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Geophysical data can help to discriminate among multiple competing subsurface hypotheses (conceptual
models). Here, we explore the merits of Bayesian model selection in hydrogeophysics using crosshole
ground-penetrating radar data from the South Oyster Bacterial Transport Site in Virginia, USA. Implemen-
tation of Bayesian model selection requires computation of the marginal likelihood of the measured data,
or evidence, for each conceptual model being used. In this paper, we compare three different evidence
estimators, including (1) the brute force Monte Carlo method, (2) the Laplace-Metropolis method, and (3)
the numerical integration method proposed by Volpi et al. (2016). The three types of subsurface models
that we consider differ in their treatment of the porosity distribution and use (a) horizontal layering with
fixed layer thicknesses, (b) vertical layering with fixed layer thicknesses and (c) a multi-Gaussian field.
Our results demonstrate that all three estimators provide equivalent results in low parameter dimensions,
yet in higher dimensions the brute force Monte Carlo method is inefficient. The isotropic multi-Gaussian
model is most supported by the travel time data with Bayes factors that are larger than 10'°° compared

to conceptual models that assume horizontal or vertical layering of the porosity field.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Geophysical methods are used widely in near-surface applica-
tions, because of their innate ability to infer, with high resolution,
the properties and spatial structure of the subsurface. Geophysical
data, for instance, warrant a detailed characterization of the hy-
drologic properties of the vadose zone and aquifers (Binley et al.,
2010; 2015; Hubbard and Linde, 2011; Hubbard and Rubin, 2005).
Most published studies in the hydrogeophysical literature rely on
a single conceptual representation of the subsurface, without re-
course to explicit treatment of the actual uncertainty associated
with the choice of a single conceptual model (Linde, 2014; Linde
et al., 2015). Geophysics-based model selection has received rela-
tively limited attention, which is somewhat surprising, as geophys-
ical data contain a wealth of information about the structure of the
subsurface. In contrast to current practice, we should not rely only
on a single conceptualization and parameterization of the subsur-
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face, but instead determine as well the proper spatial arrangement
of variables of interest such as porosity and moisture content. One
approach of doing this is to implement model selection, and use
the geophysical data to provide guidance about which represen-
tation of the subsurface is most supported by the available data
among a set of competing conceptual models (Linde, 2014). Such
an approach will not only enhance the fidelity of our subsurface
investigations, but will also further promulgate and disseminate
the importance of geophysical data in hydrologic and environmen-
tal studies. By providing knowledge about suitable geostatistical
descriptions of the subsurface, model selection might also help in
closing the gap in scale between plot-based geophysical investiga-
tions and the much larger spatial domains relevant to water re-
sources management, contaminant transport and risk assessment.
In this way, geophysics is used to define an appropriate geostatisti-
cal model that can later be used to produce unconditional geosta-
tistical realizations at larger scales.

Many different approaches have been suggested in the statis-
tical literature to help select the "best” model among a group of
competing hypotheses. This includes frequentist and Bayesian so-
lutions. The application of such approaches to geophysical studies
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has its own special challenges. For instance, a parameter-rich, but
geologically-unrealistic model may fit the data equally well or per-
haps even better than a more parsimonious model with more ap-
propriate conceptualization of the subsurface (Rosenkrantz, 1977).
What is more, the decision about which model is favoured, is also
heavily influenced by the choice of the models’ prior parameter
distribution, even for geophysical data comprised of many different
measurements. With the use of an inappropriate prior the model
can be made to fit the data arbitrarily poorly, changing fundamen-
tally our opinion about which model should be favoured, a phe-
nomenon known as the Jeffreys-Lindley paradox (Jeffreys, 1939;
Lindley, 1957).

To describe accurately this trade-off between model complex-
ity and goodness of fit, we here use Bayesian model selection, and
investigate in detail the denominator in Bayes theorem. This nor-
malizing constant, referred to as the evidence, marginal likelihood
or integrated likelihood, conveys all information necessary to de-
termine which of the competing subsurface models (given their
prior parameter distributions) is most supported by the geophys-
ical data. The conceptual model with the largest evidence over the
prior model space is the one that is most supported by the experi-
mental data. The foundation of Bayesian model selection originates
from Jeffreys (Jeffreys, 1935; 1939) and builds on the principles of
Occam'’s razor, that is, parsimony is favoured over complexity. In
other words, if two models exhibit a (nearly) equivalent fit to the
data, the model with the least number of "free” parameters is pre-
ferred statistically (Gull, 1988; Jefferys and O. Berger, 1992; Jeffreys,
1939; MacKay, 1992). Statisticians prefer the use of so-called Bayes
factors (Kass and Raftery, 1995) to quantify the odds of each model
with respect to every other competing model. This Bayes factor of
two models A and B, is equivalent to the ratio of the evidences
of both models. The larger the value of this ratio, the stronger the
support for hypothesis A. In cases when the evidence values are of
similar magnitude (e.g., within the same one or two orders of mag-
nitude), then it is recommended to use Bayesian model averaging
to combine predictions from different conceptual models and, thus,
obtain a more appropriate description of posterior parameter un-
certainty (Hoeting et al., 1999).

Another distinct advantage of Bayesian model selection is that
model comparison is relative to the existing conceptual models
at hand, and consequently, the "true” model does not have to be
part of the ensemble considered for hypothesis testing. To para-
phrase Box and Draper (1987): All our conceptual models are wrong,
but some are useful. It is the task of Bayesian model selection to
determine which of the considered conceptual models is the most
useful. Of course, the answer to which model is most useful de-
pends critically on the purpose and intended goal of model ap-
plication. Within the realm of model selection we can, however,
answer the question of which model is most supported by the
available data. Yet, this task is not particularly easy for subsurface
models, as the integral of the posterior parameter distribution is,
in general, high-dimensional and without analytic solution. This
probably explains why Bayesian model selection is seldom used
in hydrogeophysics and near-surface geophysics. Instead, we have
to resort to numerical methods to approximate the value of the
evidence for each competing conceptual model. Gelfand and Dey
(1994) suggest that the integral of the posterior distribution can
be estimated via numerical integration using, for instance, Monte
Carlo methods (Hammersley and Handscomb, 1964), asymptotic
solutions (e.g., Bayesian information criterion, BIC) (Schwarz et al.,
1978) or Laplace’s method (De Bruijn, 1970). In the field of geo-
physics, BIC (Dettmer et al., 2009), annealed importance sampling
(Dettmer et al., 2010) and the deviance information criterion, DIC,
(Spiegelhalter et al., 2002; Steininger et al., 2014) have been used
for calculation of the evidence.

In a separate line of research, transdimensional (or reversible
jump) Markov chain Monte Carlo (MCMC) methods (Green, 1995)
are receiving a surge of attention to determine the optimal com-
plexity (number of parameters) in geophysical modeling investi-
gations (e.g., Bodin and Sambridge (2009); Bodin et al. (2012);
Sambridge et al. (2006); Steininger et al. (2014)). In reversible jump
MCMC, the number of model parameters is treated as an unknown
and parsimony is preferred as this method incorporates directly
the evidence in its calculations which makes it extremely efficient
for model selection. Notwithstanding this progress made, transdi-
mensional MCMC is poorly adaptable to situations with multiple
different conceptual models that each use a different geologic de-
scription (structure) of the target of interest (Chib and Jeliazkov,
2001). Moreover, this method performs relative ranking of the con-
sidered conceptual models, which implies that the whole inversion
procedure must be re-run if additional candidate models are to be
considered at a later stage.

In the field of hydrology, metrics such as Akaike’s information
criterion (AIC) (Akaike, 1973), BIC, and Kashyap’s information cri-
terion (KIC) (Kashyap, 1982) are used widely to select the most
adequate model (Li and Tsai, 2009; Marshall et al., 2005; Tsai
and Li, 2008; Ye et al., 2010). A recent study by Schoniger et al.
(2014) elucidates that AIC and BIC do a rather poor job in ranking
hydrologic models. The authors of this study therefore concluded
that AIC and BIC are a relatively poor proxy of the evidence. The
same study found that the brute force Monte Carlo method pro-
vides the most accurate and bias-free estimates of the evidence.
Yet, this method is not particularly adequate in high dimensions
and for peaky posteriors. What is more, the brute force Monte
Carlo method is known to be affected by the so-called curse of di-
mensionality which degenerates the evidence estimates and make
them unusable in high dimensions (Lewis and Raftery, 1997). In
cases where reliable brute force Monte Carlo integration is infeasi-
ble, Schoniger et al. (2014) promote the use of KIC for model se-
lection, evaluated at the maximum a-posteriori (MAP) density pa-
rameter values of the posterior distribution. Note that the KIC is
a simple transform of evidence estimates obtained by the Laplace-
Metropolis method (Lewis and Raftery, 1997).

The purpose of this study is twofold. In the first place, we in-
vestigate to what extent evidence estimates and Bayes factors de-
rived for moderately high parameter dimensionalities (i.e., up to
105 unknowns) can be used to perform Bayesian model selec-
tion in synthetic and real-world case studies. For this purpose,
we compare evidence estimates computed by (1) the brute force
Monte Carlo method (Hammersley and Handscomb, 1964), (2) the
Laplace-Metropolis method (Lewis and Raftery, 1997) and (3) the
Gaussian mixture importance sampling (GMIS) estimator of Volpi
et al. (2016). This latter method approximates the evidence by im-
portance sampling from a Gaussian mixture model fitted to a large
sample of posterior solutions generated with the DREAM s, al-
gorithm (Laloy and Vrugt, 2012; Vrugt, 2016; Vrugt et al.,, 2008).
Then, we present an application of Bayesian model selection to
subsurface modeling using geophysical data from the South Oyster
Bacterial Transport Site in Virginia (USA) (Chen et al., 2001; 2004;
Hubbard et al., 2001; Linde et al., 2008; Linde and Vrugt, 2013).
These data consist of travel time observations made by crosshole
ground-penetrating radar (GPR), and exhibit small measurement
errors typical of most near-surface geophysical sensing methods.

2. Theory and methods
2.1. Bayesian inference with MCMC
Given n measurements, Y = {J;,...,Jn}, and a d-dimensional

vector of model parameters, 6 = {0y, ..., 6}, it is possible to
back out the posterior probability density function (pdf) of the
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parameters, p(el?), via Bayes theorem

p(®)p(Y|0)

p(Y)
where, p(@) signifies the prior pdf, L(8|Y) = p(Y|), denotes the
likelihood function, and p(\~{) is equivalent to the marginal likeli-
hood, or evidence. The larger the likelihood the better the model,
F(0), explains the observed data, Y. Bayesian model selection
can be carried out for any type of likelihood function. However,
in this work, we conveniently assume that the error residuals,
E(®) ={e;(0),...,en(0)}, are normally distributed with constant
variance and negligible covariance. These three assumptions lead
to the following definition of the likelihood function:

—_n n ~\ 2
L(o|Y, o) = ( [2m02)  exp —% 3 <Fh(?~_y’1> )
Y

h=1

p(ely) = , (1)

where oy denotes the standard deviation of the measurement
data error. This entity can be fixed a-priori by the user if deemed
appropriate, or alternatively, the measurement data error can be
treated as nuisance variable and the value of oy is inferred jointly
with the d-vector of model parameters, 0. The Gaussian likelihood
function of Eq. (2) has found widespread application and use
in the field of geophysics, nevertheless it is important to stress
that the error residuals hardly ever satisfy the rather restrictive
assumptions of normality, constant variance, and lack of serial
correlation. The Gaussian likelihood in Eq. (2) is sufficient, though,
to illustrate the power and usefulness of Bayesian model selection.

The prior pdf, p(0), quantifies our knowledge about the ex-
pected distribution of the model parameters before considering the
observed data. The evidence, p(Y), acts as a normalization con-
stant of the posterior distribution, and for fixed model parameteri-
zations, is therefore often ignored in Bayesian inference. The poste-
rior pdf, p(eﬁ), for a given conceptual model, quantifies the prob-
ability density of a vector with parameter values given the initial
knowledge embedded in the prior distribution and the informa-
tion provided by the measurement data via the likelihood. In the
absence of closed-form analytic solutions of the posterior distribu-
tion, MCMC methods are often used to approximate this distribu-
tion using sampling (Hastings, 1970; Metropolis et al., 1953; Robert
and Casella, 2013; Vrugt, 2016).

2.2. Evidence and Bayes factor

Bayesian hypothesis testing uses Bayes factors (Kass and
Raftery, 1995) to determine which conceptual model is most sup-
ported by the available data, and prior distribution. These Bayes
factors quantify the odds of two competing models. For the time
being, let us assume that we have two competing hypotheses, 1,
and 7, that differ in their spatial description of the main variable
of interest, say porosity. The first hypothesis (model) could assume
horizontal layering of the porosity field, whereas the second model
adopts a multi-Gaussian description of the spatial configuration of
the porosity values. Now the Bayes factor ("odds”) of 1; with re-
spect to the alternative hypothesis, 7, or B, ;). can be calcu-
lated using

o = PO
T p(¥Ina)

which is simply equivalent to the ratio of the evidences, p(?m])
and p(?|n2), of the two conceptual models. It then logically fol-
lows that the Bayes factor of model two, or the alternative hypoth-
esis 1), is equal to the reciprocal of B, ;).

The evidence (scalar) of a given conceptual model, 7, is defined
as the (multidimensional) integral of the likelihood function over

(3)

Table 1
Interpretation of Kass and Raftery (1995) for the Bayes
factor of two conceptual models n; and 7,.

2logBgy, ) Bopm Evidence against 7,
0to2 1to3 barely worth mentioning
2to6 3to 20 positive

6 to 10 20 to 150  strong

> 10 > 150 very strong

the prior distribution

p(YIm) =/L(91,771|?)P(91|7h)d91

In practice, it is often not necessary to integrate over the entire
prior distribution, as large portions of this space are made up of ar-
eas with a negligible posterior density whose contributions to the
integral of Eq. (4) are negligibly small. Instead, we can restrict our
attention to those areas of the parameter space occupied by the
posterior distribution.

It should be evident from the above that models with large
Bayes factors are preferred statistically. Indeed, the subsurface con-
ceptual model with largest value of its evidence is most supported
by the geophysical data, Y. In practice, however the computed
Bayes factors might not differ substantially from unity and each
other to warrant selection of a single model. Bayes factors differ
most from each other if relatively simple models are used with
widely different characterizations of the subsurface as their flex-
ibility is insufficient to compensate for epistemic errors due to im-
proper system representation and conceptualization. This inability
introduces relatively large differences in the models’ quality of fit,
and consequently their Bayes factors, which simplifies model selec-
tion. Highly parameterized models on the contrary, have a much
improved ability to correct for system misrepresentation, thereby
making it more difficult to judge which hypothesis is preferred sta-
tistically. Nevertheless, poor conceptual models should exhibit rel-
atively low Bayes factors in response to their relatively low likeli-
hoods.

The Bayes factor is a sufficient statistic for hypothesis testing,
yet renders necessary the definition of "formal” guidelines on how
to interpret its value before we can proceed with model selection.
Table 1 articulates an interpretation of the Bayes factor as advo-
cated by Kass and Raftery (1995). This interpretation differentiates
four (increasing) levels of support for proposition 7 relative to 7.
In general, the evidence in favor of 1, increases with the value of
its Bayes factor. Thus, the larger the value of B, ;.. the more the

data Y supports the hypothesis n; relative to 1,, and the easier it
becomes to reject this alternative hypothesis. It is suggested that
the Bayes factor must be larger than 3 (or smaller than 1/3) to
discriminate positively among two competing hypotheses.

Unfortunately, the integral in Eq. (4) cannot be derived by ana-
lytic means nor by analytic approximation, and we therefore resort
to numerical methods to calculate the evidence of each conceptual
model. In the next section, we review briefly three different meth-
ods for estimating the evidence, including the brute force Monte
Carlo method (BFMC), the Laplace-Metropolis (LM) method and the
Gaussian mixture importance sampling (GMIS) approach recently
developed by Volpi et al. (2016).

1=1,2. (4)

2.2.1. Brute force Monte Carlo method

The BFMC method (Hammersley and Handscomb, 1964) ap-
proximates the evidence in Eq. (4) as an average of the likelihoods
of N different samples drawn randomly from the (multivariate)
prior distribution (Kass and Raftery, 1995)

N
Parc(Y) ~ % > L(eilY). (5)
i1
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The validity of this estimator is ensured by the law of large num-
bers, and the standard deviation of the evidence can be monitored
using the central limit theorem (James, 1980). Many published
studies have shown that this estimator works well for rather par-
simonious models with relatively few fitting parameters. Indeed,
for such models it is not that difficult to sample exhaustively the
prior parameter distribution, and to evaluate the likelihood func-
tion for each of these points. Unfortunately, the computational re-
quirements of this BFMC method become rather impractical for
parameter-rich models as many millions or even billions of model
evaluations are required to characterize adequately the likelihood
surface.

2.2.2. Laplace-Metropolis method

The LM method (Lewis and Raftery, 1997) builds on the as-
sumption that the posterior parameter distribution is characterized
adequately with a (multi)normal distribution

pm(Y) ~ 2)¥2|H(e*)|"* p(e*)L(8*]Y), (6)

where 0* denotes the mean of this distribution, and |H(e*)|1/2 sig-

nifies the determinant of the Hessian matrix at ©*. The two terms
(27 )42 and p(6*)L(0*|Y) scale the density of the normal distribu-
tion so as to consider explicitly the effect of parameter dimension-
ality, and quality of fit, on the evidence, respectively. This estimator
is derived from an asymptotic approximation of the evidence and
uses a quadratic Taylor series expansion around ©*. This deriva-
tion appears in Lewis and Raftery (1997), and interested readers
are referred to this publication for further details. The mean of the
multinormal distribution, 0*, is assumed equivalent to the MAP so-
lution of the posterior parameter distribution, and the Hessian ma-
trix, H(*), is computed from the ] posterior samples, 6;, as fol-
lows (Rousseeuw and Van Zomeren, 1990)

J
* ] * *
H(0*) = —— ) (6; - 0*)7(9; — 0%). (7)
J-17
For a large enough sample, the Hessian matrix converges to the
posterior covariance matrix.
The KIC (Kashyap, 1982)

KICo+ = —2log(pim(Y)) (8)

is closely related to the LM approach, with 8* assumed equivalent
to the MAP solution.

2.2.3. Gaussian mixture importance sampling

As third and last method we consider the GMIS evidence es-
timator developed recently by Volpi et al. (2016). This method
uses multidimensional numerical integration of the posterior pa-
rameter distribution via bridge sampling (a generalization of im-
portance sampling) of a mixture distribution fitted to samples of
the target derived from MCMC simulation with the DREAM algo-
rithm (Vrugt, 2016). This approach has elements in common with
the BFMC method, yet draws samples directly from the poste-
rior distribution, rather than the prior distribution (as in BFMC)
to approximate the evidence. One would therefore expect a much
higher sampling efficiency of the GMIS method. The use of a Gaus-
sian mixture distribution allows GMIS to approximate as closely
and consistently as possible the actual posterior target distribu-
tion. Indeed, this distribution can be multimodal, truncated, and
"quasi-skewed” - properties that can be emulated with a mixture
model if a sufficient number of normal components is used. The
Expectation-Maximization (EM) algorithm is used to construct the
Gaussian mixture distribution (Dempster et al., 1977; Hoogerheide
et al,, 2012). Let us assume that MCMC simulation with DREAM has
produced ] realizations, ® = {04, ..., 0;}. of the d-variate poste-
rior parameter distribution under hypothesis, ;. We approximate

these samples’ probability density function, p(9|\~{), with a mixture
distribution

K
q(8,K) =) o fi(0; pye, Z), 9)

k=1

of K > 0 multivariate normal densities, f,(:|uy. Xi) in R?, where
oy, p and X, signify the scalar weight, the d-dimensional mean
vector, and the d x d-covariance matrix of the kth Gaussian com-
ponent. The weights, or mixing probabilities, must lie on the unit
Simplex, AKX, that is, o, > 0 and Z’k;] o, =1, and the X;’s must
be symmetric, Xy (8;, 0;) = Xy (0}, 0;), and positive semi-definite.

The Expectation-Maximization (EM) algorithm (Dempster et al.,
1977; Hoogerheide et al., 2012) is used to determine the val-
ues of the d,-variables of the mixture distribution, ® =
{aq,..., oK, By, Bk}, where each B; = {u, X} characterizes
the mean and covariance matrix of a different normal density of
the mixture, and k = {1, ..., K}. This algorithm maximizes the log-
likelihood, log {L(®|®, K)}, of the mixture density

K

J
log{L(@|©.K)} = Y log § 3" o fi(0: e Z) |, (10)
j=1

k=1

by alternating between an expectation (E) step and a maximiza-
tion (M) step, until convergence of the values of @ is achieved
for a given number of components, K. The optimum complexity
of the mixture distribution is determined via minimization of the
Bayesian information criterion, or BIC

BIC(K) = —210g{L(®|©, K)} + dpmix (K) log (). (11)

This criterion strikes a balance between quality of fit (first-term)
and the complexity of the mixture distribution (second term). In
practice, we use different values for K and then select the "opti-
mal” mixture distribution by minimizing the value of the BIC cri-
terion, or

K=arg I{gi\jn BIC(K), (12)

where N, is the collection of strictly positive integer values.

The optimal mixture distribution now serves as importance
density, q(8,K), in GMIS to estimate the marginal likelihood,
pomis(Y). To this end, we draw at random from the im-
portance distribution, Q(B,I?), a total of N different samples,
{o1™. ... Oy'"}. We then evaluate each of these N parameter vec-
tors in our hypothesis (conceptual model), and calculate their
unnormalized posterior densities, p(0I™P)L(0IMP|Y), where r=
{1,...,N}. The evidence, pgmis(Y), is now computed by GMIS as
a weighted mean of the ratios of the samples’ unnormalized pos-
terior densities and corresponding importance densities (Perrakis
et al., 2014)

o 1 s p(ei™)L(0)™]Y)
pems(Y) ~ — y —L T~ T 7
NZ T g

This concludes our description of the GMIS estimator. We refer in-
terested readers to Volpi et al. (2016) for a more detailed treatment
and explanation of the theory, concepts, and main building blocks
of GMIS. This paper also documents a diverse set of case studies
(up to d = 100) which evaluate and benchmark the performance of
GMIS against other commonly used evidence estimation methods.

(13)

N
=

2.3. Evidence estimation in practice

The posterior distribution and the MAP solution that is used by
the LM (Section 2.2.2) and GMIS (Section 2.2.3) methods are de-
rived from MCMC simulation using the DREAM(zs) algorithm (Laloy
and Vrugt, 2012; Vrugt, 2016; Vrugt et al., 2008). This multi-chain
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method creates proposals on the fly from an historical archive of
past states using a mix of parallel direction and snooker updates.
We refer the reader to Linde and Vrugt (2013); Lochbiihler et al.
(2014); 2015); Rosas-Carbajal et al. (2013); 2015) for various geo-
physical case-studies in which this algorithm is used. For the ac-
tual field application, we use a hierarchical Bayesian formulation,
in which the data error, oy in Eq. (2) is jointly estimated with the
model parameters (e.g., Rosas-Carbajal et al. (2013)). For numeri-
cal reasons we work with a log-likelihood formulation of Eq. (2).
A total of four chains were deemed sufficient for 25 parameters,
five chains were used for model dimensions between 26 and 64,
and eight chains for models with more than 65 parameters. The
number of generations varied between 200,000 and 500,000 de-
pending on the dimensionality of the target distribution. The scal-
ing factor, B¢ of the jump rate was tuned to achieve an adequate
acceptance rate and the univariate ﬁ—diagnostic (Gelman and Ru-
bin, 1992) was used to judge when convergence had been achieved
of the DREAM(zs) algorithm to a limiting distribution.

We report the evidence estimates of the BFMC method us-
ing three different sample sizes involving N =10°, N =108 and
N = 107 samples in Eq. (5). In GMIS, we use a total of N = 10° im-
portance samples (Eq. (13)). We repeat each of these two numeri-
cal experiments ten times, and summarize the mean evidence and
associated range in the results section. Lastly, in the case of the
LM method, we report the evidence computed as the mean of the
estimates on the different Markov chains (Van Haasteren, 2013) to-
gether with the range.

2.4. Conceptual subsurface models

To demonstrate the usefulness of model selection in a hydro-
geophysical setting, we consider two common parameterizations
for the porosity structure, (a) horizontal layering with fixed thick-
ness of each layer, hereafter referred to as Lh, and (b) a multi-
Gaussian model, coined MG. In addition to these, we also consider
vertical layering of the porosity, using fixed layer thicknesses, ab-
breviated Lv. This parameterization is rather unusual and uncom-
mon, but serves herein to illustrate that a poor conceptual model
exhibits low odds. We also compare and juxtapose much finer dis-
cretizations of the two layered models and considered three dif-
ferent variants of the multi-Gaussian model involving horizontal
anisotropy (MGha), vertical anisotropy (MGva) and isotropy (MGis).
The multi-Gaussian model we use herein is adopted from Laloy
et al. (2015), but under the assumption of a known geostatisti-
cal model. The method developed by Laloy et al. (2015) gener-
ates a zero-mean stationary multi-Gaussian field through the cir-
culant embedding method (CEM) of the covariance matrix together
with a dimensionality reduction which is useful when dealing with
finely discretized fields. The dimensionality is reduced by generat-
ing two low-dimensional vectors of standard normal random num-
bers (i.e., in our case, each vector has 50 dimensionality reduction
(DR) variables) which are subsequently resampled to the original
dimension through a one-dimensional Fast Fourier Transform inter-
polation (Laloy et al. (2015)). This method decreases substantially
model dimensionality, and, as a consequence, lowers significantly
the computational cost of MCMC simulation to sample the target
distribution.

2.4.1. Petrophysics and forward modelling

The case-studies considered herein focus on porosity estimation
using first-arrival travel time data from crosshole GPR. We use the
petrophysical relationship by Pride (1994) to link the geophysical
properties (i.e., radar slowness, s) to the hydrologic properties of
primary interest (i.e., porosity, ¢») in a water saturated media

S = /P 2[ew + (¢~ — 1)es), (14)

where ¢, = 81 (-) denotes the relative permittivity of water, ¢ =
3.108 (m/s) is the speed of light in a vacuum, &5 (-) signifies the
relative permittivity of the mineral grains and m is a unitless ce-
mentation index. We use the non-linear 2D travel time solver (time
2d) of Podvin and Lecomte (1991) to compute first-arrival travel
times from slowness fields obtained by applying the petrophysical
relationship of Eq. (14) to each porosity field.

3. Illustrative toy example

To benchmark the different evidence estimators of Section 2.2,
we first consider an illustrative example involving a simple cross-
hole GPR experiment. A total of 10 transmitter and receiver an-
tennas are placed at multiple different depths (uniform intervals)
in boreholes located in the left and right side of the domain, re-
spectively (see Fig. 1a). This results in a total of 100 different
transmitter-receiver antenna pairs. The spatial domain that neces-
sitates porosity characterization covers an area of 7.2 m x 7.2 m.
To warrant accurate model simulations, a spatial discretization of
0.04 x 0.04 m is considered. We contaminate the n = 100 first-
arrival travel time data with Gaussian white noise using a mea-
surement error, oy =2 ns. This comparatively high error level was
chosen to facilitate comparison with the BFMC method, which is
known to work better in the presence of large measurement er-
rors. This leads to a likelihood function that is less peaked, and,
consequently, a posterior distribution that is more dispersed as it
will distribute more evenly the probability mass over the param-
eter space. The "true” porosity field of the subsurface is made up
of four different layers of equal thickness with porosity values of
0.3, 0.45, 0.35 and 0.4, in the downward direction, respectively (see
Fig. 1a). We varied the number of horizontal layers of constant
thickness from d =1 to d = 16, and assume a uniform prior dis-
tribution for the porosity, ¢, of each respective layer using upper
and lower bound values of 0.25 and 0.50, respectively. The petro-
physical parameters of Eq. (14) are assumed fixed using values of
m = 1.5 and &5 = 5, respectively.

Fig. 1b-e presents the posterior mean porosity field derived
from the DREAM| s, algorithm for four different model conceptual-
izations. The two layer model (Fig. 1b) is an overly simplistic repre-
sentation of the true porosity field which is, by construction, per-
fectly described by the conceptual model with four layers shown
in Fig. 1c. The posterior mean porosity field of the six layers model
presented in Fig. 1d exhibits a relatively poor agreement with the
reference porosity field. Finally, the porosity values for the eight
layer model (Fig. 1e) correspond rather closely with their counter-
parts of the reference field (Fig. 1a). The bottom panel, in Fig. 1f-i,
display the posterior standard deviation of the porosity estimates
for the different layers of our four model conceptualizations. As
expected, the uncertainty of the porosity estimates increases with
the number of layers that are used in our subsurface characteriza-
tions.

Now we calculate the marginal likelihood of each hypothesis
using the BFMC, LM, and GMIS estimators. The results of this anal-
ysis are presented in Fig. 2 using at the left hand-side a plot of
the mean evidence computed by each method against model com-
plexity, and at the right-hand-side a graph of the associated uncer-
tainty of each estimator. We consider subsurface models with up
to d = 16 horizontal porosity layers of equal thickness. To simplify
graphical interpretation of the results, we plot log;y transformed
values of the evidence, and refer to this entity as P(?). Colour
coding is used to differentiate between the results of the three dif-
ferent methods. The results highlight several important findings. In
the first place, the evidence estimates confirm that the model with
four different porosity layers, that is d =4, is most supported by
the available data (Fig. 2a). This finding is not surprising as this
model uses the exact same layering of the porosity field as used in
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Fig. 1. a) The "true” subsurface porosity model used in our synthetic crosshole-GPR experiment. The different measurement depths of the transmitter antenna (black crosses)
and receiver antenna (black circles) are separately indicated. Mean porosity fields of the posterior distribution derived from MCMC simulation with the DREAM s, algorithm
using four different conceptualizations of the subsurface involving (b) two, (c) four, (d) six, and (e) eight horizontal layers. The corresponding posterior standard deviations
of the porosity estimates for the four different conceptualizations of the subsurface are shown in (f), (g), (h) and (i), respectively.

the synthetic GPR experiment that was used to create the "mea-
sured” travel time data. Secondly, the BFMC (black), the LM (blue)
and the GMIS (red) estimators are in excellent agreement and pro-
vide nearly identical values of the evidence for conceptual models
with just a few parameters (horizontal layers)(Fig. 2a). Thirdly, the
BFMC starts to deviate from the LM and GMIS methods at seven
model dimensions and substantial differences appear for models
with more than nine layers (Fig. 2a). This behavior is explained by
the fact that the BFMC estimates did not converge for model di-
mensions higher than six. The convergence analysis was performed
by a bootstrap analysis with 1000 bootstrap estimates (results not
shown herein). In the fourth place, notice in Fig. 2b that the LM
and GMIS estimators exhibit a negligible uncertainty compared to
the range of evidence values considered and that the upper and
lower bound values of the evidence derived from both methods
appear rather similar. Evidence estimates derived from the BFMC
method, on the contrary, exhibit a much larger uncertainty due
to the fact that the BFMC does not reach convergence for model
dimensions higher than six. This provides further support for the
claim that, in our implementation and algorithmic settings, the
BFMC method is inefficient when applied to models of high dimen-
sionality since large numbers of samples (implying prohibitively

large CPU-costs) are needed to properly characterize the likelihood
surface and obtain reliable results.

We now investigate in more detail the discrepancies between
the results of the three estimators, and plot in Fig. 3 the differences
between the logarithmic values of the marginal likelihoods, P(Y),
computed by the methods for the competing models used in this
study. The solid black line depicts the difference in the mean evi-
dence estimates derived by comparing each pairs of methods, and
the grey shaded region quantifies the range associated with the
differences in evidence estimates (i.e., the upper and lower bound-
aries of the grey shaded region are, respectively, the maximum and
minimum difference in evidence estimate computed by each pairs
of methods). Note, we use N = 107 in the BFMC method and report
results for subsurface models with number of horizontal porosity
layers (equal thickness) that ranges from d =1 to d = 16.

The results in Fig. 3 provide further evidence for our earlier
conclusions. Indeed, the three methods provide rather similar evi-
dence values (Fig. 3a) for the simpler subsurface models (i.e., up to
d = 6 different porosity layers). For larger model complexities the
LM and the GMIS estimators differ a bit from each other - but this
difference is very small in comparison to their mean estimates.
It is now evident that the difference in the evidence estimates
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Fig. 3. Difference in the evidence estimates derived from different pairs of two
methods as function of model complexity, (a) GMIS and LM, (b) BFMC and LM, and
(c) BFMC and GMIS. The solid black line in each graph portrays the difference in
the mean evidence estimates, and the grey shaded region quantifies the range as-
sociated with the difference in the mean evidence estimates of each method. Note,
we use logjp transformed value of the evidence estimates.

derived from LM and GMIS increases with model complexity. Note
that the maximum deviation between both methods is on the or-
der of 0.7 unit in P(Y) space, which, with mean estimates on the
order of one-hundred (see Fig. 2a), equates to a difference smaller
than 1%. However, it is important to stress here that there is no
reason to expect that the two methods provide equivalent results
since they are based on very different assumptions (details in
Sections 2.2.2 and 2.2.3). Results from Fig. 3 also confirm that the
evidence values derived from the BFMC method start to deviate
from the other two methods for model dimensions higher than
six since the method does not reach convergence for those models
(Fig. 3b-c). These differences grow as large as 6-7% in P(Y) space
for the most complex subsurface models with d =14 and d = 16
porosity layers. It is worth noting that we are primarily interested
in an accurate model ranking, while the accuracy of the evidence

Table 2

Parameters of the conceptual subsurface models with horizontal and
vertical porosity layering. The last three columns summarize the range,
prior distribution, and number, of each parameter, respectively as used
in our MCMC inversion with the DREAMzs) algorithm. The variable nj,ye,
defines the number of layers that is used in each conceptual model.

Parameter  Units  Prior range  Prior n° parameters

[ - 0.25-0.5 Uniform Njayer”
m - 1.3-1.7 Uniform 1
&s - 2-6 Uniform 1
oy ns 0.3-2 Log-uniform 1

* 1 < Nygyer < 60

estimates themselves are of secondary importance. In light of this,
we find that the differences in the evidence estimates obtained
by the three different estimators do not have an impact on which
models are ranked first and second in the presented synthetic
example.

This illustrative toy example shows that results from the three
methods successfully agree on which model is most supported
by the available data. The LM and GMIS methods provide sim-
ilar values of the evidence, with associated uncertainty that ap-
pears rather small. The evidence estimates derived from the BFMC
method, on the contrary, are trustworthy only for the most par-
simonious subsurface conceptualizations (models) consisting only
of a few porosity layers. Beyond this complexity, the 10 million
BFMC samples used herein are insufficient to declare convergence
and obtain reliable evidence estimates. Of course, we could further
increase BFMC'’s sample size, yet this would increase further its al-
ready prohibitive computational time. Based on these findings, we
discard the BFMC method and carry forward to the next case study
the LM and GMIS estimators that are relatively CPU-efficient.

4. Field example
4.1. Field site and available data

We now focus our attention on the South Oyster Bacterial
Transport Site in Virginia, USA, and use geophysical data measured
at this experimental site to determine which model of the sub-
surface is preferred statistically. The geological characteristics of
the South Oyster Bacterial Transport Site are described in Hubbard
et al. (2001). GPR travel time data were measured at the S14-M13
borehole transect using a PulseEKKO 100 system with a 100-MHz
nominal-frequency antenna. A domain of 7.2 x 7.2 m was mea-
sured with a total of 57 sources and 57 receivers, leading to a data
set of 3248 observations of first-arrival travel times (one value is
missing). We assume the measurement errors of the travel time to
be uncorrelated and normally distributed with constant standard
deviation, oy. A relatively fine spatial discretization consisting of
square cells with length 0.04 m was used in our forward simula-
tions with the non-linear 2D travel time solver (time 2d) of Podvin
and Lecomte (1991) to compute the first-arrival travel times for the
7.2 x 7.2 m domain of interest. The models used in this study dif-
fer in their conceptual representation of the subsurface, and use
horizontal and vertical layering of the porosity. The numbers of
porosity layers (equal thickness) is varied between 1 to 60, thereby
providing a large array of competing hypotheses. Table 2 lists the
parameters of both spatial porosity configurations which are sub-
Ject to inference with the DREAM s, algorithm. This includes, the
porosity, ¢, of each individual layer, and the values of m, &5 and
oy We list their symbol, unit, range, type of prior distribution, and
respective number of unknowns.

The use of horizontal and vertical layering of the porosity is
perhaps convenient computationally, but might not describe prop-
erly the subsurface of an actual field site. Indeed, the subsurface
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Table 3

Integral scales in x- and z-direction,
I, and I,, respectively, anisotropy an-
gle, ¢, and smoothness parameter, v for
the multi-Gaussian model with horizontal
anisotropy (second column, MHha), verti-
cal anisotropy (third column, MGva), and
isotropy (last column, MGis).

MGha MGva MGis

I, 15m 15 m 15.02m
I, 02m 02m +i502m
©  90° 0° 90°
v 05 0.5 05

Table 4

Parameters of multi-Gaussian models (first column) and their respective units
(second column), range (third column), prior distribution (fourth column),
and number (last column).

Parameter  Units  Prior range Prior n° parameters
DR - - Normal 100

¢ - 03-04 Uniform 1

v - 104-25.10"3  Log-uniform 1

m - 13-17 Uniform 1

& - 2-6 Uniform 1

oy ns 03-2 Log-uniform 1

might exhibit much more complex porosity structure. We there-
fore augment the ensemble of hypotheses with a model that as-
sumes a multi-Gaussian porosity field. This field is generated over
a regular 2D grid of size 180 x 180 with geostatistical properties
and spatial structure described with the Matérn variogram. Fortu-
nately, the values of the integral scales in the x and z-direction, Iy
and I, respectively, anisotropy angle, ¢, and smoothness parame-
ter, v, of this variogram have been reported in the literature for
the South Oyster Bacterial Transport Site (Chen et al., 2001; Hub-
bard et al., 2001). Their values are listed in the second column
of Table 3, and assume horizontal anisotropy of the porosity field,
that is ¢ = 90°. This model is referred to as MGha. For complete-
ness, we also consider herein a multi-Gaussian model with verti-
cal anisotropy, ¢ = 0° (third column), coined MGva, and include an
isotropic description of the porosity (fourth column), hereafter re-
ferred to as MGis, and enforced by setting Iy and I, equal to the ge-
ometric mean of the integral scales of the first two multi-Gaussian
models. We fix the value of v = 0.5 in the Matérn variogram, as
we expect an exponential variogram model. Interested readers are
referred to Laloy et al. (2015) for a more detailed description of the
Matérn variogram.

We now focus our attention to the "unknown” parameters in
each model (see Table 4), which are subject to inference using the
observed travel time data. In our MCMC inversions we infer jointly
the petrophysical parameters, &s and m of Eq. (14), mean porosity,
¢, and its associated variance, v, the measurement data error, oy
of the travel time data, and 100 dimensionality reduction variables,
DR (details in Section 2.4).

4.2. Results

We first display in Fig. 4 five realizations of the prior porosity
field (columns) for each of the conceptual models (different rows)
used in this case study. This includes the three multi-Gaussian
models with (a) isotropy, (b) horizontal anisotropy, and (c) verti-
cal anisotropy, and more simplistic models that assume (d) hori-
zontal and (e) vertical layering of the porosity values. It is evident
that these five model types provide very different descriptions of
the porosity field of the subsurface at the experimental site. The
multi-Gaussian models exhibit most spatial diversity with realiza-

tions that differ substantially in their mean porosity and associ-
ated variance. The porosity values of the layered models change
abruptly from one depth to the next.

We now move on to our inversion results and present in Fig. 5
for each model of the ensemble (different rows), four different
draws of the posterior distribution (first four columns), the poste-
rior mean porosity field (fifth column) and the associated standard
deviation (last column) derived from the DREAM(zs) algorithm. The
order of the presentation matches exactly Fig. 4, that is, the first
three rows presents the results of the multi-Gaussian models with
(a) isotropy, (b) horizontal anisotropy, and (c) vertical anisotropy
of the porosity values, and the bottom two rows illustrate the re-
sults of the models with (d) horizontal and (e) vertical layering.
The different conceptual models provide quite different charac-
terizations of the porosity field. Some commonalities can be ob-
served, though. For instance, the isotropic multi-Gaussian model,
the multi-Gaussian model with horizontal anisotropy and the hor-
izontally layered model (Fig. 5a-b-d) all depict the presence of a
low-porosity zone just below the surface and at a depth of 4-5 m.
They also demonstrate high-porosity zones at depths of 2 m and
6 m, and at 3 m below the ground surface a small high-porosity
area is also visible, although this is not so evident for the isotropic
multi-Gaussian model. The porosity fields parametrized by these
three conceptual models are estimated with relatively low uncer-
tainties (i.e.,, maximum of posterior standard deviations equals to
or less than + 0.01), especially, in the case of the horizontal layer-
ing. Also, the conceptual subsurface model with vertically oriented
porosity structures (i.e., the vertically layered model and the multi-
Gaussian model with vertical anisotropy) exhibit more variation in
their porosity values (first four columns in Fig. 5c-e) and charac-
terized by larger uncertainties (last column in Fig. 5c-e) than the
other models.

Note that the posterior mean porosity field of the multi-
Gaussian model with horizontal anisotropy (fifth column in Fig. 5b)
is in good agreement with the velocity field obtained by Linde
et al. (2008) and Linde and Vrugt (2013) for the exact same data
set.

To provide more insights into the posterior parameter distri-
butions of each model, Fig. 6 plots histograms of the marginal
distributions of the cementation index, m (first column), the rela-
tive permittivity of the mineral grains, &5 (second column), and the
inferred data error, oy (third column) for the multi-Gaussian (top
three rows) and layered (bottom two rows) subsurface models. The
prior distribution is separately indicated in each plot with the red
line. Note, to simplify graphical notation, the density of all the dis-
tributions was scaled to be between 0 and 1. This figure highlights
several interesting findings. In the first place, notice that the three
parameters appear to be well defined in each of the five concep-
tual models with posterior distributions that occupy only a small
portion of their respective prior distributions. This is particularly
true for the marginal distribution of oy, the measurement error of
the travel time data. Secondly, notice that the use of a vertically
layered porosity (Fig. 6e) results in truncated histograms of the
parameters m and &5 and a large inferred data error, oy > 1.5 ns.
These are possible signs of model malfunctioning, a claim that we
will investigate next by looking in detail at the evidence estimates
of each model, but supported thus far by the much larger posterior
values of oy for the vertically layered model than the other four
competing subsurface models. Thirdly, notice that the histograms
of the petrophysical parameters m and & differ quite substan-
tially between the conceptual models. These parameters probably
compensate in different ways for imperfections in each model’s
porosity structure. The histograms of the nuisance parameter oy
appear almost similar with the exception of the model with ver-
tically layered porosity values. Altogether, the lowest value of the
measurement data error, oy = 0.457 ns, is found for the isotropic
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Fig. 4. Realizations drawn randomly from the prior distribution for the (a) isotropic multi-Gaussian model, (b) multi-Gaussian model with horizontal anisotropy, (c) multi-
Gaussian model with vertical anisotropy, (d) horizontally layered model with 37 layers of equal thickness, and (e) vertically layered model with 12 layers of equal thickness.

multi-Gaussian model (Fig. 6a), which should suggest that this
model most closely matches the observed travel time data.

We now turn our attention to the evidence of each model. Fig. 7
presents the results of this analysis using a log;y transformation of
the evidence values. The left graph (Fig. 7a) displays the results for
the three multi-Gaussian models with isotropy (circle), horiziontal
anisotropy (square) and vertical anisotropy (triangles), respectively,
using a single complexity involving d = 105 parameters. The graph
in the middle (Fig. 7b) and on the right (Fig. 7c¢) depict the results
for the conceptual models with horizontal and vertical layering, re-
spectively, using between 1 to 60 different porosity layers. Colour
coding is used in all the three plots to differentiate between the

LM (blue) and GMIS (red) estimators. The vertical bars in Fig. 7a
and shaded regions in Fig. 7b—c depict the uncertainty of the evi-
dence estimates derived from the different trials with the LM and
GMIS methods.

The most important conclusions are as follows. In the first
place, the evidence estimates derived from both methods appear
similar for model complexities with less than 30 (unknown) pa-
rameters. Beyond this, the difference between the marginal likeli-
hoods derived from both methods grows up to 2% in log;g space
for d = 105. Secondly, the evidence estimates derived from the dif-
ferent trials are quite similar, particularly for the GMIS method.
Thirdly, the use of a larger number of layers in the two layered
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Fig. 5. Four realizations drawn randomly from the posterior distribution (first four columns), the posterior mean porosity field (fifth column) and the standard deviations
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with vertical anisotropy, (d) horizontally layered model with 37 layers of equal thickness, and (e) vertically layered model with 12 layers of equal thickness.

models does not necessarily increase the statistical support for this
model. Indeed, the value of the evidence is maximized when us-
ing 37 horizontal porosity layers or 15 vertical porosity layers. Be-
yond this number of porosity layers, the evidence values deterio-
rate slowly but with the exception of a sudden increase in P(Y)
at d =40 for the vertically layered model. This spike is observed
in the empirical P(Y) functions of both evidence estimators (LM
and GMIS), inspiring confidence in their results. Notice that the
GMIS estimator produces a secondary peak at d = 63 (sixty layers),
which causes the LM and GMIS methods to diverge in the right-
most part of their P(Y) curves. Since it is not particularly clear
which of the two estimators is at fault, we further test this case

with GMIS by using 106 instead of 10° posterior realizations to
construct the d = 63-variate importance distribution. The results
(not shown herein) confirm the presence of the peak at d =63
which suggests that the secondary peak is real. Fortunately, this
does not affect at all model ranking as the evidence values of
the vertically layered porosity model are many orders of magni-
tude smaller than their counterparts of the multi-Gaussian mod-
els. These results illustrate the importance of hypothesis testing
and highlight the need for (statistical) methods that help us to de-
termine, in an efficient and robust manner, an appropriate model
complexity. In fact, the marginalization approach that is used to
determine the model evidence can be viewed as a formalization
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of Occam’s razor and leads to a subsurface characterization that is
not too simple nor too complex. Furthermore, and perhaps most
important from the perspective of the present paper, the isotropic
multi-Gaussian model receives the largest evidence values. This is
true for both methods. Note, also that the vertically layered model
exhibits very low evidence values. Indeed, the best vertically lay-
ered model has an evidence in logg units of about —2757, much
lower than the values of approximately —2757, and —1178 for the

multi-Gaussian and horizontally layered models, respectively. This
latter result confirms our earlier conclusion that the vertically lay-
ered model is deficient and inadequate.

Table 5 shows the five top-ranking conceptual models based
on their evidence estimates derived from the LM (first column),
and GMIS (second column) methods. The conceptual model that is
most supported by the experimental data appears on top of the list
(first row). For completeness, we also present in the third column
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Table 5

Ranking of the different concep-
tual models for the South Oyster
Bacterial Transport Site based on
evidence estimates derived from
the LM (first column) and GMIS
(second column) methods. The
third column ranks the models
based on their respective values
of the measurement data error in-
ferred from MCMC simulation us-
ing the DREAM(zs) algorithm.

Ranking of conceptual models

Pm(Y)  Pomis(Y) oy [ns]
MGis MGis MGis
L40 MGha MGva
L39 L40 MGha
L43 L41 143
L41 L43 L41

the ranking of the models using as metric the posterior values of
the measurement data error, oy. All three rankings demonstrate
conclusively that the isotropic multi-Gaussian model is preferred.
This model receives the highest evidence with both estimators
and lowest value of the measurement data error, oy = 0.457 ns.
Note, that the LM and GMIS methods disagree in their assessment
of the second best model. The more approximate LM method
achieves the second highest support for the horizontally layered
model with 37 layers (d = 40), whereas GMIS favours instead the
multi-Gaussian model with horizontal anisotropy.

We now calculate the Bayes factor ("odds”) for the best model
(isotropic multi-Gaussian) of the ensemble in relationship to each
conceptual model. The "odds” of the isotropic multi-Gaussian
model are on the order of 10'® and 10™! relative to the second
best model of the ensemble according to the LM and GMIS esti-
mators (Table 5; Fig. 8). Fig. 8a depicts twice the natural logarithm
of the Bayes factors with respect to the multi-Gaussian model with
horizontal anisotropy (square symbol), and vertical anisotropy (tri-
angle symbol), and Fig. 8b-c displays the same entity with re-
spect to the horizontally and vertically layered models, respec-
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Fig. 8. Twice the natural logarithm of the Bayes factors of the best model (isotropic
multi-Gaussian) of the ensemble with respect to the (a) multi-Gaussian model with
horizontal anisotropy (squares) and vertical anisotropy (triangles), and the two con-
ceptual models with (b) horizontal and (c) vertical layering of the porosity. Results
are shown for the LM (blue) and the GMIS (red) methods. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

tively. Colour coding is used to differentiate between the LM (blue)
and GMIS (red) evidence estimators. It is evident that the isotropic
multi-Gaussian model receives most support by the data - the val-
ues listed on the y-axis in each plot are all larger than 600, which
according to Table 1 suggests that there is very strong evidence
against each of these alternative hypotheses.

The results presented thus clearly favour the use of an isotropic
multi-Gaussian model for the porosity structure of the subsurface
at the South Oyster Bacterial Transport Site. This conclusion is at
odds with findings presented in the literature (Chen et al., 2001;
Hubbard et al., 2001) using geostatistical analysis of the porosity
structure. The results of these studies support the use of a multi-
Gaussian model with horizontal anisotropy.

4.3. A synthetic experiment

To shed some more light on the selection of the isotropic multi-
Gaussian model, we proceed with a synthetic experiment. We use
the exact same domain (7.2 x 7.2 m) and setup as in our real-
world study (Section 4.1), and simulate first-arrival travel times
for a multi-offset GPR experiment with 57 transmitter and 57 re-
ceiver antennas using as reference porosity a multi-Gaussian field
with horizontal anisotropy. This "true” porosity field is constructed
without the use of dimensional reduction using values of the in-
tegral scales and smoothness parameter listed in Table 3. The
mean of this porosity field is, ¢ = 0.39 and the variance is, v =
2-.10~%. The 57 x 57 = 3249 simulated travel times are corrupted
with Gaussian white noise using oy = 0.5 ns, and these distorted
values are now used for numerical inversion using the DREAM|zs,
algorithm.

Table 6 presents the evidence estimates of the LM (first row)
and GMIS (bottom row) methods using as competing hypothe-
ses multi-Gaussian models with horizontal anisotropy (second col-
umn), isotropy (third column) and vertical anisotropy (right col-
umn). The numerical setup of these three conceptual models fol-
lows exactly Tables 3 and 4. The results of Table 6 demonstrate
that both evidence estimators provide a similar ranking of the
three subsurface models. As is to be expected, the most support
is found for the multi-Gaussian model with horizontal anisotropy
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Table 6

Synthetic experiment: Evidence estimates derived
from the LM and GMIS methods for the multi-
Gaussian models with isotropy (MGis), horizontal
anisotropy (MGha) and vertical anisotropy (MGva).

MGha MGis MGva
Pw¥)  -132539 141353 156247
Pows(Y)  —129394  —137191  —1516.72

(second column). This is followed by the isotropic multi-Gaussian
model (third column) and the multi-Gaussian model with vertical
anisotropy (last column). This latter model, though, receives rather
low evidence values. These results illustrate that both evidence es-
timators correctly identify the "best” model of the en semble. We
thus feel confident with the main conclusions of our real-world
experiment, that the porosity field of the subsurface at the South
Oyster Bacterial Transport Site is best described with an isotropic
multi-Gaussian model. This conclusion is different from Chen et al.
(2001) and Hubbard et al. (2001) whose results favoured the use
of a multi-Gaussian model with horizontal anisotropy. These works
considered the geophysical tomogram as data within a geostatisti-
cal analysis. Possible reasons for this discrepancy is that previous
studies relied on forward modeling with straight ray paths and
geophysical tomograms with inversions that did not consider an
explicit underlying geostatistical model.

5. Discussion

The transdimensional (or reversible jump) MCMC algorithm
(Green, 1995) is not suitable for comparing conceptual models that
are based on completely different model parameterizations (e.g.,
layered vs. multi-Gaussian). In this study, we investigated to what
extent evidence estimates with BFMC (Hammersley and Hand-
scomb, 1964), LM (De Bruijn, 1970) and GMIS (Volpi et al., 2016)
can be used to perform Bayesian model selection in the context of
synthetic and real-world case studies. This is the first comparative
study of evidence estimation in hydrogeophysics and we consider
realistically high parameter dimensions (i.e., up to 105), large data
sets (several thousands) and small data errors.

The BFMC method is known to provide the most reliable and
unbiased evidence estimates in the limit of infinite sample sizes.
Schoniger et al. (2015a); (2015b); (2014) found reliable evidence
estimates with the BFMC method for different case-studies in
hydrology. For our set-up with small errors and high data and
model dimensions, we found that reliable evidence estimation
with the BFMC method would need prohibitive computation times.
If the assumption of a multi-Gaussian posterior density is ful-
filled (a reasonable assumption in our test cases), the LM method
should provide reliable evidence estimates (see also case-studies
by Schoniger et al. (2014)). This is confirmed in our synthetic
study in Section 3 by the strong agreement at low model dimen-
sions between BFMC and LM estimates evaluated around the MAP
estimate. The comparison of the LM and the more general (but
more time-consuming) GMIS method shows that evidence esti-
mates are similar for simpler subsurface conceptual models but
that the difference between them increases with model complex-
ity. Indeed, we do not expect to obtain equivalent results since
the two methods are built on different assumptions (see details
in Sections 2.2.2 and 2.2.3). For instance, the LM method is built
on the assumption that a Gaussian model can properly describe
the posterior distribution. This is different for GMIS (or BFMC for
that matter) that is based on importance sampling within the prior
parameter bounds. It is clear then that the more the posterior dis-
tributions are far from being Gaussian, the more the LM and GMIS
methods will provide different estimates.

In our application to the South Oyster Bacterial Transport Site
(Section 4), we found that the isotropic multi-Gaussian model has
the highest evidence (Fig. 7a). The corresponding Bayes factors
(Eqg. (3)), computed with respect to each tested conceptual mod-
els, are all larger than 10'%0, This result is in agreement with the
findings by Schoniger et al. (2014): one decisive winning concep-
tual model is often obtained when using large data sets and small
data errors. We also considered the field example described in
Section 4.1, but using less data (i.e.,, n = 224 instead of n = 3248)
and we found (results not shown) that: (1) the isotropic multi-
Gaussian model is still the winner, (2) all the evidence estimates
are much larger (e.g., in the case of the isotropic multi-Gaussian
model, the evidence increases from about 10-1000 to 10-100) and
that (3) the Bayes factors are much smaller (e.g.,, when compar-
ing the multi-Gaussian model with vertical anisotropy and the one
with isotropy, the Bayes factor decreases approximately from 1090
to 1019). Hence, even if we can still identify one clear winning con-
ceptual model, the magnitudes of the Bayes factors have been dras-
tically decreased.

Among the layered models, the GMIS and the LM method both
suggest that the conceptual model with 37 layers has the high-
est evidence (Fig. 7b). Moreover, the model type with the least ex-
pected geological realism (i.e., vertically layered model) has, by far,
the lowest evidences (Fig. 7c).

Based on previous geostatistical analysis at the South Oyster
Bacterial Transport Site (Chen et al., 2001; Hubbard et al., 2001)
one would expect that the multi-Gaussian model with horizontal
anisotropy would be the one with the highest evidence. To better
understand why the isotropic multi-Gaussian model has a higher
evidence than the one with horizontal anisotropy, we performed a
synthetic example (Section 4.3) in which the true porosity field is
described by a multi-Gaussian model with horizontal anisotropy.
We found that this conceptual model had the highest evidence,
which suggests that the LM and GMIS methods allow us to iden-
tify the right conceptual model (Table 6). This suggests that this
field-site might display less anisotropy than previously thought or
that modeling (e.g., ray-based modeling instead of waveform mod-
eling) and geometrical (e.g., uncertainties in borehole and antenna
positions) errors bias the evidence estimates.

Below, we outline three avenues for future research:

e It is necessary to consider conceptual subsurface models with
higher geological realism. Multi-Gaussian models are used ex-
tensively, but they are poor descriptions of many geological set-
tings. There are many approaches to create more geologically
realistic conceptual models (Linde et al., 2015), for example,
multiple-point statistics (MPS) (Strebelle, 2002).

o It is essential to account for uncertainty in petrophysical
relationships and model errors in order to not overstate the
value of geophysical data. This could be accomplished by Ap-
proximate Bayesian Computation (ABC) (Beaumont et al., 2002;
Marjoram et al.,, 2003; Pritchard et al., 1999; Tavaré et al., 1997)
and lithological tomography (Bosch, 1999). ABC does not re-
quire a formal likelihood function and we suspect that this may
help to decrease the sensitivity to model errors. Lithological
tomography is a formal Bayesian procedure that integrates with
the inference process a statistical description of the petrophysi-
cal relationships and geological concepts. This approach should
spread out more evenly over the parameter space the posterior
distribution, thereby decreasing the magnitude and range of
the candidate models’ Bayes factors, and enhancing the support
and evidence for simpler conceptual models. We also highlight
that incorporating model errors and petrophysical uncertainty
is essential to enable model selection in integrated (joint) earth
imaging (Moorkamp et al., 2016). It is also important to better
elucidate and understand the relationship between a candidate
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model’s prior ranges and its evidence estimates. Much work
on this topic can be found in the statistical literature (e.g.
see Lindley’s paradox), but comparatively little work has been
done on high-dimensional priors as frequently encountered in
subsurface characterization and geophysical inference.

o It would also be fruitful to investigate alternative approaches
to evidence computation. In particular, nested sampling algo-
rithms that are suitable to high-dimensional problems, such
as the POLYCHORD algorithm (Handley et al., 2015) and the
Galilean Monte Carlo algorithm (Skilling, 2012). Initial investi-
gations with POLYCHORD suggest that evidence estimates are
consistent with those obtained by LM and GMIS.

6. Conclusions

Hydrogeophysical methods are well suited to guide the critical
choice of the most suitable conceptual subsurface hydrological
model. Despite its importance, this topic has largely been ignored
in the hydrogeophysical literature to date. We have performed a
first comparative study of evidence estimation in hydrogeophysical
settings. We consider realistically high model dimensions (i.e.,
about 100 unknowns), large data sets and small data errors that
typify hydrogeophysical investigations. In the context of an illus-
trative synthetic example, we find that the brute force Monte Carlo
method provides reliable estimates at low model dimensions but,
when applied to higher model dimensions (i.e., in our case, higher
than 6), the BFMC method is inefficient since a prohibitively large
number of samples (and thus CPU-time) is required to obtain
accurate results. This implied that the brute force Monte Carlo
method was unsuitable to address our field example from the
South Oyster Bacterial Transport Site (Virginia, USA). We find that
the Laplace-Metropolis and the recent Gaussian mixture impor-
tance sampling estimator by Volpi et al. (2016) provide overall
consistent relative evidence estimates and with rather small errors
in both the synthetic cases where simple and low-dimensional
(Section 3) and more complex and high-dimensional concep-
tual models (Section 4.3) were considered. Application of the
Laplace-Metropolis and the Gaussian mixture importance sampling
estimator to conceptual subsurface models of the South Oyster
Bacterial Transport Site in Virginia, USA, revealed that the isotropic
multi-Gaussian model was most supported by the available GPR
travel time data. This model had the largest evidence and its Bayes
factors were all larger than 1000 relative to all other plausible
conceptualizations of the subsurface. Finally, the model with the
least geological realism (i.e., vertically layered model) has ex-
tremely low evidence values for all of its discretizations (i.e., more
than 10'% times smaller than the evidences computed for the
horizontally layered or multi-Gaussian models). Future research
will focus on including the statistical nature of petrophysical
relationships, model errors, and more realistic conceptual models
of the subsurface.
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