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Abstract: This paper studies a generally applicable, sensitive, and intuitive error metric for the assessment of robotic
swarm density controller performance. Inspired by vortex blob numerical methods, it overcomes the short-
comings of a common strategy based on discretization, and unifies other continuous notions of coverage. We
present two benchmarks against which to compare the error metric value of a given swarm configuration: non-
trivial bounds on the error metric, and the probability density function of the error metric when robot positions
are sampled at random from the target swarm distribution. We give rigorous results that this probability density
function of the error metric obeys a central limit theorem, allowing for more efficient numerical approxima-
tion. For both of these benchmarks, we present supporting theory, computation methodology, examples, and
MATLAB implementation code.

1 INTRODUCTION

Much of the research in swarm robotics has focused
on determining control laws that elicit a desired group
behavior from a swarm (Brambilla et al., 2013), while
less attention has been placed on methods for quanti-
fying and evaluating the performance of these con-
trollers. Both (Brambilla et al., 2013) and (Cao et al.,
1997) point out the lack of developed performance
metrics for assessing and comparing swarm behavior,
and (Brambilla et al., 2013) notes that when perfor-
mance metrics are developed, they are often too spe-
cific to the task being studied to be useful in compar-
ing performance across controllers. This paper devel-
ops an error metric that evaluates one common de-
sired swarm behavior: distributing the swarm accord-
ing to a prescribed spatial density.

In many applications of swarm robotics, the
swarm must spread across a domain according to
a target distribution in order to achieve its goal.
Some examples are in surveillance and area coverage
(Bruemmer et al., 2002; Hamann and Wörn, 2006;
Howard et al., 2002; Schwager et al., 2006), achiev-
ing a heterogeneous target distribution (Elamvazhuthi
et al., 2016; Berman et al., 2011; Demir et al., 2015;
Shen et al., 2004; Elamvazhuthi and Berman, 2015),
and aggregation and pattern formation (Soysal and

Şahin, 2006; Spears et al., 2004; Reif and Wang,
1999; Sugihara and Suzuki, 1996). Despite the impor-
tance of assessing performance, some studies such as
(Shen et al., 2004) and (Sugihara and Suzuki, 1996)
rely only on qualitative methods such as visual com-
parison. Others present performance metrics that are
too specific to be used outside of the specific appli-
cation, such as measuring cluster size in (Soysal and
Şahin, 2006), distance to a pre-computed target loca-
tion in (Schwager et al., 2006), and area coverage by
tracking the path of each agent in (Bruemmer et al.,
2002). In (Reif and Wang, 1999) an L2 norm of
the difference between the target and achieved swarm
densities is considered, but the notion of achieved
swarm density is particular to the controllers under
study.

We develop and analyze an error metric that quan-
tifies how well a swarm achieves a prescribed spatial
distribution. Our method is independent of the con-
troller used to generate the swarm distribution, and
thus has the potential to be used in a diverse range of
robotics applications. In (Li et al., 2017) and (Zhang
et al., 2018), error metrics similar to the one presented
here are used, but their properties are not discussed in
sufficient detail for them to be widely adopted. In par-
ticular, although the error metric that we study always
takes values somewhere between 0 and 2, these values
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are, in general, not achievable for an arbitrary desired
distribution and a fixed number of robots. How then,
in general, is one to judge whether the value of the
error metric, and thus the robot distribution, achieved
by a given swarm control law is “good” or not? We
address this by studying two benchmarks,

1. the global extrema of the error metric, and

2. the probability density function (PDF) of the error
metric when robot positions are sampled from the
target distribution,

which were first proposed in (Li et al., 2017). Using
tools from nonlinear programming for (1) and rigor-
ous probability results for (2), we put each of these
benchmarks on a firm foundation. In addition, we
provide MATLAB code for performing all calcula-
tions at https://git.io/v5ytf. Thus, by using the
methods developed here, one can assess the perfor-
mance of a given controller for any target distribu-
tion by comparing the error metric value of robot con-
figurations produced by the controller against bench-
marks (1) and (2).

Our paper is organized as follows. Our main defi-
nition, its basic properties, and a comparison to com-
mon discretization methods is presented in Section 2.
Then, Section 3 and Section 4 are devoted to studying
(1) and (2), respectively. We suggest future work and
conclude in Section 5.

2 QUANTIFYING COVERAGE

One difficulty in quantifying swarm coverage is that
the target density within the domain is often pre-
scribed as a continuous (or piecewise continuous)
function, yet the swarm is actually composed of a fi-
nite number of robots at discrete locations. A com-
mon approach for comparing the actual positions of
robots to the target density function begins by dis-
cretizing the domain (e.g. (Berman et al., 2011;
Demir et al., 2015)). We demonstrate the pitfalls of
this in Subsection 2.5. Another possible route (the
one we take here) is to use the robot positions to con-
struct a continuous function that represents coverage
(e.g. (Hussein and Stipanovic, 2007; Zhong and Cas-
sandras, 2011; Ayvali et al., 2017)). It is also possible
to use a combination of the two methods, as in (Cortes
et al., 2004).

The method we present and analyze is inspired by
vortex blob numerical methods for the Euler equa-
tion and the aggregation equation (see (Craig and
Bertozzi, 2016) and the references therein). A sim-
ilar strategy was used in (Li et al., 2017) and (Zhang
et al., 2018) to measure the effectiveness of a certain

robotic control law, but to our knowledge, our work
is the first study of any such method in a form suffi-
ciently general for common use.

2.1 Definition

We are given a bounded region1 Ω ∈ Rd , a de-
sired robot distribution ρ : Ω → (0,∞) satisfying∫

Ω
ρ(z)dz = 1, and N robot positions x1, ...,xN ∈ Ω.

To compare the discrete points x1, ...xN to the func-
tion ρ, we place a “blob” of some shape and size at
each point xi. The shape and size parameters have
two physical interpretations as:
• the area in which an individual robot performs its

task, or
• inherent uncertainty in the robot’s position.

Either of these interpretations (or a combination of the
two) can be invoked to make a meaningful choice of
these parameters.

The blob or robot blob function can be any func-
tion K(z) : Rd →R that is non-negative on Ω and sat-
isfies

∫
Rd K(z)dz = 1. While not required, it is often

natural to use a K that is radially symmetric and de-
creasing along radial directions. In this case, we need
one more parameter, a positive number δ, that con-
trols how far the effective area (or inherent positional
uncertainty) of the robot extends. We then define Kδ

as,

Kδ(z) =
1
δd K

( z
δ

)
. (1)

We point out that we still have
∫
Rd Kδ(z)dz = 1. One

choice of Kδ would be a scaled indicator function, for
instance, a function of constant value within a disc
of radius δ and 0 elsewhere. This is an appropriate
choice when a robot is considered to either perform
its task at a point or not, and where there is no notion
of the degree of its effectiveness. For the remainder
of this paper, however, we usually take K to be the
Gaussian

G(z) =
1

2π
exp

(
−|z|

2

2

)
,

which is useful when the robot is most effective at
its task locally and to a lesser degree some distance
away. To define the swarm blob function ρδ

N , we place
a blob Gδ at each robot position xi, sum over i and
renormalize, yielding,

ρ
δ
N(z;x1, ...,xN) =

∑
N
i=1 Gδ(z− xi)

∑
N
i=1

∫
Ω

Gδ(z− xi)dz
. (2)

1We present our definitions for any number of dimen-
sions d ≥ 1 to demonstrate their generality. However, in the
latter sections of the paper, we restrict ourselves to d = 2, a
common setting in ground-based applications.

https://git.io/v5ytf


For brevity, we usually write ρδ
N(z) to mean

ρδ
N(z;x1, ...,xN). This swarm blob function gives a

continuous representation of how the discrete robots
are distributed. Note that each integral in the denomi-
nator of (2) approaches 1 if δ is small or all robots are
far from the boundary, so that we have,

ρ
δ
N(z)≈

1
N

N

∑
i=1

Gδ(z− xi). (3)

We now define our notion of error, which we refer
to as the error metric:

eδ
N(x1, ...,xN) =

∫
Ω

∣∣∣ρδ
N(z)−ρ(z)

∣∣∣dz. (4)

We often write this as eδ
N for brevity.

2.2 Remarks and Basic Properties

Our error is defined as the L1 norm between the
swarm blob function and the desired robot distribu-
tion ρ. One could use another Lp norm; however,
p = 1 is a standard choice in applications that involve
particle transportation and coverage such as (Zhang
et al., 2018). Moreover, the L1 norm has a key prop-
erty: for any two integrable functions f and g,∫

Ω

| f −g| dz = 2 sup
B⊂Ω

∣∣∣∣∫B
f dz−

∫
B

gdz
∣∣∣∣ .

The other Lp norms do not enjoy this property (De-
vroye and Győrfi, 1985, Chapter 1). Consequently, by
measuring L1 norm on Ω, we are also bounding the er-
ror we make on any particular subset, and, moreover,
knowing the error on “many” subsets gives an esti-
mate of the total error. This means that by using the L1

norm we capture the idea that discretizing the domain
provides a measure of error, but avoid the pitfalls of
discretization methods described in Subsection 2.5.

Studies in optimal control of swarms often use the
L2 norm due to the favorable inner product structure
(Zhang et al., 2018). We point out that the L1 norm
is bounded from above by the L2 norm due to the
Cauchy-Schwarz inequality and the fact that Ω is a
bounded region. Thus, if an optimal control strategy
controls the L2 norm, then it will also control the error
metric we present here.

Last, we note:

Proposition 2.1. For any Ω, ρ, δ, N, and (x1, ...,xN),

0≤ eδ
N ≤ 2.

Proof. This follows directly from the basic property∫
| f |dz−

∫
|g|dz≤

∫
| f−g|dz≤

∫
| f |dz+

∫
|g|dz

and our normalization.

The theoretical minimum of eδ
N can only be ap-

proached for a general target distribution when δ is
small and N is large, or in the trivial special case when
the target distribution is exactly the sum of N Gaus-
sians of the given δ, motivating the need to develop
benchmarks (1) and (2).

2.3 Variants of the Error Metric

The notion of error defined by (4) is suitable for tasks
that require good instantaneous coverage. For tasks
that involve tracking average coverage over some pe-
riod of time (and in which the robot positions are
functions of time t), an alternative “cumulative” ver-
sion of the error metric is∫

Ω

∣∣∣∣∣ 1
M

M

∑
j=1

ρ
δ
N(z, t j)−ρΩ(z)

∣∣∣∣∣dz (5)

for time points j = 1, . . . ,M. This is a practical,
discrete-time version of the metric used in (Zhang
et al., 2018), which uses a time integral rather than
a sum, as in practice, position measurements can only
be made at discrete times. While this cumulative error
metric is, in general, distinct from the instantaneous
version of (4), note that the extrema and PDF of this
cumulative version can be calculated as the extrema
and PDF of the instantaneous error metric with MN
robots. Therefore, in subsequent sections we restrict
our attention to the extrema and PDF of the instanta-
neous formulation without loss of generality.

In addition, (Zhang et al., 2018) considers a one-
sided notion of error, in which a scarcity of robots is
penalized but an excess is not, that is,

êδ
N =

∫
Ω−

∣∣∣ρδ
N(z)−ρ(z)

∣∣∣ dz,

where Ω− := {z|ρδ
N(z) ≤ ρ(z)}. Remarkably, êδ

N and
eδ

N are related by:

Proposition 2.2. eδ
N = 2êδ

N .

Proof. Let Ω+ = Ω \Ω−. Since Ω = Ω− ∪Ω+, we
have,∫

Ω−
ρ

δ
N dz+

∫
Ω+

ρ
δ
N dz =

∫
Ω

ρ
δ
N dz = 1 =

=
∫

Ω

ρdz =
∫

Ω−
ρdz+

∫
Ω+

ρdz.

Rearranging and taking absolute values we find∫
Ω−

∣∣∣ρδ
N−ρ

∣∣∣ dz =
∫

Ω+

∣∣∣ρδ
N−ρ

∣∣∣ dz,

as each integrand is of the same sign everywhere
within the limits of integration. We notice that the
left-hand side and therefore the right-hand side of the
previous line equal êδ

N . On the other hand, their sum
equals eδ

N . Thus our claim holds.



The definition of êδ
N is particularly useful in con-

junction with the choice of Kδ as a scaled indicator
function, as êδ

N becomes a direct measure of the defi-
ciency in coverage of a robotic swarm. For instance,
given a swarm of surveillance robots, each with obser-
vational radius δ, êδ

N is the percentage of the domain
not observed by the swarm.2 Proposition 2.2 implies
that 1

2 eδ
N also enjoys this interpretation.

2.4 Calculating eδ
N

In practice, the integral in (4) can rarely be carried
out analytically, primarily because the integral needs
to be separated into regions for which the quantity
ρδ

N(z)− ρ(z) is positive and regions for which it is
negative, the boundaries between which are usually
difficult to express in closed form. We find that a sim-
ple generalization of the familiar rectangle rule con-
verges linearly in dimensions d ≤ 3 and expect Monte
Carlo and Quasi-Monte Carlo methods to produce a
reasonable estimate in higher dimensions3. More ad-
vanced quadrature rules can be used in low dimen-
sions, but may suffer in accuracy due to nonsmooth-
ness in the target distribution and/or stemming from
the absolute value taken within the integral.

2.5 The Pitfalls of Discretization

We conclude this section by analyzing a measure of
error that involves discretizing the domain. In partic-
ular, we show in Propositions 2.3 and 2.4 that the val-
ues produced by this method are strongly dependent
on a choice of discretization. In particular, this er-
ror approaches its theoretical minimum when the dis-
cretization is too coarse and its theoretical maximum
when the discretization is too fine, regardless of robot
positions.

Discretizing the domain means dividing Ω into
M disjoint regions Ωi ⊂ Ω such that

⋃M
i=1 Ωi = Ω.

Within each region, the desired proportion of robots
is the integral of the target density function within the
region

∫
Ωi

ρ(z)dz. Using Ni to denote the observed
number of robots in Ωi, we can define an error metric
as

µ =
M

∑
i=1

∣∣∣∣∫
Ωi

ρ(z)dz− Ni

N

∣∣∣∣ . (6)

2The notion of “coverage” in (Bruemmer et al., 2002)
might be interpreted as êδ

N with δ as the width of the robot.
There, only the time to complete coverage (êδ

N = 0) was
considered.

3We look forward to a physical swarm of robots being
deployed – and these results employed – in four dimen-
sions!

It is easy to check that 0 ≤ µ ≤ 2 always holds. One
advantage of this approach is that µ is very easy to
compute, but there are two major drawbacks.

2.5.1 Choice of Domain Discretization

The choice for domain discretization is not unique,
and this choice can dramatically affect the value of µ,
as demonstrated by the following two propositions.

Proposition 2.3. If M = 1 then µ = 0.

Proof. When M = 1, (6) becomes

µ =

∣∣∣∣∫
Ω

ρ(z)dz−1
∣∣∣∣= 0.

The situation of perfectly fine discretization is in
complete contrast.

Proposition 2.4. Suppose the robot positions are dis-
tinct4 and the regions Ωi are sufficiently small such
that, for each i, Ωi contains at most one robot and∫

Ωi
ρ(z)dz≤ 1/N holds. Then µ→ 2 as |Ωi| → 0.

Proof. Let us relabel the Ωi so that for i= 1, ...,M−N
there is no robot in Ωi, and thus each of the Ωi for
i = M−N + 1, ...,M contains exactly one robot. In
this case, the expression for error µ becomes,

µ =
M−N

∑
i=1

∫
Ωi

ρdz+
M

∑
i=M−N+1

∣∣∣∣∫
Ωi

ρdz− 1
N

∣∣∣∣ . (7)

Since
∫

Ωi
ρdz≤ 1/N holds, then with the identity

M−N

∑
i=1

∫
Ωi

ρdz = 1−
M

∑
i=M−N+1

∫
Ωi

ρdz,

we can rewrite (7) as,

µ = 1−
M

∑
i=M−N+1

∫
Ωi

ρdz+
M

∑
i=M−N+1

(
1
N
−

∫
Ωi

ρdz
)

= 2−2
M

∑
i=M−N+1

∫
Ωi

ρdz.

Thus µ→ 2 as M→ ∞ and |Ωi| → 0.

Note that the shape of each region is also a choice
that will affect the calculated value. While our ap-
proach also requires the choice of some size and shape
(namely, δ and K), these parameters have much more
immediate physical interpretation, making appropri-
ate choices easier to make.

4This is reasonable in practice as two physical robots
cannot occupy the same point in space. In addition, the
proof can be modified to produce the same result even if
the robot positions coincide.



2.5.2 Error Metric Discretization and
Desensitization

Perhaps more importantly, by discretizing the do-
main, we also discretize the range of values that the
the error metric can assume. While this may not be
inherently problematic, we have simultaneously de-
sensitized the error metric to changes in robot dis-
tribution within each region. That is, as long as the
number of robots Ni within each region Ωi does not
change, the distribution of robots within any and all
Ωi may be changed arbitrarily without affecting the
value of µ. On the other hand, the error metric eδ

N is
continuously sensitive to differences in distribution.

3 ERROR METRIC EXTREMA

In the rest of the paper, we provide tools for determin-
ing whether or not the values of eδ

N produced by a con-
troller in a given situation are “good”. As mentioned
in Section 2.2, it is simply not possible to achieve
eδ

N = 0 for every combination of target distribution
ρ, number of robots N, and blob size δ . Therefore,
we would like to compare the achieved value of eδ

N
against its realizable extrema given ρ, N, and δ. But
eδ

N is a highly nonlinear function of the robot positions
(x1, ...,xN), and trying to find its extrema analytically
has been intractable. Thus, we approach this problem
by using nonlinear programming.

3.1 Extrema Bounds via Nonlinear
Programming

Let x = (x1, ...,xN) represent a vector of N robot co-
ordinates. The optimization problem is

minimize eδ
N(x1, ...,xN), (8)

subject to xi ∈Ω for i ∈ {1,2, . . . ,N}.
Note that the same problem structure can be used to
find the maximum of the error metric by minimizing
−eδ

N . Given ρ, N, and δ, we solve these problems us-
ing a standard nonlinear programming solver, MAT-
LAB’s fmincon.

A limitation of all general nonlinear program-
ming algorithms is that successful termination pro-
duces only a local minimum, which is not guaranteed
to be the global minimum. There is no obvious re-
formulation of this problem for which a global solu-
tion is guaranteed, so the best we can do is to use a
local minimum produced by nonlinear programming
as an upper bound for the minimum of the error met-
ric. Heuristics, such as multi-start (running the opti-
mization many times from several initial guesses and

taking the minimum of the local minima) can be used
to make this bound tighter. This bound, which we call
e−, and the equivalent bound on the maximum, e+,
serve as benchmarks against which we can compare
an achieved value of the error metric. This is reason-
able, because if a configuration of robots with a lower
value of the error metric exists but eludes numerical
optimization, it is probably not a fair standard against
which to compare the performance of a general con-
troller.

3.2 Relative Error

The performance of a robot distribution controller
can be quantitatively assessed by calculating the er-
ror value eobserved of a robot configuration it produces,
and comparing this value against the extrema bounds
e− and e+. If the robot positions x1, ...,xN produced
by a given controller are constant, then eobserved can
simply be taken as eδ

N(x1, ...,xN). In general, how-
ever, the positions x1, ...,xN may change over time. In
this case, we suggest using the third-quartile value ob-
served after the system reaches steady state, which we
denote eQ3.

Consider the relative error

erel =
eobserved− e−

e+− e−
.

We suggest that if erel is less than 10%, the perfor-
mance of the controller is quite close to the best pos-
sible, whereas if this ratio is 30% or higher, the per-
formance of the controller is rather poor.

3.3 Example

We apply this method to assess the performance of the
controller in (Li et al., 2017), which guides a swarm
of N = 200 robots with δ = 2in (the physical radius
of the robots) to achieve a “ring distribution”5.

Under this stochastic control law, the behavior of
the error metric over time appears to be a noisy decay-
ing exponential. Therefore, we fit to the data shown
in Figure 7 of (Li et al., 2017) a function of the form
f (t) = α+ βexp(− t

τ
) by finding error asymptote α,

error range β, and time constant τ that minimize the
sum of squares of residuals between f (t) and the data.
By convention, the steady state settling time is taken

5The ring distribution ρring is defined on the Cartesian
plane with coordinates z = (z1,z2) as follows. Let inner ra-
dius r1 = 11.4in, outer radius r2 = 20.6in, width w = 48in,
height h = 70in, and ρ0 = 2.79× 10−5. Let domain Ω =
{z : z1 ∈ [0,w],z2 ∈ [0,h]} and region Γ = {z : r2

1 < (z1−
w
2 )

2 +(z2− h
2 )

2 < r2
2}. Then ρring(z) = 36ρ0 if z ∈ Ω∩Γ,

ρ0 if z ∈Ω\Γ.



to be ts = 4τ, which can be interpreted as the time at
which the error has settled to within 2% of its asymp-
totic value (Barbosa et al., 2004). The third quartile
value of the error metric for t > ts is eQ3 = 0.5157.

To determine an upper bound on the global mini-
mum of the error metric, we computed 50 local min-
ima of the error metric starting with random initial
guesses, then took the lowest of these to be e− =
0.28205. An equivalent procedure bounds the global
maximum as e+ = 1.9867, produced when all robot
positions coincide near a corner of the domain. The
corresponding swarm blob functions are depicted in
Figures 1 and 2. Note that the minimum of the error
metric is significantly higher than zero for this finite
number of robots of nonzero radius, emphasizing the
importance of performing this benchmark calculation
rather than using zero as a reference.

Figure 1: Swarm blob function ρδ=2in
N=200 corresponding with

the robot distribution that yields a minimum value of the
error metric for the ring distribution, 0.28205.

Figure 2: Swarm blob function ρδ=2in
N=200 corresponding with

the robot distribution that yields a maximum value of the
error metric for the ring distribution, 1.9867. This occurs
when all robots coincide outside the ring.

Using these values for eQ3, e−, and e+, we calcu-

late erel according to Equation 3.2 as 13.71%.
While the sentiment of the erel benchmark is found

in (Li et al., 2017), we have made three important im-
provements to the calculation to make it suitable for
general use. First, in (Li et al., 2017) values analo-
gous to e− and e+ were found by “manual placement”
of robots, whereas we have used nonlinear program-
ming so that the calculation is objective and repeat-
able. Second, (Li et al., 2017) refers to steady state
but does not suggest a definition. Adopting the 2%
settling time convention not only allows for an un-
ambiguous calculation of eQ3 and other steady-state
error metric statistics, but provides a metric for as-
sessing the speed with which the control law effects
the desired distribution. Finally, (Li et al., 2017) uses
the minimum observed value of the error metric in
the calculation, but we suggest that the third quartile
value better represents the distribution of error met-
ric values achieved by a controller, and thus is more
representative of the controller’s overall performance.

These changes account for the difference between
our calculated value of erel = 13.71% and the report
in (Li et al., 2017) that the error is “7.2% of the range
between the minimum error value . . . and maximum
error value”. Our substantially higher value of erel in-
dicates that the performance of this controller is not
very close the best possible. We emphasize this to
motivate the need for our second benchmark in Sec-
tion 4, which is more appropriate for a stochastic con-
troller like the one presented in (Li et al., 2017).

3.4 Error Metric for Optimal Swarm
Design

So far we have taken N and δ to be fixed; we have
assumed that the robotic agents and size of the swarm
have already been chosen. We briefly consider the use
of the error metric as an objective function for the de-
sign of a swarm. Simply adding δ > 0 as a decision
variable to (8) and solving at several fixed values of N
provides insight into how many robots of what effec-
tive working radius are needed to achieve a given level
of coverage for a particular target distribution. Visu-
alizations of such calculations are provided in Figure
3 and the supplemental video.

Note that ‘breakthroughs’, or relatively rapid de-
creases in the error metric, can occur once a critical
number of robots are available; these correspond with
a qualitative change in the distribution of robots. For
example, at N = 22 the robots are arranged in a sin-
gle ring; beginning with N = 25 we see the robots
begin to be arranged in two separate concentric rings
of different radii and the error metric begins to drop
sharply. On a related note, there are also “lulls” in



Figure 3: Swarm blob functions ρδ
N corresponding with the robot distributions and values of δ that yield the minimum value

of the error metric for the ring distribution target. Inset graph shows the relationship between N and the minimum value of the
error metric observed from repeated numerical optimization. Due to long execution time of optimization at N = 256, fewer
local minima were calculated; this likely explain the rise in the minimal error metric value. This highlights the need in future
work to find a more efficient formulation of this optimization problem or to use a more effective solver.

which increasing the number of robots has little ef-
fect on the minimum value of the error metric, such
as between N = 44 and N = 79. Studies like these
can help a swarm designer determine the best number
of robots N and effective radius of each δ to achieve
the required coverage.

4 ERROR METRIC
PROBABILITY DENSITY
FUNCTION

In the previous section we have described how to find
bounds on the minimum and maximum values for er-
ror. A question that remains is, how “easy” or “dif-
ficult” is it to achieve such values? Answering this
question is important in order to use the error met-
ric to assess the effectiveness of an underlying con-
trol law. Indeed, a given control law — especially a
stochastic control law — may tend to produce robot
positions with error well above the minimum, and it
is necessary to assess these values as well.

According to the setup of our problem, the goal of
any such control law is for the robots to achieve the
desired distribution ρ. Thus, whatever the particular
control law is, it is natural to compare its outcome
to simply picking the robot positions at random from
the target distribution ρ. In this section we consider
the robot positions as being sampled directly from the

desired distribution and study the statistical properties
of the error metric in this situation, both analytically
and numerically, and suggest how they may be used as
a benchmark with which to evaluate the performance
of a swarm distribution controller.

We take the robots’ positions X1, . . . , XN , to be
independent, identically distributed bivariate random
vectors in Ω ⊂ R2 with probability density function
ρ. We place a blob of shape K at each of the Xi (pre-
viously we took K to be the Gaussian G), so that the
swarm blob function is,

ρ
δ
N(z) =

1
Nδ2

N

∑
i=1

Kδ (z−Xi) , (9)

where Kδ is defined by (1). We point out that the
right-hand side of (9) is exactly that of (3) upon tak-
ing K to be the Gaussian G and the robot locations xi
to be the randomly selected Xi. The error eδ

N is now
a random variable, the value of which depends on the
particular realization of the robot positions X1, . . . ,
XN , but which has a well-defined probability density
function (PDF) and cumulative distribution function
(CDF). We denote the PDF and CDF by feδ

N
and Feδ

N
,

respectively. The performance of a stochastic robot
distribution controller can be quantitatively assessed
by calculating the error values eδ

N(x1, ...,xN) it pro-
duces in steady state and comparing their distribution
to feδ

N
.

In Subsection 4.1 we present rigorous results that



show that the error metric has an approximately nor-
mal distribution in this case. As a corollary we obtain
that the limit of this error is zero as N approaches in-
finity and δ approaches 0. Subsections 4.2 and 4.3
include a numerical demonstration of these results. In
addition, in 4.3, we present an example calculation.

The theoretical results presented in the next sub-
section not only support our numerical findings, they
also allow for faster computation. Indeed, if one did
not already know that the error when robots are sam-
pled randomly from ρ has a normal distribution for
large N, tremendous computation may be needed to
get an accurate estimate of this probability density
function. On the other hand, since the results we
present prove that the error metric has a normal distri-
bution for large N, we need only fit a Gaussian func-
tion to the results of relatively little computation.

4.1 Theoretical Central Limit Theorem

The expression (9) is the so-called kernel density esti-
mator of ρ. This arises in statistics, where ρ is thought
of as unknown, and ρδ

N is considered as an approxima-
tion to ρ. It turns out that, under appropriate hypothe-
ses, the L1 error between ρ and ρδ

N has a normal dis-
tribution with mean and variance that approach zero
as N approaches infinity. In other words, a central
limit theorem holds for the error. For such a result to
hold, δ and N have to be compatible. Thus, for the
remainder of this subsection δ will depend on N, and
we display this as δ(N). We have,
Theorem 4.1. Suppose ρ is continuously twice dif-
ferentiable, K is zero outside of some bounded region
and radially symmetric. Then, for δ(N) satisfying

δ(N) = O(N−1/6) and lim
N→∞

δ(N)N1/4 = ∞, (10)

we have

eδ(N)
N ≈N

(
e(N)

N1/2 ,
σ(N)2δ(N)2

N

)
,

where σ2(N) and e(N) are deterministic quantities
that are bounded uniformly in N.6

Proof. This follows from Horváth (Horváth, 1991,
Theorem, page 1935). For the convenience of the
reader, we record that the quantities N, δ, ρ, ρδ

N ,
eδ

N that we use here correspond to n, h, f , fn, In in
(Horváth, 1991). We do not present the exact expres-
sions for σ(N) and e(N); they are written in (Horváth,

6Here N (µ,σ2) denotes the normal random variable of
mean µ and variance σ2, and we use the notation≈ to mean
that the difference of the quantity on the left-hand side and
on the right-hand side converges to zero in the sense of dis-
tributions as N→ ∞.

1991, page 1934). The uniform boundedness of σ

is exactly line (1.2) of (Horváth, 1991); the bound-
edness for e(N) is not written explicitly in (Horváth,
1991) so we briefly explain how to derive it. In the ex-
pression for e(N) in (Horváth, 1991), mN is the only
term that depends on N. A standard argument that
uses the Taylor expansion of ρ and the symmetry of
the kernel K (see, for example, Section 2.4 of the lec-
ture notes (Hansen, 2009)) yields that mN is uniformly
bounded in N.

From this it is easy to deduce:

Corollary 4.2. Under the hypotheses of Theorem 4.1,
the error eδ(N)

N converges in distribution to zero as
N→ ∞.

Remark 4.3. There are a few ways in which practical
situations may not align perfectly with the assump-
tions of (Horváth, 1991). However, we posit that in
all of these cases, the difference between these situ-
ations and that studied in (Horváth, 1991) is numeri-
cally insignificant. We now briefly summarize these
three discrepancies and indicate how to resolve them.

First, we defined our density ρδ
N by (2), but in

this section we use a version with denominator N.
However, as explained above, the two expressions ap-
proach each other for small δ, and this is the situa-
tion we are interested in here. Second, a ρ that is
piecewise continuous like the ring distribution is not
twice differentiable. We point out that an arbitrary
density ρ may be approximated to arbitrary precision
by a smoothed out version, for example by convolu-
tion with a mollifier (a standard reference is Brezis
(Brezis, 2010, Section 4.4)). Third, in our computa-
tions we use the kernel G, which is not compactly sup-
ported, for the sake of simplicity. Similarly, this ker-
nel can be approximated, with arbitrary accuracy, by a
compactly supported version. Making these changes
to the kernel or target density would not affect the
conclusions of numerical results.

4.2 Numerical Approximation of the
Error Metric PDF

In this subsection we describe how to numerically find
feδ

N
and Feδ

N
. For sufficiently large N, one could sim-

ply use random sampling to estimate the mean and
standard deviation, then take these as the parameters
of the normal PDF (i.e. the error function and Gaus-
sian function, respectively). However, for moderate
N, we choose to begin by estimating the entire CDF
and confirming that it is approximately normal. We
first establish:



Proposition 4.4. We have,

Feδ
N
(z) =

∫
ΩN

1{x|eδ
N(x)≤z}

N

∏
i=1

ρ(xi)dx. (11)

Proof. We recall a basic probability fact. Let Y be a
random vector with values in A⊂RD with probability
density function f , and let g be a real-valued function
on Rd . The CDF for g(Y ), denoted Fg(Y ), is given by,

Fg(Y )(z) = P(g(Y )≤ z) =
∫

A
1{y|g(y)≤z} f (y)dy, (12)

where 1 denotes the indicator function.
In our situation, we take the random vector Y to

be X := (X1, ...,XN). Since X takes values in ΩN :=
Ω× ...×Ω, we take A to be ΩN (we point out that here
D = 2N). Since each Xi has density ρ, the density of
X is the function ρ̃, defined by,

ρ̃(x1, ...,xn) =
N

∏
i=1

ρ(xi).

Thus, taking f and g in (12) to be ρ̃ and eδ
N , respec-

tively, yields (11).

Notice that since each of the xi is itself a 2-
dimensional vector (the Xi are random points in the
plane and we are using the notation x = (x1, ...,xN)),
the integral defining the cumulative distribution func-
tion of the error metric is of dimension 2N. Finding
analytical representations for the CDF is combina-
torially complex and quickly becomes infeasible for
large swarms. Therefore, we approximate (11) us-
ing Monte Carlo integration, which is well-suited for
high-dimensional integration (Sloan, 2010)7, and fit a
Gauss error function to the data. If the fitted curve
matches the data well, we differentiate to obtain the
PDF. We remark that we have used the notation of an
indicator function above in order to express the quan-
tity of interest in a way that is easily approximated
with Monte Carlo integration.

4.3 Example

We apply this method to assess the performance of
the controller in (Li et al., 2017), again for the “ring
distribution” scenario with N = 200 robots described
in Section 3.3.

7Quasi-Monte Carlo techniques, which use a low-
discrepancy sequence rather than truly random evaluation
points, promise somewhat faster convergence but require
considerably greater effort to implement. The difficulty
is in generating a low-discrepancy sequence from the de-
sired distribution, which is possible using the Hlawka-
Mück method, but computationally expensive (Hartinger
and Kainhofer, 2006).

We approximate Feδ
N

using M = 1000 Monte Carlo
evaluation points; this is shown by a solid gray line
in Figure 4. The numerical approximation appears to
closely match a Gauss error function (erf(·), the inte-
gral of a Gaussian G) as theory predicts. Therefore an
analytical erf(·) curve, represented by the dashed line,
is fit to the data using MATLAB’s least squares curve
fitting routine lsqcurvefit. To obtain feδ

N
, the ana-

lytical curve fit for Feδ
N

is differentiated, and the result
is also shown in Figure 4.

Figure 4: The CDF of the error metric when robot posi-
tions are sampled from ρ is approximated by Monte Carlo
integration, an erf curve fit matches closely, and the PDF is
taken as the derivative of the fitted erf.

With the error metric distribution now confirmed
to be approximately normal, the F- and T-tests (Moore
et al., 2009) are appropriate statistical procedures for
comparing the steady state error distribution to feδ

N
.

From data presented as Figure 7 of (Li et al.,
2017), we calculate the distribution of steady state er-
ror metric values produced by the controller to have a
mean of 0.5026 with a standard deviation of 0.02586.
We take the null hypothesis to be that the distribution
of these error metric values is the same as feδ

N
, which

has a sample mean of 0.4933 and a standard deviation
of 0.02484, as calculated from the M = 1000 samples.
A two-sample F-test fails to refute the null hypothesis,
with an F-statistic of 1.0831, indicating no significant
difference in the standard deviations. On the other
hand, a two-sample T-test rejects the null hypothesis
with a T-statistic of 8.5888, indicating that the steady
state error is not distributed with the same population
mean as feδ

N
. However, the 95% confidence interval

for the true difference between population means is
computed to be (0.00717,0.01141), showing that the
mean steady state error achieved by this controller is
unlikely to exceed that of feδ

N
by more than 2.31%.

Therefore, we find the performance of the controller
in (Li et al., 2017) to be acceptable given its stochas-
tic nature, as the error metric values it realizes are
only slightly different from those produced by sam-
pling robot positions from the target distribution.

As with erel of Section 3, the sentiment of this



benchmark is preceded by (Li et al., 2017). However,
without prior knowledge that feδ

N
would be approxi-

mately Gaussian, the calculation took two orders of
magnitude more computation in that study8. Also,
where it is noted in (Li et al., 2017) that “the error val-
ues [from simulation] mostly lie between . . . the 25th
and 75th percentile error values when robot configu-
rations are randomly sampled from the target distri-
bution”, we have replaced visual inspection with the
appropriate statistical tests for comparing two approx-
imately normal distributions. These improvements
make this error metric PDF benchmark objective and
efficient, and thus suitable for common use.

5 FUTURE WORK AND
CONCLUSION

While the concepts presented herein are expected
to be sufficient for the comparison and evaluation
of swarm distribution controllers, the computational
techniques are certainly open to analysis and im-
provement. For instance, is there a simpler, determin-
istic method of approximating the error metric PDF
feδ

N
? Is there a more appropriate formulation for de-

termining the extrema of the error metric for a given
situation, one that is guaranteed to produce a global
optimum? If not, which nonlinear programming al-
gorithm is most suitable for solving (8)? In practice,
what method of quadrature converges most efficiently
to approximate the error metric? As the size of prac-
tical robot swarms will likely grow faster than pro-
cessor speeds will increase, improved computational
techniques will be needed to keep benchmark compu-
tations practical.

Also, a very important question remains about the
nature of the error metric. The blob shape Kδ has an
intuitive physical interpretation, and so a reasonable
choice is typically easy to make. The value of the
error metric for a particular situation is certainly af-
fected by the choice of blob shape K and radius δ,
but so are the values of the proposed benchmarks:
the extrema and the error PDF. Are qualitative con-
clusions made by comparing the performance of the
controller to these benchmarks likely to be affected
by the choice of blob?

Open questions notwithstanding, the error met-
ric presented herein is sufficiently general to be used
in quantifying the the performance of one of the
most fundamental tasks of a robotic swarm controller:

8According to the caption of Figure 2 of (Li et al., 2017),
the figure was generated as a histogram from 100,000
Monte Carlo samples.

achieving a prescribed density distribution. The error
metric is sensitive enough to compare the effective-
ness of given control laws for achieving a given target
distribution. The error metric parameters, blob shape
and radius, have intuitive physical interpretations so
that they can be chosen appropriately. Should a de-
signer wish to interpret the performance of a given
controller without comparing against results of an-
other controller, we provide two benchmarks that can
be applied to any situation: extrema of the error met-
ric, and the probability density function of the error
metric when swarm configurations are sampled from
the target distribution. Using the provided code, these
methods can easily be used to quantitatively assess the
performance of new swarm controllers and thereby
improve the effectiveness of practical robot swarms.
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