
UCLA
Posters

Title
Tenet: An Architecture for Tiered Embedded Networks (SYS 8)

Permalink
https://escholarship.org/uc/item/7s0013nx

Authors
Omprakash Gnawali
Ben Greenstein
Ki-Young Jang
et al.

Publication Date
2006

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7s0013nx
https://escholarship.org/uc/item/7s0013nx#author
https://escholarship.org
http://www.cdlib.org/


Design Principles of TenetDesign Principles of Tenet

Tenet API and ApplicationsTenet API and Applications

Tenet: An Architecture For Tiered Embedded Networks Tenet: An Architecture For Tiered Embedded Networks 
Omprakash Gnawali, Ben Greenstein, Ki-Young Jang, August Joki, Jeongyeup Paek, Marcos Vieira, 

Deborah Estrin, Ramesh Govindan, Eddie Kohler
http://tenet.usc.edu

How do we build sensor network systems that are robust and easy How do we build sensor network systems that are robust and easy to program ?to program ?

UCLA UCLA –– UCR UCR –– Caltech Caltech –– USC USC –– CSU CSU –– JPL JPL –– UC MercedUC Merced

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

• Traditional approach with application specific code on one-tier network of 
impoverished motes and in-network processing in leads to complex software 
systems that are hard to program, debug, and manage.
• Tenet has two classes of nodes

– Mote-class nodes (eg. MicaZ, TelosB) interact with the real world i.e sense/actuate 
and run the same general purpose image even across different applications.

– More resourceful masters (PC/Stargates) manage clusters of mote-class nodes 
(perhaps 25-100). Masters are more amenable to complex application level 
programming and debugging

Large scale sensor networks will be tiered Tenet : An Architectural Principle for 
Tiered Embedded Networks

Multi-node data fusion functionality and 
complex application logic should be 
implemented only on the masters, since the 
cost and complexity of implementing this 
in motes outweighs the performance 
benefits of doing so. 

Simplify this interface!
• sensor-addressable tasking
• (reliable) data collection
• generic signal processing

• this can evolve

Sensor tasking, duty cycling, 
MAC, 
localization, time synch, routing, 
congestion control etc. here

(Distributed) computing substrate
Application development happens

here
Asymmetric Task Communication
Any and all communication from a 
master to a mote takes the form of a 
task. Any and all communication from 
a mote is a response to a task.

Task Library

Motes provide a limited library of generic functionality, such as 
timers, sensors, simple thresholds, data compression, and FFT 
transforms. Each task activates a simple subset of this functionality.

Addressability
Any master in a Tenet can communicate 
with any mote or master in that Tenet. Any 
mote in a Tenet can communicate with at 
least one master in that Tenet.

Applications
Ambient Structural Vibration monitoring

Continuous structural monitoring and event 
detection

“sample(3 channels, 20 Hz) → send(stream)”

(http://enl.usc.edu/projects/bridge/)

The Tenet Stack

Omprakash Gnawali, Ben Greenstein, Ki-Young Jang, August Joki, Jeongyeup Paek, Marcos Vieira, Deborah Estrin, Ramesh Govindan, Eddie Kohler, The TENET 
Architecture for Tiered Sensor Networks, In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (Sensys), Boulder, Colorado, November 2006.

Tasking API

Tasking API provides functions to 
describe a task to run on the motes.

System
reboot(), send(type), local_address(), 
global_time(), routing_parent()

Sensor/Actuator
sample(...)
actuate(channel, argtype, value) 

Tasks
issue(gtime, abs, repeat)
deletetaskif(arg, argtype)
deleteactivetaskif(arg, argtype) 

Attribute Management
deleteattributeif(arg, argtype, attr) 
store(attr1, attr2) 
restore(attr, attr2)

Operations on Attributes
Arithmetic: add(), subtract(), mult() etc
Compare: less(), greater(), equal() etc
Logical: and(), or() etc
Bitwise: bit_and(), bit_or() etc. 
Statistics: avg(), std(), min() etc. 

Other
count(attr, init_value, rate) 

Transport API
Transport API provides functions to 
send tasks and collect results from the 
network.

config_transport(host, port)
tid send_task(task description)
response* read_response(timeout)
delete_task(tid)

Pursuit Evasion Game

Pursuer robots estimate the location of evaders 
and corral them.

“sample(0xaa, RSSI) → less(0xaa, 125, 0xbb)
→ deleteactivetaskif(0xbb) → send()”

(http://enl.usc.edu/projects/peg/)
Tenet Program
#include “tenet.h”
main() {
config_transport(localhost, 9998)
tid = send_task(“issue(1Hz)->sample(0x55, LIGHT)->send()”)
while (not timed_out) {
response = read_response(1000 ms)
if (response) {
light = find_attr(response->attrlist, 0x55)
printf(“Node %d reports light value %d\n”,

response->sender, light->value)
} else {
timed_out = TRUE;

}
}




