Now we calculate the marginal likelihood of each hypothesis

sing the BFMC, LM, and GMIS estimators. The results of this anal-

sis are presented in Fig. 2 using at the left hand-side a plot of

he mean evidence computed by each method against model com-

lexity, and at the right-hand-side a graph of the associated uncer-

ainty of each estimator. We consider subsurface models with up

o d = 16 horizontal porosity layers of equal thickness. To simplify

raphical interpretation of the results, we plot log 10 transformed

alues of the evidence, and refer to this entity as P( ̃  Y ) . Colour

oding is used to differentiate between the results of the three dif-

erent methods. The results highlight several important findings. In

he first place, the evidence estimates confirm that the model with

our different porosity layers, that is d = 4 , is most supported by

he available data ( Fig. 2 a). This finding is not surprising as this

odel uses the exact same layering of the porosity field as used in
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Fig. 1. a) The ”true” subsurface porosity model used in our synthetic crosshole-GPR experiment. The different measurement depths of the transmitter antenna (black crosses) 

and receiver antenna (black circles) are separately indicated. Mean porosity fields of the posterior distribution derived from MCMC simulation with the DREAM (ZS) algorithm 

using four different conceptualizations of the subsurface involving (b) two, (c) four, (d) six, and (e) eight horizontal layers. The corresponding posterior standard deviations 

of the porosity estimates for the four different conceptualizations of the subsurface are shown in (f), (g), (h) and (i), respectively. 
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It is now evident that the difference in the evidence estimates 
the synthetic GPR experiment that was used to create the ”mea-

sured” travel time data. Secondly, the BFMC (black), the LM (blue)

and the GMIS (red) estimators are in excellent agreement and pro-

vide nearly identical values of the evidence for conceptual models

with just a few parameters (horizontal layers)( Fig. 2 a). Thirdly, the

BFMC starts to deviate from the LM and GMIS methods at seven

model dimensions and substantial differences appear for models

with more than nine layers ( Fig. 2 a). This behavior is explained by

the fact that the BFMC estimates did not converge for model di-

mensions higher than six. The convergence analysis was performed

by a bootstrap analysis with 10 0 0 bootstrap estimates (results not

shown herein). In the fourth place, notice in Fig. 2 b that the LM

and GMIS estimators exhibit a negligible uncertainty compared to

the range of evidence values considered and that the upper and

lower bound values of the evidence derived from both methods

appear rather similar. Evidence estimates derived from the BFMC

method, on the contrary, exhibit a much larger uncertainty due

to the fact that the BFMC does not reach convergence for model

dimensions higher than six. This provides further support for the

claim that, in our implementation and algorithmic settings, the

BFMC method is inefficient when applied to models of high dimen-

sionality since large numbers of samples (implying prohibitively
arge CPU-costs) are needed to properly characterize the likelihood

urface and obtain reliable results. 

We now investigate in more detail the discrepancies between

he results of the three estimators, and plot in Fig. 3 the differences

etween the logarithmic values of the marginal likelihoods, P( ̃  Y ) ,

omputed by the methods for the competing models used in this

tudy. The solid black line depicts the difference in the mean evi-

ence estimates derived by comparing each pairs of methods, and

he grey shaded region quantifies the range associated with the

ifferences in evidence estimates (i.e., the upper and lower bound-

ries of the grey shaded region are, respectively, the maximum and

inimum difference in evidence estimate computed by each pairs

f methods). Note, we use N = 10 7 in the BFMC method and report

esults for subsurface models with number of horizontal porosity

ayers (equal thickness) that ranges from d = 1 to d = 16 . 

The results in Fig. 3 provide further evidence for our earlier

onclusions. Indeed, the three methods provide rather similar evi-

ence values ( Fig. 3 a) for the simpler subsurface models (i.e., up to

 = 6 different porosity layers). For larger model complexities the

M and the GMIS estimators differ a bit from each other - but this

ifference is very small in comparison to their mean estimates.
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Fig. 2. Mean values of the evidence in log 10 space, P( ̃  Y ) (a: left graph), and their 

associated uncertainty (b: right graph) derived from the BFMC, LM, and GMIS es- 

timators for each model complexity, d used herein. Color coding is used to differ- 

entiate among the different methods. The evidence estimates of the LM and GMIS 

estimators are in excellent agreement and their uncertainty is negligibly small. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 3. Difference in the evidence estimates derived from different pairs of two 

methods as function of model complexity, (a) GMIS and LM, (b) BFMC and LM, and 

(c) BFMC and GMIS. The solid black line in each graph portrays the difference in 

the mean evidence estimates, and the grey shaded region quantifies the range as- 

sociated with the difference in the mean evidence estimates of each method. Note, 

we use log 10 transformed value of the evidence estimates. 
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Table 2 

Parameters of the conceptual subsurface models with horizontal and 

vertical porosity layering. The last three columns summarize the range, 

prior distribution, and number, of each parameter, respectively as used 

in our MCMC inversion with the DREAM (ZS) algorithm. The variable n layer 

defines the number of layers that is used in each conceptual model. 

Parameter Units Prior range Prior n ° parameters 

φ – 0 .25-0.5 Uniform n layer 
∗

m – 1 .3-1.7 Uniform 1 

εs – 2–6 Uniform 1 

σ˜ Y ns 0 .3–2 Log-uniform 1 

∗ 1 ≤ n layer ≤ 60 
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erived from LM and GMIS increases with model complexity. Note

hat the maximum deviation between both methods is on the or-

er of 0.7 unit in P( ̃  Y ) space, which, with mean estimates on the

rder of one-hundred (see Fig. 2 a), equates to a difference smaller

han 1%. However, it is important to stress here that there is no

eason to expect that the two methods provide equivalent results

ince they are based on very different assumptions (details in

ections 2.2.2 and 2.2.3 ). Results from Fig. 3 also confirm that the

vidence values derived from the BFMC method start to deviate

rom the other two methods for model dimensions higher than

ix since the method does not reach convergence for those models

 Fig. 3 b–c). These differences grow as large as 6–7% in P( ̃  Y ) space

or the most complex subsurface models with d = 14 and d = 16

orosity layers. It is worth noting that we are primarily interested

n an accurate model ranking, while the accuracy of the evidence
stimates themselves are of secondary importance. In light of this,

e find that the differences in the evidence estimates obtained

y the three different estimators do not have an impact on which

odels are ranked first and second in the presented synthetic

xample. 

This illustrative toy example shows that results from the three

ethods successfully agree on which model is most supported

y the available data. The LM and GMIS methods provide sim-

lar values of the evidence, with associated uncertainty that ap-

ears rather small. The evidence estimates derived from the BFMC

ethod, on the contrary, are trustworthy only for the most par-

imonious subsurface conceptualizations (models) consisting only 

f a few porosity layers. Beyond this complexity, the 10 million

FMC samples used herein are insufficient to declare convergence

nd obtain reliable evidence estimates. Of course, we could further

ncrease BFMC’s sample size, yet this would increase further its al-

eady prohibitive computational time. Based on these findings, we

iscard the BFMC method and carry forward to the next case study

he LM and GMIS estimators that are relatively CPU-efficient. 

. Field example 

.1. Field site and available data 

We now focus our attention on the South Oyster Bacterial

ransport Site in Virginia, USA, and use geophysical data measured

t this experimental site to determine which model of the sub-

urface is preferred statistically. The geological characteristics of

he South Oyster Bacterial Transport Site are described in Hubbard

t al. (2001) . GPR travel time data were measured at the S14-M13

orehole transect using a PulseEKKO 100 system with a 100-MHz

ominal-frequency antenna. A domain of 7.2 × 7.2 m was mea-

ured with a total of 57 sources and 57 receivers, leading to a data

et of 3248 observations of first-arrival travel times (one value is

issing). We assume the measurement errors of the travel time to

e uncorrelated and normally distributed with constant standard

eviation, σ˜ Y 
. A relatively fine spatial discretization consisting of

quare cells with length 0.04 m was used in our forward simula-

ions with the non-linear 2D travel time solver ( time 2d ) of Podvin

nd Lecomte (1991) to compute the first-arrival travel times for the

.2 × 7.2 m domain of interest. The models used in this study dif-

er in their conceptual representation of the subsurface, and use

orizontal and vertical layering of the porosity. The numbers of

orosity layers (equal thickness) is varied between 1 to 60, thereby

roviding a large array of competing hypotheses. Table 2 lists the

arameters of both spatial porosity configurations which are sub-

ect to inference with the DREAM (ZS) algorithm. This includes, the

orosity, φ, of each individual layer, and the values of m , εs and

˜ Y 
. We list their symbol, unit, range, type of prior distribution, and

espective number of unknowns. 

The use of horizontal and vertical layering of the porosity is

erhaps convenient computationally, but might not describe prop-

rly the subsurface of an actual field site. Indeed, the subsurface
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Table 3 

Integral scales in x - and z -direction, 

I x and I y , respectively, anisotropy an- 

gle, ϕ, and smoothness parameter, ν for 

the multi-Gaussian model with horizontal 

anisotropy (second column, MHha), verti- 

cal anisotropy (third column, MGva), and 

isotropy (last column, MGis). 

MGha MGva MGis 

I x 1 .5 m 1 .5 m 

√ 

1 . 5 · 0 . 2 m 

I z 0 .2 m 0 .2 m 

√ 

1 . 5 · 0 . 2 m 

ϕ 90 ° 0 ° 90 °
ν 0 .5 0 .5 0 .5 

Table 4 

Parameters of multi-Gaussian models (first column) and their respective units 

(second column), range (third column), prior distribution (fourth column), 

and number (last column). 

Parameter Units Prior range Prior n ° parameters 

DR – – Normal 100 

φ – 0 . 3 − 0 . 4 Uniform 1 

v – 10 −4 − 2 . 5 · 10 −3 Log-uniform 1 

m – 1 . 3 − 1 . 7 Uniform 1 

εs – 2 − 6 Uniform 1 

σ˜ Y ns 0 . 3 − 2 Log-uniform 1 
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might exhibit much more complex porosity structure. We there-

fore augment the ensemble of hypotheses with a model that as-

sumes a multi-Gaussian porosity field. This field is generated over

a regular 2D grid of size 180 × 180 with geostatistical properties

and spatial structure described with the Matérn variogram. Fortu-

nately, the values of the integral scales in the x and z -direction, I x 
and I z , respectively, anisotropy angle, ϕ, and smoothness parame-

ter, ν , of this variogram have been reported in the literature for

the South Oyster Bacterial Transport Site ( Chen et al., 2001; Hub-

bard et al., 2001 ). Their values are listed in the second column

of Table 3 , and assume horizontal anisotropy of the porosity field,

that is ϕ = 90 ◦. This model is referred to as MGha. For complete-

ness, we also consider herein a multi-Gaussian model with verti-

cal anisotropy, ϕ = 0 ◦ (third column), coined MGva, and include an

isotropic description of the porosity (fourth column), hereafter re-

ferred to as MGis, and enforced by setting I x and I z equal to the ge-

ometric mean of the integral scales of the first two multi-Gaussian

models. We fix the value of ν = 0 . 5 in the Matérn variogram, as

we expect an exponential variogram model. Interested readers are

referred to Laloy et al. (2015) for a more detailed description of the

Matérn variogram. 

We now focus our attention to the ”unknown” parameters in

each model (see Table 4 ), which are subject to inference using the

observed travel time data. In our MCMC inversions we infer jointly

the petrophysical parameters, εs and m of Eq. (14) , mean porosity,

φ, and its associated variance, v , the measurement data error, σ˜ Y 
,

of the travel time data, and 100 dimensionality reduction variables,

DR (details in Section 2.4 ). 

4.2. Results 

We first display in Fig. 4 five realizations of the prior porosity

field (columns) for each of the conceptual models (different rows)

used in this case study. This includes the three multi-Gaussian

models with (a) isotropy, (b) horizontal anisotropy, and (c) verti-

cal anisotropy, and more simplistic models that assume (d) hori-

zontal and (e) vertical layering of the porosity values. It is evident

that these five model types provide very different descriptions of

the porosity field of the subsurface at the experimental site. The

multi-Gaussian models exhibit most spatial diversity with realiza-
ions that differ substantially in their mean porosity and associ-

ted variance. The porosity values of the layered models change

bruptly from one depth to the next. 

We now move on to our inversion results and present in Fig. 5

or each model of the ensemble (different rows), four different

raws of the posterior distribution (first four columns), the poste-

ior mean porosity field (fifth column) and the associated standard

eviation (last column) derived from the DREAM (ZS) algorithm. The

rder of the presentation matches exactly Fig. 4 , that is, the first

hree rows presents the results of the multi-Gaussian models with

a) isotropy, (b) horizontal anisotropy, and (c) vertical anisotropy

f the porosity values, and the bottom two rows illustrate the re-

ults of the models with (d) horizontal and (e) vertical layering.

he different conceptual models provide quite different charac-

erizations of the porosity field. Some commonalities can be ob-

erved, though. For instance, the isotropic multi-Gaussian model,

he multi-Gaussian model with horizontal anisotropy and the hor-

zontally layered model ( Fig. 5 a-b-d) all depict the presence of a

ow-porosity zone just below the surface and at a depth of 4–5 m.

hey also demonstrate high-porosity zones at depths of 2 m and

 m, and at 3 m below the ground surface a small high-porosity

rea is also visible, although this is not so evident for the isotropic

ulti-Gaussian model. The porosity fields parametrized by these

hree conceptual models are estimated with relatively low uncer-

ainties (i.e., maximum of posterior standard deviations equals to

r less than ± 0.01), especially, in the case of the horizontal layer-

ng. Also, the conceptual subsurface model with vertically oriented

orosity structures (i.e., the vertically layered model and the multi-

aussian model with vertical anisotropy) exhibit more variation in

heir porosity values (first four columns in Fig. 5 c–e) and charac-

erized by larger uncertainties (last column in Fig. 5 c–e) than the

ther models. 

Note that the posterior mean porosity field of the multi-

aussian model with horizontal anisotropy (fifth column in Fig. 5 b)

s in good agreement with the velocity field obtained by Linde

t al. (2008) and Linde and Vrugt (2013) for the exact same data

et. 

To provide more insights into the posterior parameter distri-

utions of each model, Fig. 6 plots histograms of the marginal

istributions of the cementation index, m (first column), the rela-

ive permittivity of the mineral grains, εs (second column), and the

nferred data error, σ˜ Y 
(third column) for the multi-Gaussian (top

hree rows) and layered (bottom two rows) subsurface models. The

rior distribution is separately indicated in each plot with the red

ine. Note, to simplify graphical notation, the density of all the dis-

ributions was scaled to be between 0 and 1. This figure highlights

everal interesting findings. In the first place, notice that the three

arameters appear to be well defined in each of the five concep-

ual models with posterior distributions that occupy only a small

ortion of their respective prior distributions. This is particularly

rue for the marginal distribution of σ˜ Y 
, the measurement error of

he travel time data. Secondly, notice that the use of a vertically

ayered porosity ( Fig. 6 e) results in truncated histograms of the

arameters m and εs and a large inferred data error, σ˜ Y 
> 1 . 5 ns.

hese are possible signs of model malfunctioning, a claim that we

ill investigate next by looking in detail at the evidence estimates

f each model, but supported thus far by the much larger posterior

alues of σ˜ Y 
for the vertically layered model than the other four

ompeting subsurface models. Thirdly, notice that the histograms

f the petrophysical parameters m and εs differ quite substan-

ially between the conceptual models. These parameters probably

ompensate in different ways for imperfections in each model’s

orosity structure. The histograms of the nuisance parameter σ
Ỹ 

ppear almost similar with the exception of the model with ver-

ically layered porosity values. Altogether, the lowest value of the

easurement data error, σ˜ Y 
= 0 . 457 ns, is found for the isotropic
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Fig. 4. Realizations drawn randomly from the prior distribution for the (a) isotropic multi-Gaussian model, (b) multi-Gaussian model with horizontal anisotropy, (c) multi- 

Gaussian model with vertical anisotropy, (d) horizontally layered model with 37 layers of equal thickness, and (e) vertically layered model with 12 layers of equal thickness. 
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ulti-Gaussian model ( Fig. 6 a), which should suggest that this

odel most closely matches the observed travel time data. 

We now turn our attention to the evidence of each model. Fig. 7

resents the results of this analysis using a log 10 transformation of

he evidence values. The left graph ( Fig. 7 a) displays the results for

he three multi-Gaussian models with isotropy (circle), horiziontal

nisotropy (square) and vertical anisotropy (triangles), respectively,

sing a single complexity involving d = 105 parameters. The graph

n the middle ( Fig. 7 b) and on the right ( Fig. 7 c) depict the results

or the conceptual models with horizontal and vertical layering, re-

pectively, using between 1 to 60 different porosity layers. Colour

oding is used in all the three plots to differentiate between the
M (blue) and GMIS (red) estimators. The vertical bars in Fig. 7 a

nd shaded regions in Fig. 7 b–c depict the uncertainty of the evi-

ence estimates derived from the different trials with the LM and

MIS methods. 

The most important conclusions are as follows. In the first

lace, the evidence estimates derived from both methods appear

imilar for model complexities with less than 30 (unknown) pa-

ameters. Beyond this, the difference between the marginal likeli-

oods derived from both methods grows up to 2% in log 10 space

or d = 105 . Secondly, the evidence estimates derived from the dif-

erent trials are quite similar, particularly for the GMIS method.

hirdly, the use of a larger number of layers in the two layered
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Fig. 5. Four realizations drawn randomly from the posterior distribution (first four columns), the posterior mean porosity field (fifth column) and the standard deviations 

of the posterior porosity estimates (last column) for the (a) isotropic multi-Gaussian model, (b) multi-Gaussian model with horizontal anisotropy, (c) multi-Gaussian model 

with vertical anisotropy, (d) horizontally layered model with 37 layers of equal thickness, and (e) vertically layered model with 12 layers of equal thickness. 
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models does not necessarily increase the statistical support for this

model. Indeed, the value of the evidence is maximized when us-

ing 37 horizontal porosity layers or 15 vertical porosity layers. Be-

yond this number of porosity layers, the evidence values deterio-

rate slowly but with the exception of a sudden increase in P( ̃  Y )

at d = 40 for the vertically layered model. This spike is observed

in the empirical P( ̃  Y ) functions of both evidence estimators (LM

and GMIS), inspiring confidence in their results. Notice that the

GMIS estimator produces a secondary peak at d = 63 (sixty layers),

which causes the LM and GMIS methods to diverge in the right-

most part of their P( ̃  Y ) curves. Since it is not particularly clear

which of the two estimators is at fault, we further test this case
ith GMIS by using 10 6 instead of 10 5 posterior realizations to

onstruct the d = 63 -variate importance distribution. The results

not shown herein) confirm the presence of the peak at d = 63

hich suggests that the secondary peak is real. Fortunately, this

oes not affect at all model ranking as the evidence values of

he vertically layered porosity model are many orders of magni-

ude smaller than their counterparts of the multi-Gaussian mod-

ls. These results illustrate the importance of hypothesis testing

nd highlight the need for (statistical) methods that help us to de-

ermine, in an efficient and robust manner, an appropriate model

omplexity. In fact, the marginalization approach that is used to

etermine the model evidence can be viewed as a formalization
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Fig. 6. Marginal posterior distributions of the inferred cementation index, m (first column), the relative permittivity of the mineral grains εs (second column), and the 

inferred data error, σ˜ Y (third column) for the multi-Gaussian models with (a) isotropy, (b) horizontal anisotropy, and (c) vertical anisotropy of the porosity values, and 

the two models with (d) horizontal and (e) vertical layering. The prior distribution is indicated separately in each plot using the red lines. The densities in each plot are 

normalized so that they all share the units of the y -axis on the left. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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f Occam’s razor and leads to a subsurface characterization that is

ot too simple nor too complex. Furthermore, and perhaps most

mportant from the perspective of the present paper, the isotropic

ulti-Gaussian model receives the largest evidence values. This is

rue for both methods. Note, also that the vertically layered model

xhibits very low evidence values. Indeed, the best vertically lay-

red model has an evidence in log 10 units of about −2757, much

ower than the values of approximately −2757, and −1178 for the
ulti-Gaussian and horizontally layered models, respectively. This

atter result confirms our earlier conclusion that the vertically lay-

red model is deficient and inadequate. 

Table 5 shows the five top-ranking conceptual models based

n their evidence estimates derived from the LM (first column),

nd GMIS (second column) methods. The conceptual model that is

ost supported by the experimental data appears on top of the list

first row). For completeness, we also present in the third column
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Fig. 7. Mean values of the evidence in log 10 space, P( ̃  Y ) , derived from the LM 

(blue) and GMIS (red) methods for (a) the multi-Gaussian models with isotropy 

(circles), horizontal anisotropy (squares), and vertical anisotropy (triangles), and the 

two models with (b) horizontal, and (c) vertical layering of the porosity. The error 

bars in (a) and the shaded areas in (b) and (c) summarize the ranges of the evi- 

dence estimates as derived from the different independent trials with both meth- 

ods. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Table 5 

Ranking of the different concep- 

tual models for the South Oyster 

Bacterial Transport Site based on 

evidence estimates derived from 

the LM (first column) and GMIS 

(second column) methods. The 

third column ranks the models 

based on their respective values 

of the measurement data error in- 

ferred from MCMC simulation us- 

ing the DREAM (ZS) algorithm. 

Ranking of conceptual models 

P LM ( ̃  Y ) P GMIS ( ̃  Y ) σ˜ Y [ns] 

MGis MGis MGis 

L40 MGha MGva 

L39 L40 MGha 

L43 L41 L43 

L41 L43 L41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Twice the natural logarithm of the Bayes factors of the best model (isotropic 

multi-Gaussian) of the ensemble with respect to the (a) multi-Gaussian model with 

horizontal anisotropy (squares) and vertical anisotropy (triangles), and the two con- 

ceptual models with (b) horizontal and (c) vertical layering of the porosity. Results 

are shown for the LM (blue) and the GMIS (red) methods. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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the ranking of the models using as metric the posterior values of

the measurement data error, σ˜ Y 
. All three rankings demonstrate

conclusively that the isotropic multi-Gaussian model is preferred.

This model receives the highest evidence with both estimators

and lowest value of the measurement data error, σ˜ Y 
= 0 . 457 ns.

Note, that the LM and GMIS methods disagree in their assessment

of the second best model. The more approximate LM method

achieves the second highest support for the horizontally layered

model with 37 layers ( d = 40 ), whereas GMIS favours instead the

multi-Gaussian model with horizontal anisotropy. 

We now calculate the Bayes factor (”odds”) for the best model

(isotropic multi-Gaussian) of the ensemble in relationship to each

conceptual model. The ”odds” of the isotropic multi-Gaussian

model are on the order of 10 118 and 10 151 relative to the second

best model of the ensemble according to the LM and GMIS esti-

mators ( Table 5; Fig. 8 ). Fig. 8 a depicts twice the natural logarithm

of the Bayes factors with respect to the multi-Gaussian model with

horizontal anisotropy (square symbol), and vertical anisotropy (tri-

angle symbol), and Fig. 8 b–c displays the same entity with re-

spect to the horizontally and vertically layered models, respec-
ively. Colour coding is used to differentiate between the LM (blue)

nd GMIS (red) evidence estimators. It is evident that the isotropic

ulti-Gaussian model receives most support by the data - the val-

es listed on the y -axis in each plot are all larger than 600, which

ccording to Table 1 suggests that there is very strong evidence

gainst each of these alternative hypotheses. 

The results presented thus clearly favour the use of an isotropic

ulti-Gaussian model for the porosity structure of the subsurface

t the South Oyster Bacterial Transport Site. This conclusion is at

dds with findings presented in the literature ( Chen et al., 2001;

ubbard et al., 2001 ) using geostatistical analysis of the porosity

tructure. The results of these studies support the use of a multi-

aussian model with horizontal anisotropy. 

.3. A synthetic experiment 

To shed some more light on the selection of the isotropic multi-

aussian model, we proceed with a synthetic experiment. We use

he exact same domain (7.2 × 7.2 m) and setup as in our real-

orld study ( Section 4.1 ), and simulate first-arrival travel times

or a multi-offset GPR experiment with 57 transmitter and 57 re-

eiver antennas using as reference porosity a multi-Gaussian field

ith horizontal anisotropy. This ”true” porosity field is constructed

ithout the use of dimensional reduction using values of the in-

egral scales and smoothness parameter listed in Table 3 . The

ean of this porosity field is, φ = 0 . 39 and the variance is, v =
 · 10 −4 . The 57 × 57 = 3249 simulated travel times are corrupted

ith Gaussian white noise using σ˜ Y 
= 0 . 5 ns, and these distorted

alues are now used for numerical inversion using the DREAM (ZS) 

lgorithm. 

Table 6 presents the evidence estimates of the LM (first row)

nd GMIS (bottom row) methods using as competing hypothe-

es multi-Gaussian models with horizontal anisotropy (second col-

mn), isotropy (third column) and vertical anisotropy (right col-

mn). The numerical setup of these three conceptual models fol-

ows exactly Tables 3 and 4 . The results of Table 6 demonstrate

hat both evidence estimators provide a similar ranking of the

hree subsurface models. As is to be expected, the most support

s found for the multi-Gaussian model with horizontal anisotropy
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Table 6 

Synthetic experiment: Evidence estimates derived 

from the LM and GMIS methods for the multi- 

Gaussian models with isotropy (MGis), horizontal 

anisotropy (MGha) and vertical anisotropy (MGva). 

MGha MGis MGva 

P LM ( ̃  Y ) −1325.39 −1413.53 −1562.47 

P GMIS ( ̃  Y ) −1293.94 −1371.91 −1516.72 
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second column). This is followed by the isotropic multi-Gaussian

odel (third column) and the multi-Gaussian model with vertical

nisotropy (last column). This latter model, though, receives rather

ow evidence values. These results illustrate that both evidence es-

imators correctly identify the ”best” model of the en semble. We

hus feel confident with the main conclusions of our real-world

xperiment, that the porosity field of the subsurface at the South

yster Bacterial Transport Site is best described with an isotropic

ulti-Gaussian model. This conclusion is different from Chen et al.

2001) and Hubbard et al. (2001) whose results favoured the use

f a multi-Gaussian model with horizontal anisotropy. These works

onsidered the geophysical tomogram as data within a geostatisti-

al analysis. Possible reasons for this discrepancy is that previous

tudies relied on forward modeling with straight ray paths and

eophysical tomograms with inversions that did not consider an

xplicit underlying geostatistical model. 

. Discussion 

The transdimensional (or reversible jump) MCMC algorithm

 Green, 1995 ) is not suitable for comparing conceptual models that

re based on completely different model parameterizations (e.g.,

ayered vs. multi-Gaussian). In this study, we investigated to what

xtent evidence estimates with BFMC ( Hammersley and Hand-

comb, 1964 ), LM ( De Bruijn, 1970 ) and GMIS ( Volpi et al., 2016 )

an be used to perform Bayesian model selection in the context of

ynthetic and real-world case studies. This is the first comparative

tudy of evidence estimation in hydrogeophysics and we consider

ealistically high parameter dimensions (i.e., up to 105), large data

ets (several thousands) and small data errors. 

The BFMC method is known to provide the most reliable and

nbiased evidence estimates in the limit of infinite sample sizes.

chöniger et al. (2015a) ; (2015b) ; (2014) found reliable evidence

stimates with the BFMC method for different case-studies in

ydrology. For our set-up with small errors and high data and

odel dimensions, we found that reliable evidence estimation

ith the BFMC method would need prohibitive computation times.

f the assumption of a multi-Gaussian posterior density is ful-

lled (a reasonable assumption in our test cases), the LM method

hould provide reliable evidence estimates (see also case-studies

y Schöniger et al. (2014) ). This is confirmed in our synthetic

tudy in Section 3 by the strong agreement at low model dimen-

ions between BFMC and LM estimates evaluated around the MAP

stimate. The comparison of the LM and the more general (but

ore time-consuming) GMIS method shows that evidence esti-

ates are similar for simpler subsurface conceptual models but

hat the difference between them increases with model complex-

ty. Indeed, we do not expect to obtain equivalent results since

he two methods are built on different assumptions (see details

n Sections 2.2.2 and 2.2.3 ). For instance, the LM method is built

n the assumption that a Gaussian model can properly describe

he posterior distribution. This is different for GMIS (or BFMC for

hat matter) that is based on importance sampling within the prior

arameter bounds. It is clear then that the more the posterior dis-

ributions are far from being Gaussian, the more the LM and GMIS

ethods will provide different estimates. 
In our application to the South Oyster Bacterial Transport Site

 Section 4 ), we found that the isotropic multi-Gaussian model has

he highest evidence ( Fig. 7 a). The corresponding Bayes factors

 Eq. (3) ), computed with respect to each tested conceptual mod-

ls, are all larger than 10 100 . This result is in agreement with the

ndings by Schöniger et al. (2014) : one decisive winning concep-

ual model is often obtained when using large data sets and small

ata errors. We also considered the field example described in

ection 4.1 , but using less data (i.e., n = 224 instead of n = 3248 )

nd we found (results not shown) that: (1) the isotropic multi-

aussian model is still the winner, (2) all the evidence estimates

re much larger (e.g., in the case of the isotropic multi-Gaussian

odel, the evidence increases from about 10 −10 0 0 to 10 −100 ) and

hat (3) the Bayes factors are much smaller (e.g., when compar-

ng the multi-Gaussian model with vertical anisotropy and the one

ith isotropy, the Bayes factor decreases approximately from 10 190 

o 10 10 ). Hence, even if we can still identify one clear winning con-

eptual model, the magnitudes of the Bayes factors have been dras-

ically decreased. 

Among the layered models, the GMIS and the LM method both

uggest that the conceptual model with 37 layers has the high-

st evidence ( Fig. 7 b). Moreover, the model type with the least ex-

ected geological realism (i.e., vertically layered model) has, by far,

he lowest evidences ( Fig. 7 c). 

Based on previous geostatistical analysis at the South Oyster

acterial Transport Site ( Chen et al., 2001; Hubbard et al., 2001 )

ne would expect that the multi-Gaussian model with horizontal

nisotropy would be the one with the highest evidence. To better

nderstand why the isotropic multi-Gaussian model has a higher

vidence than the one with horizontal anisotropy, we performed a

ynthetic example ( Section 4.3 ) in which the true porosity field is

escribed by a multi-Gaussian model with horizontal anisotropy.

e found that this conceptual model had the highest evidence,

hich suggests that the LM and GMIS methods allow us to iden-

ify the right conceptual model ( Table 6 ). This suggests that this

eld-site might display less anisotropy than previously thought or

hat modeling (e.g., ray-based modeling instead of waveform mod-

ling) and geometrical (e.g., uncertainties in borehole and antenna

ositions) errors bias the evidence estimates. 

Below, we outline three avenues for future research: 

• It is necessary to consider conceptual subsurface models with

higher geological realism. Multi-Gaussian models are used ex-

tensively, but they are poor descriptions of many geological set-

tings. There are many approaches to create more geologically

realistic conceptual models ( Linde et al., 2015 ), for example,

multiple-point statistics (MPS) ( Strebelle, 2002 ). 
• It is essential to account for uncertainty in petrophysical

relationships and model errors in order to not overstate the

value of geophysical data. This could be accomplished by Ap-

proximate Bayesian Computation (ABC) ( Beaumont et al., 2002;

Marjoram et al., 2003; Pritchard et al., 1999; Tavaré et al., 1997 )

and lithological tomography ( Bosch, 1999 ). ABC does not re-

quire a formal likelihood function and we suspect that this may

help to decrease the sensitivity to model errors. Lithological

tomography is a formal Bayesian procedure that integrates with

the inference process a statistical description of the petrophysi-

cal relationships and geological concepts. This approach should

spread out more evenly over the parameter space the posterior

distribution, thereby decreasing the magnitude and range of

the candidate models’ Bayes factors, and enhancing the support

and evidence for simpler conceptual models. We also highlight

that incorporating model errors and petrophysical uncertainty

is essential to enable model selection in integrated (joint) earth

imaging ( Moorkamp et al., 2016 ). It is also important to better

elucidate and understand the relationship between a candidate
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model’s prior ranges and its evidence estimates. Much work

on this topic can be found in the statistical literature (e.g.

see Lindley’s paradox), but comparatively little work has been

done on high-dimensional priors as frequently encountered in

subsurface characterization and geophysical inference. 
• It would also be fruitful to investigate alternative approaches

to evidence computation. In particular, nested sampling algo-

rithms that are suitable to high-dimensional problems, such

as the POLYCHORD algorithm ( Handley et al., 2015 ) and the

Galilean Monte Carlo algorithm ( Skilling, 2012 ). Initial investi-

gations with POLYCHORD suggest that evidence estimates are

consistent with those obtained by LM and GMIS. 

6. Conclusions 

Hydrogeophysical methods are well suited to guide the critical

choice of the most suitable conceptual subsurface hydrological

model. Despite its importance, this topic has largely been ignored

in the hydrogeophysical literature to date. We have performed a

first comparative study of evidence estimation in hydrogeophysical

settings. We consider realistically high model dimensions (i.e.,

about 100 unknowns), large data sets and small data errors that

typify hydrogeophysical investigations. In the context of an illus-

trative synthetic example, we find that the brute force Monte Carlo

method provides reliable estimates at low model dimensions but,

when applied to higher model dimensions (i.e., in our case, higher

than 6), the BFMC method is inefficient since a prohibitively large

number of samples (and thus CPU-time) is required to obtain

accurate results. This implied that the brute force Monte Carlo

method was unsuitable to address our field example from the

South Oyster Bacterial Transport Site (Virginia, USA). We find that

the Laplace-Metropolis and the recent Gaussian mixture impor-

tance sampling estimator by Volpi et al. (2016) provide overall

consistent relative evidence estimates and with rather small errors

in both the synthetic cases where simple and low-dimensional

( Section 3 ) and more complex and high-dimensional concep-

tual models ( Section 4.3 ) were considered. Application of the

Laplace-Metropolis and the Gaussian mixture importance sampling

estimator to conceptual subsurface models of the South Oyster

Bacterial Transport Site in Virginia, USA, revealed that the isotropic

multi-Gaussian model was most supported by the available GPR

travel time data. This model had the largest evidence and its Bayes

factors were all larger than 10 100 relative to all other plausible

conceptualizations of the subsurface. Finally, the model with the

least geological realism (i.e., vertically layered model) has ex-

tremely low evidence values for all of its discretizations (i.e., more

than 10 1500 times smaller than the evidences computed for the

horizontally layered or multi-Gaussian models). Future research

will focus on including the statistical nature of petrophysical

relationships, model errors, and more realistic conceptual models

of the subsurface. 
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