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Abstract

Advances in Nearly-Magnetic Superconductivity

by

Nikola Maksimovic

Doctor of Philosophy in Physics

University of California, Berkeley

Professor James G. Analytis, Chair

Many-body systems present some of the deepest challenges in physics. The interactions
between a large number of objects can give rise to phenomena which are unprecedented
from the standpoint of the individual objects themsleves. In many-body quantum systems,
such as the electron fluid in metals, an effective single-particle description for modeling their
properties has been successfully developed and tested. One of the central open questions in
the study of many-body quantum physics lies in systems where the particles interact with
each other strongly enough that the conventional description in terms of effectively individ-
ual particles fails. This problem is prevalent in metals which are on the verge of magnetism
— for example, when perturbed by external stress, magnetic field, or electric field, they
spontaneously become magnetic. Notably, some of these metals achieve superconductiv-
ity, a collective electron phase which exhibits zero electrical resistance, at remarkably high
temperatures. This text focuses on experimentally addressing fundamental open questions
regarding strongly-interacting electrons in such metals. It is divided into separate sections
on nearly-antiferromagnetic iron-based superconductors, a novel layered ferromagnetic su-
perconducting compound, and a cerium-based alloy hosting an interplay between magnetism
and the spontaneous localization of electrons to their host atoms.
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Chapter 1

Introduction to metals,
superconductivity, and magnetic
quantum criticality

Usually quantum coherent phenomena, i.e. entanglement and wavefunction interference, are
observed in extremely controlled conditions — maybe in a few hundred atoms within a laser-
cooled apparatus. There are only a few examples of natural phenomena where quantum
coherent properties manifest on a macroscopic scale; one of these is superconductivity in
metals. A superconductor could be just a piece of metal, say lead, which is not particularly
carefully prepared, and is then dunked in a bath of liquid cryogen. The free electrons in the
piece of lead become quantum entangled spontaneously, all on their own, without any extra
help from the experimentalist.

For the average person, perhaps the most striking characteristic of superconductivity in
metals is that below a certain critical temperature, the electrical resistance of the metal drops
to exactly zero. Of course, one can imagine that this property has enormous technological
value — lossless generators [29], power transmission [64], energy storage [201], powerful
electromagnets [109], magnetic levitation [73], and so on. Unfortunately, the applicability
of superconducting materials is limited by their very low critical temperatures, typically
just a few degrees Kelvin above absolute zero — one needs expensive cryogenic cooling
techniques to achieve such temperatures, meaning that superconductors are cost ineffective
for the majority of applications where they might have otherwise found value. All this is to
say that one of the motivations for studying superconductivity in metals is to understand
what sets the superconducting critical temperature of a given metal. The ultimate goal is to
engineer and/or create superconducting materials that operate at higher temperatures. So
as to not set the reader’s expectations too high, we must admit that we leave this ultimate
goal largely untouched in this text.
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1.1 Conventional and unconventional

superconductors

“Stay away from magnetism” — Rule 4 of B. Matthias’ rules for discovering new supercon-
ductors

Fortunately, there are a huge number of superconductors which have already been dis-
covered and characterized. Motivating the search for new superconducting materials and
formulating general guiding questions in this field is made significantly easier by this large
body of previous work. Starting from the most direct goal and working our way to more
specific questions is usually a good strategy, so let’s say we would like to discover a room
temperature superconductor. What are the challenges associated with this goal?

Because superconductivity is a quantum coherent state, we immediately expect it to be
sensitive to temperature — thermal fluctuations that get stronger with increasing tempera-
ture on general grounds tend to destroy quantum coherence. The spatial coherence between
separated quantum wavefunctions, say two wavepackets, can be enhanced by increasing the
spatial overlap of the wavefunctions. This admittedly naive intuition has more rigorous
backing in the study of Bose-Einstein condensation, where bosons at finite temperature
spontaneously fall into the same quantum state [117]. The temperature of Bose condensa-
tion increases with the density of particles (Tc ∼ n2/3, where n is the particle density and Tc
is the condensation temperature).

With this intuition, it seems favorable to increase the density of the electron fluid to
make superconductivity in metals more robust to temperature fluctuations. It might be
useful to test this intuitive backing using real-world material examples. In Fig. 1.1 we
plot the value of Tc versus the electron Fermi temperature (TF , a proxy for the electron
density) in a number of superconducting materials. Systems which lie further in the upper
left of the plot tend to be ‘stronger’ superconductors in the sense that for a given electron
density, their superconducting transition temperature is higher. Likewise superconductors
in the lower right portion of the plot are ‘weaker’. Some readers may recognize Fig. 1.1 as
a representation of the Uemura plot for superconductors [207]. The original motivation for
this plot was more precise than the arguments given above, but at least we have interrogated
an interesting argument that leads us to notice some important correlations.

First of all, the electrons in a metal appear to be much less susceptible to condensation
than a boson gas — almost all of the data points in Fig. 1.1 lie below the expected value
predicted for Bose-Einstein condensates (BEC). This is perhaps to be expected, because
electrons are fermions, and their condensation relies on an attractive interaction to transform
them into bosonic pairs of electrons. Such a mechanism was established by Bardeen, Cooper,
and Schrieffer almost half a century after the observation of superconductivity in mercury
at about 4.2 degrees Kelvin [21]. Based on the “BCS” theory, the electrons of a metal
are attracted to one another through quantized vibrations of their ionic lattices (phonons),
which results in the bosonization of electrons through the formation of electron pairs, and
ultimately their condensation into a superconducting state. BCS theory gives a prediction
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for the superconducting critical temperature based on microscopic parameters

Tc ∝ EDe
−1/N(εF )V . (1.1)

Here ED is a characteristic frequency of lattice vibrations. N(εF ) is the density of electron
states, and V is the effective electron-phonon coupling potential. The critical temperature is
enhanced by increasing any of these values. The expected trend of superconducting transition
temperature as a function of electron density according to this BCS prediction is shown in
Fig. 1.1.

100 101 102 103 104 105 106

T
F
(K)

10-1

100

101

102

T
c
(K
)

NbSe
2

V
3
Si

LaH
10

4
He

K

H
3
S

Mo

Re

Nb

Sn

Al
Zn

LAO/STO

STO

UPt
3

UBe
13

URh
2
Si
2

UPd
2
Al
3

U
6
Fe

MATBG

FeSe FeSe

FeSe/STO

A
3
C
60

A
3
C
60

Ba122
KFeSe

BSCCO
YBCO

LSCO

B
C

S
 t
h
eo

ry

B
E

C

Figure 1.1: Comparison of transition temperatures and Fermi temperature in var-
ious superconductors The red points are superconductors in which the superconducting
phase is close to a magnetic phase. The grey lines delineate the predicted trend based on
BCS theory of electron-phonon coupling superconductivity, and the Bose-einstein condensate
(BEC) expectation assuming that all of the fermions in the electron gas become bosons.

According to Eq. 1.1, one of the ways to increase the superconducting temperature is
by increasing the density of states (or equivalently the density of electrons). In this way,
the superconducting condensation temperature is enhanced by particle density much like
the Bose-Einstein condensation temperature, but the overall scale of the superconducting
transition temperature is lower because the electrons need to overcome the hurdle of be-
coming bosons in order to condense. The strategy of enhancing the density of states in
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electron-phonon coupling superconductors has achieved greatest success in materials like
Nb3Sn, which are often used in superconducting electromagnet applications [173]. Unfortu-
nately, the strategy of simply increasing the free electron density falls apart for one main
reason. In materials where the density of electrons is too high, like gold, copper, silver, the
electrons tend to have very low coupling constants with the phonons because the high den-
sity of itinerant charge screens the electrons from the underlying ions in the lattice. In fact,
many high carrier density metals are not observed to superconduct at any measurable tem-
perature. So while increasing the density of states has achieved some success as a strategy
to improve superconducting materials, it has its limits. There seems to be a ‘sweet spot’ in
terms of electron density where the electron-phonon coupling strength and density of states
are both optimized. With these restrictions in mind, electron-phonon coupling superconduc-
tivity is apparently limited to rather low temperatures, as shown by the ‘BCS’ delimiting
line in Fig. 1.1, and many real materials which are presumably electron-phonon coupling
superconductors like Sn, Al, and Zn tend to underperform compared to the prediction of
BCS theory.

Another idea is to enhance the phonon frequency by constructing a metallic material made
from light atoms that can vibrate a lot. This direction achieved great success in materials
like C60 and MgB2, with critical temperatures up to 40K, among the highest known critical
temperatures in electron-phonon coupling superconductors. More recently hydrogen-based
superconductors under enormous hydrostatic pressure have been shown to have supercon-
ducting transition temperatures close to room temperature [47]. It has been argued that
the very high energy vibrational modes of hydrogen (the lightest element) induce electron-
phonon coupling superconductivity in these materials at unusually high temperatures [18],
albeit at ridiculously high pressures.

The final idea is to increase the value of ED, the phonon energy prefactor, by leverag-
ing BCS-like pairing mechanisms which go beyond electron-phonon interactions. For ex-
ample, with BCS-like mechanisms following Eq. 1.1, but where the pairing is induced by
electron-electron interactions rather than electron-phonon. In this scenario, ED would be
replaced by some characteristic electronic energy scale with typical interaction scales on the
order of ∼1 eV in many metals such that transition temperatures in theory up to 200K
would be possible even with relatively weak coupling strengths [155]. This idea potentially
puts room-temperature superconductivity at ambient conditions within reach. Interestingly,
such an effectively attractive electron-electron interaction could also result in the formation
of other electronic instabilities (antiferromagnetism, ferromagnetism, structural distortions,
and charge density waves) in analogy to soft phonons inducing structural instabilities [155].
So in materials where superconductivity can be mediated by an electronic attractive poten-
tial, we might expect to see electronic or magnetic order in close proximity or competing
with a superconducting phase. By this logic, it is probably no coincidence that some of
the materials that completely outperform BCS theory — materials like YBa2Cu3O7, and
tetramethyltetraselenafulvalene (TMTSF) among others — are nearly-magnetic supercon-
ductors, as seen in Fig. 1.1. That is, their superconducting state exists in proximity to
a magnetic phase; for example, either under applied pressure, strain, magnetic field, or
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chemical substitution, they turn from superconductors into magnetically-ordered materials
or vice versa. It is believed that magnetic fluctuations near a magnetic phase boundary
can induce a pairing interaction between the electrons. As a result, such ‘unconventional’
(non-electron-phonon coupling) superconductivity that exists in proximity to magnetism
sometimes exhibits remarkably high transition temperatures compared to that expected of
the more ‘conventional’ electron-phonon mechanism. Note that in many cases, magnetism
is not the only phase present in proximity to superconductivity, as strong electron-electron
interactions tend to induce a complicated ground state landscape, which will be the subject
of further discussion later.

Perhaps a more important problem to physicists who study many-body systems is the ba-
sic description of the electrons in such materials. What has been discovered, and is a central
topic of this thesis, is that many of the metals in Fig. 1.1 that seem to host ‘nearly-magnetic’
superconductivity also exhibit unconventional properties in many other ways. In particular,
as a consequence of the strong interelectron interactions in such materials, the behavior of
their electronic properties tends to challenge very well-established theories that describe the
electronic and thermodynamic properties of the majority of metals (like copper, lead, silver,
etc). And, before a theory of nearly-magnetic superconductivity analogous to BCS theory is
developed, a description of strongly-interacting electron fluids needs to be more firmly de-
veloped and tested by experiments. Why is such a fundamental understanding important?
With a full understanding of electron-phonon coupling in superconductors, and the relevant
parameters that go into it, tremendous success was achieved in enhancing the performance
of electron-phonon coupling superconductors. Essentially, this followed from optimizing the
parameters going into Eq. 1.1. If an analogous theory to BCS theory is developed for
nearly-magnetic superconductors, we might expect to see short-term order of magnitude im-
provements in their properties with a more directed approach to materials engineering and
discovery. This line of thought provides motivation for studying nearly-magnetic metals, not
only for their superconducting performance, but also from a fundamental perspective.

This text is broadly outlined as follows. First, we will build up the basic concepts behind
understanding electrons in conventional metals (the materials that generally fall beneath the
‘BCS’ line in Fig. 1.1). Then we will go into more detail about how, and to what extent
certain metals violate the conventional tools used to understand the behavior of electrons in
solids. With some examples, experiments, and a bit of theory, an explanation is put forward
for certain properties of nearly-magnetic metals, and some insight is provided about others.

1.2 Fermi liquid theory and Luttinger’s theorem

“Most important part of physics is the knowledge of approximation” — Lev Landau
The workflow for the theory of electrons in solids is to start from the simplest approxima-

tion, the free electron model. From the point of view of the free electron model, all metals are
basically the same aside from possible variations in the density of electrons between different
materials. The ionic lattice in such a picture is assumed to produce a uniform background of
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charge, which essentially has no effect on the properties of the electrons. The effects of the
lattice can be included more rigorously as a weak perturbation to the free electron model
in the “nearly free electron model”, which decorates each metal, semiconductor, and band
insulator with its own unique electronic properties. Electron-electron interactions can be
considered in the “somewhat free electron model” (aka Fermi liquid theory). Fermi-liquid
theory is the most complete description of electrons in solids at the moment, and, for various
reasons which will be described, Fermi liquid theory has been observed to fall short in a
number of real circumstances.

For most solid state applications, the nearly free electron model is essentially used as a
working theory of metals and semiconductors. That being said, the reason that the nearly
free electron model works at all is explained by concepts developed in Fermi liquid theory,
so even though Fermi liquid theory is seldom explicitly referenced, it essentially underlies all
of our modern understanding of electrons in solids. As such, we choose to first present the
free electron model, then discuss Fermi liquid theory, which in principle applies to weakly-
interacting electron gases that are not in a periodic lattice potential. Then we will discuss
the effects of the periodic potential of the ionic lattice, and its implications for some of the
results of Fermi liquid theory including most importantly the effects of symmetry-broken
order in Fermi liquids.

Free electron model

Everything in this text deals with solid state materials, which consist of a set of ions locked
into a lattice whose positions may fluctuate slightly on relatively slow timescales due to ther-
mal vibrations, and sea of electrons that are relatively much faster moving [206]. To consider
the simplest approximation of the system, assume the electrons to be a gas of completely
non-interacting fermions. Of course, a metal is charge neutral, so we need to consider also
the influence of positively charged ions in the lattice. Let us at the moment assume that the
ions simply meld together into a sea of uniform positively charged background, inducing a
constant electrical potential. This “free electron model” is at first glance a ridiculously sim-
ple approximation, but starting from this point gives some useful insight, and the complexity
of the model can be built upon.

Electrons are fermions, and as such, no two electrons can occupy the same state. For ex-
ample, no two electrons can have the exact same momentum and spin. From this constraint
alone, we can already tell that the electrons will fill up some set of available quantized energy
levels — which in this case can be labeled by their momenta — until some characteristic
momentum value which is determined by the number of particles. This characteristic mo-
mentum is called the ‘Fermi’ momentum, which is related to the ‘Fermi’ energy through the
Hamiltonian, which for this scenario basically only consists of the electron kinetic energy
(Ĥ = p̂2

2m
+ Vions). In this approximation, Vions is simply a constant.

In order to make these statements more precise, and to obtain some more information
about the phase space structure of the quantum states in the free electron model, we should
solve the Schrodinger equation with boundary conditions. Consider the edges of the sample
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Figure 1.2: Electronic spectrum and Fermi surface of free electrons A Energy spec-
trum of available momentum states, with kx taken as an example, although for the free
electron gas, the spectrum would like identical to this no matter which linear momentum
direction were selected. The states below the Fermi energy, EF , are filled. The Fermi mo-
mentum is labeled on the x-axis. B The locus of filled quantum states in momentum space,
which trace out an isotropic sphere with radius equal to the Fermi momentum.

as an infinite potential barrier such that electrons have no hope of escaping. The solutions
to the Schrodinger equation produce an energy spectrum in a cube of sample of length L,

E =
π2h̄2

2mL2
(n2

x + n2
y + n2

z) (1.2)

The resulting ground state consists of a filled surface of quantum states in momentum space,
a Fermi surface, with a sharp boundary at the Fermi energy (EF = h̄kF ). Note that these
energy states are discretized, as nx, ny, and nz are integers, but because of the enormous
number of electrons in a typical sample of a metal, the surface can be well-approximated
as a smooth sphere for all intents and purposes (this approximation is not appropriate for
extremely small samples, where the discretization of energy levels becomes apparent!).

We have not yet considered the effects of finite temperature. Fundamentally, every gas
of electrons is quantum mechanical. That is, the particles in the gas obey Fermi statistics,
giving rise to a Fermi energy. But, there are some gases that can be modeled quite well with
classical Maxwell-Boltzmann statistics, say dilute plasmas [153]. No explicit reference to a
Fermi energy is made in these systems. What is the difference?

If temperature is sufficiently high relative to the Fermi energy, there are many states
available to each electron, and the Fermi surface becomes so smeared out that it is essentially
not a surface — electrons rarely overlap in state space or in real space, and can thus be
treated as essentially independent particles (Fig. 1.3A). This leads to a recovery of Maxwell-
Boltzmann statistics, which is essentially a high-temperature limiting form of Fermi-Dirac
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Figure 1.3: Fermi surfaces with thermally excited states. A comparison between
classical and quantum electron gases A A classical electron gas, in which the temperature is
much greater than the Fermi energy. Excited states are distributed well outside the boundary
of the Fermi surface, and their motion and thermodynamic properties are not influenced by
their interactions with each other, or the existence of an underlying Fermi surface. B A
quantum gas where the temperature is much less than the Fermi energy. Excited states exist
in a narrow shell around the Fermi energy, and the the presence of a Fermi surface strongly
affects the available energy levels that excited states have access to.

statistics. If the temperature is well below the Fermi energy, the Fermi surface severely
constrains the states available to the electrons (Fig. 1.3B). This is a consequence of the real
space picture in which the effective width of each particle’s wavefunction is comparable or
much greater than the spacing between electrons. Their quantum statistics become relevant
in this regime.

In many metals, the concept of the Fermi surface is crucial to modeling the properties of
the electrons. If we take crystalline copper as an example, the calculated Fermi temperature
of its electrons based on their density is on the order of 80,000 Kelvin. Therefore, these
electrons comprise a degenerate Fermi gas in basically every conceivable circumstance where
copper appears in nature (T � TF ). Based on low-temperature heat capacity data [24], the
specific heat of the Fermi gas of electrons in a sample of copper can be determined to be close
to 0.7 mJ/molK2 (Fig. 1.4). Interestingly, if we calculate the expected specific heat capacity
coefficient of a completely free electron gas with the same density as that of the electrons
in copper, we find that the expected value is 0.5 mJ/molK2. Therefore, the non-interacting
electron gas picture turns out to be remarkably accurate for estimating the thermodynamic
properties of copper, and indeed those of most metals.
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Figure 1.4: Heat capacity of copper at low temperature On this scale, the heat capacity
of copper clearly has a linear contribution at low temperature (a zero-temperature intercept
of about 0.7 mJ/molK2 on the C/T vs T 2 scale). This indicates a contribution from a
degenerate fermion gas of electrons. The T 3 contribution is understood as originating from
the phonon contribution of the lattice of ions.

Fermi liquid theory

While the general thermodynamic properties of metals are pretty well-described by the free
electron model, dynamical properties like transition rates between states (useful for things
like absorption coefficients, heat and charge transport coefficients, magnetism, etc), as well
as more precise predictions of thermodynamic coefficients, require a more precise treatment,
which includes the effect of electron-electron interactions. This requires us to employ the
most accurate model of interacting fermion gases to date — Fermi liquid theory.

Let us consider incorporating electron-electron interactions into the free electron model.
In principle, the Hamiltonian now includes a sum of all interaction potentials between an
enormous number of electrons. The problem of determining the ground state and eigenstates
becomes almost infinitely more complicated, and virtually impossible to solve exactly. Luck-
ily, we have at our disposal the principal of adiabatic continuity, one of the most powerful
concepts in physics. Lev Landau popularized the method of applying adiabatic continuity
to the interacting fermion gas [39], originally for the study of liquid 3He, which is why Fermi
liquid theory is sometimes called Landau’s theory of the Fermi liquid. The principle of adia-
batic continuity states that the good quantum numbers associated with the stationary states
of a given Hamiltonian remain unchanged by a perturbation provided that the perturbation
is sufficiently ‘weak’. This argument has been put on more rigorous ground previously based
on consideration of the time-dependent Schrodinger equation as a perturbation is turned
on over some time [90]. The broad conclusion of these arguments is that the spectra of
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two Hamiltonians can be adiabatically connected provided that there is no ambiguity in the
ordering of their energy levels, i.e. degeneracies or level crossings are not introduced by the
perturbation.

We will first discuss a concrete example to give more intuitive meaning behind this
concept. Then, we will describe how the adiabatic principle can be applied to the interacting
gas of electrons in a metal.

Adiabatic continuity and symmetry breaking

As a simple example, consider a particle in a quartic potential well (V (x) = x4); perhaps we
can draw an analogy between this scenario and the potential of a single ion in a crystal lattice.
The energy spectrum can be solved, where each stationary state solution to the Schrodinger
equation looks basically like part of a sinusoidal wave that decays on either end (Fig. 1.5A).
Each successive energy level has a wavefunction that includes one extra node compared to
the one below it. Therefore, one can say that the ‘good’ quantum number labeling each state
in this case are the number of nodes in the wavefunction. The zeroth energy level has zero
nodes, the first has one node, etc. There are no degeneracies. We can now consider deforming
the background potential into a slightly more complicated shape by adding a bump to the
center of the well (Vperturbation = −2x2). This might be one way that the ‘turning on’ of
electron interactions in a metal could manifest; for example, if there are two electrons in the
well that repel each other, the total potential landscape could be crudely modeled by adding
a bump to the well potential. Luckily the Schrodinger equation is easy enough to solve
numerically for the potentials shown in Fig. 1.5A, and we can draw the wavefunctions and
energy spectrum from the numerical solution. Notice that, with the addition of a weak bump
in the potential well, although the level spacings change slightly, and the precise shapes of
the wavefunctions change, there are some things that didn’t change. The number of nodes
per sine wave in each energy level stayed the same under the perturbation, so the good
quantum numbers are left unaffected. There are no level crossings, and no degeneracies
are introduced by this weak perturbation. This is an example of the adiabatic principle at
play — as long as the deformation to the potential is sufficiently weak, the system can be
adiabatically connected to the bare potential such that the labels of the quantum states are
robust to the perturbation.

But as the bump perturbation to the potential well becomes stronger, the characteristics
of the wavefunctions and their energy spacings change qualitatively. Consider the rightmost
panel of Fig. 1.5A, which involves a very strong bump perturbation to the quartic potential
well. When this perturbation is applied, the lowest two energy levels approach degeneracy.
This is also true of the next two highest energy levels, and the next two. As the bump becomes
larger, pairs of successive wavefunctions with even and odd numbers of nodes start becoming
degenerate. In this sense, an infinitely strong bump perturbation to the background potential
cannot be adiabatically connected to the bare potential because the quantum numbers for
the stationary states fundamentally change due to the ambiguity introduced by energy levels
becoming degenerate. The effects on the ground state wavefunction are explored further in
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Figure 1.5: Perturbations to a potential well. A The background potential (grey line)
evolves from left to right as a “bump” is introduced to a double-well potential. The wave-
functions are shown and offset in proportion to their energies. When the bump perturbation
becomes strong enough, the energy levels start becoming degenerate. States with even and
odd numbers of nodes begin pairing up into approximately degenerate levels. B Color plot of
how the ground state wavefunction amplitude evolves as the size of the bump perturbation
increases. As the perturbation becomes stronger, the wavefunction changes qualitatively in
character. The panel above shows the energy splitting between ground and excited states ap-
proach zero as the perturbation is turned on. This occurs at the same perturbation strength
at which the ground state wavefunction amplitude splits from one lobe into two.
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Fig. 1.5B. As the perturbation is introduced, the level spacing between the ground state
and first excited states approaches zero. At the same time, the qualitative shape of the
ground state wavefunction changes from being concentrated to the center of the well to
being separately concentrated in the right and left wells.

Another way to look at this situation is from the perspective of symmetry. Consider
the parity operator which inverts the position across the center of the well. In the ground
state of the unperturbed and weakly-perturbed systems, the ground state is even under the
parity operation, and the first excited state is odd. However, as the strength of the bump
perturbation increases, the energy gap between the even and odd states approaches zero
(Fig. 1.5B). Therefore, as the bump becomes stronger, the wavefunction’s symmetry under
the parity operation no longer uniquely determines its energy. In the limit of an infinitely
strong bump, the ground state is doubly degenerate where the respective wavefunctions are
concentrated fully in either the right or left sides of the well — these stationary states don’t
respect parity [128]. Thus, although the Hamiltonian of a double well potential commutes
with the parity operator, the resulting wavefunctions in the limit of an infinitely strong bump
do not respect parity. This is one example of spontaneous symmetry-breaking, and it is a
direct consequence of the degeneracy introduced between even and odd eigenstates by an
infinitely strong bump perturbation. It is no coincidence that symmetry-breaking coincides
with a change of the good quantum numbers because there is a direct relationship between
symmetry and degeneracy in quantum systems [127, 128].

The central takeaway from the toy model discussed in this section is that the spectrum
of a bare potential and a perturbed potential cannot be adiabatically connected to one
another if a symmetry is spontaneously broken by the introduction of the perturbation. We
will discuss this more later in the context of the symmetry-breaking potential induced by a
lattice, and symmetry-broken phases in the electron fluid. These phenomenon can lead to a
breakdown of the adiabatic principle, and therefore of Fermi liquid theory, in the interacting
electron fluid.

Adiabatic continuity applied to weakly interacting electron gases

Consider again the metal. The principle of adiabatic continuity applies not only to simple
Hamiltonians like the one shown in Fig. 1.5, but also more complicated ones like the many
body electron gas. According to the adiabatic principle the labels for the good quantum
states remain the same as the interactions between the electrons are included, provided that
the interactions are not ‘too strong’ (what is meant by ‘too strong’ in this context is very
important, and is most easily defined in terms of the lifetime of the states, as we will discuss
later). But with this caveat in mind, we can still describe the low-energy excitations of
the interacting gas as states each with the same good quantum numbers — spin, charge,
and momentum — as the electrons in the free Fermi gases described in the previous sec-
tions. Generally speaking in most metals, the electron-electron interactions are relatively
weak because they are mutually screened from one another, as will be discussed more in
Chapter 2. Thus, the ground state excitations of the electron liquid in most metals ‘look’
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like electrons in the sense that they have the same spin and charge as electrons in a vacuum.
However, they are not electrons but ‘quasi’particles — collective excitations of the electron
fluid, which in some sense can be considered wavepackets composed of a superposition of
independent-particle wavefunctions. As a result of the preservation of the good quantum
numbers, the general thermodynamic properties of the Fermi liquid are the same as the free
electron gas. However, there are two key differences between Fermi liquid quasiparticles and
non-interacting electrons. First, because quasiparticles are collective excitations, there is an
inertial backflow when the quasiparticles move. Thus, their dynamical properties are renor-
malized by the response of the surrounding fluid (for example the bare electron mass m is
renormalized to a different value m∗, which in principle could be several orders of magnitude
larger than the bare electron mass! [11]). Second, quasiparticles are not exact eigenstates of
the interacting Hamiltonian, and therefore the quasiparticles have finite lifetimes. The latter
statement essentially defines the conditions of adiabaticity in an interacting Fermi liquid. If
the lifetime is too short, the quasiparticle loses meaning as a well-defined excitation.

To see what ‘well-defined excitation’ means more directly, and define the conditions of
adiabaticity in an interacting electron gas, it is useful to reference the spectral function.
In the most precise language possible, the spectral function is a probability distribution
that an electron (a normal electron, not a quasiparticle) in a particular basis state, say
momentum k, can be found at energy ω. More intuitively, the spectral function essentially
shows us how similar the interacting excitations are to bare electrons, and whether they
can be adiabatically connected to one another. Incidentally, it is quite a useful tool in
photoemission measurements, where quasiparticle excitations are excited out of the material
by electromagnetic radiation, and then become normal electrons in the vacuum which are
then detected with momentum resolution. In the non-interacting case the spectral function
is a delta function at the energy ε0k = k2

2m
(as shown in Fig. 1.6) because there is a one-

to-one correspondence between momentum and energy for each non-interacting electron
wavefunction. As electron-electron interactions are cranked up in a Fermi liquid, the electron
wavefunctions lose their ‘eigen-ness’, and so an electron with a given momentum may take
part in a number of energy eigenstates. In the Fermi liquid, there may still be a peak at
a certain energy determined by the renormalized mass (εk = k2

2m∗
), as seen in Fig. 1.6, but

the peak has some width, and part of the spectral weight is transferred to an incoherent
continuum. The peak in the interacting spectral function defines the quasiparticle. The
height and width of this peak are related, and determined by the quasiparticle weight Z,
which is proportional to the lifetime of the quasiparticle τ . Essentially, the interacting
spectral function tells us how related a quasiparticle is to a bare electron; the sharper and
taller it is (Z → 1), the more similar it is to a delta function, i.e. a bare electron.

Another way to view the interacting Fermi liquid is with the electron distribution function
nk. In the non-interacting electron gas, the distribution function at zero temperature just
looks like a step function with a step at the Fermi momentum, as seen in Fig. 1.6. As
the interactions are turned on, there is still a step at the Fermi momentum with also some
electron-hole excitations that smear out the distribution function, as shown in the Fermi
liquid distribution function in Fig. 1.6. The height of the step at the Fermi momentum
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Figure 1.6: Spectral A(k, ω) and distribution (nk) functions of a free (or nearly free)
electron gas, an interacting Fermi liquid, and a strongly interacting non-Fermi
liquid Moving from left to right in the above graphs, the electron-electron interactions
become stronger. The spectral function A(k, ω) determines the distribution of bare electron
states as a function of energy for a given momentum. In the non-interacting gas it is a delta
function at an energy determined by ε0k = h̄2k2

2m
. In the interacting Fermi liquid, its position is

renormalized to εk = h̄2k2

2m∗ , and it becomes broadened and shrunk in accordance with the finite
quasiparticle lifetime, parametrized by the quasiparticle weight Z. In a non-Fermi liquid, the
quasiparticle peak is indistinguishable from the broad incoherent background, or in other
words Z → 0. In the bottom plots the distribution function of non-interacting electrons
at zero temperature are shown. As the quasiparticle weight Z decreases with the strength
of the electron-electron interactions, the well-defined step of the Fermi-Dirac distribution
becomes progressively smeared out into a continuous lineshape.

in this case is determined by the quasiparticle weight, Z, the same weight that defines the
width of the quasiparticle peak in the spectral function.

Now, we can imagine a situation where the interactions are so strong that it becomes
impossible to define a quasiparticle in terms of bare electrons. These scenarios are shown in
the ‘non-Fermi liquid’ graphs in Fig. 1.6. In these cases, there is no contrast between the
peak of the spectral function and the incoherent background, and the similarity between the
interacting and non-interacting cases becomes zero (Z → 0). In addition, the distribution
function at zero temperature can look like a smooth continuum. This is how it looks when
the adiabatic condition is violated when moving from the non-interacting electron gas to the
interacting electron fluid. Now we can ask the question: what are the physical conditions
that give rise to a non-Fermi liquid? Or, in other words, is there some sort of stability
criterion for a Fermi liquid?



CHAPTER 1. INTRODUCTION TO METALS, SUPERCONDUCTIVITY, AND
MAGNETIC QUANTUM CRITICALITY 15

The principle of adiabaticity in an interacting electron gas boils down to the lifetime of
the quasiparticle excitations, because Z ∼ τ . So if the lifetime τ is very short, then Z → 0
and the quasiparticle loses meaning as a coherent excitation. The quasiparticle lifetime in
a Fermi liquid can be derived from energy conservation. This argument has been rewritten
several times in the literature [174], and will be rewritten for clarity again here (especially
because this argument is so important to the concepts in Chapter 3). Say there is an excited
quasiparticle at energy ε above the Fermi surface. The quasiparticle can undergo a transition
to a state with lower energy while at the same time another quasiparticle is excited with
equivalent energy exchange. Fermi’s golden rule tells us the rate (1/τ) at which this process
happens (see Ref. [174])

1

τ
∼ π

h̄
|V |2g2

F ε
2, (1.3)

where gF is the density of states at the Fermi surface, and |V | is the scattering matrix
element between initial and final states. Both of these are assumed to be constant for the
duration of the transition, so the decay rate of excited quasiparticles in the Fermi liquid is
proportional to their energy squared. For quasiparticles near the Fermi surface, ε > ε2, so
that quasiparticles are well-defined in the sense that their decay rate is slower than their
energy; of course, this result only applied to excitations close to the Fermi level where ε is
small. The condition that the lifetime is smaller than ε is equivalent to the result that Z > 0.
In the zero-temperature limit, we can make an equivalence between temperature and energy
(ε ∼ T ). This leads to the conclusion that in a Fermi liquid, the quasiparticle decay rate
goes as T 2 in the low temperature limit and for excitations close to the Fermi level. If the
quasiparticle excitation decay faster than T 2, say as T , then the principle of adiabaticity is
violated.

One of the firm criteria here is that the quasiparticle decay rate due to electron-electron
transitions in a Fermi liquid is essentially limited to be slower than T 2 (or ε2 if energy is
input in a way other than raising the temperature). If the decay rate of electronic exci-
tations satisfies the above inequality, then the system is a Fermi liquid, and the adiabatic
condition is satisfied. Consequently, the rate of momentum dissipation (i.e. the resistivity)
in the limit of zero temperature in a Fermi liquid should go as T 2. There are a number of
assumptions involved in mapping the quasiparticle decay rate from electron-electron transi-
tions to a resistivity. The primary assumption, as far as we are concerned experimentally,
is that the temperature needs to be sufficiently low that all other sources of momentum
relaxation are absent. It is often difficult to independently verify that this is the case, as
sources of momentum relaxation aside from electron-electron scattering events can in some
cases persist to remarkably low temperatures, as will be discussed in Chapter 3. Another
complication is that electron-electron collisions actually conserve momentum, and superfi-
cially should not lead to a resistivity, but the combination of electron-electron scattering
and Umklapp scattering events associated with a change in the crystal momentum, results
in dissipation [113].
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Luttinger’s theorem

“You can’t just jump from little to big things” — Nadia Comăneci
Fermi liquid theory, while elegant, is in some ways shrouded in layers of abstraction.

The notion of ‘adiabatic continuity’ is a rather difficult concept to wrap one’s head around
intuitively for a single particle in a potential, let alone when one also tries to keep count
of the mutual potential between trillions upon trillions of electrons. With such a seemingly
simple conclusion, there is a tendency to wonder what is surprising about the results of Fermi
liquid theory. We are motivated to consider whether there are some more concrete results.

One of the most profound is the Luttinger-Ward theorem, the simple statement of which
is that the integrated volume of the Fermi surface of a Fermi liquid is proportional to the
density of electrons. This result is independent of the strength of the interaction between
the electrons, provided that the adiabatic principle of Fermi liquid theory is not violated by
these interactions. This theorem was initially proved by considering a perturbative expansion
of the electron-electron interactions [118], and later on proven non-perturbatively [143]. In
the case of non-interacting electrons, Luttinger’s theorem is a direct result of the Pauli
exclusion principle, but the fact that it applies to the quasiparticles even as the interactions
are included is remarkable. The momentum states available to quasiparticle excitations in
a Fermi liquid is essentially a conserved quantity, which can only be changed by physically
adding regular electrons to, or removing regular electrons from, the system. This serves as
quite a powerful framework given that quasiparticle excitations can be composed of hundreds
or thousands of individual electrons.

Finally, it is worth noting that the Fermi liquid state is inherently unstable. So far
we have mainly been considering repulsive interactions between electrons — this is rather
natural because Coulomb interactions between single electrons are repulsive. However, in
the presence of even a weak attractive potential between electron quasiparticles, they are
susceptible to pair up with each other and condense into a superconducting state. The
low energy excitations of the superconductor do not bear resemblance to single electrons;
they are composed of pairs of electrons. In this sense, an attractive interaction, especially
between quasiparticles of opposite momenta, is a non-adiabatic perturbation to the Fermi
gas. There are several arguments given in the literature regarding the instability of the Fermi
liquid to an attractive potential. One very general argument relies on renormalization group
analysis [156]. The interested reader can also look at Chapter 10.3 of Ref. [82] for specific
arguments. It is worth noting that the low-energy description of a superconducting state of
electrons is one of the few instances in which the solution to a non-adiabatic perturbation
to the Fermi gas has been determined.

As discussed in the introduction, by far the most well-understood mechanism for the
formation of an attractive potential between electrons is through an interaction mediated by
the quanta of lattice vibrations, i.e. phonons. The intuitive picture is the following. After
an electron moves through a region of the lattice, it leaves a wave of positive charge as the
ions of the lattice cluster in its wake. This wake of positive charge can attract a different
electron that comes into the region. An attractive interaction results from this mechanism
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in second order perturbation theory [21]. Such a mechanism is fairly generic, which makes
superconductivity a surprisingly common phenomenon in metals at low temperature.

Effects of the symmetry-breaking periodic lattice potential

“I don’t remember. I don’t remember, in fact, that Sommerfeld was worried about electrons
being free. But to me, Bloch was essential.” — Hans Bethe

Certainly we expect the structure of the underlying ionic lattice to have some sort of
effect on the electron wavefunction in metals, and the resulting physical properties such as
directional-dependent conductivity, response to polarized light, etc. In addition, the free
electron model cannot account for the insulating properties of solids.

To account for these situations, we must consider the effect of the periodic electric po-
tential induced by the ions in the underlying crystal lattice. The reason we chose to present
the results of Fermi liquid theory first is to emphasize that Fermi liquid theory is a rather
general result for weakly-interacting fermion gases (originally it was developed for liquid
helium, a fluid in free space). The potential induced by the periodic lattice of a crystal can
be considered a perturbation applied to the Fermi liquid, and the fact that the lattice is
a translation symmetry-breaking potential turns out to have some interesting implications
from the perspective of Luttinger’s theorem. This will set the stage for discussing other
types of symmetry-broken order in electron fluids.

By Bloch’s theorem [15], the wavefunction of the electrons (or quasiparticles if we are
starting with a Fermi liquid in free space) becomes modulated by a periodic term with the
same periodicity as the crystal lattice.

ψ(r) = eik·ru(r), (1.4)

where u(r) = uk(r+a) is determined by the periodic potential of the lattice and has the same
spatial periodicity as the crystal lattice. a is the lattice translation vector. These electron
wavefunctions are called Bloch states, which extend over the entire crystal and give rise to
familiar properties like electrical conductivity. Note that Bloch states can still be considered
single-particle states.

One can calculate the dispersion of these states by treating the periodic potential as a
perturbation of the Fermi liquid dispersion in free space [15]. A cartoon of the resulting
electronic structure is shown in Fig. 1.7. The single-particle spectrum is repeated every
2π/a units in momentum space. Gaps arise at the level crossings because their degeneracy
is lifted by the periodic potential. Microscopically, these gaps in the energy spectrum arise
because wavefunctions of electrons that are free to move about in the vacuum begin to
destructively interfere with each other at these momenta in the periodic potential. If the
number of electrons in the system places the Fermi energy within one of these gaps, then the
itinerant states that existed in the vacuum disappear after the periodic potential is turned
on. More generally, depending on the location of the Fermi energy, which is set by the
number of electrons that existed in the vacuum, the number of itinerant states left over after
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Figure 1.7: Periodic perturbation to a gas of fermions The free electron (or Fermi
liquid) quadratic dispersion is modified by the presence of a periodic potential of periodicity
a. The dispersion is repeated in momentum space (grey lines), and depending on the strength
of the periodic potential, a gap opens at points where the dispersion crosses itself. This results
in a reconstruction of the electronic spectrum into different “bands” of energy with occupied
states that may be separated by gaps.

the periodic perturbation is turned on could in principle be different from the number of
electrons that made up the Fermi liquid in vacuum.

Note the following important point from the perspective of Luttinger’s theorem; the
periodic potential of ions is a non-adiabatic deformation of the original potential because
it breaks the continuous translational symmetry of the vacuum. Thus, Luttinger’s theorem
places no constraints on the relative volumes of the Fermi surfaces before and after the lattice
potential is considered. This isn’t to say that Fermi liquid theory does not apply in the case
of electrons confined to a lattice, but that the Fermi liquid in the periodic potential cannot
be adiabatically connected to the Fermi liquid in vacuum.

1.3 Beyond Fermi liquid theory: quantum critical

nearly-magnetic metals

“It is hard to imagine describing the physics of metals without beginning with the electron”
— Andrew Schofield

Although Fermi liquid theory has proven to be surprisingly robust in describing the
properties of most metals, there are some metals where the principle of adiabatic continu-
ity breaks down, and the systems exhibit non-Fermi liquid behavior. Typically, these cases
coincide with proximity to some sort of symmetry-broken phase of the electron fluid, of-
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ten magnetism. This text is focused on three distinct situations in which non-Fermi liquid
physics can arise, with a chapter dedicated to each. All three non-Fermi liquid scenarios can
be described, at least in part, as metals near magnetism. What is particularly notable about
non-Fermi liquids is that the electrons, rather than remain in their non-Fermi liquid state
down to zero temperature, often prefer to reorganize themselves into more stable collective
phases like superconductivity, for example. Thus, all of the non-Fermi liquids described in
this text have the potential to exhibit, and often do exhibit, nearly-magnetic superconduc-
tivity (or in some cases nearly-magnetic superconductivity which is also in proximity to other
ordered phases). In other words, the reason that superconductivity happens and the reason
that non-Fermi liquid physics happens might be the same. In this section, we will briefly
introduce the topics which will be explored further in the chapters of this text.

Nearly-ferromagnetic metals

In no particular order, the first situation where the Fermi liquid description can break down is
in metals close to the zero-temperature intercept of a ferromagnetic phase boundary (Chapter
4). A good example of this phenomenon occurs in MnSi, where the low-temperature resistiv-
ity is observed to vary as T 3/2 when the material is subject to pressures high enough to sup-
press the ferromagnetic transition temperature to zero [163] (recall that a low-temperature
electron relaxation faster than quadratic in temperature is indicative of a breakdown of
the adiabatic principle central to Fermi liquid theory); the phase diagram of this material
is presented in Fig. 1.8. Superconductivity sometimes, but not always, appears in nearly-
ferromagnetic metals, as seen for example in UGe2 under pressure (see Fig. 1.8) [172].

The source of non-Fermi liquid behavior in weakly- or nearly-ferromagnetic metals was
originally explained in a picture by Hertz, Millis, and Moriya [133] (see also Ref. [39] chapter
13). The general idea is that at zero temperature, the system undergoes a symmetry-breaking
transition between magnetically ordered and magnetically disordered — a quantum phase
transition. If this transition is continuous, it is associated with the development of long-
range magnetic modes in analogy to the way that long-range fluctuations drive thermal
phase transitions. These long-range modes increase the strength of interactions between the
Fermi liquid quasiparticles, and in principle can be a source of an electron-electron interaction
that is a non-adiabatic perturbation to the non-interacting electron gas. The conventional
method to treat such a problem is to consider the Fermi liquid continuum of quasiparticles
weakly coupled to a bath of bosonic fluctuations associated with the symmetry-breaking
order parameter [129]. There has been reasonable success in deriving scaling exponents of
various physical quantitites based on these theories [132]. In practice, in metals near ferro-
magnetism, the transition often becomes first-order when the phase boundary approaches
zero [95]. This issue will be discussed more in Chapter 4.4. Nevertheless, non-Fermi liquid
physics can be observed at the zero-temperature endpoint of a ferromagnetic phase as has
been seen in MnSi [163].
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Figure 1.8: Phase diagrams of some nearly-ferromagnetic metals Both superconduc-
tivity and non-Fermi liquid behavior can be observed near the zero-temperature endpoint of
a ferromagnetic phase [172, 163].

Nearly-antiferromagnetic metals

The second situation where non-Fermi liquid behavior commonly occurs is in metals near the
zero-temperature intercept of an antiferromagnetic phase boundary, where superconductivity
is frequently observed as well. This situation, discussed more in Chapter 3, is perhaps
more well-studied than that of nearly-ferromagnetic metals, largely because there are more
material examples that exhibit nearly-antiferromagnetic superconductivity — many iron-
based superconductors [35], heavy fermion superconductors [67], organics [197], and copper-
oxide ceramics [214] are nearly-antiferromagnetic metals with qualitatively similar phase
diagrams to one another, as shown in Fig. 1.11.

The essential physics of these systems is that of a metal which undergoes an antiferromag-
netic instability — the same electrons which are part of the itinerant conduction sea become
magnetically ordered. While this complicates the situation somewhat if the electronic de-
grees of freedom are very strongly coupled to the magnetic degrees of freedom, it seems to
be the case that certain properties of nearly-antiferromagnetic metals can be described by
so-called weak coupling picture [2], where the magnetic fluctuations are treated as a per-
turbation to the electronic system (sort of analogous to the way in which electron-phonon
interactions are treated in metals). This scenario is similar to the weak-coupling picture of
ferromagnetic quantum critical metals discussed in the previous section — the main difference
between ferromagnets and antiferromagnets is the energy-momentum dispersion relation of
the magnetic modes, and where they overlap with the Fermi liquid continuum of electronic
excitations [133].

Near the endpoint of the antiferromagnetic phase, the magnetic fluctuations become ‘soft’
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Figure 1.9: Fermi surfaces of an antiferromagnetic quantum phase transition in a
metal The paramagnetic state has a circular Fermi surface, as shown on the left hand side.
In the antiferromagnetic state, shown on the right, the Fermi surface reconstructs. States
that coincide with the ordering vector of the antiferromagnetism (qAFM) are gapped by the
interference effect caused by Bragg diffraction from the electron spins in their ordered state.
At the critical point between these two phases, points on the Fermi surface which would have
been connected by qAFM are strongly influenced by fluctuations of the antiferromagnetic
order parameter. These red regions of the Fermi surface are expected to exhibit non-Fermi
liquid behavior. This diagram is recreated from Ref. [40].

in the sense that their dispersion has a relatively small gap. Because antiferromagnetic order
breaks translational symmetry, it is associated with a well-defined crystal momentum. These
magnetic fluctuations therefore induce strong electron-electron interactions in very localized
regions of the Fermi surface which are connected by the momentum of the antiferromagnetic
modes. Such a situation is shown from the Fermi surface perspective in Fig. 1.9. We em-
phasize again that the above arguments should only pertain to the weak-coupling scenario,
though there is a school of thought that this treatment can be extended to more general
situations [2]. In addition, although antiferromagnetic fluctuations should only affect local-
ized regions of momentum space, it is often the case that such materials exhibit non-Fermi
liquid behavior in their bulk properties, as will be discussed more extensively throughout
Chapter 3. For example, the heat capacity near the antiferromagnetic phase boundary of
cerium-gold-copper alloys at a critical concentration seems to logarithmically diverge at low
temperatures (e.g. 1.10B) [174]. The behavior of thermodynamic properties around such
a magnetic quantum phase transition can be decently described through the derivation of
critical exponents based on the Hertz-Millis-Moriya models of magnetic quantum critical-
ity [133]. Many of the outstanding questions in the study of nearly-antiferromagnetic metals
focus on explaining their bulk transport properties, which superficially should not be af-
fected significantly by very localized scattering from antiferromagnetic modes at “hot spots”
(Fig. 1.9), but in reality often experimentally exhibit strong deviations from the expectations
of Fermi liquid theory in bulk measurements. Resolving this discrepancy is an experimental
and theoretical challenge which is discussed more in Chapter 3 of this text.
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Figure 1.10: Non-Fermi liquid properties in a nearly-antiferromagnetic metal A An
alloy of cerium, gold, and copper exhibits a transition from antiferromagnetic to magnetically
disordered at zero temperature as a function of gold concentration. When the gold concen-
tration in the sample is controlled such that the material is close to the zero-temperature
endpoint of the antiferromagnetic phase, non-Fermi liquid physics is observed. B The low-
temperature heat capacity coefficient logarithmically diverges at a critical concentration of
gold. In a typical Fermi liquid, this value would be expected to be temperature-independent
at low temperatures.

It is also important to address the validity of Luttinger’s theorem around such a zero-
temperature phase transition. The Fermi surface in the antiferromagnetic phase reconstructs
due to the expansion of the unit cell. A gap can open up on certain points on the Fermi
surface which intersect the magnetic Brillouin zone as a result of Bragg diffraction of the
electrons from the spins of the antiferromagnetic order parameter, as seen in Fig. 1.9. In
this sense, some itinerant electron states that are present in the magnetically disordered
phase actually disappear in the antiferromagnetic phase because of interactions between the
electrons and the symmetry-breaking antiferromagnetic order parameter. Thus, the zero-
temperature transition between antiferromagnet and paramagnet in such materials typically
does not conserve Fermi volume, just as the introduction of the periodic lattice potential
of ions also does not conserve Fermi volume. The central difference between the lattice
potential and an antiferromagnetic phase is that in this case the symmetry-breaking potential
is induced by the antiferromagnetic order parameter in the spin degrees of freedom rather
than the ionic potential of the crystal lattice. That being said, neither the antiferromagnetic
phase nor the paramagnetic phase are incompatible with Luttinger’s theorem because the
states on either side of the critical point cannot be adiabatically connected to one another. As
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Figure 1.11: Phase diagrams of some nearly-antiferromagnetic metals Antiferromag-
netic (AFM) phases suppressed to zero temperature tend to catalyze a ‘dome’ of supercon-
ductivity in the phase diagram, sometimes at relatively high temperature. A few examples
are shown including BaFe2As2 [35], an iron-based superconductor, CePd2Si2 [67], a heavy
fermion superconductor, La2CuO4 [214], a copper-oxide ceramic, and (TMTSF)2PF6 [197],
an organic superconductor. All of them show qualitatively similar phase diagrams, as well as
putative non-Fermi liquid behavior near the zero-temperature endpoint of the AFM phase.
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a consequence, Luttinger’s theorem has nothing to say about their relative Fermi volumes.
Conventionally, then, near such a metallic antiferromagnetic quantum critical point it is
believed that the ground state phases on either side are well-described by Fermi liquid theory.
It is only at the critical point itself, or maybe a region of phase space at finite temperature
above the critical point, where Fermi liquid theory may be violated by the interaction of
electrons with critical magnetic modes.

Nearly-antiferromagnetic, nearly-charge localized metals

The third, and perhaps most complicated, situation where non-Fermi liquid behavior resides
is in metals where the Coulomb interactions between the electrons are relatively strong, even
strong enough to localize electrons which would have otherwise contributed to the density
of the Fermi liquid. Antiferromagnetism, or even more complex charge and spin ordered
phases, can also occur in such systems when the charges become localized. This scenario
will be discussed in Chapter 2.

There are two major research thrusts in this category of materials. The first thrust is to
characterize the ground state of the phase where charges are localized due to their mutual
Coulomb repulsion — a scenario which, if not accompanied by a symmetry-breaking phase
transition, apparently violates Luttinger’s theorem [46]. One proposal is that if the electron-
electron interactions in an electron fluid become strong enough, the fundamental excitations
are different from Fermi liquid quasiparticles. An example is the ‘Luttinger’ liquid charac-
terized by separate spin- and charge-carrying quasiparticles [177], completely different from
the Fermi liquid quasiparticles which each carry both spin and charge. The spin excitations
remain itinerant while the charged excitations become gapped, resulting in an insulating
state with a sharply defined Fermi surface of charge neutral excitations. In this sense the
Luttinger’s theorem conserving the volume of the Fermi surface in the weakly-interacting
Fermi liquid is conserved even when the interactions are cranked up to the point where the
electrons localize. The Luttinger liquid scenario has been theoretically well-established in
one-dimensional systems [126], and to some extent experimentally demonstrated for materi-
als where the electronic structure is one-dimensional [85, 92]. However, it is not clear if such
a description applies to the charge localized state of two- or three-dimensional systems. A
related possibility is that of Anderson’s resonant valence bond model [10], where quantum
entanglement persists over long length scales in the charge localized state. Another possi-
bility is a phenomenological description known as the ‘marginal’ Fermi liquid [210], which
primarily seeks to describe the properties of the electrons close to the localization transition.
On the other hand, there are other ways that Luttinger’s theorem can be circumvented in
such charge localized systems, namely by symmetry-breaking phase transitions which coin-
cide with the reduction of Fermi surface volume. In this case, it would be no issue that
the Fermi surface disappears in the strongly-interacting electron fluid because a symmetry
is broken at the same time. This would be analogous to the introduction of the symmetry-
breaking potential of the ionic lattice or of an antiferromagnetic order parameter as discussed
previously; the Fermi liquid with and without symmetry breaking cannot be adiabatically
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connected to one another and are therefore unconstrained by Luttinger’s theorem. It may
be that there is a fundamental reason that strongly interacting electron fluids, as exemplified
by high-temperature superconductors and f -electron metals, seem to be generically unstable
to symmetry-broken order.

localized charge 

(no Fermi surface)delocalized charge
quantum phase transition 

(critical Fermi surface)

Figure 1.12: Fermi surface of a charge localization transition The Fermi surface of
the itinerant metal in the delocalized case becomes ‘critical’ at the transition point to the
localized case. In the localized case, there is no well-defined Fermi surface of itinerant electron
states. Such a transition apparently violated Luttinger’s theorem for Fermi liquids, and it is
unclear how to describe the fluctuations of a critical Fermi surface.

Therefore, a second main research thrust is to characterize the transition between a charge
localized state and a delocalized state, i.e. characterize the metal which is “nearly-localized”
— such metals often exhibit non-Fermi liquid behavior, as well as other forms of symmetry-
broken order (like antiferromagnetism) induced by the strong electron interactions. Unlike in
nearly-antiferromagnetic metals as discussed in the previous section, where antiferromagnet
order destabilizes the Fermi liquid in localized regions of momentum space associated with
antiferromagnetic ordering, the localization of charges at a quantum phase transition is
expected to result in the disappearance of an entire Fermi surface, as shown schematically in
Fig. 1.12. Sometimes, this localized insulator is also antiferromagnetic. Therefore, in these
systems, not only are antiferromagnetic fluctuations potentially relevant at the quantum
phase transition, but charge fluctuations associated with the dissolution of the Fermi liquid
may be relevant as well. It remains to be seen how to even describe such a ‘critical Fermi
surface’ [177]. It also remains an open question whether symmetry-breaking is a universal
phenomenon in systems where the electron-electron interactions are strong enough to cause
a loss of itinerant states.

Part of the reason that this topic is given urgency is that the high-temperature super-
conducting copper-oxide ceramics, in compositions where superconductivity is strongest, are
believed to be metals close to a charge localization-delocalization transition [114]. Some
argue that the Luttinger liquid physics of spin-charge separation is relevant to superconduc-
tivity in these materials [7]. On the other hand, as mentioned earlier, nearly charge localized
materials are also very often nearly-magnetic (charge localization can coincide with antifer-
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romagnetic order developing in the same electrons that localize as is the case in YbRh2Si2
and CeRhIn5, and also in a region of the cuprate phase diagram), so in addition to the
potential presence of spin-charge separation, and charge order fluctuations [114, 76, 68, 211,
59, 42], spin fluctuations associated with nearby antiferromagnetism are present as well [114,
4, 111, 80]. For these reasons, the mechanism for high-temperature superconductivity in
copper-oxide ceramics is unsettled with some arguing that spin-charge separation plays the
key role, some arguing that nearly-antiferromagnetic physics plays the key role, and others
arguing that proximity to some other form of charged order (such as charge density waves,
or the enigmatic pseudogap) plays the key role. In reality, it is probably the case that all of
these qualities are important to the development of high-temperature superconductivity in
cuprates. But, the focus of this thesis is not explaining high-temperature superconductiv-
ity in cuprates. Instead, we focus on accumulating evidence for a phase transition between
a charge-localized state and a charge-delocalized state in a quasi-two dimensional metal
CeCoIn5 away from a symmetry-broken phase. We also provide indirect evidence of Lut-
tinger liquid physics including spin-charge separation associated with this transition, giving
a potential starting point for describing the critical modes associated with the ‘critical’ Fermi
surface that connects the delocalized metal to the charge-localized state. Phenomenological
similarities between CeCoIn5 and copper-oxide ceramics lead us to speculate that Luttinger
liquid physics may be relevant to certain physical properties of high-temperature supercon-
ductors.
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Figure 1.13: Phase diagrams of some nearly-charge localized systems with anti-
ferromagnetism (AFM) Each of these systems appears to exhibit some sort of charge
delocalization transition. YBCO (YBa2Cu3O7) begins in an insulating antiferromagnetic
state. The antiferromagnetic order is suppressed as the system is doped with excess oxy-
gen [159]. There is evidence that the charges are localized at higher doping levels, and only
delocalize between 0.15-0.20 doping levels [17] where superconductivity is strongest and non-
Fermi liquid behavior is observed. The fuzzy black line indicates a possible ‘pseudogap’ phase
transition of unclear origin [91]. In YbRh2Si2, the application of magnetic field delocalizes
the Yb f -level valence electrons at the same time that antiferromagnetism is suppressed to
zero temperature, giving rise to a non-Fermi liquid phase [179]. In CeRhIn5, the cerium f -
level valence electrons undergo a localization-delocalization transition, perhaps concomitant
with the zero temperature endpoint of the AFM phase boundary [96]. Superconductivity
tends to appear somewhere in the phase diagram of these systems.
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Chapter 2

Nearly-charge localized systems and
spin-charge separation

“I was able to explain most of the experimental data about layered cuprates ... As a result I
can state that the so called ‘mystery’ of high-Tc superconductivity does not exist.” — Alexei
Abrikosov”

The work in this chapter was based on previously published work in Ref. [122]. Sections
2.1, 2.2, 2.3, 2.4, and 2.7 are original to this text. The other section were copied from
Ref. [122] with certain parts rewritten to fit into the broader structure of this text. The
present author performed crystal growth and measurements of the quantum oscillation data,
Hall effect measurements, analysis, and conceived of the experiments. Permission to include
published work was obtained from the coauthors of Ref. [122].

At a charge localization quantum phase transition, all momenta of the Fermi surface are
affected. The Fermi surface itself becomes unstable and disappears. In these situations,
antiferromagnetism can appear ‘incidentally’ when the Fermi surface is destroyed, or in a
nearby region of the phase diagram. Certainly, our expectation is that spin fluctuations play
a key role in such systems in much the same way as in other nearly-antiferromagnetic metals.
However, in addition to spin fluctuations, we may expect to see new physics associated with
the localization of charge induced by electron-electron interactions. The central questions
brought up by a ‘Fermi volume collapse’ type of critical point are: How do we describe the
phases on either side of a Fermi surface instability? How do we reconcile this scenario with
Luttinger’s theorem, which protects the volume of a Fermi surface? What are the low-energy
excitations in the phase where Luttinger’s theorem is apparently violated? And, ultimately,
because many high-temperature superconductors are nearly-charge localized materials, what
is the relevance of all of these phenomena to promoting superconductivity?

Clearly, there are many questions remaining in the study of high-temperature supercon-
ductivity, and certainly almost none of them will be definitively answered in this text, or
indeed for the next several decades if at all. The point of this section is to broadly introduce
concepts which are thought to be relevant to certain unconventional superconductors, and
to search for avenues to begin to understand the high-level physical picture of their phase
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diagrams.

2.1 Mott insulators and antiferromagnetism

“The physical origin of a Mott insulator is understandable to any child” — Branislav Nikolić
In Chapter 1, we discussed several of the implications of Fermi liquid theory, and the

conditions under which it holds. To summarize, Fermi liquid theory successfully describes
the gross properties of most metals. The central result of Fermi liquid theory is that the
interactions between the electrons lead to renormalized dynamical properties of single parti-
cles (which essentially behave in many ways like electrons). The central assumption is that
the interactions between electrons are not ‘too strong’ in the sense that the lifetime of the
single particle states is longer than their characteristic energy. Physically, one of the rea-
sons that this is true, even though Coulombic interactions between electrons are in general
quite strong, is that in most metals the itinerant electrons screen their mutual Coulomb
interactions.

This effect is known as Thomas-Fermi screening in quantum degenerate electron gases —
also known as Debye screening in classical plasmas at finite temperature. The effectiveness
of Thomas-Fermi screening depends on the density of the electron gas in a metal — at high
electron densities, the electrons are screened from their mutual Coulomb potentials very
effectively. However, under certain regimes of electron density, mutual interactions between
the electrons in the gas become strong enough that stable bound states can be formed.
Charges might prefer to localize to their host atoms under these circumstances, and this is
the essence of a Mott insulator.

A breakdown of Thomas-Fermi screening

To make the screening argument a little more rigorous, imagine adding a single charge of
q to a nearly-free electron gas. This is equivalent to adding a local perturbing potential
δU(r) (the following argument is taken from slides by B.K. Nikolić). The task now is to
find the induced electric potential distribution taking into account the screening effects of
the free electrons. The density of electrons in the near vicinity of the perturbing charge will
change in order to keep the chemical potential constant δn(r) = eD(εF )δU(r), where D(εF )
is the density of states at the Fermi level. Assuming that the electrical potential near the
perturbation charge is determined by the space charge distribution, we can solve the Poisson
equation. ∇2δU(r) = − eδU(r)

ε0
. The result is

δU(r) =
q

4πε0

e−r/λTF

r
. (2.1)

This is the familiar Yukawa potential, which is the name given to the screened Coulomb

potential. In this case, λTF =
√

ε0
e2D(εF )

, is the screening length. In the context of solid-state
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physics, it is referred to as the Thomas-Fermi screening length (in the context of plasmas
at finite temperature the same quantity is called the Debye screening length). λTF gives a
measure of length scale over which the Coulomb potential of a point charge will be screened
in the electron gas. Plugging in the expression for the density of states in three dimensions,
we arrive at an equation for the characteristic screening length in terms of the electron
density

λTF =
h̄2ε0
m

( π
3n

)1/3

≈ 1

4

a0

n1/3
. (2.2)

In the second approximation, we have substituted the value of the Bohr radius. A general
qualitative, but rather satisfying, argument is that if λ2

TF < a2
0, then the electrons on each

site do not ‘see’ each other — they are screened over a length scale which is smaller than the
average distance between the electrons. In typical metals, let’s say copper, this condition
is satisfied easily, which is part of the reason that the electrons in copper can be so well
described as a Fermi liquid at low temperature.

At low values of electron density, by the above arguments the screening between electrons
is relatively ineffective, and the interaction potential between the electrons can be strong
enough to form a bound state such that electrons prefer to remain localized to their host
atoms (λ2

TF > a2
0). This state would be insulating (a Mott insulator!) in the sense that

the charges are localized by their mutual repulsion with each other and the system does
not conduct electricity. Thus, the itinerant quasiparticle states that are expected to exist
from the Fermi liquid theory perspective actually disappear (they are no longer itinerant
states) because of a process driven entirely by the interactions between the constituent
electrons. Therefore, we have a loss of Fermi volume due to electron-electron interactions;
as such, Luttinger’s theorem is apparently violated by this configuration. Consequently, the
adiabatic principle is also violated because the Fermi liquid quasiparticle is clearly not an
accurate description of the low-energy excitations. There is certainly no overlap between
this phase and the Fermi gas.

Antiferromagnetism in Mott insulators

It is often the case that real Mott insulators (e.g. La2CuO4) also undergo an antiferromag-
netic transition either concomitant with or in proximity to their charge localized phases.
Anderson, Mott, and others developed a theory describing how an antiferromagnetic ‘su-
perexchange’ interaction can develop between the electrons localized into a Mott insulating
state [107, 8, 9, 63].

The full perturbation theory calculation will not be presented here, but some qualitative
arguments will be presented relevant to the proceeding discussion. A. Schofield gives a clear
intuitive explanation for the antiferromagnetic superexchange interaction that arises when
electrons are localized into a Mott state in his review on non-Fermi liquids [174]:

“no electron really likes to be fixed on a single site — it is like being held in
a small box and its kinetic energy is high. This can be lowered if the electron
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made ‘virtual’ tunnelling hops onto the neighbouring occupied sites and back.
This the electron can only do if the neighbouring site has the opposite spin (the
Pauli principle remains absolute). So we see that the interactions also favour the
antiferromagnetic arrangement of spins...”

What is meant by ‘virtual’ tunneling here is really just the result of a second order pertur-
bation calculation, where the term which lowers the overall energy involves an intermediate
transition from an energy level localized to one site to one localized on a neighboring site.

Mott localization-delocalization transitions

The origin of a Mott insulator is understandable qualitatively. There are of course remaining
questions in the Mott insulator — specifically, what is the ground state and what are the
low-energy excitations? Clearly, a Fermi liquid description is inadequate because there are
no itinerant fermion quasiparticles. Within this landscape, there are several proposals that
have existed for some time, including Anderson’s resonant valence bond solid picture [10],
and others.

However, with these questions about the Mott insulating state in mind, perhaps one
of the most puzzling aspects of Mott insulator or charge localized systems is a description
of their basic properties when the charges undergo a delocalization transition when the
system is perturbed by pressure, charge doping, etc. Say, for example, the electron density
is increased such that screening effects become strong enough such that the Fermi liquid is
restored. Or, the density of electrons is reduced so that there is some room for electrons to
hop from site to site. One straightforward model for these effects is to include the hopping
of electrons from site to site as a term in the Hamiltonian (the second term in Eq. 2.3),
which competes with the onsite Coulomb repulsion between electrons (first term in Eq. 2.3).
Strictly speaking, we don’t need to write down the Hubbard model because we will not delve
deeply into theoretical approaches to solve it, but it is useful to bring up now in order to
contrast to other comparable models later on.

H = U
∑
i,σ

n̂i↑n̂i↓ − t
∑
i,σ

(
ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉ,σ

)
. (2.3)

Here, i labels the lattice site and σ labels the electron spin. If t becomes comparable or
much greater than U , then the system tends towards delocalization. Both theoretically, and
in the real-world examples where such a delocalization transition occurs, this is a challenging
problem to address. From a theory point of view, such a quantum phase transition itself
represents a slightly different paradigm compared to ‘conventional’ quantum phase transi-
tions with a thermodynamic order parameter. More specifically, unlike in the case of say an
antiferromagnetic quantum phase transition, where electrons are coupled to long-wavelength
fluctuations of a bosonic order parameter (which at least under certain circumstances can be
considered ‘weakly-coupled’ to the electrons), in the case of a such a delocalization transition,
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the electrons are coupled to fluctuations of electrons themselves because the Fermi liquid it-
self is disappearing. In other words, the order parameter that is vanishing is the quasiparticle
weight itself. What makes this even more challenging theoretically is that there are no small
parameters in the problem — the kinetic and interaction potential energies are comparable,
and perturbation theory is relatively ineffective. Experimentally, one of the reasons that
this problem is so challenging is that there is a tendency for nearly-charge localized systems
to rearrange themselves into other strongly correlated phases like charge density waves or
superconductivity (or sometimes more enigmatic ‘pseudo’-gapped states, where it is unclear
if there is some sort of thermodynamic order). The proximity of Mott insulating states to an-
tiferromagnetic order also raises questions about the role of antiferromagnetic fluctuations.
So around such a localization-delocalization quantum critical point, there may be charge
fluctuations, magnetic fluctuations, and other order parameters in close proximity. Experi-
mentally disentangling these different contributions, and their effects on physical properties
like charge transport or relevance to the development of superconductivity, is a monumental
task, one which has withstood nearly four decades of concerted research effort in the case of
the hole-doped cuprates.

In this text, we will focus on a specific and fundamental question about charge delocal-
ization transitions. What is the mechanism by which the Fermi liquid (in the delocalized
state) disintegrates when the system moves into the localized state? More specifically, Lut-
tinger’s theorem conserving Fermi volume is apparently violated by such a quantum phase
transition, and our interest is in answering exactly how Luttinger’s theorem fails around
such a transition, or if there is a way to reconcile charge localization with Luttinger’s the-
orem. The answer to this question provides an indirect means to characterize the ground
state phases on either side of a Mott localization-delocalization transition without necessar-
ily needing to sort through all of the complicated electronic phases that may form in real
samples. The goal of this is to provide a ‘high-level’ picture of the phase diagram of a Mott
localization-delocalization transition, and then perhaps examine whether such a high level
view is capable of predicting or explaining some of the resulting physical properties such as
charge transport and thermodynamics, some of which are rather remarkable and unique to
systems near Mott localization-delocalization.

2.2 Heavy fermion metals as model Mott insulators

“The Heavy Fermions would make a great band name” — Steve Kivelson
In some ways, heavy fermions — a name usually applied to metal alloys containing an

element in the lanthanide or actinide series with a partially occupied 4f or 5f level — are like
‘quantum simulators’ of other correlated electron systems, where the interactions are well-
understood and some of their fundamental physical properties have a close correspondence
with those of other systems of quantum correlated matter. This type of ‘quantum simulation’
using heavy fermion metals has been a common theme in the history of correlated quantum
matter. For example, heavy fermion materials provided some of the strictest tests of Fermi
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liquid theory, where the notion of renormalized quasiparticles is taken to an extreme — the
materials often show effective masses of order 10-1000 times the free electron mass, hence
their name. Interestingly, the heavy fermion metal CeAl3 was one of the first materials where
Fermi liquid electron-electron scattering was unambiguously observed in low-temperature
resistivity measurements [11]. Some of the first known unconventional superconductors,
discovered in the 1970s, were heavy fermion materials [192]. The study of conventional
quantum criticality in metals was initially carried out almost exclusively on heavy fermion
compounds. And finally, some of the best examples of nearly-ferromagnetic supeconductivity
occur in uranium-based metals. The above isn’t meant to be an exhaustive list of heavy
fermions, but to give examples of where heavy fermion metals have been extremely useful
in the study of correlated electron physics. We take a similar approach in attempting to
gain insight on the Mott delocalization phase transition. In particular, the main question
we are trying to answer is how to reconcile a transition between a Mott insulator and a
delocalized metal with the constraints imposed by Luttinger’s theorem. To this end, the
heavy fermions are a useful platform, and in particular the ‘115’ materials, CeCoIn5 and
CeRhIn5 are particularly useful.

In metals like CeCoIn5, each cerium atom, of which there is one per crystallographic unit
cell, hosts one f level valence electron. The 4f orbital is one of the most strongly localized
of any atomic orbital (5f is a close second) because the large nuclear charge, and relatively
weak screening of the nuclear charge in the 4f wavefunction, pulls the electron wavefunction
close to the nucleus [39]. Thus, at the simplest level this 4f electron can be considered a
localized spin-1/2 moment. These local moments coexist with a sea of itinerant conduction
electrons from d, p, and s orbitals. If there were no interaction between the f -electrons and
the conduction electrons, the f -electrons would be in an insulating state as a result of their
strong relative Coulomb repulsion. Such a state can be considered a Mott insulating state
of the f -electrons.

But, there is an interaction between the electrons in the f -level and those in the more
itinerant conduction electrons of the d, p, and s orbitals. This interaction is essentially
what makes f -electron metals so interesting to low-temperature physicists. A hybridization
term, known as the ‘Kondo’ interaction — a name taken from the study of isolated magnetic
impurities in metallic hosts — describes the antiferromagnetic contact interaction between
the f -electron moments and those of the conduction electrons. Now, there are basically two
ways to take into account the Coulomb repulsion between f -electrons. On the one hand,
the Anderson lattice model includes the f -electrons as a separate band from the conduction
electrons, and an exchange interaction U between neighboring f -electrons:

H =
∑
kσ

εkc
†
kσckσ + E0

∑
iσ

f †iσfiσ + V
∑
iσ

(c†iσfiσ + c.c.) + U
∑
i

n↑fin
↓
fi, (2.4)

where εk is the dispersion relation for the conduction electrons. E0 is the Fermi energy of
the localized f electrons. The third term describes the hybridization between the f electrons
and the conduction band. The last term describes the onsite Coulomb repulsion U between
the f -electrons.
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The second way to consider the f electrons is the ‘Kondo’ limit of the Anderson lattice,
where it is assumed that the energy of the f electrons E0 is much larger than any other
energy scale in the system:

H =
∑
kσ

εkc
†
kσckσ + JK

∑
i

si · Si, (2.5)

where JK is the Kondo contact interaction between the conduction and f electron spins. The

transformation from the Anderson to Kondo lattices yields JK = V 2
[
− 1
E0

+ 1
E0+U

]
[40].

Luttinger’s theorem for f-electron metals

Right away we can draw some comparisons between the Hubbard model for Mott insulators,
and the Kondo lattice model for f -electron metals. In the Kondo lattice, the ‘Mott-like’ part
of the system is included explicitly — i.e. by construction the Kondo lattice Hamiltonian
has f -electrons which are localized by their Coulomb repulsion. The Kondo lattice can thus
be thought of as a Mott insulator in the f band with conduction electrons coupled to it by
the Kondo exchange interaction. As such, we can (at least indirectly) begin to answer the
question of what the ground state of a Mott insulator is, by asking what is the ground state
of a Kondo lattice.

It is natural in the context of the Kondo lattice is ask whether the Mott-insulating
f -electrons should become part of the Fermi volume when the Kondo contact interaction
is turned on. Unlike in the Mott insulator, this problem has actually been solved in the
case of the Kondo or Anderson lattices. The answer, due to Oshikawa [143], is that in the
conventional metallic ground state of the Kondo lattice, the f -electrons appear to become
an integral part of the itinerant metal. In particular, they join the conduction electrons,
contributing their full share to the Fermi volume. The Kondo lattice therefore obeys a
type of Luttinger theorem, where the conserved Fermi volume includes both the f -electron
density and the conduction electron density. The results of Oshikawa’s theorem are non-
perturbative. From a more microscopic perspective, the f -electrons join the Fermi volume
through the formation of Kondo singlet correlations between the local f moments and the
conduction electrons, which effectively hybridize the f -level with the conduction bands.
This mechanism is what gives heavy fermions their name — the hybridization between the
f -electron and conduction band results in a very weakly dispersing hybridized band with
a high effective mass, where the quasiparticles are composed of conduction electrons and
f -electrons that are strongly interacting. In principle, this mechanism has been known for
a long time — long before Oshikawa came up with his theorem. But Oshikawa first noticed
that, not only do f -electron typically hybridize into the Fermi surface, but strictly speaking
they are actually required to.
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Energy scales in the Kondo lattice applied to real materials

With Oshikawa’s theorem, and the overall f/conduction hybridization mechanism in mind,
we give here some background on the temperature-dependent properties of heavy Fermi
liquid metals. This section isn’t completely necessary for the following arguments of our
text, but there is some useful insight to be gained by considering the energy scales involved
in f -electron metals, and how they manifest in physical properties. The reader can skip this
section without losing much context for the following sections.

For a 4f 1 electron, the spin-orbit coupling is usually much stronger than the crystal field
splitting. So, we use J = L + S as the good quantum number; L = 3, S = 1/2 for an
f -orbital electron. Hund’s rule implies that the lowest energy state is J = |L − S| = 5/2.
So we have a 6-fold degenerate manifold with mJ values spanning between -5/2 and +5/2.
Crystal field splitting, in this instance octahedral splitting, results in a low-lying doublet
according to Hund’s rules. This state has a total angular momentum of J = 5/2, giving an
expected magnetic moment of 2.54µB/Ce.

Generally speaking, in the limit of high temperature, thermal fluctuations quench the
f/conduction electron hybridization, and the system can be treated as paramagnetically
fluctuating localized moments (the f -electron moments), weakly coupled to an itinerant sea
of conduction electrons. At high temperature, therefore, the f -electrons induce a Curie-Weiss
paramagnetic susceptibility with an expected fluctuating moment of 2.54µB/Ce based on
the arguments above. Indeed, using CeCoIn5 as an example, we do observe a paramagnetic
∼ 1/T susceptibility, which corresponds to a fluctuating moment of 2.97µB/Ce, in fairly
good agreement with the expected value of a free Ce3+ ion (Fig. 2.1A). As the temperature
decreases and the system approaches its ground state, the spin-spin interaction between the
f and conduction electrons kicks in. One of the key energy scales is the crystal field splitting
between the lowest Kramer’s doublet and the next energy level. The Kondo/Anderson lattice
models described above are only valid in the limit where the f -electrons are concentrated in
the lowest energy level, otherwise thermal vibrations are energetic enough to induce hopping
between sites via the first excited doublet. Therefore, the models described in the previous
section are only expected to apply to the temperature regime below the field crystal field
splitting. This picture is consistent with the tendency of the magnetic susceptibility to
saturate, an indication of screening of the fluctuating moments, in CeCoIn5 below about 35K.
This temperature roughly corresponds to the crystal field splitting between ground and first
excited states in CeCoIn5 [31]. Below about 10K, another divergence in the paramagnetic
susceptibility occurs upon decreasing temperature further — the origin of this behavior is
not clear, but might have to do with itinerant spin fluctuations present in the material.

One of the other physical properties of heavy fermion materials that tends to show a
number of interesting features is the temperature-dependent resistivity (Fig. 2.1B). The re-
sistivity of the sample upon cooling actually increases logarithmically. This is understood
as a proliferation of scattering from the localized magnetic moments [100, 99]. In the case
of a Kondo impurity, a single magnetic adatom in a metallic host, the resistivity would
continue increasing until it saturates at low temperature [218]. In the case of a Kondo lat-
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Figure 2.1: Temperature-dependent physical and magnetic properties of CeCoIn5

A Inverse magnetic susceptibility (H/M) measured in an applied field of 500 Oe. The linear
trend at high temperatures can be fit to the Curie-Weiss law, from which a fluctuating
moment of about 3µB/Ce ion is obtained. This gives decent agreement with the expected
value of a free Ce ion (2.54µB), as discussed in the text. The inverse susceptbility shows a
tendency to saturate below about 35K. B Resistivity of CeCoIn5 normalized to the room
temperature value. A logarithmic upturn occurs over a broad temperature range at higher
temperatures, followed by a pronounced peak at about 45K. Below the peak, the resistance
precipitously drops and the sample ultimately becomes superconductivity at about 2.3K.

tice, the resistivity peaks and drops when the sample is cooled below a certain temperature.
This behavior is often taken as an indication for the partial formation of ‘coherent’ singlet
correlations between the f and conduction electrons, in which the local moments transi-
tion from scattering centers to components of an entangled wavefunction which includes the
conduction electrons. It should be noted that in reality the peak in the resistance has the
characteristics of a broad crossover regime, which has more in common with a percolation
transition of f/conduction electron singlets than it does with a sharp phase transition [86,
32]. Experimentally, evidence has been found for singlet correlations developing well above
the coherence temperature, and in heavy fermion metals with a Fermi liquid ground state,
the Fermi liquid forms well below the coherence temperature [86]. Sometimes these ex-
perimental observations are described with a phenomenological two-fluid model, where the
population of singlets compared to the population of localized moments evolves continuously
with decreasing temperature [140]. Interestingly, in CeCoIn5, the experimentally determined
coherence temperature is about 45K — pretty close to the temperature below which the sus-
ceptibility starts to show saturation, and the energy scale of crystal field splitting between
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the ground and excited crystal field states.
Because we are primarily concerned with the ground state of the Kondo lattice, these

topics will only be addressed tangentially from now on. Perhaps the important takeaway
here is that the presence of a coherence temperature in the resistivity should not be taken
as evidence that a heavy Fermi liquid state has formed, or that it will eventually form even
well below the coherence temperature. A straightforward example is YbRh2Si2, in which a
coherence temperature is present [204], but the f -electrons are thought to be fully localized at
the lowest measurable temperatures [147]. Certainly, the temperature-dependent formation
of a coherent f/conducton electron state is an understudied topic both theoretically and
experimentally, and probably one which should be explored further in future work.

Taking the above discussion at face value, we can see that in a typical f -electron metal
with a Fermi liquid ground state, the Fermi volume of the metal actually increases when
going from high to low temperature — the f -electrons are localized at high temperature, and
join the Fermi surface only at low temperature apparently as a result of an electron-electron
(Kondo) interaction. Is this a violation of Luttinger’s theorem? The answer is no, simply
because Luttinger’s theorem only applies to the ground state of a metal.

Quantum phase transitions out of the heavy Fermi liquid:
f-electron localization and critical Fermi surfaces

“This is all just a fantasy” — Chandra Varma
We are now prepared to address the problem of the Mott localization-delocalization

transition from the perspective of f -electron localization. Unfortunately, Oshikawa’s theorem
tells us that no matter how small the Kondo coupling is, the ground state of the system is
a Fermi liquid with the f -electrons as part of the Fermi volume. So in order to see how
the f -electrons behave when they are decoupled from the conduction electrons, we would
have to reduce the Kondo coupling to zero. In practice, this isn’t possible in real materials.
Luckily, in most Kondo lattice-like materials, there is an interaction which competes with the
Kondo coupling called the RKKY (Ruderman–Kittel–Kasuya–Yosida) interaction. This is an
antiferromagnetic exchange interaction between the f -electrons mediated by the conduction
electrons, which tends to force the f -electrons to localize and antiferromagnetically order.

HRKKY =
∑
rr′

JH(r, r′)
−→
S r ·
−→
S r′ . (2.6)

Here JH(r, r′) is the antiferromagnetic exchange between two f -electron spins at positions r
and r′, respectively. The exchange JH is determined by the contact interaction between the
conduction and f -electron spins, as well as the density of conduction electrons.

By tuning the relative strengths of the Kondo and RKKY interaction, for example by
changing the density of conduction electrons, we can induce a quantum phase transition
potentially into a Mott insulating state of the f -electrons. Observing and characterizing such
a transition would give us insight into two aspects of Mott-like localization. First, we can
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see how to reconcile such a transition with Luttinger’s theorem (or in this case Oshikawa’s
theorem). Second, we can develop an understanding of the low-energy excitations of the
Mott insulating ground state. This interaction has a tendency to destabilize the heavy
Fermi liquid, allowing us to study possible f -electron localization transitions.

Characterizing a possible zero-temperature transition in which the f -electrons withdraw
from the Fermi volume and recover their localized character in the ground state has been
a long-standing problem. Theoretically, it has been established that there are essentially
three different scenarios, where the interplay between f -electron charge localization and
antiferromagnetic order in the f -electrons occurs in distinct ways.

The three possible QCPs in heavy fermion metals are summarized in Fig. 2.2. A ground
state phase diagram has been theoretically developed. It is reprinted in Fig. 2.2 from
Ref. [185]. The JK parameter is the Kondo coupling constant, which tends to push the
system towards a phase with delocalized f -electrons (a ‘large’ Fermi surface), as discussed
in the previous sections. G is a parameter which characterizes the degree of ‘frustration’
in the system. For example, this could be geometrical frustration, by inducing significant
next-nearest-neighbor interactions, or it could be enhanced with quantum frustration by
making the system more two-dimensional (in two-dimensions quantum fluctuations tend to
be stronger than in three dimensions). When a physical perturbation is applied to a sys-
tem, i.e. hydrostatic pressure, both JK and G would tend to change, and the perturbation
will trace out different trajectories in the ground state phase diagram. Depending on the
degree of frustration inherent in the material, broadly speaking three different permutations
of antiferromagnetism and charge delocalization quantum phase transitions are present.

In scenario II, the charge localization transition occurs inside of the antiferromagnetic
phase, as seen for example in CeIn3 at high magnetic fields [175]. This transition between
localized and itinerant AFM may be associated with a change in symmetry of the AFM
order parameter such that Luttinger’s theorem is not violated. A separate transition out of
antiferromagnetic order occurs at a later point in the phase diagram after the f -electrons
are already delocalized. The antiferromagnetic transition in this case corresponds to heavy
quasiparticles weakly coupled to a bath of AFM fluctuations — this is the situation that
appears to describe CePd2Si2, for example [185]. Such a transition can be considered a more
or less ‘conventional’ AFM QCP, in that the physics of critical spin fluctuations in nearly-
antiferromagnetic metals seems to well-describe many of the properties of the materials that
are thought to fall into scenario II.

In the scenario I, the antiferromagnetic phase is destroyed at the same critical point
where the heavy electron are formed and the f -electrons undergo a localization-delocalization
transition. While there is a change in Fermi volume in this scenario, it is accompanied by a
symmetry-breaking transition. In principle, this scenario does not violate Luttinger’s theo-
rem because Luttinger’s theorem does not apply to cases where symmetry breaking occurs.
Such a description is thought to apply to the field-induced antiferromagnetic transition/f -
electron localization transition in YbRh2Si2 [147]. The physics of charge delocalization and
magnetic quantum criticality are present simultaneously.

In scenario III, there is a separation between the antiferromagnetic phase and the charge
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Figure 2.2: Phase diagrams in the Kondo lattice problem On the right is the the-
oretically constructed ground state phase diagram of the Kondo lattice [186]. JK is the
Kondo coupling constant, and G quantifies the degree of ‘frustration’ — either geometrical
or quantum frustration (i.e. reduced dimensionality). Phases labeled by subscript S have a
‘small’ Fermi surface with localized f -electrons, whereas phases labeled by L have delocal-
ized f -electrons with a ’large’ Fermi surface. The small boxes are example Fermi surface of
the small and large cases. There are three different scenarios for ground state trajectories as
a non-thermal parameter δ is tuned (say pressure or chemical composition). Each scenario
is depicted as a function of temperature in the plots on the left. In scenario I, the antiferro-
magnetic transition coincides with the charge delocalization transition. In scenario II, there
is a transition between different antiferromagnetic states associated with charge delocaliza-
tion, and then a separate AFM quantum critical point of itinerant antiferromagnetism. In
scenario III, the AFM transition and charge delocalization occur at separate points, with a
paramagnetic phase with localized f -electron charge (called PS) between them.
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localization point. An intermediate paramagnetic phase with localized f -electron charge
separates the two. Superficially, if the f -electrons localize without some sort of spontaneous
symmetry breaking, the remaining Fermi volume without f -electrons is in apparent violation
of Luttinger’s theorem (recall that Oshikawa showed that the Luttinger count in a Kondo
lattice includes the f -electrons). Thus, scenario III is quite similar to the Mott localization
transition described in the introduction, where charges seem to localize solely because of
their mutual interaction.

The only established theoretical possibility in which scenario III satisfies Oshikawa’s
theorem is for an ordered phase to form — however, it is not a conventional symmetry
broken phase. Rather, it is a topologically ordered phase known as a fractionalized Fermi
liquid [176]. In this phase, the f -electron charge localizes to the cerium site, while the
spin 1/2 degree of freedom remains itinerant. This f -electron phase is different from a
conventional magnetic insulator in that the spin-carrying quasiparticles are spin-1/2 fermions
(spinons) rather than integer-spin bosons (magnons). The presence of spinful, but charge
neutral fermions manifests as a sharp Fermi surface of neutral fermions, which conserves the
overall Fermi volume even when charges appear to localize. This Fermi surface has all of the
thermodynamic and thermal transport properties of normal electrons, but is largely inert
to external electric fields for example, or any other perturbations which couple to charge.
Thus, this phase could be considered analogous to the spin-charge separated one-dimensional
Luttinger liquid, but in a quasi two-dimensional crystal for example. In the Kondo lattice
model, this fractionalized f -electron Fermi liquid would coexist with the normal electron
contribution coming from the d, p, and s conduction electrons of the metallic background.
YbRh2Si2 doped with Ir may fall into this category [185], as could YbAgGe [203], but scenario
III is largely under-explored.

Already, we can imagine parallels with the phase transition in scenario III, and the
qualitative structure of the phase diagram of hole-doped cuprate superconductors, which
begin in the parent state as Mott insulators where the charge appears to delocalize at a critical
oxygen doping level without clear accompanying signatures of a broken symmetry state in
proximity (the ‘pseudogap’ phase of the cuprates may host broken symmetry, but this is still
up for debate). Characterizing such a Mott-like localization transition without symmetry
breaking in a Kondo lattice material may provide considerable insight into possibly related
transitions in cuprate superconductors, and in its own right would present opportunities to
study new physics, including fractionalized quasiparticles and critical charge fluctuations.

2.3 Phase diagram of doped CeCoIn5

“CeCoIn5 is an oxymoron” — Bill Steele, Cornell Chronicle
It is pretty well-established that in CeRhIn5, the charge delocalization transition and

accompanying Fermi surface reconstruction occur at the same point in the phase diagram
as the antiferromagnetic quantum critical point (putting CeRhIn5 into the scenario I class
discussed in the previous section) [182]. The experiments were done on CeRhIn5 under
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pressure — where pressure is analogous to the control parameter in Fig. 2.2 that enhances
the strength Kondo interaction relative to the RKKY interaction. Interestingly, CeCoIn5 has
a slightly more two-dimensional crystal structure than CeRhIn5. The c-axis lattice constant
is larger in the Co version, and the f -level ground state wavefunction appears to be more
compressed in the Co version than the Rh one [196]. In addition, the electronic energy
spectrum is overall more two-dimensional in the Co version compared to the Rh one [178].
Therefore, we might expect the degree of quantum frustration to be enhanced in the Co
version than in the Rh version, and thus for the factor G (of Fig. 2.2) to be larger, perhaps
inducing some separation in the AFM and charge delocalization transitions as in scenario
III. Such a separation may allow us to probe the physical properties associated with charge
localization of a Mott insulator without an accompanying antiferromagnetic phase transition.
In the following sections, we establish evidence that CeCoIn5 does indeed host a quantum
phase transition of the scenario III type.

CeCoIn5 in particular has notable qualitative similarities to high-temperature cuprate
superconductors, for example in crystal structure, transport properties, and unconventional
superconducting state. Like many other unconventional superconductors, CeCoIn5 exhibits
signatures of a nearby QCP, including a logarithmically diverging specific heat capacity
at low temperature [23] and a diverging Gruneissen constant [202]. CeCoIn5 itself is not
antiferromagnetic, but it is certainly close to AFM. Doping with Cd induces longe-range
antiferromagnetism, as depicted in Fig. 2.3. In Fig. 2.3, however, one of the main questions
is whether there is an f -electron delocalization transition in this material as in CeRhIn5.
And, in addition, if there is an f -electron delocalization transition, does it coincide with the
zero-temperature endpoint of the antiferromagnetic phase boundary or occur at a separate
point in the ground state phase diagram?
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Figure 2.3: Phase diagram of doped CeCoIn5. Positive doping corresponds to electron-
doping (Sn substitution of the indium site). Negative doping corresponds to hole-doping (Cd
substitution of the indium site). Antiferromagnetic order abruptly ends at cadmium doping
levels of 0.6%. A superconducting dome is present and centered at zero doping. The phase
diagram is reproduced from Ref. [31].
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2.4 Low-temperature carrier density measurements:

evidence for an f-electron delocalization

transition

“You are always a little bit wrong” — Hank Green
In some sense, the net carrier density of a metal at very low temperature is a measurement

of the volume of the Fermi surface. And thus, if we are in search of Fermi volume-changing
transitions, carrier density measurements are extremely valuable. In a more specific language
to CeCoIn5 in particular, the localized or itinerant nature of f -electrons can be probed by
carrier density measurements. If the f -electrons are localized, the measured carrier density
will reflect that of the d, p, and s conduction bands alone. On the other hand, if the f -
electrons are itinerant, the total carrier density will be enhanced commensurate with the
number of f -electrons per unit volume (e.g. in CeCoIn5 there is one cerium f -electron per
unit cell). To this end, we can probe the carrier density with Hall effect measurements across
the phase diagram of CeCoIn5. We will first go through how to convert the measured Hall
voltage into a carrier density, and the various caveats associated with this conversion.

Hall effect theory

Single carrier type

The Hall effect refers to the transverse voltage generated by a magnetic field in the presence of
applied current (see also Chapter 3, where we discuss details about semiclassical transport
theory). If there is only one type of charge carrier, this voltage increases linearly with
magnetic field with a constant of proportionality that is inversely related to the density of
charge carriers. This relation can be derived with a simple force balance in the steady-state,
with the constraint that current does not flow in the transverse direction (qVxy = Florentz).
Assuming current is flowing along x, and field is applied along z, then

Vxy = vxBztz,

Vxy =
IxBz

nte

(2.7)

where tz is the thickness of the sample in the z direction.
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Multiple carriers

The Hall effect is a deceptively complicated quantity in real metals in part because there
need not be only one carrier type. In the case of multiple carrier types, the interplay of
carrier densities and mobilities from each species gives rise to a nonlinear-in-field Hall voltage
signal, making it difficult to determine the carrier density unless specific details about carrier
mobilities are known independently.

Luckily, in the limit of high fields the Hall effect recovers a linear dependence on field
which is inversely proportional to the net carrier density. That is, the sum of the carrier
densities of each species. This result is independent of the detailed mobility balance between
different carrier types, as shown in Fig. 2.4.

Note also that in the low-field limit (as B → 0) the Hall coefficient is proportional to the
density of the highest-mobility carriers. This is shown in Fig. 2.4D, where the amount of
higher-mobility electrons is varied, while the number of lower-mobility holes is kept constant.
At low fields, the value of ρxy/B is the same in every instance, proportional to the inverse
carrier density of the higher-mobility electrons. At high fields, the value asymptotically
approaches a value which depends on the relative number of carriers, and is independent of
the relative mobility of carriers.

A second complication is that the above formulas, strictly speaking, assume that the
Fermi surface is isotropic for each carrier type. This of course need not be the case, and a more
general formula is required to deal with these details using the Shockley tube integral (which
is discussed more in Chapter 3). However, in many situations one can model an anisotropic
Fermi surface as a parallel contribution of different carriers with varying mobilities or carrier
densities. Thus, the arguments described above using the simple isotropic carrier models
for the most part carry over to generalized Fermi surfaces. The main result here is that,
regardless of the shape and scattering time on each Fermi surface, or the number of different
Fermi surfaces, the Hall voltage in the limit of ultra high fields recovers a linear dependence
which is simply proportional to the net carrier density, i.e. the volume enclosed by the Fermi
surface. The only assumption here is that the quasiparticles can be described as electrons, i.e.
the Fermi liquid approximation, and that the sources of scattering randomize the momentum
of the quasiparticles, i.e. the relaxation time approximation.
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Figure 2.4: Simulated semiclassical two-band Hall resistivity. A Transverse resistivity
for a fixed number of hole and electron carriers, where the relative mobility of the two carriers
is varied. B Hall resistivity divided by field, with the same conditions as in panel A. The
value in all cases approaches a similar constant at high fields, because the high-field limiting
Hall effect only becomes proportional to the net carrier density 1/(nh − ne) independent
of their relative mobilities. C Hall resistivity where the mobility ratio is kept fixed, while
the relative carrier density is varied. D The Hall resistivity divided by field approaches a
different constant in each case as the net carrier density is varied. Note that at zero field,
the value in all cases is the same and is proportional only to the carrier density of the most
mobile carriers — in this case the holes.
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Hall effect measurements

“The experiments were hastily and roughly made, but are sufficiently accurate” — Edwin H.
Hall

Now that we’ve discussed some Hall effect theory and how to extract the carrier density
from Hall effect measurements, we are prepared to probe the localized or itinerant nature
of the f -electrons (i.e. the total Fermi volume) in CeCoIn5 across the phase diagram using
Hall effect measurements. As discussed in the introduction to this section, what we would
like to do is compare the measured carrier density of CeCoIn5, where in principle the f -
electron could be a carrier, to the expected carrier density of the conduction electrons of the
other non-f bands in the material. That is, the d, p, and s bands from indium and cobalt.
In principle, we could use ab initio methods to calculate the carrier density of the non-f
bands alone, but generally Fermi volume calculations coming from density functional theory
calculations need to be supplemented by more direct Fermi surface measurements. A more
accurate, and more straightforward method, is to measure the carrier density of LaCoIn5.
The difference between CeCoIn5 and LaCoIn5 is that lanthanum has a completely empty f
shell while cerium has one f -electron in the 4f shell.

Carrier density of LaCoIn5: the non-f analogue of CeCoIn5

LaCoIn5 is a metal with both hole- and electron-like carriers. From the electronic structure
determined by published photoemission measurements and ab initio calculations, we expect
the carrier density of the electrons to be higher than that of the holes [33], but we don’t
necessarily have a priori information about their relative mobilities. In Fig. 2.5, we show
Hall resistivity measurements of LaCoIn5 samples. We find that the Hall resistivity at the
lowest temperatures is non-linear at low fields, but approaches a linear dependence on field
at high fields. The data can be well-fitted by a simple two-carrier model — that is, in
the semiclassical relaxation time approximation, and assuming a single average mobility for
each carrier type respectively. The equation for the Hall resistivity in this model is (see also
chapter 3 for additional details)

ρxy =
B

e

(nhµ
2
h − neµ2

e) + (nh − ne)µ2
hµ

2
eB

2

(nhµh + neµe)2 + (nh − ne)2µ2
hµ

2
eB

2
, (S1)

where nh,e are the carrier densities of the electrons and holes, and µh,e are their respec-
tive mobilities. The mobilities of the two carriers are plotted in Fig. 2.5C. The mobility
of the electrons is higher than that of the holes, with both increasing as a function of de-
creasing temperature and saturating at low temperature. This behavior is broadly speaking
consistent with expectations of metallic transport, where the mobility saturates at low tem-
perature as the role of temperature-independent scattering dominates at low temperature.
Scattering from thermal vibrations picks up as temperature increases, leading to a decrease
in the mobilities of both carriers. The two-carrier model yields a net carrier density of
9.7±1×1021/cm3.
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As a simple check, we can compare the value of the net carrier density extracted from
fits to the two-carrier model to the value of ρxy/B at the highest accessible field (recall
that the net carrier density in semiclassical transport theory is given by the high-field limit
of the Hall coefficient nnet = 1/(e(nh − ne)). Note that in Fig. 2.5A, the value of ρxy/B
and the slope of ρxy are similar at the highest accessible field of 14 Tesla. The net carrier
density extracted from this analysis is 9.5±0.6×1021/cm3 (uncertainty primarily arises from
the uncertainty in the thickness measurement of the sample), giving good agreement with
the two-carrier model described above. From these estimated mobility values, it appears that
µB for electrons and holes attains a value of roughly 8 and 13 respectively at a magnetic field
of 5T and 1.8K. Thus, the ρxy measurement at 1.8K and 14 Tesla is well into the high-field
limit of ωcτ � 1 for both carrier types, and consequently the Hall coefficient approaches a
regime of field-independence above 5T as seen in Fig. 2.5. This gives confidence that the
value of ρxy/B at our highest accessible field and lowest temperature is representative of the
net carrier density of the sample.
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Figure 2.5: Carrier density measurements of A Hall resistivity, and Hall resistivity
divided by field, in LaCoIn5 at 1.8K. The slope of the Hall resistivivity and ρxy/µ0H both
saturate at high field, indicated by the dashed lines. This suggests that the Hall coefficient
at high fields measures the net carrier density. From this measurement ntot = 9.5 ± 0.6 ×
1021/cm3. B Temperature-dependent Hall resistivity of LaCoIn5 including fits (black lines)
using a two-band transport model on a second sample. The carrier densities were constrained
to be temperature-independent and the mobility was allowed to vary. The carrier densities
of the hole and electron carriers extracted from these fits are shown in the panel. The net
carrier density (ntot = 9.7± 1× 1021/cm3) agrees well with the carrier density determined in
panel A. C Mobility of the hole and electron carriers from the fits in panel B as a function
of temperature.
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Carrier density of doped CeCoIn5

“Just like the old days, last day of the last week of magnet time!” — James Analytis
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Figure 2.6: Carrier density measurements in doped CeCoIn5 A Hall coefficient as a
function of field in doped CeCoIn5 with Cd concentrations 0.2% and 0.4%, and Sn concen-
trations 0.11%, 0.22%, 0.33%, 0.44%, 1.2%, 1.39%, 1.65%, 1.9%, and 3.3%. As discussed
in the main text, the inverse of the Hall coefficient (ρxy/µ0H) in the high-field limit can be
used to approximate the net carrier density. Grey lines denote the high-field Hall coefficient
of the non-f analogue LaCoIn5 and the calculated value including one additional electron
per unit cell. B Pulsed field Hall resistivity of CeCoIn5 (T = 0.66K) and Sn-doped CeCoIn5

(T = 0.5K) overlaid on the continuous field Hall resistivity of LaCoIn5 (1.8K). C Inverse
high-field Hall coefficient of CeCoIn5 at 0.5K as a function of doping level, including mea-
surements in continuous field up to 14T or 18T (filled circles) and pulsed field up to 73T
(open circles). With Sn-substitution, the apparent carrier density of CeCoIn5 increases by
about one electron per unit cell above that of LaCoIn5. This trend provides evidence that
Sn-substitution delocalizes the single cerium f -electron per unit cell in CeCoIn5. The value
of 1/eRH in some Sn-doped samples lies above the calculated +1 electron line, likely because
the Hall coefficient has not completely saturated in these samples at 14T. At higher fields
the value of 1/eRH seems to saturate at the +1 electron value as seen in the 1.6% Sn-doped
sample at 70T. The lower panel shows the 4 Kelvin heat capacity (units of mJ/mol K2)
across this doping series.

Fig. 2.6A presents low-temperature measurements of the Hall resistivity, ρxy, versus mag-
netic field, H, for CeCoIn5 samples with varying levels of cadmium (hole-doping) or tin
(electron-doping), both of which substitute indium. The Hall coefficient, RH = ρxy/µ0H can
be used to estimate the net carrier density enclosed by the Fermi surface according to the
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formula [154]

nnet =
1

eRH(H →∞)
. (2.8)

where nnet is the net carrier density — electrons minus holes. In multiple band metals
such as CeCoIn5, Eq. 2.8 only applies in the limit where high fields eliminate the effects
of carrier mobility misbalances, or anisotropy in the quasiparticle spectrum and scattering
time, and RH becomes field-independent. For each sample, we measure the high-field value
of RH at 0.5K in order to approximate the net carrier density. Many of the traces shown in
Fig. 2.6A appear to saturate at high fields, Fig. 2.7 shows that evaluation of the high-field
slope of ρxy is in good agreement with the high-field value of ρxy/µ0H, suggesting that at
these temperatures and fields the Hall coefficient is close to field-independent. In addition,
select samples were measured in pulsed magnetic fields up to 75T, as shown in Fig. 2.6B,
where the Hall coefficient is field-independent over an extended field range; the extracted
Hall coefficients from pulsed and continuous fields are in good agreement for these samples
(Fig. 2.6C). Finally, our Hall coefficient measurements on pure CeCoIn5 agree well with
measurements at 20mK where the Hall resistivity is completely linear in field [188]. These
facts together give confidence that our extracted Hall coefficient values can be interpreted
as an approximate measurement of the net carrier density as described by Eq. 2.8.

Fig. 2.6C shows the value of 1/eRH , approximating the net carrier density, extracted
for samples with different levels of chemical substitution in continuous and pulsed magnetic
fields. The carrier density of this material excluding the f -electron can be established using
Hall resistivity measurements of LaCoIn5 shown in Fig. 2.6B (its Hall coefficient is field-
independent above 5T at 1.8K. See also Fig. 2.5); LaCoIn5 can be thought of as CeCoIn5

without the f -electron. We find that the Hall coefficient of CeCoIn5, evaluated either up to
60 Tesla or up to 14 Tesla at 0.5K, is close to that of LaCoIn5 (Fig. 2.6C). This suggests that
the two materials have similar net carrier densities, implying that the f -electrons are close to
localized in CeCoIn5. With cadmium-substitution 1/eRH remains close to that of LaCoIn5,
but with tin substitution increases to a value consistent with the addition of one itinerant
electron per unit cell. Identifying the additional electron as the single cerium f -electron
suggests that Sn-substitution induces a delocalization transition of the f -electrons. None
of these samples show a finite-temperature phase transition other than superconductivity.
Only in Cd substitution levels higher than 0.6% is an antiferromagnetic phase observed
(Fig. 2.3) [152].
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Figure 2.7: Hall resistivity of doped CeCoIn5. A Continuous field measurements at
low temperature, where the Hall coefficient is extracted with a linear fit to the high-field
slope of the Hall resistivity. B Both devices measured in pulsed field exhibit an extended
regime of linear dependence with zero intercept. The Hall coefficient of the Sn-doped sample
is considerable lower than that of pure CeCoIn5. C Comparison of the Hall coefficient
determined from the slope of ρxy(B) (circles), and that determined from the high-field value
of ρxy/µ0H (diamonds). Good agreement is found between these two methods of evaluating
the Hall coefficient, suggesting that these measurements are in the high-field limit where
the Hall resistivity is characterized by a single slope proportional to inverse the net carrier
density.

2.5 Evidence for a Fermi surface reconstruction

without symmetry breaking

“Consider, for example, those portions of the Fermi surface known as ‘monsters’ ” — Brian
Pippard

The Hall effect measurements suggest that the Fermi volume changes when the material is
doped with tin. Such a transition should be associated with a Fermi surface reconstruction.
Here we present density functional theory (DFT) calculations predicting the structure of
the rather complicated Fermi surfaces of CeCoIn5 in both the localized and delocalized f -
electron scenarios. The results of the calculations are compared to direct measurements of
the Fermi surface in the form of de Haas-van Alphen (dHvA) oscillations and angle-resolved
photoemission (ARPES).
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Density Functional Theory calculations

“The code that will be used is not the same one as we used 15 years ago” — Peter Oppeneer
The results of the DFT calculations are shown in Fig. 2.10. The first calculation is

performed under the assumption that the f -electrons are core-level electrons (localized).
The second assumes that the f -electrons are delocalized. Both calculations are performed
within the local-density approximation of the exchange correlation energy.

In the case of localized f -electrons, there are three Fermi surface sheets. The electron-like
Fermi surfaces labeled α and β are predominantly two-dimensional cylinders centered at the
zone corners. The last is a more complicated three-dimensional hole-like γ Fermi surface.
According to the calculations, f -electron delocalization causes the extended γ surface to
disconnect into small ellipsoidal pockets at the Brillouin zone center and edge, and the γ
pocket at the zone top (labeled γZ) to disappear. Also, large extended surfaces αZ and βZ
appear at the zone top, and the α and β cylinders expand slightly. In pure CeCoIn5, previous
angle-resolved photoemission (ARPES) data at 10-20K are in better qualitative agreement
with the localized f -electron model as αZ and βZ are absent, and γZ is present [33, 31].
However, the volumes of the α and β cylinders are slightly larger than those of the localized
model [33, 31, 98], and the smaller γ Fermi surface seems to exhibit features of both the
delocalized and localized models, being potentially disconnected (suggesting delocalized)
but retaining γZ (suggesting localized) [86, 31, 33, 58]. These characteristics may point
to a partially delocalized f -electron character in pure CeCoIn5. This interpretation is also
promoted by previous magnetic resonance [43] and photoemission studies [56, 32, 33]. Note
that our Hall effect measurements suggest that the f -electrons only weakly contribute to the
Fermi volume of CeCoIn5 even at 0.5K, consistent with partially localized f -electrons in the
low-temperature limit.

de Haas-van Alphen oscillations

“What is the meaning of life?” — Vikram Nagarajan
De Haas-van Alphen (dHvA) oscillations measure extremal areas of the Fermi surface

perpendicular to the field direction, giving a probe of the Fermi surface structure at low
temperatures [77]. Quantization of Landau orbits causes oscillations in the density of states
as a function of magnetic field (actually they are periodic in inverse magnetic field). Quan-
tum oscillations in transport properties are called Shubnikov-de Haas oscillations whereas
oscillations in thermodynamic properties are called de Haas-van Alphen. In this case, we
opted to measure de Haas-van Alphen oscillations in the sample’s magnetization. This was
done using a piezoresistive torque cantilever, which bends in proportion to the magnetic
torque that the sample experiences in a magnetic field, due to the sample’s dipole moment
(M) induced by the magnetic field (H). Through this measurement, dHvA oscillations in
the sample’s magnetization are observable in the measured torque on the sample.

τ = M×H (2.9)
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A picture of the piezoresistive cantilever used in these experiments is shown in Fig. 2.8B.
Because the round-trip resistance of the cantilever itself is around 600 Ω, small changes in
the resistance of this element induced by bending of the cantilever are best detected through
a differential measurement. Essentially, two different cantilevers are used, with the sample
being placed on one while the other is used as a dummy. The changes in the cantilever
resistance are measured using lock-in detection techniques through a Wheatstone bridge
circuit as shown in Fig. 2.8A. The principle of the Wheatstone bridge is that the voltage
across the two nodes of the bridge induced by a current run through the other two nodes
should be zero if all of the resistances are equal. A voltage is generated if the resistance
of one resistor changes with respect to its neighbor. In this way, very small changes in
the 600 Ω cantilever resistance can be detected with respect to the resistance of another
600 Ω dummy cantilever which does not bend in magnetic field. Note that in practice, a
potentiometer is wired in series with the dummy cantilever to adjust for small variations in
the resistance of different manufactured cantilevers, or the temperature-dependence of the
cantilever’s resistance.

The sample is mounted to the active cantilever using vacuum grease, and the voltage
through the Wheatstone bridge generated by an AC excitation was measured using stan-
dard lock-in detection techniques. The experiments were performed at the milliKelvin facility
at the National High Magnetic Field lab in Tallahassee, Florida. Fig. 2.9 shows an example
of the magnetic torque signal as a function of magnetic field induced by the torque that the
external field exerts on a sample of doped CeCoIn5 mounted on the cantilever. The super-
conducting critical field of the sample around 5 Tesla is clearly observed in this measurement.
The stage on which the cantilever is mounted can then be rotated in the magnetic field to
perform angle-resolved magnetization measurements up to 18 Tesla and at 20 mK.

Background subtraction was performed on the measured signal by subtracting a smoothed
version of the data from the original trace. Various smoothing windows were checked to
ensure that the peaks observed in the frequency domain were not a spurious result of the
background subtraction method. The background subtracted oscillations are visible as a
function of inverse field (see for example Fig. 2.10B inset), where the periodicity on this
scale is indicative of the k-space area of a Fermi surface orbit (see Ref. [184]). By performing
angle-dependent measurements, a map of the Fermi surface structures can be obtained. The
oscillations in magnetic torque as a function of inverse field were zero padded and then
either a hattop or Hanning window was applied. The resulting arrays were put through a
fast Fourier transform algorithm to obtain power spectra [45].
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B

Figure 2.8: Magnetic torque measurement circuit and picture of piezoresistive
cantilever A The measurement circuit in which the dummy and cantilever are opposite
resistors as part of a wheatstone bridge. An AC excitation current is sent through two
nodes and the resulting voltage is lock-in detected at the other two nodes. The signal is
proportional to the cantilever resistance with respect to the dummy. B A picture of the
piezoresistive cantilever and dummy cantilever on a single chip.
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Figure 2.9: Magnetic torque measured using a wheatstone bridge The signal is de-
tected through standard lock-in amplification techniques using a frequency of 177 Hz, and an
excitation current of 100µA through a wheatstone bridge as described in the text. The signal
is generated by the resistance imbalance between the piezoresistive cantilever with the sam-
ple on it, and a dummy cantilever without a sample. Mounted on this cantilever is a sample
of Sn-doped CeCoIn5 at 20mK with magnetic field parallel to the crystallographic c-axis.
The superconducting critical field of about 5 Tesla is clearly visible in the measured torque.
Oscillations in the magnetization at high field are visible after background subtraction, as
discussed in the text.

Here we discuss the fermiology of these compositions as measured by dHvA measure-
ments [178]. As seen in Table 2.5 and Fig. 2.10C, the sizes of the α and β cylinder orbits
in pure CeCoIn5 are more consistent with the delocalized model, implying that f -electrons
incorporate into these Fermi surface sheets. However, there do not appear to be additional
frequencies associated with the αZ and βZ sheets of the delocalized model. Perhaps more
notably, orbit β2 increases as a function of tilt angle away from [001] (Fig. 2.10C), suggest-
ing that the β cylinder is fully connected in better qualitative agreement with the localized
model, i.e. the Fermi surface called βZ is not present in the Fermi surface of pure CeCoIn5.
This conclusion is in agreement with previous photoemission data on pure CeCoIn5 as dis-
cussed in the previous section.

In the Sn-substituted sample, the sizes of the α cylinders change slightly compared to
in pure CeCoIn5 (Table 1). In addition, an oscillation of about 16kT appears for two field
angles near [001]. This oscillation does not appear to be harmonically related to the α1−3

branches, and its frequency and angle-dependence agree well with a predicted orbit on αZ
of our delocalized model calculations. This suggests that the αZ Fermi surface is present in
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the Sn-doped sample, while it has not been reported in previous dHvA measurements on the
pure compound.

Examining the β sheets, we notice that part of the electron-like β Fermi surface actually
shrinks upon electron-doping, suggesting that the change in volume of the β Fermi surface
cannot be attributed to a straightforward shift in the Fermi level. It seems that the β1

cylinder orbit shrinks to accommodate the presence of the large interconnected βZ sheet. The
first piece of evidence for this interpretation is that, when compared to the DFT calculations,
the 1.2kT and 2kT frequencies for field angles near [001] are evidence of holes in the β cylinder
(Fig. 2.10A) consistent with the presence of βZ . The second piece of evidence is that a branch
of the β2 cylinder orbit appears to decrease as a function of tilt angle from [001] in better
agreement with the delocalized model (Fig. 2.6C), suggesting that holes develop in the β
cylinder due to the interconnected βZ Fermi surface.

Finally, possible low frequency oscillations < 800T at several angles, which seem to be
present in pure CeCoIn5 over certain angular ranges as well, are most naturally assigned
to small γ-ellipsoids (Fig. 2.10C), but could also originate from the γZ sheet. Table 2.5
summarizes the frequency assignments based on comparison to DFT calculations, which
suggests that the αZ and βZ sheets are present in the Fermi surface of the Sn-substituted
sample. From dHvA, it is not possible to conclusively say whether these sheets are absent in
pure CeCoIn5 at low temperature because the orbit frequencies on αZ and βZ are sensitive to
the precise structure of these Fermi surfaces (although the increase of β2 with increasing tilt
angle in pure CeCoIn5 certainly provides strong evidence that βZ is absent from its Fermi
surface). Nevertheless, the comparison shown in Table 2.5 is indicative of a Fermi surface
reconstruction induced by Sn-substitution. To summarize, the reconstruction is reflected in
slight changes in the volumes of the existing α and β cylinders, and also the appearance of
Fermi surfaces αZ and βZ , which are unique to the delocalized f -electron model.

At zero degree tilt angle, a sweep was taken at a higher temperature of 50mK. Many
of the β orbits seem to disappear into the noise floor at the higher temperature consistent
with large effective masses. The strength of the α1−3 oscillations and their harmonics seem
to depend non-monotonically on temperature. Similar behavior is observed at 12 degree tilt
angle as discussed later on. The α4 orbit is repeatable at the higher temperature and also
appears at two tilt angles. While the value of α4 is very close to 3α1, there are a few reasons
that α4 is unlikely to be harmonically related to α1. First, the strength of the α4 oscillation
is greater than that of the 2α1 oscillation. Second, as the tilt angle increases away from
[001], α4 increases by a few 100T while α1 stays constant between 0 and 5 degrees.

Candidate peaks in Fourier spectra were checked by band-pass filtering the data and ex-
amining the field-evolution of various oscillatory components. Fig. 2.12 shows the time-series
filtered data for various oscillations at zero degree tilt angle for example. The oscillations
become stronger as field increases.

The most complete temperature-dependent data was taken at a field angle of 12 degrees
from the [001] axis towards the [100] axis. Fig. 2.13 shows the temperature-induced suppres-
sion of the main alpha orbits along with estimates of their effective masses using an attempted
Lifshitz-Kosevich fit. There are two notable peculiarities in the temperature-dependent data
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Figure 2.10: de Haas-van Alphen oscillations in Sn-doped CeCoIn5 and comparison
to DFT calculations A DFT calculated Fermi surface sheets of CeCoIn5 with localized and
delocalized f -electron models. Predicted dHvA orbits for H ‖[001] are drawn in black and
red. Red orbits are unique to the delocalized f -electron model. B Characteristic dHvA spec-
trum with the magnetic field 4.8o away from [001] of a crystal of 0.33% Sn-doped CeCoIn5.
The inset shows oscillations in the magnetic torque after background subtraction. C dHvA
oscillation frequencies as a function of angle tilting the magnetic field from the crystallo-
graphic [001] to [100] directions in pure CeCoIn5 (Ref. [178]) and 0.33% Sn-doped CeCoIn5.
Light green points are DFT calculated frequencies of the localized and delocalized f -electron
models respectively.
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Figure 2.11: Spectra taken as a function of field angle Quantum oscillation spectra
taken at different tilt angles and different field ranges.
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Fermi surface label localized
f -electron
model

CeCoIn5

Ref. [178]
0.33%
Sn-doped
CeCoIn5

delocalized f -
electron
model

γZ γ1 0.8
γZ γ2 2.3

γ-cross γ3 13.2
γ-ellipsoid γ4 (0.46) 0.7
γ-ellipsoid γ5 (0.24) (0.2) 0.22
α-cylinder α1 4.8 5.6 5.4 5.6
α-cylinder α2 4.0 4.5 4.8 4.4
α-cylinder α3 3.9 4.2 4.4 4.3

αZ α4 16.3 15.8
β-cylinder β1 10.3 12.0 11.9 12.3
β-cylinder β2 6.1 7.5 6.8 6.7
βZ/cylinder β3 2.0 1.6
βZ/cylinder β4 1.2 0.9

Table 2.1: de Haas-van Alphen extremal orbit assignments Units of kiloTesla, H ‖
[001], from experiments and DFT calculations. Each orbit is labeled by the assigned Fermi
surface sheet, which are visualized on the calculated Fermi surface sheets in Fig. 2.10A.
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Figure 2.12: Time-series filtered oscillation spectra over different frequency win-
dows Filtered time series data at 0 degree tilt angle for fundamental frequencies. Oscillation
amplitudes are observed to increase as field increases.
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Figure 2.13: Effective mass of main orbits and temperature-dependent frequency

for the main orbits. First, the frequency seems to depend on temperature, peaking at about
60mK. For α3 and α1, the frequency changes by considerably more than the width of the
spectral peak, suggesting this behavior is intrinsic to the sample. Second, the oscillations do
not seem to obey (LK) theory in many instances. An attempted LK fit yields a comparable
effective mass to that observed previously in the literature for the orbits which have been
observed in pure CeCoIn5 [178]. Over certain field ranges the oscillations get stronger with
increasing temperature, peaking around 60mK, and decrease as temperature increases fur-
ther. The deviations from Lifshitz-Kosevich seem to depend on the strength of the applied
magnetic field (Fig. 2.14). This behavior cannot easily be attributed to an uncertainty in
the temperature measurement or nonequilibrium sample temperature because over certain
field windows α3 follows LK theory rather well while over the same field window α1 shows
strong deviations, especially around the 60mK range where the frequency shift is strongest.
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Figure 2.14: Effective masses over different field windows where field is 12 degrees
from [001] Panels are labeled by the field window, estimated effective mass from attempted
LK fit (red line), and frequency assignment. Deviations from LK are often observed near
60mK.
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Angle-resolved photoemission measurements

“There may be time to measure your doped CeCoIn5 samples if that could still be useful” —
Danny Eilbott

Our ARPES measurements corroborate the dHvA evidence for a Fermi surface recon-
struction. Fig. 2.15 compares Fermi surface maps at the Brillouin zone top in pure CeCoIn5

and 3% Sn-substituted CeCoIn5 at 10K. Our data on pure CeCoIn5 agrees well with previous
reports. The cylindrical Fermi surfaces centered at the zone corners are visible. Bright spots
near the Z point are probably signatures of the γZ Fermi surface, as discussed in Refs. [86,
32].

In the 3% Sn-substituted sample, we observe enhanced intensity at the R point of the
Brillouin zone relative to the pure material, as well as a qualitative change in structure
near Z. Overall it appears that the electronic structure changes with Sn-substitution, with
a sharp cross-shaped structure emerging in the RZA plane which resembles αZ or βZ of our
delocalized model calculations (α and β bands nearly overlap along this cut, and as such
they may be difficult to distinguish from one another in ARPES). Weak features appear at
the R point in pure CeCoIn5 as well, potentially indicating that incoherent states exist at the
R point — these states may exist because of the partially delocalized f -electron character
in the pure material.

It is important to note that these weak features in pure CeCoIn5 at the R point are rel-
atively temperature independent, in stark contrast to the behavior of the Sn-doped sample.
In Fig. 2.15C, we explore the temperature-dependence of these Fermi surface sheets via the
ARPES intensity at the R point. The relative intensity at R increases in the Sn-substituted
sample upon decreasing temperature below about 90K with the onset of f/conduction hy-
bridization (see also Fig. 2.16). In the pure material, the R point spectral weight is relatively
constant down to 10K. This comparison suggests that the Fermi surface sheet in 3% Sn-doped
CeCoIn5 emerges, or is made relatively more coherent, because of enhanced f/conduction
electron hybridization induced by Sn-substitution. By contrast no such coherent feature
exists in the pure material at any measured temperature.
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A

B

C

Figure 2.15: ARPES measurements of CeCoIn5 and Sn-doped CeCoIn5 A Fermi
surface maps in pure and 3% Sn-substituted CeCoIn5 at the Brillouin zone top (RZA plane).
A new Fermi surface sheet appears at the zone top in the Sn-substituted sample. Each of
the four subpanels represents measurements on a different cleave. B A-R-A dispersion cuts.
Parabolic α and β bands are labeled by red and blue dotted lines. The new Fermi surface in
the Sn-substituted sample is observed as an increase in spectral intensity at the Fermi level
at R. The spectral intensity within the white box has been enhanced by a factor of ten for
clarity. C Comparison of temperature-dependent intensity at the R point normalized to the
average value between 120-160K.
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Figure 2.16: ARPES intensity compared to resistivity coherence temperature Co-
herence temperature appears as a peak in temperature-dependent resistivity, and can be
correlated with the onset of f/conduction electron hybridization [86]. The coherence tem-
perature in the 3% Sn-substituted sample is about 85K compared to about 45K in the pure
material. The inset shows the ARPES intensity associated with a new Fermi surface which
appears gradually below its coherence temperature. This Fermi surface is not present in the
pure material even below its coherence temperature.

Recovery of Luttinger’s theorem in a fractionalized Fermi liquid
picture

The experimental data provides evidence that CeCoIn5 exists near a quantum phase tran-
sition associated with the delocalization of f -electron charge. On one side of the quantum
phase transition (represented by Sn-substituted CeCoIn5), the Fermi volume includes the f -
electrons. In contrast to the pure material, the net carrier density of Sn-substituted samples
appears to include the f -electrons (Fig. 2.6). This change coincides with signatures of new
Fermi surface sheets (Fig. 2.15, Table 2.5), which seem to agree well with predicted Fermi
surfaces unique to the delocalized f -electron DFT model (Fig. 2.10A).

Presumably, the ground state of the strongly Sn-doped samples is a Fermi liquid which
includes the f -electrons in the Fermi volume as a result of hybridization between the f
and conduction electrons. Admittedly, aside from the carrier density and Fermi surface
measurements being consistent with the full Luttinger count expected of a heavy Fermi
liquid phase, we have not presented direct evidence that the ground state on this side of
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the transition is a Fermi liquid. Such evidence could come in the form of, for example,
a low-temperature T 2 resistivity in very heavily Sn-doped samples. Other evidence could
come in the form of a low-temperature saturating magnetic susceptibility, or analysis of the
Wiedemann-Franz coefficient, or Wilson ratio. If we take other heavy Fermi liquid materials
as any indication, these signatures of a Fermi liquid ground state would probably be limited
to temperatures below about 100mK [11].

On the other hand, in Cd-doped samples and pure CeCoIn5, even the low temperature
Fermi surface appears to exclude a considerable fraction of the f -electrons, and the bulk net
carrier density is more consistent with localized f -electrons. On this side of the quantum
phase transition, the Fermi volume is smaller than the expected Luttinger count. Taken to-
gether, these data suggest that Sn-substitution of CeCoIn5 induces a Fermi volume changing
transition between a phase with predominantly localized f -electrons to one with a delocalized
character, i.e. a small-to-large Fermi surface transition. This transition could be attributed
to an enhancement of the Kondo coupling induced by electron doping [61, 31, 169] — accord-
ing to the typical view of f -electron metals, f -electron delocalization is a result of Kondo
hybridization between the f level and conduction electrons. Although there are reports of
such hybridization developing below about 45 Kelvin in pure CeCoIn5 [86] and Cd-doped
CeCoIn5 [34] resulting in a detectable f -electron contribution to the Fermi surface, we find
that the low-temperature carrier density of these materials is consistent with predominantly
localized f -electrons (Fig. 2.6).

High magnetic fields may compete with the Kondo coupling by polarizing the f -electrons,
but notably the Hall resistivity remains linear up to 73T (Fig. 2.6B), so it seems likely that
higher fields are required to induce a complete breakdown of Kondo hybridization. In a
2% Cd-doped sample we did observe an ultra high field transition close to 70 Tesla. At
present, we believe this transition is associated with the complete breakdown of the partial
Kondo hybridization present in the material. Plans to explore this further include high field
measurements on a series of Cd-doped samples.

A delocalization transition is a reasonable scenario from the perspective of doping-tuned
Kondo coupling. Because of the constraints imposed by Luttinger’s theorem, the reduction
in Fermi volume in the more localized f -electron regime is expected to coincide with antifer-
romagnetic order where the Brillouin zone is reduced [186]. However, it is hard to reconcile
this scenario with the data because the transition to antiferromagnetism is seen only around
Cd doping of 0.6% [152], considerably removed from the suggested delocalization transition
induced by Sn-substitution (Fig. 2.6C). Furthermore, magnetic order has never been ob-
served in native CeCoIn5 or Sn-substituted CeCoIn5 [169, 31, 61, 97], and the ARPES and
dHvA data suggest that the Brillouin zone is essentially unchanged by Sn-substitution.

At a high level, it then seems that the Fermi volume of the material expands as a result
of a change of one of the interaction parameters — the Kondo hybridization scale. Such
an observation is strictly at odds with Luttinger’s theorem. An alternative possibility is
that the Fermi volume doesn’t change across this transition, but the volume of fermionic
states that are charged does. This would require some of the charged fermion states in the
large Fermi surface regime to transition into charge neutral fermion states in the small Fermi
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surface regime in order to conserve total Fermi volume.

2.6 Possible spin-charge separation: effect of critical

charge fluctuations on electrical conductivity

“I’m going through the calculation again carefully to make sure I didn’t make a mistake” —
Tessa Cookmeyer

A phase that preserves Fermi volume across such a localization transition has been the-
oretically predicted and is known as the fractionalized Fermi liquid [177]. The f -electron
charge localizes to the cerium site, reducing the Fermi volume, while the spin excitations of
the f moments remain itinerant and form a charge neutral Fermi surface [177]. Interestingly,
the low-temperature specific heat of the samples is relatively independent of doping across
this substitution series, even though the Fermi surface appears to increase in volume. We
can speculate that the specific heat is constant as a function of doping (Fig. 2.6C) owing to
the presence of a neutral Fermi surface, which conserves the fermionic degrees of freedom
of the system even when the density of itinerant electrons appears to increase. One may
also expect quantum fluctuations associated with a delocalization transition to enhance the
specific heat coefficient. Such an enhancement has been observed as a function of decreasing
temperature below 2K in pure CeCoIn5 [23]. However, the confinement of these effects to
<2K temperatures could explain why we do not detect singular behavior in C/T at 4K across
the substitution series. Direct imaging of fractionalized particles is challenging. One option
is ARPES measurements of two separate quasiparticle peaks associated with chargeons and
spinons. Another is transport measurements in well-controlled and lithographically defined
setups [193, 93]. In addition, there are possibilities for detecting spin-charge separation
through comparison of thermal conductivity to electrical conductivity measurements [215].

All of these experimental techniques are made more challenging by the fact that, in
the fractionalized Fermi liquid, the spinon and holon contributions coexist with a bath of
regular conduction electrons from the non-f bands. Thus, at present we are largely limited
to indirect signatures of fractionalized excitations. One possible signature is an unaccounted-
for divergence in the low-field Hall effect at low temperatures. In the fractionalized Fermi
liquid model, this arises from a depletion of the bosonic charge carriers at the critical point.

In particular, our calculations of the Hall conductivity of such a fractionalized phase cap-
ture several distinctive aspects of the low-field Hall coefficient in this material. In the simplest
description of the fractionalized Fermi liquid, the f -electron separates into a fermionic spinon
carrying its spin, and a gapped bosonic mode, in this case a valence fluctuation, carrying its
charge. f -electron delocalization can be identified with the closing of the boson gap. Near
this transition, the electrical conductivity has contributions from the fermionic spinons, the
charged bosons and the conduction electrons. The spinon and the bosons should be added
in series [83]. The boson’s resistivity will then dominate owing to their much smaller num-
ber, and we therefore neglect the spinon contribution. Adding to this the resistivity of the
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Figure 2.17: Comparison of experimental data and theoretical calculations of the
conductivity of critical valence fluctuations around an f-electron delocalization
transition. A Experimentally measured Hall resistivity, divided by the applied magnetic
field, for samples with different compositions. B The theoretically predicted Hall effect
from bosonic valence fluctuations of the fractionalized Fermi liquid model. Each panel is
labeled by the chemical potential in the theory corresponding to the doping level in the
experiment, where µ < 0 corresponds to hole-doping and µ > 0 corresponds to electron-
doping. Curves are labeled by the normalized magnetic field value and all theory data
includes a parametrization of impurity scattering, C̄ = 4. See Ref. [123] for the details of
the calculation and relevant parameter normalizations.
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conduction band in parallel gives:

RH = Rc
H

σ2
c

(σtot)2
+

1

µ0H

σbxy
(σtot)2

(2.10)

where σc and Rc
H are the longitudinal conductivity and Hall coefficient of the conduction

electrons, respectively, and σbxy is the Hall conductivity of the bosonic valence fluctuations.
The total conductivity is σtot. In our calculation, we consider two processes that contribute
to the scattering rate of the valence fluctuations. One process is provided by the internal
gauge field [177]. The other mechanism is scattering on the doped ions, which grows linearly
with the doping level (see Fig. 2.18). One may expect an enhancement of the low-field Hall
coefficient stemming from the second term in Eq. 2.10 caused by the singular behavior of
the valence fluctuations when the boson gap closes. This expectation is corroborated by a
semi-classical Boltzmann analysis, the details of which are given in Ref. [122]. As shown in
Fig. 2.17, the results of the calculation of the conductivity in this model give good agreement
with the measured Hall coefficient as a function of temperature, doping level, and magnetic
field with the assumption that pure CeCoIn5 is the sample closest to the delocalization
transition. The results shown in Fig. 2.17B are obtained from a calculation of σbxy, and
converted to a Hall coefficient using the physical resistivity of the system 1/σtot = ρxx ∼ T as
observed in the experiment over the relevant temperature range. A more complete description
of the longitudinal resistivity in this model will be the subject of future work.

We emphasize that the experimental observations seen in Fig. 2.17A are difficult to
reconcile with more conventional transport models. From the semiclassical transport point of
view, the low-field RH is proportional to the carrier density of the most mobile carriers [154],
so it is surprising that RH has such a strong temperature-dependence with a peak at finite
temperature, and retains the same sign and uniformly decreases with either hole or electron
doping. In addition, the observed symmetric-in-doping Hall coefficient cannot be readily
attributed to disorder scattering induced by chemical substitution, as we find that disordering
the material by other means, substituting lanthanum for cerium, has a relatively small effect
on the low-field RH (see Fig. 2.20). These key features of the experimental transport data
are captured by the valence fluctuation model described above.

The absence of evidence for symmetry breaking around this transition opens the possibil-
ity for the fractionalization of f -electrons into separate spin and charge degrees of freedom.
Although our conductivity calculations support this theoretical picture, direct evidence for
such fractionalized electrons is desireable, and may be possible with inelastic neutron mea-
surements [19] or Josephson tunneling experiments [176]. On a final note, recent experiments
on cuprate high-temperature superconductors find evidence for a Fermi surface reconstruc-
tion where the localized charge of the Mott insulator gradually delocalizes over a certain
oxygen doping range near the endpoint of the pseudogap phase (sometimes referred to as
a p to 1 + p transition [17]). We have presented evidence for an analogous transition in
an f -electron metal. It is possible that such a quantum phase transition underlies some of
the similarities between CeCoIn5 and cuprate superconductors [144, 138, 178, 149, 97, 187,
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Figure 2.18: Resistivity in doped CeCoIn5 Each row shows the resistivity versus tem-
perature traces for samples with different doping levels. (La x = 0%, 0.2%, 0.3%, 0.4%,
0.6%, Cd x = 0%, 0.15%, 40.2%,0.3%,0.4%, Sn x = 0%, 0.11%, 0.22%, 0.44%, 0.55%, 1.1%,
1.54%, 1.87%, 2.2%, 3.3%, 6.6%, 8.8%. A linear fit to the resistivity was taken over the
8-15K temperature range. The slope and zero-temperature intercept versus doping level are
plotted in the second two panels of each row.
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Figure 2.19: Heat capacity and magnetization of doped CeCoIn5 A Heat capacity at
different doping levels measured using a heat pulse technique with a 2% temperature rise.
Each data point represents an average of three repeated measurements. Superconducting
or Neel transitions are observed. B Magnetization measured by warming up the sample
from low temperature in fixed fields between (0.1 and 1T). The inset shows that the field-
dependent magnetization for two characteristic samples is linear in field. The temperature-
dependent susceptibility is similar among all samples. The 1.5% Cd-doped sample shows a
Neel transition.
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Figure 2.20: Hall coefficient in CeCoIn5 with lanthanum substitution of the cerium.
Doping with lanthanum induces a modest increase in the value of the low-field Hall coefficient.
This can be contrasted with the rapid suppression of the low-field Hall coefficient induced
by either Cd or Sn substitution of In, as seen in Fig. 2.17. Note that CeCoIn5 was measured
down to 0.01T, while the La-doped samples were only measured down to 0.1T.

225, 194, 23], and perhaps our work may help guide interpretation of these recent results on
cuprates.

2.7 Crystal growth procedures and Hall effect

measurement techniques

Crystal growth and characterization

CeCoIn5 was grown by a well-established flux method [149]. Cerium, cobalt, and indium
were combined in an alumina crucible in a ratio of (1:1:20). Cerium is a rapidly oxidizing
metal, and as such it is typically packed in mineral oil. The oil was first washed off with
a 3-step acetone, isopropynol, ethanol rinse. The outer oxide layer of the cerium chunks
was stripped off with wire cutters and then discarded. The remaining shiny lump of cerium
was placed directly into the alumina crucible, and then transferred to a glove box with an
inert atmosphere while the other elements were weighed out. After combining the rest of
the elements in the crucible, it was removed from the glovebox and sealed in an evacuated
quartz tube and placed in a furnace. The furnace was first rapidly heated to 1150 degrees
C, and maintained at this temperature for 10 hours. The cerium and cobalt dissolve in
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this indium-rich melt. Then, the desired phase precipitates out of the melt upon slowly
cooling the mixture to a temperature above the melting point of indium. After melting at
1150 C, the furnace was rapidly cooled to 750 degrees C over the course of 10 hours. This
rapid quenching step serves to encourage crystal nucleation. Then the furnace was cooled
to 400 degrees C over the course of 120 hours. The excess indium liquid was spun off with
a centrifuge. Shiny platelette samples of CeCoIn5 are obtained.

Figure 2.21: Image of a crystal of CeCoIn5 The long axis of the crystal is about 4mm.

We also grew CeCoIn5 where a small amount of indium was substituted with other
elements. Each chemical substitution level required a separate growth as described above,
but with a nominal percentage of the indium flux replaced by cadmium or tin. The purpose
of this substitution process is to dope electrons or holes into the metal, the motivation
for which is described in the previous sections. In the crystals resulting from this process,
the actual percentage of substituents incorporated into the sample turned out to be smaller
than the nominal concentration. For both cadmium and tin alloying of CeCoIn5, we generally
observed a linear dependence of the true concentration on the nominal concentration in the
growth. As shown in Fig. 2.22, this dependence was determined by measuring transition
temperatures for magnetism or superconductivity, and comparing the temperatures to the
published literature where previous authors have mapped out the dependence of transition
temperature on chemical composition [31]. This comparison was supplemented by our own
chemical analysis for samples with relatively high concentration levels (energy dispersive
X-ray spectroscopy).
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On the other hand, samples were also prepared in which cerium was replaced by lan-
thanum. The substitution process is analogous to that described above. In this case, the
amount of lanthanum in the sample seems to coincide with the nominal concentration.
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Figure 2.22: CeCoIn5 with cadmium or tin alloying A Sn concentration, determined by
comparison of superconducting transition temperature to literature for concentrations less
than 1%, and energy dispersive x-ray (EDX) spectroscopy for concentrations greater than
1%. The dashed line shows the scaling factor (×2.2) for determining actual concentration
from nominal using a linear fit to the combined data. The EDX points extrapolate the trend
of the lower concentrations well. The inset shows the measured superconducting transition
temperature versus the nominal concentration scaled by 2.2 in comparison to published data
(open circles) [31]. B Phase diagram of Cd-doped CeCoIn5. Open circles are reprinted from
literature [31]. Blue circles are from the present study where the nominal concentration of
Cd has been scaled by a factor of 0.1 to estimate the actual concentration.

Hall effect measurements in a 3He refrigerator

“You can continue to use the turbo pump for now, as there is likely life left in it” — Eric
Suter”

The size of the Hall voltage signal is inversely proportional to the thickness of the sample,
and proportional to the drive current. At the requisite temperatures for the Hall coefficient
experiments on CeCoIn5, typically the drive current is limited by sample heating consid-
erations given the limited cooling power afforded by 3He circulation. Depending on the
resistance of the electrode-sample contact, only 100-500 µA can be applied. Therefore, it
is critically important that the sample thickness is reduced as much as possible for these
experiments in order to maximize the signal-to-noise ratio. We found that rather high
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signal-to-noise ratios are obtained when the sample is less than 20 µm thick. Acceptable
signal-to-noise is obtained in the 20-50 µm range. Some of the platelet samples as-grown
are on the order of 20 µm thickness or even less, and these can be directly contacted to.
Otherwise, samples needed to be mechanically polished successively with 3-5 µm, and 1 µm
grit polishing paper. Reducing the sample thicknesses has the added benefit of removing
voids full of metallic indium flux that naturally form in single crystals during the growth
process.

Electrical contact to CeCoIn5 samples can be made by gold sputtering contact pads and
attaching gold wires EE129 silver epoxy cured at 80oC for two hours. For these samples the
surface tends to oxidize when heated, and electrical contacts made to an as-grown surface or
heated surfaces tend to have either high contact resistance or high interfacial capacitance.
Gold sputtering contact pads does help as long as the sample isn’t heated above about 100oC.
Once the contacts are attached with silver paint or epoxy, either to gold sputtered pads or an
as grown surface, annealing with a relatively high current through the electrodes (10-20mA)
for a split second can significantly improve the contact resistance, probably because the high
current penetrates through the interfacial oxide layer between the electrode and the sample.

Thickness measurements were made using the high-contrast edge of the sample in an
optical microscope. About half of the sample thickness measurements were calibrated using
SEM images, where good agreement was found with the optical microscope measurements.

Focused ion beam device mounting and fabrication

In order to achieve measurable sample signals in pulsed magnetic fields, the samples needed
to be thinned down to about 2µm thickness. For this, focused ion beam fabrication at the
National Center for Electron Microscopy and Lawrence Berkeley National Lab was required.
Several steps needed to be taken to ensure ease of fabrication in the focused ion beam.
These samples generally cannot be fabricated into devices if they are thicker than about
10µm because material falls back into the trenches as its undergoing milling. Thus, the
samples need to be roughly thinner than 5µm to begin with. Single crystals in fresh growths
were selected which were determined to be around 5µm or less thickness. These crystals are
fairly rare in growths, and are generally easier to find in freshly opened batches which have
not undergone much handling. The crystals were then cut with a scalpel to about 50µm ×
50µm lateral dimensions. The purpose of this step is to minimize the amount of time spent
cutting out contacts in the sample itself.

For sample mounting, torr seal was mixed and left to dry for about ten minutes. A small
dab of the torr seal was placed in the center of a glass substrate of 2mm×2mm dimensions.
The crystal was then mounted on the surface of the torr seal using a fine wooden stick.
The torr seal was cured at 60oC for two hours on a hot plate. Then a katpon tape mask
was placed over the sample, and sputtered with gold for 40 seconds three times successively.
After the mask is removed, the sample is ready for focused ion beam fabrication for milling
of device dimensions and cutting contacts out of the gold on the glass substrate. Scanning
electron micrograph images of fabricated samples are shown in Fig. 2.23.
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Figure 2.23: Scanning electron micrograph images of focused ion beam fabricated
Hall bar devices



74

Chapter 3

Nearly-antiferromagnetic metals

The work in this chapter was based on previously published work in Ref. [123]. Sections 3.1,
3.2, 3.3, 3.5, 3.7, and 3.8 are original to this text. 3.7 contains some portions of text from
Ref. [123]. The other sections were copied from Ref. [123] with certain parts rewritten to fit
into the broader structure of this text. The present author performed transport measure-
ments, sample preparation, and modeling of the data. Permission to include published data
was obtained from the coauthors of Ref. [123].

Probably one of the most thoroughly studied examples of non-Fermi liquid behavior is
in nearly-antiferromagnetic metals. The rare-earth-based alloy CePd2Si2 was one of the first
such materials, being first discovered and experimentally studied at low temperature in the
1970s [192]. Clear deviations from Fermi liquid theory were observed, and attributed to the
presence of very long-wavelength antiferromagnetic spin fluctuations that arise near the anti-
ferromagnetic phase boundary. More recently, the discovery of iron-based superconductivity
in the late 2000s drove renewed interest in the study of nearly-antiferromagnetic metals [168].
It is also widely believed that much of the physics of electron-doped cuprate superconductors
can be explained by the proximity to an antiferromagnetic state [14]. Some believe that this
is also the case for the hole-doped cuprates.

It is often the case that superconductivity develops at the endpoint of an antiferromag-
netic phase at low temperature. Theoretically, it has been argued that antiferromagnetic
fluctuations in two dimensional systems induce an attractive interaction between electrons
that induces superconducting pairing [114, 134]. Experimentally, evidence exists for such
a description. For example, a neutron resonance at the same momenta as that of the an-
tiferromagnetic ordering vector have been observed in the superconducting state of many
iron-based materials [44]. However, it is worth noting that the mechanism for superconduc-
tivity in most of these materials is still up for debate.
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3.1 Non-Fermi liquid physics in

nearly-antiferromagnetic metals

There is good reason to believe that many nearly-antiferromagnetic metals host an anti-
ferromagnetic quantum critical point [70]. That is, the antiferromagnetic phase transition
remains second-order and persists to zero temperature as the system is perturbed by a
non-thermal parameter. This phenomenon has surprising effects on the metal at finite tem-
perature. Proximity to an AFM quantum critical point manifests as fluctuations of the AFM
order parameter that proliferate to longer and longer length scales as the critical point is
approached [133, 129], either by decreasing temperature or by perturbing the system with a
non-thermal parameter such as chemical composition or applied hydrostatic pressure. This
process can lead to singularities in bulk thermodynamic properties like specific heat capacity,
as discussed in the introduction of this text [174]. The thermodynamic properties of quan-
tum critical antiferromagnets, for example a logarithmically diverging heat capacity which
contradicts Fermi liquid theory, in many cases can be reasonably well-accounted for using
a model in which the electrons are weakly coupled to a bath of critical antiferromagnetic
modes [133, 41]. Certainly, some open questions remain in regards to dealing with the fact
that the critical magnetic modes lie in the spin degrees of freedom of the same electrons to
which they are coupled [41]. Perhaps most notably, a nearby antiferromagnetic quantum
critical point appears to often have dramatic consequences on the electrical transport prop-
erties of metals, often inducing a resistance that scales with a power law less than quadratic
at low temperature which indicates a breakdown of the adiabatic principle for Fermi liq-
uids. The fact that these effects are observed in bulk transport measurements suggests that
fluctuations are somehow coupling to most if not all of the electrons in the metal. This is
surprising because the antiferromagnetic modes from the standpoint of the theories discussed
above [129] should only be strongly coupled to a small fraction of electrons that overlap with
the antiferromagnetic modes in momentum space.

Therefore, most of the outstanding problems in the study of nearly-antiferromagnetic
metals reside in the non-superconducting state, where non-Fermi liquid physics is observed.
Perhaps the most challenging property to accurately capture in these materials is the electri-
cal transport — resistivity and Hall effect [72]. In this chapter, we will discuss how models
of electrical transport were developed for CePd2Si2 — these models actually draw heavily
from conventional transport models that are applied to Fermi liquid systems, but with some
modifications [164, 165]. We will also discuss how models in similar spirit can be used to
capture much of the observed electrical transport properties of iron-based superconductors,
which have recently become a topic of intense study. Certain aspects of these transport
models may transfer over to copper-oxide superconductors and other related materials.
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3.2 Transport in nearly-antiferromagnetic metals

“Resistivity is the first thing you measure, and the last thing you understand” — Zlatko
Tes̆anović

One of the ‘hot topics’ in the study of electronic materials during the 1950s-1970s was
determining the Fermi surfaces of semiconductors and metals — materials like germanium,
silicon, copper, aluminum, etc. Around this time experiments were actually realizing the
concept of a Fermi surface beyond just an abstract theoretical construct — the various
complicated contours of the Fermi surface of a metal where found to actually have an effect
on its measurable physical properties. As it turns out the resistivity of a metal in an applied
magnetic field is highly sensitive to the shape of the Fermi surface as well as the direction of
the field and current with respect to the principle axes of the crystal. And, because resistivity
experiments were fairly straightforward even with the technology of the time, there was a
considerable drive to develop models to relate the results of resistivity experiments, especially
resistivity in applied magnetic field (magnetoresistivity), to the shape of the Fermi surface
of the metal. This was the original motivation for studying electronic magnetotransport in
solids.

In many ways, transport coefficients of a metal are some of the most difficult physi-
cal properties to understand microscopically. One needs knowledge of the spectrum of the
carriers, knowledge of the sources of transitions between different states, and knowledge of
how these quantities change with temperature or with the application of a magnetic field.
Even then, several approximations need to be made for there to be any hope of theoretical
calculations making meaningful statements about experimental results. Due to the work of
Pippard [154], Shockley [183], Chambers, and others, it was generally believed that we had a
good understanding of the requisite approximations, and we developed a good understand-
ing of the electrical transport properties of solids. These established transport theories are
called ‘semiclassical’. Quantum mechanics defines their statistics (Fermi-Dirac statistics),
and potentially transition rates between states are based on solutions to Schrodinger’s equa-
tion. The classical part comes in the motion of the particles, their trajectories, and the fact
that transitions, happening with a certain probability based on the quantum calculation, are
then considered to be instantaneous when they do happen. In this way, quantum entangle-
ment or interference effects between quasiparticles or electrons are not considered. Based on
the semiclassical description, the temperature-dependent resistivity was understood in most
metals, and most importantly the magnetic field-dependent resistivity was understood well
enough that people could actually to some extent determine the shape of a metal’s Fermi
surface using magnetoresistance measurements — one of the original goals of this line of
work.

Lurking in the background, however, was the puzzling behavior of the temperature-
and field-dependent resistivity of certain nearly-antiferromagnetic metals like CePd2Si2 [87].
These materials led to questions regarding the approximations going into the semiclassical
theory of transport, and even the Fermi liquid description itself.

Fig. 3.1 shows the comparison of the temperature-dependent resistivity of CePd2Si2 un-
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Figure 3.1: Comparison of temperature-dependent resistivity in different metals at
low temperatures A Resistivity of copper at low temperatures as an example of a typical
metal [89]. Phonon scattering induces a T 5 power law in bulk resistivity, which transitions
to T -linear at higher temperature. At the lowest temperature, the resistivity saturates
because of impurity scattering. B CePd2Si2 at a critical pressure of 28 kbar, near the zero-
temperature endpoint of the antiferromagnetic phase. The resistivity varies as T 1.2, in stark
contrast to the behavior observed in copper and other metals at low temperature [87]. C The
resistivity of YbRh2Si2 under an applied field of 60mT along the crystallographic c-axis [141].
The resistivity varies linearly with temperature down to the lowest measurable temperatures.
Both CePd2Si2 and YbRh2Si2 exhibit a bulk resistivity scaling, which, if interpreted as an
electron-electron scattering rate, seems to violate the adiabatic principle central to the Fermi
liquid description of metals.

der pressure, a nearly-antiferromagnetic metal, to that of elemental Cu. The temperature-
dependent resistivity of Cu can be understood primarily from the perspective of charge
carriers bouncing off of thermal vibrations of the lattice. At high-temperature the resistivity
varies linearly with temperature because the number of available phonon states grown in
proportion to temperature. At some lower temperature scale (known as the Debye tempera-
ture), phonon states start to depopulate, and the resistivity is found to vary as T 5. At a lower
temperature, the resistivity saturates because of charge carriers losing momentum to impu-
rities. The astute reader might wonder where the famous T 2 Fermi liquid electron-electron
collision rate presents itself in the resistivity of elemental metals. It turns out that this
contribution is usually tiny compared to the dominant role of electron-phonon contributions
to the resistivity, so in normal metals the low-temperature T 5 behavior presents itself most
prominently. And what’s more, you would be hard-pressed to find a metal that deviates
significantly from the resistivity curve shown in Fig. 3.1A, barring any phase transitions.
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Phonons are present in every material, and the Debye temperature is more or less similar
within about a factor of two for most metals. Most importantly from the perspective of
Fermi liquid theory, the low-temperature resistivity of these metals varies with a power law
greater than 2 at low temperature, thus we can be somewhat confident that the relaxation
rate of electrons is not surpassing the limits imposed by the adiabatic principle central to
Fermi liquid theory.

Compare the above behavior to the resistivity of CePd2Si2 (Fig. 3.1B). The resistivity
of this material, when a pressure of 28 kbar is applied to it, varies as T 1.2 over an extended
range in temperature, and down to relatively low temperatures — low enough that if it
were a metal like copper, we would definitely expect the conventional T 5 dependence from
phonons to present itself. For a long time, the unusual temperature-dependent resistivity of
CePd2Si2 was attributed to the influence of antiferromagnetic fluctuations that were believed
to be present in the system given its proximity to AFM and the presence of a putative AFM
QCP. But there is a more concerning feature in the temperature-dependent resistivity of
CePd2Si2. Fermi liquid theory apparently limits the quasiparticle relaxation rate to T 2,
as discussed in the introduction. To reiterate: if the quasiparticle relaxation rate is faster
than T 2 (and assuming that the resistivity is correlated with the quasiparticle relaxation
rate), then the adiabatic approximation going into Fermi liquid theory is no longer valid,
and it becomes unclear whether the fundamental description of the electrons as independent
particles is valid at all. So, the resistivity in CePd2Si2 becomes more than a question about
how antiferromagnetic fluctuations may dissipate the momentum of quasiparticles, but more
about whether the system actually violates Fermi liquid theory from a more fundamental
level. By analogy, imagine if the low-temperature specific heat capacity of a metal went as
T 1/2 rather than T -linear — we would probably wonder what is going on in that metal, and
whether its electrons can be described as independent fermions.

It was only by the late 90’s that A. Rosch developed a rigorous theory of transport to
describe the T 1.2 scaling with temperature seen in the experiments on CePd2Si2 [164, 165].
He did it by assuming the antiferromagnetic quantum critical scenario described in the in-
troduction chapter of this text. Although an abnormally high relaxation rate may occur at
‘hot spots’ connected by the antiferromagnetic ordering vector, most of the Fermi surface is
superficially not affected by this strong scattering rate, at least according to simplified ver-
sions of semiclassical transport theory. Rosch, however, re-examined some the assumptions
going into the semiclassical transport theory developed in the 1950’s, and noticed that the
overall T -dependent resistivity is not directly correlated to the quasiparticle relaxation rate,
and in principle scaling laws in the T -dependent resistivity faster than T 2 over substantial
ranges in temperature even at very low temperature are admissible from the semiclassical
transport perspective. This can be true even if the critical fluctuations which scatter elec-
trons only affect very localized regions of momentum space. The source of the influence of
such localized scattering on the majority of electrons is related to the nonlinear mixing of
scattering from magnetic fluctuations and disorder scattering. The latter can ‘smear’ out
the hot spots such that they have a dramatic influence on the overall transport properties.

The issues brought up by the T 1.2 scaling in the resistance of CePd2Si2 become more press-
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ing with the discovery of the copper-oxide ceramic superconductors, certain heavy fermion
metals, and to a certain extent iron-pnictide superconductors, many of which exhibit a linear
temperature scaling of their resistances that seems to violate the criterion of T 2 quasipar-
ticle relaxation in a Fermi liquid. An example of such a linear-in-temperature resistivity
scaling down to essentially the lowest experimentally accessible temperatures is shown in
Fig. 3.1C for the heavy fermion metal YbRh2Si2 under an applied field of 60mT — un-
der these conditions the material is very close to antiferromagnetic order and potentially a
charge delocalization transition. It has been a long standing puzzle to understand the electri-
cal transport properties of such nearly-antiferromagnetic or nearly-charge localized systems
at very low temperatures. Some argue that the concept of a Fermi liquid quasiparticle,
and the conventional semiclassical approach to understanding electrical transport, needs to
be overhauled completely to capture the behavior seen in Fig. 3.1C. The rationale here is
that at such low temperatures, the resistivity is probably representative of only electron-
electron scattering as it is difficult to imagine bosonic modes being excited at only a few mK
above absolute zero, and thus the quasiparticle relaxation rate is faster than the adiabatic
principle allows. On the other hand, as has been shown by the example of CePd2Si2, trans-
port can be an un-intuitive measurement in the sense that the behavior of the resistivity
is not necessarily a probe of the dynamics of individual quasiparticles, and in addition, the
presence of bosonic modes even at low temperature is difficult to rule out (even in certain
Fermi liquids a linear resistivity can persist to incredibly low temperature on the order of
a few Kelvins as a result of low-energy phonons [81]). Moreover, the temperature regimes
over which unexpected resistivity-temperature scaling is observed is of critical importance.
YbRh2Si2 is one of the most rock solid examples of non-Fermi liquid transport, exhibiting a
linear resistivity down to a few mK. Other situations like the copper-oxide superconductors,
which exhibit linear resistivity down to the superconducting transition temperatures which
are on the order of 10s of Kelvin, are less clear cut (lead for example, has a linear resistivity
down to 10 kelvin or so because of the phonon contribution; in certain situations the phonon
contribution can be extended well below the Debye temperature, even sometimes down to
rather low temperatures like 100 mK depending on the dimensionality of the material, and
the details of the phonon spectrum [220, 81]).

In the existing literature on the potential non-Fermi liquid properties of nearly antiferro-
magnetic metals and other types of quantum critical metals, a considerable weight is given
to transport data. The purpose of this chapter is to critically evaluate which features in
experimental data, primarily on iron-pnictide superconductors, can be understood from the
semiclassical transport perspective, and which features are outstanding issues that may re-
quire transport models ‘beyond the semiclassical picture’. This is a separate, but related,
distinction than the one between Fermi liquid and non-Fermi liquid (as has been shown by
CePd2Si2 where certain regions of the Fermi surface may have non-Fermi liquid properties,
but the overall transport behavior can be reasonably well understood by a semiclassical
transport model). In the later sections of this chapter, we will describe some experiments
that can be done in order to determine to what extent the semiclassical theory of transport
is applicable to different classes of non-Fermi liquid systems.
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3.3 Semiclassical transport theory of solids

“If you are out to describe the truth, leave elegance to the tailor.” — Ludwig Boltzmann
This text will primarily deal with transport, and the features in transport that can po-

tentially be explained by semiclassical transport theory even in strongly interacting electron
systems. Transport models beyond the semiclassical approach are being developed. These
models will not be discussed in this text to any considerable degree, in part because at the
present time such models are difficult to test experimentally using bulk transport measure-
ments.

Upon application of an external electric field, the Fermi surface of a material will shift
in k-space, populating excited electron states on one side (wherever E · v > 0), and hole
states on the other (wherever E · v < 0). The action of the force is balanced by momentum
relaxation in the form of electrons scattering off of impurities, temperature fluctuations, and
other electrons. The competition between the external force supplied by the electric field, and
the mechanisms for momentum dissipation to the lattice will lead to a steady-state current
density flowing through the metal (J). E and J are related to each other to first-order by
the conductivity σ (J = σE). In general the conductivity is a tensor quantity, because both
the current density and electric field are vectors. A closely related property of metals is the
resistivity ρ = σ−1, the inverse of the conductivity tensor. The values of the ρ tensor, and
how they change with temperature and external magnetic field, are determined by the specific
details of momentum relaxation and energy spectrum of a material; the goal of transport
theory in solids is to determine how these mechanisms lead to the observable ρ. This turns out
to be a rather complicated problem in metals, even apparently ‘simple’ ones like aluminum
and lead, because the electronic energy spectrum may have a rather complicated dependence
on momentum in three dimensions, and the mechanisms for momentum relaxation could be
equally complicated. A series of approximations are often employed to at least get a base-
level understanding of the behavior of ρ as a function of temperature, magnetic field, and
defect density of the sample. In nearly-magnetic metals, the sources of momentum relaxation
may be even more complicated than in ‘simple’ metals like aluminum, and in these cases more
comprehensive models are required. We will first describe the simplest transport models,
and then build on that.

Drude Model

The most basic transport theory relies on the assumption of a ‘scattering time’. After being
accelerated by an electric field, a quasiparticle will travel along for some average amount of
time, τ , until it scatters at which point its momentum is randomized completely. The Drude
model uses the free electron approximation; electrons simply move in straight lines between
collisions.

The system will reach an equilibrium where the force supplied by the electric field is
counteracted by the average momentum relaxation due to scattering (exactly what the elec-



CHAPTER 3. NEARLY-ANTIFERROMAGNETIC METALS 81

trons are scattering off of will be discussed later), which gives rise to a net resistance to
current. This can be captured by a relatively straightforward force balance equation

d

dt
〈p(t)〉 = qE− 〈p(t)〉

τ
, (3.1)

where 〈p(t)〉 is the average momentum per electron. Here, the assumption made is that
if the electric field were removed, the momentum of the particle distribution would decay
exponentially — this is captured by the 〈p(t)〉

τ
term. More intuitively, this term represents

the fact that transitions caused by scattering from, for example lattice impurities or ther-
mal vibrations, are momentum-randomizing, and thus a quasiparticle which suffers such a
scattering event on average loses its momentum in the direction of the electric field. The
steady-state solution, where the net variation of average momentum is set equal to zero
(d〈p〉
dt

= 0), gives 〈p〉 = nq〈v〉. Substituting J = nqm〈v〉, we arrive at an expression for the
conductivity, σ in terms of the carrier density n, charge q, and electron mass m.

J =

(
nq2τ

m

)
E = σE (3.2)

This is essentially a recreation of the phenomenological form of Ohm’s law (J = σE), but
with a physical picture in mind. However, the Drude model assumes that all quasiparticle
scattering randomizes momentum, and that all quasiparticles, either in real or momentum
space, have the same average scattering rate. It also does not take into account momentum-
space anisotropy in the distribution of quasiparticles (such an anisotropy is present in almost
every metal). The Drude model is severely limited because of these approximations, and
should generally only be applied as a tool for qualitatively understanding trends. For exam-
ple, the Drude model can give us a sense of how the resistivity of a material will increase or
decrease with effective mass, impurity concentration (i.e. scattering rate), or carrier density.
However, properties like the temperature-dependent resistivity are very likely to contain ef-
fects which violate the approximations of the Drude model, as we will discuss in the following
sections. Interpreting the resistivity as a measurement of the scattering rate, for example, is
not justifiable given the approximations that go into deriving Eq. 3.2.

Drude originally used the classical Maxwell-Boltzmann distribution when deriving the
results of this transport theory, but they turn out to be correct for a free electron gas
with a Fermi-Dirac distribution. This is because the force balance equations central to this
transport theory are independent of the statistical distribution of particles. Only results
related to the speed of the particles are affected by this distinction, i.e. estimations of the
‘mean free path’ (the average distance between scattering events) will be completely wrong
if the Maxwell-Boltzmann distribution is used.

For example, if we apply Eq. 3.2 to low-temperature copper, the calculated scattering
rate is τ = 3.7× 1013 Hz — Drude assumed, and classically we expect, that electrons scatter
off of the positively charged ions of the lattice (the average distance between ions in copper
is 3.6Å in copper) giving us an average classical velocity of electrons in copper of 13000 m/s.
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In reality, electrons in copper obey Fermi statistics, and their velocity is given by the
Fermi velocity (1.57× 106 m/s). Thus, the estimate given by Maxwell-Boltzmann statistics
is completely wrong, as we know now, but Drude didn’t know about Fermi statistics at the
time. Moreover, the actual mean free path of pure copper taking into account the true Fermi
velocity is 430Å, more than 100 times higher than the mean free path than expected from the
classical calculation (i.e. the assumption that electrons scatter off of the ions in the lattice).
The takeaway is that electrons do not scatter off of the ions that make up the lattice. This is
because the electron Bloch states are itinerant wavefunctions that extend over the periodic
potential induced by the ions, as discussed in Chapter 1. It turns out that the scattering
time τ of the Drude equation, at least at very low temperature, is actually determined by
the density of lattice defects in the material. The distance between defects, especially in
pure samples of copper, is much further than between lattice ions, explaining the relatively
large mean free path of electrons in copper. If the underlying lattice was perfectly uniform,
the electrons would actually never scatter in the low temperature limit, and the resistance
would be zero. This fact is a consequence of the quantum wave-like nature of the electrons
in a metal. In fact, measuring the low-temperature resistivity of metals was the original
motivation for liquifying helium, which ultimately led to the discovery of superconductivity
in mercury in 1911. The addition of Fermi statistics to the Drude model, as described in
this paragraph, is sometimes referred to as the Drude-Sommerfeld model.

Boltzmann equation

Consider cases now where either the particle distribution is anisotropic in momentum space,
or there are sources of scattering that affect certain regions of momentum space more than
other regions, or there are sources of scattering that change the electron momentum by a
relatively small amount. In such cases, electrons may be more likely to be scattered to
certain momenta over others, and their momentum isn’t necessarily randomized by a single
scattering event (a key assumption of the Drude model in the previous section). In this
case, electrons can scatter multiple times before their net momentum in the direction of
the electric field is reduced to zero. This is especially true if the majority of scattering
is ‘small-angle’, in the sense that the total change in momentum after a scattering event
is small; most electron-electron scattering mechanisms, for example, are small-angle. Al-
most all nearly-magnetic metals have scattering rates that are anisotropic, or complicated
electronic structures. Therefore, while the Drude model is useful for a qualitative general
understanding of the contributions to the resistivity of a material, more accurate descriptions
require approaches beyond the Drude model.

In order to solve this problem, we cannot only use the average momentum per particle
as was done in the Drude picture because particles at different momenta may have different
scattering rates or velocities. The quasiparticle distribution function needs to be considered
— that is, a probability density function that describes the density of particles at each
position r in momentum state k at time t; f(k, r, t). In the steady state, the distribution
function is time-independent, and all sources of ∂f

∂t
will sum to zero. We consider three
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mechanisms that affect the distribution function: diffusion of particles into and out of volume
element r, external forces such as electric and magnetic fields, and scattering of electrons
into and out of different k states.(

∂f

∂t

)
diffusion

+

(
∂f

∂t

)
ext. forces

+

(
∂f

∂t

)
scattering

= 0 (3.3)

Diffusion

Diffusion takes into account the motion of particles between different spatial positions, i.e.
volume elements r. The velocity of particles in state k is vk. In a time t, the particle will
move vkt. The concentration of particles at a position r after an infinitesimal time δt is equal
to the concentration of particles at r − vkδt at a time of 0. Thus,

f(k, r, δt) = f(k, r− vkδt, 0) (3.4)

f(k, r, 0) +
∂f(k, r, t)

∂t
δt = f(k, r, 0)− ∂f(k, r, t)

∂r
· vkδt (3.5)

Therefore, (
∂f

∂t

)
diffusion

= −∇rf · vk (3.6)

External Forces

Newton’s law straightforwardly gives the effect of external forces on the crystal momentum

k̇ =
e

h̄
[E + vk ×B] (3.7)

Using the same logic as in the previous section on diffusion, we obtain:(
∂f

∂t

)
ext.forces

= − e
h̄
∇kf ·

[
E +

vk ×B

c

]
(3.8)

Scattering

We consider the scattering of particles between state k and other states k′ [1]. It is assumed
that scattering happens instantaneously and does not change the position of the particle, i.e.
r and t are the same before and after scattering-induced transition between states. Let the
transition rate from state k to k′ be g(k,k′). In essence, g(k,k′) captures all the microscopic
details of scattering into a single rate. At the moment, we will just keep this as a general
transition rate, which can be computed from more microscopic considerations later. Then,(

∂f

∂t

)
scattering

=

∫ ∫ ∫
d3k′

(2π)3
[fk′(1− fk)g(k′, k)− fk(1− fk′)g(k, k′)] . (3.9)
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The first term in the integrand describes transitions from a state k′ into a state k. The second
term describes transitions in the other direction. Note that in general g(k, k′) 6= g(k′, k)!
The kernel is integrated over all possible k′ states in order to determine the rate of change
of density of particles in the volume element k with respect to time. This term is essentially
equivalent to a Fermi’s golden rule argument.

Relaxation time approximation

Typically, the full Boltzmann equation for transport in solids is prohibitively difficult to solve.
Either a numerical method must be used, or an approximation must be made to obtain
analytical solutions. The most commonly applied approximation is called the ‘relaxation
time approximation’ (RTA). In this approach, we assume that the distribution function is
only weakly perturbed away from its equilibrium state.

f(k, r, t) ≈ f0(k, r, t) + fA(k, r, t), (3.10)

where f0(k, r, t) is the Fermi-Dirac distribution for the case of electrons in a metal. Then
the term associated with scattering between states can be approximated by dropping terms
associated with return scattering events, i.e. transitions that cause electrons to move between
k and k′ and back again [1].(

∂f

∂t

)
scattering

≈ −fA(k)

∫ ∫ ∫
d3k′

(2π)3
g(k, k′)

(
1−

���
���

��
fA(k′)g(k′, k)

fA(k)g(k, k′)

)
≈ −fA(k)

τ(k)
(3.11)

≈ −f(k, r, t)− f0(k, r, t)

τ(k)
. (3.12)

All scattering is lumped into a single timescale (τk), which may depend on momentum, but
does not take into account multiple scattering events where the momentum of a particle
in the distribution function can transition multiple times before relaxing. Essentially, in
the relaxation time approximation all scattering is assumed to be completely momentum
randomizing, much like scattering in the Drude equation. The main difference here compared
to the Drude case is that here, the distribution function has a momentum, and potentially
spatial, dependence, and the scattering rate can also depend on momentum.

It is important to note that the RTA is not only quantitatively incorrect, but qualita-
tively incorrect if the majority of scattering is small-angle (i.e. scattering events are not
momentum randomizing), or if there is significant anisotropy in the scattering rate. Consid-
erable care should be taken in interpreting conclusions drawn from the RTA. The transition
rate term is an alteration to the quasiparticle distribution function depending on the scat-
tering rate between states. There is a ‘feedback’ effect in which changes to the scattering
rate on particular parts of the Fermi surface warp the distribution of quasiparticles. As a
result, beyond the RTA the transport properties are no longer determined by the behavior
of individual quasiparticles undergoing scattering events, but are instead determined by the
collective properties of the whole Fermi surface.
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3.4 Magnetotransport properties of

nearly-antiferromagnetic metals and

high-temperature superconductors: comparisons

with other metals

“Doesn’t look like anything to me” — Westworld
Armed with some knowledge of semiclassical transport theory, we can attempt to attack

the problem of magnetotransport in nearly-antiferromagnetic metals. The introduction to
this chapter primarily focused on the temperature-dependent transport properties of such
materials. A more recent question has been brought up in their magnetotransport properties
— that is, the variation of the resistivity in a magnetic field, typically measured at low
temperatures. The original purpose of studying magnetotransport was to gain access to the
normal state properties of high-Tc materials at very low temperatures. In this process, a
number of puzzling phenomenological descriptions were developed, starting in the mid 2010s.

It has been found that a ‘hyperbolic’ magnetoresistance scaling form phenomenologically
captures the interplay of field and temperature in many strongly correlated materials and
nearly-antiferromagnetic metals:

ρ(T,H)− ρ0

αkBT
∼

√
1 +

(
ηH

αkBT

)2

, (3.13)

where ρ(T,H) is the field-dependent resistivity at temperature T , and η a parameter that
plays a similar role for the field dependence as α does for the temperature dependence [71].
Eq. (3.13) was motivated by measurements of BaFe2(As1−xPx)2 near its antiferromagnetic
quantum critical point. Since then, a growing number of putative quantum critical met-
als have shown qualitatively similar behavior [71, 171, 157, 116, 142, 137, 170, 36, 108,
60], albeit with notable deviations in the quantities α and η. The observation of H-linear
magnetoresistance, as suggested by Eq. (3.13), is unusual but not unprecedented. There
are multiple possible causes of this including the presence of Dirac quasiparticles [3, 145],
sample heterogeneity [121, 158], guiding center diffusion in a smooth random potential [190],
fluctuations from spin density waves [165, 106], or singular regions of the Fermi surface where
the Fermi velocity changes discontinuously [154, 105]. However, Eq. (3.13) places further
constraints on the origin of the MR, as it conflicts with the conventional Kohler’s rule for
classical magnetoresistance [154], which will be discussed further later on,

ρ(H)− ρ(0)

ρ(0)
= f

(
H

ρ(0)

)
, (3.14)

where f is a smooth and usually positive function. Kohler’s rule is satisfied in metals as
long as the scattering rate changes uniformly when, for example, the temperature or disorder
level are varied. Even if the scattering rate is anisotropic in momentum space, one expects
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Kohler’s rule to be satisfied so long as the ‘pattern’ of anisotropy is unchanged [191]. This
constraint of Kohler’s scaling is reflected in the denominator of Eq. (3.14), which takes into
account both temperature-independent and temperature-dependent scattering contributions,
ρ(0) = ρ0 + ρt. By contrast, in Eq. (3.13), the disorder scattering is subtracted and the
quantum critical MR scales only with the T -linear component of the resistivity (ρt = αkBT )
in apparent violation of Kohler’s rule. A realistic theory of magnetotransport in quantum
critical metals must simultaneously capture the H-linear MR and the hyperbolic scaling with
temperature dictated by Eq. (3.13). In this text, we describe such a theory and show that
it captures the salient features of experimentally measured MR in BaFe2(As1−xPx)2.

As described above, the linear magnetoresistance phenomenon and scaling form with
temperature proved to be quasi-universal, in the sense that a number of high-temperature
superconductors, unconventional superconductors, and metals near a quantum critical point,
were found to exhibit a linear magnetoresistance at low temperatures. Subsequently, a
number of possible explanations were put forward, ranging from linear magnetortesistance
induced by variations in the carrier density across a sample [189], to more exotic models
based on the Sachdev-Ye-Kitaev Hamiltonian [148]. It is clear, that a mechanism for linear
magnetoresistance in this broad class of materials needs to be readily generalizeable to a
rather broad set of materials with possibly different electronic and magnetic structures and
properties.

3.5 Models of orbital magnetoresistance in the

presence of Fermi surface sinks: applications to

nearly-antiferromagnetic metals

Orbital magnetoresistance theory

In order to understand why linear magnetoresistance may be considered unusual, it is first
important to discuss the origin of magnetoresistance, and general predictions of conventional
models of magnetoresistance.

Consider first a free Fermi gas, or, for the purposes of this demonstration, a metal with
an isotropic Fermi surface and isotropic momentum relaxation rate. One can calculate the
field-dependent conductivity using the force balance equation in the steady-state in analogy
to the Drude formula, but in this case also including the effect of a transverse magnetic field
which generates a Lorentz force [154]. We assume that the scattering rate is isotropic in the
relaxation time approximation.

e (E + 〈p(t)〉 ×B) =
〈p(t)〉
τ

. (3.15)

Note that we could have gotten to the above starting from the Boltzmann equation as well.
If we flow a current in a predefined orientation, and measure the resulting electric field in
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the steady state (say along x), with a magnetic field applied perpendicular to the current
direction (say along z), then we arrive at the following identities:

Ex =
m∗

ne2τ
Jx (3.16)

Ey =
1

ne
BJx (3.17)

Ez = 0 (3.18)

. Using the definition E = ρJ, we arrive at the conclusion that a gas of electrons without any
anisotropy in either the scattering rate or distribution function has zero magnetoresistance.
The resistance ρxx, although perhaps finite depending on the scattering time τ , does not
change with the strength of the applied magnetic field.

Now on the other hand, suppose we had two different types of carriers, say electrons and
holes, as is quite common in semiconductors or multiband metals. Then, we need to add
their conductivities together to determine the total conductivity of the sample.

σ = σelectrons + σholes (3.19)

Assuming that each carrier type has it’s own carrier density, scattering time, and effective
mass (everything isotropic), we can calculate the resistance. For each gas, their resistivity
components are given by the formula calculated above ρxx = m∗

ne2τ
and ρxy = 1

ne
B, summing

their conductivities and inverting yields a finite magnetoresistance, as seen in simulations
shown in Fig. 3.2. The addition of conductivities of carriers that have different mobilities
or carrier densities yields a finite magnetoresistance. This property explains the finite mag-
netoresistance of almost all real metals, which may have scattering rate anisotropies that
could be considered as different carriers with different scattering rates that add in parallel,
or we might have anisotropies in effective mass, or we might have imbalances in the density
of carriers of different species in a metal. All of these can give a finite magnetoresistance,
but there are three important general features to note here. One, the magnetoresistance
seems to always be proportional to B2 at very low fields, regardless of any of the details.
Two, except in very exceptional circumstances like perfect electron-hole carrier balance, the
magnetoresistance saturates at high fields. We note here that some of the giant magnetore-
sistance metals are essentially simple metals with perfect electron-hole balance [180]. Three,
there may be a very narrow range of B-linear magnetoresistance arising from semiclassical
motion of electrons, but it is more accurately described as a crossover regime between B2

behavior at low fields and saturation at high fields.

Shockley tube integrals

The previous discussion was focused on isotropic Fermi surfaces, where the scattering time,
effective mass, or carrier density may vary between different Fermi surfaces. However, how
do we deal with situations in which the Fermi surface itself is anisotropic? The curvature of
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Figure 3.2: Magnetoresistance of two carrier model varying relative mobilities and
densities

the Fermi surface, the effective mass, the local carrier density, and the scattering time can
change as a function of momentum. After all, as we discussed earlier, one of the motivations
for studying magnetotransport in metals was to experimentally determine the shape of the
Fermi surface by measuring magnetoresistance and changing the direction of the magnetic
field with respect to the crystallographic axes and current direction. To this end, the Shockley
tube integral was developed [183].

Within the relaxation time approximation, the formula for magnetoconductivity can
be expressed as a “tube integral”, the form of which was originally derived by Shockley.
When an electric field is applied to the Fermi surface, states parallel to the electric field are
accelerated. The linear-order response of the distribution function is given by

− eV/h̄3∂f

∂ε
E · vd3k =

−eV
h3kBT

f(1− f)E · v d3k

(2π)3
. (3.20)

Application of magnetic field produces flow along the Fermi surface. The current produced
by the electric and magnetic fields can be calculated by integrating the expression above
over angle across the constant energy contour of the Fermi surface in the relaxation time
approximation. Thus the electric field and current are linearly related through an integral
over the Fermi surface. This integration yields the Shockley tube integral formula [115]

σαβ =
e2

4π3h̄2

∫
dkH

mc

ωc

∫ 2π

0

dψ′
∫ ∞

0

vα(ψ′, kH)vβ(ψ′ − ψ, kH)e−ψ/ωcτ(ψ), (3.21)

where α and β are two orthogonal directions in the plane perpendicular to the magnetic
field. Generally, they are chosen to correspond to crystallographic directions or appropriately
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rotated crystallographic directions. kH is the direction of momentum along the magnetic field
vector. mc is the effective mass, and ωc is the cyclotron frequency of a given orbit. v in
all cases is the velocity defined at the Fermi surface. ψ is the azimuthal angle in the plane
perpendicular to the magnetic field vector. This equation essentially represents the solution
of the Boltzmann equation in the presence of magnetic field and under the relaxation time
approximation. Of course, here the scattering time may vary across the Fermi surface, but
critically, the relaxation-time approximation is still used. That is, a scattering event is
assumped to completely randomize the quasiparticle momentum. This need not be the case
when scattering is anisotropic, so one needs to exercise caution in applying this formula
where τ(ψ) is assumed to be a function of azimuthal angle.

Kohler’s rule

One interesting observation that results from the arguments in the previous section is a
simple scaling relation. Under the relaxation time approximation, the Shockley tube integral
tells us that the changes in conductivity in a magnetic field essentially only depend on
the quantity ωcτ . So for example, if we were to take a piece of metal and measure the
magnetoresistance ∆ρ(B)/ρ(0), which is defined to appropriately normalize out physical
constants which affect the zero field resistivity, and then take another same piece of metal
with slightly more disorder, the difference in magnetoresistance beteween the two could
essentially be captured by taking into account the changes in scattering rate induced by the
disorder. Essentially, when ∆ρ(B)/ρ(0) is plotted against B/ρ(0) (an experimental proxy
for ωcτ), then the magnetoresistance curves of a metal with the same intrinsic properties
but varying levels of disorder scattering will collapse onto one plot. This relation is known
as Kohler’s rule [191].

Strictly speaking, the intention of Kohler’s rule is the above experiment, where one takes
the same piece of metal and varies the disorder level in the metal. Often in the literature,
Kohler’s scaling attempts are made as a function of temperature (where it is assumed that
temperature changes the scattering rate in a similar way to increasing the disorder level).
There is no reason to assume that varying the temperature is equivalent to varying the
disorder level from the point of view of quasiparticle scattering, as increasing the temperature
could increase the scattering rate more on certain points on the Fermi surface than others.
One can tell from the Shockley tube integral that if the angle-dependence of τ(ψ) changed,
certainly this factor could not be normalized out into the simple Kohler’s scaling relation.
Thus, as described earlier, Kohler’s rule only applies to situations where the scattering rate
overall increases or decreases, but not to situations where the pattern of scattering anisotropy
changes, or to cases where the relaxation-time approximation is invalid. While not rigorously
true, the opposite is also often true — if a material’s magnetoresistance obeys Kohler’s rule
when the scattering rate is isotropically varied, then we can be pretty confident that the
magnetoresistance has an orbital origin within the relaxation time approximation, and its
properties can very likely be described accurately by the Shockley tube integral.
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Model of turning points in antiferromagnetic BaFe2(As1−xPx)2

Fermi surface in the antiferromagnetic state

With respect to the previous chapter, it is clear that a full understanding of electron trans-
port, and particularly magnetotransport, requires knowledge of the Fermi surface structure.
The Fermi surface of the non-magnetic phase of BaFe2(As1−xPx)2 has been well character-
ized in the literature. It is composed of quasi-cylindrical electron and hole Fermi surfaces,
as depicted schematically in Fig. 3.3A [200, 182, 54, 52, 222, 151, 55]. In the AFM or-
dered phase (for phosphorous content x < 0.31), the Fermi surface reconstructs due to the
interaction between the electrons or holes and spin-density wave fluctuations. One way to
visualize this is to imagine that the electron and hole Fermi surfaces are displaced by the
antiferromagnetic ordering vector, and due to the spin-density wave interaction, a gap opens
at points on the points of overlap between the electron and hole Fermi surfaces. Following
this logic, a simplified cartoon of the AFM reconstructed Fermi surface is shown in Fig. 3.3B.
In fact, while the real Fermi surface of BaFe2(As1−xPx)2 in its AFM phase is somewhat more
complicated than depicted in the cartoon in Fig. 3.3B due to the presence of multiple elec-
tron and hole pockets, the cartoon captures many of the salient features of the calculated
and observed Fermi surface in AFM BaFe2(As1−xPx)2 [101, 139]. In particular, note that
the reconstructed Fermi surface is composed of banana-shaped pockets, with regions of large
Fermi surface curvature at the corners. This feature, which is also seen in calculations and
experimental measurements of the Fermi surface, and will prove to be extremely meaningful
with regards to the magnetotransport response of the material.

Finally, it is important to comment on the presence of the orthorhombic structural dis-
tortion which occurs at nearly the same temperature as the AFM transition in
BaFe2(As1−xPx)2 [224, 94, 62]. Such a distortion should in principle reduce the symmetry
of the material from 4-fold to 2-fold with a commensurate reduction in the symmetry of
the Fermi surface. In bulk samples, however, the presence of twin domains will restore an
average 4-fold symmetry to the sample [199, 217, 150]. In any case, many of the following
arguments would apply to the properties of a single twin domain of AFM Ba-122 as well,
which has a set of two (rather than 4) banana-shaped pockets in its Fermi surface [217, 150].

Shockley tube integral around the Fermi surface of AFM BaFe2(As1−xPx)2

The models for orbital magnetoresistance in the presence of anisotropic quasiparticle spectra,
particularly in the iron-pnictide metals, were developed in Refs. [105, 106]. See also Ref. [123]
for more details about this section. As discussed in the previous section, sharp ‘turning
points’ in the Fermi surface, as seen in the banana-shaped pockets of the AFM state of Ba-
122, can induce a linear-in-field magnetoresistance response. As a quasiparticle undergoes
orbital motion in a magnetic field, the Fermi velocity is rapidly reversed at these turning
points [105]. This mechanism produces an H2 variation of the MR at low fields, which crosses
over to linear variation at higher fields as the number of quasiparticles pushed through the
turning point by the Lorentz force linearly increases with field [105, 154]. Note that this
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Figure 3.3: Cartoon Fermi surface of Ba-122 through a characteristic kz cut (A)
in the non-magnetic state. It is composed of two hole-like cylinders at the zone center,
and two electron-like ones at the corner. (B) In the AFM SDW state, the Brillouin zone is
folded perpendicular to the AFM ordering vector qSDW , resulting in a nesting of the electron
and hole cylinders. A gap opens due to the SDW interaction between the two, leading to
banana-shaped pockets at the zone center, which can be electron- or hole- like (or have both)
depending on the strength of the AFM interaction. In this example, it is shown what the
electron-like reconstructed Fermi surfaces look like.
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contribution coexists with the conventional MR of the rest of the Fermi surface, which is
expected to be much smaller than the turning-point MR because of the relatively much lower
Fermi surface curvature on the regions away from the turning-points.

This model was developed in Ref. [105]. The result is calculated within the relaxation
time approximation for the Boltzmann equation. The calculation of the magnetoconductivity
is carried out in the Shockley ‘tube integral’ representation. The α, β component (α, β = x
or y) of the conductivity tensor is given by

σαβ =
2e2

h̄2

∑
bands

dpz
(2π)3

Sαβ(pz), (3.22)

where Sαβ is a contribution from a single representative pz slice of the Fermi surface, and

Sαβ =
c

h̄eH

∫
dp

v
vβ

∫
p

dp′

v′
v′αexp

(
−
∫ p′′

p′

dp′′

v′′
c

eHτ

)
. (3.23)

Here, v and p are Fermi velocities and momenta integrated along the Fermi surface, and τ
is the scattering time. In general, τ may have a dependence on p, and in this case strictly
speaking the relaxation time approximation and the Shockley tube integral Eq. 3.23 are both
invalid — the full Boltzmann equation should be used. Nevertheless, some useful insights can
be gained from the relaxation time model in the low temperature limit where the scattering
time τ is isotropic. In particular, one important point that we are trying to get across is that
resistivity can be H-linear as a result of only the shape of the Fermi surface, and need not
arise from an anomalous scattering rate or other anomalous dynamical properties. Although,
as we will see in the next section, an H-linear resistivity can also arise from an anomalously
anisotropic scattering rate in the context of the full Boltzmann calculation.

Eq. 3.22 implies that a single slice in pz is representative of the conductivity of the whole
Fermi surface. This assumption would be exactly correct if the Fermi surfaces of
BaFe2(As1−xPx)2 were perfectly two-dimensional cylinders extending along the z-direction
of the Brillouin zone. The real calculated Fermi surfaces of AFM Ba-122 have significant dis-
persion and warping along the kz direction, but at least for our purposes the two-dimensional
approximation is useful for capturing qualitative features in the experimental magnetoresis-
tance data.

The resulting reduced conductivity is given by the following formula

Sxx(H)− Sxx(0) = −8 (vh,x − ve,x)2 τtp∆tp

h̄vhve sin θtp

B(h), (3.24)

where ∆tp is the size of the AFM gap, τtp is the quasiparticle scattering time in the vicinity
of the turning point, and

Htp =
2c∆tp

eτtpvhve sin θtp

(3.25)
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is the field scale. vh and ve are the Fermi velocities at the nesting points, and θtp is the
angle between them (nesting angle). B(h) is a dimensionless function of the reduced field
parameter, h = H/Htp, given by

B(h) =−
∞∫

0

dx

∞∫
0

dy exp(−y)×

 x2 − h2y2/4√
(x+ h

2
y)2 +1

√
(x− h

2
y)2 +1)

− x2

x2+1

 . (3.26)

with asymptotics B(h) ' 3π
16
h2 for h� 1 and ' h− π

2
for h� 1. This function is plotted in

Fig. 3.4. It can be well approximated by a hyperbola function (B(h) ≈
√

1 + h2 − 1). Eqs.
3.22, 3.24, and 3.26 determine the behavior of the magnetoconductivity, σxx(H)− σxx(0).

We consider the magnetoresistivity now. In the regime of small magnetoconductivity
|σxx(H) − σxx(0)|, σxy(H) � σxx(0), the magnetoresistivity is given by ρxx(H) − ρxx(0) ≈
−[σxx(H) − σxx(0)]/ [σxx(0)]2 − [σxy(H)]2 / [σxx(0)]3. Due to the large Fermi surface cur-
vature, the turning-point term exceeds both conventional diagonal and Hall contributions.
Combining Eqs. 3.22 and 3.24 for σxx(H)−σxx(0) and using the multiple-band Drude formula
σxx(0) = e2τ(nh/mh + ne/me), we obtain

ρxx(H)− ρxx(0) ≈ rtpB (H/Htp) . (3.27)

with the coefficients
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4

Figure 3.4: Scaling magnetoresistance function (B(h)) from turning-point model.
The blue line is the dimensionless function B(h) from the turning-point model. The or-
ange line is a hyperbola, which provides a good approximation of the exact mathematical
expression.

Htp =
2c∆tp

eτtp(vhvesinθtp)
, (3.28)
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(in CGS units), and

rtp ≈
4 (vh,x − ve,x)2 τtp∆tp

π2e2h̄2τ 2
coldsvhve sin θtp

(
nh

mh
+ ne

me

)2 . (3.29)

∆tp is the size of the AFM gap and τtp and τcold are the quasiparticle scattering rates in
the vicinity of the turning point and in the background, me,h are effective masses, which
are approximately the same for the hole and electron bands [200, 182, 54, 52, 222], ne,h are
the band carrier densities, and s is the c-axis lattice parameter. τtp need not be equal to
τcold because the scattering rate can be anisotropic due to scattering on AFM fluctuations.
vh,e are the Fermi velocity on the hole and electron band, and θtp is the nesting angle. The
dimensionless function B(h) computed in Ref. [105] has asymptotics B(h) ' (3π/16)h2 for
h� 1 and B(h) ' h for h� 1 This function is plotted in Fig. 3.4. Note that this contribution
to the MR coexists with the conventional contribution from the rest of the Fermi surface, but
is enhanced approximately by a factor of εf/∆tp due to the large curvature at the turning
points [105].

Model of hot spots in nearly-antiferromagnetic BaFe2(As1−xPx)2

Here we discuss the possibility that orbital motion is interrupted, not by some sort of feature
in the Fermi surface as in the previous case, but by an anomaly in the momentum-dependent
scattering rate. In the phase diagram of P-substituted Ba-122, when the AFM phase is sup-
pressed to zero temperature by P-substitution (as is the case for x = 0.31
BaFe2(As1−xPx)2) [79, 124, 181], quantum critical spin fluctuations produce strong quasi-
particle scattering, and the turning points evolve into ‘hot spots’ [106, 162]. The concept of
hot spots was first introduced in the physics of cuprate high-temperature superconductors,
and found to capture a number of their properties [75, 195].

In this regime of Ba-122, quasiparticles experience scattering induced by incipient spin
fluctuations at points where the electron and hole Fermi surfaces are nested by the anti-
ferromagnetic ordering vector. In this scenario the quasiparticle scattering rate is, by the
very nature of its localization to specific k-points, highly anisotropic. As discussed in the
previous sections of this chapter, such an anisotropic scattering rate warrants consideration
of the full Boltzmann equation without recourse to the relaxation time approximation.

In principle one should solve this equation numerically using finite element methods.
However, useful insights can be gained by using an analytical solution with some approxi-
mations described in detail in Ref. [106]. First, it is assumed that the scattering rate due
to the hot spot follows a Lorentzian lineshape as a function of momentum along the Fermi
surface

1

τhs
s (ps)

≈ γhs
h̄|vhs

s |ws/π
p2
s + w2

s

, (3.30)

where s is the band index, and γhs and ws are the strength and width of the hot spot
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respectively, determined via microscopic spin susceptibility parameters

γhs =
3πg2γ(kBT )2

32h̄3|vs||vs̄|
√
ηt(ηsηs̄ − η2

ss̄)αx
, ws = h̄

√
αx
η̃s
. (3.31)

Here, g is a coupling constant between the conduction electrons and spin fluctuations. α,
η, and γ are parameters of the spin susceptibility defined in the following way assuming
Gaussian spin fluctuations:

χj(q, ω) =
1

−iγω + αj + ηiq2
i

(3.32)

ηt =
∑
i

ηin
2
t,i, ηs =

∑
i

ηin
2
s,i, and ηss̄ =

∑
i

ηins,ins̄,i (3.33)

η̃s ≡
ηsηs̄ − η2

ss̄

ηs̄
(3.34)

The η parameters depend on the local orientation of the hot line. Here, nt is the unit vector
along the hot line and ns are the unit vectors along the electron and hole Fermi surfaces
satisfying the conditions

∑
i ηint,ins,i = 0, which replace the orthogonality conditions in

the isotropic case. For the simplest choice, the hot line is oriented along the z-axis with
no in-plane anisotropy, and ηx = ηy. Then, ηt = ηz, ηs = ηs̄ = ηx. ηss̄ = ηxcosαeh, and
η̃s = ηxsin

2αeh, where αeh is the angle between the electron and hole Fermi surfaces at the
hot spot.

The calculation of conductivity at zero magnetic field yields the following results. The
total conductivity is a sum of conductivity from the hot spot and the background conduc-
tivity:

Sxx = S(0)
xx + Shs

xx. (3.35)

These are given by

S(0)
xx =

∑
s

∫
v2
s,ατs

dps
h̄|vs|

, (3.36)

and

Shs
xx = −γhs

(vhs
2,ατ2 − vhs

1,ατ1)2

1/r1 + 1/r2

, (3.37)

where

rs =
1

γhs

∫
dps/h̄|vs|
τs + τhs

s (ps)
≈

√
32h̄3αx|vs||vs̄|

√
ηtηs̄

3g2γ(kBT )2|vhs
s |τs

. (3.38)

s = 1 or 2 are labels of the nested electron and hole Fermi surfaces, and τs is the background
scattering time, for example due to scattering from impurities, on each Fermi surface sheet.
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The calculation of the conductivity in magnetic field yields the following results. We first
introduce the reduced field scale

Hhs,s =
h̄c

|e|
γhsrs =

c

|e|
π
√

3γgkBT

h̄
√

32|vs||vs̄||vhs
s τsη̃s

√
ηtηs̄

. (3.39)

Note the explicit dependence on temperature, T , and background scattering time, τs. Then
the magnetoconductivity from the hot spot is given by

Shs
xx(H)− Sxx(0) ≈ −γhs(v

hs
1,ατ1 − vhs

2,ατ2)r1r2

×
vhs

1,ατ1(1 + G2)G1 − vhs
2,ατ2(1 + G1)G2

r1(1 + G1) + r2(1 + G2)
,

(3.40)

G(h) ≈ 1

π

∫ ∞
0

dx exp(−x)G

(
πhx

4

)
− 1 (3.41)

G(a) = 4
√

1 + a2E

(
a2

1 + a2

)
− 2√

1 + a2
K

(
a2

1 + a2

)
, (3.42)

where E and K are complete elliptic integrals of the second and first kind respectively.
Gs = G(H/Hhs,s). The dimensionless function G(h) follows an approximately hyperbolic
dependence on h (Fig. 3.5). We plot G(h) in Fig. 3.5, and show the good approximation
provided by the hyperbola

√
1 + h2 − 1. This justifies the approximation used in the main

text that G(h) ∼
√

1 + h2 − 1.
We assume that the electron and hole bands have comparable parameters. w1 ≈ w2,

and |vhs
1 |τ1 ≈ |vhs

2 |τ2. In this case, we can drop band indices in Hhs,s and rs and arrive at a
simplified formula for the magnetoconductivity from the hot spot

δShs
xx(H) ≈ −γhsr

2
(vhs

1,ατ1 − vhs
2,ατ2)2G(H/Hhs). (3.43)

Assuming that the hot-spot contribution dominates the magnetoresistanceand τ1 ≈ τ2, we
evaluate

ρxx(H)− ρxx(H = 0) ≈ rhs G(H/Hhs) (3.44)

with the coefficient

rhs ≈
γhsr

(
vhs

1,x−vhs
2,x

)2

4π2h̄e2s (nh/mh+ne/me)
2

=
Hhs

(
vhs

1,x−vhs
2,x

)2

4π2h̄2s|e|c (nh/mh+ne/me)
2 . (3.45)

Plugging in the explicit temperature dependences, Hhs is proportional to temperature, with
constants of proportionality determined by the spin susceptibility parameters, and the back-
ground scattering rate, τcold,

Hhs ∝ T/
√
τcold. (3.46)
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Figure 3.5: Scaling magnetoresistance function (G(h)) from the hot spot model.
The blue line is the dimensionless function G(h) from the hot spot model (see text). The
orange line is a hyperbola, which provides a good approximation of the exact mathematical
expression.

In a magnetic field, the effect of hot spots on orbital magnetoresistance is similar to that
of the turning points [106, 165]

ρhs(H)− ρ(0) = rhsG (H/Hhs) . (3.47)

The parameters in the hot-spot model, rhs and Hhs, are determined by critical spin fluc-
tuations rather than an AFM gap. Both these parameters scale in the same way with
temperature and background scattering time

Hhs = ΓH
T
√
τcold

, rhs = Γr
T
√
τcold

. (3.48)

The coefficients ΓH and Γr depend on the spin-susceptibility and electronic-band parameters.
G(h) is a dimensionless function with a slightly different exact form compared to the turning-
point model in Eq. 3.27, but qualitatively similar behavior (Fig. 3.6). Note that, unlike in
the turning-point model, the characteristic field scale Hhs is determined by the strength
of scattering at the hot spot and its region of influence as compared to the background
scattering rate, τcold. Thus, changes to this rate are expected to affect the characteristic field
scale in the critical regime.

Finally, the scaling form of both the turning-point MR [Eq. 3.50] and the hot spot MR
[Eq. 3.47] can be well-approximated by a hyperbola (Fig. 3.6)

B(h),G(h) ≈
√

1 + h2 − 1 (3.49)
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Figure 3.6: Hot-spot and turning-point magnetoresistance scaling functions and
comparison with hyperbola The MR (∆ρ = ρ(H)− ρ(H = 0)) in both the turning-point
and hot-spot models is controlled by two parameters (rtp,hs and Htp,hs; tp and hs indicate
turning-point and hot-spot respectively). The MR from the hot-spots or turning-points fol-
lows scaling functions (black lines) with exact expressions given in the previous sections. Note
that both functions are well-approximated by a hyperbola ∆ρ/rtp,hs =

√
1 + (H/Htp,hs)− 1

(red line), a phenomenological model which has been previous used to analyze the magne-
toresistance of several nearly-antiferromagnetic compounds.

This will prove useful when exploring the data in the context of hyperoblic MR scaling
and its relation to these models.
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3.6 Experimental magnetoresistance of

BaFe2(As1−xPx)2 with applied theoretical model

“With four parameters I can fit an elephant, and with five I can make him wiggle his trunk!”
— Enrico Fermi

Parent compound BaFe2As2

The parent compound BaFe2As2 is nonsuperconducting and has an antiferromagnetic tran-
sition at TN ≈ 135K [166]. Its fermiology is well established [200, 54, 52, 151], and previous
measurements have reported H-linear MR in this compound [84]. Here, we explore the MR
of an as-grown single crystal in the context of the turning-point model to show that the
model reproduces the experimentally observed MR.

Figure 3.7: Transport in BaFe2As2 and magnetoresistance model based on turning
points (a) Isothermal magnetoresistance at various temperatures. Black lines are fits to the
turning-point model given by Eq. 3.27. (b) Model parameters extracted from the fits; error
bars are smaller than the data points. The grey lines show that both parameters vary with
T 3 with a finite offset. The red line shows that the zero-field resistivity similarly varies
approximately with T 3, suggesting that the MR parameters vary with the scattering rate.

Fig. 3.7 shows the temperature-dependent MR of BaFe2As2. The MR is clearly H-linear
at high fields, consistent with previous observations [84]. We see that the data are well-
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Figure 3.8: Kohler’s rule in BaFe2As2 Relative magnetoresistance versus reduced field
for different temperatures. The inset shows the temperature dependence of the relative MR
at a reduced field of µ0H/ρ(0) = 0.03T/µΩ cm.

fitted by the turning-point model given by Eq. 3.27. The two parameters, rtp and Htp,
saturate at low temperature and grow with increasing temperature, mimicking the behavior
of the resistivity at zero-field. This suggests that the changes to the MR coefficients rtp
and Htp reflect the temperature-induced enhancement of the scattering rate as suggested by
Eq. 3.28 and Eq. 3.29. At low temperature, both MR parameters saturate, suggesting a
single dominant scattering rate which is independent of temperature, likely due to disorder.
Indeed, in Fig. 3.8, we observe that the MR amplitude saturates below 10K. The failure of
Kohler’s rule as temperature increases can be attributed to temperature-induced anisotropic
scattering due to spin-waves [205] in combination with a potentially temperature-dependent
AFM gap.

The dominant role of isotropic disorder scattering at low temperature allows us to evaluate
the plausibility of the model parameters. Using the known values of carrier density and
effective mass (ne = 1.17×1020cm−3, nh = 1.23×1020cm−3, and m ≈ 2me for both electrons
and holes) [200], the Drude estimate of the residual scattering time is τ = τcold = τtp =
3 × 10−13s (ρ0 ≈ 100µΩcm). The previously quoted values of Fermi velocity vary between
0.5× 107cm/s− 2.5× 107cm/s [52, 6, 151]. With the Drude scattering time above, Eq. 3.28
gives an AFM gap of ∆ ≈ 1 meV using the low-temperature Htp ≈ 0.2T and a Fermi
velocity of vF ≈ 2× 107cm/s [6]. This is considerably lower than the AFM gap ∆ ≈ 10meV
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expected for the transition temperature of 135K, but at least consistent within an order of
magnitude. Better agreement is found if the relevant scattering time is in fact lower than the
Drude estimate (∼ 10−12s), which is a possibility considering that the Drude estimate may
be inaccurate for this multiband system. Alternatively, there may be a deeper reason for the
relatively small effective gap at the turning point. Parity constraints cause the hybridization
between hole and electron bands to vanish at kx = 0 [55]; because the turning points are
close to this axis, this could result in a suppression of the effective AFM gap near the turning
point.

On a final note, while approximately H-linear MR can exist over a narrow range of field
in compensated metals such as BaFe2As2 [154], this effect is only expected to occur close to
the high-field limit when ωcτ = eHτ/mc ≈ 1. From the above considerations, we estimate
that ωcτ = 1 at 40T in this sample. The experimental MR therefore becomes H-linear well
below the conventional high-field limit.

Underdoped BaFe2(As1−xPx)2 with x = 0.19

Here, we examine a single crystal of BaFe2(As1−xPx)2 with x = 0.19, where the antiferro-
magnetic Néel transition temperature is TN ≈ 95K. In Fig. 3.9, transport data are shown
for this crystal. Fig. 3.9a shows that the resistivity at zero applied field varies with T 2 over
a broad range of temperature inside the AFM ordered state with a finite intercept at T = 0.
At this composition, the resistivity is likely influenced by anisotropic quasiparticle scattering
from diffuse spin fluctuations [213, 205].

Fig. 3.9b shows the MR inside the AFM state which displays H-linear behavior at high
fields. Note that the measured relative MR just below TN is a factor of 12 larger than the
MR just above TN , suggesting that the turning points again provide a dominant contribution
to the measured MR. We therefore neglect the conventional MR contribution when modeling
the data. The data are well fitted by the turning-point model given by Eq. 3.27 with the
temperature-dependent parameters shown in Fig. 3.9c. Again, the MR parameters follow
a similar temperature dependence to that of the zero-field resistivity, suggesting the MR
parameters vary with the scattering time. The amplitude of the MR and characteristic field
are slightly different in this composition than in BaFe2As2. This can likely be attributed to
changes in the AFM gap or scattering time induced by P-substitution. Unfortunately, the
fermiology is not well established at this composition, but assuming comparable parameters
to the parent compound, these measurements are in the low-field limit of orbital MR (i.e.
ωcτ � 1).

We find that a hyperbolic MR scaling can be derived from our model at this composition.
From Fig. 3.9c, we observe that the offsets of Htp = γT 2 + γ0 and rtp = βT 2 + β0 are
relatively small compared to the temperature dependence over the measured range, and can
be neglected (at the lowest measured temperature 20K, β0/βT

2 ≈ 0.3, and γ0/γT
2 ≈ 0.1).

Plugging in ρ(0) = ρ0 +α′T 2, Htp ≈ γT 2, and rtp ≈ βT 2 into a hyperbolic approximation of
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Figure 3.9: Transport in BaFe2(As0.81P0.19)2 and magnetoresistance model based on
turning points (a) Resistivity shows a transition to an AFM ordered state (TN ≈ 95K), and
superconducting state beginning at Tc = 22K with zero resistance at 15K. Inside the AFM
state, the resistivity varies with T 2, with a finite T = 0 intercept. The data are fitted well
by ρ(H = 0) = 122.8[µΩcm] + 0.0085[µΩcm/K2] × T 2 (black line). (b) Magnetoresistance
for different temperatures with fits to the turning-point MR model [Eq. 3.27] indicated by
black lines. (c) The fit parameters of the model are plotted as a function of temperature,
with a best fit line to the data below 70 K. Htp = 0.098[T ] + 0.0015[T/K2] × T 2, and
rtp = 0.69[µΩcm] + 0.0023[µΩcm/K2]× T 2.

the turning-point MR [Eq. 3.49], we obtain

ρ(H)− ρ0

T 2
≈ β

√
1 +

(
µ0H

γT 2

)2

+ α′ − β. (3.50)

The applicability of this hyperbolic scaling relation to the MR of the x = 0.19 sample is
shown in Fig. 3.10a. This is in contrast to the failure of conventional Kohler scaling shown
in Fig. 3.10b. The MR scales only with the temperature-dependent scattering rate despite the
rather large residual resistivity. The scaling shown in Fig. 3.10a is similar to the established
phenomenology [Eq. 3.13] for the MR of quantum critical metals in the literature — the
difference is that this is realised in the AFM ordered state rather than the quantum critical
regime, and the temperature-dependent resistivity varies with T 2 rather than with T . This is
reflected in the different temperature-dependence of the denominator in Eq. 3.50 compared
to Eq. 3.13.
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Figure 3.10: Comparison of hyperbolic magnetoresistance scaling and Kohler’s
rule inside the AFM ordered state of BaFe2(As0.81P0.19)2 (a) A simple hyperbolic
scaling relation holds, where the residual resistivity ρ0 = 122µΩcm is first subtracted. The
dashed black line is the expression given by Eq. 3.50 with β = 0.0039[µΩcm/K2], α′ =
0.0085[µΩcm/K2], and γ = 0.0015[T/K2]. (b) Kohler’s rule is violated as a function of
temperature.
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The validity of hyperbolic scaling described by Eq. 3.50, and the failure of Kohler’s rule,
are rooted in the apparent anisotropy of the scattering rate. In particular, the MR parameters
are controlled by the scattering rate at the turning points, and the small offsets of rtp(T )
and Htp(T ) indicate that the temperature-dependent scattering rate at the turning point
is much larger than the temperature-independent residual contribution over the measured
range. Thus, the MR is primarily controlled by the temperature dependence independently
of the residual resistivity. Quantitatively, we estimate that the inelastic T 2 scattering near
the turning point is enhanced by a factor of [βT 2/β0]/[α′T 2/ρ0] ≈ 100 over the background
scattering rate; this is in contrast to the relatively small changes in the overall resistivity
ρ(20K)/ρ0 ≈ 1.03, which is sensitive to scattering on the whole Fermi surface. The presence
of multiple scattering times, one of which is anisotropic, explains the violation of Kohler’s rule
observed in Fig. 3.10b [191]. It is not surprising that the scattering rate at the turning point
is much higher than the background given the presence of diffuse spin fluctuations centered
at turning points in underdoped BaFe2As2 [205]. This implies that the turning point is
simultaneously a hot spot, where the turning point MR dominates as long as the region
of hot spot scattering is much larger than the width of the turning point. At sufficiently
low temperature, spin fluctuations should be damped and the isotropic disorder scattering
contribution becomes dominant. We expect the hyperbolic scaling shown in Fig. 3.10 to fail
and for Kohler’s rule to be restored when β0/βT

2 < 1 (i.e. at T < 10 K). Unfortunately, the
superconducting critical field at this composition makes this temperature regime inaccessible
in our measurement apparatus.

Quantum critical BaFe2(As1−xPx)2 with x = 0.31

In this sample, the AFM phase is suppressed to zero temperature, and the turning points
evolve into hot spots characterized by scattering from critical spin fluctuations [79, 124, 181,
106]. The phenomenological H/T scaling given by Eq. 3.13 is known to describe the MR
of this composition [71]. Here, we show that this behavior can be captured by the hot-
spot MR model given by Eq. 3.47, as the characteristic parameters are predicted to have a
linear variation with temperature. Moreover, as discussed in the theory section, an effective
experimental method to test this model in the quantum critical regime is by varying the
background scattering rate (τcold), for example by varying the concentration of defects in the
underlying crystal lattice. This is expected to alter the characteristic field scale determining
the crossover between H2 to H-linear MR [Eq. 3.48]. We accomplish this experimentally with
3 MeV alpha particle irradiation of samples with x = 0.31 phosphorous substitution. This
irradiation method produces isotropic defects with a distribution of radii (from pointlike to
nm in radius) [48], which increase the residual resistivity at zero field and temperature. The
temperature-dependent resistivity follows a T -linear dependence which is not significantly
affected by irradiation (Fig. 3.17).

Fig. 3.11a shows the magnetoresistance for samples in the quantum critical regime with
varying concentration of defects. The MR data for each sample across a range of tempera-
tures can be well fitted by Eq. 3.47 and Eq. 3.48. Fig. 3.11b shows that each sample obeys
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the hyperbolic H/T scaling form described in the introduction; this scaling is not qualita-
tively affected by a factor of three increase in the residual resistivity, but there is a notable
change in the coefficients of the scaling function.

We show here that H/T MR scaling, and the disorder-dependence of the coefficients,
are captured by our hot-spot MR model. As shown in Fig. 3.12, the hot-spot parameters
extracted from the fits have the following temperature dependences: Hhs ≈ γT , and rhs ≈
βT , consistent with the theory predictions [Eq. 3.48]. We note that the offsets of rhs and
Hhs are essentially zero within the error bars, and can be neglected. Using the hyperbolic
approximation of the hot-spot MR scaling function, Eq. 3.49, along with Hhs = γT , rhs = βT ,
and ρ = ρ0 + αT , we arrive at the hyperbolic H/T scaling relation

ρ(H)− ρ0

T
≈ β

√
1 +

(
µ0H

γT

)2

− β + α. (3.51)

Fig. 3.11b shows the validity of this hyperbolic scaling relation. Note that Eq. 3.51 has a
similar form to the phenomenological scaling established by Eq. 3.13. We emphasize that
this scaling results from the T -linear dependence of hot-spot parameters, which is a direct
prediction of our MR model [Eq. 3.48]. In addition, the small offset of rhs manifests the
dominant role of inelastic scattering over background disorder scattering at the hot spot
over the measured range; this is similar to the situation at x = 0.19, and is an essential
property for realizing the hyperbolic MR scaling.

Fig. 3.12 shows the T -linear dependence of the hot-spot parameters extracted from the
experimental data in agreement with Eq. 3.48 of the theory. Notably, Fig. 3.12a shows
that the characteristic field scale Hhs increases as the background scattering rate increases.
The square root dependence of this field scale on the disorder scattering rate is consistent
with the expectation of the hot-spot model (Eq. 3.48 where ρ0 ∼ τ−1

cold). This dependence
is reflected in the broadening of the hyperbolic MR as the disorder level increases as shown
in Fig. 3.11b. We also observe that the gradient of rhs(T ) increases as the disorder level
increases in agreement with Eq. 3.48, though the error bars from the fits are comparably
larger for this parameter.

We also perform tests of Kohler’s rule at fixed temperature where the scattering rate
is varied by disorder to further verify the hot-spot model. In Fig. 3.13, we show that at a
fixed temperature in BaFe2(As1−xPx)2 (x = 0.31), Kohler’s rule is violated in the high-field
linear magnetoresistance regime, but satisfied in the low-field quadratic regime. The failure
of Kohler’s rule in the linear magnetoresistance regime at a fixed temperature reflects the
fact that the background disorder scattering alters the pattern of scattering anisotropy as
predicted by our hot-spot model in Eq. 3.48 and the text surrounding it. This is also consis-
tent with the nontrivial dependence of the characteristic field Hhs on disorder (Fig. 3.12a).
The validity of Kohler’s rule in the low-field quadratic regime confirms the orbital origin
of the MR in the quantum critical composition of BaFe2(As1−xPx)2. In the low-field limit,
the majority of quasiparticles have not yet been pushed into the hot spot (a conservative
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Figure 3.11: Magnetoresistance, hot spot model, and hyperbolic scaling in
BaFe2(As0.81P0.31)2 with varying levels of disorder (a) The samples show clear H-linear
dependence at high fields. Black lines are fits to the hot spot MR model given by Eq. 3.47.
Each panel is labeled by the extrapolated zero-temperature resistivity, which quantifies the
level of disorder. (b) Hyperbolic scaling of MR for each respective sample. Dashed lines are
hyperbolic functions with the parameters shown in each figure.
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Figure 3.12: Hot spot parameters in BaFe2(As1−xPx)2 with x=0.31 (a) Characteristic
field Hhs as a function of temperature with a linear fit for each sample. Inset shows the slope
of Hhs(T ) versus the residual resistivity. The dotted line shows the expected ρ

1/2
0 dependence

according to Eq. 3.48 of the hot-spot model. (b) Hot-spot MR amplitude. The inset shows

the slope of rhs(T ) versus the residual resistivity with a fit to the expected ρ
1/2
0 dependence.

Error bars are derived from the confidence intervals of the hot-spot fits and the linear fits in
the present
figure.
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Figure 3.13: Isothermal Kohler’s rule in quantum critical BaFe2(As1−xPx)2 x=0.31
A comparison of the isothermal magnetoresistance of separate samples with varying doses of
alpha particle irradiation. The violation of Kohler’s rule in the linear MR regime suggests
that disorder scattering alters the degree of scattering anisotropy in agreement with the hot-
spot model. Solid lines are fits to Eq. 3.47, for which the zero-field resistivity is extracted
from each trace. The curves are labeled by the resistivity of the sample at zero field at the
given temperature. µ0H/ρ(0) is in units of Tesla/µΩcm.

estimate of ωcτ = 1 is 100 Tesla), so only a small fraction of a cyclotron orbit has been
completed.

The H-linear MR of BaFe2(As1−xPx)2 can be understood as a result of orbital motion
which is impeded at particular points on the Fermi surface — either due to the presence of
a gap (sharp cusp in the Fermi surface) or a hot spot (region of anomalously high scattering
rate). In BaFe2(As1−xPx)2, both of the aforementioned phenomena are generally understood
to arise as a result of the antiferromagnetic coupling between the hole- and electron-like
bands, which in the AFM ordered state induce a gap in the single-particle spectrum, and in
the paramagnetic state near antiferromagnetism induce quasiparticle scattering.

We have demonstrated this as a viable model of the MR in this material over a wide range
of the phase diagram. In the critical regime, spin fluctuations result in a linear increase of
the hot-spot scattering with temperature, which underlies the hyperbolic H/T scaling of MR
at x = 0.31 [71]. Another important ingredient for realizing hyperoblic MR scaling is that
the disorder scattering rate at the hot spot is comparably smaller than the inelastic spin-
fluctuation scattering rate, and therefore the MR is primarily controlled by the temperature-
dependent resistivity. This interpretation is confirmed by our observation of hyperbolic H/T 2

scaling in BaFe2(As1−xPx)2 with x = 0.19 in the AFM regime. Note that this does not imply
that ρ0 is small compared to ρt, only that the effect of disorder on the hot-spot scattering
rate is small compared to its temperature dependence. Consequently, hyperbolic scaling is
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expected to break down and give way to Kohler scaling at the lowest temperature where
disorder scattering becomes dominant. We indeed observe a weak deviation from hyperbolic
scaling in the most disordered x = 0.31 sample at 1.5 K (Fig. 3.14). Experiments at lower
temperatures and sufficiently high magnetic fields to destroy superconductivity are necessary
to explore the potential restoration of Kohler scaling in the low-temperature limit.

Figure 3.14: H-T scaling plots from the two most heavily disordered samples of
x = 0.31 BaFe2(As1−xPx)2 The curves labeled 1.5 K are from magentoresistance traces
at the lowest temperature measured. A weak deviation from the H-T scaling function is
observed at 1.5 K in the sample with a residual resistivity of 72 µΩcm.

Our study shows that the temperature dependence of the hot-spot or turning-point pa-
rameters is strongly influenced by the P-substitution level (Figs. 3.7b, 3.9c, and 3.12). For
example, the temperature scaling of the characteristic field goes from T 3 to T 2 to T -linear,
following a similar trend as the zero-field resistivity, as the P concentration tunes the system
towards the critical point at x = 0.31. This may reflect the character of spin excitation
scattering and AFM gap as a function of P-substitution. In particular, neutron scattering
experiments show that the well-defined spin waves of BaFe2As2 become increasingly diffusive
spin fluctuations as the material is doped [205]. It is likely that diffusive spin fluctuations
result in a relatively high scattering rate at the hot-spots/turning-points at x = 0.19 and x
= 0.31, which contributes to the onset of hyperbolic scaling at those composition. This is in
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contrast to the parent compound BaFe2As2 where the spin waves are sharply-defined [205],
and the hyperbolic scaling fails (see Fig. 3.15. Notably, it is thought that the diffusive spin
fluctuations at moderate doping levels also provide a pairing mechanism for superconduc-
tivity [205, 216], and therefore it would be interesting to explore the possible correlation be-
tween hyperbolic MR scaling and superconductivity in BaFe2(As1−xPx)2 [171]. The present
study shows that MR measurements may be useful for probing hot-spot properties across
the P-substituted phase diagram. This could provide valuable quantitative information as
to how spin excitations influence the resistivity and ultimately superconductivity in iron-
based superconductors [216]. Note that compositions of BaFe2(As1−xPx)2 also undergo a
tetragonal-to-orthorhombic distortion when cooling through TN . The resulting twin bound-
aries in single crystals are expected to induce temperature-independent scattering, which
can be parametrized by the disorder scattering rate in our model.

Figure 3.15: B/T 3 scaling in BaFe2As2 magnetoresistance data The simple scaling
relation between field and temperature does not seem to describe the magnetoresistance data
of the parent compound BaFe2As2
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Experimental considerations and irradiation

“It sounds easy enough. When can we meet to discuss or do the irradiation?” — Yeonbae
Lee

Monte Carlo (SRIM) calculations were performed using the material parameters of
BaFe2(As1−xPx)2, and 3MeV alpha particles. The average penetration depth of 3MeV parti-
cles is about 7µm, as shown in Fig. 3.16C. For distances lower than 7µm, the distribution of
collision events seems to be largely independent of distance. These simulations indicate that,
by cleaving the samples to thicknesses smaller than 7µm, we can mitigate the risk of gross
inhomogeneity in the samples after irradiation. In addition, we can ensure that a significant
portion of the sample is disordered such that the bulk transport properties are intrinsically
meaningful.

A B C

Figure 3.16: Monte Carlo (SRIM) calculations of the penetration depth profile
of 3 MeV alpha particles in BaFe2(As1−xPx)2 A Simulated particle trajectories in a
two-dimensional slice. B Collision event profile as a function of distance. C Profile of ion
depth. Particles penetrate on average 7µm into BaFe2(As1−xPx)2.

Samples were super glued to a glass slide, and thin sheets were cleaved off with a scalpel
blade. Electrical connections to the sheets were made by masking the samples with GE
varnish, sputtering gold contact pads, removing the GE mask, and attaching gold wires to the
gold pads with H20E silver epoxy. The thickness of the samples was checked using a confocal
microscope, and samples with thickness significantly greater than 6 um were discarded.
Overall about 20 devices were prepared and screened using this method. The resistance
of several samples was then measured from 1.8K to 300K in a commercial QuantumDesign
PPMS. In order to account for variation in the geometrical parameters between samples,
a scaling factor was applied to each sample based on its un-irradiated room temperature
resistance.
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The samples were then taken to the Rutherford Backscattering Beamline at Lawrence
Berkeley National Lab. The beam accelerates alpha particles with 3 MeV energy through
a variable-radius aperture. An aperture diameter of 4mm was used for these experiments.
The exposure time to the beam controls the total irradiated charge per unit area, measured
in C/cm2. Each sample was electrically grounded to a carbon tape-coated backing plate,
and then exposed to the beam for between 0 and 200 seconds in 20 second intervals (to
mitigate the heating effects of the beam). After this process, the resistance of the samples
was measured again from 1.8K to 300K in the PPMS. Select samples were wired for pulsed
field measurements, as described in Appendix A. Special care was taken to never heat the
irradiated samples above room temperature in order to avoid annealing them.

Fig. 3.17a shows resistivity measurements of BaFe2(As1−xPx)2 with x = 0.31. Samples
were homogeneously irradiated by alpha particles by varying exposure time to the alpha
particle beam. A larger dose of alpha particles (in units of particles per centimeter squared;
p/cm2) increases the density of defects in the crystal. Notably, increasing the dose causes
the resistivity of the sample to increase by a temperature-independent constant as shown in
Fig. 3.17b, at least over the temperature range where resistance measurements are possible
above the superconducting transition temperature. The average temperature-dependent
slope of the resistivity is largely unaffected by the dosage.

In Fig. 3.17c, we show the effect of alpha particle irradiation on the superconducting
transition temperature. The data is compared to a naive application of the Abrikosov-
Gorkov model assuming an s± pairing scenario [20], where only intraband disorder scattering
is pair-breaking.

− ln(tc) = ψ

(
1

2
+

g

2tc

)
− ψ

(
1

2

)
, (3.52)

where ψ is the digamma function, and

g =
∆ρ0

C

h̄

2πkBT 0
c µ0λ2

0

(3.53)

is a dimensionless scattering rate calculated from the irradiation-induced changes to the
residual resistivity ρ0, and penetration depth measurements, λ0, taken from Refs. [70, 146].
The resistivity is proportional to the total scattering rate (∆ρ0), while pair-breaking is only
due to interband scattering, which constitutes a small fraction of the total scattering rate in
general. Therefore, we introduce the coefficient C in Eq. (3.53), which takes into account the
ratio of the interband scattering rate to the total scattering rate. We find that a constant
of C = 0.15 gives a good fit to the data (Fig. 3.17c), suggesting that about 15% of the total
scattering rate induced by disorder is interband scattering.

3.7 Experimental magnetoresistance of FeSe1−xSx

“I’ll have a cruciferous legume — John Singleton”
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Figure 3.17: Transport and superconductivity in BaFe2(As0.69P0.31)2 irradiated with 3 MeV
α-particles (a) Resistance versus temperature in samples with varying doses of α-particle
irradiation. The two-step feature in the superconducting transition likely arises from the
regions under the measurement terminals, which are protected from the irradiation by gold
leads, and therefore go superconducting before the irradiated part of the sample does [36].
(b) Residual resistivity (ρ(T → 0) = ρe), evaluated from a linear fit to the resistance from
Tc to 80 Kelvin. The solid grey line shows the linear increase of the residual resistivity with
the irradiation dose. The slope of the resistivity versus temperature, α ≈ 0.8 µΩcm/K,
is relatively constant as a function of irradiation dose. (c) Suppression of Tc (lower tran-
sition) plotted against the normalized scattering rate g (see main text). T 0

c = 28.8 K is
the superconducting transition temperature of the pristine sample. The black line shows the
expectation of the Abrikosov-Gorkov model assuming all scattering is pair-breaking (C = 1).
The blue line shows the result of Abrikosov-Gorkov where 15% of the induced scattering is
pair-breaking (C = 0.15).
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The mechanism proposed in the previous section, essentially that of impeded orbital mo-
tion — either through a sharp Fermi surface feature or a singularity in the scattering rate —
seems to be rather general. One might wonder whether a similar result is obtained in systems
which are not necessarily magnetic, but may have other sources of scattering anisotropy in
their Fermi surfaces. Indeed, there are several non-Fermi liquid metals, or strongly corre-
lated electron metals, which have been observed to exhibit B-linear magnetoresistance, and
it might be useful to explore whether the behavior in such systems can be explained by
a similar orbital mechanism to the one discussed in the previous sections. In this section,
we address one such material which is nearly-nematic, rather than nearly-antiferromagnetic.
In the next section we address other potential material systems where similar experimental
magnetoresistance phenomenology is observed.

To give some more background, BaFe2(As1−xPx)2 is not only thought to be close to an
antiferromagnetic quantum critical point, but also a ‘nematic’ quantum critical point. The
proximity to a nematic quantum critical point [110] suggests nematic fluctuations could also
affect the resistivity [112, 216, 37, 50, 51]. As a useful comparison for exploring this possi-
bility, an excellent material to study is FeSe1−xSx. FeSe1−xSx is not magnetic at any compo-
sition (though the material is certainly close to a magnetic phase, and exhibits evidence of
magnetic fluctuations [25]). Nevertheless, the notion of non-Fermi liquid transport behav-
ior is very well-established in this compound, and is believed to originate from a quantum
critical point. In particular, pristine FeSe undergoes a tetragonal to orthorhombic structural
transition when cooled below about 100 Kelvin. This is sometimes referred to as a “ne-
matic” phase, because such a transition breaks the rotational symmetry of the tetragonal
lattice without reducing the translational symmetry. When selenium is replaced by sulfur,
the structural transition temperature is suppressed to zero temperature at a fractional sulfur
concentration of about 0.18-0.19, and evidence of non-Fermi liquid physics is observed at this
nearly-nematic phase boundary [38], where there is a putative quantum critical point of the
nematic order parameter. A phase diagram as a function of chemical composition is shown
in Fig. 3.18. Superconductivity is present at low temperature in all compositions.

Here we primarily focus on transport measurements of FeSe1−xSx, especially chemical
compositions very close to the critical endpoint of x ≈ 0.18. Crystals of FeSe1−xSx were
grown by a KCl flux growth technique. One of the complications of working with KCl as a
flux is that the potassium will evaporate at high temperature and attack the quartz glass,
causing it to rupture. A solution to this issue is to seal the crucible in a quartz tube of
0.75 mm radius, and then seal the ampoule in a secondary larger quartz tube. The outer
ampoule contains the contents of the growth in the event that the inner ampoule ruptures.
The rationale for using KCl is the very low melting temperature — Fe7Se8 tends to form
when Fe and Se in roughly 1:1 ratio are together heated above about 770oC. Fe and Se are
both reasonably soluble in KCl. In the KCl growth process, the melting occurs at 840oC,
but after cooling, the crystals are annealed at 400oC for 24 hours in order to stabilize the
FeSe1−xSx alloy.

The charge is first heated to 840 over 8 hours. Then it is held at 840oC for 30 hours,
cooled to 820o over 1 hour, cooled to 770o at 0.5oC/hour, cooled to 400oC over about 10
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Figure 3.18: Phase diagram of sulfur-substituted FeSe The nematic phase (“nem.”),
which is really an orthorhombic structural distortion of the crystal lattice, is suppressed to
zero temperature by substitution of sulfur for selenium. The phase diagram is reproduced
from Ref. [38]. At the endpoint of x ≈ 0.18, the nematic phase is fully suppressed to zero
at a putative nematic quantum critical point. Note that superconductivity is present at low
temperature in all compositions of this phase diagram.

hours, held at 400oC for 24 hours, and cooled to room temperature over 2-3 hours. This
recipe was adapted from the literature [119]. The crystals can be separated from the salt
flux by hand, or the salt can be washed away with distilled water. Note that this growth
recipe produces lower quality crystals (as measured by the residual resistivity) than the more
prevalent AlCl3/KCl eutectic melt technique [116].

We confirmed the chemical composition of growths produced using the above technique
using energy dispersive X-ray spectroscopy. Transport results are shown here for the sample
of x = 0.18 sulfur concentration, the one which is nominally closest to the zero-temperature
endpoint of the nematic phase. As seen in Fig. 3.19A, at this composition, non-Fermi
liquid transport behavior is observed at low temperatures just above the superconducting
transition. The resistivity scales linearly with temperature over this range. This behavior
is well-established in this compound. Motivated by the results in the previous sections
of this chapter, we explored the magnetoresistance of this material to look for similarities
with BaFe2(As1−xPx)2 and other putative quantum critical metals.

Samples were measured in pulsed magnetic fields up to 60 Tesla using techniques sim-
ilar to those described in the other sections of this chapter. Fig. 3.19B shows that the
magnetoresistance of FeSe0.82S0.18 at this putative nematic quantum critical point exhibits
B-linear magnetoresistance at low temperature, which continuously crosses over to B2 be-
havior at higher temperatures. This overall trend is extremely similar to that observed
in BaFe2(As1−xPx)2 near a putative antiferromagnetic quantum critical point, but here we
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are dealing with a nematic quantum critical point.
Finally, Fig. 3.19C shows that the magnetoresistance data in this sample obeys a qual-

itatively similar scaling form as the other samples explored in this chapter. This fairly
definitively shows two things. One, the observation of linear magnetoresistance is not nec-
essarily solely a consequence of antiferromagnetism, or antiferromagnetic fluctuations. Two,
an explanation for the linear-in-B scaling behavior must be flexible enough to capture both
the trend observed in BaFe2(As1−xPx)2 (an antiferromagnetic quantum critical point) and
that observed in FeSe substituted with sulfur (a nematic quantum critical point).
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Figure 3.19: Magnetotransport in FeSe0.82S0.18 near a nematic quantum critical
point
A Resistivity versus temperature at this composition exhibits non-Fermi liquid T -linear
resistivity just above the superconducting transition temperature. B The high-field magne-
toresistance (ρ−ρ(0)), where ρ(0) is the measured or extrapolated resistivity at zero magnetic
field at each temperature, is linear in field at low temperatures, and becomes more quadratic
in field as temperature increases. The dashed lines illustrate the high-field limiting behav-
ior. C The data obey a scaling relation between field and temperature. ρ0 = 181.6µΩcm
is the zero-field, zero-temperature residual resistivity extrapolated from panel A. The scal-
ing observed here, and the overall linear-in-field magnetoresistance at low temperatures, is
extremely similar to that observed in BaFe2(As1−xPx)2.

While our BaFe2(As1−xPx)2 model naturally captures several features in the experimen-
tal MR over a wide range of the phase diagram, it seems that the influence of the ne-
matic order on the MR can be neglected in that compound. On the other hand, as seen in
this section, FeSe1−xSx near a putative nematic QCP [78] shows very similar MR to that
of BaFe2(As1−xPx)2 [116]. There are a few possibilities. It is possible that the nearby mag-
netism in FeSe1−xSx has a strong influence on the MR and the present hot-spot model is
applicable to that material [22, 57]. Another option is that nematic fluctuations effectively
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create hot spots in FeSe1−xSx [112]. One very interesting observation to note is that there ap-
pears to be a combination of B-linear and B2 contributions to the MR in very clean samples
of Fe(Se1−xSx) [116]. A straightforward interpretation is that the orbital magnetoresistance
associated with cold and hot spots on the Fermi surface add in parallel. The latter induces
a hyperbolic dependence of the MR on H which survives even in the presence of relatively
high rates of disorder scattering, as seen in the BaFe2(As1−xPx)2 samples in the previous
sections and the FeSe1−xSx sample measured in this section. The former, on the other hand,
is a more conventional orbital contribution to the magnetoresistance, which is enhanced as
the mobility (i.e. purity) of the samples is increased. This might explain why an apparent
conventional B2 contribution to the MR is observed in relatively pure samples of FeSe1−xSx.
The sample used in the present study is rather dirty relative to those grown by other tech-
niques, and so the B-linear term dominates in the presence of high disorder. However, the
differences between BaFe2(As1−xPx)2 and FeSe1−xSx should be explored further.

3.8 Possible generalizations

Given that the hot-spot model accurately captures the MR of BaFe2(As1−xPx)2 and the
H/T scaling, it is likely that the AFM fluctuations are the source of the anomalous T -
linear resistivity in the quantum critical regime of BaFe2(As1−xPx)2. However, while the
hot-spot regions are expected to give a correction to the conductivity that is linear in T ,
at zero-field the cold parts of the Fermi surface are expected to dominate [75]. Within a
nearly-antiferromagnetic Fermi-liquid framework, one option is that mixing of hot spot and
disorder scattering leads to nontrivial behavior of the overall resistivity [164, 165]. Such a
scenario is thought to describe the resistivity of CePd2Si2, as discussed in the earlier sections
of this chapter. Our data on BaFe2(As1−xPx)2 is difficult to reconcile with such a mecha-
nism for temperatures above Tc — disorder adds a temperature independent component to
the resistivity consistent with Matthiessen’s rule, which can only occur if the temperature-
dependent scattering is independent of disorder. However, at such high temperatures it is
possible that the hot spots are smeared out enough that they essentially cover the whole
Fermi surface and lead to a more isotropic scattering rate. This possibility is consistent
with the fact that the magnetoresistance at temperatures above about 30K, where T -linear
resistivity at zero field is observed, is more or less B2 in agreement with orbital motion in
the presence of isotropic scattering. Moreover, Kohler’s rule is obeyed in this relatively high
temperature regime. In order to further explore the possibility that the T -linear resistivity
in BaFe2(As1−xPx)2 arises from hot spot scattering, it would be necessary to examine the
disorder-dependent resistivity at very low temperatures to see possible changes in the power
law scaling as the disorder level is varied.

There are other possibilities as well. Other nearly-antiferromagnetic Fermi-liquid models
show that magnetic fluctuations at hot spots can influence the overall resistivity through
multiple scattering [26], or the so-called backflow effect [102]. A more recent revival of the
hot-spot picture has shown that an unconventional two-particle scattering process connecting
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hot and cold regions can render the entire Fermi surface a ‘marginal’ Fermi liquid with an
overall T -linear resistivity [136]. A theory of orbital MR in a marginal Fermi liquid would
be an interesting extension of the present study.

Finally, linear-in-B magnetoresistance has been observed in several classes of cuprate
superconductors, including, but probably not limited to LCCO (electron-doped cuprate and
nearly-antiferromagnetic metal) [171], and LSCO (hole-doped cuprate) [60].

In regards to LCCO, hot spots at the antinodal regions of the Brillouin zone of the
electron-doped cuprates have been suggested as a source of anomalous behavior in transport
and photoemission measurements for some time [13, 104], so in light of our results, the recent
observations of H-linear magnetoresistance in electron-doped cuprate superconductors may
be interpreted as a result of antiferromagnetic fluctuations at hot spots. The model pertain-
ing to BaFe2(As1−xPx)2 can likely be readily adapted to the Fermi surface and scattering rate
anisotropy present in electron-doped cuprates. This picture of an anisotropic scattering rate
would also explain a long-standing question regarding the violation of Kohler’s rule observed
in the cuprates [69]. Moreover, scaling behavior with the cotangent of the Hall angle has
been observed in many quantum critical metals, the so-called ‘modified’ Kohler’s rule [103,
88], and we leave to future work whether this can be captured in the present hot-spot model.

In regards to LSCO, the hole-doped cuprate, it is not necessarily the case that anti-
ferromagnetic hot spots are present in this compound. However, the material is close to
a van Hove singularity, which could induce a higher quasiparticle scattering rate that is
momentum-dependent — the van Hove points touch the Fermi level at certain parts of the
Brillouin zone before others. From an orbital magnetoresistance point of view, such an
ansiotropic scattering rate could in principle induce a B-linear contribution to the magne-
toresistance in a qualitatively similar way as antiferromagnetic hot spots. In fact, such a
picture of orbital motion was recently put forward to explain the linear magnetoresistance
of LSCO [16].

All together, it seems plausible that the presence of B-linear magnetoresistance observed
in many strongly correlated electron systems and putative quantum critical materials can be
explained by the concept of interrupted orbital motion as described in this chapter [74, 27].
The origin of such interrupted orbital motion could arise through an anisotropic scattering
rate, sharp features in the Fermi surface, or even other more exotic mechanisms [74]. While
this theory does not explain all aspects of transport data in these materials (in particular, the
temperature-dependent resistivity is still an open problem), it gives a satisfying description of
the magnetoresistance phenomenology in many different materials from a general standpoint.
In addition, perhaps this theory of orbital motion could give a starting point for analyzing
magnetoresistance measurements as a probe of Fermi surface and scattering rate anisotropy
in complex non-Fermi liquid metals [66], much like the way in which magnetoresistance was
originally used to probe the Fermi surfaces of elemental metals in the 1970s.
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Chapter 4

Nearly-ferromagnetic metals

We now consider a slightly different problem — that of nearly-ferromagnetic metals. Many
of the same general topics that arose in the study of nearly-antiferromagnetic metals —
including quantum criticality, breakdown of Fermi liquid theory, and unconventional super-
conductivity — are also prevalent in nearly-ferromagnetic metals. In some ways, it falls
in the same category of problem, where superconductivity can also emerge near a magnetic
phase boundary that persists close to zero temperature, and strong electron-electron interac-
tions can destabilize the Fermi liquid. The only difference at face value is that the magnetic
phase is ferromagnetic rather than antiferromagnetic.

However, this turns out to be quite an important distinction. The study of nearly-
ferromagnetic superconductivity suffers from the problem that there are only a handful of
materials where such a phase competition exists. A simple way to understand the rarity of
such a phase competition is that superconductivity on general grounds is destroyed by mag-
netic field, either externally applied, or from magnetic impurities [125]. Antiferromagnetism
isn’t necessarily in direct opposition to superconductivity because the net magnetic moment
in an antiferromagnet is zero when appropriately averaged over some length scale. On the
other hand, the net moment in a ferromagnet is by definition nonzero, implying that there
is a fundamental incompatibility between a ferromagnetic phase and a superconducting one.
But, there are materials where such a coexistence does occur [12].

In addition to the consequences of nearly-ferromagnetic order on the electron fluid in a
metal, there are notable consequences on the superconducting state itself. The ferromag-
netic spin fluctuations tend to result in electron pairing in the equal-spin pairing channel [49].
That is, the Cooper pair wavefunction, rather than being composed of two electrons in a
superposition |↑↓〉 − |↓↑〉, which is typical for example in electron-phonon coupling super-
conductors, can be composed of equal spin states (|↑↑〉, |↓↓〉, |↑↓〉+ |↓↑〉) [49]. Intuitively, if
the Cooper pair spin quantum number is aligned along the magnetic moment of the sample,
the pair-breaking effects of the magnetic moment could be significantly reduced compared
to the opposite spin pairing scenario; this to some extent explains how this type of super-
conductivity can survive in the presence of ferromagnetism. Due to symmetry constraints
imposed by Fermi statistics, the spatial wavefunction in the equal-spin pairing scenario must
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be spatially antisymmetric. Both the finite angular momentum of the Cooper pairs, and the
spatial asymmetry of their wavefunctions, have remarkable consequences for the properties
of the superconducting state [130]. In addition to their interest as unprecedented phenom-
ena from a physics point of view, some of these properties are considered highly desireable
for novel quantum information processing platforms [53]. As a consequence, much of the
modern research on this topic concerns itself with the discovery of materials where a phase
competition between ferromagnetism and superconductivity is observed.

4.1 The role of weak itinerant ferromagnetism

Recall in the introduction to this text, we briefly mentioned that electron-electron inter-
actions that are beneficial to superconductivity also have a propensity to induce electronic
order that is not superconductivity (e.g. ferromagnetism, antiferromagnetism, charge density
waves, etc). In certain nearly-ferromagnetic metals, superconductivity can occur as a result
of pairing mediated by ferromagnetic fluctuations [49]. The mechanism for this is essentially
based on the Coulomb interaction, not the dipole-dipole interaction between spins which is
usually much weaker [172]. Equal spin electrons can have an attractive Coulomb interaction
as a result of the symmetry constraints of the wavefunction between two electrons in equal
or opposite spin states [49].

Ferromagnetic spin-fluctuation-mediated superconductivity like the situation described
above has a few criteria. First, generally speaking the attractive interaction will be favorable
if the same electrons that make up the Fermi surface are the ones that are ferromagnetic or
nearly-ferromagnetic, i.e. the magnetic moment arises from an imbalance in the population
of majority and minority spin electrons. As such, the ferromagnetism is considered ‘itiner-
ant’, in the sense that the net moment comes from itinerant electrons. This scenario can be
contrasted with the Heisenberg view of ferromagnetism, where the magnetic moments are
largely localized, and develop spontaneous order through exchange interaction with other
localized magnetic moments. Second, the strength of the equal-spin attractive interaction is
proportional to the spin susceptibility [49]. It is therefore beneficial if the ordered magnetic
moment is ‘weak’ or close to zero (as it could be in nearly-ferromagnetic metals), such that
the spin susceptibility is high. Some of these arguments about itinerant magnetism can be
put on more precise footing [132, 198, 161, 132]. But the above criteria are essentially con-
sistent with what is observed in nearly-antiferromagnetic superconductors, like iron-based
superconductors, where the antiferromagnetic moment is relatively fragile and strongly itin-
erant [223]. Experiments on U-based nearly-ferromagnetic superconductors also tend to show
a correlation between superconductivity and a wewak itinerant magnetic moment [160].

One of the simplest experimental methods to determine ‘how itinerant’ a ferromagnet is
is by measuring the value of the spontaneous moment. In itinerant ferromagnets, the value of
the magnetic moment when the sample is fully saturated tends to be much smaller than that
expected if the magnetization were to come from the magnetic ions [161]. For example, in
an itinerant ferromagnetic containing nickel, we might see a saturated moment on the order
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of 0.5 µB/Ni, whereas a nickel ion in its most common 2+ oxidation state would produce a
magnetic moment closer to 2 µB/Ni. The decay of such spin waves at high temperature ac-
tually produces a Curie-Weiss susceptibility, even though strictly speaking the local moment
picture is not applicable. Rather remarkably, the fluctuating magnetic moment extracted
from Curie-Weiss analysis often corresponds well to the free-ion magnetic moment, even
though the characteristic 1/T dependence of the susceptibility is not strictly speaking com-
ing from local moments. In certain extreme cases, ferromagnetism can arise in metals even
though there are naively no magnetic ions in the material (for example, ZrZn2 [219]). The di-
chotomy between a small saturated magnetic moment, and relatively large high-temperature
fluctuating moment, is one of the defining features of itinerant ferromagnetism.

4.2 A candidate for nearly-ferromagnetic

superconductivity: magnetic characterization of

NiTa4Se8

With the above arguments in mind, we present here an excellent candidate for nearly-
ferromagnetic superconductivity, and then proceed to describe one method by which su-
perconductivity can be induced in this system. The material is NiTa4Se8, a layered material
with conducting TaSe2 layers sandwiched by layers of nickel atoms in a triangular lattice.
First, we will describe the basic characterization of this material, which suggest that it is a
weak itinerant ferromagnet, making it a strong candidate for nearly-ferromagnetic supercon-
ductivity. Then, we will describe how superconductivity can be induced in single crystalline
samples by reducing the nickel concentration.

Growth procedure and crystallography

Single crystals were grown by a two-step procedure. First, a precursor was prepared. The
elements were combined in a ratio Ni:Ta:Se (0.4:1.0:2.0), loaded in an alumina crucible, and
sealed in a quartz tube with 200 torr Argon gas. The tube was heated to 670oC — the
boiling point of selenium — for 12 hours, and then the temperature was raised to 900oC and
kept there for 5 days. The furnace was then shut off and allowed to cool naturally. This
reaction yields a free-flowing black powder that was ground with a mortar and pestle.

Second, the precursor was loaded with 3 mg/cm3 iodine in a 21 cm long quartz tube,
evacuated, and placed in a horizontal two-zone furnace. The precursor and iodine were in
zone 1 and the other end of the tube (the growth zone) were in zone 2. Both zones were
heated to 850oC for 3 hours to encourage nucleation. Then, zone 2 was kept at 850oC while
zone 1 was reduced to 700oC. This condition was maintained for 12 hours to clean the growth
zone. Finally, the temperature of zone 1 was raised to 850oC and that of zone 2 was lowered
to 700oC. This growth condition was maintained for 5 days after which the furnace was shut
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off. Hexagonal crystals up to 5 mm in lateral length were collected from the cold zone. They
are easily exfoliated with a scalpel or scotch tape.

Energy dispersive X-ray spectroscopy detects an elemental ratio of 0.25:1.00:1.89
(Ni:Ta:Se), suggesting that the samples used in this study are about 5% selenium deficient.
We believe that this deficiency arises due to the vaporization of selenium during the precursor
reaction, which could potentially be adjusted for by adding 5-10% excess selenium to the
first stage of the growth procedure.

The results of powder X-ray diffraction (PXRD) experiments suggest that NiTa4Se8

(Ni1/4TaSe2) crystallizes in the P63/mmc structure. These experiments are performed on
precursor powder resulting from a solid-state reaction from which single crystals were grown
using chemical vapor transport as described in the crystal growth section. The residual
between the fitted PXRD pattern and the experimental one seems to mainly originate from
an underestimation in the intensities of the peaks in the refinement as compared to the
experiment (Fig. 4.1C). Thus, every significant peak of the experimental PXRD pattern
can be accounted for using the crystal structures schematically shown in Fig. 4.1A and B.
Based on these diffraction experiments, we conclude that the material is composed of layered
basal planes of TaSe2 in the 2H polymorphic form, and there are no significant side phases
in the precursor powders. NiTa4Se8 appears to be isostructural to Fe1/4TaSe2 [135] and
MnTa4S8 [209], other doped transition metal dichalcogenides. Between the sheets of TaSe2,
the nickel atoms sit between the tantalum atoms in the neighboring layers. The nickel atoms
themselves form a trigonal layer with twice the a-axis periodicity of the tantalum atoms.
The crystal structure parameters determined from powder X-ray diffraction refinement are
a = 6.878(6)Å and c = 12.506(5)Å.

Fig. 4.2 shows the results of low-temperature physical and magnetic properties character-
ization experiments on single crystal samples. A spontaneous magnetization develops below
a Curie temperature of 58K (Fig. 4.2A), as indicated by the splitting of magnetization curves
collected with field-cooled and zero field-cooled protocols. The susceptibility (χ = M/H)
appears to be slightly larger for magnetic field directed perpendicular to the basal planes —
above 100K, the susceptibility anisotropy ratio is approximately independent of temperature
χc/χab ≈ 1.3, indicating that the magnetic moments have a weak preference for the interpla-
nar direction. In addition, a secondary feature appears in the M v T curve at a temperature
of Tc2 = 36K, both in the in plane and out of plane directions. This temperature is also
associated with a change in curvature in the resistivity-temperature curve (Fig. 4.2B). While
the main ferromagnetic-like transition at Tc1 is clearly resolved in heat capacity measure-
ments, the feature at Tc2 is not, suggesting that the lower temperature anomaly coincides
with a relatively small change in entropy. There more complicated features will be discussed
in more detail later.

Because the secondary feature in magnetic susceptibility is rather broad (Fig. 4.2A), and
does not seem to be associated with a significant heat capacity anomaly, it is important to
address the possibility of possible magnetic impurity phases as a source of this anomaly. The
most likely candidates are NiSe [208] and NiSe2 [221] both of which have ferromagnetic order-
ing temperatures around 20K. However, the secondary feature in susceptibility data on our
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Figure 4.1: Crystal structure of NiTa4Se8 A Crystal structure as viewed along the
crystallographic a-axis. The unit cell is outlined by black lines, and the crystallographic co-
ordinates are shown in the bottom left. Nickel atoms sit between the TaSe2 layers. B Crystal
structure viewed along the crystallographic c-axis. The tantalum atoms form a triagonal lat-
tice. The nickel atoms similarly form a triangular lattice with twice the periodicity of that
of the tantalum atoms. C Powder X-ray diffraction data and refinement (fit shown in red)
based on the P63/mmc space group. The residual (the difference between the data and fit)
is shown in pink. The lattice parameters extracted from the PXRD refinement are stated
in the text. Each prominent peak present in the PXRD data is captured by the refinement
based on the crystal structure represented in panels A and B.
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NiTa4Se8 crystal occurs closer to 35K. In addition, our PXRD data does not show evidence
of peaks associated with either NiSe or NiSe2, suggesting that any potential impurity phases
constitute an undetectably small fraction of the samples. And, susceptibility measurements
on this powder also show a main ferromagnetic transition at 58K and a secondary anomaly
at about 36K in agreement with the data on single crystal samples (Fig. 4.3). In addition,
the resistivity (Fig. 4.2B) of single crystal samples exhibits a broad crossover feature across
35K. For these reasons, we believe the 35K crossover is an intrinsic feature of NiTa4Se8,
which certainly warrants further study.
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Figure 4.2: Physical and magnetic properties of NiTa4Se8 A Magnetization parallel
and perpendicular to the crystallographic c-axis and ab-plane taken in the field-cooled (FC)
and zero field-cooled (ZFC) protocols with a magnetic field of 100 Oe. A ferromagnetic-like
transition is observed at Tc1 = 58K, and a secondary feature, most prominently observed
in ZFC traces, is observed at a lower Tc2 = 38K. B Resistivity and heat capacity measure-
ments. Tc1 is associated with a prominent change in curvature in the resistivity (ρ) versus
temperature. Tc2 is associated with a change in the curvature of the temperature-dependent
resistivity, most prominently observed in the derivative with respect to temperature. The
specific heat capacity (Cp) exhibits a weak anomaly at Tc1. Tc2 is not associated with a
resolvable heat capacity anomaly.
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Figure 4.3: Magnetization data on polycrystalline NiTa4Se8 Taken in field-cooled
(FC) and zero field-cooled (ZFC) protocols. Two anomalies in the magnetization versus
temperature trace are observed in agreement with the data on single crystal
samples.

In regards to the original motivation, the magnetization data on single crystal samples
strongly suggests that this material is a weak itinerant ferromagnet. Fig. 4.4A shows the
inverse susceptibility with a fit to the Curie-Weiss law (χ = C/(T − Θ)), where Θ is the
Curie temperature and C is a coefficient proportional to the effective moment (C = N µ0µeff

3kB
),

where µeff is the effective moment, and N is the concentration of moments in the material.
For field in both the in plane and out of plane configurations, a similar Curie temperature is
found (54-55K), which agrees well with the observed ordering temperature. Assuming that
the magnetism arises purely from the nickel ions, the fluctuating effective moments are 2.1
µB/Ni and 1.8 µB/Ni for the out of plane and in plane configurations, respectively, consistent
with the magnetic moment associated with a nickel ion in the Ni2+ oxidation state. On
the other hand, as shown in Fig. 4.4B, the saturated moment taken from low temperature
isothermal magnetization field sweeps is found to be 0.69 and 0.85 µB per nickel for the
out of plane and in plane directions, respectively. Thus, the saturated moment appears
to be considerably smaller than the value of the effective Curie-Weiss moment for both
crystallographic directions. Such a disparity is a hallmark of itinerant ferromagnetism [161,
198]. See also conductivity measurements up to 60T in Fig. 4.5, which confirm that a 3
Tesla field is sufficient to reach saturation in both the c and ab-plane measurements. Note
that at higher temperatures, a secondary coercive field event associated with a tiny magnetic
moment (0.02 µB) is observed in the hysteresis loops (Fig. 4.4B inset).

Altogether, the magnetization data suggests that the material is to first approximation,
ferromagnetic, with an out of plane easy axis. There are a few reasons why this descrip-
tion is not complete though. First of all, a secondary feature is observed below the Curie
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temperature (Fig. 4.2) — because this crossover appears most prominently in magnetic sus-
ceptibility measurements, it seems likely that it is associated with either secondary spin
ordering or spin reorientation. Second, a spin flip transition is observed for magnetic field
directed along the hard axis (Fig. 4.4 — this is inconsistent with pure uniaxial ferromagnetic
order, where the magnetization would be expected to linearly rise until saturation. A spin
flip transition indicates either antiferromagnetic exchange between layers, or perhaps the
presence of a secondary magnetic subsystem with easy plane anisotropy. It seems probable
that a description of the magnetism involves easy-axis nickel moments carrying a majority
of the materials ordered magnetization, while a secondary magnetic subsystem, perhaps the
tantalum moments, also spontaneously order with a smaller moment per ion, and are ei-
ther antiferromagnetically coupled to the nickel moments or have easy plane anisotropy. A
description of the seemingly complex magnetism in this material certainly warrants further
study.

Finally, we note that the measured electronic contribution to the heat capacity in NiTa4Se8

is relatively large (62 ± 6 mJ/mol K2). This value yields a density of states of 13 ± 1
eV−1u.c.−1. The Sommerfeld coefficient in this compound is close to that of heavy fermion
metals. Moreover, the T 2 coefficient of the resistivity, A, in comparison to the Sommerfeld
coefficient yields a relatively high Kadowaki-Woods ratio, comparable to that observed in
f -electron metals and weak itinerant magnets with strong spin fluctuations [131, 28]. These
results suggest that the electron-electron interactions in NiTa4Se8 are relatively strong, even
when adjusted for the relatively high density of electronic states at the Fermi level.

All together, this layered compound seems to be a weak-moment itinerant ferromagnet
with out of plane easy axis as a result of the nickel spins. In addition, there is potentially some
more complicated magnetic texture with a much smaller moment — one possibility is that a
more complex magnetic order is induced in the tantalum ions. The latter point is at present
not critical to our criteria for nearly-magnetic superconductivity, but is nevertheless inter-
esting and warrants further characterization. Finally, the itinerant ferromagnetic character
also leads to apparently very strong electron-electron interactions. These features together
motivate us to search for superconductivity in this material, potentially coexistent or on the
border of ferromagnetism, and possibly mediated by ferromagnetic spin fluctuations.
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Figure 4.4: Magnetic properties of NiTa4Se8 A Inverse susceptibility versus temperature
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per nickel atom, µeff, extracted from a Curie-Weiss fit (red line) is shown in the panels, along
with the Curie temperature Θ. The insets show a zoom in of the inverse susceptibility at
low temperature, which shows a double-dip feature characteristic of ferrimagnetic order. B
Magnetization versus field hysteresis loops for two crystallographic directions. The out of
plane loop exhibits a sharp coercive field event, with a saturated magnetic moment of 0.69
bohr magneton per nickel atom. The inset shows that a smaller coercive field event is present
at a higher field. For in-plane magnetic field, there is an apparent spin flip transition at a
field of about 3 Tesla, and the saturated moment is about 0.85 bohr magneton per nickel.
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Figure 4.5: High-field proximity detector oscillator (PDO) measurements as a
function of angle tilting from out of plane to in-plane directions A Transition field
as a function of angle, extracted from derivatives of the field traces shown in panel B. The
black line is 2.9 + 17.6cos2(θ). B Field sweeps of the resonant frequency shift of a PDO
circuit including the sample; curves are offset vertically for clarity. The shift of the resonant
frequency is proportional to the conductivity of the sample [5]. A transition is observed when
the field is in the plane of the crystal, consistent with the magnetization data in Fig. 4.4. The
transition rapidly disperses to higher fields as the angle tilts out of plane, and disappears
when the tilt angle is lower than about 60 degrees.
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4.3 A first-order quantum phase transition

The presence of a spin flip transition at finite fields motivates us to study potential quan-
tum critical physics at the zero-temperature endpoint of this phase. After all, much of the
motivation in the introduction in this text focuses on destabilization of a Fermi liquid in-
duced by symmetry-breaking at zero temperature. However, one of the particular issues
with such transitions out of a ferromagnetic metal is that soft fermionic modes cause the
transition to become first-order at finite temperature [95]. This means that rather than
develop critical modes with long wavelength, the system tends to develop an inhomogeneous
phase distribution at the quantum phase transition [212]. In fact, we will note here that the
zero-temperature endpoint of the spin-flip transition in the magnetic field/temperature phase
diagram of NiTa4Se8 does indeed exhibit characteristics of a first-order phase transition.
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Figure 4.6: Magnetic field-temperature phase diagram of the spin-flip transition
in NiTa4Se8 A Zoom-in of Magnetization versus field traces at different temperature (blue
is low, red is high). Curves are offset for clarity. Hysteresis develops at low temperature
around the transition, indicating that the transition is first-order. B The magnetic field-
temperature phase diagram where solid blue points delineate the spin flip transition (max-
imum in ∂M/∂H), while open circles show where the hysteresis loop around the transition
closes fully.

Fig. 4.6 shows magnetization versus field measurements at different temperatures for de-
termining the field of the spin-flip transition. The magnetic field-temperature phase diagram
is shown in Fig. 4.6B. Most notably, the magnetization versus field trace becomes hysteretic
around the spin-flip transition at low temperatures as seen in Fig. 4.6A. Hysteresis strongly
indicates that the transition is first-order, i.e. it is discontinuous so that it involves the



CHAPTER 4. NEARLY-FERROMAGNETIC METALS 130

formation of domains rather than long-range fluctuations. Fig. 4.6B shows that the high
temperature spin-flip transition (which does not exhibit hysteresis) then develops hysteresis
at lower temperatures at the same time that the phase boundary bends inwards. The shaded
blue region indicates the width of the hysteresis loop in field in which presumably disordered
domains form. One interpretation is that the second-order transition at high temperatures
is driven first-order as temperature decreases. Such behavior is common among itinerant
ferromagnetic quantum phase transitions [95]. In this interpretation, the point at which the
transition develops hysteresis (around 34K and 3.3 Tesla) would be a multicritical point at
which a second-order transition becomes a first-order transition.

Further measurements of magnetic susceptbility and heat capacity around the potential
tricritical point and subsequent first-order quantum phase transition will shed further light
on these questions. One interesting possibility has been suggested for stabilizing a second-
order quantum phase transition out of the ferromagnet [167]. The basic idea is to apply
pressure to the system to suppress the ferromagnetic order. At some pressure, the second-
order transition is expected to become first-order at a tricritical point, much like the behavior
observed in Fig. 4.6B. However, the second-order nature of the transition can be recovered
by applying magnetic field to the material. Thus, under pressure and magnetic field it
may be possible to realize a quantum critical point (a second-order phase transition at zero
temperature).
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4.4 Superconductivity in proximity or coexistent with

ferromagnetism in NixTa4Se8

This material can also be grown with varying degrees of nickel concentration between the
layers of single crystal samples. Fig. 4.7 shows laue diffraction pattern images taken at the
Advanced Light Source beamline 12.3.2 at Lawrence Berkeley National Lab. What we notice
is that many of the samples have very sharp laue reflections, and therefore a high degree of
crystallinity. The notable exception is Ni0.6TaSe2, which seems to have two different crystal
orientations, perhaps suggesting phase inhomogeneity or twinning. In samples with reduced
nickel content, there do not seem to be extra reflections in addition to those of TaSe2.
Therefore, it seems to be the case that when the nickel content is reduced substantially,
the nickel atoms form an amorphous layer, in the sense that they do not exhibit long-range
periodic structure, between the TaSe2 planes. The chemical composition of these crystals
was determined by EDX measurements.

Samples with substantially reduced nickel concentration (28%) exhibit superconductivity
around 2.5K as seen in the resistivity comparison shown in Fig. 4.8. This sample does not
seem to exhibit a ferromagnetic transition, at least certainly not one as prominent as in the
NiTa4Se8 sample. This leads to the hypothesis that reducing the nickel concentration tunes
between a weak itinerant ferromagnetic phase (as characterized in the preceding section) and
a superconducting phase.

Indeed, for a sample with a slightly higher nickel concentration (60%), a ferromagnetic
transition is observed at about 31K, and a superconducting transition is observed at about
2K (Fig. 4.9). The ferromagnetism is detected in transport measurements as the onset of hys-
teresis in the measured Hall signal as a function of applied magnetic field (Fig. 4.9B), while
the superconductivity is associated with a drop in the resistivity close to zero (Fig. 4.9A).
Note, however, that the resistance does not drop fully to zero. This could indicate that the
ferromagnetism and superconductivity are spatially separated within the single crystalline
samples. Indeed the Laue pattern on these crystals suggests two different orientations as-
sociated with possible phase inhomogeneity (Fig. 4.7). On the other hand, the presence of
superimposed hysteresis and superconducting transitions at 2K below the onset of supercon-
ductivity suggests that there is a substantial interaction between the superconductivity and
ferromagnetism. Whether this is an interfacial interaction between segregated phases within
the crystal, or a more microscopic coexistence of superconductivity and ferromagnetism, re-
mains to be seen. It is worth noting that even if superconductivity and ferromagnetism are
phase separated spatially, the superconductivity needs to be ‘robust’ to ferromagnetism in
some sense. This is possible through either a triplet superconducting order parameter, or
because of the possibility of spatial separation, a more conventional order parameter that is
spatially modulated as seen in ErRh4B4 [120], for example.

At even lower concentrations of nickel, a bulk superconducting phase is observed with-
out ferromagnetic order. Fig. 4.10 shows magnetic and thermodynamic characterization
of the superconductivity in Ni0.28Ta4Se8 with Tc ≈ 2K. The electronic contribution to the
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Figure 4.7: Laue diffraction patterns of single crystals with various nickel con-
centrations NiTa4Se8 shows sharp peaks, which can be indexed to TaSe2 with a doubled
unit cell, in agreement with the powder X-ray diffraction data. In crystals grown with lower
nickel content (0.2-0.28), very sharp reflections demonstrate the high quality of the crystals.
In the 60% nickel sample, there seems to be two separate crystal orientations within the
crystal, suggesting possible twinning or phase inhomogeneity.
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heat capacity reaches around 45 mJ/molK2, slightly lower than in NiTa4Se8. A significant
heat capacity anomaly is observed at the superconducting transition temperature. Interest-
ingly, there appears to be a residual contribution to the specific heat at low temperature
(Fig. 4.10B). Such behavior has been observed in other nearly-ferromagnetic superconduc-
tors [160], but at present it is difficult to determine the origin of this residual entropy
contribution.

Figs. 4.10C and D show magnetization measurements near the superconducting transi-
tion. A considerable diamagnetic signal is observed in the superconducting state, giving
evidence for bulk superconductivity. Notably, the diamagnetic signal in the in-plane field
configuration is much lower than in the out-of-plane field configuration. And, for in-plane
field, a spike in the paramagnetic susceptibility is observed right above the superconducting
transition (Fig. 4.10D inset). At present, it is difficult to say whether these characteris-
tics originate in the largely two-dimensional structure of the crystal, and the presumably
quasi two-dimensional electronic structure, or whether they are associated with some sort of
anisotropy in the superconducting order parameter. Nuclear magnetic resonance measure-
ments of the superconducting state would help answer these questions.
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Nevertheless, this material clearly presents many directions for the exploration of nearly-
ferromagnetic superconductivity, and its interplay with a nontrivial ferromagnetic state.
The capacity for this platform to host superconductivity that survives proximity to ferro-
magnetism (Fig. 4.9) provides a host of opportunities to build platforms for superconducting
spin transport as well. It is worth noting that, although the material is a nearly-ferromagnetic
metal, and can indeed be driven to a quantum phase transition by magnetic field (Fig. 4.6, we
have not detected evidence for non-Fermi liquid behavior either in thermodynamic or trans-
port measurements (Fig. 4.8). Part of the reason for this is that the ferromagnetic transition
apparently becomes first-order at sufficiently low temperature (Fig. 4.6). However, as sug-
gested in Chapter 4.4, there may be opportunities to drive the system to a ferromagnetic
quantum critical point, where non-Fermi liquid behavior is certainly expected to manifest,
with pressure and magnetic field in tandem. We may even speculate on the possibility of
realizing superconductivity at this zero-temperature second-order phase transition given the
overall apparent propensity of this material to host superconductivity.
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agnétique”. In: Physica 1.1-6 (1934), pp. 182–192.

[108] R. Kumar, S. Singh, and S. Nair. “High temperature linear magnetoresistance and
scaling behavior in the Ba(Fe1−xCox)2As2 series”. In: (2018). arXiv: 1801.03768v1.

https://arxiv.org/abs/1801.03768v1


BIBLIOGRAPHY 143

[109] J.E. Kunzler et al. “Superconductivity in Nb3Sn at high current density in a magnetic
field of 88 kgauss”. In: Physical review letters 6.3 (1961), p. 89.

[110] H. H. Kuo et al. “Ubiquitous signatures of nematic quantum criticality in optimally
doped Fe-based superconductors”. In: Science 352.6288 (May 2016), pp. 958–962.
issn: 10959203.

[111] B. Lake et al. “Spins in the vortices of a high-temperature superconductor”. In: Sci-
ence 291.5509 (2001), pp. 1759–1762.

[112] S. Lederer et al. “Superconductivity and non-Fermi liquid behavior near a nematic
quantum critical point”. In: PNAS 114.19 (May 2017), pp. 4905–4910. issn: 1091-
6490.

[113] P.A. Lee. “Low-temperature T-linear resistivity due to umklapp scattering from a
critical mode”. In: Physical Review B 104.3 (2021), p. 035140.

[114] P.A. Lee, N. Nagaosa, and X.-G. Wen. “Doping a Mott insulator: Physics of high-
temperature superconductivity”. In: Reviews of modern physics 78.1 (2006), p. 17.

[115] S.K. Lewin and J.G. Analytis. “Angle-dependent magnetoresistance as a probe of
Fermi surface warping in HgBa2CuO4+δ”. In: Physical Review B 98.7 (2018), p. 075116.

[116] S. Licciardello et al. “ Coexistence of orbital and quantum critical magnetoresistance
in FeSe1−xSx”. In: Physical Review Research 1.2 (Sept. 2019), p. 023011.

[117] F. London. “The λ-phenomenon of liquid helium and the Bose-Einstein degeneracy”.
In: Nature 141.3571 (1938), pp. 643–644.

[118] J.M. Luttinger and J.C. Ward. “Ground-state energy of a many-fermion system. II”.
In: Physical Review 118.5 (1960), p. 1417.

[119] M.W. Ma et al. “Crystal growth of iron-based superconductor FeSe0.94 by KCl flux
method”. In: Physica C: Superconductivity and its Applications 506 (2014), pp. 154–
157.

[120] K. Machida. “A Theory of Ferromagnetic Superconductors–An Analysis of Experi-
ments on ErRh4B4 and HoMo6S8–”. In: Journal of the Physical Society of Japan 51.11
(1982), pp. 3462–3468.

[121] P. Majumdar and P. B. Littlewood. “Dependence of magnetoresistivity on charge-
carrier density in metallic ferromagnets and doped magnetic semiconductors”. In:
Nature 395.6701 (Oct. 1998), pp. 479–481.

[122] N. Maksimovic et al. “Evidence for a delocalization quantum phase transition without
symmetry breaking in CeCoIn5”. In: Science (2022), eaaz4566.

[123] N. Maksimovic et al. “Magnetoresistance scaling and the origin of H-linear resistivity
in BaFe2(As1−xPx)2”. In: Physical Review X 10.4 (2020), p. 041062.



BIBLIOGRAPHY 144

[124] K. Matan et al. “Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2:
A neutron scattering study”. In: Physical Review B 79.5 (Feb. 2009), p. 054526. issn:
1098-0121. doi: 10.1103/PhysRevB.79.054526. url: https://link.aps.org/doi/
10.1103/PhysRevB.79.054526.

[125] T. Matsuura. “The effects of impurities on superconductors with Kondo effect”. In:
Progress of Theoretical Physics 57.6 (1977), pp. 1823–1835.

[126] D.C. Mattis and E.H. Lieb. “Exact solution of a many-fermion system and its asso-
ciated boson field”. In: Bosonization. World Scientific, 1994, pp. 98–106.

[127] H.V. McIntosh. “Symmetry and degeneracy”. In: Group theory and its applications.
Elsevier, 1971, pp. 75–144.

[128] E. Merzbacher. Quantum mechanics. Jones & Bartlett Publishers, 1961.

[129] A.J. Millis. “Effect of a nonzero temperature on quantum critical points in itinerant
fermion systems”. In: Physical Review B 48.10 (1993), p. 7183.

[130] V.P. Mineev. “Superconductivity in ferromagnetic metals and in compounds with-
out inversion centre”. In: International Journal of Modern Physics B 18.22 (2004),
pp. 2963–2990.

[131] A. K. Mishra et al. “Spin fluctuations in Cr doped MnSi”. In: Journal of Magnetism
and Magnetic Materials 448 (2018), pp. 130–134.

[132] T. Moriya. “Theory of itinerant electron magnetism”. In: Journal of Magnetism and
Magnetic Materials 100.1-3 (1991), pp. 261–271.

[133] T. Moriya and A. Kawabata. “Effect of spin fluctuations on itinerant electron ferro-
magnetism”. In: Journal of the Physical Society of Japan 34.3 (1973), pp. 639–651.

[134] T. Moriya and K. Ueda. “Antiferromagnetic spin fluctuation and superconductivity”.
In: Reports on Progress in Physics 66.8 (2003), p. 1299.

[135] E. Morosan et al. “Sharp switching of the magnetization in Fe1/4TaS2”. In: Physical
Review B 75.10 (2007), p. 104401.

[136] C. H. Mousatov, E. Berg, and S. A. Hartnoll. “Theory of the strange metal Sr3Ru2O7”.
In: PNAS 117.6 (Feb. 2020), pp. 2852–2857. issn: 10916490.

[137] Y. Nakajima et al. “Quantum-critical scale invariance in a transition metal alloy”. In:
Communications Physics 3.1 (Dec. 2020), p. 181.

[138] Y. Nakajima et al. “Unusual Hall effect in quasi two-dimensional strongly correlated
metal CeCoIn5”. In: Physica C 460-462 (Sept. 2007), pp. 680–681. issn: 0921-4534.
doi: 10.1016/J.PHYSC.2007.03.082.

[139] Y Nakashima et al. “Fermi-surface reconstruction involving two van Hove singularities
across the antiferromagnetic transition in BaFe2As2”. In: Solid State Communications
157 (2013), pp. 16–20.

https://doi.org/10.1103/PhysRevB.79.054526
https://link.aps.org/doi/10.1103/PhysRevB.79.054526
https://link.aps.org/doi/10.1103/PhysRevB.79.054526
https://doi.org/10.1016/J.PHYSC.2007.03.082


BIBLIOGRAPHY 145

[140] S. Nakatsuji, D. Pines, and Z. Fisk. “Two fluid description of the Kondo lattice”. In:
Physical Review Letters 92.1 (2004), p. 016401.

[141] D.H. Nguyen et al. “Superconductivity in an extreme strange metal”. In: Nature
Communications 12.1 (2021), pp. 1–8.

[142] Q. Niu et al. “Quasilinear quantum magnetoresistance in pressure-induced nonsym-
morphic superconductor chromium arsenide”. In: Nature Communications 8.1 (June
2017), pp. 1–6. issn: 20411723.

[143] M. Oshikawa. “Topological approach to Luttinger’s theorem and the fermi surface of
a kondo lattice”. In: Physical Review Letters 84.15 (2000), p. 3370.

[144] J. Paglione et al. “Field-induced quantum critical point in CeCoIn5”. In: Physical
Review Letters 91.24 (Dec. 2003), p. 246405. issn: 0031-9007.

[145] H. K. Pal and D. L. Maslov. “Linear magnetoresistance from Dirac-like fermions in
graphite”. In: Physical Review B 88.3 (July 2013), p. 035403. issn: 10980121.

[146] A. Park et al. “Quasiparticle scattering in 3 MeV proton irradiated BaFe2(As0.67P0.33)2”.
In: Physical Review B 98.5 (Aug. 2018), p. 054512.

[147] S. Paschen et al. “Hall effect evolution across a heavy fermion quantum critical point”.
In: Nature 432.7019 (Dec. 2004), pp. 881–885. issn: 0028-0836.

[148] A. A. Patel et al. “Magnetotransport in a Model of a Disordered Strange Metal”.
In: Physical Review X 8.2 (May 2018), p. 021049. issn: 2160-3308. doi: 10.1103/
PhysRevX.8.021049. url: https://link.aps.org/doi/10.1103/PhysRevX.8.
021049.

[149] C. Petrovic et al. “Heavy fermion superconductivity in CeCoIn5 at 2.3 K”. In: J.
Phys. Condens. Matter 13 (2001), pp. 337–342.

[150] H Pfau et al. “Detailed band structure of twinned and detwinned BaFe2As2 studied
with angle-resolved photoemission spectroscopy”. In: Physical Review B 99.3 (2019),
p. 035118.

[151] H. Pfau et al. “Detailed band structure of twinned and detwinned BaFe2As2 studied
with angle-resolved photoemission spectroscopy”. In: Physical Review B 99.3 (Jan.
2019), p. 035118.

[152] L. D. Pham et al. “Reversible tuning of the heavy fermion ground state in CeCoIn5”.
In: Phys. Rev. Lett. 97.5 (Aug. 2006), p. 056404. issn: 0031-9007.

[153] A. Piel. Plasma physics: an introduction to laboratory, space, and fusion plasmas.
Springer, 2017.

[154] A. B. Pippard. Magnetoresistance in metals. Cambridge University Press, 2009.

[155] N.M. Plakida. High Tc Superconductivity. 1995.

[156] J. Polchinski. “Effective field theory and the Fermi surface”. In: (1992).

https://doi.org/10.1103/PhysRevX.8.021049
https://doi.org/10.1103/PhysRevX.8.021049
https://link.aps.org/doi/10.1103/PhysRevX.8.021049
https://link.aps.org/doi/10.1103/PhysRevX.8.021049


BIBLIOGRAPHY 146

[157] R. Prozorov et al. “Effect of Electron Irradiation on Superconductivity in Single
Crystals of Ba(Fe1−xRux)2As2 (x = 0.24)”. In: Physical Review X 4 (2014), p. 041032.
url: https://journals.aps.org/prx/pdf/10.1103/PhysRevX.4.041032.

[158] N. Ramakrishnan et al. “Equivalence of effective medium and random resistor net-
work models for disorder-induced unsaturating linear magnetoresistance”. In: Physical
Review B 96.22 (Dec. 2017), p. 224203.

[159] B.J. Ramshaw et al. “Quasiparticle mass enhancement approaching optimal doping
in a high-Tc superconductor”. In: Science 348.6232 (2015), pp. 317–320.

[160] S. Ran et al. “Nearly ferromagnetic spin-triplet
superconductivity”. In: Science 365.6454 (2019), pp. 684–687.

[161] P. Rhodes and E. P. Wohlfarth. “The effective Curie-Weiss constant of ferromag-
netic metals and alloys”. In: Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences 273.1353 (1963), pp. 247–258.

[162] P. Richard et al. “Fe-based superconductors: an angle-resolved photoemission spec-
troscopy perspective”. In: Reports on Progress in Physics 74.12 (Nov. 2011), p. 124512.

[163] R. Ritz et al. “Formation of a topological non-Fermi liquid in MnSi”. In: Nature
497.7448 (2013), pp. 231–234.

[164] A. Rosch. “Interplay of disorder and spin fluctuations in the resistivity near a quantum
critical point”. In: Physical Review Letters 82.21 (May 1999), pp. 4280–4283.

[165] A. Rosch. “Magnetotransport in nearly antiferromagnetic metals”. In: Physical Re-
view B 62.8 (Aug. 2000), pp. 4945–4962.

[166] M. Rotter et al. “Spin-density-wave anomaly at 140 K in the ternary iron arsenide
BaFe2As2”. In: Physical Review B 78.2 (July 2008), p. 020503. doi: 10 . 1103 /

PhysRevB.78.020503.

[167] S. Rowley et al. “Ferromagnetic and ferroelectric quantum phase transitions”. In:
physica status solidi (b) 247.3 (2010), pp. 469–475.

[168] M.V. Sadovskii. “High-temperature superconductivity in iron-based layered iron com-
pounds”. In: Physics-Uspekhi 51.12 (2008), p. 1201.

[169] H. Sakai et al. “Microscopic investigation of electronic inhomogeneity induced by
substitutions in a quantum critical metal CeCoIn5”. In: Physical Review B 92.12
(Sept. 2015), p. 121105. issn: 1098-0121.

[170] B. C. Sales et al. “Quantum Critical Behavior in a Concentrated Ternary Solid Solu-
tion”. In: Scientific Reports 6.1 (May 2016), pp. 1–8. issn: 20452322. doi: 10.1038/
srep26179.

[171] T. Sarkar et al. “Correlation between scale-invariant normal-state resistivity and su-
perconductivity in an electron-doped cuprate”. In: Science Advances 5.5 (May 2019),
eaav6753. issn: 23752548.

https://journals.aps.org/prx/pdf/10.1103/PhysRevX.4.041032
https://doi.org/10.1103/PhysRevB.78.020503
https://doi.org/10.1103/PhysRevB.78.020503
https://doi.org/10.1038/srep26179
https://doi.org/10.1038/srep26179


BIBLIOGRAPHY 147

[172] S.S. Saxena et al. “Superconductivity on the border of itinerant-electron ferromag-
netism in UGe2”. In: Nature 406.6796 (2000), pp. 587–592.

[173] D. Schoerling and A.V. Zlobin. Nb3Sn Accelerator Magnets: Designs, Technologies
and Performance. Springer Nature, 2019.

[174] A.J. Schofield. “Non-fermi liquids”. In: Contemporary Physics 40.2 (1999), pp. 95–
115.

[175] S.E. Sebastian et al. “Heavy holes as a precursor to superconductivity in antiferro-
magnetic CeIn3”. In: Proceedings of the National Academy of Sciences 106.19 (2009),
pp. 7741–7744.

[176] T. Senthil and M. P. A. Fisher. “Detecting fractions of electrons in the high-Tc

cuprates”. In: Physical Review B 64.21 (Nov. 2001), p. 214511.

[177] T. Senthil, M. Vojta, and S. Sachdev. “Weak magnetism and non-Fermi liquids near
heavy fermion critical points”. In: Physical Review B 69 (3 Jan. 2004), p. 035111.

[178] R. Settai et al. “Quasi-two-dimensional Fermi surfaces and the de Haas-van Alphen
oscillation in both the normal and superconducting mixed states of CeCoIn5”. In: J.
Phys. Condens. Matter 13 (2001), pp. 627–634.

[179] V.R. Shaginyan, K. G. Popov, and S.A. Artamonov. “Hall coefficient in heavy fermion
metals”. In: Journal of Experimental and Theoretical Physics Letters 82.4 (2005),
pp. 215–219.

[180] C. Shekhar et al. “Extremely large magnetoresistance and ultrahigh mobility in the
topological Weyl semimetal candidate NbP”. In: Nature Physics 11.8 (2015), pp. 645–
649.

[181] T. Shibauchi, A. Carrington, and Y. Matsuda. “A quantum critical point lying be-
neath the superconducting dome in iron pnictides”. In: Annual Review of Condensed
Matter Physics 5.1 (Mar. 2014), pp. 113–135. issn: 1947-5454. doi: 10.1146/annurev-
conmatphys-031113-133921.

[182] H. Shishido et al. “Evolution of the Fermi surface of BaFe2(As1−xPx)2 on entering the
superconducting dome”. In: Physical Review Letters 104.5 (Feb. 2010), p. 057008.

[183] W Shockley. “Effect of Magnetic Fields on Conduction—”Tube Integrals””. In: Phys-
ical Review 79.1 (1950), p. 191.

[184] D. Shoenberg. Magnetic oscillations in metals. Cambridge university press, 2009.

[185] Q. Si and F. Steglich. “Heavy fermions and quantum phase transitions”. In: Science
329.5996 (2010), pp. 1161–1166.

[186] Q. Si and F. Steglich. “Heavy fermions and quantum phase transitions.” In: Science
329.5996 (Sept. 2010), pp. 1161–1166. issn: 1095-9203.

[187] V. A. Sidorov et al. “Superconductivity and quantum criticality in CeCoIn5”. In:
Phys. Rev. Lett. 89.15 (Sept. 2002), p. 157004. issn: 0031-9007.

https://doi.org/10.1146/annurev-conmatphys-031113-133921
https://doi.org/10.1146/annurev-conmatphys-031113-133921


BIBLIOGRAPHY 148

[188] S. Singh et al. “Probing the quantum critical behavior of CeCoIn5 via Hall effect
measurements”. In: Physical Review Letters 98.5 (2007), p. 057001.

[189] J. Singleton. “Temperature scaling behavior of the linear magnetoresistance observed
in high-temperature superconductors”. In: Physical Review Materials 4.6 (2020),
p. 061801.

[190] J. C. W. Song, G. Refael, and P. A. Lee. “Linear magnetoresistance in metals: Guiding
center diffusion in a smooth random potential”. In: Physical Review B 92.18 (Nov.
2015), p. 180204. url: https://journals.aps.org/prb/abstract/10.1103/

PhysRevB.92.180204.

[191] R. S. Sorbello. “Effects of anisotropic scattering on electronic transport properties”.
In: Physics of condensed matter 19.1 (Mar. 1975), pp. 303–316. (Visited on 06/12/2020).

[192] F. Steglich et al. “Superconductivity in the presence of strong pauli paramagnetism:
CeCu2Si2”. In: Physical Review Letters 43.25 (1979), p. 1892.

[193] H. Steinberg et al. “Charge fractionalization in quantum wires”. In: Nature Physics
4.2 (2008), pp. 116–119.

[194] C. Stock et al. “Spin resonance in the d-wave superconductor CeCoIn5”. In: Physical
Review Letters 100.8 (Feb. 2008), p. 087001.
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Appendix A

Measurements of electrical transport
in extreme environments

The resistance to first-order determines the linear response of a material to an applied electric
field. More microscopic insight is given elsewhere in this thesis, but for now we are concerned
with these phenomenological equations.

V = IR, (A.1)

or equivalently
I = GV, (A.2)

where G = R−1 is the conductance. V is the applied voltage, and I is the current generated.
Or, as is usually the case in practical measurements, I is the applied current, and V is the
voltage drop generated by it.

R, V , I, and G are extrinsic quantities, in that their values are dependent on the specific
geometry of the sample under test — if a sample is particularly thin, V may have a larger
value for a given I than if the sample is particularly thick, even though it is the exact
same material. More material-specific insight can be gained by normalizing out geometrical
factors. Then, R → ρ, I → J , and V → E, and G → σ. ρ is the resistivity, σ is the
conductivity, J is the current density, and E is the electric field. Ohm’s law in this language
becomes

J = σE

E = ρJ,
(A.3)

where σ = ρ−1. Of course, real measurements are carried out on samples of finite dimensions
such that measurements give values of V and I. Then the intrinsic values of ρ and σ can be
backed out by the experimentalist by taking into account the sample dimensions (distance
between voltage terminals, thickness, cross-sectional area, etc). This process will be discussed
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later, but first we will determine some fundamental symmetry-based constraints, which apply
equally well to either ρ or R tensors.

In general, the voltage drop across a sample, V (generally understood as a voltage differ-
ence between two points on the sample), and I are three-dimensional vectors because current
can be applied along any direction in 3-space inducing a corresponding voltage difference
that can be decomposed into its x, y, and z components. Therefore, R and G are both 3 ×
3 tensors, and the inverse of R should be understood as a matrix inverse.VxVy

Vz

 =

Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

IxIy
Iz

 (A.4)

At first glance, it appears very challenging to determine any one component of the re-
sistivity tensor, given that each induced voltage drop is the result of a linear combination
of three unknown terms. Luckily, there are symmetry-based constraints on the resistivity
tensor which make this process considerably easier. The Onsager-Casimir relations tell us
about the reciprocity of the conductivity tensor components in an applied magnetic field [30].

Gij(H) = Gji(−H)

Rij(H) = Rji(−H).
(A.5)

Longitudinal resistivities

Eq. A.5 directly implies that, in the absence of a magnetic field, the off-diagonal components
of the resistivity tensor are all zero. Eq. A.6 in zero magnetic field becomesVxVy

Vz

 =

Rxx 0 0
0 Ryy 0
0 0 Rzz

IxIy
Iz

 . (A.6)

To determine the values of Rxx, Ryy, and Rzz at zero field, one needs to only send the current
along a specific direction of the material, for example along one of the crystallographic a,
b, and c axes, and measure the induced voltage. Fig. A.1 shows the typical measurement
setup.

Now, if the sample has a rectangular geometry, the resistance of the sample for example
measured along x (Rxx = Vx/Ix) can be converted to a resistivity through the geometrical
factors [15, 65].

Ri =
ρili
tkwj

, (A.7)

where i indicates the coordinate axis (x, y, or z) along which the current and voltage are
measured. A = tkwj is the cross sectional area of the rectangular sample (tk is the thickness
along k and wj is the width along j; tkwj is the area perpendicular to the direction along
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which the current is run), and li is the distance between the measurement terminals along
the direction that current is being run.

Hall (transverse) resistivities

Likewise, Eq. A.5 suggests that the off-diagonal components of the resistivity tensor can be
nonzero when a magnetic field is applied. By carefully aligning the direction of the magnetic
field and measurement terminals, we can isolate different off-diagonal resistivity components.
As an example, consider a current applied only along the x direction of a crystal, then

Rxx =
Vx
Ix

Ryx =
Vy
Ix

Rzx =
Vz
Ix

. (A.8)

Note that for measurements of, let’s say Ryx, a voltage perpendicular to the current direction
needs to be generated. Application of a magnetic field can lead to such a voltage due to
the action of the Lorentz force Florentz ∝ I × B. In the steady state, charges will build up
to generate a voltage that counteracts the Lorentz force (qVtransverse = −Florentz). This is
simply because of the constraints of the experiment — Iy and Iz must both equal zero —
there is nowhere for charges to go if they were to flow in either of these directions. If B is only
directed along the z direction, then a Lorentz force and corresponding voltage are generated
along Vy. If B is only directed along y, then a voltage is generated along z. Fig. A.1 shows
how the orientation of the magnetic field determines which voltages are nonzero, and how
the transverse voltages could be measured to determine the off-diagonal resistance tensor
components.

Once the transverse resistances have been measured, they need to be converted to resis-
tivities by normalizing out the length-scales associated with the sample geometry. This is
captured by the following formula [15],

ρij = tkRij, (A.9)

where tk is the length of the sample along the k direction (perpendicular to both i and j).



APPENDIX A. MEASUREMENTS OF ELECTRICAL TRANSPORT IN EXTREME
ENVIRONMENTS 154

xy

z

V
y

Vx

I x

Bext

xy

z

Vx

I x

Bext

Vz

Vx = IxRxx 

Vy = 0

Vz = IxRzx

Vx = IxRxx 

Vy = IxRyx

Vz = 0

A

B

Figure A.1: Four-terminal measurement scheme A Measurement of the transverse
resistivity Vy in an external magnetic field Bext directed along z and current directed along
x. B Measurement of the transverse resistivity Vz in an external magnetic field directed
along y.
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Experimental contact alignment and (anti)symmetrizing with
respect to magnetic field

In general, all components of the resistance tensor may depend on magnetic field. The
above arguments for isolating Rxx, Rxy, Rxz work as long as the measurement terminals are
perfectly aligned. That is, when a voltage generated by a magnetic field is measured, each
corresponding measurement terminal picks up only the voltage drop along x, y, and z. In
reality, there might be some misalignment, such that the actual voltage drop seen by a given
set of measurement terminals contains some linear combination of Vx, Vy, and Vz.

Ix

Vy
experiment

IxVx
experiment

A B

Figure A.2: Cartoons of experimental contact misalignment which can lead to
A spurious Vx component in the V experiment

y contacts, and B spurious Vy voltage in the
V experiment
x contacts.
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For the sake of argument, suppose we are interested in measuring Rxx and Rxy. Mea-
surement terminals are placed on one face of the sample in the Vx and Vy directions. It is
relatively straightforward to minimize the amount of Vz voltage drop in these measurement
terminals. One needs to polish or cleave a sample along the z direction so that the xy plane
has a flat face (this argument also applies to measurements in the xz or yz planes of a
crystal, but for this example we are considering xy). On the other hand, experimentally the
measurement terminals for V experimental

x and V experimental
y are likely to contain some amount

of voltage drop from both the x and y directions, which we can quantify by the ‘degree of
misalignment’ of the contacts, p. These types of misalignments are shown schematically in
the exaggerated cartoon Fig. A.2. Note that even with lithographically defined contacts,
their finite width and uncertainty in metal deposition is bound to generate some amount
of contact misalignment. It is experimentally unfeasible to generate contacts with p = 0.
Then, the experimentally measured voltage drops in the real measurement terminals are

V experiment
x = Vx + Vyp

V experiment
y = Vxp+ Vy.

(A.10)

At zero field, Vy = 0, so while the V experiment
y contacts may pick up a spurious nonzero voltage

at zero applied magnetic field, the V experiment
x contacts still give a reliable measurement

of the Vx signal. On the other hand, in magnetic field, Vy becomes nonzero and both
experimentally measured voltages contain some component of Vx and Vy. We can still isolate
the real voltage drops along x and y directions in magnetic field, Vx(B) and Vy(B), from
the experimentally measured voltage drops by employing the constraints imposed by the
Onsager-Casimir symmetry relations. In particular, the reciprocity relations Eq. A.5 [30]
imply that

Rxx(H) = Rxx(−H)

Rxy(H) = −Ryx(−H) = −Rxy(−H),
(A.11)

and, simply plugging in the relations A.8, we find that

Vx(H) = Vx(−H)

Vy(H) = −Vy(−H)
(A.12)

In simple terms, for a current driven along x and field along z, Vx is even in field, while Vy
is odd in field. This means that even though the there may be some mixing between the
intrinsic Vx and Vy in the experimentally measured voltage differences, we can isolate them
using the parity relations Eqs. A.12 — the intrinsic field-dependence of Vx and Vy can be
obtained by measuring the voltage difference in a positive and negative magnetic field, and
then adding or subtracting the results of the two measurements.
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V experiment
x (H) + V experiment

x (−H)

2
= Vx(H)

V experiment
y (H)− V experiment

y (−H)

2
= Vy(H)

(A.13)

Measuring the voltage

Given the conclusions of the previous section, different linear-response resistivity components
of a material can be obtained by sourcing a current and measuring a voltage, sometimes in
an applied magnetic field. Sourcing a current is simple enough with a commercial current
source, but how do we measure the voltage generated in such a configuration? This section
gives an overview of the techniques use to perform precision measurements of the voltage
(either longitudinal and transverse) produced by a current applied to a sample in extreme en-
vironments, i.e. at cryogenic temperatures and high magnetic fields. These sections describe
the measurement circuits and apparatuses, considerations about desired sample properties,
and considerations about optimizing measurement conditions in resistance measurements.
Generally, all of the following considerations apply whether we are interested in measuring
a longitudinal or transverse (Hall) voltage. We will not differentiate between the two in the
following sections, as the voltage measurements are conducted in essentially the same way
in either case.
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Measurement circuit

This section describes the four- and two-terminal measurement circuits, and gives motivation
for why the four-terminal measurement circuit is preferred for resistivity measurements in
cryogenic setups.

Two-terminal measurements

Fig. A.3 shows a diagram of an electrical resistivity experiment using the two-terminal mea-
surement scheme. The measurement apparatuses are kept at room temperature on a mea-
surement rack with cabling that leads to the cryostat, and wires that run down the cryostat
to the sample chamber. The sample temperature can then be manipulated by the cryostat
while the resistance of the sample is monitored. In reality, the cabling leading to the cryo-
stat, the cabling inside the cryostat, and the sample’s measurement terminals all have their
own resistances, as depicted schematically in Fig. A.3.

sample

cabling

sample contacts

cr
yo

st
atVout

Iin

Figure A.3: Two-terminal measurement scheme The force and sense leads are the same.
The measured voltage Vout includes the resistance of the sample, the cabling, and the sample
contacts. The latter two can have a rather large temperature dependence, which complicates
the determination of the sample resistance.

While this scheme is simple, the issue with the two-terminal measurement technique is
that the voltage drop is measured over the resistance of all of the cabling and contacts leading
up to the sample.

Vout = Iin (Rcabling +Rcontacts +Rsample) (A.14)
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This is problematic, especially because the resistances of the samples measured in such
conditions can be on the order of hundreds or even tens of milliOhms, while the cabling
and wires leading to the sample is usually on the order of tens of Ohms, and will therefore
completely swamp the signal from the sample. A further complication is that the resistance
of the cabling inside the cryostat and the sample contacts may depend on temperature. As
a consequence, it is very difficult to isolate the sample resistance in this scenario.

Four-terminal measurements

A better scheme is the so-called “4-terminal” measurement technique (depicted schematically
in Fig. A.4A), where the force and sense terminals are all placed on the sample itself. In
this scheme, the output voltage reflects only the voltage drop across the sample between
the sense leads, and the resistance of the sample can be determined straightforwardly by
measuring the voltage generated using a fixed source current.

Vout = IinRsample (A.15)

A photograph of a real sample prepared for this technique is shown in Fig. A.4B; it is of
course critical that the force and sense leads are electrically isolated from each other apart
from the current path through the sample itself. If they are connected together through a
relatively low-resistance ‘short’, a parallel conductance path with the sample is generated.
In this case, current runs directly between the force and sense terminals rather than the
sample, inducing a spurious voltage on the output.
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cabling
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Iin
Vout
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B

Figure A.4: Four-terminal measurement scheme (A) Shows a circuit diagram. The
sense leads are attached to the sample between the force leads. The measured voltage Vout
includes the only the resistance of the sample. (B) Shows a diagram including a photograph
of a real sample taken under an optical microscope. The black rectangle is the sample, and
the force and sense leads are attached to different regions of the sample for a four-terminal
measurement.
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Linear response regime: limitations on the amplitude of the
source current

Ohm’s law (A.2) implies that the voltage drop across the sample is directly proportional to
the current, with a constant of proportionality determined by the resistance. While there
may be higher-order resistivity terms that are intrinsic to the sample that lead to non-Ohmic
behavior, i.e. terms which are proportional to I3, I5, etc, it is more often the case that the
dominant source of non-Ohmic behavior is extrinsic to the sample. In addition, for the
most part we are interested in the linear response in resistivity measurements. Typically,
the linear response regime occurs in the limit of small drive currents. Nonlinear response
at higher drive currents often results from Joule heating, which effectively places an upper
limit on the operating drive current of resistance measurements. A characteristic example
illustrating this principle is given below.

Test resistor example: linear response at low currents and nonlinearity from
Joule heating

As an illustrative example, the current-voltage characteristics of a 1.5 Ω carbon test resistor
at room temperature are shown in Fig. A.5. As expected, at low currents the measured
voltage obeys Ohm’s law and is almost perfectly proportional to the applied current, with a
constant of proportionality of 1.488 Ω, giving a measured resistance that is well within the
manufacturer’s 5% tolerance. At higher levels of current, the characteristics become severely
nonlinear, deviating from Ohm’s law. Based on these measurements, if one were to apply too
large of a measurement current, the value of V/I would severely underestimate the actual
resistance of the sample as highlighted in Fig. A.5B. These measurements illustrate the fact
that the resistance of a sample can only be accurately determined when the source current
is sufficiently low such that V is linear in I.

Using a simple model, we can attribute the non-Ohmic nonlinearity at higher values of
applied current to current-induced heating of the sample. An applied current will Joule heat
the sample by inducing a power of P = I2R. Assuming that all of this power goes into
the sample itself (a rough approximation), this will cause the temperature of the sample to
rise by ∆T = P/C, where C is the heat capacity of the sample. Because the resistance
of any material is temperature-dependent, this temperature rise in turn induces a change
in the resistance of the sample. For this example, a carbon resistor, i.e. an insulator, the
resistance has a characteristic temperature dependence of the form R(T ) = AeB/T , where
A,B are material-specific constants of proportionality. As a result of Joule heating, the
voltage-current relationship becomes

V = IR = I

[
A exp

(
B

T0 + I2R0/C

)]
, (A.16)

where T0 andR0 are the nominal temperature and resistance of the sample without an applied
current. In Fig. A.5, we see that Eq. A.16 qualitatively captures the nonlinear behavior of V
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Figure A.5: Representative current-voltage characteristics of a 1.5 Ω (±5%) test
resistor A Shows the measured voltage drop across the resistor as a function of drive
current. The blue line is experimental data. At low currents, Ohm’s law is well-obeyed and
the voltage is almost perfectly linear in current with a constant of proportionality of 1.488 Ω,
a measured resistance that is within 1% of the nominal resistance value of the test resistor,
as illustrated by the gray dashed line. Considerable nonlinearity onsets at higher current
levels. The overall behavior seen in the experiment across both regimes is reasonably well-
described by considering the effects of Joule heating, which induce nonlinearity primarily
at higher current levels (see text). B Same as panel A, but the y-axis is current divided
by voltage. The plateau behavior at low current levels highlights the almost perfect linear
response of voltage versus current at low currents, which gives the actual resistance of the
sample. In the nonlinear regime at higher current levels, the value of current/voltage severely
undershoots the actual resistance of the sample. Resistance measurements on this sample
should be conducted in the green region, where the effects of Joule heating are minimized.
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vs I at high drive currents; the curves shown in the figure are fits to the data where A,B,C
are free parameters. More intuition about the effect of heating can be gained by expanding
Eq. A.16 in orders of current.

V = IR0 − I3

[
BR2

0

CT 2
0

]
+O(I5). (A.17)

The addition of heating results in higher-order terms that reduce the voltage relative to
the expectations of straightforward Ohm’s law without heating (V = IR0). This type of
sublinearity is observed in the experiment as seen in Fig. A.5.

The example shown above is essentially representative of almost all resistance measure-
ments of real samples. Specific details may change (for example the overall behavior of the
non-linear regime) depending on whether the sample is metallic or insulating, but overall
most samples have the following features. They show linear, Ohmic current-voltage charac-
teristics in the limit of zero current (where the proportionality is determined by the actual
sample resistance), which transitions to a non-Ohmic regime at high values of current (where
extrinsic effects such as Joule heating come into play). Resistance measurements should be
carried out in the Ohmic regime at sufficiently low values of current, where the measured
resistance is independent of the drive current (the green regions of Fig. A.5).

In principle, the threshold current between the linear and nonlinear regimes may change
during the course of a measurement, let’s say at different temperature or magnetic fields.
The current-voltage characteristics should in theory be determined at each specified mea-
surement condition. In practice, this process is too slow, and typically the current-voltage
characteristics are only checked at the start of the measurement and a sufficiently low drive
current well within the Ohmic regime is selected. The current-voltage characteristics can be
periodically checked over the course of the measurement to ensure a low enough current is
being used throughout.
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Measuring the voltage induced by a drive current using lock-in
amplification

Finally, we address the issue of actually measuring the voltage drop across the sample induced
by the drive current. The most straightforward method is to source a DC current, and
measure the voltage drop with a voltmeter (for example a Keithley 2100 digital multimeter).
The issue with DC measurements is that the DC voltages of different nodes in the circuit
may drift relative to one another due to, for example, ground loops or an imperfect ground
reference. In addition, these measurements generally have relatively low sensitivity, and are
unsuitable for measurement of low signal samples. The next best method is to use some
sort of ‘effective’ AC method, where a negative and positive DC current pulse are applied
to the sample in quick succession, and the DC voltage drop across the sample is measured
in each case and averaged (such a setup is possible with a Keithley 6221 current source in
conjunction with a Keithley 2182A nanovoltmeter).

However, the state-of-the-art, highest sensitivity method to measure the voltage induced
by a drive current across a sample is by using lock-in amplification techniques. In this
setup, a relatively low-frequency drive current, in the range of 1 Hz - 1 MHz is sourced
through the current leads, and the output voltage on the sense leads is demodulated with
a reference oscillator at the same frequency of the drive current. The demodulated voltage
may have components that are in-phase and out-of-phase with the drive current — each
of these can be separately demodulated in modern lock-in amplifiers. In a purely resistive
measurement, the demodulated voltage only has an in-phase component (as we will discuss
later), which can be used to recover the resistance of the sample (R = Vin−phase/I). In this
case, what is meant by low-frequency drive current is that the frequency is low with respect
to the characteristic timescale of the electronic response of a material (which is typically
in the THz regime — electrons move very fast!). Thus, this technique gives effectively a
measurement of the electrical response of the sample in the zero frequency limit. There are
two main reason that a low, but finite frequency excitation is used in these measurements.
First, sources of pesky DC offsets in the measurement circuit do not need to be corrected
for. Second, low-frequency demodulation typically results in very high signal-to-noise ratios
— on general grounds much higher than any sort of DC measurement technique.

Limitations on drive frequency

There is one main limitation to using the AC modulation/lock-in amplification technique to
measure the resistance of a sample. In particular, the drive frequency must be carefully se-
lected to be in a regime where the demodulated voltage is independent of drive frequency over
an extended range. This is because, at least over the relatively low frequency ranges of these
measurements, we do not expect resistive samples to have an intrinsic frequency-dependence
to the conductivity. Frequency-dependence generally comes from extrinsic sources of reactive
components in the measurement circuit, which obscure the actual resistance measurement
of the sample itself.
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We can understand the above condition by considering the measurement circuit using a
lumped-element model. Assuming we are using the 4-terminal technique, the resistance (R)
is the sample. The cabling leading to the sample and the electrical contacts on the sample
(the joint where the electrode is in electrical contact with the sample surface), induce an
inductance (L) and capacitance (C) in the circuit. The capacitance might represent, for
example, the interface between the sense terminal and the sample itself, where sometimes
the oxidized surface of the sample creates a dielectric barrier. The inductor in the lumped el-
ement circuit describes features like the self-inductance of the cabling and connectors leading
up to the sample platform.

The total impedance of this lumped element circuit is

Z = R + iωL− i 1

ωC
, (A.18)

where ω is the frequency at which the circuit is driven. Two things are fairly apparent from
this. The imaginary components which lead to an out-of-phase response in the detected
signal, are primarily determined by the inductive and capacitive elements in the circuit.
If the sample resistance is the only impedance present in the circuit, the response will be
completely in-phase with the drive current. Finally, inductive and capactive components are
responsible for the frequency-dependence of the signal in this model. The resistance should
have a completely frequency-independent response.

Resistance measurements should therefore be carried out in a frequency regime where
the out of phase signal is close to zero. Typically, this occurs in a frequency window in
which the detected signal is independent of frequency. When the phase is significant, or
the out-of-phase voltage is comparable to the in-phase voltage signal, the capacitance and
inductance of circuit elements extrinsic to the sample are present in both the in phase and
out of phase responses, and the resistance can not be recovered from either the in-phase or
out-of-phase signals without a priori knowledge about the values of L and C. The bottom
line is that if the phase is not close to zero, the results of the measurement do not reflect the
resistance of the sample.
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Transport measurements in pulsed magnetic fields

Shown in Fig. A.7 is the circuit diagram of the 4-point resistance measurement in pulsed
magnetic fields. An AC voltage of 2V is supplied by a digital source, and sent through a
resistor of variable value to generate the desired current. This current is DC isolated from
the rest of the circuit by a transformer. A 10Ω resistor at room temperature is wired in series
with the rest of the circuit, and the voltage over this element is measured separately during
the course of the pulse to monitor the current level. The current is fed through the sample,
at which point the resulting voltage drop across the sample is measured by the standard
4-point technique. The samples wired for pulsed field measurement look quite similar to the
samples described in the previous sections. The one difference is, because the change in flux
around the cabling and sample is so large, it is beneficial to decrease the loop area of the
circuit which is exposed to the magnetic field to minimize inductive pickup during the field
pulse. Therefore, twisted pair wires are attached as close to the sample as possible (Fig. A.6.

The resulting sample signal is digitized at about a 16 MHz clock rate, and lock-in detec-
tion is done in post processing. In order to get sufficient density of data points during the
100 ms field pulse to perform demodulation, the frequency of the drive current needs to be
relatively high, on the order of 100 kHz to 1 MHz. At these frequencies, parasitic inductance
becomes problematic, so it is rather important that the sample contacts have a low contact
resistance (ideally less than 100Ω).

Figure A.6: Image of a sample mounted on a substrate wired with twisted pair
for pulsed field measurements The device sits at the center of the gold square with
contacts lithographically defined by the focused ion beam. Insulated copper wires of 0.001
inch diameter are twisted by hand. The insulation is stripped off at the ends, and electrical
connection is made to the subtrate with silver epoxy. GE varnish (orange) provides structural
stability so that the wires can be manipulated into position freely without damaging the
sample contacts.
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Figure A.7: Pulsed field measurements A diagram of the circuit during pulsed field
measurements. All wiring is done with twisted pairs in order to minimize inductive pickup
during the field pulse.
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