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ABSTRACT OF THE THESIS

Stability Properties of Self-Propelled Wakes

by

Tej Patel

Master of Science in Engineering Sciences (Aerospace Engineering)

University of California, San Diego, 2012

Professor Eric Lauga, Chair

This thesis focuses on the stability characteristics of a momentum-less wake.

Momentum-less wakes are wakes produced by self-propelled bodies and can be

found in any numerous fluid flows, such as the flow behind a submarine, or fish.

In this thesis we try to relate the momentum-less wake described to a wake behind

a fish through specific choices in non-dimensional terms. We then look at both

the temporal and spatial stability characteristics. While the temporal stability

characteristics appeared to give results of interest, it appeared that the spatial

stability characteristics were not as interesting.

This thesis also goes into detail about two popular numerical methods of

solving the Orr-Sommerfeld equation, and how to use these methods on the less

common unbounded domain type flows.
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Chapter 1

Introduction

Hydrodynamic stability is an important topic in fluid mechanics that be-

came of great interest in the early part of the 19th century. The primary goal

of hydrodynamic stability is in understanding whether a laminar flow, when per-

turbed, will transition to some new state. In a very general sense, it is understood

that a flow which is perturbed and returns to its original state is stable, while a

flow which comes to a new state is considered unstable. The study of hydrody-

namic stability has many practical applications in engineering such as calculations

of aerodynamic drag, or nuclear power-plant heat exchangers. Within hydrody-

namic stability there are many different sub-topics related to the different forms of

hydrodynamic stability, such as stability of flows caused by convection, or stability

of parallel shear flows. This thesis will focus on the stability of parallel shear flows

related to wakes self-propelled objects.

1.1 Disturbance Equations

As with any fluid flow, the study of stability starts with the Navier-Stokes

Equations. In particular, we wish to rewrite the Navier-Stokes equation in a form

that we may use to study the effect of a velocity or pressure perturbation on a

1
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base flow. The Navier-Stokes equations appear as

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u (1.1)

∇u = 0 (1.2)

To derive the disturbance equations, assume that we have some base flow, U with

velocity components U , V , and W which satisfies the Navier-Stokes equation, and

there exists a perturbation on top of this flow as follows,

u = U(x, y, t) + ũ(x, y, t) (1.3)

v = V (x, y, t) + ṽ(x, y, t) (1.4)

z = W (x, y, t) + w̃(x, y, t) (1.5)

p = P (x, y, t) + p̃(x, y, t) (1.6)

Here, u, v, and w, are the x, y, and z components of the fluid velocity, while the

components, ũ, ṽ, and w̃ denote the perturbation velocities. In vector form this

reads,

u = U + ũ (1.7)

p = P + p̃ (1.8)

We assume that U, ũ, P , and p̃ satisfy the Navier-Stokes equations, so we input

(1.7) and (1.8) into equation (1.1). This results in the following,

∂U

∂t
+
∂ũ

∂t
+ U · ∇ũ + ũ · ∇ũ + U · ∇U + ũ · ∇U =

−∇P −∇p̃+
1

Re
∇U +

1

Re
∇ũ (1.9)

Taking the above equations, and subtracting the mean flow state, we arrive at the

non-linear disturbance equation,

∂ũ

∂t
+ U · ∇ũ + ũ · ∇ũ + ũ · ∇U = −∇p̃+

1

Re
∇ũ (1.10)

∇ · ũ = 0 (1.11)

Equation (1.10) and (1.11) now represent the non-linear disturbance equations.

Because we assume the perturbed quantities, ũ and p̃ to be small, we can linearize
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(1.10) by ignoring the products of small quantities yielding the following:

∂ũ

∂t
+ U · ∇ũ + ũ · ∇U = −∇p̃ +

1

Re
∇ũ (1.12)

The derived disturbances equations can now be used to derive both the Orr-

Sommerfeld equation and the Rayleigh equation.

1.2 Definition of Stability

Roughly speaking, a flow is assumed to be stable if for all time, the per-

turbations to a base flow, ũ and p̃, do not grow. There can be multiple ways of

defining the growth of a perturbation [6], but a common metric is to define the

energy of a perturbation. Following [18], if we take the energy of the perturbed

flow to be given as,

Ev =
1

2

∫
V

ũũdV (1.13)

Then we can say that a flow is stable to a perturbation if

lim
t→∞

Ev(t)

Ev(0)
→ 0. (1.14)

1.3 Temporal and Spatial Stability

The study of stability for fluid flows can be broken into two primary classes

of stability, temporal stability, and spatial stability. Temporal stability focuses on

the amplitude or energy increase of a perturbation in time, we ask the question:

does a point source perturbation die out or increase in strength? Spatial stability

however focuses on how a perturbation behaves in time and space. The primary

questions to ask in spatial stability problems is, does the perturbation die out?

Does it get advected from the original point source? Does it spread both forward

and backward in space? The last point of whether a perturbation will move forward

and backward of its point source in space is known as a absolute instability.
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1.4 Thesis Outline

The first chapter of this thesis focuses on the background of stability calcu-

lations, and goes over the basic concepts of stability. The second chapter will focus

on the derivation of the Rayleigh, and Orr-Sommerfeld equations which are the

basic equations for stability analysis. Chapter two will also cover basic solutions

to both of these equations for the temporal and spatial stability cases. Chapter

three will cover the numerical methods used for the this research, in particular

there will be a comparison of both the finite difference, and Chebyshev collocation

methods. Chapter four will then focus on the temporal and spatial stability of

wakes behind self propelled or towed objects. This will include the derivation of

the velocity profile of a wake behind a self-propelled body, as well as the results

for the stability calculations. Finally chapter five will conclude with possible fu-

ture work, including the possibility of using more modern techniques for stability

calculations.



Chapter 2

Background

For both the derivation of inviscid and viscous flow stability problems, we

assume a flow profile that varies only in the y direction and is constant in both the

x and z directions, as is shown in Figure 2.1. In Figure 2.1, the fluid velocity in

the x direction is given by u, while the y and z components of velocity are given

by v and w respectively.

(a) Channel flow (b) Boundary layer flow (c) Jet / Wake flow

Figure 2.1: Parallel flow schematics showing coordinate systems

2.1 Inviscid Stability: The Rayleigh Equation

The derivation of the Rayleigh equation, following [18], begins with the

simplification of the disturbance equations (1.10). By assuming an inviscid fluid

with flow profiles similar to Figure 2.1 (mainly the base flow, U is only a function

of y), then we can simplify the linear disturbance equations, (1.10) and (1.11) into

5
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the following form:

∂u

∂t
+ U

∂u

∂x
+ v

dU

dy
= −∂p

∂x
(2.1)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
(2.2)

∂w

∂t
+ U

∂w

∂x
= −∂p

∂z
(2.3)

along with the continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
(2.4)

By taking the divergence of (2.1) through (2.3), and combining with the continuity

equation, an equation for the perturbation pressure is obtained which can then

be used with equation (2.2) to remove the pressure term altogether, leaving the

following equation [(
∂

∂t
+ U

∂

∂x

)
∇2 − U ′′ ∂

∂x

]
v = 0 (2.5)

Here we take the prime to mean that we have taken a derivative with respect to

the y direction. Now, we assume wavelike perturbations of the form

v(x, y, z, t) = φei(αx+βz−αct) (2.6)

Here, α is the stream-wise wave number and β is the span-wise wave number, and

αc is the complex frequency, ω. Because in this research we are only looking at

two dimensional flows, the span-wise wave number, β will be assumed to be zero,

this yields the following,

v(x, y, z, t) = φei(αx−αct) (2.7)

In the case of temporal stability for fluid flows, c is the eigenvalue to the problem,

and is thought of as the complex phase speed of the perturbation. The perturbation

amplitude will grow or decay in time like ecit. Thus, a flow is stable if ci < 0, and

unstable otherwise. Now, if we input equation (2.7) into (2.5), we get the following,

iα3cφei(αx−αct) − iαcφ′′ei(αx−αct) + iαUφ′′ei(αx−αct)

− iα3Uφei(αx−αct) − iαU ′′φei(αx−αct) = 0 (2.8)
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dividing equation (2.8) by iαei(αx−αct) and simplifying, we can arrive at the Rayleigh

stability equation.

(U − c)(φ− k2φ)− U ′′φ = 0 (2.9)

The boundary conditions for this problem are as follows,

φ(∂Ω) = 0 (2.10)

for bounded flows, and

φ(±∞) bounded (2.11)

for unbounded flows. Equation (2.9) along with its corresponding boundary con-

ditions now makes an eigenvalue problem to determine stability of a base flow U .

As stated before, for the temporal case the eigenvalue is c, and is complex, while

the wave number, α is real and supplied. However, if we wish to study the case

of spatial instabilities, the eigenvalue becomes α and α is allowed to be complex,

while the frequency ω (and consequently c) is real and supplied.

2.2 Viscous Stability: The Orr-Sommerfeld Equa-

tion

2.2.1 Derivation

The derivation of the Orr-Sommerfeld closely follows the derivation of the

Rayleigh equation, so following in [18], we start with the linear disturbance equa-

tions (1.10) and (1.11), assuming a fully developed base flow, U which varies only

in the y direction, as shown in Figure 2.1. Keeping the viscous terms, and ignoring

the non-linear terms we have the following set of equations,

∂u

∂t
+ U

∂u

∂x
+ vU ′ = −∂p

∂x
+

1

Re
∇2u (2.12)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+

1

Re
∇2v (2.13)

∂w

∂t
+ U

∂w

∂x
= −∂p

∂z
+

1

Re
∇2w (2.14)
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and the continuity equation,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.15)

In these equations, as before, U ′ and U ′′ refer to the the first and second derivatives

of U with respect to y. If we now take the divergence of equations (2.12), (2.13), and

(2.14), and then use equation (2.15) to simplify, we arrive at the following equation

for the perturbation pressure very much like how we did during the derivation of

the Rayleigh equation.

∇2p = −2U ′
∂v

∂x
(2.16)

Combining the above equation with equation (2.13) we now arrive at the equation

for the normal velocity[(
∂

∂t
+ U

∂

∂x

)
∇2 − U ′′ ∂

∂x
− 1

Re
∇4

]
φ = 0 (2.17)

Now, as we did for the Rayleigh equation, we assume that we have wavelike

perturbation as shown in equation (2.7). If we input these perturbations into

equation (2.17), and simplify we can arrive at the following equation

(U − c)(φ′′ − α2φ)i− U ′′φ− 1

iαRe
(φiv − 2α2φ′′ + α4φ) = 0, (2.18)

which is the classical Orr-Sommerfeld equation. Again, like the Rayleigh equation,

c is known as the complex wave speed and is the eigenvalue for the problem. α and

the Reynold’s number, Re, are parameters which are supplied in the case of the

temporal stability problem. Because the Orr-Sommerfeld equation is a 4th order

ODE, we require four boundary conditions in order to uniquely solve the problem.

The boundary conditions for bounded flows are given as,

φ(∂Ω) = φ′(∂Ω) = 0 (2.19)

and for unbounded flows, and

φ(±∞)bounded (2.20)

As can be seen in equation (2.18), if we take the Reynolds number to the

limit, Re→∞, we can see that we will receive back the Rayleigh equation, which

is simply the Orr-Sommerfeld equation at the inviscid limit.
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2.2.2 Applications of the Orr-Sommerfeld Equation - Tem-

poral Stability of Plane Poiseuille Flow

The Orr-Sommerfeld equation along with its associated boundary condi-

tions defines a eigenvalue problem from which we can determine if a given base

flow is stable to sinusoidal perturbations. In the case of temporal stability, the

Reynolds number Re and wave number α are given as parameters, while the eigen-

value, ω needs to be determined. In this case α is to be real while ω can be complex.

In the case of spatial stability, instead of α being a parameter, the frequency ω

is the parameter along with the Reynolds number. The wave number, α is then

allowed to be complex.

One classical application of solving the Orr-Sommerfeld equation is for the

case of plane Poiseuille flow where we have a flow defined on the interval, −1 <

y < 1. The objective is to determine the stability characteristics of plane Poiseuille

flow for various Reynolds numbers and wave numbers. For plane Poiseuille flow,

we know that the base flow is given in non-dimensional terms as follows

U(y) = 1− y2 (2.21)

If we now use this baseflow in the Orr-Sommerfeld equation, (2.18), we can solve

for the eigenvalue spectra to determine when the flow is stable or unstable. The

problem to solve is as follows,

0 = (U − c)(D2 − k2)φ− U ′′φ− 1

iαRe
(D2 − k2)2φ (2.22)

U(y) = 1− y2 (2.23)

0 = φ(±1) = φ′(±1) (2.24)

This problem is not trivial, and cannot be solved in a closed form analytical

method, thus numerical methods need to be used. There are a number of nu-

merical methods available to solve this problem as will be discussed in Chapter 3.

For now we will simply look at the solutions to these example problems.

If we look at the case of plane Poiseuille flow with a Reynolds number of

Re = 2, 000, and a wave number, α = 1, we obtain the eigenvalue spectra shown in
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Figure 2.2. As can be seen in Figure 2.2, all of the eigenvalues have an imaginary

part that is negative, thus implying that the base flow is stable for perturbations

of wave number α = 1 at a Reynolds number of 2,000. If, however, we look at

Figure 2.3, where the Reynolds number is 7,000 and α = 1.02, we will see that the

flow is no longer stable. In Figure 2.3, we see that there exists one eigenvalue that

has an imaginary part larger than zero, thus causing instabilities.

Figure 2.2: Plot of the eigenvalues, c of plane Poiseuille flow for Re = 2000 and

α = 1. Notice the three distinct branches of the eigenvalues.

It is interesting to note also the different branches that exist in the eigen-

value spectrum. Specifically, we can see the vertical branch of eigenvalues, known

as the continuous spectrum of the Orr-Sommerfeld equation, and the two branches

coming off the vertical branch at an angle. These angled branches are known as the

discrete spectrum of the Orr-Sommerfeld equation. As it turns out, flows which

are bounded, like Poiseuille flow have an infinite many number of eigenvalues in

the discrete spectrum. However, as was shown by [16], it turns out that flows on

unbounded domains have only finitely many eigenvalues in the discrete spectrum.

It is clear that a flow’s stability characteristics depend on the parameters,

α and Re, so it is natural to ask on for what values of the parameters is a given
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Figure 2.3: Plot of the eigenvalues, c of plane Poiseuille flow for Re = 7000 and

α = 1.02.

flow stable or unstable. To determine this, we look at the marginal stability curve

a flow. The marginal stability curve shows the curve in the α-Re plane, where the

largest imaginary part of the eigenvalues from the Orr-Sommerfeld equation are

equal to zero. Hence the marginal curve shows the transition point from stable

to unstable flows. The marginal curve for the example of plane Poiseuille flow is

given is Figure 2.4.

2.3 Spatial Stability

In temporal stability, we wish to look at how the amplitude of a perturbation

changes for a given base flow over time, but in the case of spatial stability we wish

to study how the frequency of the overall structure of the spatial and temporal

stability problem is the same in the sense that the Orr-Sommerfeld or Rayleigh

equation is still the governing equation. The difficulty arises in how the eigenvalues

which we are looking for are no longer linear in the Orr-Sommerfeld or Rayleigh

equation, but rather show up as a polynomials.
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Figure 2.4: Plot of the marginal curve for plane Poiseuille. The critical values of

α and Re (the ’nose’ of the curve) are, αc = 1.02 and Rec = 5, 772.

2.3.1 Absolute and Convective Instabilities

As was discussed earlier, in spatial stability analysis, one wants to under-

stand if a given base flow will have an absolute or convective instability. We can

think of an absolute instability as a flow which will grow in both space and time

as in Figure 2.5. In Figure 2.5 we can see how the disturbance, which originates

from the origin, is propagating forward in time, but also in all directions of space.

Eventually, as time progress, this disturbance will affect the entire fluid. A con-

vective instability however behaves differently, in the sense that the disturbance is

advected away from its originating point, and will only ever affect a local area of

the fluid. Figure 2.6 shows a convectively stable flow.

In order to determine if a flow is absolutely or convectivly unstable, we first

bring up the idea of a dispersion relation which is a complex function that relates

the wave number α, and frequency ω. Mathematically, the dispersion relation is

given as

D(α, ω) = 0 (2.25)
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Figure 2.5: Schematic plot of an absolute instability. The disturbance (green)

originates from the origin and propagates in time and space. Notice the disturbance

moves both forward and backward in space.

The dispersion relationship for parallel shear flows can be obtained by finding the

solution of the Orr-Sommerfeld equation, as solving the eigenvalue problem for

either ω (the temporal branch of the dispersion relation), or α (the spatial branch)

creates a relation between the two values. Using this dispersion relationship, we

can study a flow’s response to an impulse in both space and time.

An absolute instability will occur in a flow if there exists a branch point

in the ω plane that is above the ωR axis. If a branch point does exist in the

complex ω plane, by virtue of coupling through the dispersion relationship, a type

of saddle point known as a pinch point will form in the α plane. The mathematical

framework behind spatial instabilities is fairly convoluted, so a brief outline is

presented following, [18]

To model a flows response to a impulse, it is helpful to begin by defining a
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Figure 2.6: Schematic plot of convective instability. The disturbance (green)

originates from the origin and propagates in time and space. Notice however that

the disturbance only moves backwards in space.

Green’s function G(x, t) which abides by the following relationship,

D

(
−i ∂
∂x
, i
∂

∂t

)
G(x, t) = δ(x)δ(t). (2.26)

Now we can mathematically define a convective instability as a flow that has the

following properties,

lim
t→∞

G(x, t)→∞ for at least one ray
x

t
= constant (2.27)

lim
t→∞

G(x, t) = 0 for the ray
x

t
= 0 (2.28)

similarly, an absolute instability can be defined as follows,

lim
t→∞

G(x, t)→∞ for at least one ray
x

t
= constant (2.29)

lim
t→∞

G(x, t)→∞ for the ray
x

t
= 0 (2.30)
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The Green’s function G(x, t) is found by taking the Fourier and Laplace

transform of equation (2.26). We take the Fourier transform in the α variable, and

Laplace transform in the ω variable. Doing this yields the following,

G(x, t) =
1

4π

∫
L

∫
F

ei(αx−ωt)

D(α, ω)
dαdω. (2.31)

Here L represents the counter integration path in the ω plane, while F represents

the counter integration path in the α plane. If we now follow the method introduced

by Briggs, [18], we can determine if a singularity that exists which causes an

absolute or convective instability. We first rewrite equation (2.31) as follows

G(x, t) =
1

2π

∫
L

e−iωt
[

1

2π

∫
F

eiαx

D(α, ω)
dα

]
dω. (2.32)

Generally speaking, the goal is to lower the Laplace contour, L, to below the ωR

line using analytic continuation. If a singularity exists, this will not be possible,

and a cusp in complex ω plane will form. Because doing this procedure analytically

is incredibly difficult for even the most basic flows due to the inherent complexity

of the dispersion relations, a fairly simple numerical approach to determining the

locations of singularities in the complex ω plane exist.

2.3.2 Cusp Map Method

Because it is much easier mathematically to solve the temporal stability

problem, a method to relate the spatial and temporal stability problems is highly

desirable. The goal would be that one can solve the temporal stability case and

retrieve the spatial stability characteristics of a flow. As it so turns out, the cusp

map method allows one to do exactly this.

The idea behind the cusp map method is to map lines of constant αI in

the complex α plane, to the complex ω plane using the Orr-Sommerfeld equation.

If there is an absolute or convective instability, we will see it as a cusp forming

in the ω plane as shown in Figure 2.7. If the cusp forms above the ωR axis, then

we know that a absolute instability has formed, while if the cusp forms below the

ωR axis, then a convective instability exists in the flow. In order to determine
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(a) Lines of αI = Constant (b) α mapped to the complex ω plane

Figure 2.7: Schematic drawing of the cusp map method. The grid in the complex

α plane 2.7a gets mapped via the dispersion relationship (solving the temporal Orr-

Sommerfeld Equation) to the complex ω plane. A singularity exists where the tip

of the cusp is forming in the ω plane.

the mapping from the complex α to complex ω plane, we need to solve the Orr-

Sommerfeld equation. By solving the Orr-Sommefeld equation for a complex α,

we obtain the eigenvalues, ω, of which we pick the most unstable eigenvalue as our

value that has been mapped from the complex α plane. The most unstable ω is

given as the ω with the largest imaginary part. By applying this procedure, we

can determine if given base flows such as the Gaussian wake, have convective or

absolute instabilities.

2.3.3 Applications of the Orr-Sommerfeld Equation - Spa-

tial Stability of the Gaussian Wake

An example of determining the spatial stability characteristics of a fluid flow

is given by Hultgren and Aggarwal, [12], where they study the nature of absolute

instabilities within Gaussian wakes, such as those found behind cylinders in the

far field. The velocity distribution for a Gaussian wake profile is given as

U(y) = 1− λe−y2ln2 (2.33)
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which is valid on the domain −∞ < y < ∞. Here, λ is known as the velocity

deficit parameter, and varies between 0 and 1. Varying λ equates to changing the

distance away from the source of the wake, as can be seen in Figure 2.8.

(a) λ = 0.9 (b) λ = 0.5

Figure 2.8: Drawing of the Gaussian wake for different values of λ. Here the fluid

is moving from left to right.

If we now use this base flow, we can determine the spatial stability charac-

teristics of this flow for different values of the velocity deficit λ. Looking at a value

of the Reynolds number of 100, we can now vary λ to see if an absolute instability

occurs. In Figure 2.9 we can see how mapping the α plane has formed a cusp in

the lower half of the ω plane, showing that no absolute instability exists. However,

by increasing the velocity deficit as shown in Figure 2.10, we form a cusp in the

upper half of the complex ω plane showing that an absolute instability has formed.
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(a) The grid of α values to be mapped (b) α values mapped to the complex ω plane

Figure 2.9: Mapping of the complex α plane to the complex ω plane, for velocity

deficit of λ = 0.95. The ’x’ marks where the branch point is in the ω plane, and

the pinch point is in the α plane. Notice how the cusp that forms is below the ωR

axis.

(a) The grid of α values to be mapped (b) α values mapped to the complex ω plane

Figure 2.10: Mapping of the complex α plane to the complex ω plane, for velocity

deficit of λ = 0.97. The ’x’ marks where the branch point is in the ω plane, and

the pinch point is in the α plane. The cusp in the complex ω plane has now formed

above the ωR axis, hence showing that absolute instabilities now exist.



Chapter 3

Numerical Methods for the

Orr-Sommerfeld Equation

As mentioned previously, the Orr-Sommerfeld equation is an ODE eigen-

value problem with properties that can make it very hard to solve in even the

simplest cases. It was not until the the 1960’s, almost 50 years after the problem

was first posed, that accurate solutions to the equation came about. Because the

Orr-Sommerfeld equation is a linear ODE, a multitude of methods exist to allow

for numerical solutions to the eigenvalues but, as can be expected, certain methods

are better suited to solve the proposed problem.

Historically there have been three general approaches to solving the Orr-

Sommerfeld equation: shooting methods, finite difference methods, and collocation

methods. While all these methods were first applied to solving the temporal sta-

bility problem, by using the cusp mapping method, they can be used to also solve

the spatial stability problem.

3.1 Finite Difference Methods

The application of finite difference methods to the Orr-Sommerfeld eigen-

value problem is very straight forward and allows for determination of the entire

eigenspectra of a problem. The goal is to break the ODE problem into a algebraic

eigenvalue problem by taking the derivatives of the normal velocity φ to be ap-

19
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proximated by a finite difference schema. First, we rearrange the Orr-Sommerfeld

equation as follows(
−Uα2 − U ′′ − α4

iαRe

)
φ+

(
U +

2alpha2

iαRe

)
φ′′ − 1

iαRe
φiv = c(φ′′ − α2φ) (3.1)

with the following boundary conditions

φ(±1) = φ′(±1) = 0 Channel Flow (3.2)

φ(±∞) = φ′(±∞) = 0 Unbounded Flow (3.3)

This allows the eigenvalue problem (2.18) to be written as follows

Aφ̃ = cBφ̃ (3.4)

where c is now a vector containing all the eigenvalues of the discretized system, A

is a complex matrix, and B is a real symmetric matrix. In the present research, a

second order, central finite difference approximation using constant grid spacing, h,

was used making the matrices A and B pentagonal, and tridiagonal respectively.

Equations (3.5) and (3.6) represent the finite difference approximations of the

second and fourth derivatives for use in the Orr-Sommerfeld equation.

φ′(y) =
yi−1 − 2yi + yi+1

h2
(3.5)

φiv(y) =
yi−2 − yi−1 + 2yi − yi+1 + yi+2

h2
(3.6)

In order to handle the boundary condition φ(±1) = 0, we simply must remove the

first and last rows and columns of both A and B (which correspond to y = ±1).

To handle the boundary condition φ′(±1) is a bit more difficult. Following [4] first

we rewrite the derivative boundary condition as follows

φ′0 =
φ1 − φ−1

2h
(3.7)

Now using (3.7) we can write φ−1 as follows

φ−1 = φ1 − 2hφ′0 (3.8)

Because from the boundary condition φ′(±1) = 0, we have that φ′0 = 0, so we can

write the above equation as

φ−1 = φ1 (3.9)



21

Solving the general eigenvalue problem (3.4) can be done in a straight-

forward manner using any number of iterative methods. The advantage of the

representation of the Orr-Sommerfeld equation shown in (3.1) is that (3.4) can be

left multiplied by B−1 to yield a traditional eigenvalue problem. This can only be

done because, as mentioned before, B is a real symmetric matrix. For the current

research, MATLAB’s, built in eigenvalue solvers were used to solve the generated

algebraic eigenvalue problem.

For benchmarking purposes, the speed and accuracy of the finite difference

method used was checked for varying grid sizes against the model problem of the

Orr-Sommerfeld equation applied to Plane Poiseuille flow. Figures 3.1, and 3.2

show the speed and accuracy of the finite difference numerical method.

Figure 3.1: Plot showing the accuracy of the finite difference method outlined.

The method is solving for the most unstable eigenvalue of plane Poiseuille flow at

a Reynolds number 2,000, and α = 1. On the x-axis is the grid size, while the

y-axis is the percent error from the correct solution given in [18]. Here we see

that at 1,024 mesh points, the maximum error obtained in the eigenvalue was only

0.003%.
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Figure 3.2: Plot showing the speed of the finite difference method outlined. The

method is solving for the most unstable eigenvalue of plane Poiseuille flow at a

Reynolds number 2,000, and α = 1. On the x-axis is the grid size, while the y-axis

is the time to solve for the solution.

3.2 Collocation Methods

Collocation methods are a general class of numerical methods that can

be applied to many different kinds of ODE’s. The general idea of collocation

methods is to find a solution to an ODE by approximating the solution as a linear

combination of some assumed set of orthogonal functions. This linear combination

of orthogonal functions are required to satisfy the ODE at a set of collocation

points. Mathematically, this looks like the following

n∑
j=1

cj(Lvj)(ti) = w(ti) (1 ≤ i ≤ n) (3.10)

In the above equation, L is a general linear differential operator, vj is a set of

functions, and ti are the collocation points. There exist a large set of possible

choices for vj, and some common functions that can be picked are the set of

polynomials 1, t, t2, t3, . . ., or B-splines [13]. Specifically with the Orr-Sommerfeld

equation, Chebyshev polynomials were found by Orzag [17] to obtain highly accu-

rate results of the eigenvalues for Poiseuille flow, and Couette flow using many less



23

discretization points then required for finite difference methods. As such, Cheby-

shev collocation methods have become one of the standard methods for solving for

the eigenvalues of the Orr-Sommerfeld equation.

3.2.1 Chebyshev Polynomials

Chebyshev polynomials are a set of orthogonal polynomials defined on the

interval ±1, making them a candidate for use in a collocation method. Chebyshev

polynomials of the first kind, Tk(x) are eigenfunctions of the Strum-Liousville [3]

problem given as (√
1− y2T ′k(y)

)′
+

y2√
1− y2

Tk(y) = 0 (3.11)

for any kεN. Assuming the eigenfunctions are normalized, this gives one represen-

tation of the Chebyshve polynomials as

Tk(y) = cos(k cos−1(y)) (3.12)

By expanding the Chebyshev polynomials as a power series, it is possible to rewrite

the Chebyshev polynomial in (3.12) as a recursion relation given as

Tk+1(y) = 2xTk(y)− Tk−1(y) (3.13)

T0(y) = 1 (3.14)

T1(y) = y (3.15)

The derivatives of Chebyshev polynomials can also be given as a recursion relation

and look like

T
(n)
k (y) = 2kT

(n−1)
k−1 (y) +

k

k − 1
T nk−1(y) n = 3, 4, 5 (3.16)

T
(n)
0 (y) = 0 (3.17)

T
(n)
1 (y) = T

(n−1)
0 (y) (3.18)

T
(n)
2 (y) = 4T

(n−1)
1 (y) (3.19)

When Chebyshev polynomials are used for interpolation or collocation methods,

they are normally evaluated on a set of points known as Gauss- Lobatto points
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which are clustered near the boundary of the domain, ±1. The Gauss-Lobatto

points are given as

yi = cos

(
iπ

N

)
(3.20)

where N is the number of points being used in the interpolation grid. The use

of Gauss-Lobatto points allows for the minimization of Runge’s phenomena in

interpolation, as well as the advantage of having the boundary layers well resolved

for fluid flow problems such as those encountered in channel flow.

Because Chebyshev polynomials are only defined on the interval of ±1, in

order to use them on domains of infinite size, a mapping of the domain ±1 to a new

domain must be used. Normally the maps that are used are either a exponential

maps such as

y = tanh− 1(z) (3.21)

or algebraic maps such as

y =
z√

1− z2
(3.22)

It was found by Orzag and Grosch [9] that algebraic maps from −∞ to∞ tend to

be much more accurate then exponential maps, especially for the Orr-Sommerfeld

problem. To apply a mapping to solve the Orr-Sommerfeld equation on an infinite

domain, it is first necessary to transform the independent variable, y, from the

infinite domain to the domain ±1. For the the hyperbolic tangent map we can

write,

z = tanh y, (3.23)

where z is in the domain ±1, while y is in the domain ±∞. Now applying this

mapping to the Orr-Sommerfeld equation, we arrive at the following transformed

equation,

1

Re
(Aφ+Bφ′ + Cφ′′ +Dφ′′′ + Eφiv) = iαc(′−α2φ+ Fφ′ +Gφ′′) (3.24)



25

where A, B, C, D, E , F , and G are given as follows

A = α4 + α3iReU(y) + iαReU ′′(y) (3.25)

B = 2sech2(y) tanh(y)
[
2α2 + αiReU + 8sech2(y)− 4 tanh2(y)

]
(3.26)

C = −sech4(y)
[
2α2 + αiReU(y) + 8sech2(y)− 28 tanh2(y)

]
(3.27)

D = −12sech6(y) tanh(y) (3.28)

E = sech8(y) (3.29)

F = −2sech2(y) tanh(y) (3.30)

G = sech4(y) (3.31)

similarly, the transformed Rayleigh equation can be given more simply as,

U(y)
[
−alpha2φ− 2sech2(y) tanh(y)φ′ + sech4(y)φ′′

]
− U ′′(y)φ =

− α2φ− 2sech2 tanh(y)φ′ + sech4φ′′

Both transformed Orr-Sommerfeld and Rayleigh equations can now be

solved as usual for the eigenvalues. In this research, it was found that using

this specific map (hyperbolic tangent) for solving the temporal eigenvalue problem

would cause significant errors for smaller wave numbers as illustrated in Figure,

3.3. Here we are comparing the eigenvalues obtained by Howard and Drazin [7]

for the inviscid Bickley jet flow, given by U(y) = sech2(y). To solve this problem

using Chebyshev collocation, the transformed Rayleigh equation was used. As we

can see, there is a significant amount of error that exists for small α, but for large

α the solution is very accurate. One thought as to why such an error exists could

be in the fact that small α, which corresponds to larger wavelengths, cannot be

accurately represented by this map. Qualitatively, it can be viewed as if the longer

wavelength perturbations are being compressed on to the domain ±1, hence caus-

ing significant problems with properly resolving the true eigenvalues associated

with these perturbation wavelengths.

In order to alleviate the problem of these eigenvalues associated with smaller

wave numbers, the computational grid that is used needs to be very large. Because

the hyperbolic tangent or algebraic maps, map the Gauss-Lobatto points to the
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Figure 3.3: Plot showing the error between the expected eigenvalues obtained

in [7], and the eigenvalues obtained from solving the transformed Rayleigh equation

using Chebyshev collocation.

domain ±∞, a larger number of Gauss-Lobatto points needs to be used to ensure

that enough points at the boundary ±1 get mapped sufficiently far to infinity. It

was found that for accurate computations, the domain size needs to be anywhere

from five to fifty times the wake width. Figure 3.4 shows how for the Bickley jet

at the critical Reynolds number requires a computational domain that is roughly

five times larger then the jet width.

3.2.2 Chebyshev Collocation for the Orr-Sommerfeld Equa-

tion

To apply Chebyshev collocation methods to the Orr-Sommerfeld problem

given by equations (2.18), we follow [18] and first expand the perturbations φ in

terms of Chebyshev polynomial as follows,

φ =
K∑
k=0

akTk(y) (3.32)
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Figure 3.4: Plot showing the imaginary part of the most unstable eigenvalue for

the Bickley jet as a function of domain size. The x-axis shows the number of times

the domain is larger when compared to the width of the jet.

incorporating into equation (2.18), we arrive at the following Chebyshev discretiza-

tion of the Orr-Sommerfeld equation,(
U(y)α2 − U ′′(y)− α3

iRe

) K∑
k=0

akTk(y) +

(
U(y) +

2α

iRe

) K∑
k=0

akT
′′
k (y) (3.33)

− 1

iαRe

K∑
k=0

akT
iv
k (y) = c

(
K∑
k=0

akT
′′
k (y)− α2

K∑
k=0

akTk(y)

)
(3.34)

along with boundary conditions given as

K∑
k=0

akTk(±1) = 0 (3.35)

K∑
k=0

akT
′
k(±1) = 0 (3.36)

To numerically solve equation (3.34) along with the boundary conditions

(3.35) and (3.35), we can rewrite the equations as a matrix equation of the form

Aφ̃ = Bφ̃ (3.37)
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Here A has the following form

A =

T0(1) T1(1) . . .

T ′0(1) T ′1(1) . . .

Ay2T0(y2) +By2T
′′
0 (y2)− Cy2T

iv
0 (y2) Ay2T1(y2) +By2T

′′
1 (y2)− Cy2T

iv
1 (y2) . . .

...
... . . .

T0(−1) T1(−1) . . .

T ′0(−1) T ′1(−1) . . .


where Ay, By and Cy are as follows,

Ay = U(y)α2 − U ′′(y)− α3

iRe
(3.38)

By = U(y) +
2α

iRe
(3.39)

Cy =
1

iαRe
(3.40)

B has the following form

B =



T0(1) T1(1) . . .

T ′0(1) T ′1(1) . . .

T ′′0 (y2)− α2T0(y2) T ′′1 (y2)− α2T1(y2) . . .
...

... . . .

T ′′0 (yn−2)− α2T0(yn−2) T ′′1 (yn−2)− α2T1(yn−2) . . .

T0(−1) T1(−1) . . .

T ′0(−1) T ′1(−1) . . .


An easier method of writing both A and B is as follows,

A = AyD
0 +ByD

2 − CyD4 (3.41)

B = D0 + α2D2 (3.42)

Here, DN is known as a differentiation matrix, and is simply a full matrix that

has the derivatives of the Chebeyshev polynomials evaluated at the Gauss-Lobatto

collocation points.
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One of the primary advantages of writing the matrix problem using dif-

ferentiation matrices is that a recursion algorithm can be used to obtain the N th

derivative matrix efficiently. However, the primary drawback of using the differ-

entiation matrices, and collocation methods in general, is that they generate full

matrices, which for larger N, can be extremely ill-conditioned causing significant

problems with roundoff error.

Figures 3.6 and 3.5 show the speed and accuracy of a Chebyshev collocation

based solver for the Orr-Sommerfeld equation. As can be seen, with only 128 mesh

points, 8 times less the number of mesh points as compared the finite difference

method, the Chebyshev collocation method was able to obtain an error of only

3.7 × 10−5%. Also the total time taken to obtain this result, was far less then a

tenth of a second, compared to close to 13 seconds for the finite difference method.

Figure 3.5: Plot showing the accuracy of the Chebyshev collocation method

outlined. The method is solving for the most unstable eigenvalue of plane Poiseuille

flow at a Reynolds number 2,000, and α = 1. On the x-axis is the grid size, while

the y-axis is the percent error from the correct solution given in [18]. Here we

see that at 128 mesh points, the maximum error obtained in the eigenvalue was

3.7× 10−5%.

Because of the speed and efficiency of the Chebyshev based solver, it was
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Figure 3.6: Plot showing the speed of the Chebyshev collocation method outlined.

The method is solving for the most unstable eigenvalue of plane Poiseuille flow at

a Reynolds number 2,000, and α = 1. On the x-axis is the grid size, while the

y-axis is the time to solve for the solution.

decided that for this research, Chebyshev collocation methods should be used.

However, as will be seen later, the flow profile that was being studied had a very

complex structure, and as such was very difficult to solve. To help make solving the

stability characteristics of this specific wake profile simpler, it was decided to use

an available solver known as Chebfun, for MATLAB. While Chebfun still solves

ODE’s using collocation methods, it has been optimized to handle very general

and large problems efficiently and in an easy to use manner.

3.2.3 Chebfun

Chebfun is an open source software suite developed by the numerical analy-

sis group at Oxford University which overloads a broad set of MATLAB functions

for use using structures known as chebfuns. Chebfun’s are essentially Chebyshev

discretization of functions, and by passing overloaded MATLAB functions chebfun

structures, the functions can operate on these structures much like they would

operate on normal numbers. The advantage with the Chebfun package for use
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with the Orr-Sommerfeld equation is its ability to solve ODE eigenvalue problems

quickly and efficiently on almost any size domain. Chebfun has the ability to

handle a variety of boundary conditions, as well as the ability to use a form of

adaptive meshing which is also very beneficial to computing accurate solutions to

the Orr-Sommerfeld equation.

Creating a chebfun structure is very straightforward, and only involves spec-

ifying the function that is being operated on, and the domain on which the function

exists in. Below is an example of creating a chebfun for the equation y = sin(2x)/2x

1 dom = [−10 10] %Define the domain on which the equation is valid

2 f = chebfun(@(x) 'sin(2*x)/(2*x)',dom); %Define the chebfun

3 figure; %Plot the function

4 hold on; grid on;

5 plot(f,'g'); plot(f,'*r')

Figure 3.7: Plot of sin(2x)/(2x) using chebfuns. The red asterisk show where

chebfun has picked the collocation points to located. Notice the bunching of points

near the end points due to the use of Gauss-Lobatto points to minimize Runge

error.
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Now that the chebfun has been created, any number of manipulation of

the function can be done, such as differentiation and integration. For example, in

order to take the second derivative of y = sin(2x)/2x the command diff can be

used as follows,

1 fpp = diff(f,2); %Take the second derivative of f

2 figure; %Plot f and it's second derivative

3 hold on; grid on;

4 plot(f,'g'); plot(fpp,'c');

5 plot(f,'*r'); plot(fpp,'*k');

Figure 3.8: Plot of sin(2x)/(2x) and its second derivative using chebfuns. The red

and black asterisks show where chebfun has picked the collocation points. Again,

notice how the points are clustered near the endpoints to prevent Runge error.

The overloaded diff function handles derivatives in a very efficient manner by

making use of FFT’s to solve for the derivatives of the function.

One of the chebfun packages’ advantage is the speed at which it can solve

ODE’s on a domain of varying size. For the temporal Orr-Sommerfeld equation, we

can easily solve for the eigenvalues of plane Poiseuille flow by doing the following,



33

1 dom = [−1 1]; %Define the Domain

2 uX = chebfun(@(x) 1−x.ˆ2,dom); %Define the flow Profile, U

3 uXpp = diff(uX,2); %Define second derivative of U

4 Re = 7000; %Define the Reynolds number

5 alpha = 1.02; %Define the wave number

6 A = chebop(dom); %Define the a chebop structure's

7 %domain

8 A.op = @(x,u) ... %Define the LHS of the OS equation

9 (diff(u,4) − 2*alphaˆ2*diff(u,2) ...

10 + alphaˆ4*u)/Re ...

11 − 1i*alpha*((uX(x)).*(diff(u,2) − alphaˆ2*u) − (uXpp(x)).*u);

12 B = chebop(dom); %Define the a chebop structure's

13 %domain

14 B.op = @(x,u) ... %Define the LHS of the OS equation

15 diff(u,2) − alphaˆ2*u;

16 A.lbc = @(u) [u , diff(u)]; %Implement the boundary conditions

17 %A

18 A.rbc = @(u) [u , diff(u)];

19 [V e] = eigs(A,B,100,'LR'); %Solve the the most unstable

20 %eigenvalues

21 e = diag(e);

22 [maxe l]= max(real(e));

23 e = e/(−1i*alpha);

In this code we define a structure known as a chebop which is used to define a linear

operator that is the differentiation equation we are trying to solve. In this case

we have two chebops. A, which defines the left-hand side of the Orr-Sommerfeld

equation, and B, which define the right-hand side of the Orr-Sommerfeld equation.

The chebop structure contains all the information about the linear operator we

are trying to solve, such as the domain on which the operator lives on, and the

boundary conditions. To solve the eigenvalue problem all we need to do is pass the

chebop structure to the eigs function in MATLAB which has been overloaded to

handle a chebop structure.

For this research, the flow profile which we are interested in has a domain of

(−∞,+∞), and as it turns out, solving this problem accurately requires a very fine
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computational grid, especially near the wake which is located at the origin. To help

reduce the size of the grid, we took advantage of the fact that the solutions we are

looking for come in both odd and even modes, so we can solve the Orr-Sommerfeld

equation on the domain [0,+∞], allowing us to cut the computational grid in half.

The issue now is we need to solve for two types of modes, the even mode, which

is symmetric about the origin, and the odd mode, which is anti-symmetric about

the origin. To do this we supply two different boundary conditions at 0. For the

symmetric mode, the boundary condition at 0 is as follows:

φ′(0) = 0 φ′′′(0) = 0, (3.43)

while the boundary conditions for the anti symmetric mode at 0 are as follows,

φ(0) = 0 φ′′(0) = 0. (3.44)

Implementing these boundary conditions is very straight forward using the Chebfun

package. As can be seen in the previous code, all that is necessary is to specify the

left and right boundary conditions as a function of u in the chebop structure. So

for example to implement the boundary conditions in (3.43), we do the following,

1 A.lbc = @(u) [diff(u) , diff(u,3)]; %Boundary Condition at 0

2 A.rbc = @(u) [u , diff(u)]; %Boundary Condition at Infinity



Chapter 4

Stability of Self-Propelled Wakes

Self-Propelled wakes are found in many different physical systems, such

as the wakes behind fish or submarines, and have the important characteristic of

being momentum-less.

4.1 Wakes Behind Fish

The wake behind a fish normally will consists of a very non-linear and com-

plex flow, however if we look at the far field behind the fish, then we can approxi-

mate the wake to be a parallel shear flow generated by a force doublet. Following

the work done by Afanasyev [1], Smirnov and Voropayev [19], the derivation of

the flow behind a force doublet can be determined by first starting with two single

forces delivering some amount of kinematic momentum, I, to the fluid. A single

force with finite kinematic momentum in the x-direction, centered at the origin in

two dimensions will have the following associated stream function,

ψ =
Iy

2π(x2 + y2)

(
1− e−ξ2

)
. (4.1)

Here ξ is given as

ξ =

√
x2 + y2

4νt
. (4.2)

In a force doublet, there are two single forces acting in opposite directions of each

other, and infinitesimally close to each other. Thus, to obtain the stream function

35
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for a force doublet, we take the limit as two single forces approach each other along

the x-direction as follows,

ψForce Doublet = ψ(x, y, t)− ψ(x+ ε, y, t). (4.3)

As ε→ 0, this yields the stream function for a force doublet as

ψ = − Mxy

π(x2 + y2)2

[
1− (1 + ξ2)e−ξ

2
]
. (4.4)

In the above equations we have that x and y are the stream-wise and span-wise

coordinates, t is time, ν is the kinematic viscosity, and M is the instantaneous

intensity of the force doublet. Because we wish to obtain the wake profile of

a force doublet moving at velocity U , we will have to integrate equation (4.4)

through time. Upon doing this integration, M will be transformed such that it

will represent the force doublet acting continuously through time. We will refer to

this new variable as Q, which has units of [Q] = L4/t2. Below is a table of all the

constants and variables for the above equations, along with their corresponding

units.

Constant Units

M
[
L4

T

]
ν

[
L2

T

]
U

[
L
T

]
Variable Units

y [L]
x [L]
t [T ]

ψ
[
L2

T

]
Before continuing, it is important that we first non-dimensionalize (4.4) for

use in the Orr-Sommerfeld equation, so we introduce a length scale, L0, given as

follows,

L0 =
Q2/3

Uν1/3
. (4.5)

This length scale is related to the length of the fish, and not necessarily the wake

width, which is traditionally used to determine the wake Reynolds number. The
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choice of this length scale is because the force doublet intensity, which is essentially

related directly to the swimming fish, shows up explicitly in the equation of the

momentum-less wake profile. Thus, it makes sense to relate the fish size, to the

wake profile as well. Using this length scale, we can now define our non-dimensional

variables as follows:

x̄ =
x

L0

, ȳ =
y

L0

and t̄ =
U

L0

t (4.6)

Thus we can write that y = ȳL0, x = x̄L0 and t = L0

U
t̄. Starting with ξ

we can start to non-dimensionalize each term of equation. Substituting for our

non-dimensional variables into ξ, we get the following:

ξ̄ =

√
(L0x̄)2 + (L0ȳ)2

4ν(L0/U)t̄
(4.7)

=
1

2

√
L0U

ν

√
x̄2 + ȳ2

t̄
. (4.8)

Now we can define our first non-dimensional term, the Reynolds number,

Re =
L0U

ν
, (4.9)

So we can now rewrite ξ̄ as

ξ̄ =
1

2

√
Re

√
x̄2 + ȳ2

t̄
. (4.10)

If we now replace, ξ, x, y with ξ̄, x̄, and ȳ respectively, in equation (4.4),

we obtain the following,

ψ = − M(x̄L0)(ȳL0)

π((x̄L0)2 + (ȳL0)2)2

1−

1 +

(
1

2
Re

√
x̄2 + ȳ2

t̄

)2
 e

−
(

1
2

Re

√
x̄2+ȳ2

t̄

)2


(4.11)

= − Mx̄ȳ

πL2
0(x̄2 + ȳ2)2

1−

1 +

(
1

2
Re

√
x̄2 + ȳ2

t̄

)2
 e

−
(

1
2

Re

√
x̄2+ȳ2

t̄

)2
 . (4.12)
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Because the stream function, ψ, has units of [L2/T ], we define ψ̄ as follows,

ψ̄ =
1

UL0

ψ (4.13)

Rearranging the above equation, we get ψ = UL0ψ̄. Replacing ψ with UL0ψ̄ into

equation (4.12) and dividing by UL0, we get the following

ψ̄ = − Mx̄ȳ

πUL3
0(x̄2 + ȳ2)2

1−

1 +

(
1

2
Re

√
x̄2 + ȳ2

t̄

)2
 e

−
(

1
2

Re

√
x̄2+ȳ2

t̄

)2
 (4.14)

Now, to obtain the stream-wise velocity profile, we need to find ∂ψ/∂y

which is now equivalent to finding ∂ψ̄/∂ȳ. Calculating ∂ψ̄/∂ȳ, and substituting in

equation (4.8) into equation (4.14), and simplifying, we get

∂ψ̄

∂ȳ
=

Mx̄

πUL3
0(x̄2 + ȳ2)3

e−ξ̄
2

[(
e−ξ̄

2 − 1
) (
x̄− 3ȳ2

)
− ξ̄2

(
x̄− 3ȳ2

)
+
ȳ2

2
ξ̄4

]
.

(4.15)

Now to get the velocity profile from a continuous force doublet moving

with unit velocity in the x direction, we integrate equation (4.15) as shown in

Afanasyev [1]

ūx(x̄, ȳ, t̄) =

∫ t̄

0

∂ψ̄

∂ȳ
[x̄− (t̄− τ), y, (t̄− τ)] dτ. (4.16)

Because we are integrating with respect to time, we need to multiply equation

(4.16) by our time scale T = L0/U . Multiplying equation (4.16) by L0/U and

pulling out all of the constants yields the following

ūx(x̄, ȳ, t̄) =
Q

πU2L2
0

∫ t̄

0

∂ψ̄

∂ȳ
[x̄− (t̄− τ), y, (t̄− τ)] dτ. (4.17)

Here M has become Q, the force doublet intensity acting continuously in time,

because of the integration. For this integration, it is also important to note that

we wish to integrate to t =∞ as that will result in a force doublet moving in time,

and ignoring all transient behavior of the flow, i.e. the flow start up. Numerically,

the integration was taken to a time that was found sufficiently large enough to

generate a steady state flow (t = 500).

Now we know that we can write the force doublet intensity as follows:

Q = U2L2 1√
Re
, (4.18)
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using this relation we can rewrite the term in front of the integral such that we

arrive at the following equation,

ūx(x̄, ȳ, t̄) =
1

πRe

∫ t̄

0

∂ψ̄

∂ȳ
[x̄− (t̄− τ), y, (t̄− τ)] dτ (4.19)

Thus, the final equation for the stream-wise velocity of the wake is given as

ūx =1 +
1

πRe

∫ t̄

0

x̄

(x̄2 + ȳ2)3
e−ξ̄

2

[(
e−ξ̄

2 − 1
) (
x̄− 3ȳ2

)
− ξ̄2

(
x̄− 3ȳ2

)
+
ȳ2

2
ξ̄4

]
[x̄− (t̄− τ), y, (t̄− τ)] dτ,

(4.20)

with ξ, Re, and L0 given as,

ξ̄ =
1

2

√
Re

√
x̄2 + ȳ2

t̄
Re =

√
L0U

ν
L0 =

Q2/3

Uν1/3
(4.21)

Note that a one has been added to ūx in equation (4.20) to account for the fish

frame of reference. Our final equation is now a function of two parameters, the

Reynolds number, Re, and x̄. y is simply the span-wise coordinate, and equation

(4.20) is solved at every y station to determine the stream-wise velocity profile.

Varying the two parameters, Re, and x̄, we can control the shape of the velocity

profile of the wake as can be seen in Figures 4.1 and 4.2. In Figure 4.1 we can see

how varying the Reynolds number changes the wake width but the wake velocity

is not greatly affected. However, in figure 4.2 we can see how varying x̄ drastically

effects the maximum and minimum values of the wake velocity, and appears to

have a smaller effect then Reynolds number on the wake width.

The reduction in wake width as the Reynolds number is increased makes

intuitive sense from the point of view that, as the Reynolds number is increased,

by equation (4.18) the force doublet intensity created by the fish is less. Thus, the

fish requires less effort to move through the water and is a more efficient swimmer.

This reduced amount of effort can be seen through the smaller disturbance of the

fluid flow (smaller wake width) and hence less energy used. The reduction in peak

velocity as caused by an increase in x̄ also makes intuitive sense because, as one

would expect, the velocity will be damped as you move further away from the

originating source of the fluid flow.
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Figure 4.1: x̄ is constant (x̄ = 2) , while the Reynolds number, Re is varied

between 10,000 and 70,000

Figure 4.2: The Reynolds number is kept constant (Re= 50, 000), while x̄ is

varied between 1 and 4.

4.2 Temporal Stability

Studying the stability of the wake profile, (4.20) was accomplished by using

the Chebfun MATLAB package to solve the Orr-Sommerfeld equation. The prob-
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lem was challenging to solve due to the difficulty of integrating equation (4.20)

as well as the fact that the flow profile shape is coupled to the Reynolds number.

As the Reynolds number was changed, the wake width would change, forcing the

computational domain size to be increased to allow for the accurate determination

of the eigenvalues to the Orr-Sommerfeld equation. Despite this fact, the marginal

stability curve was determined for the momentum-less wake profile at various x̄

locations as shown in Figures 4.3 and 4.4. In both figures it is interesting to note

the two islands of instabilities, the first island forming at lower α values, while the

second island of instability forming a much higher α values.

Figure 4.3: The marginal stability curve of the non-dimensional momentum-less

wake profile given by equation (4.20). Here x̄ = 2 .

One possible explanation of this second island of instability forming at

much higher α values and Reynolds numbers, is that the wake width is much

smaller at higher Reynolds numbers. Because of this smaller wake width, smaller

wavelengths (larger α) can have more of a destabilizing effect on the wake because

the wavelengths are on the same order of magnitude in size as the wake. If for

example we look at the wake profile at a Reynolds number of Re = 50, 000, we

can see that roughly speaking the wake width is on the order of 0.1 units. Now,

if there is a perturbation with a wave number of α = 16, we would have that this

perturbation has a wavelength of roughly 0.06 units, or 60% of the wakes width.

Naively then, we would expect that some sort of instability will form because the
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Figure 4.4: The marginal stability curve of the non-dimensional momentum-less

wake profile given by equation (4.20). Here x̄ = 4 .

perturbation has a size on the same order as the wake.

It is also interesting to look at the mode shapes, and eigenvalue spectrum

for various pairs of α and Re. Figures 4.5 through 4.10 show both the eigenvalue

spectrum and mode shapes for the most unstable eigenvalue, for various α and Re

values. If we look closely at the eigenvalue spectrum in Figures 4.5, 4.7, and 4.9 we

can see both the continuous and discrete spectrum of the eigenvalues. The ”blurri-

ness” of the continuous spectrum is most likely caused by a smaller computational

domain in relation to the wave number. For example, looking at Figure 4.7, or 4.9,

we see that the continuous spectrum is fairly well resolved with wave numbers, α

larger then 1, however, in the case of Figure 4.5, where the wave number is α = 0.6,

we can see that the continuous spectrum is not as well established.

4.3 Spatial Stability

While the temporal stability characteristics of the wake flow studied were

interesting, the spatial stability characteristics did not show any such points of

interest. In particular, using the cusp map method, no singularities were found in

the upper half of the complex ω plane, suggesting that there does not exist any

absolute instabilities in the wake flow. This would seem fairly counter intuitive,
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Figure 4.5: Eigenvalue spectrum for x̄ = 2, Re = 25, 000, and α = 0.6. These

values correspond to an unstable flow.

Figure 4.6: Mode shapes for the most unstable eigenvalue shown in Figure 4.5.

Here we have x̄ = 2, Re = 25, 000, and α = 0.6.
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Figure 4.7: Eigenvalue spectrum for x̄ = 2, Re = 25, 000, and α = 16. These

values correspond to an unstable flow.

Figure 4.8: Mode shapes for the most unstable eigenvalue shown in Figure 4.5.

Here we have x̄ = 2, Re = 25, 000, and α = 16.
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Figure 4.9: Eigenvalue spectrum for x̄ = 2, Re = 500, and α = 1. These values

correspond to a stable flow.

Figure 4.10: Mode shapes for the most unstable eigenvalue shown in Figure 4.5.

Here we have x̄ = 2, Re = 500, and α = 1.
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given the fact that many other wake flows show such absolute instabilities.

Following Criminale, [5], the polynomial eigenvalue problem was also at-

tempted, rather than looking only for singularities in the complex ω plane. How-

ever, solving the polynomial eigenvalue problem via matrix methods i.e. Cheby-

shev and Finite Difference Methods, for the momentum-less wake profile proved

to be very challenging and did not reveal meaningful results. A more appropri-

ate method to solve this polynomial eigenvalue problem may be the local method

known as the compound matrix method.



Chapter 5

Conclusion

In this research a preliminary study was undertaken to try and better un-

derstand the stability characteristics of wakes behind self-propelled bodies, also

know as momentum-less wakes. The equation used to model the span-wise ve-

locity profile of the wake yielded very interesting marginal stability curves in the

temporal study of the wake stability, yet seems to have no spatial instabilities

present. Through the course of this work, two common methods of solving the

Orr-Sommerfeld equation were studied to try and determine which method would

be the most efficient for flows in the unbounded domain. While both finite differ-

ence methods and Chebshev collocation methods have their pros and cons, it was

determined that the availability of code for using Chebyshev collocation, and its

relative ease of use made it more desirable for this research.

5.1 Future Work

The method of studying hydrodynamic stability used in this research, namely

the use of the Orr-Sommerfeld equation, has been around now for over 100 years.

While studying the stability characteristics of self propelled wakes is very useful

for a wide range of topics, more modern methods of determining the wake stability

characteristics exist. More recently with the advent of more powerful computers,

the use of DNS simulations allow for even more accurate modeling of the wake

behind a self-propelled body, and the wake’s response to perturbations.

47
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The analysis done in this thesis was all assuming two dimensional parallel

flow, while in actuality, the flow behind self-propelled objects is realistically much

more 3 dimensional and non-parallel. As such, much more detailed wake models

are needed, and much more robust machinery is required to do the analysis. In this

case a full DNS simulation will allow for much more accurate solutions of the wake

stability because the actual wake behind a self propelled object can be obtained,

and much more accurate responses of the wake to perturbations.
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