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Effect of Social Groups on the Capacity of
Wireless Networks

Mohsen Karimzadeh Kiskani†, Bita Azimdoost†, and Hamid R. Sadjadpour†,

Abstract—In this paper, we study the effects of social inter-
actions among nodes on the capacity of wireless networks. We
consider three scenarios. In the first scenario, the size of the social
group for all nodes is fixed while the frequency of communication
within members of a social group follows power law distribution.
In the second scenario, scale free networks are studied where
the size of the social group differs from node to node, and
the destination in each group is selected uniformly among the
members of that group. Further investigation in the second
scenario reveals that traditional transport capacity definition
provides misleading conclusions for such network models. We
show that nodes with different social status impact the capacity
differently. By separating nodes with different social status and
allocating separate bandwidth to them, it is shown that majority
of nodes scale in this network. In the third scenario, both the
size of the social groups and the destination in each group are
selected according to power law distributions. Our simulation
results corroborate the analytical results. Further, we observe
consistently that social interaction improves the capacity of
wireless networks which implies that the Gupta-Kumar results
were pessimistic for practical networks.

Index Terms—Wireless Social Networks; Scaling Laws in
Wireless Networks; Complex Networks

I. INTRODUCTION

The widespread use of Internet has been a major factor in
changing users’ behaviors in the past decade. The extensive
amount of content growth on the web has made it very difficult
for users to access their desired contents without content
personalization. This, along with privacy concerns have been
the significant forces in moving towards social applications
like Facebook, Youtube and many other social networks in
which each user only connects and communicates within a
restricted social group and only accesses the contents from
its social group. This clearly affects the user’s method and
frequency of communication within each group.

On the other hand, with the emergence of advanced hard-
ware and software technologies which enable significant pro-
cessing power and storage space in mobile devices, and
with their ever increasing widespread use, today’s Internet
is moving [1], [2] from an infrastructure-based network to-
wards a wireless ad-hoc network. At the same time, the
social behaviors and interests of users are changing wireless
networks into wireless social networks which are significantly
influenced by users’ social behaviors. In these social networks,
the users do not necessarily communicate with a central server
[1], [2] and instead, based on their social interests they can
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ment of Electrical Engineering, University of California, Santa Cruz. Email:
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communicate with nodes inside a wireless ad-hoc network.
Therefore, a portion of future data communication networks
can be envisioned as social wireless ad-hoc networks.

While in today’s Internet because of the use of fiber optic
backbone, the throughput may not be seen a big problem,
the rapid increase of video steaming applications like Youtube
or Netflix which account for over half of the Internet traffic
in North America1 can potentially be the bottleneck for
communications over future wireless networks. A concrete
example of such network can be the future 5G networks [1],
[2] in which a portion of the data traffic and video streaming
should be carried over wireless ad-hoc networks. Theoretical
analysis of capacity for these networks becomes increasingly
important.

In their seminal paper [3], Gupta and Kumar found capacity
scaling laws for a dense network of n users. Many subse-
quent works tried to compute the throughput capacity using
different assumptions. Grossglauser and Tse [4] proved that
mobility increases the capacity of wireless networks, Gastpar
and Vetterli [5] studied the capacity of wireless networks
with relays and [6] studied the capacity of hybrid wireless
networks which are formed by placing a sparse network of
base stations in an ad hoc network. Kulkarn and Viswanath [7]
proposed a deterministic approach to compute the throughput
capacity in wireless ad-hoc networks. In all of these works
and the subsequent studies, source-destination selection was
completely random following a uniform distribution.

However, in social wireless ad-hoc networks the nodes are
selecting their destinations in the context of social groups
which means that the nodes are not communicating with
random nodes outside their social groups. In many situations,
the source may not have a prior knowledge about the members
of social groups. Backstrom et al. [8] observed that, the
probability that each node being selected as a member of social
group decreases with its distance to the origin according to a
power-law distribution. This paper considers distance-based
communications with power law distribution and parameter
α.

On the other hand, the frequency of communicating with
different nodes within a social group is not the same; some
nodes are contacted more frequently than others. Latane et
al. [9] studied the frequency of social interactions in social
networks and observed that in these networks, the probability
of choosing the members of a social group is inversely
proportional to distance according to a power-law distribution.
We will consider a power-law distribution with parameter β

1http://mashable.com/2013/11/12/internet-traffic-downstream/
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for the frequency of communications within a social group.
The number of members of social groups is also a random

number in actual wireless social networks. Studies on complex
networks [10]–[13], which are a superset of social networks,
suggest that these networks are scale-free networks meaning
that they have power-law degree distributions. Therefore, we
assume a power law distribution with parameter γ for the size
of social groups in our derivations.

We study the effect of social groups on the throughput
capacity of social wireless ad-hoc networks considering these
distributions. It is predicted that future 5G networks [1], [2]
have large number of nodes, each trying to access personalized
data and video over a wireless ad hoc network2 which makes
this study important in understanding the performance of such
networks.

The first result on the capacity of the wireless ad-hoc
networks with social consideration was reported in [14] where
the authors considered the same model as in [3] but with the
extra assumption that each node has a social group consisting
of local neighbors and just one long-range contact as its
destination. They later generalized [15] this idea to q long-
range social contacts, one of which is selected uniformly at
random as destination. The authors in [15] assume a very
simple model in which they only consider the effect of distance
on the probability of membership in social groups. They
assume a constant fixed number of nodes in each social group
with uniform frequency of communication within each social
group. In the current paper, we improve the results in [15]
by assuming social groups with different number of nodes
and with non-uniform frequency of communication within
each social group. Further, none of these works considers
the frequency of communications inside social groups. In this
paper, we consider different aspects of social networks by
using parameters α, β and γ for three different power-law
distributions, each of which representing a different feature
of the social networks.

The rest of the paper is organized as follows. In section II,
the network assumptions and the routing model are described.
In section III, we assume selection of destination for each
node according to a power-law distribution with parameter β.
Section IV considers the number of long-range social contacts
is no longer a fixed number and has a power-law distribution
with parameter γ. Section V studies the impact of the power
law destination selection in a power law degree distributed
social network. Our analytical results are corroborated by
simulation results in section VI. We conclude the paper in
section VII.

II. NETWORK MODEL

We study the throughput capacity of wireless social net-
works with n nodes randomly distributed in a square area.
The scaling laws for the capacity of such networks without any
social consideration was computed in [3]. In the current paper,
however, nodes can only communicate with members of their
social groups which are known to them a priori. We assume
that the members of social groups for all nodes are selected

2http://flexible-radio.com/news/5g-radio-network-architecture

Fig. 1. All of the nodes in the network are assumed to be distributed in a unit
square area which is divided into many square-lets of side length C1r(n).
Dark gray cells Si contain the nodes within the same lattice distance x from
the source which is assumed to be in the center of the unit square. Cells with
crosses inside are those cells who can transmit simultaneously.

in advance and does not change with time. These social
considerations can result in different average hop count dis-
tance for each source-destination pair compared to [3] which
will result in different throughput capacity performance. To
guarantee connectivity in such dense networks, the minimum
transmission range [16] is r(n) = Θ(

√
logn
n ) which will be

used in this paper. We consider protocol model defined in [17]
for the successful communication between nodes. According
to this model, if the node i is placed at the coordinates Xi, then
a transmission from i to j is successful if |Xi −Xj | < r(n)
and for any other node k transmitting on the same frequency
band, |Xk −Xj | > (1 + ∆)r(n) for a fixed guard zone factor
∆.

Our routing approach is based on the fact that each node
knows the location of its destination and selects the shortest
path to the destination. We will use the deterministic routing
strategy suggested in [7] for our network analysis. It is shown
[7] that if we divide the unit square into many square cells
each with a side length of Θ(

√
logn
n ), there is at least one node

in each cell almost surely. By selecting r(n) = Θ(
√

logn
n ),

the approach in [7] guarantees that the routing algorithm will
converge to transport data from each source to its destination.

To avoid multiple access interference (MAI) in cells, we use
[7] time division multiple access (TDMA) scheme. Assuming
the side length for each cell to be equal to C1

√
logn
n (see

Figure 1) where C1 is a fixed constant that assures all nodes in
the adjacent cells are within the transmission range. Based on
the Protocol model, we only allow simultaneous transmissions
when nodes are at least M cells away from each other, with
M ≥ 2+∆

C1
(see cross sign in Fig. 1)

We denote the data rate for each node as λ, the number of
hops for each source-destination pair as X and its average
value as E[X]. The total throughput by all nodes is nλ.
Therefore, on average the network delivers nλE[X] bits in
a unit of time. There are exactly 1

(MC1r(n))2 square-lets at
any time slot available for transmission and the total network
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bandwidth is W which is a constant value independent of n.
Thus, the total number of bits that the network is capable of
delivering is upper bounded by W

(MC1r(n))2 . Hence,

λ ≤ λmax =
W

nE[X](MC1r(n))2
= Θ(

1

E[X] log n
). (1)

This result implies that the maximum throughput can be
derived by computing E[X]. Our problem is reduced to
computing the average number of hops between source-
destinations pairs which depends on the social characteristics
of the network. Our goal is to study the average hop count
and capacity and since the geographical location of the source
node only changes the distances by a constant value (not a
function of n), we can do our calculations for a node at the
center of the square and consider the result as the order of
average hop count for all the nodes.

In order to compute the average hop count of E[X], it is
easy to observe that the maximum number of hops for each
source-destination pair is in the order of 1

C1r(n) = Θ(r(n)
−1

).

Thus, we have E[X] =
∑ 1

r(n)

x=1 xPr(X = x). The geometrical
locus of cells in the unit square with the hop distance of x
from the source which is located in the center is a rhombus
(see figure 1 for the case of x = 4). The probability that the
number of hops between source and destination is x equals
the probability that the destination is located in one of the
cells of this rhombus. Let’s denote the cells on this rhombus
as s1, s2, ..., s4x. For the rest of this paper, we denote the
social group of the source located in the center by G, the
source by S, the destination by T , the node i by vi and its
distance to the source by di for 1 ≤ i ≤ n. Using these
notations, the probability that the number of hops between
the source and destination X , is equal to x is given by
Pr(X = x) =

∑4x
l=1

∑
vk∈sl Pr(T = vk). Since each node

communicates only with the members of its social group, then
Pr(T = vk | vk /∈ G) = 0 for 1 ≤ k ≤ n and we have,

Pr(T = vk) = Pr(T = vk|vk ∈ G)Pr(vk ∈ G). (2)

We use elementary symmetric polynomial notations to sim-
plify the presentation. If we have n variables x1, x2, ..., xn,
then the k-th degree elementary symmetric polynomial of
these variables is denoted as σk(X) = σk(x1, ..., xn) ,∑

1≤i1<i2<..<ik≤n xi1 ...xik . The elementary symmetric poly-
nomial [18] for n variables excluding the j-th element using
the vector representation Xj̄ = (x1, ..., xj−1, xj+1, ..., xn) is
defined as σk(Xj̄) , σk(x1, ..., xj−1, xj+1, ..., xn).

To compute Pr(vk ∈ G ), we use the results from [8],
[9], [19] to assume that each node selects its social group
members according to a power-law distribution versus distance
with parameter α. Hence, the probability of a node j with
distance dj belonging to social group G is proportional to
d−αj . If the nodes in G are labeled as g1, g2, ..., gq , then the
probability that G consists of these nodes is

Pr(G = {vg1 , ..., vgq}) =
d−αg1 ...d

−α
gq∑

1≤i1<...<iq≤n d
−α
i1
...d−αiq

. (3)

Therefore, the probability of a particular node vk being a

member of G is given by

Pr(vk ∈ G) =

∑
1≤i1<...<iq−1≤n,ij 6=k d

−α
k d−αi1 ...d−αiq−1∑

1≤i1<...<iq≤n d
−α
i1
...d−αiq

=
d−αk σq−1(dk

n)

σq(dn)
, (4)

where dn , (d−αi1 , ..., d−αin ). Thus

E[X] =

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−αk σq−1(dk
n)

σq(dn)
Pr(T = vk|vk ∈ G).

(5)

III. DISTANCE-BASED FREQUENCY OF COMMUNICATION

This section focuses on the case when the social connections
have been formed according to the power law distribution
described in section II with parameter α, all the nodes have
a fixed number of long range social contacts q, and select
their destinations inside the social groups based on distance,
according to another power law distribution. This last assump-
tion is based on a highly cited paper [9] on frequency of
communication inside social groups. We assume that within
the social group G, the source selects its destination according
to a power law distribution with parameter β. By defining
dq = (d−βg1 , ..., d

−β
gq ), we have

Pr(T = vk | vk ∈ G) =
d−βk∑q
j=1 d

−β
j

=
d−βk
σ1(dq)

, (6)

which reduces equation (5) to

E[X] =

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−α−βk σq−1(dk
n)

σ1(dq)σq(dn)
. (7)

Next, we compute the value of E[X] based on the size of
social group, q.

Theorem 1. When q = Θ(n), the average hop count is

E[X] ≡

 Θ(r(n)−1), 0 ≤ β ≤ 2
Θ(r(n)β−3), 2 ≤ β ≤ 3
Θ(1). 3 ≤ β

(8)

Proof: The proof is in appendix.
By replacing r(n) with its minimum value, the maximum

achievable throughput is given by

λmax =


Θ( 1√

n logn
), 0 ≤ β < 2

Θ( 1
logn

√
logn
n

3−β
), 2 ≤ β ≤ 3

Θ( 1
logn ). 3 < β

(9)

This result demonstrates that for q = Θ(n) and when the
destination is selected based on distance, then the throughput
capacity is independent of α. Further, we can achieve highest
possible capacity (λmax = Θ( 1

logn )) even for small values of
α when β > 3. Based on this observation, it can be concluded
that for this case, selecting destination based on distance is
the dominant factor. This result can be justified by observing
that since the total number of social contacts is proportional
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to n, then selecting them based on a power law distribution
(with parameter α) does not make much difference since most
of the nodes belong to all social groups. As we will see in the
next theorem, the effect of α will appear as the nodes become
more selective in choosing the members of their social groups.

Theorem 2. When q = Θ(1), the average hop count is

E[X] ≡

 Θ(r(n)β−1), 0 ≤ β ≤ 1, 0 ≤ α ≤ 2
Θ(r(n)α+β−3), 0 ≤ α+ β ≤ 3, 2 ≤ α
Θ(1). Otherwise

(10)

Proof: The proof is in [20] and for minimum value of
r(n), λmax is given by

λmax ≡


Θ( 1

logn

√
logn
n

1−β
), 0 ≤ β ≤ 1, 0 ≤ α ≤ 2

Θ( 1
logn

√
logn
n

3−α−β
), 0 ≤ α+ β ≤ 3, 2 ≤ α

Θ( 1
logn ). Otherwise

The results indicate that when both α and β are small, then
social characteristics of the network has little effect on the
throughput capacity (first capacity region). By increasing the
value of α beyond 2, social characteristics start influencing
and increasing the throughput capacity while the effect of
communication network decreases (second capacity region).
When we move beyond these values, social characteristics
become dominant factor and the communication network does
not have any effect on the capacity of the network. In this
capacity region, average hop count is proportional to Θ(1)
which is the direct result of strong social aspects of the
network.

Theorem 3. The average hop count when q = Θ(f(n)),
limn→∞ q =∞, and limn→∞

f(n)
n = 0 is equal to

E[X] ≡

 Θ
(
f(n)r(n)β−1

)
, 1 ≤ β ≤ 3, f(n) = Ω(r(n)β−1)

Θ
(
f(n)r(n)2

)
, 3 ≤ β, f(n) = Ω(r(n)2)

Θ(1). Otherwise

Proof: The proof is in the appendix and the achievable
throughput is derived as

λmax ≡



Θ( 1
f(n) logn

√
logn
n

1−β
), 1 ≤ β ≤ 3,

f(n) = Ω(
√

logn
n

β−1

)

Θ( 1
f(n) logn

n
logn ), 3 ≤ β,

f(n) = Ω( logn
n )

Θ( 1
logn ). Otherwise

Theorem 3 provides insight on the behavior of throughput
capacity as a function of the number of social contacts for each
node. This theorem explains how different social characteris-
tics of the network that are represented by two parameters of
β and α (α in these equations is indirectly reflected in f(n))
influence the throughput capacity for this general case.

From all these theorems, it can be concluded that in general
when the social characteristics of the network become a
dominant factor, then the throughput capacity of the network

improves. On the other hand, when the wireless communica-
tion characteristics of the network is dominant, the throughput
capacity will decrease up to the point that in the extreme case,
it will be the same as Gupta-Kumar result (first capacity region
in theorem 1 and in theorem 2 when β = 0).

Theorem 4. These capacity results are achievable. In other
words, no cell is a bottleneck and the traffic passing through
each cell can be routed through.

Proof: Proof is in the appendix.

IV. RANDOM SIZE OF SOCIAL GROUPS FOR EACH NODE

In this section, we again assume that the social network
has been built according to the power law distribution with
parameter α, but the size of each social group is a random
variable denoted by Q. There are many studies [10], [11],
[13] demonstrated that this random variable also follows power
law distribution. Furthermore, the destination for each node
among members of its social group is selected using uniform
distribution (β = 0).

Based on these assumptions, we have

Pr(T = vk|vk ∈ G,Q = q) =
1

q
. (11)

Let’s define b = (1−γ , 2−γ , ..., n−γ), then the probability
distribution of Q will have the form

Pr(Q = q) =
q−γ∑n
b=1 b

−γ =
q−γ

σ1(b)
, (12)

where γ is the power law exponent of the distribution for Q.
From (5) we arrive at

E[X|Q = q] ≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−αk σq−1(dk
n)

qσq(dn)
, (13)

and

E[X] =

n∑
q=1

Pr(Q = q)E[X|Q = q]

≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

n∑
q=1

q−γd−αk σq−1(dk
n)

qσ1(b)σq(dn)
. (14)

Theorem 5. In this case, E[X] has the order of Θ(r(n)−1).

Proof: The proof is in [21]. Using minimum transmission
range, then λmax = Θ( 1√

n logn
). During the proof process,

we have expanded the sum into two terms E1 and E2, where
assuming that q0 is a large constant number, E2 denotes the
case when nodes have q ≤ q0 social contacts and E1 is for
the case with nodes having q ≥ q0 + 1 social contacts. Then
it is shown that E1 is the dominant factor in the summation
and its order is equal to 1

r(n) .
At first, this theorem implies that by introducing some

social characteristics in the network, the capacity of wireless
networks becomes similar to that of Gupta-Kumar which is
counter-intuitive. However by carefully reviewing the result,
we observe that when nodes have large social contact size,
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they require significant network resources for communica-
tions while with small social contact size, they require much
less network resources to transport packets from sources to
destinations. Such significant disparity in capacity behavior
among nodes suggests that the conventional definition of
transport capacity for wireless communication networks is not
appropriate for scale free wireless social networks. In order to
demonstrate this unique behavior of these composite networks,
we divide the nodes into two groups based on their social
status, i.e., popularities. Furthermore, we divide the bandwidth
W into two equal parts and allow communication for each
group of nodes within its allocated bandwidth. Note that this
will not change the order of the throughput capacity for each
group. Clearly, in order to preserve the connectivity in the
network, we still allow nodes in different social status to relay
messages for the other group of nodes. This approach may
not be a practical technique, but it will shed some light on
the behavior of composite networks. Future investigation is
required to come up with practical communication techniques
for composite networks.

Lemma 1. Let q0 be a large constant number. For small social
degree distribution exponent (0 < γ < 1), the number of
nodes with more than q0 social contacts (N>q0 ) is Θ(n) and
the number of nodes with less than q0 social contacts (N≤q0 )
is Θ(nγ). Furthermore, for large social degree distribution
exponent (γ > 2), this ratio of N>q0

N≤q0
is q1−γ

0 Θ(1) which is a
very small number for sufficiently large q0.

Proof: This is lemma 2 in [21] and due to page limita-
tions, we omit the proof here.

In other words, for large γ, the number of nodes involving
in E1 is much less than the nodes which generate the E2 part
of the total average number of hops. it is shown in [21] that
for large values of γ and α, E2 is much larger than E1. The
following remark describes the network resource usages of E1
and E2 for large values of α and γ.

Remark 1. In highly concentrated social networks (large α)
with large social degree distribution exponent (large γ) , a very
small group of nodes (N>q0 ) use the majority of the resources
(due to the large average number of hops traveled by each
packet to reach the destination), while a large group of nodes
(N≤q0 ) use a small portion of the resources.

This remark implies that conventional definition of transport
capacity may not be appropriate for scale-free networks. In
these networks, transportation of a single packet requires
different amount of network resources in terms of relaying
and average number of hops to reach destination. Based on this
observation, it makes sense that we divide the nodes into two
categories. One group of nodes are less popular and their social
group size is small, i.e., N≤q0 and the other group of nodes
are those nodes that are more popular with higher social status
with many social contacts, i.e., N>q0 . We divide the available
bandwidth W into two equal parts and allow communication
for each group inside their own bandwidth. By doing so, there
is more fairness in each group in terms of utilizing the network
resources for transmission of packets to destinations which
will ultimately allow us to better understand the performance

of the network. Note that by dividing the available bandwidth
into two, the order of the throughput capacity will not change
for each group. Clearly, in order to preserve the connectivity
in the network, we still allow nodes in different social status
to relay messages for the other group of nodes. For example
if q0 = 100 and γ = 2.5, then it is easy to show that 99.9%
of nodes can scale while only 0.1% of nodes with larger than
100 social contacts will not scale. It is easy to demonstrate
that the maximum data rate for sources with N>q0 (E1) is
similar to that of Gupta-Kumar. We use the results of Lemma
1 for sources in the second category, i.e., N≤q0 , to compute
the throughput capacity.

λmax≤q0
= Θ(

W/2

E2 log n
)

=


Θ( 1√

n logn
) 0 < α < 2

Θ( 1√
n3−α logα−1 n

) 2 < α < 3

Θ( 1
logn ) 3 < α

(15)

These two capacity results prove the following theorem.

Theorem 6. Assume that the social connectivity between
nodes is highly concentrated (α > 2) with large social
degree distribution exponent (γ > 2). Let’s divide the total
bandwidth (W ) into two distinct parts, W/2 each; one part
to be used to transfer the information generated from the
highly connected source nodes (G>q0 ) and the other part to be
used for communication by the source nodes with small social
group size (G≤q0 ) where q0 is a constant value independent
of n. The maximum data rate for the first group (G>q0 ) is
λmax = Θ( 1√

n logn
), for 2 < α. The maximum data rate for

the second group (G≤q0 ) is given in equation (15).

This theorem shows that nodes with different social status,
i.e., different number of social contacts, have different effect
on throughput capacity. It can be observed that the limiting
factor in scaling the capacity is the existence of few nodes
with high social status that consume majority of the network
resources in terms of relaying requirements. More specifically,
it was shown that the nodes that limit the capacity consist of
a small portion of the network under the condition that the
social groups are geographically highly concentrated (α > 2)
and the degree distribution exponent is large (γ > 2). Figures
2(a) and (b) demonstrate data rates for these two groups of
nodes, when γ > 2.

Theorem 7. The obtained capacity results in theorem 6 are
achievable. In other words, no cell is a bottleneck and the
traffic passing through each cell can be routed through.

Proof: Proof is in the appendix.

V. POWER-LAW DESTINATION SELECTION WITH RANDOM
NUMBER OF SOCIAL CONTACTS

In this section we study the impact of the combination of all
three power law distributions on the network performance; the
social network formation with parameter α for selecting the
long range contacts and parameter γ for the number of long
range contacts, and the communication among the members of
the social group with parameter β. We can modify the analysis
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Fig. 2. Maximum achievable data rate order for (a) highly connected source
nodes (Group G>q0 ) with large degree distribution exponent (γ > 2), (b)
nodes with small social group (Group G≤q0 ).

in section IV to get the results. Using equations (5), (6), (13)
and (14) we have

E[X|Q = q] ≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

Pr(T = vk)

≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−α−βk σq−1(dn)

σ1(dq)σq(dk
n)

(16)

and

E[X] =

n∑
q=1

Pr(Q = q)E[X|Q = q]

≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

n∑
q=1

q−γd−α−βk σq−1(dk
n)

σ1(b)σ1(dq)σq(dn)
(17)

Theorem 8. The average hop count in this case has the order

E[X] ≡
{

Θ
(
r(n)−1+β

)
, 0 ≤ β ≤ 1

Θ (1) , 1 ≤ β (18)

Proof: The proof is in the appendix.

Corollary 1. The maximum throughput capacity is

λmax ≡


Θ

 1√
n1−β log1+β n

 , 0 ≤ β ≤ 1

Θ

(
1

log n

)
, 1 ≤ β

(19)

VI. NUMERICAL SIMULATIONS

The results in this paper, which are obtained through
mathematical proofs are expressed in terms of scaling laws.
In order to validate our theoretical results with simulations,
we need to use very large values for n. However, using very
large values for n is not practical due to the non-polynomial
number of computations. For instance, in section III, we
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Fig. 3. Average number of hops versus the number of nodes when q = Θ(n).
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Fig. 4. Maximum throughput capacity versus the number of nodes when
q = Θ(n).

have
(
n
q

)
different possibilities to choose q members of the

social group from the total number of nodes n. Each one
of these choices has an associated probability expressed in
equation (3). This means that for any numerical simulation,
we need to compute the associated probabilities. Now, if
q = Θ(f(n)) then we should compute these probabilities for

at least
(
n
q

)
=
(
n

f(n)

)
≥
(

n
f(n)

)f(n)

different choices. This
value grows faster than exponential for many choices of f(n).
Therefore, conducting a comprehensive numerical analysis for
the theoretical results in this paper is almost impossible except
for special cases of q = Θ(1) and q = Θ(n) that we have
been able to simulate our results and compare them against
the theoretical results. Figure 3 shows the average hop count
between theory and simulation. The results clearly demonstrate
that our theoretical derivations are very close to simulation
results as the number of nodes in the network increases. For
the case of β = 3.5, we only show the simulation results
which is consistent with theory, i.e., E[X] = Θ(1).

Figure 4 demonstrates the maximum throughput as a func-
tion of n when q = Θ(n). We can see from this figure, that
for different values of α and β, the simulation results are very
close to theoretical results which verifies the accuracy of the
analytic work.

Figures 5 and 6 compare the simulation results with theory
for the case of q = Θ(1). Both the analytical results for the
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average number of hops and throughput capacity for different
values of α and β are close to simulation results. From all these
results, we can conclude that the analytical results accurately
predict the behavior of the network when social characteristics
are considered.
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VII. CONCLUSION

In this paper, a comprehensive study of the effects of
social communication which include non-uniform frequency
of communication and variable size of social groups, on the
capacity of wireless ad hoc networks has been investigated. We
have shown that the traditional concept of capacity introduced
by Gupta-Kumar may not be appropriate for these composite
networks. Instead, if we divide the nodes based on their social
status, we actually observe a completely different behavior
in the network. We believe that based on our results, a
new definition of capacity for wireless networks with social
behaviors should be proposed which takes into account the
social characteristics of network.

It is worth to emphasize that the effects of social group
evolution is not considered in our network model and a more
comprehensive work, should consider such effects in the study
of wireless networks with social considerations. For future
work, proper protocols for these wireless social networks can
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Fig. 6. Maximum throughput capacity versus the number of nodes when
q = Θ(1).

be studied, different resource allocations based on social status
can be also investigated to name a few.
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VIII. APPENDIX

Lemma 2. When limn→∞ q =∞, we have d−αk σq−1(dk
n)

σq(dn) ≡ q
n .

specifically, when q = Θ(n), we have d−αk σq−1(dk
n)

σq(dn) ≡ Θ(1).

Proof: Define the random variables Yi = d−αi and Zi =
log Yi for 1 ≤ i ≤ n. Since Yi’s are i.i.d random variables,
Zi’s are also i.i.d. random variables. By using the law of large
numbers, we have limm→∞

1
m

∑m
i=1 Zi = Z̄ where Z̄ is the

expected value of the random variable Zi. Hence,

d−αk σq−1(dk
n)

σq(dn)
≡

∑
1≤i1<..<iq≤n,∃h:ih=k

∏q
j=1 Yij∑

1≤i1<..<iq≤n
∏q
j=1 Yij

≡
∑

1≤i1<..<iq≤n,∃h:ih=k exp
∑q
j=1 Zij∑

1≤i1<..<iq≤n exp
∑q
j=1 Zij

≡
∑

1≤i1<..<iq≤n,∃h:ih=k exp qZ∑
1≤i1<..<iq≤n exp qZ

≡
(n−1
q−1 )

(nq )
=
q

n
(20)

Now if q = Θ(n), we have q
n ≡ Θ(1) and therefore,

d−αk σq−1(dk
n)

σq(dn) ≡ q
n ≡ Θ(1).

Lemma 3.
1

r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−βk ≡
{

Θ
(
nr−1(n)

)
, 0 ≤ β ≤ 3

Θ
(
nr2−β(n)

)
, 3 ≤ β (21)

Proof: The proof can be found in [20].

Lemma 4.

σ1(dn) ≡
{

Θ (n) , 0 ≤ α ≤ 2
Θ
(
nr2−α(n)

)
, 2 ≤ α (22)

Also notice that when q = Θ(n), we have

σ1(dq) ≡
{

Θ (n) , 0 ≤ β ≤ 2
Θ
(
nr2−β(n)

)
. 2 ≤ β (23)

Proof: The proof can be found in [20].
Proof of theorem 1: This theorem is a direct result of

lemmas 2 and 3.

Lemma 5. Let Ψ = {ψ1, ..., ψn} be a set of n ≥ 2 non-
negative real numbers. Then for 1 ≤ p ≤ n − 1 we have
σ1(Ψ)σp(Ψ) ≥ n(p+1)

n−p σp+1(Ψ).

Proof: The proof can be found in [18].

Lemma 6. If Ψ = {ψ1, ..., ψn} be a set of n ≥ 2 non-negative
real numbers, then for a finite p and when n → ∞, we have
σ1(Ψ)σp(Ψ)

(p+1)σp+1(Ψ) = Θ
(

n
n−p

)
= Θ(1).

Proof: This is the lemma 4.1 in [15]. The proof can be
found there.

Lemma 7. When q = Θ(1) or q = Θ(g(n)) where
limn→∞

g(n)
n = 0, then σ1(dq) has the order of Θ

(
r(n)−β

)
.

Proof: Suppose that the i-th member of the long-range
social group is located in the distance of xqi hops from the

source, then we can say that

σ1(dq) =

q∑
i=1

(cir(n)xqi)
−β

= (r(n))
−β

q∑
i=1

(cixqi)
−β
. (24)

Since, xqi can be every integer between one and 1
r(n) , the order

of σ1(dq) may range from Θ(1) to Θ(r(n)−β). However, note
that when n goes to infinity, with probability approaching one
at least one of the long-range contacts lies within a lattice
distance of Θ(1) to the source.

To prove this, it is enough to show that with probability
approaching zero, all of the long-range contacts lie outside
a lattice distance of f(n) = Ω(1) to the source. Assuming
q = Θ(1) or q = Θ(g(n)) where limn→∞

g(n)
n = 0, we

can argue that the probability of selecting long-range social
contacts is independent of each other. Thus, using lemma 4
we have

Pr(xq1 = Θ(f(n)), xq2 = Θ(f(n)), ..., xqq = Θ(f(n)))

=

q∏
i=1

Pr(xqiΘ(f(n)) ≡
q∏
i=1

(f(n)r(n))−α

σ1(dn)
≡ O(

(r(n))−qα

(σ1(dn))q
)

≡

 O
(

(nrα(n))
−q
)
, 0 ≤ α ≤ 2

O
(

(log n)
−q
)
. 2 ≤ α

It is not difficult to verify that the right hand side which
is an upper bound for this probability goes to zero as n
approaches infinity thus the aforementioned probability tends
to zero. Thus with probability approaching one, there exists
at least one long-range contact in the lattice distance of Θ(1)
to the source which will be the dominant term in σ1(dq).
Therefore, σ1(dq) = Ω

(
(r(n))−β

)
and since in the case of

q = Θ(1), σ1(dq) is only composed of Θ(1) terms we have
σ1(dq) = Θ

(
(r(n))−β

)
.

For the case of q = Θ(g(n)) we know that at least one long
range contact exists within a distance of Θ(1) to the source.
Therefore, σ1(dq) can have the order of Θ

(
(r(n))−β

)
when

it only has Θ(1) social contacts within a distance of Θ(1)
to the source or it can have the order of Θ

(
g(n)(r(n))−β

)
when almost all of the Θ(g(n)) social contacts lie within a
distance of Θ(1) to the source. We will now show that with
a probability close to one the latter almost never happens
and therefore in the case of q = Θ(g(n)), almost surely we
have, σ1(dq) = Θ

(
(r(n))−β

)
. To prove this, using the same

approach as above, we will compute the probability that almost
all of the social contacts lie within a distance Θ(1) to the
source,

Pr(xq1 = Θ(1), xq2 = Θ(1), ..., xqq = Θ(1))

=

q∏
i=1

Pr(xqi = Θ(1)) ≡
q∏
i=1

(r(n))−α

σ1(dn)

≡ Θ(
(r(n))−qα

(σ1(dn))q
) =

 Θ
(

(nrα(n))
−q
)
, 0 ≤ α ≤ 2

Θ
(

(log n)
−q
)
. 2 ≤ α

When n is a large number, this probability goes to zero and
therefore this scenario almost surely never happens.
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Lemma 8. The following inequalities hold.

σq−1(dn)− d−αk σq−2(dn) ≤ σq−1(dk
n) ≤ σq−1(dn) (25)

Proof: This lemma can be proved by expanding the
polynomials and considering the non-negativity of elements
in dn. We will use this lemma to find the upper and lower
bounds for E[X].

Proof of theorem 3: We can use lemma 2 to simplify
equation (7) as

E[X] ≡ q

nσ1(dq)

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−βk . (26)

Now, using lemmas 3 and 7 and replacing q with Θ(f(n))
proves the theorem.

Proof of theorem 4: Since each node can receive or
transmit just one flow at a time, the maximum rate a node
(and a cell) can support is Θ(1). Each node carries traffic
during transmission, reception, or relaying of the data. The
maximum value of this traffic should not exceed the maximum
supportable traffic of Θ(1). We will consider three different
scenarios:

(i) Nodes in transmission mode: Each node transmit at
maximum rate of λmax which is much less than one for
all the obtained capacity regions. It has been shown [7]
that there are Θ(log n) nodes in each cell which results in
maximum generated traffic by each cell as Θ(λmax log n).
Since λmax does not exceed Θ( 1

logn ), then the maximum
traffic generated by each cell cannot exceed Θ(1). Therefore,
the traffic generate in transmission mode does not create any
bottleneck.

(ii) Nodes in relay mode: A path of length x-hops consists
of exactly x cells in our model. Since we have a total of 1

r2(n)
cells, the probability that a cell is selected from a group of x
specific cells is equal to xr2(n). The probability that a source-
destination path of length x-hops passes through a specific cell
is always less than xr2(n). Thus, the probability of a source-
destination path Li passing through a specific cell S0 is

Pr(Li intersects S0)

=
∑
x

Pr(Li intersects S0|Xi = x)Pr(Xi = x)

≤
∑
x

xr2(n)Pr(Xi = x),

where Xi is the number of hops the path Li is passing through.
Therefore, Pr(Li intersects S0) ≤ E[X]r2(n). Since we only
consider unicast communications, there are at most a total
of Θ(n) source-destination pairs. Therefore, using the union
bound, the maximum number of paths intersecting a specific
cell is Θ(nE[X]r2(n)). Consequently, the maximum traffic
load of a relay cell is Θ(nE[X]r2(n)λmax) which is Θ(1) in
all regions of the throughput capacity obtained in this paper.
Therefore no cell will carry more than what it can support
when it is in relay mode.

A relay node in a cell consisting of Θ(log n) nodes is
selected with a uniform distribution. Hence, the probability
that a specific node is a relay equals the probability that the

corresponding cell is a relay, divided by the number of nodes
in that cell. This probability is smaller than Θ(E[X]λmax)
which is less than Θ(1). It is concluded that the relay nodes
will never cause bottleneck in the network.

(iii) Node is in receive mode: Similar to previous sec-
tion argument, we conclude that receiver cells do not cause
bottleneck in the network. Since the selection of friends for
each node follows power-law distribution that may make the
distribution of the destination nodes non-uniform. In case of
q = Θ(1), each node has only q = Θ(1) social contacts and it
consumes a constant bandwidth and does not cause bottleneck.
For q = Θ(n), we prove that this distribution is still uniform
for large n and similar to the relay nodes, the destination nodes
does not create any bottleneck.

The source nodes are uniformly distributed in the network.
Thus the probability that a specific node vk is the destination
can be written as

Pr(T = vk) =

n∑
i=1

Pr(T = vk|vi is source)Pr(vi is source),

=
1

n

n∑
i=1

Pr(T = vk|vi is source).

Let dki be the distance between vk and vi and Gi be the
set of social contacts if node vi is the source. Let’s define
dqi

= (d−βg1i , ..., d
−β
gqi

) and dni
= (d−αg1i , ..., d

−α
gni

). Now, similar
to equations (2) and (4) which has been written for one specific
source node, we have

Pr(T = vk|vi is source)

= Pr(T = vk|vi is source, vk ∈ Gi)Pr(vk ∈ Gi)

=
d−βki

σ1(dqi
)

d−αki σq−1(dk̄
ni

)

σq(dni
)

.

Using lemma 2, Pr(T = vk|vi is source) ≡ d−βki
σ1(dqi

) . There-
fore,

Pr(T = vk) =
1

n

n∑
i=1

Pr(T = vk|vi is source)

=
1

n

n∑
i=1

d−βki
σ1(dqi

)
=

1

n
. (27)

So the destinations are distributed uniformly similar to the
relay nodes, and no node in receive mode will be a bottleneck.
Notice that since for the case of q = Θ(n) no node will
become bottleneck, for the case of q = Θ(f(n)) also no node
will become bottleneck when f(n) = O(n) as in our case.

Proof of theorem 7: The proof of this theorem is very
similar to the proof of theorem 4. For relay and transmit modes
we can readily use the same proof as in theorem 4. For receive
mode, we only need to prove that the destinations will have a
uniform distribution.

The source nodes are uniformly distributed in the network.
Thus the probability that a specific node vk is the destination
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can be written as

Pr(T = vk) =

n∑
i=1

Pr(T = vk|viis source)Pr(vi is source)

=
1

n

n∑
i=1

Pr(T = vk|viis source).

Let Gi be the set of social contacts if node vi is the source,
and Qi be the number of social contacts of source node vi.
Using equations (2) and (4) which has been written for one
specific source node, we have

Pr(T = vk|vi is source)

=

n∑
q=1

Pr(T = vk|vi is source, vk ∈ Gi, Qi = q)

× Pr(vk ∈ Gi, Qi = q)

=

n∑
q=1

Pr(T = vk|vi is source, vk ∈ Gi, Qi = q)

× Pr(vk ∈ Gi|Qi = q)Pr(Qi = q)

=

n∑
q=1

q−γ

qσ1(b)

d−αk σq−1(dk̄
n)

σq(dn)
(28)

Now let P1 and P2 represent
∑n
q=q0+1

q−γ

qσ1(b)

d−αk σq−1(dk̄
n)

σq(dn) and∑q0
q=1

q−γ

qσ1(b)

d−αk σq−1(dk̄
n)

σq(dn) , respectively. Using the results from

Theorem 2 for q > q0 [20], we have d−αk σq−1(dk̄
n)

σq(dn) ≡ q
n . Also

using results from [21] and lemma 6 for q ≤ q0 we have
d−αk σq−1(dk̄

n)

σq(dn) <
d−αk q

σ1(dn) . Therefore,

P1 = Θ(
1

nσ1(b)

n∑
q=q0+1

q−γ)

P2 = O(
d−αk

σ1(b)σ1(dn)

q0∑
q=1

q−γ) (29)

For large values of γ, σ1(b),
∑n
q=q0+1 q

−γ , and
∑q0
q=1 q

−γ

are all Θ(1). Hence, we have P1 ≡ 1
n and P2 = O(

d−αk
σ1(dn) ).

Then,

Pr(T = vk) =
1

n

n∑
i=1

(P1 + P2)

=
1

n

n∑
i=1

Θ(
1

n
) +O(

d−αk
σ1(dn)

), (30)

where dk in the above formulation is the distance from vk to
the source node vi which can be shown as dki . Thus using
similar notation for dni

we have
n∑
i=1

O(
d−αk

σ1(dni
)
) = O(

σ1(dnk
)

σ1(dni
)

) = O(1), (31)

that results in Pr(T = vk) ≡ 1
n . Therefore, the destinations

are distributed uniformly similar to the relay nodes, and no
node in receive mode will be a bottleneck.

Proof of theorem 8: To simplify the equation (17), like
the process in the proof of theorem 5, we break E[X] into the
following two parts,

E1 ≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

n−1∑
q=q0

q−γd−α−βk σq−1(dk
n)

σ1(b)σ1(dq)σq(dn)
(32)

and

E2 ≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

q0−1∑
q=1

q−γd−α−βk σq−1(dk
n)

σ1(b)σ1(dq)σq(dn)
(33)

We can use the argument in the proof of theorem 5 to simplify
E1 as

E1 ≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

n∑
q=q0

q−γd−βk
σ1(b)σ1(dq)

q

n

≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−βk
nσ1(b)

n∑
q=q0

q−γ+1

σ1(dq)
(34)

Since q0 is a very large number, law of large numbers ensures
that 1

qσ1(dq) lies in the interval (E[dq]− ε, E[dq] + ε) with
probability one thus it can be replaced by E[dq] in our work.

n∑
q=q0

q−γ+1

σ1(dq)
=

1

E[dq]

n∑
q=q0

q−γ (35)

To find E[dq] notice that according to the proof of lemma 7
we know that with probability close to one when n approaches
infinity, there exists a long-range social contact within the
lattice distance of Θ(1) from the source thus

E[dq] ≡

1
r(n)∑
x=1

Pr(X = x)(xr(n))−β ≡ (r(n))−β (36)

Now if γ > 1, we have
∑n
q=q0

q−γ ≤ σ1,n(b−γ) ≤∑∞
q=1 q

−γ = ζ(γ) ≡ Θ(1). Therefore (35) can be simplified
to

n∑
q=q0

q−γ+1

σ1(dq)
= (r(n))β (37)

and if 0 ≤ γ ≤ 1 we have
∑n
q=q0

q−γ ≡ σ1,n(b−γ) ≡
n−γ+1

−γ + 1
≡ n−γ+1. Thus in this case (35) simplifies to

n∑
q=q0

q−γ+1

σ1(dq)
≡ n−γ+1(r(n))β (38)

Using the previous equations of (21) and (22)

1

nσ1(b)

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−βk

≡


Θ
(
nγ−1r(n)−1

)
, 0 ≤ β ≤ 3, 0 ≤ γ ≤ 1

Θ
(
nγ−1r(n)2−β) , 3 ≤ β, 0 ≤ γ ≤ 1

Θ
(
r(n)−1

)
, 0 ≤ β ≤ 3, γ > 1

Θ
(
r(n)2−β) , 3 ≤ β, γ > 1

(39)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2015.2465896

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 11

Therefore using (37), (38) and (39) we have

E1 ≡
{

Θ
(
r(n)−1+β

)
, 0 ≤ β ≤ 3

Θ
(
r(n)2

)
, 3 ≤ β

≡
{

Θ
(
r(n)−1+β

)
, 0 ≤ β ≤ 1

Θ (1) , 1 ≤ β (40)

Notice that since E[X] cannot be smaller than one, thus we
can replace r(n)−1+β for 1 ≤ β ≤ 3, and r(n)2 with 1,
thus, the second equality holds. Now we use lemma 8 and
equation (25) to prove that the order of E1 is dominant in the
summation E[X] = E1 + E2. Using the right hand side of
(25) we have

E2 ≤

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

q0−1∑
q=1

q−γd−α−βk σq−1(dn)

σ1(b)σ1(dq)σq(dn)
(41)

Since q ≤ q0, it is a finite number and we can use lemma 5
to get

σq−1(dn)

σq(dn)
≡ 1

σ1(dn)
Θ(

nq

n− q + 1
) ≡ 1

σ1(dn)
(42)

Thus

E2 ≤

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk∈sl

d−α−βk

σ1(dn)σ1(b)

q0−1∑
q=1

q−γ

σ1(dq)
. (43)

Notice that using the argument in the proof of lemma 7 for
very large n, there exists a long-range contact in the lattice
distance of Θ(1) to the source, with high probability, which
will be the dominant term in the summation σ1(dq) thus
σ1(dq) scales as r(n)−β and hence,

q0−1∑
q=1

q−γ

σ1(dq)
≡ 1

r(n)−β

q0−1∑
q=1

q−γ ≡ r(n)β (44)

Therefore, E2 ≤
r(n)β

σ1(dn)σ1(b)

∑ 1
r(n)

x=1 x
∑4x
l=1

∑
vk∈sl d

−α−β
k .

Thus for γ > 1 we have

E2 ≡


O
(
r(n)−1+β

)
, 0 ≤ α+ β ≤ 3, 0 ≤ α ≤ 2

O
(
r(n)α+β−3

)
, 0 ≤ α+ β ≤ 3, α ≥ 2

O
(
r(n)2−α) , 3 ≤ α+ β, 0 ≤ α ≤ 2

O (1) , 3 ≤ α+ β, α ≥ 2

(45)

and for 0 ≤ γ ≤ 1, E2 will have a scaling factor of n1−γ

multiplied by the above equation. It can be verified that E1 is
the dominant term compared to E2 and therefore theorem 8
is proved.
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