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Google searches and detection of conjunctivitis epidemics 
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1.F.I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA

2.Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA

3.Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, 
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4.Department of Epidemiology and Biostatistics, Global Health Sciences, University of California 
San Francisco, San Francisco, CA, USA

Abstract

Purpose and Objective: Epidemic and seasonal infectious conjunctivitis outbreaks can 

adversely impact education, workforce and economy. Yet conjunctivitis is typically not a 

reportable disease, potentially delaying mitigating intervention. Our study objective was to 

determine if conjunctivitis epidemics could be identified using Google Trends search data.

Design: Search data for conjunctivitis-related and control search terms from 5 years and 

countries worldwide were obtained. Country and term were masked. Temporal scan statistics were 

applied to identify candidate epidemics. Candidates were then assessed for geotemporal 

concordance with an a priori defined collection of known reported conjunctivitis outbreaks, as a 

measure of sensitivity.

Participants: Populations by country that searched Google’s search engine using our study 

terms.

Main Outcome Measures: Percent of known conjunctivitis outbreaks also found in the same 

country and time period by our candidate epidemics, identified from conjunctivitis-related 

searches

Results: We identified 135 candidate conjunctivitis epidemic periods from 77 countries. 

Compared to our a priori defined collection of known reported outbreaks, candidate conjunctivitis 

epidemics identified 18 out of 26 (69% sensitivity) of the reported country-wide and/or island 
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nation-wide outbreaks, 9 out of 20 (45% sensitivity) of the reported region and/or district-wide 

outbreaks, but far fewer nosocomial and reported smaller outbreaks. Similar overall and individual 

sensitivity, as well as specificity, was found on a country-level basis. We also found that 83% of 

our candidate epidemics had start dates prior (of those, 20% were over 12 weeks prior) to their 

concurrent reported outbreak’s report issuance date. Permutation tests provided evidence that on 

average conjunctivitis candidate epidemics occurred geotemporally closer to outbreak reports than 

chance alone would suggest (P <0.001), unlike control term candidates (P=0.40).

Conclusions: Conjunctivitis outbreaks can be detected using temporal scan analysis of Google 

search data alone, with over 80% detected prior to an outbreak report’s issuance date, some as 

early as the reported outbreak’s start date. Future approaches using data from smaller regions, 

social media and more search terms may further improve sensitivity and cross-validate detected 

candidates, allowing identification of candidate conjunctivitis epidemics from Internet search data 

to potentially complementarily benefit traditional reporting and detection systems to improve 

epidemic awareness.

Precis

Although burdensome, conjunctivitis is typically not reportable. In this masked study, we found 

Google Trends search data analysis can identify known conjunctivitis outbreaks worldwide, 

suggesting potential future benefit for public health agencies monitoring eye disease.

Introduction

“Big data” and web-based surveillance have been applied to infectious disease 

surveillance1–15. It has been suggested that such efforts may complement traditional 

reporting, or provide insight into infectious conditions which may be underreported or not 

generally reportable. These include conjunctivitis16, a condition only reportable in the USA 

for neonatal cases despite substantial economic17 and public health18,19 impact, and for 

which it has been shown that early public awareness has potential to improve outcomes20.

In the past, evidence has been found that age- and etiology-specific features of conjunctivitis 

clinical epidemiology and seasonal patterns were partially reflected in available online 

search and social media data sources, including tweets, blogs posts, forums and search 

engine query data21–24. Here, we tested the hypothesis that Internet search data for keywords 

relevant to conjunctivitis could be used to identify actual epidemics of conjunctivitis. 

Specifically, we tested whether, while masked, we could identify candidate epidemics of 

conjunctivitis. We validated these identifications using reports of conjunctivitis outbreaks, 

after unmasking. We also assessed the outcomes overall, as well as for countries 

individually, and when countries are grouped within their Global Burden of Diseases (GBD) 

regions based on closeness geographically and epidemiologically25

Methods

In this section, we describe (1) how we obtained Google search data for identifying 

epidemics, (2) how we identified apparent (“candidate”) epidemics from these time series, 

(3) how we identified actual reports of known conjunctivitis outbreaks, and (4) how we 

validated our detection method using those reports.
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Google search data for identifying epidemics

The Google Timeline for Health API (application programming interface) allows researchers 

and others, after applying to Google and being granted permission, to access Google Trends 

data about geo-temporal location of online searches and has been used for research for 

example to study behavior, explore outbreaks and forecast economic activity26,27. Using this 

API we collected worldwide national-level daily Google search data for 24 keywords. These 

keywords included terms related to conjunctivitis in several languages, as well as positive 

control keywords related to other diseases, and negative control keywords designed to reflect 

general changes in search data volume (to account for any search volume changes 

presumably unrelated to disease).

For a list of keywords, please see Supplement VI. Data were obtained for the period July 10, 

2012 to July 9, 2017. The resulting time series represents relative search interest data, 

reflecting the proportion of searches for the term of interest out of all searches for all terms 

for a given geography and time period. The proportion is calculated by Google using a 

random sample. Very small values are censored by the API, partly to protect privacy; such 

censored values appear as zeros in the time series. Country-search term combinations 

yielding no relative search information were excluded.

Identification of candidate epidemics

To retrospectively identify epidemics, we used an approach that implemented three variants 

of the scan statistic28 in an automated fashion to all time series. The first algorithm (“Scan”) 

was applied to all data, and used a modified temporal scan statistic based on first applying a 

5 day centered median filter after linear detrending, to remove short spikes potentially due to 

media coverage. It then examined a 31-day centered moving average. The second algorithm 

(“Lush”) was then automatically implemented but only for when at least 75% of the data 

were available (nonzero). This regression procedure used negative binomial regression with 

cyclic basis splines to represent an arbitrary seasonal background distribution29,30. It also 

included quadratic secular terms. Temporal scanning was then applied to the residuals, 

identifying intervals when the observed value consistently exceeded the model prediction. 

Finally, for situations where the second method was not implemented, a third algorithm 

(“Sparse”) was applied, which first dichotomized each value in the time series, with 1 

denoting at nonmissing value. It then applied a 31-day centered moving average to this 

series of binary values. For all methods, permutation was then used to determine the 

quantiles of the distribution of the expected maximum value of the moving average under 

the null hypothesis of a stationary series. Epidemic detection was thus accomplished by 

examining candidates from this automatically applied collection of algorithms. Further 

details are provided in Supplement V. For each epidemic, the first date at which the 

threshold was exceeded was considered the earliest detectable date, i.e., the start date.

Statistical identification of candidate epidemics was conducted in a masked manner, by 

concealing the search term and location (country) from the data analyst. Larger scale 

geographic information was also not used. After all candidate epidemics were identified, 

masked terms and geolocation were unmasked for subsequent validation comparisons to 

reported outbreaks.
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Conjunctivitis outbreak reports: ProMED, PubMed, and Other Online

Our study is designed to identify conjunctivitis outbreaks which, in many countries, are not 

reported in any standardized or systematic manner. Although a true gold standard is 

therefore not available, other sources of reports can serve to validate our candidate 

epidemics. In late summer of 2017, we identified conjunctivitis outbreak reports for the 

period from July 10, 2012 through August 9, 2017 using 3 sources: ProMED, PubMed, and 

Other Online Internet content. ProMED (the Program for Monitoring Emerging Diseases) 

sponsored by the International Society for Infectious Diseases is an Internet-based system 

allowing rapid reporting and dissemination of information on infectious disease outbreaks 

worldwide, including conjunctivitis. ProMED has been an early warning system for 

infectious diseases for over 22 years31–34. We queried ProMED and PubMed for 

conjunctivitis outbreak reports using their online search tools. We used a standardized query 

to locate additional online reports (news stories and other Internet content) of human 

conjunctivitis outbreaks. Supplement VI includes details of queries we used to identify 

outbreak reports from these three sources. For all reports of conjunctivitis outbreaks, we 

recorded the report issuance date, reported start date and country. We categorized each 

outbreak as “country-wide and/or island nation-wide”, “region and/or district wide”, 

“nosocomial”, or “small” (e.g., one classroom, but not associated with a health care facility). 

We excluded reports with unclear start dates (less precise than a one month time window) or 

start dates not occurring between July 18, 2012 and July 2, 2017. We excluded one report 

later identified as a hoax. These data were not revealed to team members conducting masked 

candidate detection until after they completed candidate identification analysis.

A given outbreak in a specific country may be documented in multiple reports. Similarly, 

multiple candidate epidemics identified from analysis of Google search data may be close 

together in time, for a given outbreak. To compare three report sources and identified 

candidates for each outbreak, we identified one single start date for each of these data 

sources per outbreak. More specifically, for each country, we recorded the earliest reported 

outbreak start date. The period from the first start date to 45 days after the last report date 

was considered a window of interest that we refer to as a 45-day continuum period. If 46 or 

more days separated consecutive reports in the same country, we considered a new epidemic 

(new continuum ID period) to have begun with the second report. This resulted in a defined 

set of 45 day continuum periods for each country, which we used for sensitivity and 

validation analysis.

Validation of candidate epidemic detection

Overall, for all countries combined, we estimated the sensitivity of our candidate epidemic 

detection in two ways. First, for each reported outbreak in a country, we determined whether 

or not at least one candidate epidemic was identified within the same continuum. Second, we 

repeated the analysis for the four categorized outbreak sizes. For comparison, we also 

assessed sensitivity by tabulating the frequency of windows of interest containing overlap 

with a statistical detection window. In this second approach, we considered an epidemic to 

be occurring for 31 days after each identified start date, based on all candidate detection 

algorithms. For comparison, we compared candidate “epidemics” identified from control 
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terms to conjunctivitis report dates. Confidence intervals for proportions were computed 

using the exact (Clopper-Pearson) method.

Of course, in the absence of a gold standard, the sensitivity, specificity, and positive and 

negative predictive values (PPV, NPV) of our candidate epidemics cannot, sensu stricto, be 

computed. However, on a country- based level, we estimated a measure of these quantities 

based on the following assumptions: (a) The 40 total possible 45-day continuum periods 

(1825 days/45 days) in the time series for a country serves as an effective denominator of 40 

(a max possible of 40 continuum periods per country, that each could have had a candidate 

in them) (b) any continuum period containing a start date for a reported outbreak is 

considered to reflect a true epidemic, and any not containing one is assumed to have 

experienced no epidemic and (c) any continuum period containing a start date for a 

candidate conjunctivitis epidemic effectively “tests positive”, while any continuum period 

not containing a candidate corresponds to a negative test. All results were first calculated for 

countries containing reported outbreaks. For countries in which there was no reported 

outbreak at all, but for which we found candidate epidemics, countries were then grouped 

into similar regions, defined using the IHME GBD 2016 location hierarchy file as a 

guide25,35 to assess if “false positives” (candidates identified in countries with no outbreak 

reports) may have been validated from an outbreak reported for a nearby similar country. 

Countries with no candidates were only assessed for specificity and NPV. The mean 

sensitivity and other summary values of all the country-level results were also computed as a 

secondary comparison to our other all-countries analysis.

For all reported outbreaks for which we identified candidate conjunctivitis epidemics within 

the same 45-day continuum and country, we assessed the number of days between the start 

date described in the outbreak report and the start date of the identified candidate epidemic. 

Overall, we also assessed the portion of detected candidates with an earlier vs. later start 

date than the start dates described in their corresponding outbreak reports. In a similar 

manner we also compared the issuance dates (first appearance in print) of the outbreak 

reports to the start dates of the corresponding identified candidate conjunctivitis epidemics.

For all countries combined, we also assessed the statistical association of candidate 

epidemics with reported outbreaks, based on a simple permutation test. We permuted 

country at random, and within countries, conducted a random cyclic permutation of the 

starting times (accounting for the non-independent nature of the time series of both reported 

outbreaks and detected candidates). The test statistic was the number of candidate epidemic 

starting dates that fell within continuum period regions of interest. If more of the candidate 

start dates fell within windows of interest than expected by chance alone, we rejected the 

null hypothesis of no association when P<0.05. As a control, using candidates we had 

identified (while masked) from the negative control non-conjunctivitis search terms, we 

repeated the permutation test assessment.

In addition, we computed the frequency of non-epidemic days (days falling outside our 

continuum periods) that did not overlap a detection window, as an alternate measure of 

specificity. We also assessed whether detection times of candidates identified for negative 

control terms (“for, “para”) differed statistically with detection times based on conjunctivitis 
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terms, using PERMANOVA. Finally, we classified each day in our five year period as being 

part of a candidate epidemic or not. Using these binary series, we compared the phi 

correlation based on conjunctivitis search terms and search terms related to influenza, 

allergy and negative control (“for” and “para”) terms.

IRB Approval

UCSF IRB Approval was obtained prior to this study (approval# 14-14743).

Results

Outbreak Reports

A priori, before any comparison to candidate epidemics, we identified 87 conjunctivitis 

outbreak reports from 49 countries from July 17, 2012 and July 2, 2017. We excluded 

reports from countries yielding no Google search information (3 ProMED, 1 PubMed, and 4 

Other Online outbreak reports—please see discussion). Within each 45 day continuum, we 

then selected only the first occurrence of each report source (dropping duplicate reports of 

the same outbreak if from the same source), resulting in 20 ProMED reports from 18 

countries, 7 PubMed reports from 7 countries, and 37 Other Online reports from 27 

countries. If one continuum contained multiple reports, for sensitivity analysis only one of 

these was used for that continuum. All reports were used when deriving date difference 

comparisons. This final set of outbreak reports was used for comparison to our candidate 

epidemics, as shown in Table 1.

Candidate outbreaks detected from conjunctivitis-related search terms and scan methods

From all search terms combined we identified 1166 candidate epidemics, of which 293 were 

from search terms representing conjunctivitis. These conjunctivitis candidates from different 

search terms and/or scan methods were often close in time. We selected the first from each 

45 day continuum period, resulting in a final set of 135 candidate epidemic continuum 

periods from 77 countries. The 3 most common first conjunctivitis search terms within 

continuums were: “conjunctivitis” (n=43, 32% of total), “conjonctivite” (n=26, 19% of 

total), “conjuntivitis” (n=26, 19% of total). For some conjunctivitis search terms specific to 

certain locations, we often only detected epidemics in those locations. For example, 

conjunctivitis candidates detected from the conjunctivitis search term “aankh aana” (Hindi) 

were found 6 times and only in India, for term “apollo eye” were found 4 times and only in 

Nigeria, and for term “azoumounou” (Haitian creole) were found only for Haiti (3 times) 

and USA (1 time). More details of the results for all search terms can be seen in Supplement 

I Tables S3-S5.

Analyzing the success of the three scan methods used, for all search terms combined, we 

found 76% of candidates were identified using the “Scan” methods, 18% using “Sparse” and 

5% using “Lush”. For a more detailed comparative analysis and visualization of the results 

from the three scan methods used, please see Supplement II and Figure S3.
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Detected candidate epidemics concurrence with reported outbreaks

In Tables 1 and 2, rows in black indicate reported outbreaks that validated candidate 

epidemics within the same 45-day outbreak continuum period. This table also allows a 

comparison of day differences between candidate conjunctivitis epidemic start dates (the 

leading edge of the scan window for which the epidemic threshold was first reached) and the 

start date of each the reported outbreak in the same 45 day continuums, and allows a 

comparison with the report’s issuance date. More detailed analysis of these results, including 

sensitivity, start or report date differences, frequently validated keywords, and percentage of 

candidates validated by reports is described below (as well as in the Supplement). Daily 

searches, detected candidates and outbreak reports are visually compared in time series 

Figures 1-2. Figure 1 shows examples for 5 countries of time series search data (rows 2 

onward) for a number of conjunctivitis-related and control terms, and any candidates 

epidemics identified are shown as red triangles with their identified start date, the top row 

shows outbreak reports as inverted gold triangles. Figure 2 shows resulting candidates 

detected and outbreak reports, for all countries in which an outbreak report was found. 

Sequential triangle border colors indicate unique 45-day continuum periods-including when 

reports and candidates occurred within the same continuum (same border color) for a 

country. For some reported outbreaks, if the issuance date of the report occurred a week or 

more after the plotted reported start date, a dotted grey line leads to the right of the gold 

triangle to indicate the issuance date.

Worldwide validations by outbreak size, using ProMED, PubMed and Online Other 
outbreak reports

Our method identified 28 out of 56 (50% sensitivity, 95% CI: 36% to 63%) of the reported 

outbreaks (see Figure 2, Tables 1-2). We identified 18 out of 26 (69% sensitivity, 95% CI: 

48% to 86%) of the reported country-wide and/or island nation-wide outbreaks, 9 out of 20 

(45% sensitivity) of the reported region and/or district-wide, 1 out of 4 (25% sensitivity) of 

the reported nosocomial, and 0 out of 6 (0% sensitivity) of the reported small outbreaks. 

Although we chose to use a 45-day continuum period for our main analyses, we conducted 

several alternate approaches for comparison. First, we repeated the analysis above, but based 

upon 31 or 60 day continuum periods, and found no sensitivity differences from that 

reported above for when using a 45-day period. Second, using an alternative time window 

based approach to assess sensitivity we found similar sensitivity results as with the 

approaches described above (50% overall, 95% CI: 37% to 63%; by size: 68% country-wide 

and/or island nation-wide; 45% region and/or district-wide; 9% small and nosocomial). As a 

control, in contrast to results above for conjunctivitis candidates, for “epidemic candidates” 

identified (while masked to terms) from negative control terms, we found much lower 

overall sensitivity (7.0%, 95% CI: 1.9% to 17%) when comparing to the reported outbreaks.

Validations by Country

We also analyzed results on a country level. Please see Supplement III Table S6 for 

individual country-level results, including specificity, NPV, false positive count, and (for 42 

countries with reported outbreaks) sensitivity and PPV. Overall the mean specificity per 

country from all 149 countries combined was 0.98 (median: 1, sd: 0.03, min: 0.81, max: 1), 
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mean NPV per country was 0.995 (median: 1, sd: 0.014, min:0.91, max: 1), and the mean 

number of false positive continuums per country was 0.67 (median: 0, sd: 1.18, min: 0, max: 

7). For just the 42 countries with any reported outbreaks specificity, NPV and mean number 

of false positives continuums were similar (means of 0.98, 0.98 and 0.74, respectively) and 

for those 42 countries the overall mean sensitivity was 0.58 (median: 1, sd: 0.48, min: 0, 

max: 1) and mean adjusted (assigning 0 if no candidates were found) PPV was 0.55. For 

countries with no reported outbreaks, the mean number of false positives continuums per 

country was 0.64.When grouping countries by GBD region, we also found that many 

countries with no gold standard to compare to had a reported outbreak in a neighboring 

country within their continuum period within that GBD region (See examples in Supplement 

IV Figure S4). Therefore, for our analysis and in the table we have adjusted the sensitivity 

results for such countries. With this adjustment (considering neighboring country reported 

outbreaks within a GBD region as a gold standard confirmed positive test result), the overall 

false positive rate improves to a mean of 0.49 continuums (out of a maximum of 40 possible 

continuums) per country.

Start date comparisons

We compared our candidate epidemic start dates to the reported start dates of outbreak 

reports. For all sizes of epidemics combined, of the 35 reported outbreaks that our candidate 

detection methods identified in the same country, 13 had a reported start date that was later 

than the start date identified for our concurrent matching candidate epidemic (37% of our 

concurrent candidates had start dates prior to their matching reported outbreak start date). A 

total of 11% of the candidate start dates were 1 to 3 weeks prior to their matching outbreak 

report’s reported start date, and 11% were 4 to 6 weeks prior.

Report issuance date comparisons

When comparing our candidate epidemic start dates to the report issuance dates of the 

matching 35 outbreak reports that our candidate detection methods identified in the same 

country, 29 reports were issued after the start date identified for our concurrent matching 

candidate epidemic (83% of our concurrent candidates had start dates prior to their matching 

reported epidemic’s report issuance date). Of those, 20% of our candidate start dates were 1 

to 3 weeks prior to their matching report’s issuance date, 17% were 4 to 6 weeks prior, 9% 

were 7 to 12 weeks prior and 20% were over 12 weeks prior.

Additional validations, including for candidates not identified from reports

When we compared the association of the candidate epidemics identified from conjunctivitis 

search terms (as well as those identified from control terms) with the reported observed 

outbreak times, using a simple permutation test, we found evidence that the candidate 

epidemics are closer, on average, to reported outbreaks than chance alone would suggest (P 

< 0.001, permutation test). We found no evidence that negative controls yield candidate 

epidemics which are closer to reported conjunctivitis outbreaks than chance alone (P = 

0.40). A measure of specificity was also computed by determining the fraction of non-

epidemic days which are not 31 days after an identified candidate epidemic. For 

conjunctivitis candidates this value was 95.4% (95% CI: 94.0% to 96.2%). A similar result 

was found for negative control term candidates.
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Comparing candidates identified for conjunctivitis search terms to those identified from 

negative control search terms, we found evidence that the timing of these detected epidemics 

were different, using permutation PERMANOVA test (P < 0.001). Similarly, phi correlations 

found little evidence for correlation between these two search term candidate epidemic 

groups (phi = 0.04; 95% CI: 0.01 to 0.08) or between conjunctivitis term candidates and 

allergy-term related candidates (phi = 0.09; 95% CI: 0.03 to 0.18) or “influenza” (phi = 0.05, 

95% CI: 0.01 to 0.11).

Discussion

Overall, our study has found evidence that scan statistics conducted on Google search data 

yield informative candidate epidemics. Continuous monitoring for conjunctivitis outbreaks 

in many countries around the world in near real-time using search data may be possible, 

complementing identification of conjunctivitis outbreaks detected from clinical monitoring 

systems. Studies have shown value in the use of multiple data sources to better identify and 

take action in response to outbreaks, including for conjunctivitis19. Although the issuance 

date of some formal public health agency reports presumably can lag simply due to 

administrative delays, in some cases delays may be due to limited resources for identifying 

or confirming suspected outbreaks. It may become possible to notify such agencies early 

about a likely conjunctivitis candidate epidemic before the date that a public health report 

would be issued, and potentially accelerate awareness, confirmation, and official public 

health reporting. For infectious epidemics, studies suggest there is a benefit of reducing the 

impact of outbreaks36 including through social distancing reducing transmission, such as for 

flu37. Some evidence suggests that early public warning improves conjunctivitis outcomes, 

and that conjunctivitis surveillance and public awareness may improve clinical outcomes 

and reduce societal burden19,20

In our analysis by outbreak size, we found that outbreaks reported to be of widespread size 

(country-wide and/or island nation-wide) were most likely to be detected using our methods 

(69% sensitivity) and overall 83% of our start dates were earlier than the issuance dates of 

matching outbreak reports. Analyzing at a country level, for the 42 countries with reported 

outbreaks (or in GBD regions with reported outbreaks) we found a similar mean overall 

sensitivity but that it varied by country, with favorable sensitivity and PPV values (of 1.0) for 

over half of the countries, but on the other hand poor values for a smaller portion of 

countries. Sensitivity, specificity, PPV and NPV tended to correlate within GBD regions 

with best results commonly found in countries from the Oceania, Caribbean and Western 

Sub-Saharan Africa regions (see Supplement III-IV Table S6 and Figure S4).

Geographical spread of conjunctivitis has been reported19,20,38 Of note, in some cases, we 

observed evidence of what appears to be conjunctivitis outbreaks spreading between 

neighboring countries. For example, this was seen for Haiti and then Dominican Republic 

and other nearby countries in the Caribbean GBD region in 2017, as well as for Burkina 

Faso and then Nigeria and other nearby countries in the same West African GBD region in 

the fall of 2016 (please see Figures 1, 2, Tables 1-2 and Supplement Table S6 and Figure 

S4). Some neighboring countries apparently part of the same epidemic only were identified 

by candidates, for example see Benin compared to Dominican Republic in Figure 1 and 
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Supplement IV Figure S4. This suggests reports and candidates in one country of a GBD 

may inform increased likelihood of recent or pending outbreaks in neighboring similar 

countries, including for those in which there is not sufficient search data. In this respect, for 

the previously above-mentioned 6 reported epidemics that we did not include in our primary 

analysis due to insufficient conjunctivitis-related search data, within their respective GBD 

regions, five of them (Angola, Bonaire, Kiribati, Marshall Islands, Turks and Caicos Islands) 

had corresponding candidate epidemics in the same continuum periods in nearby 

neighboring countries. However, it may be difficult to tell whether candidates in neighboring 

countries result from simultaneous cross-border epidemics or from imprecise geolocation of 

searches.

A number of reported epidemics though, especially those categorized as less widespread, 

were not detected using our approach. In some cases this was despite sufficient Google 

search data. As we only analyzed country-level search data, we may have missed candidates 

that in future studies may be detectable using search data from smaller regions such as 

individual USA states. The locations where our epidemic detection was the least effective 

(and scored the lowest) also included countries where Latin and West Germanic languages 

are less common and where we may have failed to include proper search terms for those 

countries (such as the Eastern Europe, portions of Africa, and the Middle East—where few 

candidates or reports were found). In addition, we found that for 80 countries there had been 

no sufficient search data for any conjunctivitis-related terms. Many of those countries (for 

example, Azerbaijan and other countries from Central Asia, and a large number of Sub-

Saharan African countries, including Djibouti and Angola) are in regions where one might 

expect other languages to be more common (i.e. we did not capture the search language). 

Some were also very small countries, for example 14 of 23 countries from Oceania (e.g. 

Niue, Kiribati) with potentially not enough online users for sufficient search data. Strategies 

to find additional more appropriate and regionally-specific search terms (e.g. “red eye” in 

world regions where it is used mostly in reference to conjunctivitis), or data from other 

search engines used more often for those regions (such as China or South Korea)39, or 

additional signal through inclusion of common search term misspellings might improve 

ability to detect candidates in those regions.

A significant fraction of our candidates that did not have matching corresponding outbreak 

reports (i.e. that could be called “false positives”) were from larger countries. Our 

comparisons of conjunctivitis candidates to negative control term candidates showed 

significantly different timing and no evidence of correlation between these two groups, 

implying conjunctivitis candidates are unlikely due to non-specific search volume changes 

though (see Supplement II Figure S3). Some reported outbreaks may also simply not have 

been included in our comparison, since our structured approach may not have identified all 

reports. As an example Seychelles and Madagascar were not in our originally identified 

(using a priori queries) corpus of reported outbreaks, and in our analysis we identified one 

“false positive” candidate for each of these countries in the spring of 2015, both of which 

lowered our sensitivity results. A more in-depth search of our cited outbreak report for 

Réunion19 however, reveals outbreaks did indeed occur in Seychelles and Madagascar and 

within the same continuum periods as our candidates in those countries, a finding which 

would have improved our sensitivity and specificity results overall with resulting values of 
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1.0 for each of those countries (see Supplement IV Figure S4). We note that some candidate 

epidemics may well be spurious though, for example due to spikes in interest when 

celebrities have conjunctivitis. In some cases they could also represent another disease 

where conjunctivitis is a symptom (e.g. Zika). Our analysis is correlational, and investigating 

social media post contents, or other online sources of information, during candidate 

epidemic periods may help determine the reason for searches and thereby improve 

specificity.

Early awareness, allowing preventative public health responses, can reduce the impact of 

epidemics. Future improvements of methods such as those presented here applied 

prospectively to leverage non-traditional sources of eye health information show promise in 

providing public health agencies a complementary and relatively low cost means of 

improved detection, confirmation or notification of eye health epidemics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Five illustrative countries demonstrating daily search data, candidate epidemics 
identified from that data, and reported outbreaks
For each country (column), the timespan provided is from the earliest to latest occurring 

candidate conjunctivitis epidemics or reported epidemics, within the full study period (i.e. 

first four countries shown had only a single continuum period containing any candidates or 

reports). The center of each point represents the start date for candidate epidemics and the 

issuance date for reports. Search terms not shown if all five countries had no available daily 

relative search interest values. (Legend: Y- axis for each time series is normalized (% of max 

value) daily search values. Daily values are indicated by colored vertical bars; ProMED, 

PubMed, and Other Online Reports by large gold inverted triangles. Conjunctivitis 

candidates identified from conjunctivitis-related search terms are shown by red triangles).
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Figure 2. Time series of reported outbreaks compared to detected conjunctivitis candidate 
epidemic dates.
For each country, conjunctivitis candidate epidemics (red-filled triangles) are plotted based 

on their start dates, and any reported outbreaks (gold-filled inverted triangles) for that 

country are plotted based on the reported start date of the report. The center of each point 

represents the actual dates. Each new continuum period within a country corresponds to a 

different triangle border color for the outbreak reports and candidate epidemics; triangles 

with identical border color represent reports and/or candidates occurring within the same 

continuum period. For all reported outbreaks that had an issuance (publication or first 

online) date that was one or more weeks after that report’s reported start date, a dotted black 

line leads to a vertical black line indicating the report’s issuance date. Note: some reported 

start dates (used to identify continuum ID periods and compare to candidates) were much 

earlier than when the report was actually issued (e.g. see Réunion, Tonga). Countries with no 

reported outbreaks, not shown. (Legend: Gold inverted triangles represent issuance date of 

ProMED, PubMed and Other Online Reports; red triangles represent candidate 
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conjunctivitis epidemics identified in this study from Google search term data. Border colors 

represent unique 45-day continuums in a country’s time series. Minor breaks: 1 month).
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Table 1.
Country-Wide and Island Nation-Wide outbreak reports, compared to identified 
candidate epidemics.

Rows corresponding to the reported Country-Wide and Island Nation-Wide outbreaks that were detected with 

Google search data are shown in black; others are shown in gray. The first report from each possible report 

source within each 45 day continuum period is shown and compared to dates and locations of identified 

candidate epidemics (note, only one report per continuum, that with the earliest reported start date, was used in 

calculating sensitivity in this study). Columns: “Country” represents name of the country; “Found” indicates 

whether if candidate was found, in a masked fashion, within the same 45 day continuum as the reported 

outbreak; “Report Source” indicates the source from where outbreak reports were obtained using queries of 

ProMED, PubMed, and Other Online (Other) reports; “Reported Start” indicates the start date of the outbreak 

defined in the report; “Days Prior to Start” indicates the Candidate start date's number of days before the 

Report's reported start date, if within same continuum (a positive number of days indicates the candidate start 

date occurred that many days before the report’s reported start date); “Report Issuance” indicates the date the 

report was published; “Days Prior to Issuance” indicates the Candidate start date's number of days before the 

report’s Issuance Date, if start dates were within same continuum (a positive number of days indicates the 

candidate start date was that many days before the report's issuance date); “Reference” indicates the cited 

original source of the reported outbreak. Please see Supplement 1 for Table 1 Outbreak Report references.

Country Found Report
Source

Reported
Start

Days Prior
to Start

Report
Issuance

Days
Prior to
Issuance

Report
Reference

American Samoa Yes Other 2014-04-01 −6 2014-04-09 2 1a

Antigua & Barbuda Yes Other 2017-06-15 −24 2017-07-04 −5 1b

Bahamas Yes ProMED 2017-05-15 −15 2017-06-20 21 1c

Burkina Faso Yes ProMED 2016-08-15 11 2016-09-07 34 1d

Cambodia Yes Other 2013-10-04 3 2013-10-25 24 1e

Cuba No ProMED 2017-07-01 2017-07-29 1f

Dominican Republic Yes ProMED 2017-05-06 −7 2017-05-27 14 1g

Fiji Yes ProMED 2016-03-15 −9 2016-04-01 8 1h

France No ProMED 2017-05-20 2017-06-24 1i

Guadeloupe Yes ProMED 2017-05-14 −3 2017-06-08 22 1j

Guam Yes ProMED 2014-05-15 −22 2014-06-03 −3 1k

Haiti Yes Other 2017-05-15 35 2017-05-15 35 1l

Honduras Yes Other 2017-06-07 10 2017-07-25 58 1m

Martinique Yes ProMED 2017-05-14 −20 2017-06-08 5 1n

Mauritius Yes Other 2015-02-23 20 2015-03-15 40 1o

Mauritius No Other 2016-04-11 2016-05-03 1p

Nicaragua No ProMED 2013-01-01 2013-02-21 1q

Réunion Yes PubMed 2015-01-15 −41 2016-06-26 487 1r

Samoa Yes Other 2014-03-15 −3 2014-03-25 7 1s

Singapore No Other 2014-09-07 2014-09-07 1t

Somalia No ProMED 2014-12-01 2014-12-07 1u

Thailand No Other 2014-01-01 2014-02-21 1v
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Country Found Report
Source

Reported
Start

Days Prior
to Start

Report
Issuance

Days
Prior to
Issuance

Report
Reference

Thailand Yes PubMed 2014-07-01 −41 2015-03-31 232 1w

Thailand No Other 2016-05-01 2016-06-05 1x

Tonga Yes Other 2016-05-01 −12 2016-10-11 151 1y

Viet Nam Yes Other 2013-09-01 −15 2013-09-20 4 1z
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Table 2.
Smaller reported outbreaks, compared to identified candidate epidemics.

All remaining outbreak reports not shown in Table 1 (i.e. those with an a priori assigned size category smaller 

than Country-Wide and Island Nation-Wide outbreak) are included in Table 2. As with Table 1, rows 

corresponding to outbreaks that were detected with Google search data are shown in black and others are 

shown in gray and the first report from each possible report source within each 45 day continuum period is 

shown. Table 2 column descriptions and comparisons to candidates identified from Google search data are also 

all as described for Table 1. Please see Supplement 1 for Table 2 Outbreak Report references.

Country Found Report
Source

Reported
Start

Days Prior
to Start

Report
Issuance

Days
Prior to
Issuance

Report
Reference

Outbreak Size Group -District/Region-Wide:

  Brazil No ProMED 2017-05-18 2017-06-21 2a

  Costa Rica Yes Other 2017-06-30 3 2017-06-30 3 2b

  Dominica Yes Other 2017-05-31 −32 2017-05-31 −32 2c

  Ghana Yes Other 2016-07-18 34 2016-08-10 57 2d

  Guyana Yes Other 2017-06-23 24 2017-07-15 46 2e

  India No Other 2012-08-09 2012-08-09 2f

  India No Other 2013-07-25 2013-08-18 2g

  India No Other 2013-11-15 2014-05-07 2h

  India Yes Other 2014-09-04 −16 2014-09-04 −16 2i

  India Yes Other 2017-03-27 −18 2017-03-27 −18 2j

  Mexico No ProMED 2017-04-09 2017-04-13 2k

  Nigeria Yes Other 2016-10-02 −16 2016-10-02 −16 2l

  Oman No ProMED 2014-02-15 2014-03-13 2m

  Philippines Yes Other 2015-08-27 13 2015-08-27 13 2n

  Sri Lanka Yes Other 2015-06-01 1 2015-06-08 8 2o

  United States No ProMED 2012-08-09 2012-08-24 2p

  Viet Nam No ProMED 2012-08-06 2012-08-09 2q

  Viet Nam No Other 2014-09-15 2014-11-10 2r

  Viet Nam No Other 2016-06-20 2016-07-05 2s

  Viet Nam No ProMED 2017-02-10 2017-02-14 2t

Outbreak Size Group -Nosocomial:

  Singapore No Other 2015-10-15 2015-12-11 2u

  Turkey No PubMed 2015-01-01 2016-09-01 2v

  United Kingdom Yes PubMed 2015-02-06 −12 2016-05-01 438 2w

  United States No PubMed 2015-08-15 2016-04-01 2x

Outbreak Size Group -Small:

  China No PubMed 2012-10-05 2014-10-24 2y

  Hungary No Other 2013-10-07 2013-10-07 2z

  Italy No ProMED 2013-08-25 2013-09-02 2aa

  Sudan No Other 2016-03-11 2016-03-18 2bb

  Uganda No Other 2017-01-05 2017-01-05 2cc
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Country Found Report
Source

Reported
Start

Days Prior
to Start

Report
Issuance

Days
Prior to
Issuance

Report
Reference

  United States No Other 2016-07-20 2016-07-20 2dd
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