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ABSTRACT OF THE DISSERTATION

Exploration of the Synergy between Computational Mechanics and Robotics

for Slender Structures

by

Dezhong Tong

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2023

Professor Mohammed Khalid Jawed, Chair

Slender structures, widely found from natural environments (e.g., tendrils) to engineering

applications (e.g., flexible electronics), frequently experience geometrically nonlinear defor-

mations and substantial topological changes when exposed to simple boundary conditions or

modest external stimuli. On one hand, the nonlinear dynamics of slender structures present

considerable challenges for the automated manipulation of these structures by robots. On

the other hand, the automated interactions between robots and such structures also open up

opportunities to enhance our understanding of the mechanics governing slender structures.

This dissertation focuses on the synergy between computational mechanics and robotics for

the manipulation and study of slender structures. Specifically, it delves into discrete differ-

ential geometry (DDG)-based simulations, an emerging field in computational mechanics,

to develop a comprehensive sim2Real manipulation framework for generating task-oriented

deformable manipulation strategies. Moreover, we conduct automated experiments to gain

valuable insights into the behavior of slender structures. Our contributions can be catego-

rized into three main areas:
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First, we develop a penalty-energy-based method and combine it with Kirchoff rod’s

theory to simulate rod assemblies with frictional contact responses. Our simulation method

is validated, demonstrating its robustness, accuracy, and efficiency across diverse scenarios.

These scenarios include modeling flagella bundling, a significant biological phenomenon for

bacterial navigation, as well as tying knots. These numerical validations underscore the

potential of our approach as a significant step toward the ultimate goal of a computational

framework for sim2real manipulation tasks. We then combine our numerical framework with

desktop experiments to investigate the mechanics of various types of knots.

Second, we combine DDG-based simulations, scaling analysis, and machine learning to

develop a sim2Real framework for various deformable manipulation tasks, including paper

folding and the deployment of deformable linear objects onto rigid substrates. Our sim2Real

framework harnesses the precision of physical simulations, the rapid inference capabilities of

neural networks, and the enhanced adaptability conferred by scaling analysis. This synergy

yields robust, accurate, and efficient solutions for these manipulation tasks. In the paper

folding task, a physics-informed model is learned using scaled simulation data, enabling

the creation of a model predictive control system for precise paper folding. We validate

the effectiveness of this physics-based approach through extensive robotic experiments. In

addition, we construct a physics-informed manipulation policy within the same framework for

the deployment task. This policy proves to be robust, accurate, and efficient in controlling the

shape of various deformable linear objects during deployments. Furthermore, we demonstrate

the potential of this deployment scheme in various engineering applications including cable

management and knot tying.

Finally, we delve into the application of automation science to explore the nonlinear

mechanics of slender structures. Traditional experimental platforms (e.g., optical platforms)

struggle to systematically capture the numerous boundary conditions and corresponding

equilibriums of slender structures. To address this challenge, we’ve designed a robotic system

for automated experiments. This system allows us to investigate one of the fundamental
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problems in solid mechanics: the buckling of an elastic rod with a helical centerline. We

answer this problem with a combination of theoretical analysis, numerical simulation, and

automated robotic experiments. Then, significant advances are made in understanding this

phenomenon, uncovering different buckling types within this system, including continuous

buckling and snap buckling. Given the distinct behaviors of these two types of buckling, our

exploration is particularly meaningful in demonstrating how various buckling can be triggered

within a single system. Our automated robotic experiments highlight the potential of robotic

technology in advancing our understanding of mechanics through intelligent interactions with

the physical world.
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CHAPTER 1

Introduction

Elastic slender structures are three-dimensional objects characterized by at least one dimen-

sion vastly exceeding the others. This can include objects like rods (length ≫ width ∼

thickness) and plates (length ∼ width ≫ thickness) [1]. Due to their distinctive geometry,

these slender structures find widespread application in many practical scenarios. Some ex-

amples include surgical suturing [2], sailing knots [3], packaging [4], and soft robotics [5].

However, due to their unique geometry, these structures usually exhibit large geometrically

nonlinear deformation even under moderate external forces. Manipulation of those elastic

structures becomes a challenging and attractive problem in robotics.

Many human-engineered systems, e.g., soft robots, knots, and knitted structures, are

constructed from thin deformable objects. These entities possess mechanical versatility that

is impossible with rigid bodies, endowing them with huge potential in robotics. Nonetheless,

acquiring novel manipulation skills to actuate or maneuver these objects is still significant

even though the robotic manipulation of rigid objects has made great strides, and mature

methods have been created [6]. Therefore, a robust and efficient strategy is required to

augment our comprehension of these slender deformable structures. Prior efforts to simulate

deformable structures mainly focused on Finite Element Method and voxel-based discretiza-

tion. Discrete differential geometry (DDG), an emerging mathematical discipline prevalent

in the computer graphics community, is well-suited for constructing robust, efficient, and ac-

curate numerical frameworks for modeling elasticity [7]. Building upon existing DDG-based

numerical frameworks, we expand their applicability within computational mechanics. This
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numerical framework is later used to deepen our insight into the nonlinear deformations

of various elastic structures with complicated topologies. Our relevant research validates

the precision and robustness of the designed DDG-based simulator, simultaneously offering

profound insights into the behavior of elastic structures with intricate topologies. This ef-

fort paves the way for exploring the practical utility of such structures within the realm of

robotics.

In the robotics community, one of the keys to the robotic manipulation of deformable

objects is to construct a mapping from observations of manipulated objects to the robot’s

action space [8]. This necessitates the development of a reliable model that serves as the

robotics knowledge base. Prior efforts usually focus on reproducing this correlation through

exhaustive human-made demonstrations, which is usually inefficient and inadequate when

faced with myriad potential deformations [9, 10, 11]. Given the robustness and physical

precision of our designed DDG-based simulators, this study introduces a novel framework.

This framework combines physically accurate simulations, scaling analysis, and machine

learning techniques to forge predictive models aimed at advancing deformable manipulation

skills. The synergy of those components benefits the combined framework from the physical

predictive accuracy of the DDG simulator, compact mapping through scaling analysis, and

the high inference speed of the neural network. We later demonstrate the efficacy of such

combined frameworks in multiple challenging deformable manipulation tasks including paper

folding and shape controlling of deformable linear objects.

In addition to the development of manipulation skills, there exists a parallel fascina-

tion among researchers for slender structures with controllable compliant properties. These

structures adhere to physical principles dictating their elastic deformations, thereby allowing

for interpretable mappings between deformations and applied external forces or boundary

conditions. Such mappings have proved valuable for innovative engineering applications.

For instance, soft actuators are designed based on the elastic instability inherent in such

structures [12], a phenomenon wherein stored elastic energies rapidly convert into kinematic
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energy. However, deriving such mappings solely through simulations is often challenging.

Traditional mechanical experiments usually require extensive manual labor and often fail to

encompass the full spectrum of deformation scenarios. Herein, the introduction of robotic

systems capitalizes on their automation and dexterity to collect experimental data, enabling

an exhaustive exploration of elastic structure mechanics. During my Ph.D. study, I show-

cased the capabilities of robotics to solve a challenging fundamental solid mechanics problem

experimentally. This research trajectory illuminates the potential of integrating robotic tech-

nology into AI4sicence research.

1.1 Discrete Elastic Rods (DER)

The origins of rod theory trace back to the 18th century when Euler and Bernoulli pro-

posed simple one-dimensional beam models. Building upon their foundation, Kirchhoff and

Cosserat extend and generalize these concepts in the 19th century. Recently, researchers in

computer graphics communities developed a fast DDG-based simulator known as Discrete

Elastic Rods (DER) [13, 14]. This simulator is adept at capturing the intricate nonlinear

deformations inherent in elastic rods. Here, we provide a brief overview of the fundamental

formulations of this physically precise DDG-based simulation approach.

As shown in Fig. 1.1a, an elastic rod can be discretized into N + 1 nodes: x0, x1, ...,

xN , and N edges: e0, e1, ..., eN−1. These edges are related to nodes as ei = xi+1 − xi for

0 ≤ i ≤ N−1. Hereafter, we denote node-related quantities with subscripts and edge-related

quantities with superscripts. Each edge, ei, is associated with two orthogonal frames: a

material frame [mi
1, mi

2, ti] and a reference frame [di
1, di

2, ti], as illustrated in Fig. 1.1b. Both

frames share the same tangent ti = ei/∥ei∥. The reference frames are arbitrarily initialized

at initial time t = 0s, and their updates at each time step are performed using time parallel

transport [14]. The material frame, utilized for evaluating the rod’s centerline rotation, is

derived by rotating the reference frame along the shared tangent direction ti by a rotation
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(a) Discrete schematic of an elastic rod. Nodes x0, x1, ..., xN express the
centerline of the rod

(b) A zoomed-in snapshot of two edges showcasing their reference frame,
material frame, turning angles, and twist angles.

Figure 1.1: Discrete schematic of a rod and its relevant notations.

angle θi, as shown in Fig. 1.1b. Detailed information on the DER algorithm can be found

in Ref. [13, 14]. Here, the collective discrete nodal positions xi and rotation angles θi are

employed to construct a degree of freedom (DOF) vector of size 4N + 3 to represent the

rod’s configuration:

q =
[
x0, θ0, x1, ..., xN−1, θN−1, xN

]T
. (1.1)

where T is the transpose operator.

Based on DER [13, 14], the strains of a deformed rod can be divided into three categories,

each corresponding to a distinct type of elastic energy: stretching, bending, and twisting.
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Within the DOF vector q, we can outline the elastic strains and energies of the rod to

construct equations of motion (EOM). First, the stretching strain of an edge is:

ϵi = ∥e
i∥

∥ẽi∥
− 1. (1.2)

Hereafter, quantities with a (̃·) indicate the undeformed status, e.g. ∥ẽi∥ is the undeformed

length of the i-th edge. To capture the bending strain, a curvature binormal vector is

introduced, representing the misalignment between consecutive edges:

(κb)i = 2ei−1 × ei

∥ei−1∥∥ei∥+ ei−1 · ei
. (1.3)

The norm of this vector, ∥(κb)i∥ = 2 tan(ϕi/2), represents the curvature magnitude,

where turning angle ϕi is the angle of rotation between consecutive edges which can be seen

in Fig. 1.1b. The material curvatures are then determined by the inner products between

the curvature binormal vector and the material frame directors [mi
1, mi

2]:

κ1
i = 1

2(mi−1
2 + mi

2) · (κb)i,

κ2
i = −1

2(mi−1
1 + mi

1) · (κb)i.
(1.4)

Finally, the twisting strain of an edge is

τi = θi − θi−1 + ∆τ ref
i , (1.5)

where ∆τ ref
i is the discretely integrated reference twist, which can be obtained through the

parallel transport between two neighboring reference frames.

Given the elastic strains, the expressions for the elastic energies of a rod can be formulated
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as

Es = 1
2

N−1∑
i=0

EA(ϵi)2∥êi∥, (1.6a)

Eb = 1
2

N−1∑
i=1

1
∥ei∥

[
EI1(κ1

i − κ̂2
i )2 + EI2(κ2

i − κ̂2
i )2
]

, (1.6b)

Et = 1
2

N−1∑
i=1

1
∥ei∥

GJ(τi − τ̂i)2, (1.6c)

where A is the rod’s cross-sectional area; E is Young’s modulus; G is the shear modulus; J

is the geometrical factor of the torsional rigidity which is equal to the second polar moment

of the area along the tangent ti when the cross-section is circular, and I1 and I2 are the

second moments of the area along the material frames mi
1 and mi

2, respectively.

At each degree of freedom qi, the elastic forces (associated with the node-relevant quan-

tities) and elastic moments (associated with edge-relevant quantities) are:

F int
i = −∂(Es + Eb + Et)

∂qi

, (1.7)

where j is an integer from 0 to 4N + 3.

To numerically solve the equations of motion and update the DOF vector q and its

velocity v = q̇ from time step tk to tk+1 = tk + ∆t, implicit Euler integration is employed:

R(q) ≡ M
∆t

(
q(tk+1)− q(tk)

∆t
− q̇(tk)

)
− Fint − Fext = 0, (1.8a)

q̇(tk+1) = q(tk+1)− q(tk)
∆t

, (1.8b)

where M is a square lumped mass matrix of size 4N + 3; Fint is a (4N + 3)× 1 elastic force

vector (from Eq. 1.7), and Fext is a (4N + 3) × 1 external force vector. The ˙( ) operator

represents the derivative of a quantity with respect to time, i.e., q̇(tk) is the velocity vector

at time tk. Note that the subscript in Eq. 1.8 is the time stamp. We can solve Eq. 1.8 with
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Newton’s method for the nonlinear dynamics of a rod over time accurately.

In summary, DER is formulated based on the classical Kirchhoff theory and discrete

differential geometry, e.g., the curvatures of a rod centerline give the elastic bending energies,

and the internal elastic forces required by equations of motion are derived from the energies

in a discrete format. Given the accurate treatments of elasticity, DER’s physical accuracy

is validated in many prior works. Some instances include coiling of elastic rods on a moving

belt [7], buckling of rotating flagella in the fluid [15], instability of rods [16] and plates [17],

analyzing the motions of soft robots [12], and etc. Our research commences within the well-

established DER simulation and advances: in Ch. 2, we develop a novel implicit frictional

contact framework, augmenting DER algorithm for simulating rod assemblies in contact

accurately; in Ch. 3, we leverage our augmented DER algorithm to delve into the mechanics

in knots; in Ch. 4, we harness insights gathered from DER to develop a learned model for

completing a challenging task in robotics – folding paper; in Ch. 5, we construct a robust

robotic deployment scheme for controlling the shape of deformable linear objects with the

help of DER; in Ch. 6, we use DER simulation to guide a 7 DOF robotic arm to explore the

buckling of an elastic rod with helical centerline.

1.2 Outline of the Thesis

This chapter introduces the well-established numerical tool for simulating the nonlinear

dynamics of rods that serves as the main research objective of this Thesis. We explore the

nonlinear dynamics of rods and propose different avenues to manipulate & study them with

robotics. Subsequent chapters present the extensions and applications of the DER method for

investigating the synergy between computational mechanics and robotics for slender elastic

structures. The main contributions of this thesis are as follows:

Ch. 2 delineates the Implicit Contact Model (IMC), a fully implicit frictional contact

model we designed. IMC is designed based on Coulomb’s friction law, capable of enforcing
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non-penetration constraints and approximating Coulomb friction ideally for contacting bod-

ies. Given the significance of frictional contact in real-world scenarios, this work is crucial

to predict and understand the nonlinear behaviors of slender elastic structures in which fric-

tional contact occurs. We simulate several challenging frictional contact scenarios pertaining

to rods such as tying an overhand knot and flagella bundling. The physical accuracy of IMC

is validated in knot-tying scenarios, and the computational efficiency of the IMC is proved by

comparing IMC to a state-of-the-art frictional contact framework. IMC emerges not only as

robust, efficient, and precise in addressing frictional contact, particularly in rod assemblies

but also as an indispensable tool in the mechanics study of slender elastic structures. It lays

the foundation for exploring robust Sim2Real task-oriented robotic manipulation strategies,

recognizing the importance of frictional contact in practical scenarios.

Ch. 3 focuses on the mechanics of knots. Knots are complex geometric configurations

formed by slender elastic rods in self-contact. These structures serve a versatile array of

applications in our daily lives, ranging from practical (securing shoelaces) to decorative

applications (Chinese knotting). Due to the self-contact and complex topology, the knot

can have extreme nonlinear behaviors under manipulation. Through a combined study that

includes the simulations expounded in Ch. 2 and desktop experiments, we explore various

unique tightening behaviors of some fundamental but popular knots in daily lives, including

the snap buckling in an overhand knot induced by the simple pulling boundary conditions

and the various motion patterns of a tightening fisherman’s knots. The finding of knots

strengthens our understanding of the knot’s nonlinear behaviors and sheds light on handling

knotted structures with automation science.

Ch. 4 addresses a challenging deformable manipulation task in robotics – folding pa-

per. Paper proves resistant to manipulation due to its high bending stiffness and slippery

surface. In this context, we combine physically accurate simulation, scaling analysis, and

machine learning to forge a reduced-order model primed for predicting the paper’s vari-

ous states. The learned model derives its robust physical accuracy from the underpinning
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physically precise simulations, boasts accelerated inference speeds courtesy of the computa-

tional efficiency of the machine learning component, and boasts a generalizable framework

rooted in scaling analysis. We proceed to craft a closed-loop control system by harmoniz-

ing the acquired model with a perception algorithm. Subsequently, this closed-loop control

scheme finds application in a series of robotic experiments, thereby vividly demonstrating

the efficacy of our control strategy. Furthermore, we extend our analysis by contrasting our

meticulously devised optimal control scheme with a state-of-the-art folding approach [18],

effectively showcasing the unequivocal superiority of our proposed scheme.

Chapter 5 states a novel neural controller designed for deploying deformable linear ob-

jects (DLOs) onto rigid substrates, following diverse and viable patterns. Deploying DLOs is

instrumental for controlling the shape of a DLO in the practical world, e.g., drawing or writ-

ing on cakes with icing [19], deploying marine cables [20], depositing carbon nanotubes [21],

and melting electrospinning for advanced manufacturing [22]. A meticulous examination of

the deployment task is conducted, entailing a comprehensive physical analysis. This anal-

ysis enables us to identify the optimal robotic grasp, which is pivotal in mitigating the

substantial nonlinear deformations and buckling tendencies inherent in manipulating DLOs.

Subsequently, a neural controller is formulated, drawing upon numerical simulation, scaling

analysis, and machine learning. The efficacy of our developed controller is validated across

a spectrum of deployment tasks, effectively demonstrating its versatility and adaptability.

Furthermore, we highlight its potential by realizing two practical applications: cable manage-

ment and knot tying. These real-world scenarios underscore our proposed neural controller’s

tangible utility and broad applicability in tangible contexts.

Ch. 6 explores the usage of robotics technology in solid mechanics study. Given the slen-

derness of rods, it can have a lot of unexplored behaviors, for example, buckling with some

specific boundary conditions. Here, we look into a fundamental mechanics problem: when

an elastic rod with helical centerline buckles and how it buckles. This problem is especially

challenging when we try to do the experimental study since the required boundary condi-
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tions should have multiple (6) controllable degrees of freedom and the potential boundary

conditions are numerous. Here, we propose to leverage the automation and dexterity of

robots to study this problem. We use a combined theoretical analysis and simulations to

find that the buckling points of an elastic rod with a helical centerline, and then we design

an automated robotic experimental system to study the buckling types of the system. The

robotic experiments show high robustness and accuracy in this project, which paved the path

for using automation science for studying unknown physics in various systems.
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CHAPTER 2

A Fully Implicit Frictional Contact Framework

Accurate modeling of frictional contact is crucial for simulating the assembly of rod-like

structures in real-world applications, including knots, hairs, flagella, and more. Due to

their high geometric nonlinearity and elasticity, achieving accurate rod-on-rod contact re-

mains challenging for researchers in both computational mechanics and computer graphics.

Typically, frictional contact is treated as a constraint in a system’s equations of motion.

These constraints are usually computed independently at each time step during dynamic

simulations, potentially slowing down the simulation and leading to numerical convergence

issues. In this work, we propose a fully implicit penalty-energy-based frictional contact

method known as the Implicit Contact Model (IMC). This approach efficiently and robustly

captures accurate frictional contact responses. We demonstrate the performance of our al-

gorithm in two distinct scenarios: flagella bundling and knot tying. Flagella bundling is

a novel and complex contact phenomenon in biology, inspiring potential engineering ap-

plications in soft robotics [23]. We provide a side-by-side comparison with the Incremental

Potential Contact (IPC), a state-of-the-art contact handling algorithm [24], to illustrate that

IMC achieves similar physical accuracy while converging faster. Regarding knot tying, we

simulate the tightening process of an overhand knot and validate our approach’s physical

accuracy against knot theory as outlined in Audoly et al. [25] and Jawed et al. [26]. The

simulator we develop is employed in Ch. 3 to explore the mechanics of knots.

The underlying motivation is in § 2.1. The numerical framework is detailed in § 2.2.

Then, the results and discussions are stated in § 2.4. Next, we give the conclusions in § 2.6.
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The content of this chapter is from Ref. [27].

2.1 Motivation

Throughout the course of human history, the significance of flexible filamentary structures

has been deeply ingrained in human society, serving multiple purposes ranging from fastening

and sailing to climbing, weaving, and hunting. As our comprehension of material properties

advanced, so too did our capacity to engineer rods with heightened material characteristics,

encompassing qualities like flexibility, strength, and resilience. This evolution has intensi-

fied the need to investigate and gain a more profound understanding of filaments’ intricate

mechanics.

However, conducting real-world experiments for such investigations often proves tedious

and costly. This implies the increasing demand for accurate physics-based numerical simu-

lations that can accurately replicate real-world behavior.

Discrete Elastic Rods (DER), which has emerged from the computer graphics commu-

nity [13, 14], excels in capturing the nonlinear dynamics of rod-like structures. Several prior

studies have sought to unravel the mechanics of rod-like structures through DER, encom-

passing areas such as rod deployment [7, 28, 15], elastic gridshells [29, 30, 31], and the

propulsion of bacterial flagella [32, 33, 34]. However, a comprehensive understanding of

frictional contact handling remains an area that requires further exploration.

Frictional contact formulations are usually diverse and based on the scaling of the system

and/or the physical scenario. This chapter focuses on Coulomb friction, a suitable approx-

imation of dry friction. Coulomb friction emerges as a standard in non-cohesive contact

due to its simplicity and empirical accuracy. It finds extensive application across various

engineering domains, including contact in elastic structures, simulations involving granular

media, and more.

The mainstream of creating a frictional contact handling framework can be divided into
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three categories: impulse methods, constraint-based optimization methods, and penalty en-

ergy methods. Impulse methods determine contact forces based on the required impulse to

prevent rod segments from penetrating, with an example being the impulse force model by

Ref. [35]. However, these methods can result in unrealistic visual jittering during simulations

with large time steps [36]. Therefore, impulse methods often suffer from a trade-off between

physical accuracy and time efficiency.

Constraint-based methods regard frictional contact as a constrained optimization prob-

lem. Jean and Moreau [37, 38] implemented convex analysis to propose using unilateral

constraints to solve dry friction in granular media initially. Then, Alart and Curnier [39]

implemented a Lagrange multiplier for solving constrained-based contact dynamics as a root-

finding problem for nonsmooth functions. In computer graphics, Daviet et al. [40] combined

an analytical solver with the complementary condition from [39] to capture Coulomb fric-

tion in elastic fibers. In Ref. [41], the algorithm from [40] was incorporated with a nonlinear

elasticity solver to simulate frictional contacts in assemblies of Discrete Elastic Rods [13, 14].

Based on previous work, Daviet [42] proposed a general constraint-based framework for sim-

ulating contact in thin nodal objects. Constraint-based methods treat frictional contact as

a constrained optimization problem, which can yield realistic results but is more complex to

implement than impulse or penalty methods. An additional drawback of constraint-based

methods is that the frictional contact responses usually are treated as independent unknown

variables of the system so the computation costs increase because of the expanded system.

The penalty energy method utilizes a formulated artificial contact energy whose gradient

can be regarded as the frictional contact responses. Since he contact energy is usually

obtained from the deformed configurations of the rod directly, the penalty energy method

has a simpler mathematical formulation compared to the constrained-based algorithm. Given

the differentiability of the contact energy, a second-order optimization is usually implemented

to solve the rod assemblies with frictional contact [24, 36, 3]. These methods have become

popular recently since they have shown the capabilities of generating accurate frictional
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contact responses with the appropriate formulated contact energies. Given the simplicity

of the formulation and efficient computation, we decided to develop our frictional contact

handling framework with penalty-based energy methods.

In this Chapter, we present the Implicit Contact Model (IMC) as a fully implicit penalty-

based contact model integrated into the DER framework. IMC enhances the simulation of

rod assemblies in frictional contact, demonstrating robustness, efficiency, and accuracy. To

assess the efficacy of IMC, we juxtapose it with the state-of-the-art penalty-energy-based

algorithm for managing frictional contacts, known as IPC [24]. Our findings reveal that

IMC achieves a comparable level of physical accuracy to IPC while also demonstrating

superior computational efficiency. Augmented with IMC, the DER algorithm facilitates

advanced mechanical studies, such as intricate structures like knots (as explored in Ch. 3).

Moreover, it broadens the horizon for sim-to-real manipulation of deformable objects, a

concept elaborated in Chs. 4 and 5.

2.2 Numerical Framework

In this section, we present the details of constructing a penalty-based energy formulation

for computing Coulomb friction. Our formulation directly links frictional contact responses

with the rod’s configuration, enabling us to compute these responses based on the current

deformation of the rod.

To describe an edge-to-edge contact pair, we use vector concatenation denoted as xij :=

(xi, xi+1, xj, xj+1) ∈ R12, where |j−i| > 1 excludes consecutive edges when enforcing contact,

as illustrated in Fig. 2.1. We use a cylinder as the contact mesh for a discrete edge in DER

(Discrete Elastic Rod). Lumelskey’s algorithm [43] calculates the minimum distance ∆

between two discrete edges. We denote the set of all valid edge combinations as X . In

subsequent equations, we represent the subscriptless x as an arbitrary edge combination for

clarity.
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xi
xi+1

xj+1

xj

cj

ci

h

Figure 2.1: Discrete schematic of one contact pair. The green dots showcase the nodes of
the edges while the green dashed lines denote the centerlines of the edges. The red dashed
line denotes the vector ∆⃗ whose norm is the minimum distance ∆ between the edges. ∆⃗ is
connected to edges i and j by ci = xi + βi(xi+1 − xi) and cj = xj + βj(xj+1 − xj) where
βi, βj ∈ [0, 1]. As ∆ approaches the contact threshold 2h, repulsive forces increase at an
exponential rate, thus enforcing non-penetration.

We design a contact energy function E(∆(x)) that increases as the minimum distance

∆ between two bodies approaches a contact threshold (2h for our application, with h being

the rod radius). The gradient of the contact energy −k∇xE(x) ∈ R12 serves as the contact

forces, while the Hessian of the contact energy −k∇2
xE(x) ∈ R12×12 functions as the contact

force Jacobian. Here, k is the contact stiffness, which appropriately scales the contact forces

to enforce non-penetration. In the following sections, we will detail the formulation of contact

energy E(∆(x)), the minimum distance between two edges ∆(x), and address the topic of

friction.
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Figure 2.2: Plots for Eq. 2.2 with varying distance tolerance δ values.

2.2.1 Contact Energy Formulation

In an ideal setting, contact energy must satisfy two properties: (1) it equals zero for any

distance ∆ > 2h and (2) it becomes non-zero precisely at distance ∆ = 2h. These prop-

erties can be effectively described using a Heaviside step function. However, this function

is non-smooth and exhibits a sudden, discontinuous change in value, making it unsuitable

for root-finding algorithms like Newton’s method. Now, let’s revisit the formulation of IPC

(Incremental Potential Contact), which represents the state-of-the-art framework for han-

dling frictional contact [24]. To approximate Coulomb friction smoothly, IPC employs the

following energy formulation:

EIPC(∆, δ) =


−(∆− (2h + δ))2 ln

(
∆

2h+δ

)
, ∆ ∈ (2h, 2h + δ)

0 ∆ ≥ 2h + δ,

(2.1)
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where δ is the distance tolerance that defines the region (2h, 2h + δ) for which non-zero

forces are experienced. As ∆ decreases towards 2h, the contact energy approaches infinity,

rendering it undefined for ∆ ≤ 2h. While this barrier formulation in IPC effectively enforces

non-penetration, it’s critical for the solver to avoid any contact pairs entering the penetration

zone or reaching the undefined region during the optimization process. This is achieved

through a custom line search method that conservatively sets an upper limit for the Newton

update coefficient α.

In contrast to this, our energy formulation is designed to permit optimization into the

penetrated region, expanding the range of contact forces from ∆ ∈ (2h, 2h + δ) to ∆ ∈

(0, 2h + δ). This extension allows us to use more aggressive line search methods, resulting

in faster convergence, particularly for the some complex rod assemblies simulation problem,

e.g., flagella bundling. While this theoretically makes our model susceptible to penetration,

we address this concern by ensuring a sufficient contact stiffness parameter k. We describe

a method for adaptively setting an appropriate stiffness value in § 2.3.3. Additionally, to

enhance non-penetration enforcement, we take the energy formulation from Ref. [36] and

square it, causing our gradient to grow exponentially rather than linearly. Therein, our

smooth approximation is:

E(∆, δ) =



(2h−∆)2 ∆ ∈ (0, 2h− δ](
1

K1
log(1 + exp(K1(2h−∆)))

)2
∆ ∈ (2h− δ, 2h + δ)

0 ∆ ≥ 2h + δ,

(2.2)

where K1 = 15/δ is the stiffness of the energy curve.

We incorporate the piecewise term (2h − ∆)2 into our energy formulation for two key

reasons. First, this term serves as an equivalent representation for our energy formulation in

the region ∆ ≤ 2h− δ. It offers a simpler gradient and Hessian, resulting in computational

efficiency. Secondly, and of greater significance, the piecewise term plays a crucial role in
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ensuring numerical stability by preventing the exponential term in Eq. 2.2 from diverging. In

Fig. 2.2, we illustrate the plotted energy term for various δ values. As depicted, the energy

starts to increase exponentially as ∆ approaches the contact limit, represented as 0 here. As

δ decreases, more realistic contact behavior is achieved, enhancing accuracy, albeit with a

stiffer equation that may be more challenging to converge.

2.2.2 Computing Piecewise Distance

As mentioned in Li et al. [24], the minimum distance between two edges (xi, xi+1) and

(xj, xj+1) can be formulated as the constrained optimization problem

∆ = min
βi,βj

||xi + βi(xi+1 − xi)− (xj + βj(xj+1 − xj))|| ∋ 0 ≤ βi, βj ≤ 1, (2.3)

where βi and βj represent the contact point ratios along the respective edges. As shown in

Fig. 2.1, contact point ratios are βi = ∥ci−xi∥
∥xi+1−xi∥ and βj = ∥cj−xj∥

∥xj+1−xj∥ for contact points ci and

cj, respectively. Minimum distance between two edges can be classified into three distinct

categories: point-to-point, point-to-edge, and edge-to-edge. As the names suggest, these

classifications depend on which points of the edges the minimum distance vector ∆⃗ lies as

described by βi and βj shown in Fig. 2.1.

In our prior research [36], we modified Lumelsky’s edge-to-edge minimum distance al-

gorithm [43], which implicitly computes the β values, to make it fully differentiable by

introducing smooth approximations. However, in this current work, we have transitioned

to using piecewise analytical functions, as depicted in Eqs.2.4,2.5, and 2.6, similar to the

methodology presented in [24]. This change was motivated by our observation of more

stable performance, even though it resulted in a non-smooth Hessian when transitioning

between contact categories.

We now describe the conditions for each contact type classification. First, if ∆⃗ lies at

the ends of both edges, meaning that both β constraints are active, the distance formulation
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simplifies to the point-to-point case. This case can be readily solved using the Euclidean

distance formula,

∆P P = ||xa − xb||, (2.4)

where xa and xb are the nodes for first and second edges in contact, respectively.

If ∆⃗ only lies on one end of one rod (i.e. only one β constraint is active), then the contact

type degenerates to point-to-edge. This can be solved as

∆P E = ||(xa − xb)× (xb − xc)||
||xa − xb||

, (2.5)

where xa and xb are the nodes of the edge for which the minimum distance vector does not

lie on an end and xc is the node of the edge which the minimum distance vector does lie on.

Finally, edge-to-edge distance (i.e. no active constraints) for the i-th and j-th edges can be

solved as
u = (xi+1 − xi)× (xj+1 − xj),

∆EE = |(xi − xj) · û|,
(2.6)

where ˆ indicates a unit vector. With ∆ fully defined, this concludes our contact energy

formulation. To correctly classify contact pairs, we use Lumelsky’s algorithm to compute β

values.

2.2.3 Adding Implicit Friction

We model friction according to Coulomb’s friction law, which describes the conditions nec-

essary for two solids to transition between sticking and sliding. This law states that the

frictional force F fr is (1) equal to µF n during sliding, (2) is in the region of [0, µF n) when

sticking, and (3) is independent of the magnitude of velocity. Here, µ is the friction coefficient

and F n is the normal force experienced by the body.

Let’s introduce the following equivalences for clarity: Fc ≡ k∇xE and Jc ≡ k∇2
xE. With
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Figure 2.3: Plots for Eq. 2.10 with varying distance tolerance δ values, and γ controls the
transition from sticking friction to sliding friction.

these notations, for a contact pair xij := (xi, xi+1, xj, xj+1), we can calculate the normal

force on the i-th and i + 1-th nodes as F n
i = ∥Fc

i∥ and F n
i+1 = ∥Fc

i+1∥, respectively. This, in

turn, allows us to determine the contact norm vector

ni = Fc
i + Fc

i+1
∥Fc

i + Fc
i+1∥

. (2.7)

The direction of friction is then the tangential relative velocity between edges i and j.

To compute this, we must first compute the relative velocities of the edges at the point of

contact, which can be done using βi, βj ∈ [0, 1] as shown below: The direction of friction

is determined by the tangential relative velocity between edges i and j. To calculate this

velocity, we first need to compute the relative velocities of the edges at the point of contact.
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This can be done using βi, βj ∈ [0, 1] as shown below:

ve
i = (1− βi)vi + βivi+1,

ve
j = (1− βj)vj + βjvj+1,

vrel = ve
i − ve

j,

(2.8)

where vi, vi+1, vj, and vj+1 are the velocities of the i-th, i + 1-th, j-th, and j + 1-th nodes,

respectively. The tangential relative velocity of edge i with respect to edge j can then be

computed as

vTrel = vrel − (vrel · ni)ni, (2.9)

where v̂Trel = vTrel/||vTrel|| is our friction direction.

Now, our contact model needs to handle the transition between sticking and sliding.

According to Coulomb’s law, ∥vTrel∥ = 0 during static friction, while ∥vTrel∥ > 0 is indicative

of sliding friction. Sticking continues until the tangential force exceeds the threshold of µF n,

at which point sliding commences. This relationship, much like the ideal contact energy, can

also be represented using a modified Heaviside step function. However, for the same reasons

as mentioned earlier, we opt for another smooth approximation, as described by:

γ
(
∥vTrel∥, ν

)
= 2

1 + exp (−K2∥vTrel∥) − 1, (2.10)

where ν (m/s) is our desired slipping tolerance and K2(ν) = 15/ν is the stiffness parameter.

As shown in Fig. 2.3, γ ∈ [0, 1] smoothly scales the friction force magnitude from zero to

one as ∥vTrel∥ increases from zero. The slipping tolerance describes the range of velocities

(0, ν) for which a friction force < µF n is experienced. In other words, we consider velocities

within this range to be “sticking”.

Finally, the friction experienced by a node i for a contact pair xij can be described as
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Ffr
i = −µγv̂TrelF n

i . (2.11)

With friction fully defined, we can proceed to formulate the friction Jacobian ∇xFfr. It’s

worth noting that our formulation depends on β(x), which implies the need to compute the

gradient ∇xβ. However, we can simplify this process by recognizing that the magnitudes of

the contact forces Fci and Fci + 1 exhibit a linear relationship with β, where

Fc
i = (1− β)(Fc

i + Fc
i+1),

Fc
i+1 = β(Fc

i + Fc
i+1).

(2.12)

Therefore, we can obtain β by simply solving

β = ∥Fc
i+1∥

∥Fc
i + Fc

i+1∥
. (2.13)

We can now treat β as a function of Fc, resulting in a simplified chain ruling procedure.

Let us denote Eq. 2.11 as the functional f(x, Fc(x)). The friction Jacobian can then be

computed through chain rule as

∇xFfr = ∇xf +∇Fcf∇xFc. (2.14)

This concludes our fully implicit friction scheme. Full psuedocode for the IMC algorithm

can be found in Algo. 1.

2.3 Augmenting Numerics

Although Coulomb friction is perfectly defined in IMC, numerical issues can still arise when

simulating complicated rod assemblies. To address these challenges and ensure the robustness

and efficiency of IMC, we have implemented a series of numerical treatments, which are
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Algorithm 1: Implicit Contact Model
Input: x, x0, k, δ, ν
Output: Fc, Jc, Ffr, Jfr

1 Function IMC(x, x0, k, δ, ν):
2 v← x− x0 // compute velocity
3 Fc, Jc ← genContact(x, δ) // Eq.2.2
4 Fc ← kFc // scale by contact stiffness
5 Jc ← kJc // Jc ≡ ∇xFc

6 Ffr ← genFriction(x, v, Fc, ν) // Eq.2.11
7 ∇xf,∇Fcf ← genFrictionPartials(x, v, Fc, ν) // Ffr ≡ f(x, Fc)
8 Jfr ← ∇xf +∇Fcf∇xFc // Eq.2.14
9 return Fc, Jc, Ffr, Jfr

outlined in the following paragraphs.

2.3.1 Scaling of Contact Potential

As the radius of the rod can be very thin, often within the range of a few millimeters,

collision detection, and gradient and Hessian computations may be susceptible to floating-

point inaccuracies. To address this, we employ a scaling approach by multiplying all nodes by

a factor of 1/h to enhance numerical stability. This scaling introduces normalized variables

∆̄ = ∆/h and δ̄ = δ/h, resulting in the normalization of Eq. 2.2 to:

E
(
∆̄, δ̄

)
=



(2− ∆̄)2 ∆̄ ∈ (0, 2− δ̄](
1

K1
log
(
1 + exp

(
K1(2− ∆̄)

)))2
, ∆̄ ∈ (2− δ̄, 2 + δ̄)

0 ∆̄ ≥ 2 + δ̄.

(2.15)

Accounting for this scaling in the gradient and Hessian computation can easily be taken care

of through the product and chain rule which ends in us multiplying the gradient by 1/h

and the Hessian by (1/h)2. With this normalization in mind, we choose a stiffness K1 for a

desired δ through the relation

K1(δ, h) = 15h

δ
. (2.16)
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2.3.2 Collision Detection

To perform collision detection, we identify the set of all edge combinations whose minimum

distance is less than 2h + δ, resulting in the contact set

C = {xij ∈ X | ∆ij < 2h + δ}. (2.17)

Given that this operation can be computationally intensive, we adopt an optimization strat-

egy. At the beginning of each time step, we compute a candidate set Ĉ = {xij ∈ X | ∆ij <

2h + δ̂}, where δ̂ is chosen to be significantly larger than δ. Then, at the start of each itera-

tion, we derive the actual contact set C from the candidate set Ĉ. This approach substantially

reduces computational costs

Note that if δ̂ is not set large enough, certain edge combinations not belonging to the

initial set Ĉ may enter the contact zone or even penetrate by the end of the optimization.

Our energy formulation in Eq. 2.2 is capable of dealing with this as minor penetrations do

not lead to simulation failure and will be remedied in the next time step. This is in contrast

to IPC, which may require a significantly larger δ̂ and/or more robust collision checking

during each iteration of the optimization process.

2.3.3 Adaptive Contact Stiffness

As a penalty method, we utilize a contact stiffness parameter k to scale both the contact force

and Jacobian. It’s significant to select an appropriate value for k to prevent issues such as

penetration (due to a value too low) or excessive hovering (due to a value too high) To achieve

this, we start by defining the set Ci as the collection of all node indices i and j associated

with the contact set edge combinations xij ∈ C. Next, in our pursuit of an appropriate

scaling for the contact stiffness, we calculate the norm of the total forces (excluding contact

and friction)
∣∣∣∣∣∣Ftotal

i

∣∣∣∣∣∣ experienced by each node within the contact set C. These forces can

be represented as:
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F =
{ ∣∣∣∣∣∣Ftotal

i

∣∣∣∣∣∣ | i ∈ Ci

}
. (2.18)

The maximum force magnitude of these forces can then be used to determine the contact

stiffness

k = max(F)s, (2.19)

where s is a constant scaling factor. In all our experiments, we set s to be 1 × 105. The

intuition behind this contact stiffness formulation is to achieve non-penetration through force

equilibrium. Furthermore, by using the maximum of F , if non-penetration can be achieved

for the edge with the largest value in F , then this k value should be large enough to prevent

penetration for all other contact pairs as well.

2.3.4 Line Search Algorithm

Once the internal forces (e.g., bending force, twisting force, and stretching force), external

forces (e.g., viscous dragging force and contact forces), and their respective Jacobians are

computed, we can simply use Newton method to find the solution of the equations of motion.

However, due to the high nonlinearity of the governing equations, convergence for Newton’s

method may suffer without a line search method. To rectify this, we perform Goldstein-Price

line search in the Newton direction to ensure that the square of the Euclidean norm of total

force ∥F∥2 in Eq. 7 decreases.

We design an inner loop for each Newton iteration where we deploy the line search al-

gorithm. This inner loop returns an optimal search step size α until ∥F∥2 is smaller than

a certain tolerance or until a maximum number of iterations is reached. As mentioned in

§ 2.2.1, our energy formulation allows us to use a more aggressive line search strategy com-

pared to Ref. [24], resulting in larger search step sizes and faster convergence. Pseudocode

for the line search method can be found in detail in Algo.2.
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Algorithm 2: LineSearch
Parameters: αl, αu, m1 = 0.1, m2 = 0.9 // Initial interval for α

Input: q, ∆q // DOFs from DER
Output: α // Newton search magnitude

1 Function LineSearch(q, ∆q):
2 iter ← 0
3 α← 1
4 success ← False
5 d0 ← FT (∂F/∂q)∆q
6 while success is False do
7 if αm2d0 <= 1

2∥F(q − α∆q)∥2 − 1
2∥F(q)∥2 <= αm1d0 then

8 success ← True
9 else if 1

2∥F(q − α∆q)∥2 − 1
2∥F(q)∥2 < αm2d0 then

10 αl ← α

11 else
12 αu ← α

13 if |αl − αr| < small value or iter > iterMax then
14 success ← True
15 α← 0.5(αl + αu)
16 iter ← iter + 1
17 return α

2.4 Numerical Study for Flagella Bundling

In this section, we showcase simulation results for a challenging scenarios of rods in frictional

contact – flagella bundling. Flagella bundling a significant phenomena in the nature [44, 45,

46, 47, 48, 49, 50, 51, 52]. We capture this phenomenon with a specific designed simulator

combining DER, IMC, and solid-fluid interactions [53]. We then evaluate IMC’’s performance

with the state-of-the-art frictional contact framework – IPC [24].

When micro-organisms with multiple flagella swim in fluid, their multiple flagella will

become a bundle for navigation (e.g., Escherichia coli and Salmonella typhimurium [54]).

Each flagellum consists of a rotary “head”, a short flexible hook, and a helical filament.

By rotating their filaments, these micro-organisms can navigate their environments through
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Figure 2.4: Rendered snapshots of flagella bundling with varying amounts of flagella. Rows
contain (a) M = 2, (b) M = 3, (c) M = 5, and (d) M = 10 flagella. Each column indicates
the flagella configuration at the moment of time indicated in the top row.

sophisticated manipulation of the solid-fluid interaction between their flexible structures and

the surrounding flows. This has led to biomimicry, where flagella have inspired the design
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of several soft robot locomotion strategies in viscous fluids [23, 55, 56, 57, 58]. Here, we de-

veloped a specific numerical framework combined DER, regularized stokeslet segment (RSS)

(which is for simulating fluiding-solid interaction), IMC for simulating flagella bundling, as

shown in Fig. 2.4. To validate the IMC’s performance, we also switch IMC to IPC in the

numerical framework to observe the performance with different contact handling model. The

details are given in the following paragraph.

2.4.1 Solid-Fluid Interaction

As stated before, the simulator for flagella bundling is a combination of three components:

DER for the flagella, IMC for the contact handling, and RSS for solid-fluid interaction. Since

DER and IMC are detailed formulate before. Here, we show how to use RSS to simulate

solid-fluid interaction.

When simulating the flulid-solid interactions, we formulate the relationship between ve-

locity and hydrodynamic forces for each node in a discretized rod. We utilize Regularized

Stokeslet Segments (RSS) [53] method to capture the viscous drag forces exerted on a slender

rod moving in a viscous fluid. The Stokeslet, the primary Green’s function of Stokes flow,

represents solutions for the Stokes equations as a superposition of fundamental solutions.

The methods of regularized Stokeslets have been implemented in numerous studies such as

self-propelled microorganisms [59] [60], hyperactivated sperm motility [61] [62], and flagella

bundling [44] [51].

For a particular choice of regularization [53], the relationship of the velocity at an evalua-

tion point x̂ and the corresponding regularized force f exerted on a point x is the regularized

Stokeslet:

8πηu(x̂) =
(

1
R

+ ϵ2

R3

)
f(x) + (f(x) · r)r

R3 , (2.20)

where η is the fluid viscosity; r = x̂−x; R2 = ∥r∥2+ϵ2, and ϵ is the regularization parameter.

For an edge ei = xi+1 − xi in a viscous fluid, a point along this edge can be defined by
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xα = xi + α(xi+1 − xi), where α ∈ [0, 1]. We assume a linear density of the force fα applied

on the edge: fα = fi +α(fi+1− fi). With this, we obtain the relationship between the velocity

at x̂ and the linear force density as

8πηu(x̂) = ∥e∥
∫ 1

0

[(
1

Rα

+ ϵ2

R3
α

)
fα + (fα · rα)rα

R3
α

]
dα, (2.21)

where ∥e∥ is the length of the edge e. Through integration, we can then rewrite Eq. 2.21 as

8πηu(x̂) = f0(T0,−1 + ϵ2T0,−3) + f1(T1,−1 + ϵ2T1,−3) +
3∑

n=0
cnTn,−3, (2.22)

where the coefficients cn are

c0 = (f0 · r0)r0,

c1 = (f0 · e)r0 + (f0 · r0)e + (f1 · e)r0,

c2 = (f0 · v)v + (f1 · r0)e + (f1 · e)r0,

c3 = (f1 · e)e,

(2.23)

and the sequences of Tk,l are

T0,−1 = 1
∥e∥

log[∥e∥Rα + (rα · e)]
∣∣∣∣∣
1

0
,

T0,−3 = − 1
Rα[∥e∥Rα + (rα · e)]

∣∣∣∣∣
1

0
,

T1,−1 = Rα

∥e∥2

∣∣∣∣∣
1

0
− r0 · e
∥e∥2 T0,−1,

T1,−3 = − 1
Rα∥e∥2

∣∣∣∣∣
1

0
− r0 · e
∥e∥2 T0,−3,

T2,−3 = − α

Rα∥e∥2

∣∣∣∣∣
1

0
+ 1
∥e∥2 T0,−1 −

r0 · e
∥e∥2 T1,−3,

T3,−3 = − α2

Rα∥e∥2

∣∣∣∣∣
1

0
+ 2
∥e∥2 T1,−1 −

r0 · e
∥e∥2 T2,−3.

(2.24)
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Recall that in DER a flexible rod constitutes N +1 nodes and N edges each with length ∥ei∥.

Therefore, we can formulate hydrodynamic forces for the whole rod through the summation

of Eq. 2.22 for each segment, resulting in

8πηu(x̂) =
N−2∑
i=0

(
Ai

1fi + Ai
2fi+1

)
, (2.25)

where coefficient matrices Ai
1 and Ai

2 are

Ai
1 = ∥ei∥

[(
T i,i+1

0,−1 + ϵ2T i,i+1
0,−3

)
+ T i,i+1

0,−3

(
rirT

i

)
+ T i,i+1

1,−3

(
ri(ei)T + eirT

i

)
+ T i,i+1

2,−3

(
ei(ei)T

)]
− Ai

2,

Ai
2 = ∥ei∥

[(
T i,i+1

1,−1 + ϵ2T i,i+1
1,−3

)
+ T i,i+1

1,−3

(
rirT

i

)
+ T i,i+1

2,−3

(
ri(ei)T + eirT

i

)
+ T i,i+1

3,−3

(
ei(ei)T

)]
.

(2.26)

Finally, by using Eqs. 2.25 and 2.26, we can describe the balance between the velocity

and the force density along a discretized rod as the linear system

U = Af ,

Fhydro = [f0∆l0, f0∆l1, ..., fN−1∆lN−1]T ,
(2.27)

where U = [ẋ0, ẋ1, ..., ẋN−1]T (the velocity of the liquid at nodal position xi has the same

speed of the rod due to non-slip boundary); f = [f0, f1, ..., fN−1]T is the force density; Fhydro

is the hydrodynamic force vector, and ∆li is the Voronoi length at node xi. We assume the

density of the fluid to be equal to the density of the rod so that buoyant forces are negligible.

As stated in Ref. [53], we choose the regularization parameter ϵ = 1.02h based on the value

of ∆li/h where ∆li is the Voronoi length.

With the solid-fluid interaction model formulated, we can design a complete simulator

for flagella bundling. The full pseudocode for flagella bundling is given in Algo. 3.
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Algorithm 3: Flagella Simulation
Parameters: δ, δ̂, ν, tolerance
Input: q(ti), q̇(ti)
Output: q(ti+1), q̇(ti+1)
Require : boundary conditions ← free

1 Function FlagellaSim(q(ti), q̇(ti)):
2 Guess q(0) ← q(ti)
3 n← 0, ϵ←∞
4 Fhydro ← A−1q̇(ti)∆l // Eq. 2.27
5 Ftotal ← 0DOF

6 Jtotal ← 0DOF×DOF

7 while ϵ > tolerance do
8 Fint ← genForces(·) // Eq. 1.7
9 Jint ← genJacobian(·) // ∂2(Es+Et+Eb)

∂qi∂qj

10 if n == 0 then // run only on first iter
11 Ĉ ← constructCandidateSet(x, δ̂) // § 2.3.2
12 k ← updateConStiffness(Ĉ, Fint) // § 2.3.3
13 C ← collisionDetection(Ĉ, δ)
14 for x, x0 ∈ C do
15 Fc, Jc, Ffr, Jfr ← IMC(x(n), x0, k, δ, ν) // Algo. 1
16 Ftotal ← Ftotal + Fc + Ffr

17 Jtotal ← Jtotal + Jc + Jfr

18 Ftotal ← Ftotal + Fint + Fhydro

19 Jtotal ← Jtotal + Jint

20 Ffree ← Fder(free) // Downsize to only include free DOFs
21 Jfree ← Jder(free, free)
22 ∆qfree ← Ffree/Jfree // Solve Jfree∆qfree = Ffree

23 α← LineSearch(qfree, ∆qfree) // Algo. 8
24 q(n+1)(free)← q(n)(free)− α∆qfree

25 ϵ←
∥∥∥Ffree

∥∥∥ // update error
26 n← n + 1
27 q(ti+1)← x(n)

28 q̇(ti+1)← (q(ti+1)− q(ti))/dt

29 return q(ti+1), q̇(ti+1)
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2.4.2 Numerical Setup for Simulations

In the simulation, we design the flagella as right-handed helical rods manufactured with

linear elastic material. We set the material properties as follows: Young’s modulus was set

to E = 3.00 MPa; Poisson’s ratio was set to 0.5; density of the rod was set to ρ = 1000

kg/m3; the cross-sectional radius was set to h = 1 mm, and the fluid viscosity was set to 0.1

Pa·s. Here, a Poisson’s ratio of 0.5 was chosen to enforce the flagella to be an incompressible

material. The topologies of the flagella are helices with helical radius a = 0.01 m, helical

pitch λ = 0.05 m, and axial length z0 = 0.2 m. These parameters were chosen as they best

mimic the geometries of biological flagella found in nature [32, 34, 63, 51].

We explore the bundling phenomena with M flagella (M = [2, 3, 5, 10]) where the rotating

ends of each flagella is fixed along the z-axis as shown in Fig. 2.5b. These rotating ends are

treated as boundary conditions and are spaced out equidistantly so as to form a regular

polygon with M angles with side length ∆L = 0.03 m as shown in Fig. 2.5c. We set the

rotation speed of the flagella ends to ω = 15 rad/s which keeps the Reynolds number in our

numerical simulation to be always smaller than 4× 10−2, thus satisfying the Stokes flow.

Finally, we discretize each flagella into 68 nodes for a total of 67 edges. We found

this discretization to have the best trade-off between computational efficiency and accuracy.

Furthermore, we set the time step size to ∆t = 1 ms. As the forces generated from our fluid

model are handled explicitly, we found 1 ms to be the largest stable time step size before

convergence performance became hampered. A distance tolerance of δ = 1× 10−5 was used

for all simulations.

2.4.3 Comparison between IMC and IPC

Both IMC and IPC were implemented to simulate 250 seconds of rotation for scenarios with

2, 3, 5, and 10 flagella, as illustrated in Fig. 2.4. In the context of viscous fluids, where

friction between structures is typically minimal, we focused on purely contact interactions,
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  IPC

t = 0 s t = 50 s t = 100 s t = 150 s t = 200 s

(a) Rendered snapshots for M = 5 flagella simulated by IMC and IPC. We can observe that there
is great qualitative agreement between both methods at the shown time steps.

(b) A top-down visualization of boundary
conditions applied to the highest nodes
(filled in red circles) of each flagellum as
well as the angular rotation ω applied to
them. The larger hollow red circles repre-
sent the rest of the helical flagella.
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(c) The norm of the average difference in the
nodal positions for the flagella simulated by
IMC and IPC with respect to time.

Figure 2.5: Comparison between IMC and IPC in flagella bundling

neglecting friction (µ = 0). To assess the performance of IMC and IPC, we conducted a visual

comparison for the case with 5 flagella (M = 5), as demonstrated in Fig. 2.4. At various
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Table 2.1: IMC vs. IPC [24] run time data. Simulations are run for a total of 250 seconds
with a time step size of ∆t = 1 ms and a rotation speed of ω = 15 rad/s. The contact
model used can be seen in the far left column. Next to this, M indicates the number of
flagella. AIPTS stands for average iterations per time step. ATPTS stands for average
time per time step. Total Iters indicates the total number of Newton’s iterations that were
necessary to complete the simulation. The Total Run Time is the total computational
time to completion. Finally, RTI stands for run time improvement and is the ratio of
improvement between IMC’s and IPC’s total run time.

Model M AIPTS ATPTS [ms] Total Iters Total Run Time [hr] RTI

IMC

2 3.00 10.2 6.01× 105 0.57 1.82
3 3.01 21.3 6.04× 105 1.19 1.82
5 3.02 67.5 5.39× 105 3.34 1.40
10 3.12 389.4 6.56× 105 22.77 1.22

IPC

2 4.00 18.75 7.98× 105 1.04 N/A
3 4.00 39.5 7.93× 105 2.17 N/A
5 4.01 95.3 7.09× 105 4.68 N/A
10 4.02 477.47 8.45× 105 27.88 N/A

time steps, it can be observed that the flagella configurations closely resemble each other

under both IMC and IPC simulations. This visual similarity suggests that both methods

exhibit comparable performance. To quantitatively evaluate this similarity, we introduced

a normalized average difference metric, denoted as ē, to measure the dissimilarity in nodal

configurations of the flagella between IMC and IPC simulations. This metric is defined as:

ē = 1
MNh

M−1∑
i=0

N−1∑
j=0

∥∥∥xi,IMC
j − xi,IPC

j

∥∥∥ , (2.28)

The relationship between the normalized average difference ē and time t is illustrated in

Fig. 2.5c. This plot reveals that the differences between the configurations generated by IMC

and IPC remain quite minimal over time, reinforcing the idea that IMC exhibits comparable

performance to IPC despite the absence of a non-penetration guarantee.

Where IMC begins to outperform IPC is in terms of computational efficiency. We have
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provided detailed metrics for all runs in Tab. 2.1, including the average iterations per time

step (AIPTS), average time per time step (ATPTS), total iterations, and total run time. All

metrics were recorded using time steps with at least one contact. Notably, IMC achieved

convergence with fewer average iterations than IPC across all flagella cases, resulting in

significant reductions in total run time. These run time improvements are most pronounced

for scenarios with M = 2 and M = 3, and while they start to decrease as M increases further

due to the RSS force computation becoming a bottleneck, a clear trend of decreasing run

time can still be observed.

2.4.4 Friction Examples

Although friction is typically negligible in a viscous fluid medium, the impact of friction

on flagella bundling is still intriguing, especially considering scenarios where the effect of

friction can become significant, such as in granular environments. To explore this, we as-

sume an imaginary viscous environment where the friction coefficient between structures is

non-negligible. In our simulations, we present data for two flagella (M = 2) with friction

coefficients ranging from µ = 0.1 to µ = 1.0. A slipping tolerance of ν = 1× 10−4 was used

for all cases. All other parameters remain the same as before.

We first showcase the sticking and slipping phenomena with snapshots for three different

friction coefficients (µ = 0, µ = 0.3, and µ = 0.7) in Fig. 2.6. As intuitively expected, as the

friction coefficient µ increases, the amount of sticking also increases. Convergence results

for all friction examples can be found in Tab. 2.2, which includes information on average

iterations per time step and the simulation length. Two notable trends can be observed

from the data. First, for µ ≥ 0.7, the simulation ends earlier than the specified 250 seconds.

This is because µ = 0.7 marks the point at which the flagella become completely tangled,

as shown in the bottom-right frame of Fig. 2.6. As µ increases past 0.7, the tangling occurs

even earlier in the simulation. Additionally, we notice that the number of average iterations

starts to increase as µ increases. This is in line with our expectations, as larger µ values result
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Figure 2.6: Rendered snapshots for M = 2 with varying friction coefficients. Each column
indicates a moment in time as indicated by the time stamp in the top row. The first row
shows the frictionless case µ = 0 as a baseline. The second row has µ = 0.3 where minor
sticking can be observed as the point at where the flagella no longer contact is higher than
the frictionless case. Still, µ = 0.3 still has plenty of slipping allowing the flagella to not
become coiled. As we increase µ to 0.7 in the third row, we can see the amount of sticking
increase, ultimately resulting in the flagella becoming completing coiled.

in greater sticking between the flagella, which makes convergence more challenging and, in

some cases, results in early termination of the simulation due to flagella entanglement.
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Table 2.2: Friction results for varying friction coefficients. AIPTS stands for average itera-
tions per time step. Total Iterations indicate the total number of Newton’s method iterations
that were necessary to complete the simulation. Sim End indicates the total simulated time.
All simulations were set to run for 250 seconds. As can be seen, simulations with µ ≥ 0.7
end earlier due to excessive tangling of the flagella.

µ AIPTS Total Iterations Sim End [sim s]

0.1 3.01 6.02× 105 250
0.2 3.01 6.04× 105 250
0.3 3.61 7.25× 105 250
0.4 4.89 9.83× 105 250
0.5 6.67 1.34× 106 250
0.6 8.71 1.76× 106 250
0.7 14.47 2.72× 106 235.89
0.8 14.16 1.89× 106 180.98
0.9 11.1 1.05× 106 142.72
1.0 11.65 1.02× 106 135.32

2.5 Numerical Study for Overhand Knot Tying

In this section, we validate our generated frictional contact forces against established the-

oretical relations, specifically focusing on the contact scenario of knot tying. We begin by

validating our model against the theoretical relation for tightening trefoil knots as formu-

lated in Ref. [25]. This validation is similar to our prior work in Ref. [36]. Additionally, we

validate our contact model against the theoretical relation for tightening knots with varying

unknotting numbers as formulated in Ref.[26].

2.5.1 Tightening a Trefoil Knot

Audoly et al. [25] developed a theoretical framework that describes the interplay between

traction force and the geometric configuration of a trefoil knot as it undergoes tightening.
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This theoretical relationship can be succinctly expressed as follows:

Fh2

EI
= ϵ4

2 + µσϵ3, (2.29)

where F is the traction force induced by friction; h is the rod radius; EI is the bending

stiffness; µ is the coefficient of friction; σ is a constant (0.492 for trefoil knots), and ϵ =
√

h/R

where R is the knot loop radius.

In our simulation, we implement the IMC approach to replicate the process of tightening

a trefoil knot. During this simulation, we record the traction forces (F ) while maintain-

ing the following key parameters: cross-sectional radius h = 0.0016 m, Young’s modulus

E = 1.8 × 105 Pa (resulting in EI = Eπh4

4 ), and friction coefficient µ = 0.1. With non-

dimensionalization, we define the normalized traction force as F̄ = F h2

EI
. The excellent

agreement we observed between our simulation results and the theoretical predictions, as

demonstrated in Fig. 2.7, suggests the remarkable validation of our model against Audoly

et al.’s theory.

2.5.2 Tightening Overhand Knots with Various Unknotting Numbers

In addition to the validation of [25], we also conduct a more rigorous validation against

theory for overhand knots of various unknotting numbers stated in Ref. [26]. In this paper,

Jawed et al. proposed the relation

n2 h

e
= 1

8
√

3π2
g

[96
√

3π2

µ
· n

2Fh2

EI

] 1
3
 , (2.30)

where n is the unknotting number; e is the end-to-end shortening, and g(·) is a known

nonlinear equation detailed in the paper.

We use IMC to run simulations of tightening overhand knots for n ∈ [1, 4] and µ = 0.07

(all other rod parameters are the same as in 2.5.1. We plot the recorded non-dimensionalized
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Figure 2.7: Comparison of non-dimensionalized traction force F̄ between IMC simulation
results and theory for tightening trefoil knots [25].

traction force n2F̄ against the non-dimensionalized end-to-end shortening ē = n2h/e. Once

again, we observe excellent agreement between simulation results and the plotted theory as

shown in Fig. 2.8, thus further cementing the physical accuracy of IMC’s frictional contact

forces.

2.6 Summary and Outlook

In this chapter, we introduced the Implicit Contact Model (IMC), a fully implicit and

penalty-based approach for tackling frictional contact handling. IMC can be embedded

into a discrete-differential-geometry simulator (e.g., Discrete Elastic Rods) to capture the

nonlinear dynamics of slender structures with frictional contact.

To test the performance of our contact model, we formulated an end-to-end simulation
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Figure 2.8: Comparison of non-dimensionalized traction force F̄ between IMC simulation
results and theory for tightening overhand knots with multiple unknotting numbers [26].

framework for the novel and difficult contact scenario of flagella bundling in viscous fluids.

For this contact problem, we showed that IMC has comparable performance to the state-of-

the-art while maintaining faster convergence. Furthermore, we showcased visually convincing

frictional results in an imaginary viscous environment where friction is non-negligible. In

addition to flagella bundling, we also demonstrated the efficacy of IMC by simulating the

process of tightening an overhand knot. The physical accuracy of our framework is validated

by comparing with rigorous theory in prior literature. Given IMC’s efficiency and accuracy,

this work represents a significant stride toward the ultimate goal of a simulation framework

that can faithfully mimic real-world scenarios. It also sets the stage for the study of mechanics

in rod assemblies with frictional contact, as explored in Ch. 3.

For future work, we wish to improve upon the stability and robustness of our friction

model. Despite the implicit formulation, the number of iterations necessary to converge
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starts to increase as µ increases. Additionally, the adoption of deep learning to imbue our

simulations with physics-based dynamics holds great potential. While our current framework

relies on Coulomb friction, an approximation suitable for macroscopic dynamics, there are

situations, such as microscale interactions, where it may fall short. Neural networks, with

their ability to approximate real-world phenomena, beckon as a promising direction for future

exploration.
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CHAPTER 3

Snap Buckling in Overhand Knots

When an overhand knot tied in an elastic rod is tightened, it can abruptly transform its

shape via a phenomenon called snap buckling. In this chapter, we employ a blend of sim-

ulations based on discrete differential geometry (DDG) and hands-on tabletop experiments

to delve into the initiation of buckling concerning knot configuration, rod dimensions, and

friction. Our experimental setup involves gradually pulling apart the open ends of an over-

hand knot, inducing snap buckling within the knot’s loop. This intriguing occurrence is

termed “inversion”, as the loop dramatically shifts from one side of the knot to the opposite.

This inversion phenomenon emerges due to the coupling of elastic energy between the braid

(the section of the knot in self-contact) and the loop (the segment with both ends linked to

the braid). We implement a numerical framework that merges Discrete Elastic Rods with

a frictional contact-constraint approach to systematically investigate inversion within over-

hand knots. Remarkably, the numerical simulations accurately replicate knot inversion and

exhibit substantial agreement with the results from our physical experiments. To acquire

a deeper physical comprehension of the inversion process, we further develop a simplified

knot model that obviates the necessity for simulating self-contact. This simplified model

facilitates visualizing the bifurcation responsible for snap buckling.

We describe the underlying motivation and relevant literature in § 3.1. The statement

of the problem is given in § 3.2. The numerical framework for simulating an overhand knot

is given in § 3.3. The experimental setup for studying inversion is stated in § 3.4. Then,

a quantitative study for all contributing factors for the system is shown in § 3.5. In § 3.6,
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we also construct a simplified topology model to explain why snap buckling happens in

overhand knots. Finally, we conclude a summary and point out the future avenues in § 3.7.

The content of this chapter has appeared in Ref. [64].

3.1 Motivation

Spread across the globe, knots manifest as intricate geometric patterns of slender elastic

rods that intertwine with themselves. These formations serve diverse functions in our daily

lives, spanning from the utilitarian, as seen in shoelaces, to the ornamental, exemplified

by Chinese knotting. Given their pervasive presence and intricate blend of topology and

mechanics, knots stand as a compelling yet demanding research subject.

To harness the potential of knots within various structures, it becomes imperative to

delve into the knots’ mathematical and mechanical properties. In this chapter, we focus on

the mechanics of overhand knots – a fundamental knot type – subjected to forceful tightening

at their extremities. In certain instances, this tightening triggers a snap buckling instability,

abruptly altering the knot’s configuration. Self-contact is a pivotal element contributing to

this mechanical phenomenon, which occurs within the entangled rod itself. Mathematically,

a knot is a theoretically infinitesimal closed loop; however, in practicality, knots possess finite

thickness and often sport open ends. Consequently, when addressing knot-related mechanical

challenges, the intricacies of self-contact must be navigated. In Ch. 2, we introduced an

array of techniques – including the impulse method, constraint-based methods, and penalty-

energy-based methods – to simulate interacting rod assemblies. Opting for the constraint-

based approach is rooted in its well-defined mathematical representation of contact and its

accuracy, demonstrated in prior research like sound generation due to object interactions [65].

The iconic overhand knot takes center stage among the diverse tapestry of knots, emerging

ubiquitously in nature and daily activities. Prior studies probing overhand knots have scru-

tinized the impact of tightening forces and their effects on equilibrium shapes. For instance,
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Figure 3.1: Snapshots of overhand knots in the tightening process from both experiments
and simulations.
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Audoly et al. [25] established the link between traction forces and the shortening of trefoil

(31) and cinquefoil (51) knots. Przybyl et al. [66] delved into the curvature and torsion of a

contracting trefoil knot. Jawed et al. [26] formulated an analytical expression intertwining

tightening forces, friction, and contraction in overhand knots with varying crossing numbers.

Moulton et al. [67] unearthed stable configurations for open trefoil knots sans self-contact.

Our focus, however, centers on the snap buckling within self-contacting overhand knots.

The concept of snapping and bifurcation – the rapid transition between stable config-

urations due to external triggers – finds broad applications across nature and engineer-

ing. Instances range from the snapping of Venus flytraps [68] to the bistable states of

slap bracelets [69], the snap-through of toy poppers [70], the buckling of helical rods with

robotics [16], and the exploration of bistability in soft robots [71].

Self-contact, often expressed as an inequality constraint, significantly influences buckling

instabilities in slender structures, though its inclusion complicates buckling analyses consid-

erably. Coleman et al. [72] investigated the stability of self-contacting supercoiled plasmids

mimicking DNA structures. Thompson et al. [73] utilized buckling analysis to study the

bounds of topoisomerase relaxation in twisted DNA. Closest to our pursuit is the phe-

nomenon depicted in Figure 1 of Bergou et al. [13], followed by Clauvelin et al. [74]. Bergou

et al. [13]’s Figure 1 unveiled continuous and discontinuous shape transformations upon ro-

tating the ends of a trefoil knot. Building on this, Clauvelin et al. [74] derived asymptotic

solutions for trefoil and cinquefoil knots fastened onto infinitely long rods featuring linear

tails and a circular loop. They established that a fusion of tension and twist could lead to

asymptotic knot solution buckling via either helical deformations in the tails or out-of-plane

buckling in the circular loop.

Inspired by this revelation, we employ simulations and experiments to demonstrate that

overhand knots can undergo a rapid shape shift solely through tightening without the impo-

sition of external twisting, as depicted in Fig. 3.1. This transformation, termed “inversion”

hereafter, stems from the simplicity of boundary conditions during tightening, suggesting its
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topology-driven nature. We explore the mechanics and reasons underlying the occurrence of

inversion and give a thorough quantification of mechanical responses during overhand knot

tightening via simulations and experiments, unraveling the intricacies of inversion.

3.2 Problem Statement

tail

loop

braid

n = 2 

t0

tend

m0
2mend

2

m0
1mend

1

Figure 3.2: Configurations of overhand knots with different unknotting numbers.

In Fig. 3.2, the topology of an overhand knot is shown. These knots consist of a braid,

characterized by an arc length lb, harmonizing with a loop delineated by an arc length ll,

all anchored by two tails, applied by external boundary conditions. The braid’s topological

intricacies are characterized by the unknotting number n, representing the count of loop

traversals required for complete unraveling. The rod constructing the knot has a cross-

sectional radius of h, while the overhand knot’s ends are clamped, spanning a distance

denoted as lc. While Fig. 3.2 omits its depiction, an essential intrinsic parameter remains

concealed—namely, the friction coefficient µ.
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As shown in Fig. 3.1, when traction is exerted on both ends of an overhand knot with

n > 1, the loop abruptly inverts and establishes contact with a specific point along the

braid region. This phenomenon, driven by the overhand knot’s geometry, is identified as a

snap-buckling process. The crux of this problem involves an overhand knot formed from an

inherently straight elastic rod, with boundary conditions applied on its clamped ends, induc-

ing a consistent tightening speed. Importantly, during this imposition, the manipulated rod

ends maintain uniform material frames, remaining devoid of relative rotation. The introduc-

tion of non-zero relative rotation between manipulated ends can usher in more intricate knot

behaviors. For instance, Bergou et al. [13] demonstrated that introducing relative rotations

to these material frames induces topological changes in a trefoil knot. This study, however,

focuses on cases where relative rotation remains nil, shedding light on how the knot’s topology

governs nonlinear structural behavior rather than delving into boundary rotation influence.

Notably, inversion, a geometry-dependent phenomenon, is paramount, overshadowing the

influence of Young’s Modulus, an assertion validated in the supplementary information of

Ref. [64]. The experimental rods, fabricated from rubber, yield a measured Young’s Modu-

lus via the assessment of the gravito-bending length Lgb = (Eh2

8ρg
)1/3, where ρ is volumetric

density and g is gravity [7]. Whenever a rod engages a rigid substrate, its form adheres to

the gravito-bending length Lgb. Based on this, we can compute Young’s modulus E from

the experiments. For the experimental and simulation scenarios, Young’s modulus is set at

1.8 MPa, while Poisson’s ratio ν assumes a value of 0.5 (indicative of incompressibility),

resulting in a shear modulus G = E/(2(1 + ν)) = 0.6 MPa. The inversion point’s exper-

imental measurement hinges on the clamped length lc, with the comprehensive analysis of

the influence of contributing factors, encompassing n, h, and µ, expounded upon in § 3.5.
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Figure 3.3: Discrete schematic of two contacted rod segments.

3.3 Numerical Framework

In this section, we look into the integration of a constraint-based method, drawing inspiration

from the works of Jean and Moreau [37, 38], Bertails et al. [75], and Alart and Curnier [39],

with Discrete Elastic Rods (DER), as outlined in Bergou et al. [13, 14], for simulating

frictional contact within a knot. The incorporation of constraint-based methods to simulate

frictional contact responses typically entails intricate numerical handling. Here, we present

a straightforward two-step procedure that seamlessly merges DER with the constraint-based

approach. In the initial step, frictional contact forces are explicitly computed, followed by

their integration into the DER framework in the subsequent step, enabling the dynamic

update of the simulated rod’s state. This bifurcated approach not only unveils the equations

of motion (EOM) grounded in DER but also elucidates the process of friction force calculation

within these EOM. This pragmatic strategy ensures the faithful representation of nonlinear

knot behaviors.

Given that the formulation of DER is extensively detailed in § 1.1, we focus our attention

predominantly on expounding the formulation pertaining to frictional contact.

Within our numerical framework, friction is modeled using Coulomb’s friction model.
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A remarkable revelation has been that framing frictional contact responses as linear com-

plementary constraints accurately depicts Coulomb’s friction. In this study, we implement

the formulation proposed by Alart and Curnier [39] and Bertails et al. [75] to calculate the

frictional contact occurring between two contacting edges, illustrated in Fig. 3.3

Fig. 3.3 elucidates that when two edges enter contact, linear complementary constraints

materialize between the contact forces Ffr and the contact points. Each segment adopts the

form of a cylinder, enabling the computation of contact points Ca and Cb via the algorithm

articulated by Ref. [43]. The relative tangential velocity (Ca relative to Cb) is denoted as

ut, and the contact force is demarcated as Ffr = Ffr
t + Ffr

n .

Note that n = (Ca−Cb)/d designates the normal direction, while t = ut/∥ut∥ signifies the

tangential direction. Grounded in the linear complementary constraints established by Jean

and Moreau [37] and Alart and Curnier [39], the correlation between the contact distance d

and the normal component of the frictional contact force adheres to Signorini’s condition:

Ffr
n · n ≥ 0 ⊥ 0 ≤ d− 2h. (3.1)

When two segments contact (d− 2h = 0), the linear complementary condition between the

friction force Ffr
t and tangential relative velocity ut is:

µ∥Ffr
n ∥+ Ffr

t · t ≥ 0 ⊥ 0 ≤ ∥ut∥. (3.2)

The relative velocity u at the contact point, the minimum distance d, and the contact’s

normal direction n and tangential direction t can all be obtained from the DER formulation.

Consequently, we can deduce the frictional contact responses Ffr by satisfying the linear

complementary condition. In the study by Alart and Curnier [39], they introduce an aug-

mented Lagrangian formulation, enabling the transformation of the linear complementary

49



constraints in Eq. 3.1 and Eq. 3.2 into the following expressions:

Fac(Ffr) = 0 = Ffr · n− PR+(Ffr
n · n− ρd)

−(Ffr · t)t− PD(µ(Ffr·n−ρd)+)(−(Ffr · t)t− ρut)

 ,
(3.3)

Eq. 3.3 linearized the formulation of Eq. 3.1 and 3.2 proposed by Alart and Cunier [39]. In

Eq. 3.3, P (·) is the projection operator, and ρ is the penalty coefficient users define. Eq. 3.3

can be solved with Newton’s method. In this study, an explicit method is used to solve the

linear complementary conditions in Eq. 3.1 and 3.2 since we feel interested in the behavior

of the knot under quasi-static conditions. The configuration of the knot at the previous time

step (which is known) is used to approximate the required quantities, e.g., contact distance d,

contact normal n, and tangent direction t in the linear complementary constraints so that we

can solve the frictional contact responses from Eq. 3.3 robustly. Then, the fractional contact

responses will be added as external forces in DER for simulating the nonlinear dynamics of

knots.

3.4 Experimental Setup and Illustration of Inversion Point

In this section, we show the details of our experimental setup designed to investigate the in-

version process quantitatively. As shown in Fig. 3.4a, our methodology employs two fixtures

to affix and simultaneously pull the two ends of a suspended overhand knot. These fixtures

execute coordinated movements, moving collinearly but in opposite directions.

Recalling that the end-to-end length also termed the clamped length, is denoted by lc, we

introduce two novel parameters, namely H and W , to gauge the geometry of the closed loop

within the overhand knot. Fig. 3.4a illustrates that H is the knot’s height, delineated by the

vertical symmetry axis of the knot, while W represents the knot’s width, characterized as

the separation between the two ends of the braid region. As the knot progressively tightens,
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Figure 3.4: Schematic of the experimental setup and illustration of the inversion point.

lc increases while H and W gradually reduce. Notably, for knots with unknotting numbers

n > 1, a specific point during the tightening process triggers a sharp descent of H to zero,

which we define as the inversion point. The formal elucidation of the inversion point is

presented in Figs. 3.4b and 3.4c.

Mathematically, the knot’s geometry assumes particular significance concerning the closed

loop. The size of this closed loop, as depicted in Fig. 3.4a, can be approximated as L − lc,

where lc represents the end-to-end length and L signifies the total rod length utilized for

knot formation. We employ lk = L− lc to quantify the inversion point in our experimental

setup. In our simulations, the inversion point is evaluated using two metrics: traction force
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and geometric alterations. To enable comparability and dimensionless representation, we

introduce the notation (̄·) to signify dimensionless quantities. We normalize lk, F , and H as

follows:
l̄k = lk

h
= L− lc

h
,

F̄ = Fh2

EI
,

H̄ = H

W
,

(3.4)

where EI = π
4 Eh4(EI = EI1 = EI2) is the bending stiffness, h is the rod’s cross-sectional

radius, E is Young’s modulus, and F is the traction force. In our simulation setup, the rod’s

Young’s modulus is assigned as E = 1.8 MPa, coinciding with the measured value from ex-

perimental rods. Furthermore, a Poisson’s ratio of 0.5 is applied, assuming incompressibility

of the material.

As shown in Fig. 3.4b, it can be seen that the traction force F̄ increases initially as the

knot is tightened and then proceeds to rapidly decrease and then rebound once l̄k reaches

the inversion point. Fig. 3.4b demonstrates the trajectory of traction force F̄ , which initially

ascends as the knot tightens, only to swiftly decline and subsequently rebound as l̄k attains

the inversion point. A comparable trend can be observed in Fig. 3.4c, where H̄ converges to

zero at the point of inversion. Remarkably, the inversion points extracted from simulations

and experiments coincide. Consequently, in this study, we opt to employ H̄ as the benchmark

for comparing inversion points derived from simulations and experiments.

Given the geometric foundation of the problem, the contributing factors are those exerting

a direct influence on the closed-loop’s geometry. In light of this, three variables emerge as

pivotal elements shaping inversion: the rod radius h, the unknotting number n, and the

friction coefficient µ. In subsequent sections, we investigate how these parameters impact

the system’s inversion point. For both simulations and experiments, as depicted in Fig. 3.4,

we maintain the parameter values of h = 1.6 mm, L = 1 m, n = 3, and µ = 0.1.
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3.5 Contributing Factors

Through both numerical and experimental studies, we comprehensively explore the systemic

impact of the three primary contributing factors: h, n, and µ. In our simulation setup, we

systematically traverse a range of values for each parameter (n, h, and µ), while keeping

the other two parameters constant. However, due to the material constraints inherent in

the physical rods, our experimental setup only covers a subset of the entire parameter range

encompassed in the simulations. It is worth noting that despite this limitation, our experi-

mental results effectively demonstrate the discernible influence exerted by the contributing

factors (n, h, and µ) on the inversion point.

3.5.1 Effect of Rod Radius

We commence by quantitatively exploring the impact of h on the inversion phenomenon.

While analyzing each contributing factor, we maintain the other factors at constant levels to

accurately discern the isolated influence of the parameter under investigation. Three distinct

plots are generated for each contributing factor: simulation results of the normalized traction

forces F̄ with respect to the normalized knot close-loop length l̄k, simulation results of the

normalized height H̄ with respect to l̄k, and comparison of simulation and experimental

results.

To understand the effect of h, we set the unknotting number n to 3 and fix µ at 0.1.

Furthermore, we set the pulling speed at both ends to ∆u = 1 mm/s to ensure quasi-static

responses from the system.

Fig. 3.5a shows the evolution of F̄ as a function of l̄k for various rod radius values, specifi-

cally h ∈ [1.6, 2.0, 2.4, 2.8, 3.2] mm. In this plot, a distinct surge in force magnitude manifests

at analogous l̄k values as h increases. Put differently, the inversion point consistently emerges

at comparable non-dimensionalized closed-loop lengths, regardless of variations in rod ra-

dius. Indeed, the closed knot loop length is normalized by h, rendering inversion more prone
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Figure 3.5: Effect of normalized rod radius h on inversion point.

to occur with larger rod radii. Similarly, Fig. 3.5b shows H̄ with respect to l̄k, pinpointing

the inversion points through abrupt drops in H̄.

For the purpose of experimental validation, two rods with distinct radii were employed:

one with h = 1.6 mm and another with h = 3.4 mm. Notably, as illustrated in Fig. 3.5c,

a striking congruence emerges between simulation outcomes and experimental observations,
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Figure 3.6: Effect of unknotting number n on inversion point.

corroborating the consistency between the two for both rod radii.

3.5.2 Effect of Unknotting Number

Moving forward, we shift our focus to the next contributing factor: the unknotting number

n. Just as before, we maintain the other contributing factors at fixed values to isolate the

influence of n on the system. Specifically, we set h = 1.6 mm and µ = 0.1.

55



Fig. 3.6a and Fig. 3.6b describe the respective relationships between F̄ and H̄ with respect

to l̄k for a range of n values. Notably, in both plots, the junctures of abrupt change coincide

with the inversion points. For the experimental phase, a rod with h = 1.6 mm and µ = 0.1

was utilized to craft overhand knots with n values of 3 and 4. As depicted in Fig. 3.6c,

we once again observe a high degree of agreement between the simulated and experimental

outcomes.

Overall, our investigation demonstrates that the critical value of l̄k generally escalates

as the unknotting number n increases, concomitant with a decline in clamped length l̄c.

Moreover, it is worth noting that an inversion phenomenon requires n to be greater than 1;

for cases where n = 1, the system does not exhibit inversion.

3.5.3 Effect of Friction Coefficient

Finally, we investigate the impact of the friction coefficient µ on the system while keeping

the other contributing factors constant: setting n to 3 and h to 3.4 mm.

Figs. 3.7a and 3.7b illustrate the relationships between F̄ and H̄ respectively concerning

to l̄k for various µ values. Notably, the points of abrupt change correspond to the inversion

points. It is evident that as µ increases, the normalized clamped length at which inversion

occurs decreases. In the experimental phase, a rod with normalized radius h = 3.4 mm and

the unknotting number n = 3 was employed. By altering the surface of the rod using chalk

and glycerin, the friction coefficient µ was manually adjusted. Chalk yielded µ = 0.7, while

glycerin resulted in µ = 0.1.

The outcomes are once again in solid agreement between simulation and experiment, as

demonstrated in Fig. 3.7c.

Through numerical simulations and desktop experiments, we have ascertained that the

parameters h, µ, and n significantly impact overhand knots’ inversion process. While we

have now obtained the effects of h, µ, and n on the inversion points of overhand knots, the
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Figure 3.7: Effect of friction coefficient µ on inversion point.

underlying mechanisms of these contributing factors and the reasons behind the occurrence

of inversion require further investigation.

In § 3.6, we delve into the development of a simplified knot model, one that doesn’t

necessitate self-contact simulation, to expound upon the mechanisms driving inversion and

to delineate the roles played by the contributing factors in the system.
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Figure 3.8: Simplified model of an overhand knot. The overhand knot can be divided into
the braid and the loop. During the tightening process, tangents at two ends of the braid will
rotate along the x and z-axes. Polar angle θ along z-axis and rotation angle ϕ along x-axis
are shown in (b) and (c), respectively

3.6 Topology Analysis

In this section, we present a simplified model for understanding the occurrence of inversion

during the tightening process of overhand knots. The primary objective of this simplified

model is to bypass the need for simulating frictional self-contact in the numerical simulations

of the knot. However, while aiming to capture the geometrically nonlinear behavior of the

rod, the simplified model still relies on numerical simulations of the contact-free knot loop.
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As shown in Fig. 3.2, an overhand knot can be divided into three segments: the loop,

the braid, and the tails. The analysis in the preceding section, drawn from simulations and

experiments, revealed that the braided region slackens during inversion, with parts of the

braid entering the loop region. Remarkably, the length of the tail regions remains constant

throughout inversion. This suggests that the inversion phenomenon emerges from the inter-

play of elastic energy between the braid and loop regions. Consequently, the simplified model

disregards the tails and concentrates solely on the closed loop, encompassing the braided and

loop segments.

The schematic of the simplified knot model is illustrated in Fig. 3.8. This model’s rods

with helical centerlines approximate the braided region, while friction within the braided area

and self-contact within the loop region are neglected. In congruence with the formulation

in § 3.2, the loop’s arc length is denoted as ll, and the arc length of the braided region

is denoted as lb. The tangent directions at the loop’s ends are denoted as t1 and t2. As

the knot depicted in Fig. 3.8a is tightened, it transforms into the configuration illustrated

in Fig. 3.8a. Throughout this process, we assume the knot’s shape remains antisymmetric

relative to the Y Z plane. This permits us to parameterize the rod’s boundary conditions

using two angles, θ and ϕ, as depicted in Figs. 3.8b and 3.8c.

The angle θ represents the rotation of the tangent vectors t1 and t2 around the z-axis.

This rotation is mirrored at the opposite end of the braid due to the continuity of the closed

loop. Hence, both ends of the braid rotate about the z-axis by the same angle θ. Fig. 3.8c

illustrates that the angle ϕ corresponds to the rotation of the tangent vectors t1 and t2

around the x-axis.

Given that the simplified model excludes the tails of the rod, six geometric parameters

become relevant: lb, ll, h, n, θ, and ϕ. It is worth noting that for a sufficiently small radius

h, the axial length of the rod within the braided segment approximately equals 2lb, leading

to an approximation of lk ≈ lb + ll. Two dimensionless parameters can be derived among the

three length-dependent parameters, lb, ll, and h. In this case, we opt for l̄k = lk/h and ϵ = lb
ll
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as our chosen dimensionless parameters. It is important to observe that the nondimensional

lengths l̄b = lb/h and l̄l = ll/h can be deduced from l̄k and ϵ using the relationships:

l̄b = ϵl̄k
1 + ϵ

l̄l = l̄k
1 + ϵ

. (3.5)

As discussed before, our observations indicate that inversion arises from the interplay of

elastic energies within the braid and loop regions. Consequently, we denote the elastic

energy of the braid as Eb and the elastic energy of the loop as El. To quantify these energies

in a dimensionless manner, we introduce the following nondimensional energies:

Ēb = Ebh

EI
Ēl = Elh

EI
. (3.6)

To calculate the nondimensional braid energy Ēb, we initiate by parameterizing the helical

rods constituting the braid region using the following parameterization:

x̄ = cos(t),

ȳ = sin(t),

z̄ = b̄t.

b̄ = l̄b
2nπ − 2θ

,

t ∈ [−nπ + θ, nπ − θ].

(3.7)

By disregarding the twisting energy of the helical rods within the braided region, equation 3.7

can be employed to derive the nondimensional bending energy of the braided region Ēb in

relation to the nondimensional curvature κ̄:

κ̄ = 1
1 + b̄2

,

Ēb = 2κ̄2(nπ − θ)
√

1 + b̄2
(3.8)
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Figure 3.9: Effects of rotation angle θ and normalized knot closed-loop length l̄k on the
energy Ē in the simplified knot model with ϕ = π/3, ϵ = 0.7, and n = 3.

Next, we describe the energy of the loop Ēl. Given that the loop represents a sus-

pended elastic rod within three-dimensional space, its configuration and elastic energy are
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Figure 3.10: Comparison between simplified model, the full DER simulation, and the exper-
imental measurements for different values of h with n = 3 and µ = 0.1.

not straightforward to determine analytically. However, we can leverage the DER-based

numerical simulations discussed in earlier sections to ascertain the shape of the loop. Con-

sequently, we can formulate Ēl as a function:

Ēl = f(ϕ, θ, l̄k, ϵ), (3.9)

where the value of f(·) is found with DER.

We can now express the total knot energy Ē(ϕ, θ, l̄k, ϵ) of the closed-loop as Ēb + Ēl.

Equilibrium configurations of the simplified knot must satisfy∇Ē = 0. However, rather than

coupling the analytical expression for the braid energy Ēb with the numerically computed

loop energy Ēl, we will instead focus on the influence of a single variable on the equilibrium
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Figure 3.11: Comparison between simplified model, the full DER simulation, and the exper-
imental measurements for different values of n with h = 1.6mm and µ = 0.1.

configurations and their stability. Specifically, we will investigate how the rotation angle θ

affects knot configurations. The numerical simulations described in previous sections showed

that inversion typically occurs at the approximate parameter values ϕ = π/3 and ϵ = 0.7.

Therefore, these nondimensional parameter values will be used in the remainder of this

section.

To observe the effects of θ on equilibrium configurations for the parameters ϕ = π/3 and

ϵ = 0.7, we conducted DER-based numerical simulations to solve for the total energy Ē with

a rod radius of h = 1.6 mm, an unknotting number of n = 3, a clamped length corresponding

to l̄k = 137.5, and with fixed rotation angles in the range θ ∈ [0, 5] radians. Equilibrium

configurations of the knot correspond to rotation angles at which ∂Ē/∂θ = 0. Fig. 3.9a

displays the value of Ē for θ ∈ [0, 5]. In this plot, we observe three critical points, with the
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outer two critical points being stable and the intermediate critical point being unstable. It

is important to emphasize that these critical points correspond to equilibria with respect

to variations in θ only, while the other parameters (namely, ϕ and ϵ) are held constant.

Fig. 3.9b illustrates the value of ∂Ē/∂θ for the range of θ, confirming the presence of three

critical points.

We can investigate how the number of critical points changes as the knot closed-loop’s

clamped length l̄k varies. Fig. 3.9c depicts the values of θ at the critical points as the

clamped length varies. We observe that there is a single stable critical point for sufficiently

large l̄k. As l̄k decreases, two additional critical points, one stable and one unstable, emerge

in a fold bifurcation. Further reduction of l̄k leads to the unstable critical point colliding

with the original stable critical point in a second-fold bifurcation, ultimately resulting in a

single stable critical point for sufficiently small l̄k. The second fold bifurcation corresponds

to the snap-through instability observed in previous sections. It is worth noting that while

the simplified model exhibits hysteresis between the two-fold bifurcations, this hysteretic

behavior is not observed in experiments due to the lack of consideration for gravity-induced

sag in our model.

The simplified knot model can now be employed to predict how changes in the rod’s radius

and the unknotting number affect the critical clamped length at which inversion occurs.

This allows us to compare the simplified knot model’s predictions with the simulated and

experimental results from previous sections. For rod radius values in the [1.5, 3.5]mm range

and an unknotting number of n = 3, we calculated the critical closed-loop length l̄k at which

the snap-through instability occurs. These results are shown by the dashed line in Fig. 3.10,

alongside the experimental and simulation outcomes based on the full DER model, including

contact and friction with a µ = 0.1 friction coefficient. A similar comparison is presented in

Fig. 3.11, where the radius is held constant at h = 1.6mm while the unknotting number is

varied. Notably, the simplified model’s predictions are in good qualitative and quantitative

agreement with the experimental and simulated results. Specifically, we observe that l̄k
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remains unchanged with variations in the rod radius h̄ and increases with the unknotting

number n, corresponding to a decreasing clamped length l̄c.

3.7 Summary and Outlook

In this chapter, we delved into the phenomenon of snap-through buckling in overhand knots

when subjected to tension at their clamped ends. We introduced a discrete differential

geometry-based model known as the one-dimensional Discrete Elastic Rods, coupled with

a frictional contact constraint method, to investigate how the topology of overhand knots

influences their physical behavior during tightening.

Through a combination of experimental observations and numerical simulations, we re-

vealed that intricate knot topologies can give rise to fascinating phenomena such as snap

buckling. Moreover, we demonstrated that parameters like µ, h, and n play pivotal roles in

shaping the geometry of overhand knots and determining the snap buckling point. Specifi-

cally, as µ, h, and n increase, the process of inversion, which corresponds to snap buckling,

occurs earlier, implying that looser overhand knots are more prone to inversion.

To offer deeper insights into the mechanics behind inversion, we conducted a topological

analysis of overhand knots and constructed a simplified model that predicts the inversion

point. This analysis clarified that inversion results from the intricate energy coupling between

contact zones and non-contact regions within the knot. Consequently, the sudden loosening

of the braid, known as the self-contact zone, leads to inversion. Beyond this point, the loop

remains in contact with the braided region.

While some previous research has touched on the effects of self-contact on snap buckling

in elastic structures, our work contributes numerically and analytically to this challenging

field. The phenomenon of inversion in overhand knots highlights how self-contact-induced

topologies can induce captivating behaviors in elastic structures. The energy coupling be-

tween contact and non-contact regions triggers inversion, yielding overhand knots that en-
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tangle themselves in intricate patterns. This understanding of inversion holds promise in

explaining tangles in complex polymers like DNA and proteins, and it could even inspire

novel strategies for designing and manipulating knotted structures.
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CHAPTER 4

Deep Learning Force Manifolds from the Physical

Simulation of Robotic Paper Folding

Robotic manipulation of slender objects presents a significant challenge, particularly when

dealing with large and nonlinear deformations. Traditional approaches, such as imitation

learning, have been employed to address deformable material manipulation. However, these

methods often lack generality and are prone to critical failures when material, geometry, or

environmental properties change.

This chapter focuses on a complex deformable manipulation task: folding a piece of paper

using only a single robot manipulator. To address this challenge, we propose a data-driven

framework that combines physically-accurate simulation and machine learning. They train

a deep neural network to predict the external forces acting on the manipulated paper based

on the grasp position.

One key innovation is the use of scaling analysis, which results in a control framework

that remains robust against variations in material and geometry. We use path planning over

a “neural force manifold” generated by their trained model to produce robot manipulation

trajectories that prevent sliding. Notably, the offline trajectory generation in this framework

is 15 times faster than previous physics-based folding methods.

The trained model’s fast inference speed allows for real-time visual feedback, enabling

closed-loop sensorimotor control. The chapter demonstrates the effectiveness of this frame-

work through real-world experiments, showing significant improvements in robotic manip-
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ulation performance compared to state-of-the-art folding strategies. This improvement is

observed even when manipulating paper objects of varying materials and shapes.

The underlying motivation is in § 4.1. Then, we state the targeting problem in § 4.2. With

the problem outlined, we do the physical analysis and outline a learned physics-informed

model in § 4.3. Next, we formulate a model predictive control for planning the optimal

strategy for the folding task in § 4.4. Next, we introduce our designed robotic system in

§ 4.5. Finally, we give the conclusions and outlooks in § 4.7. The content of this chapter is

from Ref. [76].

4.1 Motivation

From shoelaces to garments, we encounter slender and pliable structures in our daily lives.

These structures are notable for their capacity to undergo significant deformations even

under moderate forces, such as the influence of gravity. Consequently, the manipulation of

deformable objects by robots poses a formidable challenge, as it necessitates the anticipation

of the object’s future deformations to successfully complete manipulation tasks.

Previous research has primarily concentrated on the manipulation of two specific cate-

gories: cloth [77, 78, 79, 80, 81, 82] and ropes [83, 84, 85, 86, 87, 9, 88, 89]. Consequently, the

challenge of effectively manipulating a diverse range of deformable objects remains largely

unaddressed. In this chapter, we tackle a particularly intricate deformable manipulation

task - the folding of paper.

Historically, research addressing the folding problem can be categorized into four pri-

mary approaches: mechanical design-based solutions, vision-based solutions, learning-based

solutions, and model-based solutions.

Mechanical design-based approaches typically involve addressing the folding problem us-

ing highly specialized manipulators or end effectors. Early methods included the use of

specialized punches and dies for sheet metal bending [90]. More recently, there have been
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Figure 4.1: Half valley folding for A4 paper with (a) intuitive manipulation and (b) our de-
signed optimal manipulation. An intuitive manipulation scheme such as tracing a semicircle
experiences significant sliding due to the bending stiffness of the paper, resulting in a poor
fold. By contrast, our optimal manipulation approach achieves an excellent fold by taking
into consideration the paper’s deformation to minimize sliding.

developments in highly specialized manipulators for robotic origami folding [91]. While these

methods reliably achieve repeatable folding, they are often confined to specific fold types,

geometries, or materials.

Vision-based approaches entail folding deformable materials based solely on visual input
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to generate folding motions. These approaches are frequently applied to folding clothes [80,

92, 78] since clothes are highly pliable, and their deformation behavior can be predicted

with ease based on specific actions. However, these techniques may not readily extend to

paper folding due to paper’s higher stiffness, causing it to resist deformation if not handled

correctly.

Learning-based approaches involve robots learning how to fold through training data.

Learning from demonstrations (LfD), which involves deriving control policies from human

demonstrations, has been particularly popular. For examples, prior research has demon-

strated flattening and folding towels [93, 94]. Teleoperation demonstrations have also been

used for training policies, including the manipulation of deformable linear objects (DLOs) [95]

and folding fabric [96]. Researchers have additionally tackled the sim2real problem, using

reinforcement learning to train robots to fold fabrics and clothes entirely through simula-

tion [97, 98, 99]. More recently, Zheng et al. [100] employed reinforcement learning to teach

a robot to flip pages in a binder using tactile feedback. While pure learning-based meth-

ods have shown promise, they tend to struggle with generalization when the material or

geometric properties of the objects change significantly.

Model-based approaches, whether based on known or learned models, often employ model

predictive control to manipulate deformable objects. Learned models capture the natural

dynamics of deformable objects through random perturbations [101]. Although these models

are generally fast, they may suffer from inaccuracies when dealing with new states. Theo-

retical models aim to be as physically accurate as possible, enabling the direct application

of their predictive capabilities in the real world. Examples include theoretical models for

strip folding [18, 102] and garment folding [103]. Physical models often rely on energy-based

formulations [6, 8, 104], where elastic energies are computed based on the topological proper-

ties of simulated objects to predict their deformed shape under manipulation. These models

can describe complex deformations but often come with computational costs and a trade-off

between accuracy and efficiency.
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Despite extensive research on 2D deformable object manipulation, the majority of efforts

have been confined to soft materials such as towels and cloth. These materials are highly

compliant and typically exhibit straightforward, linear deformations, allowing for solutions

without the need for profound physical insight. In contrast, our work focuses on the challenge

of folding paper with varying stiffness properties using a single manipulator.

While other researchers have attempted single-manipulator folding with a focus on mini-

mizing sliding [18, 97, 102], their methods primarily targeted fabrics secured by taping their

ends to a substrate. However, our experiments have shown that their generated trajectories

perform inadequately when applied to paper folding. We attribute this to their local op-

timization strategy, which only considers the current grasp pose. In contrast, we generate

folding trajectories through global optimization, underscoring the importance of considering

both present and future deformation states during the paper manipulation process.

To address these challenges, we propose a framework that amalgamates physically accu-

rate simulation, scaling analysis, and machine learning to generate folding trajectories op-

timized to prevent sliding. Scaling analysis renders the problem non-dimensional, reducing

dimensionality and enhancing generality. This enables the training of a single nondimen-

sionalized neural network, referred to as a neural force manifold (NFM), to continuously

approximate a scaled force manifold derived purely from simulation. NFMs predict external

forces on the paper based solely on the grasp position, facilitating the generation of tra-

jectories optimized to minimize forces (and, consequently, sliding) through path planning

algorithms. Furthermore, the nondimensional nature of the NFM enables us to generate

trajectories for paper with diverse materials and geometric properties, even if these parame-

ters were not part of the training dataset. Our approach demonstrates the capability to fold

paper on exceptionally slick surfaces with minimal sliding (Fig. 4.1b).
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Figure 4.2: Folding sheets of paper. The manipulation process involves (a) the initial state,
where the paper lies flat on the substrate, followed by (b) the folding state, where the
manipulated end is moved to the “crease target” line C, and finally (c) the folded state,
which involves forming the desired crease on the paper.

4.2 Problem Statement

This work undertakes an investigation into a seemingly straightforward yet highly challenging

task within the realm of robotic folding. Specifically, the objective is to create a predefined
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crease on a sheet of paper possessing common symmetrical geometries, such as rectangles

or diamonds, as depicted in Fig. 4.2. This task involves the manipulation of only one end

of the paper, leaving the other end free from any fixtures. This characteristic simplifies the

workspace by necessitating the use of a single manipulator. However, it simultaneously in-

troduces the formidable challenge of preventing the paper from slipping against the substrate

during the manipulation process.

The task at hand can be dissected into two discrete steps. The first step entails ma-

nipulating one end of the paper, transitioning it from its initial flat state, as illustrated in

Fig. 4.2a, to the folding state depicted in Fig. 4.2b. The primary objective of this step is

to ensure that the manipulated edge or point aligns precisely with the predetermined crease

line or point C, as demonstrated in the figure. In the subsequent second step, the paper un-

dergoes permanent deformation, creating the desired crease at the midpoint C/2, ultimately

achieving the final folded state, as visualized in Fig. 4.2c.

It is essential to recognize that, while the act of creasing the paper may appear straight-

forward, the principal challenge lies in minimizing the displacement of the free end of the

paper during the initial step. The paper’s inherent susceptibility to nonlinear deformations,

coupled with its slippery surface, accentuates the importance of accurate predictions regard-

ing the paper’s folding status to effectively minimize displacement. Given that the initial

step does not involve permanent deformations, we opt for a 2D planar rod model under a

linear elastic assumption to represent the paper’s nonlinear deformations. Further details

regarding this modeling approach are expounded upon in the subsequent section.

Subsequently, this physical model is seamlessly integrated with scaling analysis and ma-

chine learning techniques, facilitating the generation of folding trajectories that not only

incorporate physical principles but are also meticulously optimized to mitigate sliding. Hav-

ing successfully executed the first step, we employ straightforward motion primitives to

finalize the creasing of the paper.
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Figure 4.3: Topology analysis of the energy balance between bending and gravity.

4.3 Physical-based Modelling and Machine Learning

In this section, we present the physical analysis for modelling the paper folding process.

First, we analyze the main deformations of the manipulated paper and prove that a 2D

model is sufficient to learn the behaviors of the manipulated paper so long as the sheet is

symmetrical. The numerical model is based on DER stated in § 1.1 Second, we formulate a

generalized strategy for paper folding using scaling analysis. Third, we present the machine

learning scheme we used for expressing the generalized strategy in a data-driven manner.

4.3.1 Reduced-Order Model Representation

Paper represents a distinct deformable object with unique properties. Unlike cloth, its sur-

face exhibits developability [105], meaning it can bend but not stretch. Moreover, shear

deformations are of minimal significance as paper possesses a negligible thickness-to-length

ratio. Therefore, when folding paper in our context, the primary source of nonlinear defor-

mation is bending. We hypothesize that the nonlinear behaviors of paper primarily result

from a balance between bending and gravitational energies, denoted as ϵb ∼ ϵg.
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To gain a deeper insight into the energy dynamics of manipulated paper, we scrutinize a

finite element of the paper, as illustrated in Fig. 4.3b. The bending energy of this element

can be expressed as:

ϵb = 1
2kbκ

2l, (4.1)

where l represents the undeformed length of the element, κ signifies its curvature, and the

bending stiffness is given by:

kb = 1
12Ewh3, (4.2)

In this equation, w denotes its undeformed width, h is its thickness, and E represents its

Young’s modulus. The gravitational potential energy of the element can be expressed as:

ϵg = ρwhlgH, (4.3)

In Eq. 4.3, ρ denotes the volume density, and H signifies its vertical height above the rigid

substrate.

From the equations above, we derive a characteristic length referred to as the gravito-

bending length, which encapsulates the interplay between bending and gravity:

Lgb =
(

Eh2

24ρg

) 1
3

∼
(

H

κ2

) 1
3

. (4.4)

This length is measured in meters and scales proportionally with the ratio of vertical height

to curvature squared, representing key parameters characterizing the deformed configuration

of the manipulated paper. Notably, the formulation of Lgb depends solely on one geometric

parameter, the paper thickness h, rendering other geometric quantities such as length l and

width w irrelevant to the deformed configuration.

Furthermore, due to the paper’s symmetrical geometry and material homogeneity, the

curvature κ is expected to be uniform for all regions at the same height H. Consequently,

we can effectively employ the centerline of the paper, as depicted in Fig. 4.3a, to represent
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Figure 4.4: Schematic of the folding process and visualization of the sampling training data

the paper’s configuration. We model this centerline as a 2D planar rod since deformations

are confined to the x-z plane. To simulate the behavior of this 2D planar rod, we implement

a discrete differential geometry (DDG) numerical simulation, which will be detailed in the

subsequent section.

4.3.2 Generalized Solution and Scaling Analysis

As stated in § 4.2, the crux of the folding task entails maneuvering the end point, denoted

as qN , to the target position C, starting from an initially flat configuration illustrated in

Fig. 4.4a. To accomplish this, an analysis of the physical system is conducted to devise a

solution that minimizes sliding during manipulation.

Several key quantities are introduced to characterize the deformed configuration of the

paper. A point, denoted as qC , serves as the node linking the suspended region (z > 0)

and the contact region (z = 0) of the paper. Given that deformations primarily occur in the

suspended region, the focus is exclusively on this area. An origin, denoted as o, is established
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for the 2D plane and is situated at the initial manipulated end, qN , as depicted in Fig. 4.4a.

The robot end-effector exerts control over the pose of the manipulated end, specifying both a

position, qN = (x, z), and an orientation angle, α, as shown in Fig. 4.4a. A crucial constraint

is imposed, stipulating that the curvature at the manipulated end remains consistently zero

to avert sharp bending deformations, which are vital in preventing permanent deformations

during the folding process. At the connective node, qC , the tangent always aligns with the

x-axis.

With these defined parameters, the equations of motion (EOM) for the Discrete Elastic

Rod (DER), as outlined in § 1.1, are modified to accommodate the following constraints:

Mq̈ + ∂Eel

∂q
− Fext = 0,

such that qN = (x, z),
dqC

ds
= (−1, 0),

MN = 0,

ls ≡
∫ qN

qC

ds = qC · x̂,

(4.5)

where MN is the external moment applied on the manipulated end, s is the arc length of the

paper’s centerline, and ls is the arc length of the suspended region (from qC to qN).

Upon solving Eq. 4.5 through the numerical framework detailed in § 1.1, a unique degree-

of-freedom vector q is obtained. It is noteworthy that once q is determined, it enables the

derivation of external forces from the substrate acting upon the paper, denoted as Fsubstrate =

Fx + Fz. The orientation angle α of the manipulated end, as well as the suspended length

ls, can also be deduced. As a reminder, Young’s modulus (E), thickness (h), and density (ρ)

were determined to be the primary material and geometric properties of the paper through
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Eq. 4.4. Subsequently, a physical relationship governing these quantities is outlined:

λ = ∥Fx∥
∥Fz∥

,

(λ, α, ls) = f(E, h, ρ, x, z),
(4.6)

where f is an unknown relationship. It is imperative to observe that, to prevent sliding

during manipulation, the condition

λ ≤ µs (4.7)

must be satisfied, with µs denoting the static friction coefficient between the paper and

the substrate. Consequently, a trajectory that minimizes sliding is one that concurrently

minimizes λ throughout its path.

A significant challenge arises, however, as the relation f remains unknown, necessitating

its determination for trajectory generation. Without an analytical solution, an exhaustive

approach involving the numerical framework outlined in § 1.1 could be employed to system-

atically uncover the mappings between the input and output of f . Nevertheless, this method,

reliant on generating tuples, necessitates the solution of the high-dimensional problem pre-

sented in Eq. 4.5, rendering it highly inefficient and unsuitable for real-time operation. To

circumvent these challenges, we propose the utilization of a regression approximation of f

via the fitting of a neural network on simulation data. Nonetheless, this approach is not

without its shortcomings. Notably, directly learning f is a time-consuming endeavor due to

the high-dimensional nature of Eq. 4.6, dependent on five parameters as input. Furthermore,

the formulation’s direct dependency on intrinsic paper properties (E, ρ, and h) necessitates

a vast range of exhaustive simulations to acquire sufficient data for accurate learning.

To address these challenges and streamline the learning process, we employ scaling

analysis. Leveraging the Buckingham π’s theorem, we establish five dimensionless groups:

x̄ = x/Lgb; z̄ = z/Lgb; l̄s = ls/Lgb; α; and λ = Ft/Fn, where Lgb denotes the gravito-bending

length as defined in Eq. 4.4. This formulation results in a dimensionless representation of
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Eq. 4.6:

(λ, α, l̄s) = F (x̄, z̄) . (4.8)

Crucially, the mapping F becomes independent of units, effectively disentangling it from ma-

terial and geometric paper properties. Consequently, with the dimensionality of the problem

significantly reduced, training a neural network to model F becomes straightforward, utiliz-

ing non-dimensionalized simulation data from a single paper type. Moreover, the reduced

dimensionality of F facilitates the visualization of the landscape of λ along a non-dimensional

2D-plane.

4.3.3 Data Generation

To learn F , we undertake the solution of Eq. 4.5 for numerous sampled points (x, z). An

illustrative representation of the partial force manifold, generated through this sampling

procedure for a specific suspended length, is provided in Fig. 4.4b.

For any given (x, z) location, we incrementally introduce rotations along the y-axis and

identify the optimal rotation angle, denoted as α, that ensures MN = 0 at the manipulated

end. Subsequently, for a specific configuration (x, z, α), we record pertinent data, including

the suspended length, ls, along with the tangential and normal forces acting on the clamped

end. This process culminates in the formation of a training dataset, denoted as D, comprising

tuples consisting of six elements: (Ft, Fn, α, ls, x, z).

Following this data collection, we perform a non-dimensionalization of the dataset, trans-

forming it into the following normalized form: (λ, α, l̄s, x̄, z̄).

Our simulation framework facilitates the generation of an extensive dataset, denoted

as D, encompassing a total of 95,796 training samples. This dataset covers a normalized

suspended length range of l̄s ≤ 6.84, effectively spanning the workspace of most papers.

The generation of this dataset consumed approximately 3.54 hours of computational time,

executed on an AMD Ryzen 7 3700X 8-core processor.
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4.3.4 Learning Force and Optimal Grasp Orientation

For the training of a neural network model F

(λ, α, l̄s) = FNN(x̄, z̄), (4.9)

we employed a relatively simple fully-connected feed-forward nonlinear regression network

architecture. This neural network consisted of four hidden layers, each comprising 392 units.

Notably, each hidden layer, with the exception of the final output layer, incorporated rectified

linear unit (ReLU) activation functions.

Furthermore, prior to inputting the data into the neural network, we applied a standard-

ization process, as defined in

x′ = x− x̄D

σD
. (4.10)

This standardization involved adjusting the input values x by subtracting the mean of the

dataset D, denoted as x̄D, and subsequently dividing them by the standard deviation of D,

represented as σD.

Our training procedure commenced with an initial 80-20 split of the dataset D into

training and validation sets, utilizing a batch size of 128. The mean absolute error (MAE)

was employed as the training error metric. In the event that training reached a plateau, we

alternated between stochastic gradient descent (SGD) and the Adam optimizer. Additionally,

we progressively increased the batch size up to 4,096 and conducted training on the complete

dataset once the MAE dropped below the threshold of 0.001. Through this training scheme,

we successfully achieved an MAE of less than 0.0005.
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4.4 Optimal Motion Planning

In this section, we begin by constructing a Neural Force Manifold (NFM) using the learned

model. The NFM encapsulates essential information regarding the force ratios exerted by

the substrates within the manipulation workspace. This information is crucial for devising

an optimal motion plan that minimizes the impact of substrate forces on the manipulation

process.

4.4.1 Constructing the Neural Force Manifold

The Neural Force Manifold (NFM), which represents the λ – output of FNN for the given

workspace set, is discretized into a rectangular grid. This grid is composed of δ̄ × δ̄ blocks,

where δ̄ = δ/Lgb. Within each block, we calculate and store a single λ value based on

the midpoint of that block. This discretization process results in a structured neural force

manifold denoted as M, which can be conceptualized as an m× n matrix.

For path planning, we introduce two additional components to our manifold. Firstly,

we restrict exploration to regions covered by our training dataset (l̄s ≤ 6.84) and define a

workspace, denoted as W . This workspace encompasses all (x̄, z̄) pairs within the convex

hull of the input portion of the dataset D. Secondly, we establish an exclusion zone based

on a certain threshold for l̄s. This is essential to prevent positions characterized by small

suspended lengths and large α angles, which could result in high curvatures, potential col-

lisions with our gripper, or undesirable plastic deformation. This exclusion zone is referred

to as the penalty region, denoted as Ls. Fig. 4.5a provides a visualization of M alongside

the workspace W and the penalty boundary Ls regions. Additionally, Fig. 4.5b displays the

corresponding α values associated with the manifold.
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(a) Neural Force Manifold of the workspace (b) Manifold for α of the workspace

(c) Trajectories in (a) and (b) (d) Arbitrary trajectories for various Lgb

Figure 4.5: Visualization of the trained neural network’s non-dimensionalized λ force man-
ifold M (a) and α manifold (b). An extremely low δ̄ discretization is used to showcase
smoothness. For the force manifold, we observe two distinctive local minima canyons. Note
that regions outside the workspaceW are physically inaccurate but are of no consequence as
they are ignored. For the α manifold, we observe continuous smooth interpolation through-
out, which is crucial for producing feasible trajectories. Both manifolds showcase the trajec-
tories used in the experiments for folding paper in half for Lgb ∈ [0.048, 0.060, 0.132]. (c) The
three trajectories in (a) and (b) scaled back to real space. These are the actual trajectories
used by the robot. (d) Arbitrary trajectories for various Lgb with identical start and goal
states, highlighting the effect of the material property on our control policy.

4.4.2 Path Planning over the Neural Force Manifold

In light of the discretized manifold denoted as M, we are now equipped to employ conven-

tional path planning algorithms for the generation of optimal trajectories. Evidently, within

the neural force manifold M, we discern the presence of two distinct local minima regions,

as visually indicated by the dark blue shading in Fig. 4.5a. However, it is imperative to

note that these two minimum regions remain unconnected. This circumstance underscores

the potential consequence of suboptimal local optimization, which may inadvertently lead
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to traversals through regions characterized by high force magnitudes later in the process.

Algorithm 4: Uniform Cost Search
Input: x̄s, z̄s, x̄g, z̄g,M
Output: τ ∗

1 Func UCS(x̄s, z̄s, x̄g, z̄g,M):
2 W ← valid workspace of M
3 Ls ← ls penalty region
4 h← initialize min heap priority queue
5 c← initialize empty list
6 ns ← node with location (x̄s, z̄s) and cost 0
7 ng ← node with location (x̄g, z̄g) and cost 0
8 h.push(ns)
9 while len(h) > 0 do

10 ni ← h.pop()
11 if ni == ng then
12 τ ∗ ← path from start to goal
13 break
14 c.append(ni)
15 for (x̄j, z̄j) ∈ neighbors of ni do
16 if (x̄j, z̄j) /∈ W \ Ls then
17 continue
18 nj ← node with location (x̄j, z̄j) and cost λj from M
19 if nj ∈ c then
20 continue
21 if nj ∈ h and cost of nj is higher then
22 continue
23 h.push(nj)
24 τ ∗ ← perform trajectory smoothing on τ ∗

25 return τ ∗

4.4.3 Dual Manipulator and Perception System

As previously alluded to, prior investigations in the realm of mechanics-based strategies for

folding shell-like structures, such as cloth, have relied upon either physical simulations or

energy-based optimization techniques to compute the optimal subsequent grasping actions.

These methodologies, however, operate solely based on the present configuration of the
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Figure 4.6: Example of our perception system with a top-down view of the folding procedure.
(a) Shows the intuitive baseline results while (b) shows our open-loop algorithm for Lgb =
0.048 and C = 0.25 m. As in Fig. 4.2, the solid green line indicates the desired end effector
position while the dashed blue line indicates the crease location. For this case, we observe
that the intuitive baseline suffers from considerable sliding while our open-loop algorithm
has near-perfect performance.

manipulated object [18, 102]. Our empirical findings in § 4.6 unequivocally demonstrate

the inadequacy of such localized optimization approaches when applied to the context of

paper folding. In contrast to the aforementioned local optimization paradigms, our approach

centers on the generation of globally optimized trajectories, which account for both the

current and future states of the paper sheet. To this end, we formulate the concept of an

optimal trajectory denoted as τ+, characterized by its ability to reach the desired goal state

while simultaneously minimizing the cumulative sum of a set of cost factors λi, defined as

follows:

τ ∗ = arg min
τ∈T

i=L−1∑
i=0

λi, (4.11)

where L is the length of the trajectory and T is the set of all valid trajectories from the

desired start to goal state. We define a valid trajectory as one that is contained within the

acceptable region

(xi, zi) ∈ W \ Ls ∀ (xi, zi) ∈ τ, (4.12)

and whose consecutive states are adjacent grid locations. Given the discretization of the

NFM, we can treat M as a graph whose edge weights consist of λ. Therefore, we use

uniform cost search to obtain τ ∗. Algo.4 provides the pseudocode of the path planning
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Figure 4.7: Experimental apparatus: Two robot manipulators, one for folding (1) and the
other for creasing (3). An elongated gripper (2) is used to grab the manipulated end of
the paper. A roller (5) with compliant springs (6) is used to form the crease. An Intel
RealSense D435 camera (4) attached to the creasing arm offers visual feedback during the
folding procedure. All gripper attachments were 3D printed.

algorithm.

4.5 Robotic Systems

We employ two Rethink Robotics’ Sawyer manipulators in our experimental setup, as illus-

trated in Fig. 4.7. One of these robotic arms is equipped with an elongated gripper designed

specifically for folding tasks, while the other arm features a spring-compliant roller for creas-

ing operations. Additionally, the roller arm is fitted with an Intel Realsense D435 camera,

providing visual feedback. Notably, the elongated gripper is augmented with rubber lining

on the inner surfaces of its fingers to facilitate secure and precise grasping of objects.

For the purpose of perception tasks, we adopt an eye-in-hand approach, involving the

attachment of an Intel Realsense D435 camera to the roller arm. It is worth noting that we

do not utilize the range output of the camera, as it is oriented downward along the world’s

z-axis, and the distance from the camera to the table surface is a known parameter in our
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setup. To ascertain the pose of the paper sheet, we employ a straightforward color detection

technique to isolate the paper from its surroundings. Subsequently, we employ Shi-Tomasi

corner detection [106] to determine the position of the paper’s bottom edge. Fig. 4.6 offers a

visual representation of the top-down perspective, along with the detected poses as acquired

through our vision system.

4.5.1 Visual-Feedback Control

Despite our efforts to minimize the cost factors represented by λ within our proposed frame-

work, it is crucial to acknowledge the potential occurrence of sliding, which may arise due

to a substrate’s low-friction surface characteristics and/or slight jittering of the robot’s end-

effector. It is worth noting that the optimal trajectory τ ∗, generated as elaborated in § 4.4.2,

is predicated on the assumption of a fixed origin o within our coordinate system, depicted

in Fig. 4.4a. This origin o can be explicitly defined as o = q0 − lx̂, where l signifies the

total length of the paper. The occurrence of any degree of sliding implies that the position

of q0 along the x-axis is changing, thereby necessitating a corresponding adjustment in the

position of the origin o. Consequently, deviations from the optimal trajectory ensue during

traversal. Moreover, in the absence of adaptive replanning, the amount of sliding denoted

as ∆x will directly translate into an error of ∆x in the creasing operation.

To mitigate the effects of sliding, we introduce a visual-feedback approach into our

methodology. We collect visual feedback at N evenly spaced intervals along the trajec-

tory τ ∗, as depicted in Fig. 4.8. To achieve this, we divide τ ∗ into N partial trajectories.

With the exception of the initial partial trajectory τ ∗
0 , we extract the start and goal states

of the remaining 1 ≤ i ≤ N partial trajectories, resulting in a sequence of N evenly spaced

states S = {(x1, z1, α1), . . . , (xN , zN , αN)}, accounting for potential overlaps. After execut-

ing τ ∗
0 , we assess the extent of sliding, denoted as ∆x, and incorporate this error by updating
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Figure 4.8: Overview of our robotic paper-folding pipeline. The top row shows offline com-
ponents while the bottom row shows online ones. On the offline side, we use our trained
neural network to generate the necessary force manifold for planning. Then, given an input
tuple (xs, zs, xg, zg, Lgb), we generate an end-to-end trajectory using uniform cost search.
This end-to-end trajectory is then split up into partial trajectories that are carried out by
the robot. At the conclusion of each partial trajectory, we measure paper sliding and replan
the next partial trajectory to rectify the error.
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Algorithm 5: Closed-loop Control Pseudocode
Input: (xs, zs), (xg, zg), Lgb, δ, N,FNN

1 M←DiscretizeManifold (FNN, δ)
2 x̄s, z̄s, x̄g, z̄g ← non-dimensionalize with Lgb

3 τ̄ ∗ ← UCS (x̄s, z̄s, x̄g, z̄g,M)
4 update τ̄ ∗ with αs using FNN
5 τ ∗ ← convert τ̄ ∗ to real space with Lgb

6 τ ∗
0 , ..., τ ∗

N−1 ← SplitTrajectory (τ ∗, N)
7 S ← extract start and goal states
8 carry out τ ∗

0 on robot
9 for (xi, zi, αi) and (xi+1, zi+1, αi+1) ∈ S do

10 ∆x← detect sliding of paper
11 xc

i ← xi −∆x
12 x̄c

i , z̄i, x̄i+1, z̄i+1 ← non-dimensionalize with Lgb

13 αc
i ← FNN(x̄c

i , z̄i)
14 ∆α← αi − αc

i

15 τ̄ ∗
i ← UCS (x̄c

i , z̄i, x̄i+1, z̄i+1,M)
16 L← len(τ̄ ∗

i )
17 αi ← obtain αs of τ̄ ∗

i using FNN
18 αc

i ← αi + ∆α[1, (L− 1)/L, ..., 1/L, 0]T
19 append τ̄ ∗

i with αc
i

20 τ ∗
i ← convert τ̄ ∗ to real space with Lgb

21 carry out τ ∗
i on robot

22 crease paper with roller
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the start state and normalizing it as follows:

x̄c
i = xi −∆x

Lgb

. (4.13)

Subsequently, we replan a partial trajectory τ ∗
i from the updated start state (xc

i , zi) to the

next state (xi + 1, zi+1) in the sequence and execute this updated trajectory. This process is

reiterated until the goal state is reached. This is repeated until reaching the goal state. By

properly accounting for sliding, we ensure that the traversal through the NFM is as accurate

as possible. Note that this scheme allows us to obtain corrected partial trajectories in near

real time once N becomes sufficiently large, as each partial trajectory’s goal state approaches

its start state, allowing for uniform cost search to conclude rapidly. We direct the reader to

our supplementary videos (Footnote 1), which showcase the speed of the feedback loop.

It should be noted that sliding ∆x is not the sole error we must rectify. We must also

consider that we assume an optimal grasp orientation α for each position within the neural

force manifold. When the origin of our neural force manifold shifts, the actual position no

longer aligns with the intended position, leading to an angular error ∆α:

αc
i = FNN(x̄c

i , z̄i),

∆α = αi − αc
i .

(4.14)

Simply applying a correction of −∆α to the first point in a partial trajectory would result

in a significant abrupt rotation, exacerbating the sliding issue. Furthermore, as long as the

sliding remains within reasonable bounds, the incorrect α at the current position within the

manifold remains reasonably optimal. Therefore, we opt for a gradual incorporation of the
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∆α error into the trajectory:

τ ∗
i = UCS(x̄c

i , z̄i, x̄i+1, z̄i+1,M),

αi = FNN(τ ∗
i ),

αc
i = αi + ∆α[1, (L− 1)/L, ..., 1/L, 0]T ,

(4.15)

where UCS denotes uniform cost search and L represents the length of trajectory τ ∗
i . This

gradual correction approach ensures that we minimize sliding while maintaining the smooth-

ness of the trajectory. Algo.5 provides the pseudocode outlining the entire closed-loop

method we have described.

4.6 Experiments and Results

4.6.1 Measuring the Material Property of Paper

To utilize our framework effectively, it’s essential to accurately determine the parameter Lgb,

which comprises both the bending stiffness kb = Eh3/12 and the density ρ of the paper

material. Therefore, by measuring this single quantity, we can sufficiently characterize the

material properties of the paper. We next present a straightforward method for measuring

this parameter.

As shown in Fig. 4.9a, when one end of the paper is fixed, it undergoes deformation

due to the combined effects of bending and gravitational energy. Since Lgb represents the

combined influence of both bending and gravity on the paper, we can establish the following

relationship:

L(ϵ) = l̄ = l

Lgb

, ϵ = lh
l

, (4.16)

where lh is the vertical distance from the free end to the fixed end and l is the paper’s total

length. The mapping L(ϵ) can be determined through numerical simulations, as depicted

in Fig. 4.9b. Having established this mapping, we can employ straightforward algebra to
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(a) Schematic of a hanging plate. The manipula-
tion edge is fixed horizontally.
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(b) Relationship between the ratio ϵ = lh/l and
normalized total length of the paper l̄ = l/Lgb.

Figure 4.9: The measurement scheme for gravity-bending length Lgb.

deduce the Lgb value. First, we measure the ratio ϵ = lh/l for a particular paper to obtain

its corresponding normalized total length l̄. Then, the value of Lgb can be calculated simply

by Lgb = l/l̄. Once we obtain Lgb, we can now use the non-dimensionalized mapping Eq. 4.8

to find the optimal path for manipulating the paper.
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Figure 4.10: Comparison of trajectories computed by the folding algorithms for US letter
paper with C = 0.27 m.

4.6.2 Baseline Algorithms

To demonstrate the benefits of our folding algorithm, we conducted comparisons with both

an intuitive and a state-of-the-art baseline. The intuitive baseline algorithm can be con-

ceptualized as one that would succeed if the opposite end of the paper were fixed to the

substrate. In such a scenario, the trajectory would involve gripping the paper’s edge and

tracing half of a circle’s perimeter with a radius of R = C/2:

dθ = π/M,

τB = {(R cos(idθ), R sin(idθ), idθ) ∀ i ∈ [0, M ]},
(4.17)

where M is an arbitrary number of points used to sample the trajectory. We chose M = 250

for all our experiments.

Additionally, we conducted comparisons against the state-of-the-art mechanics-based

folding algorithm presented by Petrik et al. [18, 102], which we refer to as the “SOTA

baseline”, that uses a beam model to compute folding trajectories for fabric minimizing slid-

ing. However, this baseline considers only the current status of the deformed material when

computing subsequent optimal grasp and, consequently, cannot handle the challenging task
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of paper folding. Examples of the computed trajectories are shown in Fig. 4.10.

4.6.3 Experimental Setup

We tested folding on four different types of paper:

1. A4 paper, Lgb = 0.048 m,

2. US Letter paper, Lgb = 0.060 m,

3. cardboard paper (US Letter dimensions), Lgb = 0.132 m,

4. square origami paper, Lgb = 0.043 m.

We performed two sets of experiments for the rectangular papers (1–3). The first involved

folding the papers to an arbitrary crease location (C = 0.25 m for A4 and C = 0.20 m for

US Letter and cardboard), while the second involves folding the papers in half. We chose

an arbitrary crease location of C = 0.30 m for the square origami paper. This resulted in a

total of 7 folding scenarios. For each scenario, we conducted experiments using four different

algorithms—the intuitive baseline, the SOTA baseline, our open-loop approach, and our

closed-loop approach. We completed 10 trials for each of these algorithms, resulting in a

total of 280 experiments.

4.6.4 Metrics

In the experiments, we employed two critical metrics for evaluation: the average fold length

and the spin error. The average fold length was computed by taking the average of the left

and right side lengths up to the crease. The spin error, on the other hand, was determined by

calculating the angle θerr, representing the difference between the left and right side lengths.

In the case of square papers, the fold length was defined as the perpendicular length from

the tip to the crease, while the spin error denoted the angular deviation from this line to the

true diagonal.
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Table 4.1: Offline trajectory computation times for papers and crease types [s]

Algorithm A4 C = 0.25 m A4 C = Half US C = 0.20 m US C = Half CA C = 0.20 m CA C = Half OR C = 0.30 m

Petrik et al.[18, 102] 59.46 51.15 68.14 47.30 80.07 77.28 43.20
Our Method 3.28 4.13 1.80 2.28 1.27 4.19 11.73

4.6.5 Parameters

In our experiments, we discretized the neural force manifold M using a step size of δ̄ =

0.0548. This discretization value was chosen as it offered a good balance between accuracy

and computational efficiency. For rectangular papers, we defined a penalty region Ls with

the constraint l̄s < 0.958, whereas square papers used a penalty region defined by l̄s < 1.137.

This difference arises from the varying yield strengths of the papers; the square paper has a

smaller yield strength compared to the rectangular paper, necessitating a larger suspended

length l̄s range to avoid highly high curvatures.

In our closed-loop control approach, we divided all trajectories into N = 5 intervals,

regardless of the trajectory length. Additionally, we conducted experiments on a low-friction

table to demonstrate the robustness of our method. Notably, lower friction coefficients

make the manipulation task more challenging due to the increased likelihood of sliding. We

empirically measured the static coefficient of friction between the papers and the substrate,

yielding an approximate value of µs = 0.12. For comparison, the static coefficient of friction

for lubricated steel on steel is typically around µs = 0.15.

4.6.6 Results and Analysis

Tab. 4.1 presents the offline trajectory computation times for all experiments conducted using

a single Intel i9-9900KF CPU. These results demonstrate an average speed improvement of

15× over the state-of-the-art (SOTA) baseline. In Fig. 4.11, we display the experimental

outcomes as box plots, showcasing both achieved fold lengths and spin errors. The fold

lengths reveal significant improvements across all folding scenarios over the two baseline
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Figure 4.11: Experimental results for all folding scenarios. Each column indicates a folding
scenario while the top row (a) shows the fold length and the bottom row (b) shows the
spin error. Boxplot results are shown color coded for the intuitive baseline, the SOTA
baseline [18], open-loop control, and closed-loop control algorithms. Medians are shown as
orange lines, means as turquoise circles, and the desired target value as a light blue horizontal
line. Both our open-loop and closed-loop algorithms yield significant improvements over the
intuitive baseline and the SOTA baseline, as shown by the broken axis in (a). Our algorithms
also exhibit significantly less variance.

methods.

As expected, the SOTA baseline generally outperforms the intuitive method, except for

cardboard paper, where the SOTA approach fails to fold it all together. To appropriately

represent the data variance, we use broken axes. It’s worth noting that our algorithms

achieve significantly better average performance and exhibit lower variance, as evidenced

by the reduced y-axis resolution after the axis break. The high variances observed in the

baseline algorithms can be attributed to the increased influence of friction, which often leads

to chaotic and unpredictable outcomes. In essence, deterministic folding can only be attained

without sliding.

For the vast majority of cases, incorporating visual feedback yields a clear improvement

over the open-loop algorithm. Intuitively, we observe a trend where the performance gap

between our open-loop and closed-loop algorithms grows as the material stiffness increases
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Figure 4.12: Isometric views of different folding scenarios. (a) C = Half folding for Lgb =
0.048 paper with the intuitive baseline (a1), the SOTA baseline (a2), and our open-loop
algorithm (a3). (b) C = 0.30 m diagonal folding for Lgb = 0.043 with the intuitive baseline
(b1), the SOTA baseline (b2), and our closed-loop algorithm (b3).
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Figure 4.13: Isometric views for folding C = Half with the stiffest paper (Lgb = 0.132):
(a) shows the intuitive baseline, which fails drastically as the stiffness of the paper causes
excessive sliding during the folding process, (b) shows the SOTA baseline, which is unable
to fold cardboard at all and experiences a high energy snap caused by the large induced
deformations, (c) shows our open-loop algorithm, demonstrating significant improvements
over both baselines with minimal sliding, and (d) shows our closed-loop algorithm, which
improves upon our open-loop results and achieves near perfect folding.
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for rectangular folding. For softer materials (Lgb = 0.048), the open-loop algorithm has near-

perfect performance as shown when folding a paper in half in Fig. 4.12(a3). By comparison,

Fig. 4.12(a1)–(a2) shows the intuitive and SOTA baselines failing with significant sliding.

The sliding problem is only exacerbated by increasing the material’s stiffness (Lgb =

0.132). Fig. 4.13(a) shows the intuitive baseline algorithm failing to fold the cardboard

paper in half by a margin almost as long as the paper itself, while Fig. 4.13(b) shows how

the SOTA baseline method experiences complete failure due to a high energy snapping caused

by excessive deformation. By comparison, our open-loop algorithm can fold the cardboard

with significantly better results albeit with some sliding, as shown in Fig. 4.13(c). As the

material stiffness increases, the benefits of visual feedback are more clearly seen as we can

achieve near-perfect folding for cardboard, as shown in Fig. 4.13(d). All of our findings

for rectangular folding also match the results of our diagonal folding experiment shown

in Fig. 4.12(b1)–(b3), where the closed-loop approach once again achieves minimal sliding

when compared to the baselines. Overall, the matching findings across all our experiments

demonstrate the robustness of our formulation against material and geometric factors.

We observed one oddity for the folding scenario of Lgb = 0.048 and C = Half, in which the

open-loop algorithm outperformed our closed-loop variant, but the decrease in performance is

on average only 1mm, which is attributable to repetitive discretization error caused by N = 5

replanning. In fact, as we use a discretization of δ = 2mm for the manifold, compounding

rounding errors can easily cause 1–2mm errors. With this in mind, our closed-loop method

achieves an average fold length performance within a 1-2mm tolerance across all experiments.

We found that softer materials had the greatest error in spin error. As the table’s surface

is not perfectly flat, any amount of sliding will directly result in uneven spin as shown in

Fig. 4.12(a). As the material stiffness increases, the spin errors become more uniform across

the methods as the influence of friction is not enough to deform the paper. Nevertheless, we

can see that our open and closed-loop algorithms resulted in less sliding than the baseline

on average.
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4.7 Summary and Outlook

In this chapter, we have introduced an innovative robotic control strategy capable of robustly

folding sheets of paper with varying materials and geometries using a single manipulator.

Our framework incorporates a combination of techniques from various disciplines, includ-

ing physical simulation, machine learning, scaling analysis, and path planning. We have

demonstrated the effectiveness of our framework through extensive real-world experiments,

comparing it to both conventional and state-of-the-art paper folding strategies. Furthermore,

we have implemented an efficient, nearly real-time visual feedback algorithm that further re-

duces folding errors. Our closed-loop sensorimotor control algorithm successfully handled

challenging scenarios, including folding stiff cardboard with repeatable accuracy.

For future work, we aim to address the complex problem of creating arbitrary creases

along sheets of paper with non-symmetric centerlines. Such non-symmetric papers cannot

be represented as reduced-order 2D elastic rod models, necessitating more advanced formu-

lations. Additionally, folding along paper regions with preexisting creases and folds will be

crucial in achieving intricate folding tasks, such as robotic origami. Looking ahead, we plan

to explore solutions to these challenges that leverage generalized problem formulations with

data-driven control schemes, including reinforcement learning.
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CHAPTER 5

Sim2Real Physically Informed Neural Controllers for

Robotic Deployment of Deformable Linear Objects

The chapter focuses on the challenging task of manipulating deformable linear objects

(DLOs), such as rods, cables, and ropes. These objects are subject to complex geomet-

rically nonlinear deformations during manipulation, and different deformation modes (e.g.,

stretching, bending, and twisting) can lead to elastic instabilities. The goal is to accurately

deploy a solid deformable linear object onto a rigid substrate along various prescribed pat-

terns.

To tackle this problem, we present a novel framework that combines machine learning,

scaling analysis, and physical simulations to develop a physics-based neural controller for

DLO deployment. This approach accounts for the interplay between gravitational and elastic

energies in the manipulated DLO and is designed to be robust against factors like friction

and material properties. The paper demonstrates that the complex deployment process can

be described with just three non-dimensional parameters, simplifying the control model and

significantly improving computation speed.

The effectiveness of the proposed optimal control scheme is validated through a compre-

hensive robotic case study, which includes comparisons with an intuitive control method for

deploying rods across various patterns. Additionally, the paper showcases the practicality of

the control scheme by demonstrating the robot’s ability to accomplish challenging high-level

tasks like mimicking human handwriting, cable placement, and tying knots.
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The underlying motivation and related literature is in § 5.1. Then, we fully analyze the

system in § 5.2. Next, we formulate an optimal control policy for DLO deployment in § 5.3.

Next, we introduce our designed robotic system in § 5.4. Finally, we give the conclusions

and future avenues in § 5.6. The content of this chapter is from Ref. [107].

5.1 Motivation

The intelligent manipulation of deformable objects, such as ropes and fabric, is significant

in robotics. In a world where most objects are non-rigid, equipping robots with the abil-

ity to manipulate deformable objects carries immense humanitarian and economic poten-

tial. This capability finds applications in various domains, ranging from robotic surgical

suturing [108, 109] to wire management [110], laundry folding [111], and caregiving for the

elderly and disabled [112, 113, 114, 115, 116]. However, the manipulation of deformable

objects presents unique challenges. These objects undergo substantial geometrically non-

linear deformations, making distinguishing from observed deformations to concrete robotic

manipulation strategies difficult. Consequently, developing precise and effective techniques

for manipulating deformable objects remains an ongoing research challenge.

Among deformable objects, deformable linear objects (DLOs), including elastic rods and

similar structures like cables, ropes, and wires [6], have attracted significant research inter-

est. These objects have diverse industrial and domestic applications. In this chapter, we

concentrate on rod-like DLOs and use the term “DLO” to refer to these solid elongated

objects. Manipulating DLOs is a challenging endeavor due to their inherent complexity.

These objects exhibit nonlinear behaviors arising from the interplay of multiple deformation

modes, including stretching, bending, and twisting. Given the practical significance and

difficulty associated with manipulating DLOs, there is a growing demand for robust and

effective methods to tackle this task.

Prior works on manipulating DLOs can be divided into two categories. The first cate-
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Figure 5.1: A full end-to-end pipeline for deploying a DLO with a sim2real physics-based
deployment scheme. The pipeline begins by discretizing the DLO pattern, which can be
obtained through user input via an analytical expression or a hand-drawn pattern scanned by
a perception system [117]. A neural controller trained entirely from simulation then generates
an optimal manipulation path for deploying the pattern, taking into account the pattern’s
shape and the geometrical and material properties of the DLO. Finally, the deployment
result is evaluated using an Intel RealSense camera positioned to provide a top-down view
of the pattern to assess the accuracy of the deployment.

gory involves robots manipulating DLOs to meet high-level objectives without precise con-

trol over the exact shapes of the DLOs. Examples of such tasks include knot tangling and

untangling [118, 119], obstacle avoidance [120, 121], adhering to predefined paths and inser-

tion [110, 122], among others. The second category focuses on robots exerting exact control

over the specific shapes of DLOs. In this context, a key challenge lies in mapping the robot’s

actions and the resulting shape of the manipulated DLO [9, 123, 124].

In this chapter, we look into how to design a manipulation scheme for controlling the

shape of elastic rods through deployment. Deployment entails controlling one end of the

DLO to gradually place the DLO onto a substrate in a desired pattern with extraordinary

precision, efficiency, and robustness. The complete end-to-end framework of our physics-

based deployment approach is depicted in Fig. 5.1.
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Figure 5.2: (a) Schematic of the intuitive control method from [123]. A DLO is being
deployed along a circular pattern shown in dashed green. During the deployment process,
the manipulated position qM deploys along the tangent of the pattern x in a downward 45-
degree angle with respect to the y-axis. The x-z-plane is shown in opaque gray. In addition,
a comparison of experimental results between the intuitive control method, our designed
optimal control method, and simulation results using the optimal control method for the
patterns of straight line, circle, and sine curve are shown in (b).

5.1.1 Deployment of DLOs

Deploying DLOs finds applications in various practical applications, including cake icing

decoration [19], marine cable laying [20], depositing carbon nanotubes [21], and melting

electrospinning for advanced manufacturing [22]. Consequently, developing a concrete and

applicable deployment scheme is critical to solving the shape control problem of DLOs in

real-world scenarios.

A natural question arises: how can one precisely deploy a DLO along a specified pattern

on a substrate? The intuitive approach might assume that during deployment, the ma-

nipulated end qM is directly above the contact point qC , and the gripper’s decrease in the

distance along the negative z-axis corresponds to the added deployed length on the substrate.
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However, this simplistic deployment strategy overlooks the nonlinear geometric deformations

of the manipulated DLO, resulting in suboptimal deployments, as later experimental results

demonstrate. A schematic of the intuitive deployment method, inspired by Ref. [123], is

depicted in Fig. 5.2a.

This chapter proposes a framework that combines physically accurate simulation, scaling

analysis, and machine learning to generate an optimized control scheme capable of deploying

solid rod-like structures, which we refer to as DLOs, along any feasible pattern. While our

control scheme does not currently incorporate energy dissipation from DLO manipulations,

such as viscous threads, as our physics-based simulation relies on the rod model, the control

scheme can be adapted by modifying the physical-based simulation within our integrated

framework to account for these factors. Our robotic experiments validate the scheme using

various DLOs, including elastic rods, ropes, and cables. We infuse physics into our ma-

nipulation scheme by leveraging physically accurate numerical simulations, facilitating full

sim-to-real realization. Scaling analysis enables us to formulate the problem generously,

leveraging non-dimensional parameters to ensure robustness against the material properties

of the manipulated rods. Additionally, machine learning enables us to train a neural network

to model the deployment control rules in a data-driven manner. The high inference speed of

our neural controller enables real-time operation.

Our primary contributions include: (1) Formulating a solution to the DLO shape con-

trol problem through deployment with a physically robust scheme that leverages scaling

analysis, ensuring generality against material, geometric, and environmental factors (e.g.,

friction); (2) Training a neural network using non-dimensional simulation data to serve as a

fast and accurate neural controller for optimal deployment manipulations. The mechanics-

based neural network solver exhibits remarkable efficiency and adequate accuracy compared

to a numerical solver and (3) Demonstrating full sim-to-real realization through an extensive

robotic case study, showcasing the success of our control method in various practical de-

ployment patterns with different DLOs on diverse substrates. Furthermore, we illustrate the
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utility of our control scheme in complex high-level applications, such as replicating human

handwriting, managing cables, and tying various knots.

Moreover, we have released our source code and supplementary videos1.

5.1.2 Related Work

Constructing a mapping relationship from observations of a manipulated DLO to the robot’s

action space is the primary basis of controlling DLOs. To uncover this mapping relation-

ship, prior works usually implemented models to predict or perception systems to observe

the deformations of DLOs under various manipulations. Manipulation schemes are then gen-

erated based on the predicted or sensed data. Therefore, model-based and perception-based

methods can be considered two of the main categories for tackling manipulation problems of

deformable objects. Due to the outstanding performance of machine learning algorithms for

processing and generalizing data from models and perceptions, learning-based approaches

have become another mainstream solution. In fact, many prior works take advantage of a

combination of these three methods to develop hybrid schemes for different manipulation

tasks. Here, we systematically review prior scholarly contributions that have utilized tech-

niques based on the three delineated categories to manipulate DLOs and other deformable

objects.

Perception-based approaches involve utilizing sensors such as tactile sensors [110] and

cameras [125, 126, 127, 80] to generate motions based on detected deformations. While sen-

sors can capture the deformations as the manipulation proceeds, perception-based methods

are usually not robust against the material and geometrical differences of the manipulated

objects. In Ref. [125], a learning-based perception framework is presented based on the

Coherent Point Drift algorithm, which can register states of manipulated DLOs with cap-

tured images. Ref. [126] developed state estimation algorithms for DLOs based on images

1Refer to https://github.com/StructuresComp/rod-deployment.
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so that a robot can perform pick-and-place manipulation on the detected configuration.

However, those perception systems based on cameras fail to extract accurate results when

occlusions happen. To overcome this shortcoming, tactile sensors have become prevalent

in robotics. For example, She et al. [110] implemented GelSight, a force feedback tactile

sensor, to perform robotic cable management. Since sensing data by itself cannot predict

future deformations of the manipulated objects, pure perception-based methods are typically

insufficient for complex deformable material manipulation tasks.

Model-based methods usually construct a physically accurate model to predict the be-

havior of manipulated DLOs. Multiple methods exist for modeling DLOs [8, 6]. A simple

and widely-used model, mass-spring systems, are often used to model deformable objects

including ropes [83, 77, 128], fabrics [129, 130], etc. However, due to the simplification of

mass-spring systems, such models usually suffer from inaccuracies when undergoing large de-

formations and lack of physical interpretability. Position-based dynamics is another type of

modeling method that usually represents DLOs as chains of rigid bodies [131, 132, 133] and

introduces constraints between the positions of those rigid bodies to simulate deformations.

Though this method is straightforward and fast, physical interpretability is also lacking.

Finite element methods (FEM) are also popular for modeling deformable objects [134,

135, 136]. However, FEM usually requires considerable computation resources and is hardly

suitable for online predictions. More recently, fast simulation tools from the computer graph-

ics community have attracted researchers’ attention. For example, Discrete Elastic Rods

(DER) [13, 14] has become a robust and efficient algorithm for simulating flexible rods.

Ref.[124] used DER as a predictive modeling tool and achieved promising performance in

DLO manipulation tasks. Though various ways to model deformable objects exists, each

has its respective strengths and weaknesses and often possesses a trade-off between compu-

tational efficiency and accuracy.

Finally, learning-based approaches have become prevalent as they can predict not only

the deformable object’s shape but also higher-level information such as forces [137]. Most
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prior works use human demonstrations or robot explorations to train controlling policies

for different tasks. Refs.[9, 10, 11] fed human-made demonstrations to robots for learning

control policies for shape control and knot-tying. Due to the tedium of constructing manual

demonstrations, some researchers use the robots’ automation to learn a policy purely from

robotic exploration [138, 139]. Researchers have also looked into training policies purely from

simulation [98] to acquire training data more efficiently. Although learning-based methods

have shown promising performance for manipulating deformable objects, the trained policies

are often only valid for specific tasks whose state distribution matches the training sets. In

other words, learning-based approaches often fail when parameters such as the material and

geometrical properties of the manipulated object change.

More relevant to the deployment task itself, Ref. [123] implemented the intuitive control

method shown in Fig. 5.2a for controlling the shape of a rope to make a clove hitch knot.

They achieve a success rate of 66% but require empirical hardcoded adjustments to their

controlling scheme, indicating the intuitive approach’s unsuitability for extreme precision

deployment. Additionally, Ref. [124] uses a precise physical numerical model to predict the

DLO’s configuration during deployment. However, they use a trial-and-error method to

exhaustively solve the optimal deployment path, which is computationally expensive and

slow.

Although the three discussed types of methods are suitable to be combined when solving

deformable manipulation problems given the complementariness of their pros and cons, how

to develop a combined approach to take advantage of different types of approaches is still

an open problem in the robotic community. We find that combining physically accurate

simulations and machine learning can endow the learned model with excellent accuracy

from the simulations and real-time performance because of the inference speed of the neural

network. In addition, scaled physics analysis, which is a vital tool from the mathematical

physics community, is valuable for augmenting the model with high generality.

In this study, we show how physical analysis can extract the true contributing factors of
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Figure 5.3: Schematic of deploying a DLO along a prescribed pattern.

the deployment problem and how a learning-based approach can generalize the information

from physics to offer real-time computation speed for the manipulation task.

5.2 Physical Analysis and Controlling Rule Construction

This section examines the numerical framework used to investigate the nonlinear behaviors

of the deformable linear object (DLO) during deployment. Following that, we will employ

Buckingham’s π theorem to identify the primary controlling parameters for the analyzed

system.

When manipulating DLOs, we should consider their geometrically nonlinear deforma-

tions. For clarity, let’s establish some notations: x̂, ŷ, and ẑ will represent the unit vectors

of the coordinate system centered at the contact end qC , as depicted in Figs. 5.2a and 5.2b.
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As shown in Fig. 5.3, when a DLO is being deployed along a prescribed pattern on a

rigid substrate, it can be divided into two distinct parts: the deployed section resting on the

substrate and the suspended part that remains in contact with the substrate. We assume

that the pattern on the substrate remains fixed since the DLO should ideally conform to

the prescribed pattern. Consequently, the unknown deformations occur primarily within the

suspended portion.

5.2.1 Solving the Suspended Part

To capture the deformations of the suspended part, we introduce some quantities to aid our

analysis. First, we define q(s) to describe the position of the manipulated DLO’s centerline,

where s is the arc length along the DLO’s centerline. Then, a material frame m(s) =

[m1, m2, t] ∈ SO(3) is attached along the DLO to capture its rotation, where t = dq
ds

is the

tangent of the DLO. With the help of q(s) and m(s), we can fully describe the deformed

configuration of the suspended part.

To solve for the configuration of the suspended part, we can treat it as an independent

DLO segment starting from the connection node qC to the manipulated node qM . Here,

qC = q(0) denotes the connective node that links the deployed part and the suspended

part. Maintaining the continuity of the manipulated DLO, the curvature vector κ at qC can

be obtained from the prescribed pattern, where the magnitude of κ is denoted as κ. The

manipulated end grasped by the robot is denoted as qM = q(ls), where ls represents the

total curve length of the suspended part. Deployment of the pattern is achieved solely by

controlling qM . Since Eq. 1.8 implies that the DLO’s configuration q(s) and m(s) can be

solved when boundary conditions are determined, we can write down the governing equations
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for the suspended part as

R(q) = 0,

s.t. q(ls) = qM , R = m(ls)m(0)T ,

q(0) = qC ,
dq(0)

ds
= t(0), dt(0)

ds
= κŷ,

(5.1)

where qM is the position and R is the orientation of the manipulated end with respect to

the connective node qC . Note that the position of the connective node qC , tangent t(0), and

curvature vector κŷ can be determined from the deployed pattern, where ŷ is the unit vector

illustrated in Fig. 5.3. By solving Eq. 5.1, we can obtain the configuration of the suspended

part for any predefined pattern and manipulated end pose.

5.2.2 Influence of Forces and Friction

Once the deformed configuration is known, we can proceed to calculate the forces acting

on the suspended part, which is crucial for achieving hyper-accurate control of the DLO.

We represent the external forces as Fext = Fxx̂ + Fyŷ + Fzẑ, applied to the suspended

part from the connection node qC . Here, the moment M is a function of the arc length

s, with, for example, M(s) representing the twisting moment applied to the manipulated

end. The quantities Fext and M(0) are associated with the friction coefficient µ between

the substrate and the rod, and µ represents an unknown and uncontrollable environmental

factor. Additionally, the quantities Fext and M(0) influence the tangent vector t(0) at the

connection node qC due to Newton’s third law. Therefore, it is imperative to minimize the

values of Fext and M(0) to establish an optimal control strategy.

Despite the optimal controlling rule minimizing the influence of friction, it is still worth

clarifying the significance of friction within this context. Though we make the strong as-

sumption that the deployed pattern remains fixed during deployment, this is only upheld if
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the following relation is satisfied for the deployed segment:

kbκ
′′ ≤ µsρAg, (5.2)

where kb is the bending stiffness of the rod, κ′′ is the second derivative of κ with respect to

the arc length s (κ′′ = d2κ
ds2 ), µs is the static friction coefficient, ρ is the volumetric density

of the rod, A is the cross-sectional area, and g is the gravitational acceleration. Eq. 5.2 is

derived by analyzing an arbitrary finite element of the deployed pattern with a clamped-end

Euler-Bernoulli beam model. Clearly, friction plays a crucial role in the deployment process.

As a result, our designed optimal deployment strategy relies on adequate friction for

effective execution while the scheme mitigates external tangential forces apart from the

essential friction on the substrate. Consequently, the scheme necessitates only a modest

static friction coefficient between the substrate and the manipulated DLO.

5.2.3 Computing Optimal Grasp

In addition to minimizing the external forces Fext and the twisting moment M(0) applied

to the suspended part, we establish a rule for the manipulated end. Specifically, we aim to

minimize the deformations induced by the robot end-effector on the manipulated node qM ,

ensuring that the curvature (bending deformations) at the manipulated end remains close

to 0. This results in the following optimization problem to compute the optimal grasp:

(q∗
M , R∗) = arg min

∥Fext∥2 +
(
∥M(0)∥

h

)2


s.t. dq(0)
ds

= t(0), dt(0)
ds

= κŷ,

d2q(ls)
ds2 = 0, R(q) = 0.

(5.3)

By solving Eq. 5.3, we can obtain the optimal grasp represented by q∗
M and R∗. Physical
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analysis reveals the existence of a direct mapping relationship between the contributing

factors and the optimal grasp. Here, we denote the stiffness of the DLO by stretching stiffness

ks, bending stiffness kb, and twisting stiffness kt, which governs the geometric changes of the

manipulated DLO. In addition, the density ρ and rod radius h contribute to the analyzed

system. By adding in additional geometric properties such as suspended length ls and

curvature κ, the mapping relationship

(q∗
M , R∗) = f(ls, κ, ks, kb, kt, h, ρ), (5.4)

can be constructed where f(·) is a highly nonlinear (and unknown) function that describes

the controlling rule.

However, it’s essential to acknowledge the high input dimensionality of Eq. 5.4. In prac-

tical terms, accurately learning the mapping f(·) would require conducting an exhaustive

exploration of a wide range of material and geometric parameters within simulations. This

data collection process can quickly become unmanageable due to the curse of dimension-

ality. To overcome this challenge, we can employ scaling analysis to derive an equivalent

reduced-order mapping that simplifies the problem.

5.2.4 Scaling Analysis via Buckingham’s π Theorem

In this project, we leverage Buckingham’s π theorem to reduce the dimensions of the map-

ping f(·). Buckingham’s π theorem is a fundamental principle in dimensional analysis,

which posits that a physically meaningful equation involving n physical parameters can be

expressed using a reduced set of p = n− k dimensionless parameters derived from the origi-

nal parameters. In this context, k denotes the number of physical dimensions. By applying

Buckingham’s π theorem, we can obtain a reduced-order, non-dimensionalized mapping F(·)
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from the original function f :

(q̄∗
M , R∗) = F(l̄s, κ̄, k̄s),

Lgb =
(

kb

2πh2ρg

)1/3

,

k̄s =
ksL

2
gb

kb

,

q̄∗
M = q∗

M − qC

Lgb

,

l̄s = ls
Lgb

,

κ̄ = κLgb.

(5.5)

Hereafter, all quantities with (̄) indicate normalized quantities. In Eq. 5.5, all quantities

are unitless so that the mapping relationship F(·) maps from the unitless groups encapsulated

the geometric and material properties to the unitless optimal robotic grasp. The benefit of

doing such is that we reduce the dimensions of the mapping function F(·) in Eq. 5.4 and

eliminate the dependence of F(·) on the units. Note that in Eq. 5.5, we do not consider

the influence of the twisting stiffness kt in this chapter since twisting energies are minimal

compared to bending and stretching. However, the influence of kt can also be analyzed with

our proposed analysis. The following paragraph will show how to establish the nonlinear

mapping function in Eq. 5.5.

5.3 Optimization and Machine Learning

In this section, we will delve deeper into the optimization of the system to derive the nonlinear

mapping function presented in Eq .5.5. Given the significant nonlinearity of the system, we

will initially solve Eq .5.5 using a numerical optimization solver in a data-driven manner.

During this process, we will also analyze the system’s elastic instability to determine the

optimal robotic grasp for the deployment task. Subsequently, we will reconstruct Eq. 5.5
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∆ȳ = 0.12 along the y-axis.

Figure 5.4: Avaialble region of the robotic grasp in 2D deployment
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utilizing a neural network to leverage its high inference speed. This neural controller will

serve as the controlling law for our robotic system to execute various deployment tasks in

§ 5.5.

5.3.1 Elastic Instability in Deployment along a Straight Line

In this section, we explore an intriguing physical phenomenon known as elastic instability.

Elastic instability occurs when boundary condition changes lead to a deformed structure’s

instability. Visually, it can be observed as a small geometric perturbation of the system,

resulting in a significant configuration change [140]. An example of this phenomenon can be

seen when a robot employs an intuitive control method to deploy a DLO along a straight

line, but the rod unexpectedly adopts a curved shape on the substrate. This observation is

counterintuitive because the intuitive method only manipulates the DLO in the 2D plane

(specifically, the x-z plane), as illustrated in Fig. 5.4a. Therefore, the suspended part should

ideally experience only 2D deformations within that plane, avoiding significant deformations

along the y-axis. However, the observed phenomenon results from the unaccounted elastic

instability of the manipulated DLO.

Given this, it is crucial to consider elastic instability when designing an optimal deploy-

ment scheme to ensure that the robot’s grasp and possible jittering of the manipulator does

not introduce large undesired deformations in the DLO. To achieve this, we will thoroughly

analyze all potential robot grasps for manipulating a DLO in the x-z plane to achieve a

straight-line deployment. We aim to identify an optimal grasp that satisfies Eq. 5.3 while

effectively preventing the manipulated DLO from buckling due to elastic instability.
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Algorithm 6: Bisection Method for Obtaining ∂M
Input: l̄s, k̄s, ν
Output: ∂M

1 Func DiscoverManifoldBoundary(l̄s, k̄s):
2 θ ← a small positive value
3 β ← a small positive value
4 ∂M ← initialize an empty list
5 δ ← a small positive value as tolerance
6 R ← initialized rod solver with l̄s, k̄s, ν
7 while θ ≤ π do
8 r← (l̄s cos(θ), l̄s sin(θ))
9 do

10 r← (1 + β)r
11 F̄z ← R(r)
12 while F̄z < 0
13 rc ← r
14 while C is not satisfied do
15 r← r− δr̂
16 q̄, F̄z ← R(r)
17 if ∥r∥ < 0 then
18 break
19 rf ← r
20 while ∥rc − rf∥ ≥ δ do
21 q̄, F̄z ← R(r)
22 if C is satisfied then
23 rf ← r
24 else
25 rc ← r
26 r← (rc + rf )/2
27 ∂M.append((r cos θ, r sin θ))
28 rc ← r
29 rf ← (0, 0)
30 while ∥rc − rf∥ ≥ δ do
31 q̄, F̄z ← R(r)
32 if C is satisfied then
33 rc ← r
34 else
35 rf ← r
36 r← (rc + rf )/2
37 ∂M.append((r cos θ, r sin θ))
38 θ ← θ + δθ
39 return ∂M
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5.3.2 Discovering Potential Grasp Region

Given the suspended part’s geometric properties and boundary conditions, we can write

down the constraints C which should be satisfied:

q̄(s̄) · ẑ ≥ 0 ∀ s̄ ∈ [0, l̄s],

F̄ext · ẑ ≥ 0.
(5.6)

These constraints serve to ensure two important conditions: (i) The suspended part of

the DLO should remain above the substrate to prevent unwanted contact. (ii) The external

contact forces along the z-axis should always be greater than or equal to 0 to avoid stretching

beyond a certain threshold.

By solving Eq. 5.1 while adhering to constraints C, we can determine all potential

robot grasps for the manipulated end, forming a closed manifold M for a fixed normal-

ized suspended length l̄s. At the connective node q̄C , we set the boundary conditions as

t(0) = (1, 0, 0) and κ̄ = 0. Each point in the manifold M corresponds to a position q̄M

and a rotation R of the manipulated end. Given that the deformed configuration is lo-

cated within the 2D x-z plane, we can represent the position of q̄M using a 2 × 1 vector

q̄M = (x̄Top, z̄Top) and a scalar value α to denote the rotation information. For example,

the tangent t(l̄s) = (cos(α), sin(α)) is shown in Fig. 5.4a. Since the manifold M is a closed

set, we only need to obtain the boundary of the manifold ∂M.

To find the boundary ∂M, we explore along a ray r from the connective node q̄C to the

manipulated node q̄M . The robot grasp along the ray can be divided into three regions,

as shown in Fig. 5.4b. When the robot grasp exists in regions I and III, constraints C are

unsatisfied. In region I, the external force F̄z = Fzh2/kb is smaller than 0, violating the

constraints as stretching occurs. In region III, the manipulated end is too low, leading to

contact between the suspended part and the substrate. Thus, region II, existing between

regions I and III, represents the manifold M area that satisfies the constraints C. The
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pseudocode for the bisection method is given in Algo. 6.

Note that θ in Algo. 6 is the angle between the x-axis and ray r. A specific case for

l̄s = 17.68 is visualized in Fig. 5.4c. Since deformations only occur in the x-z plane, the

twisting moment M̄(0) = M(0)h/kb applied on the connective node q̄C is always 0. To

achieve the optimal pose of the manipulated end for l̄s = 17.68, we need to find the poses

in M that minimizes ∥F̄ext∥. Two local minima are found in the case shown in Fig. 5.4c,

corresponding to two solutions of Eq. 5.3. As stated before, we must select the local minima

corresponding to the stable deformed suspended part.

5.3.3 Checking Elastic Instability via Perturbations

To test the elastic stability of these local minima, we introduce a disturbance ∆ȳ = y/Lgb

along the y-axis while the manipulated end q̄M is at each local minimum. Fig. 5.5a demon-

strates the variations in F̄y = Fyh2/kb and the resulting configurations due to these pertur-

bations for each local optimum.

For local minimum 2, we observe a sudden snapping process, marked by an abrupt change.

Conversely, the disturbance applied to local minimum 1 leads to a continuous and gradual

change. As a result, we can conclude that the optimal configuration for deploying the DLO is

at local minimum 1 since this minimum corresponds to a configuration with gentler bending

deformations of the suspended part, providing greater elastic stability.

Here, we also demonstrate that the neighboring region around the elastic instability points

has a higher tendency for significant deformations when the jittering of the manipulator

occurs. In simulation, we introduce a slight disturbance of ∆ȳ = 0.12 along the y-axis for

all potential robot grasps on the manifold M. Fig. 5.4d shows the maximum displacement

of the suspended part along the y-axis, denoted as ∆qmax
y = max0≤s≤ls(q(s) · ŷ), resulting

from this small disturbance. The results clearly indicate that the neighboring region around

local minimum 2 exhibits a higher tendency for significant deformations along the y-axis.
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Figure 5.5: Stability of two local minimum during 2D deployment.

Consequently, robot grasps within this region are more likely to induce instability in the

manipulated DLO.
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We can now define the optimal deployment rule for a straight line using the method

introduced in this section. In the next section, our focus will shift to optimal 3D manipu-

lation, which involves deploying patterns with nonzero curvature. In the following contexts,

we focus on optimal 3D manipulation, i.e., deploying patterns with nonzero curvature. The

following section discusses how to use a first-order optimization algorithm to solve Eq. 5.3 for

deploying any arbitrary prescribed pattern, where the optima for straight-line deployment

is used as seeds when searching for the optima of more complex patterns.

5.3.4 Deployment in 3D Workspace

As discussed in § 5.2, constructing the mapping relationship F(·) in Eq. 5.5 is essential

for achieving optimal deployment in the 3D workspace. For the connective node of any

prescribed pattern, since the pattern deformations are only in the x-y plane, we can ensure

that the twisting moment M(0) is always 0. Therefore, the optimal pose of the manipulated

end can be obtained by minimizing ∥F̄ext∥ through the following optimization:

∇q̄M
∥F̄ext∥ = ∂F̄ext

∂q̄M

F̄ext = 0. (5.7)

As the deploying rod is a continuous system, F̄ext must change when qM changes. Therefore,

we can convert Eq. 5.7 to be a root finding problem

F̄ext = 0. (5.8)

Since we stated previously that solving the configurations of the deploying DLO is a

boundary value problem and the boundary conditions on the connective end are determined

by the pattern’s shape, the external forces F̄ext are influenced solely by the manipulated end

pose qM , with a unique corresponding R for describing the rotation of the manipulated end.

Due to the high nonlinearity of the DLO, it is challenging to analytically solve the root-
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Algorithm 7: Gradient Descent for Optimal Grasp
Input: l̄s, κ̄ŷ, k̄s, ν
Output: q⋆

M

1 Func OptimalGrasp(l̄s, κ̄, k̄s):
2 k ← 0
3 δ ← a small value as tolerance
4 q̄(k)

M ← initialize a random pose of end-effector
5 R(·)← initialize the rod solver with l̄s, κ̄, k̄s

6 do
7 F̄ext ← R(q̄(k)

M )
8 Jext ← Eq. 5.9
9 ∆q̄ ← (Jext)−1F̄ext

10 α← LineSearch(q̄(k)
M , ∆q, ∥F̄ext∥,R)

11 q̄(k+1)
M ← q̄(k)

M − α∆q̄
12 k ← k + 1
13 while ∥F̄ext∥ ≥ δ

14 q̄∗
M ← q̄(k)

M

15 return q̄∗
M

finding problem in Eq. 5.8. Therefore, we employ a finite difference approach to calculate

the numerical Jacobian of Fext. We perturb the manipulated end along the x, y, and z-axes

by a small distance δ and use finite differences to compute the numerical Jacobian:

Jext = 1
δ


F̄ext(q̄M + δx̂)− F̄ext(q̄M),

F̄ext(q̄M + δŷ)− F̄ext(q̄M),

F̄ext(q̄M + δẑ)− F̄ext(q̄M)


T

, (5.9)

where T is the transpose operator and δx̂, δŷ, and δẑ are small perturbations along x, y,

and z-axes, respectively, i.e., δx̂ = [δ, 0, 0]T .

Here, Jext is a 3 × 3 matrix and can be used to calculate the Newton search step so

that Eq. 5.8 can be solved with a gradient descent method. Further details of this solving

process are stated in Algo. 7. Additionally, we also implement a line search algorithm to

help determine the appropriate step size for the Newton search step ∆q̄ as shown in Algo. 8.
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Algorithm 8: Line Search Algorithm
Input: q̄M , ∆q, f0,R
Output: α

1 Func LineSearch(q̄M , ∆q, f0,R, α0 = 1, m = 0.5):
2 α← α0
3 k ← 0
4 success ← False
5 do
6 q̄(k)

M ← q̄M − α∆q
7 F̄ext ← R(q̄(k)

M )
8 f (k) ← ∥F̄ext∥
9 if f (k) ≥ f0 then

10 α← mα
11 k ← k + 1
12 else
13 success ← True
14 while not success
15 return α

In this project, both position q̄M and rotation e of the manipulated end are represented

as 3 × 1 vectors: q̄M = (x̄Top, ȳTop, z̄Top) and e = (ex, ey, ez). The rotation vector e can

be translated to a rotation matrix through an axis-angle representation (ê, ∥e∥), where ∥e∥

is the rotation angle along the rotation axis ê = e/∥e∥. For an input tuple (l̄s, κ̄, k̄s), we

can now solve for the optimal pose of the manipulated end (q∗
M , e∗). Visualizations of the

discretely solved optimal poses obtained from simulation are shown as red hollow circles in

Fig. 5.6.

We now know how to obtain the optimal manipulation pose given the input (l̄s, κ̄, k̄s) with

simulations. A numeric solver based on simulations for generating the optimal trajectory for

various prescribed patterns is released (see 1). However, solving for the optimal poses with

the numeric solver makes real-time manipulation infeasible as trajectory generation can take

several hours. Instead, the following section introduces using a neural network to learn the

optimal controlling rule for fast real-time inference.
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5.3.5 Training the Neural Controller

Rather than obtaining the optimal grasp through the numerical solver detailed in the previous

section, we train a neural network to learn an analytical approximation of F(·) similar to

the approach in [137]. We use a simple fully-connected feed-forward nonlinear regression

network consisting of 4 hidden layers, each with 392 nodes, as the network architecture.

Aside from the output, each layer is followed by a rectified linear unit (ReLU) activation.

We frame the neural controller to have an input i ∈ R3 and an output o ∈ R6, where the

input consists of the three non-dimensional values l̄s, κ̄, and k̄s and the output consists of

two concatenated 3×1 vectors: the optimal position q̄∗
M and rotation e∗ of the manipulated

end. Using our simulation framework, we construct a dataset D consisting of 6358 training

samples.

When training the neural controller, we first preprocess all inputs i through the stan-

dardization.

i′ = i− īD

σD
,

where īD and σD are the mean and standard deviation of the input portion of the dataset D.

Afterward, we use an initial 80-20 train-val split on the dataset D with a batch size of 128.

We use mean absolute error (MAE) as our loss and use a training strategy that alternates

between stochastic gradient descent (SGD) and Adam whenever training stalls. In addition,

the batch size is gradually increased up to a max size of 2048, and the entire dataset is used

to train the controller once MAE reaches < 0.003. With this scheme, we achieve a final MAE

of < 0.0015. The neural network’s approximation of F(·) can be seen visualized in Fig. 5.6.
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Simulation Data Data from NN

(a) Visualization of the influence from curvature κ̄ and suspended length l̄s on
the manipulated end position and manipulated end orientation for fixed values
of k̄s = 2087.

(b) visualization of the influence from stretching stiffness k̄s and curvature κ̄ on
the manipulated end position and manipulated end orientation with fixed values
of l̄s = 13.68.

Figure 5.6: Visulization of the computed optimal grasps with various l̄s, κ̄, and k̄s
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Figure 5.7: Handwritten letters and the corresponding extracted discretized patterns using
mBEST [117].

5.4 Robotic System

5.4.1 Perception System

To obtain the Cartesian centerline coordinates of the deployed DLO (or drawn patterns),

we use the DLO perception algorithm mBEST [117]. This algorithm obtains the centerline

coordinates of DLOs within an image by traversing their skeleton pixel representations. The

ambiguity of path traversal at intersections is handled by an optimization objective that

minimizes the cumulative bending energy of the DLOs during the pixel traversal. One case

of extracting discretized patterns from the hand-writing pattern is shown in Fig. 5.7. RGB

images of the deployed DLO are obtained through an Intel RealSense D435 camera as shown

in Fig. 5.9. Further details of the perception algorithm itself can be found in the referenced

paper.
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5.4.2 Motion Planning with the Neural Controller

In Fig. 5.1, we showcase the full end-to-end pipeline of our proposed deployment scheme.

Here, we give a full description of how to integrate the trained neural controller into a robot

motion planner.

The first step of the deployment process is to specify the desired pattern. This pattern

can be defined by either an analytical function or detected as a drawn curve as shown in

Fig. 5.1. Note that the pattern P(s) is treated as a function of the curve length s. Based

on the configuration of the pattern, we can compute the required inputs for the neural

controller when the connective node qC achieves each point in the pattern P(s). The details

of generating an optimal trajectory based on the pattern P(s) and the properties of the

manipulated rod are given in Algo. 9.

In Algo. 9, κ and T are all functions of the arc length s of the pattern, where T is the

tangent along the pattern. With Algo. 9, we obtain the optimal grasp trajectory τ and then

use OMPL [141] to generate a valid motion planning sequence on real robot system.

One highlight of our overall robotic system is its realtime capability. The realtime effi-

ciency of the perception algorithm has been validated by [117] while the average end-to-end

time to generate a full optimal deployment motion plan is less than 1 second. Therefore, our

approach is also efficient enough for sensorimotor closed-loop control. However, as offline

control has achieved excellent deployment accuracy in our experiments, online control is not

carried out in this work.

5.5 Results

5.5.1 Measurement of Material Parameters

To carry out deployment with our proposed scheme, we must validate its efficacy with

comprehensive experiments. In this project, we choose to deploy various DLOs on different
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Algorithm 9: Optimal Deployment Trajectory
Input: P, L, Lgb, k̄s

Note that material parameters Lgb, k̄s must be measured in advance (Fig. 5.8 and
Eq. 5.10).
Output: τ

1 Func OPT(L, P, Lgb, k̄s):
2 S, κ, T← ProcessPattern (P)
3 ∆s← step size of deployment
4 τ ← initialize an empty list
5 ẑ← director along vertical direction
6 s← 0
7 while s ≤ S do
8 qC ← P(s)
9 x̂← T(s)

10 κ̄← κ(s)Lgb

11 l̄s ← (L− s)/Lgb

12 (q̄∗
M , e∗)← F(l̄s, κ̄, k̄s)

13 R ← AxangtoRot (ê∗, ∥e∗∥)
14 Rt ← (x̂, ẑ× x̂, ẑ)
15 q∗

M ← qC + Rtq̄∗
MLgb

16 R∗ ← RtR
17 Append (q∗

M , R∗) to τ
18 s← s + ∆s

19 return τ

substrates for multiple tasks so that we can look into the robustness of the proposed scheme

against the material difference and friction.

First, we need to find the geometric and material properties of the manipulated DLO.

The geometry of the manipulated rod, e.g., total length L and rod radius h, is trivial to

measure. Measuring the material properties of the DLO is less clear. Overall, we need

to develop a way to find the following material properties: gravito-bending length Lgb and

normalized stretching stiffness k̄s.

Here, we presume the material is linearly elastic and incompressible. The incompressible

material means the volume of the rod will not change when deformations happen. There-

fore, Poisson’s ratio is set as ν = 0.5. In addition, bending stiffness is kb = Eπh4

4 where
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hf

(a) Deformed configurations of a DLO under gravity in 2D plane.

(b) Relationship between the height of the loop hf and the gravito-bending
length Lgb.

Figure 5.8: Measurement of material properties Lgb of a DLO.

E is Young’s modulus, and the expression for gravito-bending length Lgb and normalized

stretching stiffness k̄s is

Lgb =
(

Eh2

8ρg

)1/3

,

k̄s =
ksL

2
gb

kb

=
4L2

gb

h2 .

(5.10)

When observing Eq. 5.10, we find that the only parameter we must obtain is Lgb. It is
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Table 5.1: Material and geometric properties of the DLOs used in the experiments.

DLO Material & Geometric Parameters

Material Lgb [cm] h [mm] L [m] ν µfabric µsteel µfoam

#1 Pink VPS 1.8 1.6 0.875 0.5 Low Medium High
#2 Green VPS 3.2 1.6 0.885 0.5 Low Medium High
#3 Rope 3.4 2.0 0.89 0.5 Medium Low High
#4 Pink VPS 2.86 3.2 0.84 0.5 Low Medium High
#5 Cable 8.01 1.8 0.87 0.5 Medium Low High

still unclear how to compute this as Lgb is relevant to Young’s Modulus E and the density

ρ of the rod, which is usually hard to measure. Here, we propose a simple method that is

able to measure Lgb by observing the geometry of the rod. When we form a loop in a rod

naturally using gravity in a 2D plane, we can observe the geometry of the rod becomes what

is shown in Fig. 5.8a. Indeed, the height hf of the loop has a linear relationship with Lgb.

Therefore, we can obtain Lgb for different rods by simply measuring hf . According to prior

work [142] and our validation shown in Fig. 5.8b, hf = 0.9066Lgb.

5.5.2 Experiment Setup

5.5.2.1 Materials and Robot Hardware

In this study, we conducted experiments involving five distinct types of DLOs. Among

these, three are silicone-based rubber fabricated by vinyl polysiloxane (VPS); the fourth is

a commercially available rope; and the fifth is a stiff USB cable. Note that we also validate

the robustness of the deployment scheme against different substrates. The friction between

the DLOs and substrates is also qualitatively measured. Comprehensive details regarding

the parameters for each of these DLOs can be found in Tab. 5.1.

For our experiments, we used two Rethink Robotics’ Sawyer manipulators as shown in

Fig. 5.9. One arm is attached with a gripper for manipulating the rod. The other arm holds
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Figure 5.9: Experimental apparatus: Two robot manipulators, one for manipulation of the
deploying rod (1) and the other for holding the camera for perception (2). A gripper (3)
is used for grabbing the manipulated end of the rod. A camera (4) is used for extracting
patterns from the drawn patterns and evaluating the deployment results.

an Intel RealSense D435 camera which is used to scan drawn patterns as well as obtain a

top-down view of the deployment result for evaluations. A workstation with an AMD Ryzen

7 3700X CPU and an NVIDIA RTX 2070 SUPER GPU was used for all experiments.

5.5.2.2 Experiment Tasks

We implement our proposed deployment scheme across four distinct tasks. First, we deploy

a rod along some canonical cases obtainable through analytical expressions such as a line,

circle, and sine curve. The rod is deployed using the robotic arm with the gripper. Once the

deployment is finished, the other arm with the camera moves to scan the deployment result.
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The second task involves deploying patterns drawn on paper. Users draw patterns, subse-

quently scanned by the camera to obtain ordered discretized pattern coordinates. The robot

then manipulates the rod to replicate the drawn pattern. This study showcases deployment

results for the letters “U”, “C”, “L”, and “A”, with the precise shapes detailed in Fig. 5.10(a).

The third task is to validate the deployment scheme’s application in cable placement, a vi-

tal aspect of cable management. The scheme’s efficacy is demonstrated by placing cables

along constrained paths with the help of pre-installed fixtures on the substrate. Lastly, the

deployment scheme’s application for tying knots is verified. Both robotic arms are equipped

with grippers for this task.

Patterns are evaluated using intuitive and optimal control methods for the first two

tasks. Additionally, three different rods (DLOs #1, #2, and #3) are deployed on substrates

of various materials (fabric, steel, foam) to assess the method’s robustness against material

disparities and friction. In the third task, both algorithms employ DLO #5 (USB cable) for

cable placement. Finally, DLOs #2 and #4 are used to tie distinct knots for the fourth task.

Each experimental case is subjected to ten trials for each control method, culminating in a

total of 1340 experimental trials.

5.5.3 Metrics

We now formulate the metrics used to evaluate the performance of the deployment scheme.

When deploying a pattern P, we need to assess the accuracy of the deployment result. We

first discretize the pattern P into N points and denote the i-th point of the prescribed

pattern as Pi. The actual deployment pattern obtained from perception is denoted as Pexp.

With this discretization scheme, we compute the average error emean and standard deviation

σ as
emean = 1

N

N∑
i=1
∥Pi

exp −Pi∥,

σ =

√∑N
i=1(∥Pi

exp −Pi∥ − emean)
N

,

(5.11)
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Table 5.2: Evaluation of deployment accuracy for various patterns, DLOs, and substrates.

DLO SUB Control
Scheme

Pattern Type and Accuracy emean ± σ [cm] (Eq. 5.11)

Line Circle Sine curve Letter “U” Letter “C” Letter “L” Letter “A”

#1

Fabric INT 0.40 ± 0.22 0.61 ± 0.36 1.66 ± 0.74 1.39 ± 0.63 2.21 ± 0.92 1.00 ± 0.59 4.81 ± 2.27
OPT 0.14 ± 0.09 0.15 ± 0.07 0.27 ± 0.10 0.22 ± 0.07 0.22 ± 0.10 0.35 ± 0.18 0.47 ± 0.23

Steel INT 1.42 ± 0.66 2.34 ± 1.24 2.69 ± 1.69 3.59 ± 2.39 3.67 ± 1.93 0.87 ± 0.55 3.64 ± 2.09
OPT 0.22 ± 0.12 0.22 ± 0.08 0.27 ± 0.10 0.24 ± 0.13 0.27 ± 0.09 0.42 ± 0.16 0.58 ± 0.37

Foam INT 1.03 ± 0.21 1.23 ± 0.45 2.84 ± 1.52 3.33 ± 1.93 3.89 ± 1.29 1.13 ± 0.74 4.09 ± 2.19
OPT 0.25 ± 0.15 0.18 ± 0.06 0.29 ± 0.16 0.24 ± 0.15 0.41 ± 0.20 0.35 ± 0.12 0.54 ± 0.24

#2

Fabric INT 0.52 ± 0.13 1.64 ± 0.95 1.60 ± 0.83 3.74 ± 2.89 4.58 ± 1.15 1.74 ± 1.11 4.95 ± 2.63
OPT 0.13 ± 0.07 0.16 ± 0.07 0.20 ± 0.09 0.17 ± 0.11 0.19 ± 0.22 0.29 ± 0.11 0.32 ± 0.18

Steel INT 1.72 ± 0.63 2.52 ± 1.02 3.30 ± 2.08 4.78 ± 4.15 6.66 ± 2.53 2.14 ± 1.26 5.23 ± 3.38
OPT 0.17 ± 0.08 0.22 ± 0.09 0.54 ± 0.20 0.21 ± 0.09 0.74 ± 0.31 0.66 ± 0.24 0.36 ± 0.17

Foam INT 1.38 ± 0.60 2.24 ± 0.97 4.17 ± 2.57 5.42 ± 4.47 6.14 ± 3.08 1.70 ± 1.32 5.09 ± 3.39
OPT 0.27 ± 0.13 0.20 ± 0.09 0.37 ± 0.14 0.17 ± 0.08 0.39 ± 0.18 0.37 ± 0.15 0.43 ± 0.19

#3

Fabric INT 1.56 ± 0.81 1.13 ± 0.53 5.09 ± 1.35 4.22 ± 3.10 3.36 ± 1.58 2.37 ± 1.56 4.59 ± 2.54
OPT 0.49 ± 0.28 0.29 ± 0.15 0.47 ± 0.23 0.36 ± 0.18 0.35 ± 0.19 0.50 ± 0.24 0.56 ± 0.29

Steel INT 4.53 ± 2.80 1.85 ± 0.45 4.43 ± 2.82 4.53 ± 2.80 3.35 ± 1.55 2.57 ± 1.62 4.30 ± 1.73
OPT 0.47 ± 0.20 0.29 ± 0.13 0.46 ± 0.20 0.47 ± 0.20 0.56 ± 0.20 0.51 ± 0.24 0.81 ± 0.30

Foam INT 2.00 ± 0.88 1.94 ± 0.84 3.80 ± 1.96 3.67 ± 2.46 6.03 ± 3.11 3.32 ± 1.80 4.47 ± 2.50
OPT 0.78 ± 0.34 0.27 ± 0.15 0.46 ± 0.20 0.32 ± 0.16 0.56 ± 0.26 0.33 ± 0.14 0.52 ± 0.20

for both the intuitive and optimal control results.

The accuracy evaluation is not applicable for the two application tasks: cable placement

and knot tying as they are high-level tasks. Therefore, we simply use the success rate of

those application tasks to evaluate the performance of the deployment scheme. In addition to

accuracy, we also report a detailed comparison of runtimes and errors between the numerical

and NN-based solvers. Details of the relevant results and analysis are discussed in the next

section.

5.5.4 Results and Analysis

5.5.4.1 Accuracy

All experimental results can be seen in Tab. 5.2. To compute the error metrics in Eq. 5.11, we

used a discretization of N = 50. From all results, we can observe a noticeable improvement

in our optimal control method over the intuitive method for various geometrical, material,

and environmental parameters.
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Figure 5.10: Experiment results of deployment along various patterns. (a) All used pre-
scribed patterns are discretized and plotted. Deployment results for (b) DLO #1 (pink
VPS), (c) DLO #2 (green VPS), and (3) DLO #3 (rope) are shown for each prescribed
pattern. Results for the intuitive control method and optimal control method are shown for
each rod.

To better visualize our method’s generality, we visually depict deployment outcomes

across different DLOs on the fabric surface in Fig. 5.10. In addition, a comparative visual

representation of deployment results for a single DLO (#2) on varying substrates is shown

in Fig. 5.11. Readers seeking comprehensive visual comparisons of all deployment outcomes

can refer to the supplementary video for detailed insights (see Footnote 1).
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Figure 5.11: Experiment results of deployment with DLO #2 (green VPS) along various
patterns on different substrates.

Among the seven deployed patterns, the first three (straight line, circle, and sine curve)

are canonical cases, i.e., their shapes have explicit analytical expressions. Note that when

deploying the circle and sine curve patterns, a small “remainder” section is first deployed.

This is necessary as the circle and sine curve patterns have a non-zero curvature at the start

of their pattern. We compensate for this by deploying a remainder part whose curvature

gradually evolves from a straight line with 0 curvature to the prescribed curvature of the

pattern’s first point. The remainder can improve the deployment task’s accuracy as the

deployed pattern will require slight friction based on Eq. 5.2.

We have omitted the designed remainder for the four remaining patterns denoted by the

letters “U”, “C”, “L”, and “A” for better visualization. Among these, patterns “U”, “L”, and

“A” exhibit a relatively low κ′′ value during the beginning stage of the deployment, resulting

in the deployment accuracy being minimally affected by surface friction.
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Conversely, the “C” pattern demonstrates a comparatively higher κ′′ value initially, lead-

ing to a possible noticeable mismatch between the deployed DLO and the intended pattern

in the beginning. The impact of friction becomes more pronounced during the rope deploy-

ment corresponding to DLO #3 since the rope has higher bending stiffness kb and experiences

lower friction with the substrate. Fixing the free end is essential to precisely replicate the

“C” pattern with the rope as shown in Fig. 5.10 (d). Despite this limitation, our optimized

deployment strategy consistently outperforms the intuitive approach.

5.5.4.2 Computational Efficiency

Next, we also evaluated the computational efficiency of our neural controller. Tab. 5.3

compares time costs between the neural network solver (NN-solver) and the numeric solver

based on simulations. When calculating a single optimal robot grasp for a given parameter

tuple (l̄s, κ̄, k̄s), the numeric solver takes approximately 10 to 20 seconds, while our NN-solver

takes roughly 0.4 seconds.

The difference of time costs becomes more significant when generating a series of optimal

robot grasps for a discretized pattern. Note that a discretized pattern typically consists of 100

to 200 nodes and that the numeric solver needs to compute the robot trajectory in sequence

as the optimal grasp for the previous step is needed as the seed for computing the next

optimal grasp. Therefore, the time costs quickly accumulate for the numeric solver, which

substantially elongates the overall computation time. In contrast, the NN-solver leverages

vectorization to solve multiple robot grasps simultaneously, resulting in a speed advantage

of several orders of magnitude compared to the numeric solver when generating optimal

deployment trajectories.
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Table 5.3: Evaluation of computation times of various patterns for the numerical and NN-
solvers with error metrics.

DLO
Solver Times [s]

& MAEs

Patterns with Number of Nodes

Line Circle Sine curve Letter “U” Letter “C” Letter “L” Letter “A”
101 nodes 156 nodes 138 nodes 190 nodes 190 nodes 190 nodes 194 nodes

#1

Numeric-Solver 1572.68 2036.11 2897.17 3954.12 4015.24 4777.30 4666.55
NN-Solver 0.402 0.393 0.395 0.431 0.431 0.400 0.417
Position Error [m] 0.0008 0.0007 0.0009 0.0008 0.0007 0.0008 0.0008
Orientation Error 0.0012 0.0010 0.0032 0.0025 0.0020 0.0020 0.0021

#2

Numeric-Solver 776.56 1213.14 1769.66 2286.66 2226.73 2720.08 2933.90
NN-Solver 0.397 0.391 0.396 0.419 0.408 0.404 0.406
Position Error [m] 0.0016 0.0016 0.0019 0.0018 0.0016 0.0020 0.0017
Orientation Error 0.0012 0.0078 0.0050 0.0042 0.0020 0.0058 0.0030

#3

Numeric-Solver 666.01 1041.71 1561.12 1984.63 1972.39 2405.71 2639.44
NN-Solver 0.400 0.407 0.395 0.407 0.420 0.405 0.411
Position Error [m] 0.0016 0.0017 0.0020 0.0020 0.0016 0.0021 0.0018
Orientation Error 0.0010 0.0087 0.0052 0.0055 0.0023 0.0054 0.0032

5.5.4.3 Precision of the Neural Controller

Finally, Tab. 5.3 also presents the precision of the NN-solver. The solutions from the numeric

solver serve as the ground truth. Mean Absolute Error (MAE) is employed to evaluate

the optimal trajectories the NN-solver generates against the ground truth. Remarkably,

the MAE consistently remains below 0.003m for position error and 0.009 for differences in

rotation quaternions. Importantly, it’s noteworthy that none of the solved trajectories in

this analysis were part of the training dataset. Thus, we can confidently assert that our

NN-solver exhibits robustness, efficiency, and accuracy, rendering it well-suited for real-time

control applications.

5.5.5 Application #1: Cable Placement

In this section, we showcase the application of the deployment scheme for cable placement.

The importance of cable management has surged, particularly in engineering contexts involv-

ing tasks like wire harnessing, infrastructure development, and office organization [6, 143].

Given cables’ inherent high bending stiffness, shaping them to specific forms can be chal-
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Figure 5.12: A demonstration of cable placement along different prescribed patterns with
both intuitive and optimal control schemes.

lenging, often necessitating external fixtures to maintain the desired configuration. When

humans perform cable management manually, meticulous placement along the designated

pattern is essential, coupled with the use of fixtures to secure the cable in place. How-

ever, a robotic system can autonomously execute cable placement with our designed optimal

deployment strategy.

In our experimental setup, we preinstalled external fixtures into the stainless steel bread-

board to delineate the intended patterns. These fixtures also counteract the cable’s rigid

nature, preventing it from reverting to its original shape. The deployment results can be

visualized in Fig. 5.12. Compared to the failure placement results with the intuitive scheme,

our optimal deployment scheme can place the cable along the prescribed pattern “U” and
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“S” on the substrate. We did 10 experimental trials for each deployment task illustrated

in Fig. 5.12. Notably, the optimal deployment approach achieved an impressive 90% (9/10)

success rate for both patterns, whereas the intuitive method failed in all trials (0/10) as

shown in Tab. 5.4.

5.5.6 Application #2: Knot Tying

Grasp 

direction

(a) Sequences for making a trefoil knot

1st grasp 

direction

2nd grasp 

direction
3rd grasp 

direction

(b) Sequences for making a reef knot

Figure 5.13: A demonstration of two knot-tying cases using the DLO deployment scheme.
The sequences are shown for tying (a) a trefoil knot and (b) a reef knot.
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Since our optimal deployment scheme can control the shape of various DLOs with excel-

lent accuracy, we can use this scheme to tie knots. First, the manipulated rod is deployed

along a predesigned pattern on the substrate. Users can draw the predesigned pattern so

that only a few extra manipulations are required. Then, the camera will scan the drawn

pattern and send it as input to our designed scheme. The deployed pattern is designed in a

way that only a few simple pick-and-place operations on certain knot segments is required

to complete the tying sequence. Since the prescribed pattern’s shape is known in advance,

we can let the robot execute the pick-and-place procedure without perception feedback. So

long as the initial deployment is accurate and repeatable, the subsequent pick-and-place

procedure should succeed most of the time.

We showcase two knot-tying sequences in Fig. 5.13. The top row showcases a trefoil knot,

one of the most fundamental knots in engineering [144]. For this knot, we used DLO #4.

Another case is a reef knot, a prevalent knot widely used in for various applications including

shoelaces, packaging, sewing, etc. When tying the reef knot, we used DLOs #2 and #4.

Although these two DLOs have totally different material properties, our generalizable neural

controller allows two robots to deploy both DLOs accurately along the designed patterns.

With the help of the deployed patterns, reef knots can be tied with simple pick-and-place

procedures. Such knot-tying cases strongly support the potential of our deployment scheme

in various engineering applications.

We show the results of the knot-tying tasks in Tab. 5.4. The successful rate of knot-tying

is remarkable. We achieved a success rate of 90 % (9 successful trials out of 10) for tying a

trefoil knot and a success rate of 70 % (7 successful trials out of 10) with the optimal control

method. Based on our observations, all the failure cases were caused by the rod slipping out

of the gripper. In contrast, the intuitive control method achieves a success rate of 0% for

both cases as the initially deployed pattern does not match the intended pattern.

Therefore, the intuitive control method would require some visual feedback to choose the

pick-and-place motion adaptively for the trefoil knot case. As for the reef knot case, due to
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Table 5.4: Real-world application experiment results.

Experiment Type Scheme Success rate

“S” Cable Placement INT 0/10
OPT 9/10

“U” Cable Placement INT 0/10
OPT 9/10

Trefoil Knot INT 0/10
OPT 9/10

Reef Knot INT 0/10
OPT 7/10

the deployment results are totally wrong, even though the visual feedback is applied, it is

still hard to achieve a complete reef knot with intuitive method.

Therein, we can see the potential of the deployment scheme in high-level robotic tasks

like knot tying. In future work, the optimal deployment scheme will be incorporated with

the perception system to automatically tie any prescribed knots with the robotics system.

5.6 Summary and Outlook

In this chapter, we have developed a novel deployment scheme that allows for robust and

accurate control of the shape of DLOs using a single manipulator. Our framework integrates

techniques from different realms, including physical simulation, machine learning, and scaling

analysis, and has been demonstrated to be highly effective in robotic experiments. Our

results highlight the advantages of incorporating physics into robotic manipulation schemes

and showcase impressive performance on complex tasks such as writing letters with elastic

rods, cable placement, and tying knots.

Looking to the future, we plan to leverage the precision and efficiency of our deployment

scheme to tackle some high-level robotic tasks systematically, for example, robotic knot
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tying. While exact shape control is not strictly required during such manipulations, our

deployment scheme offers sufficient accuracy and efficiency to design the configurations of

the middle states of a manipulated DLO, which is essential for robots to tie complex knots

successfully. We also aim to explore the use of generalized problem formulations and data-

driven control schemes, such as reinforcement learning, to develop more flexible and adaptive

solutions to the challenges of robotic manipulation. By continuing to push the boundaries

of robotic manipulation, we hope to advance the state-of-the-art in this field and enable new

and exciting applications of robotic technology.
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CHAPTER 6

Learning Buckling of a Rod with Helical Centerline

with Robotics

This chapter explores the complexities of experimental mechanics, focusing on the challenging

task of studying the stability of slender elastic rods with helical centerlines. It offers valuable

insights and contributions to this area of research.

First, let us revisit the historical work of Kirchhoff in 1859, who made significant ob-

servations about the equilibrium configurations of elastic rods. He identified circular he-

lices as potential equilibria for an inextensible, unshearable, isotropic, and uniform elastic

rod [145, 146]. A natural question arises: When an elastic rod with a helical centerline is

stable? Although the rod configurations with helical centerlines can be described using only

three parameters, it is challenging to study its stability experimentally since it requires ma-

nipulation of both the position and orientation at one end of the rod, which is not possible

using traditional experimental methods that only actuate a limited number of degrees of free-

dom. In addition, many possible equilibriums of a helical rod exist, making the exploration

of all the equilibriums becomes an impossible mission with human labor.

In recent times, the growth of automation in scientific investigations has drawn more and

more researcher’s interest. In Ref. [147], a “robotic scientist” is designed to explore yeast

functions. It highlights the transformative potential of automation and robotics in advancing

scientific understanding. The recent advancements in the geometric characterization of sta-

bility for helical rods told us only three parameters should be controlled when manipulating

a helical rod. However, the geometric properties of the helical rod still require delicate ma-
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nipulations on both position and orientation. Therein, we developed an automated stability

testing platform empowered by robotics, enabling the systematic exploration of stable helical

configurations. Additionally, a vision system is integrated to detect the onset of instabilities

during experimental trials.

Experimental results obtained through the automated testing system are rigorously val-

idated by comparing them to numerical simulations. This comparison demonstrates a com-

mendable level of agreement, reinforcing the effectiveness of the proposed automation-driven

approach in studying helical rod stability. The broader implication of this chapter lies in

its pioneering role in the realm of experimental mechanics. It serves as a foundational step

toward automating complex experimental setups, ultimately facilitating the comprehensive

study of deformable objects’ mechanics.

The underlying motivation is in § 6.1. The modeling and physical guidance for automated

experiments is detailed in § 6.2. Then, the automated experimental system is given in § 6.3.

Finally, we give the conclusions in § 6.5. The content of this chapter is from Ref. [16].

6.1 Motivation

Elastic rods possess the fascinating ability to adopt an array of equilibrium configurations,

even when their boundary conditions remain fixed. Discerning the stability of these con-

figurations distinguishing between stability and instability is a fundamental challenge in

mechanics. However, experimental assessments of these rod configurations entail repeti-

tive testing and specialized setups capable of manipulating up to six degrees of freedom

at the rod’s ends. Prior work has primarily been constrained by traditional experimental

platforms that controlled only a limited number of degrees of freedom (often just one or

two) at the rod’s ends (e.g., Refs. [148, 149]). For example, Lazarus et al.[148] employed

a platform with two degrees of freedom to observe rod behavior during contortion, while

Thompson et al. [149] used a platform with two controlled degrees of freedom to investigate
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the post-buckling behavior of flexible rods with torsion. The restricted control over degrees

of freedom in these platforms often limited the range of rod configurations that experiments

could explore.

This chapter addresses these limitations by developing an automated testing methodology

that employs robotic systems to determine the stability of elastic rods. The focus is mainly

on configurations where the rod’s centerline forms a helix. This choice is motivated by

recent research that characterizes the set of stable helical rod configurations [150]. However,

conducting experimental analyses of rod stability in previous studies proved challenging due

to the repetitive testing procedures and the complexity involved in simultaneously controlling

both the position and orientation of the rod’s end. The solution to these challenges lies in

applying robotic automation to conduct comprehensive stability experiments.

Fig. 6.1 showcases a practical experiment conducted using our automated testing system.

In this experiment, an elastic rod, identifiable by blue markers along its length, undergoes

deformation while adopting a helical centerline. A collaborative robot manipulates one end

of the rod, as depicted in Fig.6.1(a-e). Notably, between Fig.6.1(e) and (f), an instability

emerges, leading to a transition to another configuration that lacks a helical centerline.

The experiment concludes in Fig.6.1(g), offering valuable insights into the mechanics of

elastic rods. Simulated rod configurations with identical boundary conditions, based on the

Discrete Elastic Rod formulation [14, 151], are presented alongside the experimental images

for comparison.

Manipulating a deformable object, as illustrated in Fig. 6.1, presents unique challenges

that diverge from traditional rigid object manipulation. Deformable object manipulation

has garnered significant attention in robotics [152], often focusing on tasks like deforming

an object, such as an elastic rod, from an initial configuration to a specific target config-

uration (e.g., Refs. [153, 154]). These tasks frequently entail additional constraints, such

as limiting the object’s deformation, avoiding unstable configurations, and preventing self-

collisions(e.g., Refs. [155, 156, 157]). Elastic rods find applications across various engineering
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domains, such as robot-assisted hot wire cutting [158], magnetically guided rods for medical

procedures [159], and the development of concentric tube robots [160]. While the methods

discussed in this chapter draw inspiration from existing robotic manipulation research, our

approach distinguishes itself by intentionally inducing instabilities to gain insights into the

mechanics of deformable objects.
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Figure 6.1: Snapshots of an elastic rod manipulated by a robot from stable helical configu-
rations to non-helical configurations after an instability. (a-e) Stable helical configurations;
(f-g) non-helical configurations after an instability; elastic instability happens at the vertical
green line.

Our automated stability testing method includes not only the robotic system but also a

vision system crucial for detecting instances of rod instability. Visual tracking of deformable

objects has been a subject of prior research in robotics [161], with notable applications in

fields like robotic surgery [162]. However, the primary focus of previous studies has been

to estimate the current configuration of deformable objects, typically from images or sensor

data, to aid in tasks like surgical navigation. In contrast, our approach combines visual

tracking with instability detection. We begin by estimating the rod’s current configuration

using imagery captured by a camera. Subsequently, we calculate the error between this

detected configuration and the expected or desired configuration. A sudden and significant
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increase in this error serves as an automated indicator of instability.

The elastic rods under investigation in this paper belong to a broader category of flexi-

ble slender structures commonly encountered in our daily lives. Understanding the equi-

librium configurations of such structures holds practical relevance in various fields, in-

cluding materials science (polymers), biology (bacterial fibers, DNA), and botany (plant

growth) [163, 164, 32, 165]. Beyond equilibrium, distinguishing between stable and unstable

configurations has been a central topic in mechanics [67, 166]. Configurations character-

ized by a helical centerline have received particular attention, with roots tracing back to

Kirchhoff’s seminal work in 1859. Kirchhoff demonstrated that, under specific boundary

conditions, an initially straight, inextensible, unshearable, isotropic, and uniform rod can

adopt a helical centerline. Subsequent research established that the stability of these heli-

cal configurations can be characterized by just three parameters: the centerline’s curvature,

torsion, and the applied twisting moment [150]. Moreover, within this three-dimensional

parameter space, the set of stable helical configurations exhibits a star-convex structure.

Our manipulation scheme, employed to induce instabilities in elastic rods, draws inspi-

ration from the geometric properties of this set of stable helical configurations. To validate

the results obtained through our automated testing method, we compare the stability mea-

surements collected by our robotic system with simulations of helical elastic rods. These

simulations rely on the Discrete Elastic Rod formulation [14, 151]. The mechanical insights

garnered from these robotic experiments have broader implications and could potentially be

used to refine existing mechanical models. For instance, recent research [167] has explored

the application of machine learning to construct advanced constitutive models for materials.

Integrating machine learning with the robotic system described in this paper could enable

the use of mechanical experiment data to enhance our understanding of complex structures

and inform finite element analyses and simulations.

146



6.2 Exploration and Simulation of Helical Rods

This section describes a parameterized space for helical rod configurations and introduces

a scheme to navigate this space, focusing on the subset of stable configurations. We begin

by outlining the coordinates within this parameter space, encompassing the rod’s curvature,

torsion, and twisting moment. Following that, we delve into the specifics of our numerical

simulation, a crucial tool for predicting the stability of helical rod configurations. Lastly, we

unveil a manipulation strategy designed to provoke instabilities in helical rods. This strategy

will be later realized in the robotic system in § 6.3.

6.2.1 Parameter space of helical rod configurations

In this section, we provide essential background information based on the findings from

Ref. [150]. This research revealed a parameterization method for all stable helical config-

urations of an initially straight, inextensible, unshearable, isotropic, and uniform elastic

rod with a length of L. These configurations can be defined by three key parameters: the

centerline’s curvature κ ≥ 0, torsion τ , and the twisting moment ω applied to the rod.

Understanding these parameters is fundamental to determining the stability of helical rod

configurations. Consequently, we can represent the stability of all helical configurations

within a three-dimensional parameter space, utilizing axes κ, τ , and ω.

Each point within this parameter space corresponds to an equilibrium state of a helical

rod configuration. However, not all points in this space denote stable helical configurations,

which minimize elastic potential energy. This potential energy comprises two components:

bending energy and twisting energy. Notably, potential energy arising from axial stretching

and external forces like gravity are neglected. The balance between bending and twisting

energy is influenced by the stiffness ratio c = kt/kb = 1/(1 + ν), where kb stands for bending

stiffness, kt represents twisting stiffness, and ν denotes Poisson’s ratio. Interestingly, the

stiffness ratio c doesn’t impact stability within the κ-τ -ω parameter space.
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(a) Parameterized space of helical configura-
tions and two searching directions.
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(b) Error between the simulated rod and
the expected helical shapes vs. distance
along the searching direction ∥S∥ when S =
[0.594, 0.698, 0.4].
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(c) Error between the simulated rod and
the expected helical shapes vs. distance
along the searching direction ∥S∥ when S =

1√
3 [1, 1,−1].

Figure 6.2: Scheme to incite an instability in a helical rod.
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A geometric property concerning the subset of stable helical configurations, as established

in Ref. [150], is that within the κ-τ -ω parameter space, the set of points corresponding to

stable configurations exhibits star-convexity. This property implies that each ray originating

from the origin in the κ-τ -ω parameter space intersects the boundary that separates stable

and unstable helical configurations precisely once. This unique geometric characteristic

forms the basis for our manipulation scheme to provoke instabilities in our automated testing

process, which will be explained in subsequent sections.

6.2.2 Manipulation scheme to explore stable configurations

We now propose a scheme for manipulating a helical rod to induce instabilities, enabling

us to explore points in the κ-τ -ω parameter space corresponding to stable configurations.

As previously explained, it has been established that every ray originating from the origin

within the κ-τ -ω parameter space intersects the boundary distinguishing stable from unstable

helices exactly once. Moving along such a ray within the parameter space corresponds to

continuously altering the shape of the helical rod. Therefore, our manipulation scheme

commences with a straight, untwisted rod (corresponding to the origin in the κ-τ -ω parameter

space) and then proceeds along a search direction denoted as S within this space. Here, ∥S∥

represents the distance from the origin along the search direction, and S is a unit vector

in this direction. Starting at the origin, we move along S within the κ-τ -ω space until we

encounter an instability.

Two examples of this procedure are shown in Fig. 6.2. Fig. 6.2a shows the κ-τ -ω param-

eter space along with a half-sphere of radius 1. Each point on this half-sphere corresponds

to a different search direction S, two of which are shown in the figure. Moving along either

search direction corresponds to manipulating a helical rod and continuously changing its

curvature, torsion, and twisting moment. This manipulation process was completed using

the numerical simulation framework described in the previous section, and the results for the

search directions S1 and S2 are shown in Figs. 6.2b and 6.2c. To measure the error between

149



the simulated rod and the predicted helical shape, we calculate the average deviation of the

rod configuration from the predicted helix, normalized by the helix’s radius. The expression

for this error e is given by

e = 1
n + 1

n∑
i=0

κ2 + τ 2

κ
∥qi − qhelix

i ∥, (6.1)

where n + 1 is the number of discrete nodes representing the centerline of the rod, qi is

the position of the node, and qhelix
i is the position of the node when the rod is assumed

to be helical. In Figs. 6.2band 6.2c, you can observe that this error initially remains small

and then undergoes a sharp increase at a critical distance along the search direction. This

sudden increase corresponds to an instability event in which the rod transitions to another

configuration that is not helical. This process was systematically repeated for 58,352 search

directions using numerical simulation, and the resulting points S at which instabilities oc-

curred were meticulously recorded. These points were then utilized to construct the surface

depicted in Fig. 6.6, which represents the predicted boundary distinguishing stable and un-

stable configurations within the κ-τ -ω parameter space.

6.3 Robotic System

In this section, we describe a robotic system that implements the manipulation scheme from

the previous section within the κ-τ -ω parameter space. This system allows for automated

stability testing and unsupervised collection of relevant data. We first provide an overview

of the robotic system. We then discuss how boundary conditions for the rod corresponding

to points in the κ-τ -ω parameter space are implemented. Finally, we describe the vision

system used to detect instabilities, and we discuss the effects of disturbances in the robotic

system.
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6.3.1 Overview of the robotic system

A flowchart of the robotic manipulation scheme is shown in Fig. 6.3. The robotic system

is composed of three parts: a collaborative robot, an externally mounted motor, and a

camera. The collaborative robot imposes the prescribed position and tangent on one end

of the manipulated rod while the mounted motor imposes the required torsion by rotating

one end of the rod. In other words, the collaborative robot and the mounted motor work

together to apply the required clamped boundary conditions on the manipulated rod. A

camera is used to image the configuration of the rod undergoing manipulation. The images

are used to calculate the difference between the experimental rod and the predicted helical

shape when searching for the boundary of the set of stable helices. As described in Fig. 6.2a,

a large increase in the error between the manipulated rod and the predicted configuration

indicates that a point on the boundary between stable and unstable configurations has been

found. The robotic system is able to explore the boundary of the set of stable helices by

repeating this experimental procedure along different directions S.

6.3.2 Boundary conditions and path planning

In this study, the boundary conditions on the two ends of the rod are clamped, which require

fixing both the position and the tangent. The position can be expressed by three variables

[x, y, z] in the world coordinate system – a reference frame fixed to the environment – and

the tangent – a unit vector – can be specified using a rotation matrix. First, we discuss our

implementation of the conditions on the position using the robot. As shown in Fig. 6.4a,

we regard one clamped end (the mounting end) of the rod as the origin of the world frame

without any loss in generality. This position q0 is the first node in the discrete representation.

For a helical shape, the last node qn held by the end-effector of the robot can be expressed
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Figure 6.3: Flow chart of the manipulation scheme.

using the geometrical properties (κ and τ) of the helix such that

qn =


−

κτ

(
−1+(κ2+τ2)3/2 sin 1

(κ2+τ2)3/2

)
κ2+τ2

κ
(
cos

(
1

(κ2+τ2)3/2

)
− 1

)
(κ2 + τ 2)

τ2

κ2+τ2 + κ2
√

(κ2 + τ 2) sin
(

1
(κ2+τ2)3/2

)

 . (6.2)

Next, a method to implement the tangent or orientation boundary condition has to be

developed. The material frame [m1
n−1, m2

n−1, tn−1] on the last edge (manipulated end) gives

the required rotation matrix. Referring to Fig. 6.3, this material frame is imposed by the
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joint controller of the end-effector and the external motor mounted on the end-effector. When

the twisting moment is zero (ω = 0), we denote the material frame of the last edge to be

[m1,int
n−1 , m2,int

n−1 , tn−1]. The joint controller of the robot imposes this “intermediate” material

frame. The intermediate material frame can be computed using parallel transport, which

allows us to move the material frame from one edge to another without twisting about the

tangent. Referring to Fig. 6.4b, given the material frame on edge ei−1, the material frame

on ei that does not generate any twist can be computed from the following steps.

b = ti−1 × ti

∥ti−1 × ti∥
where ti−1 = ei−1

∥ei−1∥
, ti = ei

∥ei∥
,

m1,int
i = (m1,int

i−1 · (ti−1 × b))(ti × b) + (m1,int
i−1 · b)b,

m1,int
i = m1,int

i

∥m1,int
i ∥

,

m2,int
i = ti ×m1,int

i ,

(6.3)

where [m1,int
i , m2,int

i , ti] is the intermediate frame on the i-th edge with zero twist compared

with the material frame [m1
0, m2

0, t0] on the fixed end. By sequentially parallel transporting

the material frame from the first edge to the last one, we can obtain the intermediate frame

[m1,int
n−1 , m2,int

n−1 , tn−1].

This intermediate frame and the prescribed material frame [m1
n−1, m2

n−1, tn−1] share the

tangent tn−1 as the third director. Therefore, only a scalar quantity – the rotation angle – is

needed to obtain the prescribed material frame from the intermediate frame. As indicated

in Fig. 6.3, an external motor that is mounted on the end-effector rotates the last edge by

a rotation angle ω/c, where c is the ratio between twisting stiffness and bending stiffness.

Fig. 6.4a schematically shows the two frames and the rotation angle. The reason behind

using an external motor to impose the rotation is that the rotation angle in this study can

be so large that it falls outside the joint limits of the collaborative robot.

Knowing the required boundary conditions of a series of helical shapes to be explored,

we can construct a constrained path in Cartesian space. During motion planning, singu-
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Figure 6.4: Illustration of the boundary conditions and the parallel transport.

lar configurations of the robot should be avoided since these singularities could result in a

high speed of the manipulator, thereby influencing the stability of the rod. To minimize

the likelihood of encountering these singularities, the desired path of the manipulator was

divided into a series of discrete points and the Descartes planner [168] was used to plan

a corresponding path in the robot’s joint space. The collaborative robot used in our ex-

periments has seven DOF, and there are multiple joint solutions for a specified pose along

the desired path. Between discrete points along the path, the Descartes planner minimizes

the function f = ∥θr
i+1 − θr

i ∥, where θr is the robot joint solution and subscripts denote

the index of the corresponding discrete point on the path. The minimization of f reduces

the likelihood of encountering large and sudden changes in the robot’s joint angles due to

singularities. During motion planning, we also account for self-collisions and joint limits of
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the robotic system, resulting in a joint path that does not have sudden jumps associated

with singularities. We note, however, that for a robotic system with fewer DOFs (e.g., 6

DOFs), avoiding singularities might be more challenging during motion planning. In this

circumstance, methods such as those described in [169] can be used during motion planning.

6.3.3 Perception system

The perception system is completed with a camera (Intel Realsense D435) that images the

rod. Lightweight markers made of paper are attached along the rod (see Fig. 6.1) to track

its configuration. Using the extrinsic and intrinsic matrices of the camera, the expected

helical shapes from numerical simulations can be projected into the image domain of the

experiments. The intrinsic camera matrix is provided by the vendor, and the extrinsic matrix

is measured with robot hand-eye calibration. The difference between the expected helical

shape and the detected manipulated rod in the image domain is used to evaluate if elastic

instability occurs. When the elastic rod with a helical centerline reaches the critical point,

it will snap into a non-helical shape and induce a large difference between the experimental

and prescribed helical shapes. A representative example of this experiment vs. simulation

comparison is shown in the supplementary video. The corresponding curvature κ, torsion ω,

and twist τ at the onset of elastic instability is a point on the boundary of the set of stable

helical configurations. In this work, a detailed comparison between the 3D simulated and

experimental configurations is not necessary; we are only interested in capturing the onset

of instability.

6.3.4 Effects of disturbances

We now discuss potential sources of disturbances in the robotic system and their effects on

the stability measurements. First, in § 6.2, we described how the parameters κ, τ , ω, and

c can be used to describe the set of all helical rod configurations, where curvature κ and
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Figure 6.5: The effects of various contributing factors on the point of elastic instability. In
each figure, the horizontal axis is the distance along the search direction S = 1/

√
3[1 1 1],

and the vertical axis is the error with respect to the expected helical shape. The predicted
point of instability is denoted by the vertical dashed line.

torsion τ are geometrical parameters of the rod that are independent of the rod’s material.

Furthermore, the ratio of twisting stiffness to bending stiffness, c = kt/kb = 1/(1 + ν),

is only dependent upon the Poisson’s ratio of the material. Varying c changes the rod’s

twisting strain, ω/c, and a change of the rod’s twisting energy. However, these two changes

together result in no change in the rod’s stability [150]. To validate this result, we simulated

a helical rod using the DER formulation along the search direction S = 1/
√

3[1 1 1]. The

default parameters for these simulations were: Young’s modulus E = 1.12 Gpa, Poisson’s

ratio ν = 0.33, density ρ = 1180 kg/m3, length L = 1 m, and radius h = 0.781 mm. In

Fig. 6.5 (a)-(b), we show the effect of varying Poisson’s ratio and Young’s modulus on the

instability. We see that the rod’s material properties have a minimal effect on the instability
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point (the value of which is indicated by the vertical dashed line for the default parameters).

Therefore, the material of the rod should have minimal influence on our stability results,

and it is sufficient to use a single rod in the experiments. In future work, our robotic system

can be used to automate the experimental validation of the theoretical result regarding c

obtained in [150].

In addition to the rod’s material, the effect of gravity on the rod must also be considered.

This paper assumes that the rod is sufficiently stiff so that gravity can be neglected. To

quantify this assumption, we use the gravito-bending length Lgb =
(

h2E
8ρg

)1/3
, where g is

the acceleration of gravity [7]. Lgb describes the balance between gravitational and bending

energy, and the effects of gravity diminish as Lgb increases. Fig. 6.5c shows the effect of

varying Lgb on the instability, and we see that gravity becomes negligible when Lgb/L > 0.6.

The main external disturbances (i.e., external to the rod) can be divided into two compo-

nents: the robotic manipulator’s speed and the manipulator’s jittering. We again conducted

simulations with the default parameters described above to assess these effects. Fig. 6.5d

shows how varying the manipulator’s speed v affects the instability point by introducing

inertial effects. We conclude that the manipulator’s speed should be sufficiently small to

minimize the influence of these inertial disturbances. We also used the simulator to explore

the effects of jittering, i.e., small deviations from the desired path. As shown in Fig. 6.5e,

we found that jittering of magnitude less than d ∽ 0.02L, where L is the rod’s length, has

minimal influence on the rod’s stability.
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6.4 Results
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(a) Comparison between simulation results and experimen-
tal results
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Figure 6.6: Comparison between simulation data (blue surface) and experiment data: red
circles denote the experimental data; green circles denote the anti-symmetric experimental
data.
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The robotic system, manipulation scheme, and vision system described in § 6.3 were imple-

mented to conduct automated experimental testing of stability for helical elastic rods. We

used a collaborative robot (Sawyer, Rethink Robotics) with seven degrees of freedom. The

motor used for applying external torque is a stepper motor (NEMA 17) controlled with a

microcontroller (Arduino Uno Rev3), and the camera used in the perception system is an

RGBD camera (Intel Realsense D435). The elastic rod used was a superelastic nitinol wire

with length L = 0.5 m, diameter 2r = 1.5875 mm, Poisson’s ratio ν = 0.33, density ρ = 6450

kg/m3, and Young’s modulus E = 67.5 GPa. For this rod, we have Lgb/L = 1.3816, and

we can therefore neglect the effects of gravity. Furthermore, the reported accuracy of the

Sawyer robot is less than 0.01 cm, which is within the jittering tolerance established in the

previous section.

As described in Ref. [150], there is a symmetry in the κ-τ -ω parameter space between

points located at (κ, τ, ω) and (κ,−τ,−ω). We therefore only consider search directions with

τ > 0, and we reflect these points on the stability boundary to generate data for τ < 0. In

future work, experiments will be conducted for all values of τ to validate this symmetry.

The rod was manipulated along a total of 328 search directions until an instability occurred,

and the resulting values of κ, τ , and ω at the instability were recorded.

The blue surface in Fig. 6.6a shows the predicted boundary between stable and unstable

helical configurations within the κ-τ -ω parameter space based on the DER numerical sim-

ulations. The experimental data collected by our automated testing procedure is shown in

red, and the anti-symmetric data generated from the symmetry is shown in green. Views

along each coordinate axis are shown in Fig. 6.6b, and Fig. 6.6c shows the comparison for

the two-dimensional section with ω = 0, i.e., twist-free helices. Our results show good agree-

ment between the simulated and experimental data, suggesting that our automated testing

procedure can reproduce the stability boundary accurately.

We introduce an error that measures the relative distance between points on the simu-

lated and experimental stability boundaries along the same search direction to quantify the
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difference between the simulated and experimental data. Along a given search direction S, we

let Ss = [κs, τs, ωs] denote the resulting point on the stability boundary based on numerical

simulations, and similarly we let Se = [κe, τe, ωe] denote the resulting point on the stability

boundary based on the experimental data. The relative error along the search direction S is

then defined as err = |(∥Se∥ − ∥Ss∥) /∥Ss∥|. The average error of our experimental results

over all 328 search directions was 0.0272. The maximum error found was 0.1298, and the

standard deviation of the error was 0.0238. Based on these results, we can conclude that our

automated experimental testing method can accurately determine when an elastic rod in a

helical configuration loses stability.

6.5 Summary and Outlook

This chapter developed an automated testing procedure for determining the stability of a

helical elastic rod. Due to the repetitive nature of the test and the need to simultaneously

manipulate both the position and orientation at one end of the rod, the robotic system

was a key component of our testing procedure. Experimental observations were compared

with results from numerical simulations based on the DER algorithm, and their agreement

suggests our method can accurately capture the onset of instabilities in helical rods. Although

our manipulation scheme relied on specific properties of helical rods, the other components of

our testing method can be applied to analyze the stability of non-helical rod configurations.

While our automated testing system was able to accurately reproduce the boundary

between stable and unstable helical rods, there are areas in which the method could be im-

proved. First, a primary error source in our system was the stepper motor due to its inability

to apply a consistently linear rotation and latency when communicating with the robotic

system. Furthermore, since the position of one end of the rod as fixed in our experiment,

self-collisions of the robot prevented us from exploring certain regions of the κ-τ -ω parame-

ter space. Using two robots to manipulate the rod collaboratively would provide additional
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dexterity, allowing us to explore a larger region of the parameter space. Our future work will

explore how the robot’s workspace constrains the rod’s mechanical parameter space. Despite

these areas for improvement, the methods described in this paper provide a foundation for

using robotic systems to research experimental mechanics. In future work, a robotic system

could be used to perform mechanics experiments and apply machine learning based on the

collected data to improve the mechanical model of the object being manipulated.
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CHAPTER 7

Conclusions

We have presented extensive research into the synergy between computational mechanics and

robotics for slender structures. Our work has led to the development of a sim2real framework

aimed at generating optimal manipulation strategies for tasks involving deformable objects.

Our framework leverages insights gained from computational mechanics, harnessing the ac-

curacy and dexterity of robotics to conduct automated experiments that collect valuable

experimental data through interactions with deformable slender structures. These interac-

tions provide valuable insights that contribute to advancing our understanding of slender

structures.

Our contributions to computational mechanics are primarily showcased in Chs. 2 and 3.

Ch. 2 introduced a novel frictional contact handling framework called IMC. This framework

incorporates discrete differential geometry principles to address frictional contact interac-

tions. We then applied the IMC frictional contact model to enhance the capabilities of a

popular simulation algorithm, Discrete Elastic Rods (DER)[13], widely used in computer

graphics communities. The core concept of the IMC framework involves deriving artificial

penalty energy directly from the topological characteristics of the simulated objects. IMC

was integrated with DER and the regularized stokeslet segment (RSS) to investigate a cru-

cial biological phenomenon, flagella bundling. In this context, we demonstrated the influence

of frictional contact by conducting a comprehensive numerical sweep in simulations. Fur-

thermore, we conducted an full comparison between IMC and a state-of-the-art frictional

contact handling framework, IPC [24]. Our results clearly indicate that IMC outperforms
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IPC regarding accuracy and computational efficiency, particularly when simulating flagella

bundling. Additionally, we validated the physical accuracy of the IMC framework by com-

paring its results with established knot theories found in prior literature [25, 26]. These

achievements lay a strong foundation for our subsequent investigations into the study and

manipulation of slender structures in frictional contact scenarios.

In Ch. 3, we studied a fascinating phenomenon associated with the tightening of an over-

hand knot. The process of tightening an overhand knot leads to an occurrence where the

closed loop of the knot “inverts”, giving rise to the formation of additional tangles within

the structure. This phenomenon is of great interest due to its universal characteristics in

rod-like structures. Our investigation into this intriguing knot inversion process was con-

ducted through a comprehensive study encompassing simulations, real-world experiments,

and theoretical analysis. We showcased the influences of three intricate parameters, rod

radius, unknotting number, and friction coefficient, on the inversion process. In addition,

theoretical analyses reveal that the knot inversion process is essentially an interplay of en-

ergy between the knotted braids and the knotted loop within the structure. This interplay

ultimately results in a snapping process, shedding light on the underlying mechanics of this

phenomenon. This study uncovered a novel observation in knots and holds significant im-

plications for manipulating knotted structures and the broader understanding of tangles

observed in nature.

With the guidance of computational mechanics, a sim2Real framework was proposed

to develop optimal manipulation schemes for slender structures. Combining computational

mechanics-based simulations, scaling analysis, and machine learning, this framework lever-

ages the precision of simulations, the generality of scaling analysis, and the rapid inference

capabilities of machine learning to tackle complex deformable manipulation tasks. Ch. 4

tackled a challenging deformable manipulation task, folding a paper with only one manipu-

lator. A physics-informed model was learned from scaled simulation data to execute optimal

motion planning with the model’s prediction. We compared our physics-informed folding
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with a state-of-the-art folding algorithm [102]. We demonstrate our folding scheme is glob-

ally optimal, effectively avoiding the vexing issue of buckling that had proven challenging

for the previously established method (STOA method).

In Ch. 5, we learned an optimal policy from the scaled simulation data to facilitate the

precise deployment of solid deformable linear objects onto various rigid substrates, following

various feasible patterns. The trained policy is validated to be robust, efficient, and accurate

with an extensive real robotic experiment. In addition, we also showcased the versatility of

the deployment scheme in engineering domains including cable management and knot tying.

Beyond manipulation, we ventured into the realm of robotics and automation to experi-

mentally study mechanics. By designing an automated experimental platform based on a 7

DOF robot, we successfully unveiled the buckling behavior of slender structures with helical

centerlines in Ch. 6. This pioneering work has paved the way for the precise and automated

exploration of mechanics using robotic platforms, overcoming the limitations of traditional

experimental approaches.
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