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Predicting Word-Naming and Lexical Decision Times from a Semantic Space Model 
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Abstract 

We propose a method to derive predictions for single-word 
retrieval times from a semantic space model trained on text 
corpora. In Experiment 1 we present a large corpus analysis 
demonstrating that it is the number of unique semantic 
contexts a word appears in across language, rather than 
simply the number of contexts or the frequency of the word, 
that is the most salient predictor of lexical decision and 
naming times. In Experiment 2, we develop a co-occurrence 
learning model that weights new contextual uses of a word 
based on fit to what currently exists in the word’s memory 
representation, and demonstrate this model’s superiority in 
fitting the human data compared to models built using 
information about the word’s frequency or number of 
contexts. Finally, in Experiment 3 we find that building 
lexical representations using semantic distinctiveness 
naturally produces a better-organized semantic space to make 
predictions for semantic similarity between words.  
 
Keywords: Co-occurrence model; Lexical-decision; LSA; 
Contextual distinctiveness  

Introduction 

The last decade has seen remarkable progress with co-

occurrence models of lexical semantics (e.g., Lund & 

Burgess, 1996; Landauer & Dumais, 1997). These models 

learn semantic representations for words by observing 

lexical co-occurrence patterns across a large text corpus, 

typically representing the words in a high-dimensional 

semantic space. This approach provides both an account of 

the semantic representation for words and an account of the 

learning mechanisms humans use to build and organize 

semantic memory. Co-occurrence models have seen 

considerable success at accounting for data in a wide variety 

of semantic tasks, including TOEFL synonyms (Landauer & 

Dumais, 1997), semantic similarity ratings and exemplar 

categorization (Jones & Mewhort, 2007), and free 

association norms (Griffiths, Steyvers, & Tenenbaum, 

2007). 

To date, all applications of co-occurrence models have 

been to semantic similarity between two words or two 

documents. The standard prediction of semantic similarity 

in these models is some measure of the angle between two 

vectors. However, co-occurrence models should, in theory, 

contain sufficient information in the magnitude of their 

representations to make predictions about single word 

retrieval as well.  

Lexical decision time (LDT) and word naming time (NT) 

are both important variables that offer insight into the 

organization of semantic memory. In a lexical decision task, 

a letter string is presented and the participant provides a 

speeded response of whether the string is a word or not. In a 

naming task, the participant’s task is to name the presented 

word aloud as quickly as possible. Both measures produce 

an index of a word’s identification latency. Orthographic 

and phonological factors are certainly large components of 

both LDT and NT, but semantics plays a significant role as 

well, and co-occurrence models have yet to be extended to 

predicting reaction time variance for these single-word 

identification tasks.  

Modeling of retrieval times is usually done by looking for 

the best environmental correlates of LDT and NT (Adelman 

& Brown, 2008). Some of the most influential models of 

retrieval times are based upon word frequency. Word 

frequency (WF) has been used to drive many different types 

of models, including serial-searched rank frequency models 

(Murray & Forster, 2004), threshold activation models 

(Coltheart, et al., 2001), and connectionist models 

(Seidenberg & McClelland, 1989).  

However, recent evidence suggests that word frequency 

may not drive retrieval times but, rather, the causal factor is 

a word’s contextual diversity (Adelman, Brown, & 

Quesada, 2006; Adelman & Brown, 2008). Contextual 

diversity (CD) is the number of different contexts that a 

word appears in, and is based on the rational analysis of 

memory (Anderson & Milson, 1989), particularly the 

principle of likely need (PLN). PLN states that the more 

unique contexts a word appears in, the more likely the word 

will be needed in any future context. Hence, a word with a 

high CD should be faster to retrieve under this principle.  

A word’s CD value is typically computed by simply 

counting the number of different documents in which it 

appears across a text corpus. This measure has been shown 

to be a better predictor of LDT and NT than WF (Adelman, 

et al., 2006). However, operationalizing CD as the number 

of documents in which a word occurs may not be a fair 

instantiation of PLN. A word that appears in many 

documents may have a high WF, but it should have a low 

CD if those documents are highly redundant, as is the case 

with words that belong to a popular discourse topic for 

which many documents exist. It is the number of different 

contexts and the uniqueness of contexts that determines a 

word’s likely need. This calls for a measure of CD that 

considers the semantic uniqueness of documents that a word 

appears in. Based on PLN, it is reasonable to assume that if 

a word appears in a context it has never before occurred in, 
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then the context should be more important to its CD count. 

A greater number of unique contexts should yield a higher 

CD value than an equal number of redundant contexts. This 

interpretation of PLN has empirical support from 

experiments demonstrating that benefit from repeated 

exposure to an item is strongest if the context changes as 

well (Glenberg, 1979; Verkoeijen, Rikers, & Schmidt, 

2004).  

There is no principled reason why a co-occurrence model 

could not compute a WF or document count to make word-

specific LDT or NT predictions. Most co-occurrence models 

begin with a word-by-document matrix, which contains the 

requisite information in the magnitude (sum) of a word’s 

frequency distribution over documents. In Experiment 1, we 

conduct a large corpus-based analysis to demonstrate that 

number of unique contexts is a more important factor than a 

simple document count or WF in predicting LDT and NT. 

In Experiment 2 we develop a co-occurrence model that 

learns from semantic distinctiveness and makes retrieval 

predictions, and in Experiment 3 we demonstrate that in 

addition to giving a better fit to the LDT and NT data than 

frequency or document count models, our model based on 

semantic uniqueness naturally produces better predictions of 

semantic similarity between words as well. 

 

Experiment 1: Corpus Analysis 

 
Semantic Distinctiveness 

    To examine the influence of semantic distinctiveness, it is 

necessary to create a measure of the coherence of 

documents in which a word appears. Though there are many 

existing models of semantic representation (e.g., HAL or 

LSA), we did not want to approach the problem from a 

specific theoretical orientation. Instead the measure that we 

use to assess the dissimilarity between two documents is 

based on the proportion of words that two documents have 

in common, or: 

 

���������	1, ��	2
 = 1 −
|���� ∩����|

|��� �����,����
|
     (1) 

 

 That is, document similarity is the intersection of the two 

sets of words, divided by the size of the smaller document. 

This gives the proportion of word overlap between two 

documents. Function words (e.g. the, is, of, etc…) were 

filtered out of the set of words, so they do not impact the 

similarity rating. Document dissimilarity is then just 1-

similarity. We then define a word’s semantic distinctiveness 

(SD) as the mean dissimilarity of the set of documents that 

contain it: 
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       (2) 

 

Where n is the number of documents that a word appears in. 

Equation (2) is the average dissimilarity among all 

documents that the word appears in, and this SD value 

signals how distinct the documents that a word occurs in are 

from each other. A word with a high SD value tends to 

occur in documents that have a low amount of word overlap 

(it is more contextually distinct), and a word with a low SD 

value tends to occur in documents that have a high amount 

of word overlap (it is less distinct). 

However, as Adelman, et al. (2006) showed, the number 

of different contexts that a word appears in is a highly 

important predictor of LDT and NT. These SD values do not 

take this important source of information into account. 

    To explore whether counting low similarity contexts as 

being more important yields a better CD count, the weights 

given to the value of a context were modified with 

increasing specificity. This was done by creating 

increasingly more specific rules, based on the computed SD 

values, to create the context value. The first iteration will be 

one rule – if the dissimilarity between two documents is 

greater than 0.0 (covering 100% of the SD data), then 1 is 

added to the word’s count value (note that this is the same 

as the standard document count that weights each document 

equally). On the next iteration, there will be two rules – if 

the dissimilarity between two documents is greater than the 

median of the computed SD values, then the count gets two 

added to it, otherwise (i.e. if it is less than the median) then 

the count gets 1 added to it. Then on the third iteration, the 

rules would increase in resolution: 
 

If dissim(docx, docy) < SD_33_percentile => count +=1 

If dissim(docx, docy) < SD_66_percentile => count +=2 

If dissim(docx, docy) < SD_100_percentile=> count +=3 
 

This is done up to 10 rules (so the data would be split into 

tenths). By this method, we create a document count in 

which documents that have more unique contextual uses of 

the word (compared with the other documents that the word 

appears in) are weighted more strongly than documents that 

have more common contextual usages of the word, 

consistent with PLN.  

 

Method 

Our analyses are based on three corpora: 1) TASA (from 

Touchstone Applied Sciences Associates), 2) a Wikipedia 

(WIKI) corpus, and 3) a New York Times (NYT) corpus. 

The TASA corpus was composed of 10,500 documents, 

with each document having a mean length of 289 words. 

The Wikipedia corpus was composed of 9,755 documents, 

with a mean document length of 391 words. The New York 

Times corpus is composed of 9,100 documents with a mean 

length of 250 words, drawn from the New York Times 

during the year of 1994. These are smaller versions of the 

full corpora, and the reduced size was necessary for 

practical reasons of computation time: The SD counts took, 

on average, 120 hours in parallel across 3 Sun Sparc IV+ 

CPUs for each corpus. LDT and NTs were attained from the 

English Lexicon Project (Balota, et al., 2002). SD values 

were computed for 17,984, 22,673, and 14,609 words, for 

the TASA, WIKI, and NYT corpora, respectively.  
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Results 

    Figure 1 shows the increase in R
2
 for LDT (top panel) and 

NT (bottom panel) as predicted by the SD weighted context 

count over DC and WF. These figures show a large increase 

for the weighted SD counts over both WF and 

predicting variance for word identification measures. As 

these figures illustrate, giving greater weight to a context 

that is more distinct given a word’s history of contexts can 

produce a better fit to the latency measures. In our 

subsequent analyses, we will use a split of seven quantiles, 

since after this point there does not appear to be a significant 

increase in variance predicted for any of the corpora.     

 

 

 

 

 

 

Adelman et al. (2006) found a small but reliable increase

variance predicted for LDT and NT by document count over 

WF (using log or power transforms of both variables). We 

conducted a similar regression analysis using our 

SD_Count, WF, and document count (DC) to predict the 

 

Table 1. Lexical Decision
 

                                                    Effect (∆

Analysis TASA 

Log_SD (After WF) 5.501 6.417

Log_CD (After WF) 2.341 1.675

Log_ SD (After CD) 3.87 6.807

Log_WF (After CD) 0.0 n.s. 0.382

Log_CD (After  SD ) 0.645 2.094

Log_WF (After  SD ) 0.0 n.s. 0.0

Log_SD(After CD,WF) 4.487 7.731

Log_WF(After SD, CD) 1.282 1.03

Log_CD(After SD, WF) 0.641 3.108

   

Figure 1. Increase in R
2
 over WF and document 

count predicted by the weighted SD 

(top panel) and NT (bottom panel). 

for LDT (top panel) and 

weighted context 

and WF. These figures show a large increase 

counts over both WF and DC in 

word identification measures. As 

these figures illustrate, giving greater weight to a context 

given a word’s history of contexts can 

produce a better fit to the latency measures. In our 

we will use a split of seven quantiles, 

since after this point there does not appear to be a significant 

increase in variance predicted for any of the corpora.      

 

 

a small but reliable increase in 

LDT and NT by document count over 

WF (using log or power transforms of both variables). We 

conducted a similar regression analysis using our 

to predict the  

 

 

behavioral measures. Tables 1 and 2 show for LDT and NT, 

respectively, the unique variance predicted by each measure 

while the other measures are systematically partialled out. 

The results in Tables 1 and 2 are simi

with power and rank transformations. The 

variable gives a better prediction of the latencies

analysis, and wipes out the effect of WF just as well as the 

document count variable does 

 

 Discussion 

The results of our corpus analysis clearly suggest that in 

order to make an accurate contextual diversity measurement 

one has to take into account the uniqueness of the contexts 

that a word appears in. Considering the semantic 

distinctiveness of the contexts that a word appears in, we 

were able to create a count that is significantly better than 

one that weights all documents as being equally unique. 

    Next, we propose a simple process model to create a 

term-by-document matrix that incrementally weights ne

contexts for words by considering how distinct a document 

is at time t relative to the word’s current lexical 

representation (which represents the knowledge 

representation from documents 1...

the representation magnitude can be used

and NT, and how the weighted input matrix naturally 

produces a better semantic space as a byproduct of this 

implementation of PLN.   

 

Experiment 2: Learning

 
A Contextual Relatedness Episodic Activation

We next wanted to create a co-occurrence model

learn semantic distinctiveness and compare predictions on 

LDT and NT to models that do not. 

results of the corpus analysis, a contextual relatedness 

episodic activation memory (CREAM) model

Like in other co-occurrence learning models, a 

document matrix is built up to create a word’s 

representation. The modification that this model makes

the type of information that is added into the word

document matrix: instead of raw frequency or occurrence, 

Lexical Decision 

Effect (∆R2 in %) 

WIKI NYT 

6.417 6.282 

1.675 0.0 n.s. 

6.807 11.557 

0.382 1.123 

2.094 5.025 

0.0 n.s. 0.0 n.s. 

7.731 11.881 

1.03 1.485 

3.108 5.445 

  

Table 2. Naming Time

 
                                                           Effect (∆R

Analysis TASA 

Log_SD (After WF) 8.49 

Log_CD (After WF) 3.98 

Log_ SD  (After CD) 6.511 

Log_WF (After CD) 0.217 

Log_CD (After  SD ) 0.471 

Log_WF (After  SD ) 1.86 

Log_SD(After CD,WF) 6.511 

Log_WF(After SD, CD) 1.86 

Log_CD(After SD, WF) 0.465 

over WF and document 

 count for LDT 

behavioral measures. Tables 1 and 2 show for LDT and NT, 

respectively, the unique variance predicted by each measure 

while the other measures are systematically partialled out. 

The results in Tables 1 and 2 are similar to those attained 

transformations. The SD_Count 

variable gives a better prediction of the latencies for every 

analysis, and wipes out the effect of WF just as well as the 

e results of our corpus analysis clearly suggest that in 

order to make an accurate contextual diversity measurement 

one has to take into account the uniqueness of the contexts 

that a word appears in. Considering the semantic 

that a word appears in, we 

were able to create a count that is significantly better than 

one that weights all documents as being equally unique.  

Next, we propose a simple process model to create a 

document matrix that incrementally weights new 

contexts for words by considering how distinct a document 

relative to the word’s current lexical 

representation (which represents the knowledge 

1...t-1). We then show how 

the representation magnitude can be used to predict LDT 

and NT, and how the weighted input matrix naturally 

produces a better semantic space as a byproduct of this 

Learning Model 

Contextual Relatedness Episodic Activation Model 

occurrence model that can 

and compare predictions on 

LDT and NT to models that do not. In order to capture the 

a contextual relatedness 

episodic activation memory (CREAM) model was created. 

occurrence learning models, a word-by-

matrix is built up to create a word’s 

that this model makes is 

n that is added into the word-by-

instead of raw frequency or occurrence, 

Naming Time 

Effect (∆R2 in %) 

 WIKI NYT 

9.016 7.751 

2.654 0.0 n.s. 

11.718 13.235 

0.0 n.s. 0.847 

5.468 6.617 

0.819 1.55 

12.403 13.868 

0.775 1.459 

5.833 6.569 
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we will add a semantic distinctiveness value. The first step 

in computing this SD value is to create a ‘context’ or 

‘document’ vector, which we will simply call a composite 

context vector (CCV). Simply, for each word that occurs in 

a document (W1,...,WN) we add each word’s vector into a 

composite vector representing the meaning of the document.  

Formally, this is: 

 

001 = ∑ 2!
3
!4�         (3) 

 

Where N is the set of words in the document, and Ti is the 

memory trace corresponding to word i. The next step is to 

compute a similarity value (given by a vector cosine) 

between each word that occurs in the context and the 

context vector. Then this similarity value is transferred 

through an exponential probability density function, and the 

resulting value is entered into the new context slot in 

memory: 

�� =  ℮.6∗��"!+8       (4) 

 Where λ is a fixed parameter with a small positive value. 

This exponential function has the effect of transforming a 

low similarity value into a large SD value and a high 

similarity value into a small SD value, as well as smoothing 

the added value of uniqueness. The parameter λ is much like 

the weighting scheme that we employed in the corpus 

analysis. With a small λ (<1), the transformation from a 

high to low value is almost linear (e.g. 0.9 to 0.1). However, 

as we increase λ, it accentuates the difference in the value of 

high vs. low similarity contexts. A document count model 

can be considered to be nested within this model, with a λ 

set at 0. As in the corpus analysis, a context with a high SD 

value means that the document is more distinct compared 

with the other contexts that a word has appeared in. This 

gives greater salience to low similarity contexts, in terms of 

the word’s magnitude, than high similarity contexts. 

When a word is first seen its context vector will be empty, 

hence, the similarity between memory and the current 

context will be 0.0. Therefore, the SD value will always be 

1.0 for the first document, and it will be encoded at maximal 

strength. The second time a word is experienced, the 

similarity of this context is compared to the word’s current 

lexical representation (which only contains the first context 

so far). If this is a repetition of the first document, the new 

context will be encoded at minimal strength. If, however, it 

is a context that is unique from the first, the new context 

will be encoded at maximal strength.  

In this fashion the word-by-document matrix has columns 

added to it each time a new document is learned, with the 

encoding strength for a document (for a particular word) 

dependent on the lack of fit between what has been learned 

and what is being experienced. In a sense, the attention 

weight given to a new context is dependent on how unique 

the context is relative to the word’s current memory 

representation. That is, creating a word’s representation in 

memory is a dynamic interaction between what is in 

memory and what is in the environment.  

Method 

To predict LDT and NT, the magnitude of a word is 

computed by summing all of the entries in the word’s 

context vector. This magnitude is used as a direct predictor 

of retrieval times. To judge this model’s ability to predict 

both LDT and NT, a model comparison was undertaken. 

CREAM was compared against a WF model and a 

document count (DC) model. In the CREAM model, the λ 

parameter was fixed at 5.5. In the WF model the frequency 

that a word occurs in a document is the entry into the word-

by-document matrix. In the DC model a 1.0 is entered into 

the matrix if the word occurs in that document. For all three 

models, vector magnitude is used to predict latencies; the 

only difference is how the matrix is built. 

This comparison was conducted for the same three 

corpora as specified in the corpus analysis. However, the 

models were trained on the full versions of each corpus: 

36,700 documents from TASA, with an average length of 

121 per document, and 40,000 documents from the 

Wikipedia corpus, with an average document length of 279. 

The New York Times corpus was the same as specified in 

the corpus analysis. LDT and NT data were again attained 

from the Elexicon database (Balota et al., 2000). In the 

analysis, latencies from 29,799, 35,518, and 20,744 words 

were used for the TASA, WIKI, and NYT corpora, 

respectively. 

 

Results 

Table 3 shows the increase in R
2
 for the various models fit 

to LDT, while controlling for the other models’ magnitudes. 

Table 4 shows the same data for NT. As the tables show, the 

Table 3. Lexical Decision 
 

 Effect (∆R2 in %) 

 TASA WIKI NYT 

Log_CREAM (After WF) 3.048 1.81 5.461 

Log_DC (After WF) 1.274 0.786 0.0 n.s. 

Log_ CREAM  (After DC) 2.346 0.849 6.901 

Log_WF (After DC) 0.0 n.s. 0.364 1.07 

Log_DC (After  CREAM ) 0.511 0.141 0.462 

Log_WF (After  CREAM ) 0.0 n.s. 0.704 0.0 n.s. 

Log_CREAM(After DC,WF) 3.118 1.175 7.348 

Log_DC(After CREAM, WF) 1.327 0.149 2.001 

Log_WF(After CREAM, DC) 0.816 0.7 1.549 

Table 4. Naming Time 
 

 Effect (∆R2 in %) 

 TASA WIKI NYT 

Log_CREAM (After WF) 5.811 3.323 6.568 

Log_DC (After WF) 2.904 2.01 0.0 n.s. 

Log_ CREAM  (After DC) 4.984 1.213 7.791 

Log_WF (After DC) 0.119 0.0 n.s. 0.75 

Log_DC (After  CREAM ) 2.062 0.0 n.s. 0.72 

Log_WF (After  CREAM ) 0.386 0.132 0.0 n.s. 

Log_CREAM(After DC,WF) 5.361 1.336 8.243 

Log_DC(After CREAM, WF) 2.163 0.0 n.s. 1.868 

Log_WF(After Sem, DC) 0.485 0.117 1.197 
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CREAM model performs significantly better then both the 

WF and DC model. As was suggested by the corpus 

analysis, this comparison demonstrates that by weighting 

the context for how unique it is to other contexts that the 

word has appeared in, we can create a better contextual 

diversity count that produces closer correspondence to the 

behavioral measures.  

 

Experiment 3: Semantic Space 
 

Since the word-by-document matrix is used to derive 

semantic representations in many co-occurrence models, we 

wanted to test the semantic organization constructed with 

the SD-weighted learning mechanism against those based on 

raw frequency or document count.  To this end, we adapted 

the Constructed Semantics model of Kwantes (2005) to 

derive a semantic space from our matrices. In Kwantes’ 

model a word-by-document matrix is constructed, with each 

entry in the matrix being the frequency that a word occurs in 

a specific context. This is the same matrix that both LSA 

(Landauer & Dumais, 1996) and the Topics Model 

(Griffiths et al., 2007) begin with. However, instead of 

using a matrix reduction technique (LSA uses singular value 

decomposition), the Constructed Semantics model retrieves 

a word’s semantic representation using a retrieval process 

borrowed from a well-known global memory model – 

MINERVA 2 (Hintzman, 1986), with a few minor 

adjustments. By Kwantes’ account, the raw instances of a 

word’s context occurrences are stored in memory, and a 

word’s meaning is constructed by the retrieval process, 

much in the same way MINERVA 2 explains schema 

abstraction tasks as retrieval from episodic memory 

(Hintzman, 1986).  The retrieval process works by receiving 

a probe P (which is a word’s context vector), and creating a 

composite vector from memory: 

 

0i = ∑ 2!9 ∗ :9
;
94�      (5) 

 

where M is the total number of traces in memory (number of 

words in the word-by-document matrix), T is the current 

trace, and A is activation of memory trace T.  

   The activation value is simply the vector cosine 

(normalized dot product) between the probe and a memory 

trace. One modification of Kwantes’ (2005) model is that if 

the similarity value is less than a criterion, then this vector is 

not added into the composite vector.  

We use Kwantes’ (2005) model here because it is easy to 

understand memory as the word-by-document matrix. 

Typically this matrix is decomposed to determine the latent 

factors that underlie the maximum amount of variance in the 

original matrix, and semantic similarities emerge as a 

byproduct of this dimensional reduction. Semantic 

similarity between words is determined by a measure of the 

angle between their vectors in this reduced space; for 

Kwantes’ model, this would be the cosine of the vectors 

retrieved from memory for the two words, and this process 

produces semantic structure that is very similar to models 

such as LSA.  

As with other co-occurrence models, Kwantes’ (2005) 

model is able to account for the knowledge representation of 

words. It is possible that by building the co-occurrence 

matrix using semantic uniqueness we improved predictions 

of LDT and NT at the cost of semantic organization. Figure 

3 displays a two-dimensional scaling solution for a subset of 

our space, illustrating that semantically similar words seem 

to be clustering in intuitive clusters, as is expected. In this 

figure, we also display a color coding of the magnitude of 

word vectors (likely need) in addition to semantic 

organization. From this figure, it does not appear that 

learning magnitudes based on semantic distinctiveness has 

sacrificed semantic organization. 

 

 
 

Figure 2. MDS plot depicting organization in a subset of 

the semantic space. The location of a point indicates its 

semantic position, and the color indicates vector magnitude 

(used to predict LDT and NT).  

 

 

To get a quantitative test of semantic organization we 

compared the CREAM, WF, and DC models’ predictions of 

semantic distance in WordNet for pairs of words. We used 

the well known Jiang-Conrath (JCN) semantic distance from 

WordNet that has been argued gives the best predictions of 

human judgments of semantic similarities (Maki, McKinley, 

& Thompson, 2004). To test the models, 730 word pairs 

from Maki et al.’s (2004) database were created for each 

model by retrieving their semantic representations from 

memory, as in equation (5). The retrieval process is the 

same for all models, only the way in which the word-by-

document matrix is constructed differs. The results were 

also compared against the results of two established models 

of semantic memory: LSA (Landauer & Dumais, 1997) and 

BEAGLE (Jones & Mewhort, 2007). The correlation matrix 

of this analysis is given in Table 5.  
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Table 5. WordNet Similarity Correlations 
 

Variable 1. 2. 3. 4. 5. 6. 

1.JCN - -.207 -.332 -.237 -.273 -.287 

2. LSA  - .359 .579 .445 .281 

3. BEAGLE   - .483 .540 .617 

4. WF    - .836 .645 

5. DC     - .857 

6. CREAM      - 

 

The CREAM model, based on semantic distinctiveness 

co-occurrence counts, produced predictions that were 

significantly closer to the WordNet similarity values than 

the other models, with the exception of the BEAGLE model. 

The size of this comparison was limited to 730 words due to 

the enormous computations required to create semantic 

representations using Kwantes’ (2005) model. However, it 

cleanly demonstrates that a model based on semantic 

distinctiveness can produce better predictions of LDT and 

NT from its vector magnitudes, and, as a byproduct, 

uniqueness might also produce a better organized semantic 

space. 

This comparison provides converging evidence for the 

importance of uniqueness of a context (relative to memory) 

when building a model of contextual co-occurrences, and it 

proposes a simple process mechanism to build these 

representations that is based on likely need. The resulting 

space seems to produce a better approximation of semantic 

similarity, and the magnitude of a word’s vector can then be 

used to make direct predictions about LDT and NT.  

 

General Discussion 
 

The results of Experiment 1 are consistent with the PLN 

theme advanced by Adelman et al. (2006). However, they 

clearly demonstrate that the semantic uniqueness of a 

context is an important factor to weight when creating a 

contextual diversity measure. Experiment 2 explored this 

theme with confirmatory modeling by building a co-

occurrence representation in which the novelty of 

information being learned was contrasted with existing 

memory structure. It was demonstrated that by doing this 

the model produces better estimates of LDT and NT than 

one based simply on frequency or document occurrence. Of 

interest were the results of Experiment 3: building a 

semantic space from the superior uniqueness matrix actually 

seems to produce better semantic organization, a free lunch 

we are pleased with, but were not explicitly trying to create.  

We believe that using the magnitude of a word’s vector to 

predict LDT and NT is a step in the right direction for a 

unified class of co-occurrence learning models that have 

already proven success at accounting for a wealth of data. 

However, it is important to note that our current account is 

largely exploratory, and currently lacks a sufficient process 

mechanism to explain the host of strategic effects that are 

seen as a function of SOA in lexical decision and naming 

tasks.   
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