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 Improving oceanographic data collection involves two components: improving 

instrumentation, and improving the processing and analysis of resulting measurements. While 

advancing technology has improved and expanded data collection, processing these data has 

become a significant problem for under-resourced academic labs, rendering much of these data 

underutilized. The experiments described in this dissertation are contributions to the effort of 
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improving data processing in oceanography. Chapter 1 examines parametrization of particle size 

distribution measurements in the Arctic, collected during decades of field expeditions by Dariusz 

Stramski, Rick Reynolds, and others. Experiments suggest that the commonly-used Junge-type 

power law model for parametrizing particle size distributions is insufficient, and cumulative 

distribution functions may offer a superior alternative. Particle size directly physically affects light, 

so the particle size distribution affects the signals of optical instruments. These results will increase 

the utility of satellite imagery, both by assisting the measurement of particle size from satellites, 

and by improving understanding of the impact of different seawater characteristics on optical 

signals. Chapter 2 discusses cutting-edge, technology-enabled survey image and 3D model 

techniques for studying coral reefs. The report focuses on lessons learned by the Sandin/Kuester 

labs from a decade of experience. Improving and standardizing data collection in the field allows 

research groups to pool datasets and compare results. Pooled databases are valuable for developing 

processing and analytical tools like neural networks, make those tools useful to more research 

groups, and enable ecological analysis at larger scales. Chapters 3 and 4 evaluate neural-network-

assisted tools that can expedite taxonomic labeling of survey image products such as 

orthoprojections and pointclouds. Chapter 3 contains the first published investigation of 3D coral 

pointcloud segmentation with 3D neural networks. This new technology shows great promise, as 

evidenced by the time savings (36%) and high prediction accuracy in some contexts (~70-90%) 

recorded by our experiments, but requires more comprehensive, standardized datasets than what 

is currently available to fully develop or confidently evaluate. These tools are already capable of 

increasing the utility of survey imagery by expediting their annotation, which is necessary for 

many types of analysis, and further development will further improve their performance.  
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INTRODUCTION TO THE DISSERTATION 

 

I will start with a cliché because it is one of the true ones: Earth’s oceans are very, very 

big. Ships are expensive and slow, and anything that goes under the water is even slower. It takes 

a research ship in the region of 2-4 weeks to cross the full width of the Pacific Ocean, and that is 

without stopping to do any science. Any measurements from the same day, let alone the same 

morning or tide or etc, must be taken within a few miles – contemporaneous large-area datasets 

are nearly impossible to create from a ship. Human divers are additionally limited by available 

underwater instrumentation and human physiology. For these reasons, ocean science has 

traditionally been limited by researchers’ ability to acquire measurements. However, modern 

technology is increasingly enabling scientists to transcend these historic impediments. With these 

novel sensing capabilities has come a new problem: it is difficult for under-resourced academic 

research groups to process and analyze measurements at the rate modern sensors can collect them. 

Optical instruments are a cornerstone of expanding sensing capabilities. Underwater, 

cameras enable researchers to capture expansive environments at millimeter resolution, where they 

were formerly restricted (by oxygen tank capacity and human physiology) to just a few minutes 

with handheld tools (Weinberg, 1981; Gracias and Santos-Victor, 2000). Commercial cameras 

with relatively simple three-channel RGB sensors are generally used for this application, though 

some researchers are experimenting with more advanced multi- and hyperspectral instruments. 

Similar optical sensors mounted on unmanned aerial vehicles (UAVs), airplanes, or satellites can 

cover vastly more area than manned or unmanned underwater platforms, but they are much further 

away, and so suffer a loss in resolution. They are also limited to imaging the shallow surface layers 

of the ocean, and must account for its complex reflective surface, as well as the atmosphere 
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between the sensor and the ocean. Nevertheless, optical oceanographers have had great success, 

both with in-water and in-lab instrumentation, as well as building algorithms to interpret optical 

measurements made from satellites.  

Progress in processing and analytical techniques for these new sensing capabilities is quite 

varied, so I cannot summarize it in its entirety in this venue. There is constant incremental progress 

in measurement interpretation techniques; some utilize novel machine learning and neural network 

capabilities, while others rely on e.g. mechanistic or statistical models. Ever-increasing 

computational processing speeds contribute to this ongoing development. However, many 

processing and analytical limitations remain, resulting in underutilized sensing technology. 

 

SATELLITE-BASED OPTICAL SENSORS 

Satellite-mounted optical instruments are successful and widely-used tools in the ocean 

sciences. Depending on their orbit, they are able to take measurements of all the world’s oceans 

on a time scale of days to weeks. A single satellite image with a pixel size of one kilometer square 

represents thousands of independent measurements in a precise gridded pattern over a large area – 

replicating those measurements from a ship would take weeks, and they would not be 

contemporaneous.  

Optical satellite oceanography attempts to solve a simple problem: given a satellite sensor 

measurement of light intensity at some number of wavelengths, determine as many properties of 

the water and its contents as possible (e.g. temperature, salinity, chlorophyll). Since the launch of 

the Coastal Zone Color Scanner (CZCS) in 1978, a variety of optical oceanographic instruments, 

ranging in target applications, country of origin, age, and more, have been launched into orbit.  
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Some algorithms for estimating oceanographic properties from satellite optical signals are 

well-established, while many others are in development, aided by the deployment of newer, more 

advanced sensors (e.g. the hyperspectral NASA Plankton, Aerosol, cloud, ocean Ecosystem 

(PACE) mission) (Gorman et al., 2019). In order to create algorithms for interpreting satellite 

optical signals, researchers must first A) optically characterize a volume of seawater, and then B) 

evaluate its characteristics and suspended particulate contents. The measurements of seawater 

properties/contents and associated optical properties can then be used to investigate causal links 

between properties of the seawater and resulting optical characteristics. When algorithms are 

derived to deduce water properties from optical signals, the satellite-measured optical signals can 

be used to infer seawater characteristics. 

 

SCIENTIFIC VALUE OF PARTICLE SIZE DISTRIBUTION MEASUREMENTS 

One desirable target for optical satellite algorithms is characterizing the particle size 

distribution (PSD) in the ocean. Knowledge of the PSD contributes to scientific understanding of 

numerous physical, chemical, and biological processes. Examples of such size-dependent 

phenomena include: 

1) Rates of particle aggregation and sinking (Jackson, 1995; Stemmann et al., 2004; Burd, 

2013) 

2) Particle colonization and remineralization rates (Kiørboe, 2000; Ploug and Grossart, 

2000; Kiørboe et al., 2004), and 

3) Planktonic metabolic processes and trophic interactions (Chisholm, 1992; Hansen et 

al., 1997; Gillooly et al., 2001; Jennings and Warr, 2003; Brown et al., 2004; 

Woodward et al., 2005) 



4 
 

Particle size also plays a significant role in determining the light scattering and absorption 

properties of seawater, and thus the extent of penetration of different wavelengths of light within 

the ocean (Morel and Bricaud, 1986; Stramski and Kiefer, 1991; Stramski et al., 2001; Stemmann 

and Boss, 2012; Agagliate et al., 2018). The PSD directly influences the behavior of light in the 

ocean, suggesting that it may be possible to infer the PSD from optical measurements.  

 

CHARACTERIZATION AND MEASUREMENT OF PSD 

The size distribution of marine particle assemblages varies continually in time and space, 

as many overlapping processes add, remove, or alter particles in a given volume of seawater. 

Observations suggest the PSD often exhibits a complex shape (Sheldon, 1972; Jonasz and 

Fournier, 2007; Reynolds et al., 2010), so simplifying descriptors of the PSD struggle to capture 

the full complexity of these dynamic systems. However, it has long been recognized that different 

particle size ranges often have different physiological, ecological, or biogeochemical roles (Quéré 

et al., 2005; Stemmann and Boss, 2012; Ward et al., 2012). The PSD is thus often parametrized by 

size classes approximating different planktonic “functional types” based on size (IOCCG, 2014; 

Mouw et al., 2017). The most common size grouping of plankton used in oceanographic studies is 

based on particle diameter (Sieburth et al., 1978); picoplankton (diameter range 0.2–2 μm), 

nanoplankton (2–20 μm), and microplankton (20–200 μm).  

In addition to size ranges, single metrics such as the average or median particle diameter 

(by particle number, area, or volume concentration) are another means to simplify the complete 

PSD function (Bernard et al., 2007; Woźniak et al., 2010; Briggs et al., 2013; Slade and Boss, 

2015). Alternatively, parametrizations which model the shape of the PSD in seawater have been 

proposed, such as power law models (Bader, 1970), Gaussian or log-normal distributions (Jonasz, 
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1983, 1987), and the gamma function (Risović, 1993). Of these, the most commonly used is the 

power law model (often referred to as the Junge distribution); research has offered justification for 

its applicability to marine biological and biogeochemical systems (Platt and Denman, 1978; Kiefer 

and Berwald, 1992; Buonassissi and Dierssen, 2010). 

Recent advances in terrestrial optically-based instrument capabilities, such as improved 

imaging and evaluation of light scattering, have increased capabilities to measure the PSD 

(Jackson et al., 1997; Agrawal and Pottsmith, 2000; Moore et al., 2009; Graham and Nimmo 

Smith, 2010; Picheral et al., 2010). However, due to the inherent limitations of ship, shore, 

stationary buoy, or drifter/glider sensor platforms, they alone likely cannot provide the spatial or 

temporal resolution necessary to fully characterize complex global oceanic ecosystems. For this 

reason, efforts to develop space-based remote-sensing approaches for estimation of the PSD from 

imaging sensors (ocean color) are a subject of ongoing research interest (Bowers et al., 2007; 

Kostadinov et al., 2009; Shi and Wang, 2019). 

Chapter 1 of this dissertation addresses the first step in optical algorithm development: 

parametrizations of the PSD are investigated, with the goal of evaluating potential targets of optical 

signal interpretation models. The PSD is a complex and continuously varying function, so it is 

unlikely that its entirety can be determined from optical measurements; however, if a relatively 

simple parametrization or non-parametric model can be developed that captures much of the full 

PSD, it may be possible to determine causal relationships between the variables of such a 

parametrization and optical measurements that can be made from satellites. 

 

DIGITAL IMAGING UNDERWATER FOR MAPPING CORAL REEFS 
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While satellite-based optical instrumentation can inform many investigations of scientific 

value, in situ measurements are more suitable for other research goals.  Diver-based digital imagery 

and derived products (e.g., 3D pointclouds, 2D orthographic projections) enable coral researchers 

to capture high-resolution maps of the benthos, allowing investigation of e.g. the growth or death 

of coral colonies and their spatial interrelationships through time. This is valuable for a variety of 

biological investigations.  

 

BIOLOGICAL MOTIVATION 

 The description of coral colonial demography—rates of recruitment, survivorship, growth, 

bleaching, and tissue loss—requires data collection focused on individual coral organisms, as do 

other interesting research goals, such as evaluation of inter- and intra-genera/species competition. 

However, to date, most studies of coral communities focusing on site (Goreau, 1959; Kenyon et 

al., 2010), island (Newman et al., 2006; Sandin et al., 2008), or region (Smith et al., 2016), have 

relied on percent cover data. Percent cover is a metric often used in coral research that estimates 

the percentage of the benthos occupied by different taxonomic categories. To determine accurate 

context-dependent demographic rates, it is necessary to track many individual coral colonies 

though time and obtain accurate measurements of colony size and location. A handful of studies 

have accomplished this with laborious in-water monitoring protocols (Lewis, 1970; Stimson, 

1974; Bradbury and Young, 1981; Bak et al., 1982; Hughes, 1984; Carlon and Olson, 1993; Bak 

and Nieuwland, 1995; Connell et al., 1997; Fong and Glynn, 1998; Hughes and Tanner, 2000; 

Jolles et al., 2002; Karlson et al., 2007; Zvuloni et al., 2009; Vardi et al., 2012; Deignan and 

Pawlik, 2015; Doropoulos et al., 2015; Edmunds, 2015; Dana, 1976), but their comprehensiveness 

was necessarily limited by the demanding methodology. The painstaking nature of reliable and 
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repeated measurements of coral sizes and fates has been a bottleneck for expanded community-

level analyses; a complete understanding of population-level demography as well as community-

level succession requires long time series of spatially-referenced data. 

Analogous studies in terrestrial ecology have generally utilized large-area sampling of 

individual organisms in the context of long-term study sites, including Barro Colorado Island 

(Hubbell and Foster, 1992), the Hubbard Brook experimental forest, and others (Condit et al., 

2000). Among many other applications, these data have been used to identify or evaluate 

fundamental ecological dynamics, such as dispersion patterns (Hubbell, 1979; Lieberman et al., 

1985; Condit et al., 2000), structuring mechanisms (e.g., recruitment patterns, habitat preference 

and availability, dispersal probabilities, resource limitation; (Hubbell, 1979; Connell, 1985; 

Turner, 1989; Condit et al., 2000; Rietkerk and van de Koppel, 2008), and space use (Harms et al., 

2000; Marhaver et al., 2013). Chapters 2, 3, and 4 of this dissertation aim to contribute to the 

development of survey/processing procedures for underwater ecosystems that support large-area  

ecological investigation in the context of coral reefs. 

 

UNDERWATER IMAGE SURVEYS 

Using structure from motion (SFM) photogrammetric algorithms, 3D models of entire reef 

tracts can be derived from survey imagery (Pizarro et al., 2009; Smith et al., 2016; Edwards et al., 

2017; Ferrari et al., 2017; Kodera et al., 2020; Sandin et al., 2020). A variety of metrics can be 

extracted from these 3D models or 2D orthographic projections (orthoprojections) thereof, 

including growth, percent cover, species composition, or disease or bleaching incidence. 
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To provide SFM software with imagery sufficient to create high-resolution, geometrically-

accurate 3D models, the field survey itself must capture many high-resolution images. SFM 

algorithms require extensive overlap (> 90%) between images—if insufficient overlap is captured, 

the software will have difficulty solving the relative 3D locations of features in the images and 

might create a 3D model that is inaccurate or incomplete, or fail to compute one altogether. 

Additionally, model quality/resolution is limited by detail captured in the original images. Divers 

properly using high-quality cameras while swimming slowly and close to the bottom will capture 

substantial biologically-interesting detail. Similar surveys done by divers using low-quality 

cameras with lower-resolution sensors, or improperly using cameras and their associated 

underwater housings, while swimming quicker and further from the reef will collect less detail. 

My second chapter focuses on this field procedure—specifically, the lessons the Kuester 

and Sandin labs have learned from a decade of doing precise above- and below-water image 

surveys to construct 3D models of maximal scientific utility. 

 

DATA ANALYSIS 

Modern sensing platforms enable collection of vastly more imagery and associated data 

than was previously possible. However, these new sensing capabilities have introduced the much-

discussed Big Data Problem (BDP): measurements are captured at a much higher rate than even 

well-funded research labs have the human and computational resources to analyze. Our research 

teams — the Sandin and Smith coral labs, 100 Island Challenge partners, and Falko Kuester’s 

Cultural Heritage Engineering Initiative (CHEI) — have managed to amass a library of thousands 

of reef sites, of which the majority remain partially or entirely uninvestigated.  
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NNS FOR IMAGE/POINTCLOUD ANALYSIS 

Machine learning tools such as neural networks (NNs) and other processing/analytical 

strategies offer hope that such backlogs can be cleared. The story of recent advances in neural 

network technology has been told widely and repeatedly, so I will keep my review brief.  

First, a formal definition: “An Artificial Neural Network is an information or signal 

processing system composed of a large number of simple processing elements which are 

interconnected by direct links and which cooperate to perform parallel distributed processing in 

order to solve a desired computational task” (Macukow, 2016: 3). In layman’s terms, NNs are 

computational tools that learn to interpret data, such as the aforementioned large-area 2D/3D 

image-derived products. 

The fundamental unit of a NN is modeled after the fundamental unit of our own brains: a 

neuron. The function of a biological neuron is to receive multiple inputs from other neurons and 

then, if a threshold is reached, pass an electrical signal to downstream neurons (Vodrahalli and 

Bhowmik, 2017). That simple definition does not capture the full physiological complexity of 

biological neurons, but it is a useful conceptual model. Vodrahalli and Bhowmik explain the 

assumptions used to translate that conceptual model into computational neurons: 

There are a few key abstractions we can make to simplify the complex biology 
involved in a neuron. First, a single neuron receives inputs from many other neurons 
and transmits its action potential to many other neurons; there is a high connectivity 
between neurons. Second, the action potential is triggered at a threshold value; on 
a given input, only a portion of the neurons will activate indicating that the 
arrangement and relation of neurons is able to capture information about the 
structure of the input. Lastly, neurons are highly nonlinear; the transmitting of the 
signal from one neuron to the next is governed by the complex biochemistry at the 
synapses of the neurons (Vodrahalli and Bhowmik, 2017: 677). 

 

Of note, the point concerning threshold values is (for the most part) not true in modern 

NNs: computational neurons can pass on continuously-varying values, instead of a simple binary 



10 
 

0 or 1. However, the now-commonly-used rectified linear activation function (ReL) still has a 

threshold at 0: any input signal below 0 is output as 0 (Hahnloser et al., 2000).  The third point is 

critical: non-linear activation functions allow NNs to model realistic, complex non-linear systems.  

Early simple neural networks based on this conceptual framework were introduced in the 

1940s (McCulloch and Pitts, 1943). NN research developed over the proceeding decades, with 

peaks and valleys in funding and research effort due to cycles of over-optimism and the resulting 

backlash (Macukow, 2016). These NNs were much smaller than modern iterations, but were still 

limited by computational capabilities of the time, as well as algorithmic/mathematical design and 

implementation weaknesses that made optimization unstable and reduced their ability to map 

complex functions. A series of design developments, including backpropagation (Werbos, 1988), 

the aforementioned ReL activation function, normalization and regularization strategies, and 

optimization strategies, enabled better and more stable NNs. With immense modern computational 

speed, these developments enabled modern NNs composed of millions of parameters arranged in 

many layers. 

While applications of NNs vary widely, from here on I will focus on their use in computer 

vision—the computational interpretation of imagery. In 2012, the NN AlexNet achieved a 15.3% 

error rate compared to 26.2% for the second placed submission on the image classification 

component of the annual ImageNet Large Scale Visual Recognition Challenge. Since that dramatic 

success,  neural networks have generally been the highest-performing method for computer vision 

tasks such as classification, segmentation, and object detection (Krizhevsky et al., 2012a; 

Russakovsky et al., 2015).  

It is prudent to pause here and define pointclouds (sometimes written point clouds). 

Pointclouds are 3D data products analogous to images, except that they are composed of points in 
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3D space, each with corresponding XYZ values. Both image pixels and pointcloud points generally 

have RGB color values, but any information can be stored at these spatial locations (e.g., 

range/depth, simple monochromatic tone, or anything else of interest). Unlike images, pointclouds 

are irregular—pixels occupy a defined spatial grid, but points can have any XYZ value. 

Pointclouds are also unordered—because there is no grid, it is not trivial to determine which points 

are nearest each other or the distance between them. These properties make pointclouds relatively 

geometrically complicated to work with, but also more flexible.  

Chapter 3 of this dissertation concerns segmentation (sometimes referred to as semantic 

segmentation, but I will use the shorter version), which is defined as assigning a label to every 

pixel an image or point in a pointcloud. Tracing is segmentation—each organism is outlined and 

assigned a taxonomic label, which is also applied to pixels/points inside the outline. By this means, 

every pixel/point is assigned to a taxonomic category or a background or other category. At the 

end, every single pixel/point has a label.  

Chapter 4 concerns classification. The typical definition of classification is assigning a 

single label to an entire scene/image/pointcloud. However, images and derived data products in 

this dissertation contain many organisms, so pixels/points were randomly sampled and the 

corresponding organism was taxonomically identified.  I refer to this process as point sampling. 

Generally speaking, full segmentations contain more information than a subset of sampled points, 

but they are also much more laborious to produce. 

NNs for computer vision function on the fundamental principle of an encoder: the objective 

is to translate complex 2D or 3D visual information contained in images/pointclouds/etc into a 

many-dimensional feature space, with scores in each dimension representing the presence or 

absence of certain patterns and combinations of patterns in the input (referred to as features). In 
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feature space, similar inputs are expected to produce similar feature space representations, 

allowing the input to be identified by its similarity to other known samples.  

While some recent NNs are moving beyond convolutions (Vaswani et al., 2017), 

convolutions were a critical component during the development of computer vision NNs, and all 

NN architectures in this dissertation utilize them; I will use the abbreviation CNN to refer to 

convolutional neural networks. Convolutions are windowed pattern-detection functions: if the 

pattern in the input matches the pattern in the convolutional window (which generally looks at 

only a small patch of the total input at any one time), a high value will be returned for that location 

in the input space; otherwise a low value will be returned.  

The fundamental encoding structure of CNNs is simple: a variety of convolutional filters 

(which were used in computer vision well before NNs) examine the input image in small patches, 

testing for the presence of simple features like colors, edges, or gradients. In the earliest NN 

strategies, these pattern-detecting filters were designed by hand, drawing from successful pre-NN 

digital image processing techniques (e.g., Sobel or Canny edge detection), while in more modern 

designs the filter patterns are determined automatically through training. Typically, the first CNN 

layer encodes the input image as a series of presence/absence/magnitude-of-presence scores for 

simple features, while later layers apply convolutional pattern detectors to the feature scores of the 

proceeding layer. In progressive layers, the windowed nature of convolutions typically causes the 

spatial dimensions to decrease relative to the input as encoded features become more complex. To 

better understand this complicated idea, consider an input image of 500 x 500 pixels, with non-

overlapping convolution windows of size 5x5. A single score (for each feature) will be generated 

for the first 5x5 set of pixels, and again for the next, etc. Along a single 500 pixel spatial dimension, 

this results in feature scores for 100 patches. The spatial dimension for the output of this layer will 
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be 100 x 100, where each spatial grid cell contains a vector of pattern detection (feature) scores 

for a number of patterns. This 100 x 100 set of feature scores is passed to the next layer, which by 

the same process reduces it to 20 x 20. At this point, each of the 20 x 20 spatial locations in this 

layer is drawn from a 25 x 25 patch of the original input image. 

Simple patterns are generally detected first, and then combined with nearby patterns to 

form higher-level, more complex encodings of the patterns present in the image. This process 

mimics a simplified understanding of how our own vision system works. It is important to note 

that individual convolutional filters are typically applied to all patches in the input—the network 

is not learning different filters for different spatial locations. Spatial understanding is developed 

by examining the presence or absence of the same patterns in different locations. A simplified 

description of the training process of a standard supervised CNN is as follows: 

1) An image, RGBD depth map, fully 3D pointcloud, or other visual media is input. 

2) The image is passed through the multi-scale encoder, generating either a single 1x1 set of 

feature scores representing the entire image (classification), or the encoder result is  

upsampled back to the spatial dimensions of the input with feature scores for each pixel 

(segmentation). 

3) The softmax activation function (Bridle, 1989, 1990) or a similar function is used to 

generate probabilities for each possible class, either for each pixel or the entire image. This 

is typically done with a final NN layer that is “fully connected”, meaning every input 

feature score is visible to the final layer, not just those in a spatial window. This is slightly 

different in a segmentation network, where the final layer prediction is generally based 

only on feature scores at each pixel location.  
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4) A loss function—typically cross entropy (Shannon, 1948), but a wide variety exist—is used 

to generate an error value that represents the difference between the supplied ground truth 

(i.e., the correct class label as determined by a human expert) and the NN prediction. 

5) A backpropagation algorithm is applied, which computes the gradient of the loss function 

with respect to individual weights connecting layers. 

6) An optimization function, such as simple gradient descent or more complicated functions 

like Adam (Kingma and Ba, 2015), is used to update the network weights based on the loss 

score (technically, on the partial derivative of the cost function with respect to each network 

parameter). If functioning properly, this will improve the performance of the network when 

presented with similar inputs in the future.  

7) The process is repeated with more training samples.  

8) Generally, training is stopped when the loss function value no longer decreases with 

additional training samples.  

 

NNs FOR CORAL 

A number of studies have evaluated automated methods, both NN-based and otherwise, for 

classifying or segmenting 2D images of coral (Beijbom et al., 2012; King et al., 2018; Nguyen et 

al., 2021; Burns et al., 2022), and 2D orthoprojections of 3D reef models (Alonso et al., 2017, 

2019; Alonso and Murillo, 2018; Yuval et al., 2021). The NN tool most widely used in the coral 

science community is CoralNet, hosted at coralnet.ucsd.edu (Beijbom et al., 2012). CoralNet is 

free to use and cloud-based, so researchers from around the world can upload their own images, 

define label sets, create sample points, use the built-in user interface to manually classify the 

points, and train NNs to provide recommendations or automatically classify points. 
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Use of segmentation NNs in the coral community is more limited, and the available options 

are more fractured. There are several available methodologies—determining the best option 

depends primarily on the type and amount of available input data. Creating a ground truth mask 

by fully manually segmenting a 2D image or orthoprojection or 3D pointcloud is extremely labor-

intensive. Researchers that can marshal the resources to accomplish this task on hundreds or more 

samples can train and evaluate standard fully-supervised segmentation NNs (Runyan et al., 2022). 

Alternative approaches include: 

1) Training segmentation algorithms directly from image-level classifications (Alonso et 

al., 2017). CoralNet also has segmentation functionality, but it is only available by API, 

not graphical user interface. 

2) Using experts or an image patch classification NN like CoralNet to label a subsample 

of pixels in an image, and then calculate segmentation error only at those points 

(Alonso et al., 2019), or expand those points to partially or entirely fill the ground truth 

mask, either by simple geometric methods or superpixels (Alonso et al., 2019; Yuval 

et al., 2021). 

Performance of these alternative methods to achieve automated segmentation predictions, which 

do not require experts to laboriously create full ground truth masks, sometimes approaches that of 

fully-supervised methods but does not exceed it. This means to minimize the effort required to 

produce training data would be quite promising if accuracy of fully-supervised NNs was 

considered adequate, but it is not.  

Beyond coral applications, NNs for top-down photographic/remote sensing applications 

such as airplane/UAV/satellite imagery for e.g. scientific, planning, or agricultural applications 

have been evaluated in 2D, 2.5D (RGBD), 3D, and hybrid formats, with promising results 
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(Mohammadi et al., 2019; Bachhofner et al., 2020; Saralioglu and Gungor, 2020; Song and Choi, 

2020). More generically, many studies have examined 2D, 3D, and hybrid methods of 

segmentation, with two of the most common applications being 1) scene analysis to inform 

automated decision-making for driverless cars, grasping arms, and other robotic applications, and 

2) interpretation of diagnostic medical imagery.  

 

COMPARISON OF 2D AND 3D IMAGERY PRODUCTS 

Simply point sampling survey imagery is useful, but generally only provides area cover 

percentages—this approach does not identify or track individual organisms. Additionally, survey 

imagery is usually heavily and variably redundant, so the same organism will appear many times 

in different images, further complicating use of this kind of data. Human divers cannot maintain 

an exactly constant speed, orientation of camera, or height from the benthos, so the number of 

images capturing any given organism will not be exactly consistent. In Chapter 4 I discuss NN-

automated point sampling of 2D images. Segmenting survey imagery instead of point sampling 

enables identification of individual organisms, but does not solve the statistical problem of 

inconsistently-overlapping survey imagery. 

Some of these shortcomings can be overcome by using SFM software (e.g., Agisoft 

Metashape) to derive 3D models from the images. Unlike any individual image, a 3D model 

contains all the organisms at a survey site and their spatial relationships. The 3D model 

construction process requires calculating the location/orientation from which each image was 

captured, and the location on the 3D reef surface that corresponds to each image pixel. This 

information can be used to account for the overlapping nature of the images, or to transfer point 



17 
 

sample classification/segmentation annotations from 2D images to 3D models or vice versa 

(Hopkinson et al., 2020).  

3D models themselves can also be directly point sampled or segmented, as well as 2D 

projections thereof. Annotations can be included in this projection process  (Runyan et al., 2022), 

or the projection can be annotated after it is generated. Annotations can be projected from 

orthoprojections back to 3D models, but complications arise in areas of the 3D model that are at 

oblique angles to the projection angle or are occluded by other surfaces. 

The work discussed in Chapter 3 is, to the best of my knowledge, the first published 

examination of 3D neural networks, trained with 3D pointclouds segmented by experts, that apply 

predictions directly to 3D pointclouds. Others have evaluated transferring predictions made on 2D 

images to pointclouds (King et al., 2019; Mizuno et al., 2020).  

 

NN PERFORMANCE ON CORAL DATA 

 Studies in Chapters 3 and 4 show varying levels of performance, but they do not exceed 

~80-95% accuracy (though performance metrics and difficulty of the automated task vary from 

case to case). However, Chapter 3 and investigations by others show neural networks approaching 

or matching the performance of human experts (Yuval et al., 2021; Runyan et al., 2022). This 

distinction is very important. Coral classification or segmentation is quite difficult: some 

species/genera look quite similar, taxonomic organization shifts over time, images/pointclouds are 

not always adequate for accurate taxonomic identification, and even experts make mistakes. 

Studies comparing classification or segmentation annotations generated by different experts show 

agreement rates of ~75-95%, depending on e.g. the specificity of taxonomic classifications, 

image/pointcloud quality, level of biological expertise or geographic familiarity, and more 
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(Beijbom et al., 2015; Yuval et al., 2021; Runyan et al., 2022). In the context of segmentation, 

these disagreements most commonly occur at organisms’ boundaries (Yuval et al., 2021; Runyan 

et al., 2022). Locating these boundaries is difficult and often subjective due to occlusions, shadows, 

and insufficient imagery resolution, so even experts find it difficult to identify the exact pixel/point 

at which an organism begins or ends. 

 This uncertainty in the ground truth data introduces uncertainty into the training data, and 

also into the evaluation data used to generate performance metrics. A NN prediction that is 100% 

correct evaluated on an expert-produced dataset that is 90% correct will be reported as 90% correct 

due to the deficiencies in the ground truth. It is therefore difficult to determine exactly where 

deficiency in NN performance ends and human uncertainty/fallibility begins. Much larger labeled 

datasets, and many more investigations of expert disagreement, are required to map out this error 

v. uncertainty relationship.  

In the current paradigm, coral researchers often consider NN segmentation predictions 

insufficient for investigating growth of individual organisms because they are not 100% accurate. 

However, this is based on the obviously and well-documented-to-be false assumption that expert-

produced data in the past was 100% accurate, and expert-provided training and testing ground truth 

data for the NNs is 100% accurate. If we are to understand how NN performance compares to past 

and present expert performance, we must first exhaustively study the performance of the experts. 

NN-driven point sample classification methods like CoralNet, have, however, gained 

increasing acceptance for use in area cover studies of broad categories like hard coral or for 

common genera. Evidence shows that CoralNet-derived percent cover metrics correlate well with 

those produced manually  (Williams et al., 2019). 
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ABSTRACT 

The size distribution of suspended particles influences several processes in aquatic 

ecosystems, including light propagation, trophic interactions, and biogeochemical cycling. The 

shape of the particle size distribution (PSD) is commonly modeled as a single-slope power law in 

oceanographic studies, which can be used to further estimate the relative contributions of different 

particle size classes to particle number, area, and volume concentration. We use a data set of 168 

high size-resolution PSD measurements in Arctic oceanic waters to examine variability in the 

shape of the PSD over the particle diameter range 0.8 to 120 μm. An average value of -3.6 ± 0.33 

was obtained for the slope of a power law fitted over this size range, consistent with other studies. 

Our analysis indicates, however, that this model has significant limitations in adequately 

parameterizing the complexity of the PSD, and thus performs poorly in predicting the relative 

contributions of different size intervals such as those based on picoplankton, nanoplankton, and 

microplankton size classes. Similarly, median particle size was also generally a poor indicator of 

these size class contributions. Our results suggest that alternative percentile diameters derived from 

the cumulative distribution functions of particle number, cross-sectional area, and volume 

concentration may provide better metrics to capture the overall shape of the PSD and to quantify 

the contributions of different particle size classes.  

 

AIM 

The objective of this study was to evaluate how empirical PSDs collected from in situ water 

samples in the arctic related to the power law function commonly used to parametrize PSDs, and 

then investigate alternative parametrizations. 
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METHODS 

PSDs from multiple research cruises in the Arctic Ocean, obtained by instrument 

measurements on water samples collected in situ from multiple depths, were combined to create 

an Arctic PSD dataset. These data were investigated with power law and other parametrizations—

specifically size classes and cumulative distribution functions. 

 

RESULTS 

Analyses indicated that the power law model has significant limitations in adequately 

parameterizing the complexity of the PSD, and thus, with our Arctic dataset, performs poorly in 

predicting the relative contributions of different particle size classes. 

Further, results suggest that percentile diameters derived from the cumulative distribution 

functions of particle number, cross-sectional area, and volume concentration better capture the 

overall shape of the PSD, and more accurately quantify the contributions of different particle size 

classes.  
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ABSTRACT 

Newly available digital imaging and image processing technology, and the associated field 

methodology, offer a means to increase observational capacity and increase return on the 

investment of limited research resources. A small field team can sometimes leverage these 

developments to collect substantially more data than was previously possible. Along these lines, 

the Sandin and Kuester labs have been experimenting with image surveys of large tracts of coral 

reefs for more than a decade. In this report, these collaborative research groups discuss the 

reasoning behind the image survey procedures they use, with the hope of contributing to 

understanding of these methods in the coral research community. Additionally, an evaluation of 

the resulting image data products is presented, along with recommendations for reporting standards 

that facilitate transparent communication between research groups. 
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2.1 INTRODUCTION 

Making measurements underwater with sufficient accuracy and replication to answer 

questions of ecological interest has been a challenge for coral researchers since the time of Darwin. 

Increasing personnel is one solution, but beyond the resource capacity of most research groups. 

Field deployments are resource intensive, requiring training and expertise of personnel as well as 

funds for travel and operations. A means to increase observational capacity and maximize field 

investments is offered by technology; it is possible for a small field team to leverage newly 

available sensors to collect much more data than was previously possible. In coral reef science, 

advances in digital photography and computational efficiency have made it possible to conduct 

image-based surveys of large areas of reef, enabling the measuring and tracking of thousands of 

individual coral colonies (Weinberg, 1981; Gracias and Santos-Victor, 2000; Lirman et al., 2007). 

With the photogrammetric method structure from motion (SFM), those images can be used to 

estimate an accurate 3D model of the benthic community, enabling geometrically consistent and 

precise analysis of the entire reef area back in the lab (Pizarro et al., 2009; Smith et al., 2016; 

Edwards et al., 2017; Ferrari et al., 2017; Kodera et al., 2020; Sandin et al., 2020). As coral grows 

mere centimeters or millimeters a year, accurate measurements are particularly important. 

Repeated and co-registered image-based sampling can provide unique data streams for quantifying 

this change through time. These digital twins can be archived, shared, and used as a basis for 

collaboration. The research groups contributing to this report have surveyed nearly 2000 reef sites 

around the world in the past decade, building an image-based repository of these reefs. In doing 

so, we have experimented with a variety of approaches, eventually settling on the best practices 

for efficient data collection and accurate and precise descriptions of benthic community structure. 

We present the approaches with associated rationale in this report.  
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2.1.1 BIOLOGICAL VALUE OF LARGE-AREA IMAGE SURVEYS 

In terrestrial biology, researchers have taken advantage of standardized large-area sampling 

of individual organisms, particularly in the context of long-term study sites, including Barro 

Colorado Island (Hubbell and Foster, 1992), the Hubbard Brook experimental forest , and others 

(Condit et al., 2000). Among many other applications, these data have been used to identify or 

evaluate fundamental ecological dynamics, such as dispersion patterns (Hubbell, 1979; Lieberman 

et al., 1985; Condit et al., 2000), structuring mechanisms e.g. recruitment patterns, habitat 

preference and availability, dispersal probabilities, resource limitation (Hubbell, 1979; Connell, 

1985; Turner, 1989; Condit et al., 2000; Rietkerk and van de Koppel, 2008), and space use (Harms 

et al., 2000; Marhaver et al., 2013). 

However, to date, most spatial studies of coral communities focusing on site (Goreau, 

1959; Kenyon et al., 2010), island (Newman et al., 2006; Sandin et al., 2008), or region (Smith et 

al., 2016), have relied on percent cover data. A complete understanding of population-level 

demography as well as community-level succession requires data collected at a finer scale. A 

handful of studies have accomplished this with laborious in-water monitoring protocols (Lewis, 

1970; Stimson, 1974; Bradbury and Young, 1981; Bak et al., 1982; Hughes, 1984; Carlon and 

Olson, 1993; Bak and Nieuwland, 1995; Connell et al., 1997; Fong and Glynn, 1998; Hughes and 

Tanner, 2000; Jolles et al., 2002; Karlson et al., 2007; Zvuloni et al., 2009; Vardi et al., 2012; 

Deignan and Pawlik, 2015; Doropoulos et al., 2015; Edmunds, 2015), but their taxonomic, spatial, 

and chronological comprehensiveness was necessarily limited by the demanding methodology.  

 

2.1.2 AN INTRODUCTION TO PHOTOGRAMMETRY 
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Photogrammetry—the computation of the geometric structure of the contents of a 

photograph—has been pursued since the invention of the camera. For measurements of flat scenes 

taken from a known perspective, measurements between objects are straightforward; in scenes 

with unknown and varying depth, additional geometric consideration must be made. The basic 

principle for conducting measurement on perspective imagery is triangulation: roughly, an object’s 

location in 3D space has three unknown variables and thus requires three measurements (i.e., 

photographs) to be fully determined. The problem can also be formulated as one of the object’s 

size, distance, and angular relationship to the center of the camera’s sensor. With a single image 

from a known location with known lens geometry, it is possible to calculate the angle between 

objects in an image and the camera that took it. However, range and scale remain unknown—it is 

not generally possible to determine if an object is small or merely far away. These remaining 

variables become solvable with multiple views of the same object.  

The task of photogrammetry requires estimating the relative locations and orientations of 

the camera for each image. Intersecting rays projected from the multiple image/camera orientations 

to points visible in multiple images can then be used to calculate their location relative to the 

cameras. These perspective geometric equations are relatively straightforward, but solving them 

requires a lot of calculation that must be repeated for every point one desires to locate. To create a 

cm-resolution 3D model of a single square meter of reef surface, these tasks would need to be 

repeated 100 x 100 = 10,000 times (assuming no two points are directly above or below each 

other). Only in the last few decades have computers become fast enough, and digital cameras cheap 

and sharp enough, for this process to be practical for biological researchers. The specific technique 

of using a sequence of overlapping images to infer 3D structure is referred to as structure from 

motion (SFM). It has become common in underwater fields like archeology and biology, and has 



57 
 

been demonstrated to be reliably capable of producing accuracies of approximately 1 cm (often 

better) with proper procedure (Figueira et al., 2015; Rossi et al., 2020).   

 

2.1.3 A DISCUSSION OF IMAGE COLLECTION CONSIDERATIONS 

The quality of a photographic survey, and therefore the resulting photogrammetric 3D 

reconstruction, is determined by 1) the quality of the imagery, and 2) the extent to which it 

comprehensively covers the target area. An example of a survey image is shown in Figure 2.1. The 

3D model cannot contain any information that was not captured in the underlying imagery. The 

biological question being pursued—specifically, what measurements are required to answer it—

determine what resolution and coverage is necessary. Planning an image survey requires balancing 

the desired measurements against available resources. 

 

2.1.3.1 IMAGE QUALITY 

Image quality (i.e., the level of detail captured) is influenced by a multitude of factors. 

Camera sensor resolution and the clarity of the lens and waterproof housing limit the highest 

possible level of detail. The term ground sampling distance (GSD) describes the linear distance on 

land corresponding to a single camera pixel at some range, orientation, focal length, sensor 

resolution, viewing angle, etc.—the detail of an image is physically limited to the number of sensor 

pixels divided by the area of target surface the image covers. GSD and resolution are functionally 

equivalent for the purposes of this discussion, but are inversely related: GSD decreases and 

resolution increases as a sensor is moved closer to its target and vice versa. As resolution increases, 

the distance along the benthos covered by a single pixel shrinks. Resolution is influenced by focal 

length (informally referred to as zoom): a longer focal length produces an image that is zoomed 
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in, meaning the sensor pixels are spread across a smaller area. Small details that are blurry at a 

short focal length, because they comprise only a few pixels, will become much clearer at longer 

focal lengths where many more pixels are devoted to the same area.  

It is important to briefly distinguish between sharpness and resolution. As previously 

mentioned, resolution refers to the physical relationship between the size of the target area and the 

number of sensor pixels. However, a high-resolution image can still be blurry (not sharp) if, for 

example, the lens is out of focus. A perfectly sharp image maximally utilizes the available sensor 

pixels. Underwater, sharpness is limited by water clarity—interactions between suspended 

particles in the water (and the water particles themselves) and the light traveling to the camera 

sensor. 

 

2.1.3.2 CAMERA SETTINGS AND CHARACTERISTICS 

The underwater photography environment is challenging: light levels are low, so, in order 

to keep electronic noise low (resulting from a low gain/ISO value), it would be desirable to use a 

relatively large aperture combined with slow shutter speeds. Large apertures let more light in, and 

slow shutter speeds allow more time to collect light. Unfortunately, for reef survey applications, 

shutter speeds must be kept high (<1/250 s) to ensure sharp images while the diver is moving. 

Additionally, large apertures introduce a focus problem known as depth of field, which is defined 

as the range of depths—distances from the lens—that are in focus in an image. Larger apertures 

result in narrower depth of field, meaning less of the image is in focus if the image contains objects 

that are varying distances from the camera. At 1.5 m from the benthos, a large aperture like f/2 

that collects a lot of light will, when combined with a wide-angle 24 mm focal length lens, produce 

an image with a depth of field of only 0.47 m; 0.2 m in front of the focal plane (where the camera 
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is focused) to 0.27 m behind it. In this configuration, the bottom of any coral with more vertical 

relief than 0.27 m would be blurry, as well as anything more than 0.2 m taller. Depth of field 

expands as apertures get smaller: at 24mm focal length f/4 gives 1.02 m, f/5.6 gives 1.61 m, and 

f/8 gives 2.96 m.  

A lot of light or high electronic noise levels are required to take images with a high shutter 

speed and a small aperture, because that combination captures little of the available light. To 

mitigate these shortcomings, we use the largest aperture we can get away with at a given reef site 

and make sure to use cameras with large sensors: large sensors have a high number of pixels while 

also using larger pixels, which collect more light and therefore have less electronic noise. Noise 

also scales with resolution; with more pixels, noise in pixel values occupy smaller areas of the 

image.  

In most situations, image quality will be better with larger sensors found on DSLR-style 

and mirrorless cameras (35 mm wide), as opposed to smaller, cheaper, more mobile solutions like 

GoPros (6.16 mm wide). Larger sensors generally have more pixels, but even if both cameras have 

the same number of pixels, the larger pixels of a larger sensor have a better signal to noise ratio, 

and their larger size mitigates physical interference between light entering adjacent pixels. 

However, smaller sensors do have one advantage: they produce an equivalent field of view at 

shorter focal lengths, and shorter focal lengths have wider depths of field than longer ones. This 

means that an equivalent depth of field is achieved with a larger aperture, which captures more 

light, allowing faster shutter speeds.  In places with very low light or exceptional vertical reef 

structure, a smaller sensor/larger aperture approach allows surveyors to achieve a suitably large 

depth of field. Balancing all these settings is confusing and difficult to explain without extensive 

visuals. The two important points are 1) larger sensors tend to be better, and 2) if it becomes 
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impossible to maintain a large enough depth of field due to very low light, a good solution is to 

use a smaller sensor. We encourage all researchers that use cameras as scientific instruments to 

investigate these subjects, as there is a large volume of good explanatory information available 

(generally targeted to amateur and professional photographers), and to experiment. Choosing the 

right camera equipment for a particular application and then optimally using it is the only way to 

capture as much information about the reef as is possible.  

Finally, it is important to note that we use a grey card to white balance the image, because 

it is critical for color consistency between times of day, lighting conditions, water conditions, and 

locations. Color underwater is quite complicated, varying with time of day, cloud cover, depth 

from the surface and between the camera/target, and suspended particles in the water. Cameras 

designed for use above water do not always handle it very well, so it is important to calibrate 

against something of a known color. Grey cards are convenient because they can be used to white 

balance the camera in the water before an image survey. Color cards would provide even more 

accurate color, but require additional processing to implement, so we do not use them. Algorithmic 

approaches to correcting the color of underwater images also exist (Akkaynak and Treibitz, 2019). 

 

2.1.3.3 IMAGE COVERAGE 

Once individual image quality has been optimized through choice and operation of 

cameras, researchers must determine how to cover the targeted survey area. Common software for 

reconstructing 3D models from image surveys like Agisoft Metashape use the photogrammetric 

method structure from motion. SFM works best if there is > 90% overlap between adjacent images 

(Harwin et al. 2015). To insure >90% overlap everywhere without leaving holes, we plan a safety 

factor. We have found that swimming a grid pattern, as shown in Figure 2.2, followed by a second 
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redundant perpendicular gridded pass, best insures adequate overlap everywhere within the study 

site. An illustration of progressively-increasingly image overlap is illustrated in Figure 2.3 by 

darker shades of yellow.  

With the constraints of SCUBA bottom time at 10 m depth, we have settled on 10 m x 10 

m sites as the largest plot size reliably manageable while still achieving desired image resolution, 

with 1 m between grid passes and the camera on a 1 image/s interval timer. At 1.5 m above the 

bottom, a 24mm focal length lens (with an angle of view that is 74 degrees horizontally and 53 

degrees vertically) will be able to see a rectangle of reef that is ~2.24 m wide and ~1.5 m high. 

High and wide here are relative to a camera held in its normal orientation facing the horizon—

facing down at a reef, the high direction is parallel to the direction the diver is swimming and the 

wide direction is perpendicular. A diver swimming 0.2 m/s will cover 0.2 meters between image 

frames. This results in ~7 images seeing any one spot on the reef as the diver passes over. If the 

diver swims intervals of 1 m between imaging passes, there is also side-to-side overlap, so most 

points are captured on three sequential passes as well, resulting in a total of 21 images capturing 

the same spot. We swim a second perpendicular grid, bringing the average number of images to 

42, which is ~four times the minimum number—10—corresponding to 90% overlap. This level of 

redundancy ensures the full plot area is adequately surveyed even if the second set of passes cannot 

be completed.  

Figure 2.4 illustrates the impact of adequate overlap coverage. It shows a small 3D model 

of a few corals built from a few hundred images. The first model was calculated with the entire set 

of images. Each sequential model after it was calculated with a shrinking, randomly-selected 

fraction of the images: 1/2, 1/3rd, 1/5th, and then 1/10th. As number of images decreased, holes 
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began appearing in the model, until it is almost entirely unreconstructable from the few available 

views.  

 

2.1.3.4 ALTERNATIVES TO DIVER IMAGING 

In situ image surveys capture a lot of information, but they do require multiple divers to 

actually be at the site and manually swim a survey pattern with a camera. Other technologies do 

not have this disadvantage: airplanes can capture images of an entire island in a day, satellites 

capture images of the entire world on a time scale of hours to weeks depending on the orbit and 

sensor, camera-wielding robots can stay underwater much longer than humans, and ship-based 

sonar can survey entire islands in hours to days.  

Satellite data products have many uses in the natural sciences, but their ground sampling 

distance—on the order of meters at the smallest—is much too large to measure coral growth that 

amounts to only millimeters or centimeters per year. An additional shortcoming of imaging from 

above the ocean surface is the depth and clarity of the water over the targeted benthos. Aerial 

photography (from a manned or unmanned aerial vehicle (UAV)) can get much closer to the reef 

than satellites and so has correspondingly smaller GSD (i.e., better resolution), but is similarly 

depth-limited by water clarity, and is still orders of magnitude further away from the reef than a 

diver. In shallow areas, UAV photography can be sufficient if distortion from surface waves is 

removed (Chirayath and Instrella, 2016; Chirayath Ved and Earle Sylvia A., 2016; Chirayath, 

2017).  

It is possible to conduct underwater surveys with robots (automated underwater vehicles 

— AUVs) instead of humans (Noguchi et al., 2022), but expense and imprecise underwater 

navigation/obstacle avoidance currently render that approach impractical for most research 
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scenarios, especially as it generally requires substantial ship and personnel resources to deploy the 

robot, monitor its piloted or automated progress, and then retrieve it. These systems cannot be fired 

with cruise missiles from urban universities to faraway atolls; they must be attended by well-

equipped research vessels. 

Imaging platforms towed from boats enable in situ imaging at much faster rates over much 

larger areas than a diver limited by SCUBA equipment and human physiology. However, it is risky 

and difficult to use towed platforms within 3-5+ m above the benthos, so resolution is much lower 

than what is achievable with a diver. 

All of these platforms offer interesting and valuable avenues by which to pursue ocean 

science. However, they are not currently of matching the efficiency and capability of human divers 

with handheld cameras.  

 

2.1.3.5 IMAGING WITH SOUND INSTEAD OF LIGHT 

Acoustic SONAR (an acronym for sound navigation and ranging, meaning imaging with 

sound waves instead of light, often just written as sonar) has one significant advantage over optical 

cameras: sound can propagate many times further than light underwater. However, that is only true 

of low frequencies. While ultrasound imaging devices like those used in hospitals can approach 

the resolution of cameras, they are still not as sharp, cost much more, and have a useful range of 

only a few meters due to the rapid attenuation of the high frequencies necessary to image small 

features. Acoustic imaging systems that do not attenuate beyond detectability in the distance from 

a ship to the reef and back again use sound wavelengths that are too long for high-resolution 

imagery comparable to a camera. Acoustic imaging also cannot detect color. Due to these reasons, 

acoustic imaging is not a suitable replacement for diver-based imaging procedures. 
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2.2 FIELD PROTOCOL 

What follows is our current field protocol methodology and a discussion of the significance 

of its components. The objective of this image survey procedure is to capture an entire 10 m x 10 

m patch of reef with sufficient overlap (10x+) for accurate photogrammetric reconstruction, as 

well as the information required to scale it and orient it to the surface accurately. Here, we discuss, 

study design and sampling approach. 

 

2.2.1 STUDY DESIGN 

We start by choosing target islands or regions. If we are new to an area, we generally select 

a specific number of approximately evenly distributed target areas along the forereef of the 

island/region (e.g., 12 per island), and then select the exact sites randomly on arrival for the dive. 

We generally seek out sites 10 m deep on forereef away from passes, though some studies call for 

sites at a range of depths or in lagoons or passes. Operating at 10 m depth allows the 60 minutes 

required to survey a site without complicated and dangerous decompression protocols. 

Additionally, we find 10 m to be a representative depth for studying reefs, and it is deep enough 

for us to cover large areas without entering water too shallow for diving, especially in the presence 

of large waves.  

If we are returning to a site, we exactly relocate it using GPS coordinates, left-behind steel 

stakes, and a printed out 2D orthographic projection (orthoprojection) of the site. Exactly 

relocating sites is necessary to study change through time. 

 

2.2.2 SAMPLING APPROACH 
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All image surveys are done with a team of at least two divers. A third may be useful in 

difficult conditions, such as strong current. At the beginning of the dive, one diver places one 

heavy corner tile, measures 10 m offshore and places tiles 5 m and 10 m in that direction. The 

diver then returns to the first corner and measures 10 m alongshore to place the third corner tile, 

and then from there measures 10 m offshore, placing a tile at the 5 m midpoint and then the final 

fourth corner. This process is difficult to explain, but it is clear when depicted visually as in Figure 

2.5. The exact order of operations is not critical, but we find this version to be the fastest and most 

precise.  

The other diver hammers a steel stake into the reef outside of each of the two midpoint tiles 

and places four scale bars (used to calibrate the scale of the 3D model) inside the box created by 

the four corners, and then records the depth of the tiles on the scale bars and each of the six 

corners/edges. It is critical that all tiles and scale bars do not move during the image survey—if 

they do, they will not be reconstructed properly in the 3D model. 

This diver also places 1.5 m high reference floats ~1 m outboard of each of the four corners 

(depicted in Figure 2.2b), which give the divers a visual reference when swimming the image 

survey grid. Finally, the second diver attaches a surface float to the benthos outside of the plot and 

ascends to the surface to collect a GPS location with a waterproof device stored on the float.  

One of the divers then slowly swims a grid over the site with 1 m horizontal distance 

between each pass with the camera on a 1 image/s interval timer. Beginning at the offshore edge, 

the diver swims the alongshore passes first and then, once the entire plot has been photographed, 

the grid pattern is repeated in the on-/offshore direction. The survey pattern is shown in Figure 2a. 

Starting offshore and moving onshore during the fast pass has the diver moving from deeper parts 

of the plot to the shallow areas as the survey progresses. Deeper areas consume more oxygen and 
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carry additional risks to divers in the case of emergency, so we advise surveying these areas first. 

Our pass spacing and swim speed ensure that, if time is not available for the second orthogonal 

grid, enough image overlap for an accurate 3D model is still available.  

We use a rectangular plastic housing with two full frame DSLR cameras; one with a wider-

angle lens (24mm) to ensure adequate coverage and substantial overlap between images, and the 

other with a longer focal length lens (usually 85 mm) to capture a magnified, more detailed view. 

We load the images from the survey onto a computer, and then reconstruct a 3D model of the site 

with SFM software (generally Agisoft Metashape, see (Burns and Delparte, 2017) for a 

comparison of software options). The result is a 3D pointcloud or a surface mesh. We prefer to 

work with pointclouds because they do not require algorithmic assumptions determining which 

points belong to the reef surface and which do not. 

Finally, we use the 3D pointcloud software Viscore (Petrovic et al., 2014) to scale the 

model, compute the direction of gravity with the depth values recorded at the tiles, align it with 

previous models from the same location if we have any, and export an orthoprojection (in the 

direction of gravity, not normal to the reef surface) of the site. These operations are also possible 

in other 3D pointcloud software packages such as Open3D. 

 

2.3 REPRESENTATIVE RESULTS 

Figure 2.1 shows sample images from image surveys. Figure 2.4 shows a 3D model of a 

single coral, with the a), b), c), d), e) panels respectively showing the degradation of 3D 

reconstruction that results from successively less adequate survey coverage. This figure illustrates 

why we emphasize the necessity of heavily redundant survey imagery. Figures 2.6 and 2.7 show 

orthoprojections and the analyses they enable: Figure 2.6 shows the traced boundaries of a single 
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coral in successive years, while Figure 2.7 shows an untraced complete 2D orthoprojection of a 10 

m x 10 m field site, and the same site after most organisms have been traced by coral experts. 

Figure 2.7 shows similar coral tracing, but on a 3D model. 

 

2.4 DISCUSSION 

2.4.1 ANALYSIS MEDIUM                                                                                                        

 A balance between study goals and available resources determines procedural 

approaches, including how to analyze the resulting image-derived data products—2D survey 

images, 3D models, or 2D orthoprojections thereof. Once a high-quality 3D model of the site is 

made, researchers must decide whether to analyze it in 3D, or to make some 2D projection of it, 

either by translating the images to a common orientation and stitching them together, or by 

capturing a projected view of the 3D model. We find that a 2D orthographic projection 

(orthoprojection) is generally most advantageous. The reasons for this are: 

1) Our image surveys are conducted from the top down, so most 3D information that is 

discarded when translating from 3D to 2D (the vertical sides and undersides) is not well-

captured to begin with. A 2D orthoprojection is approximately analogous to what the 

camera was able to see. 

2) Geometry is much simpler in 2D. 2D surface areas and distances are easy to calculate and 

do not require determining where in the 3D pointcloud the surface of the reef is. This makes 

2D analysis much mathematically simpler, much less computationally demanding, and less 

prone to subjective (sometimes incorrect) algorithmic assumptions. 2D files are much 

smaller than full 3D pointclouds and therefore much easier to store, and faster and easier 

to work with and share. Importantly, while image pixels form a regular and ordered grid, 
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pointclouds are irregular and unordered: points are not a consistent distance from one 

another, nor is it generally possible to use their listed order to determine which are nearest 

each other. 

3) Studies have shown 2D surface area correlates well with 3D surface area and volume 

(House et al., 2018), though it varies by genera/growth form and definition of 3D surface 

area. 

 

When capturing a 2D projection of a 3D model, a projection angle must be chosen. The two 

projection angles most likely to be useful are: 1) normal to gravity (straight down from the surface), 

and 2) normal to the surface of the reef. We have found that the orientation of gravity is preferable, 

because it is consistent, light-seeking corals tend to orient themselves to the surface rather than the 

plane of the bottom to which they’re attached, and topographically complex reefs produce normal 

vectors that are difficult to calculate and sometimes intuitively strange. Moving a selected site only 

a handful of meters one way or another near large features (e.g., spur and groove formations) can 

significantly alter the resulting average surface normal, which in turn alters projected surface area 

of corals. 

An alternative means to create a 2D view of a 3D site is directly stitching adjacent images 

together. However, stitching many images together with mm precision is challenging and error 

prone. The inherent distortion in each image caused by the lens elements must be determined (it is 

different for every lens), perfectly corrected for in each image, and then their exact relative 

positions must be calculated so they can be transformed to a common perspective and then pieced 

together. The 3D model derivation process entails calculating many of the variables necessary to 

perform this task (camera location and orientation for each image), but has additional advantages, 
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such as consulting numerous views of an area before collapsing them to a single structure. Stitching 

the images together rather than relying on the 3D model as the best available geometric 

understanding of the scene often results in imperfections: boundaries between images that show 

misalignments across them or features that appear on both sides or neither. 

Once a 2D projection is created, it can be traced, point subsampled, or otherwise analyzed 

by a variety of means. Researchers can use simple software like PhotoGrid or Photoshop, or 

experiment with neural-network-assisted tools like CoralNet (Beijbom, 2015) or Taglab (Pavoni 

et al., 2020). Figure 2.6 shows the growth of a single coral in successive years as depicted by a 2D 

orthorpojection, while Figure 2.7 shows an example of an entirely traced orthoprojection. Figure 

2.8 shows a similarly-traced Porites (a coral genus) in a 3D pointcloud model. 

 

2.4.2 REPORTING STANDARDS 

 Large-area imagery data products enable digital collaboration and database pooling 

amongst coral researchers around the world. They also enable dialogue, through published 

research, between disparate researchers working from hypothetically similar data products. 

However, variability in e.g. survey procedures, camera equipment and settings, and color 

correction can make it difficult to determine how comparable the data products actually are. We 

propose the following reporting standards to facilitate communication about and interpretability 

of large area imagery data products: 

1) Survey procedure 

2) Camera equipment and settings 

3) Height above the benthos at which the imagery was collected and resulting ground sample 

distance (resolution) 
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4) Sample images from the survey and of the resulting 2D/3D data products 

5) 3D reconstruction software 

 

2.5 CONCLUSIONS 

 Large area imagery products are a significant step forward in the ability of researchers to 

access accurate quantitative measurements of the coral reefs they study. If the necessary resources 

can be marshalled to conduct image surveys of suitable scale and resolution, they offer the ability 

to, in a single dive, capture entire benthic ecosystems to study for years into the future. Collecting 

such data enables precise analysis of change in these ecosystems over time, as well as an invaluable 

means to archive coral reefs as they change for both research and public conservation outreach. 

Our labs have successfully used these methods to collect the data underlying analyses in numerous 

publications that have contributed to scientific understanding of coral reefs (citations). We hope 

this procedural discussion will widen use of and expediate communicate about large area imaging 

methods and data products. As technology continues to develop in the future, we look forward to 

participating in a continually-evolving dialogue on methods to collect measurements for studying 

coral reefs.  
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FIGURES 

 

 

Figure 2.1: Example of survey image. 
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Figure 2.2: a) Swim pattern for image survey, b) Arrangement of diver, cameras, and height 

markers during image survey. 
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Figure 2.3: Sequential image overlap at four stages during image survey: after a) half of the first 

set of passes is completed, b) the first is finished, c) the second perpendicular set of passes is 

completed, and d) the second is finished. 
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Figure 2.4: The degradation of a 3D model as the number of overlapping images is reduced. Panel 

a) shows the full model built with all images, while the model in b) was derived from a randomly 

selected ½ of them, c) from 1/3, d) from 1/5, and e from 1/10th 
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Figure 2.5: Equipment arrangement at field site 
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Figure 2.6: Growth of a single coral in successive years. Red is 2018, orange is 2019, yellow is 

2020. 
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Figure 2.7: An orthoprojection before and after being traced. 
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Figure 2.8: An example of an image-survey-derived 3D model. Colors represent tracing of the 

genus Porites by multiple coral experts—blue is agreement amongst all tracers, and other colors 

show areas experts disagreed. 
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ABSTRACT 

Enabled by advancing technology, coral reef researchers increasingly prefer use of image-

based surveys over approaches depending solely upon in situ observations, interpretations, and 

recordings of divers. The images collected, and derivative products such as orthographic 

projections and 3D models, allow researchers to study a comprehensive digital twin of their field 

sites. Spatio-temporally located twins can be compared and annotated, enabling researchers to 

virtually return to sites long after they have left them. While these new data expand the variety and 

specificity of biological investigation that can be pursued, they have introduced the much-

discussed Big Data Problem: research labs lack the human and computational resources required 

to process and analyze imagery at the rate it can be collected. The rapid development of unmanned 

underwater vehicles suggests researchers will soon have access to an even greater volume of 

imagery and other sensor measurements than can be collected by diver-piloted platforms, further 

exacerbating data handling limitations. Thoroughly segmenting (tracing the extent of and 

taxonomically identifying) organisms enables researchers to extract the information image 

products contain, but is very time-consuming. Analytic techniques driven by neural networks offer 

the possibility that the segmentation process can be greatly accelerated through automation. In this 

study, we examine the efficacy of automated segmentation on three different image-derived data 

products: 3D models, and 2D and 2.5D orthographic projections thereof; we also contrast their 

relative accessibility and utility to different avenues of biological inquiry. The variety of network 

architectures and parameters tested performed similarly, ∼80% IoU for the genus Porites, 

suggesting that the primary limitations to an automated workflow are 1) the current capabilities of 

neural network technology, and 2) consistency and quality control in image product collection and 

human training/testing dataset generation.  
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AIM 

The objective of this study was to discuss differences between 2D, 2.5D (RGBD), and 3D 

image-survey-derived maps of coral reefs, and then evaluate the ability of 2D, 2.5D, and 3D neural 

networks to automatically taxonomically segment (i.e., label or annotate every pixel/point of) those 

maps.  

 

METHODS 

Image surveys of coral reefs were conducted in Palmyra from 2013 to 2020. Those images 

were used, with photogrammetry/structure from motion software, to derive 3D pointcloud maps 

of the reef site. The genus Porites was then traced in the 3D pointclouds by coral experts with the 

software Viscore, in order to create training data for the neural networks and a ground truth against 

which to evaluate automated prediction accuracy. The 3D pointclouds were then used to create 

top-down 2D and 2.5D orthographic projections. Publicly-available code for 2D, 2.5D, and 3D 

neural networks was adapted to the specific application of segmenting these 2D, 2.5D, and 3D 

data. 

 

RESULTS 

The 2D, 2.5D, and 3D segmentation neural networks performed similarly: ∼80% IoU for 

the genus Porites. 
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ABSTRACT 

In recent years, coral reef researchers have increasingly adopted image-based surveys as a 

means to collect information from field sites. Previous methods, based on in situ observations, 

recordings, and interpretations often capture less information from the field site than these much 

more comprehensive recently-developed practices. However, image-based methods, for many 

research applications, require not just the capturing of images, but also some form of annotation 

or interpretation of what the images contain. A popular annotation method is point sampling: 

randomly selecting a subset of image pixels to taxonomically classify, rather classifying all of 

them. This enables researchers to use relatively simple and quick computer user interfaces to create 

survey-image-based measurements for analysis. However, this process is quite slow, so there is 

growing interesting in the research community to harness rapidly-improving neural network 

capabilities to further expedite this point sampling process. The most popular neural-network-

based tool among coral researchers is CoralNet, which trains neural networks for users without 

requiring expertise on machine learning techniques or the ability to use programming languages. 

In this study, the user experience of CoralNet was evaluated, with the hope of providing 

information to researchers who may be considering investing their time and effort in adopting it in 

lieu of their existing entirely-manual point sampling methodology. In the first of two experiments, 

CoralNet’s performance was evaluated as a function of the number of expert-created point sampled 

images provided for neural network training. In the second experiment, experts used CoralNet-

generated AI predictions to investigate their effect on the time require to point sample images. 

When using the large and specific sets of possible taxonomic classifications preferred by coral 

researchers, the first experiment suggests that overall neural network accuracy rises quickly with 

a small number of point sampled training images, and then improves much more slowly as training 
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samples increases. However, the accuracy of relatively rare taxonomies, which encompassed the 

vast majority of possible classification labels, rose slower than overall accuracy, and was still 

increasing after 5000 point sampled images were uploaded. Accuracy was significantly higher for 

more generic functional group classifications than specific genus or species level labels. These 

results suggest that, when using a small set of broader and more generic classifications, relatively 

high accuracy can be achieved with relatively small training sets. However, much larger training 

sets are required to achieve similar same neural network accuracy on larger and more specific sets 

of possible point labels (if similar accuracy is achievable with modern neural network technology 

at all), as many of these classifications occur only a small number of times even in seemingly-

large collections of point sampled images. The second experiment showed that, even with 

imperfect CoralNet AI predictions, experts using those predictions to point sample images were 

able to do so 36% faster on a per-point basis, representing a significant improvement in the time 

required to create expert-verified point sampled image datasets. 
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4.1 INTRODUCTION 

Coral reef researchers increasingly prefer image-based surveys over methods depending 

on divers’ in situ observations, recordings, and interpretations. Image surveys capture much more 

information from the field site, enabling variety and flexibility in later analysis. However, these 

newer and more technologically-complicated methods introduce additional complications; diver 

recordings can often be analyzed directly, while images require significant processing/annotation 

back in the lab. Depending on the research application, they may need to be annotated, color-

corrected, or arranged by the geometric relationship from which they were captured. Ocean science 

labs rarely have the resources to manually process hundreds or thousands of images from a single 

site, let alone many sites. Unmanned underwater vehicles will soon provide access to an even 

greater volume of imagery, further exacerbating the big data problem.  

The rapidly-advancing computer vision capabilities of neural networks (NNs) offer hope 

that future semi- or fully-automated processing pipelines will be able to keep up with the rate 

images can be collected in the field (Krizhevsky et al., 2012b). The most widely-used NN tool in 

the coral science community is CoralNet, hosted at coralnet.ucsd.edu (Beijbom et al., 2012). 

ReefCloud, developed by the Australian Institute of Marine Science, offers similar functionality, 

but is less used: a Google Scholar search for CoralNet returns 618 results, while ReefCloud returns 

29. CoralNet’s primary functionality is to support a method called point sampling: a random subset 

of image pixels is chosen, and then the organisms those points/pixels correspond to are 

taxonomically identified. CoralNet is free to use and cloud-based, so researchers from around the 

world can upload their own images, define taxonomic label sets, randomly create sample points, 

and use the built-in graphical user interface (UI) to classify the points, or the points can be 

classified by neural networks which are automated trained by CoralNet. Annotations created in 
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other software can be uploaded easily. Using these images, their point sample locations, and the 

points’ expert-assigned labels, CoralNet trains unique NNs for each user and dataset. Users can 

train individualized models relatively quickly and with a relatively small number of training 

samples, because CoralNet uses a selection of all annotations uploaded by all users to train a 

foundational model that provides a good starting point (this process is known as transfer learning).  

Despite its apparent utility, CoralNet is not widely used by the global coral research 

community. Researchers consider a wide variety of factors when evaluating a new technology, 

including: 

1. Time. Researchers are busy with short- and medium-term deadlines, so it can be difficult 

to find time to learn new methods that might expedite or improve work in the long-term 

but cost time now with little or no immediate payoff.    

2. Money. Cameras, high-speed computers, and large volumes of digital storage are 

expensive, especially for researchers in less wealthy areas. Available money is often tied 

to specific and short-term demands, leaving little to experiment with new methods. 

CoralNet alleviates some storage and computational processing demands. 

3. Difficulty/frustration level. Learning new technology is often frustrating. This is especially 

true if the new technology is difficult or unintuitive to use, as software so often is. Using 

high-end cameras properly can also be tricky, especially with the added complication of a 

waterproof housing and the low, strange ambient light underwater. 

4. Perceived value. Researchers generally operate on something approximating a cost/benefit 

approach: if they are confident the data made available by some new technology or 

methodology will surpass current capabilities, they are likely to invest the time and money 

to experiment with the new technology and potentially incorporate it into their repertoire. 
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If the technology asks substantial time and money but is unlikely to lead to much by way 

of novel data, researchers are unlikely to pursue it. 

In this study, two experiments were performed to test the utility of CoralNet. The CoralNet UI was 

used to point sample thousands of images from field expeditions to the Maldives, Micronesia, and 

the Caribbean. This report aims to provide useful information to potential CoralNet users by 

answering A) how accurate CoralNet predictions are as a function of training set size, and B) how 

much time (if any) is saved by incorporating AI predictions in CoralNet’s UI.  

 

4.2 METHODS 

The imagery for this report was originally collected for a variety of purposes over many 

years, so each of the three region datasets (Maldives, Micronesia, and Caribbean) is comprised of 

multiple field expedition datasets from different times and places. Regional datasets were sorted 

into two groups: the first was previously point sampled by coral experts and used to test and train 

CoralNet NNs, while the second had not been point sampled before this experiment and was used 

to test whether CoralNet AI assistance expedites point sampling. See Table 1 for a complete list 

of the test/train datasets, and Table 2 for a list of the datasets used to test the time impact of 

CoralNet-assisted point classification. Time impact data is not yet available. 

The dataset for each region was comprised of 6000 images. Once collected, images were 

point sampled with the free software ImageJ (Schneider et al., 2012). Using a stratified random 

sampling strategy, between 5 and 50 points were randomly placed on pixels in each image, and 

then the organism containing those pixels was taxonomically classified. Information (image 

filenames, point locations, associated labels) was then compiled in Python, saved in a CSV format 

compatible with CoralNet, and then CSVs and corresponding images were uploaded to CoralNet.  
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Supplemental Information Tables 4.S1, 4.S2, and 4.S3 show the sets of possible taxonomic 

labels for each dataset (hereafter referred to as labels, classifications, classes, or categories), as 

well as the number of points in each dataset that were assigned that taxonomic label.  

The procedure to upload data to CoralNet is straightforward and well-documented on the 

CoralNet website. A full technical description of CoralNet can be found in (Beijbom et al., 2012; 

Chen et al., 2021). Briefly: the first step is to create a CoralNet “source”, which is an image dataset. 

There is a simple UI with a button researchers can press to upload images. Label sets can be 

uploaded as a CSV, or created on the website with a UI point and click tool. Label sets are 

flexible—researchers can select specific (genus or species) or generic (morphology, functional 

group) labels. There are also upload buttons for pre-existing point locations and associated 

classifications in CSV or other formats. Creating a compatible CSV requires only four columns, 

with the headings “Name”, “Row”, “Column”, and “Label”. These columns are populated by 

image filenames, vertical point indices, horizontal point indices, and point taxonomic 

classifications respectively. Labels must be converted to shortcodes provided by CoralNet when 

researchers determine a label set. CoralNet will begin training AI models once point annotations 

are uploaded or manually generated. It does so by cutting out a pixel square around each point and 

using the image patches with their associated classifications to train an image classification NN.  

Once a CoralNet NN model has been trained with point sampled images, it generates 

automated predictions on uploaded images that remain un-point-sampled/classified.  In a 

convenient UI, users can view the point locations and associated top automated predictions, keep 

the top prediction, or override them on a point-by-point basis. 
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The only parameter researchers must determine themselves is known as the confidence 

threshold. When NNs make classification predictions, they do so by independently predicting a 

score for each possible taxonomic classification (possible labels are referred to in the ML literature 

as “classes”). Low scores indicate the NN is confident a class label is not correct, high scores 

indicate the NN is confident a class label is correct, and scores in the middle suggest uncertainty. 

The final predicted classification is the class label with the highest score. By looking at the 

individual scores for each class, it is possible to estimate how confident the NN was: if the highest-

scoring class scored very highly, and much higher than other classes, the prediction was confident, 

while if the highest-scoring class had a low score or a score only slightly above other classes, the 

NN was not confident.  

CoralNet allows users to pick a number between 0 and 100 that limits automated 

predictions to only those that were confident. If a confidence threshold of 0 is selected, then all 

points will be automatically labeled, because all predictions have a confidence score above 0, while 

if 100 is selected, no points will be automatically labeled because NNs very rarely give 100% 

confident scores. CoralNet provides an easy-to-use UI tool to help users select a desirable 

confidence threshold value: an interactive plot shows, for a chosen confidence threshold between 

0 and 100, what percentage of points will be labeled (i.e., what % of point classification predictions 

are above a certain confidence score) and how accurate those predictions are expected to be. Users 

can decide to use a low threshold, which results in more points being automatically labeled but 

with a relatively low expected accuracy, or a high threshold, which results in more accurate but 

fewer predictions.  

To calculate accuracy, CoralNet reserves a small percentage of uploaded images during 

training (i.e., they are not used in training), so they can be used for evaluation. However, these 
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evaluation accuracy metrics do not necessarily reflect what a user will experience when using 

CoralNet to predict classifications on new datasets—if a user is generating predictions for images 

that are significantly different than those used to train the AI model (different lighting, geographic 

location, camera settings, etc), they are likely to be less accurate than predictions on evaluation 

images that came from the same dataset used for training. As users label new images, the NN will 

continually retrain, so it will become more accurate on new datasets in time. 

To evaluate CoralNet’s utility for coral researchers, two experiments were conducted. 

Experiment 1 investigated how NN accuracy changed as the number of training images/points 

increased incrementally, in order to help researchers understand how many images need to be 

labeled manually in order to generate a desired NN accuracy. Images for the three dataset locations 

were uploaded incrementally: 50 images were upload first and the NN was trained and evaluated, 

then 50 more for a total of 100, then enough to achieve totals of 200, 500, 1000, 2000, and 5000 

training images. Accuracy was tested in two different ways: internally-generated CoralNet 

evaluation accuracy is reported (images used for this are hereafter referred to as the validation set), 

and a separate dataset of 1000 images from each of the three locations was reserved for additional 

testing (hereafter referred to as the test set). This is important because the evaluation set is a subset 

of the uploaded training data, so its size and constituent images changed as the number of uploaded 

training images increased. 

Experiment 2 investigated how much time, if any, is saved by using automated CoralNet 

predictions. Confidence intervals were selected for each region that resulted in 75% of points being 

labeled automatically. Labelers were encouraged to review automatic predictions as well as 

classify the remaining points. Estimated accuracy for these predictions varied by site: 83% for the 

Caribbean, 89% for Maldives, and 85% for Micronesia. One coral expert per region point sampled 
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200 images without automated assistance and recorded the time required, and then repeated the 

process on 200 more images with CoralNet NN assistance. 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 EXPERIMENT 1 

To evaluate how CoralNet accuracy was affected by training dataset size, we uploaded our 

datasets sequentially – first just 50 images, then 100, 200, 500, 1000, 2000, and 5000. At each 

stage, average accuracy of the entire NN was recorded on the evaluation and test datasets, as well 

as prediction accuracy on individual classes. Evaluation set accuracy was provided directly by the 

CoralNet UI—no programming is necessary—but test set accuracy was determined with Python. 

For this investigation, we used the standard definition of prediction accuracy: the number of 

correctly-predicted points divided by the total number of validation/test points. 

Selected results of Experiment 1 are depicted in Figures 1 through 6. Complete results for 

the validation sets are shown in confusion matrices in Tables 4.S4, 4.S5, and 4.S6. Figures 1-6 

show accuracy on both the validation set (internal to CoralNet) and the test set (same 1000 images 

for all tests), and they show these accuracies in terms of both the number of uploaded images and 

the number of uploaded points. This distinction between images and points is important: some 

taxonomic classes are much more common than others, so, for a given number of uploaded images, 

the training data available for each class varies widely (see Figure 7 for an illustration, and Tables 

4.S1, 4.S2, and 4.S3).  

Figures 1 and 2 show accuracy of CoralNet predictions on the Maldives dataset by 

uploaded images (a, c) and points (b, d). Subfigures a) and c) have linear x-axes, while 

subfigures b) and d) have logarithmic x-axes. Figures 3 and 4 show results from the Micronesia 
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dataset organized in the same way, and Figures 5 and 6 show results from the Caribbean dataset. 

All plots show overall accuracy on all classes, as well as accuracy for some common hard corals. 

Accuracy for all classes can be found in Tables 4.S4, 4.S5. Rows show the expert-assigned label, 

while columns show CoralNet predictions. For any given cell, the value shown is the percentage 

of points assigned that row’s label by an expert that were predicted to be the column’s label by 

CoralNet. The percentage of correct predictions (accuracy) can be found along the diagonal. The 

data illustrated in Figures 1-6 show a few important characteristics and trends: 

1) Incidence rates of taxonomic classes vary dramatically, and most make up only a tiny 

fraction of the total points (see Figure 7, which shows the distribution of label frequency). 

A full list of classes and their incidence rates in training, validation, and test datasets can 

be found in the Supplemental Material. Accuracy of fully-trained NN predictions on all 

classes can also be found in the Supplemental Material.  

2) CoralNet performance is inconsistent with small datasets, as the NNs have few (and not 

necessarily representative) training examples to draw from, and the validation datasets are 

also small (and not necessarily representative). The test datasets do not vary in size as 

training data is incrementally increased, but validation datasets do.  

3) As the number of training images increases, linear x-axis Figures suggest performance 

saturates quickly. 

4) However, logarithmic Figures indicate otherwise. Overall performance continues to 

improve even with hundreds of thousands of training points.  

5) Individual hard coral classes show a similar pattern – they appear to generally saturate 

relatively quickly on linear axes, but logarithmic axes show they generally continue to 

improve as the number of training points increases. Figures 1-4 indicate saturation may 
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eventually occur beyond 1000 training points per class, but Figures 5 and 6 do not mirror 

this trend. 

6) It is difficult to determine from these data if class prediction accuracy will, with increasing 

training data, saturate at similar levels, or if some classes (likely those most visually 

distinct, to both computer and human expert) will indefinitely remain more accurate than 

others.  

 

It is important to note that coral NN performance varies widely with the “difficulty” of the 

assigned task (Runyan et al., 2022). All the experiments in this report were conducted with very 

large label sets (100+ classes), many of which are visually quite similar, making them prone to 

error in both NN prediction and ground truth training/validation/test sets prepared by experts. This 

is particularly true of algal genera/species (see Supplemental Material). NNs tasked with much 

simpler distinctions (e.g., coral v algae v. inorganic/other, or a single genus v. everything else) 

achieve equivalent or higher accuracy with much less training data, as the task requires making far 

fewer distinctions. This is illustrated in Figure 8, which shows a CoralNet validation accuracy 

plot—performance on functional groups (hard coral, algae, invertebrates, etc) is significantly 

better than with the full, detailed label set. Figure 8 also shows how accuracy increases as the 

confidence threshold increases (i.e., as the less-confident predictions are removed from evaluation) 

 

Additional “difficulty” is introduced by variation in image collection and expert ground 

truth point sampling—camera equipment, lighting conditions, white balancing/color correcting, 

taxonomic expertise and opinions, and much more vary by individual operator, lab, and field 

expedition. A NN trained and tested on data widely-varying in these characteristics will generally 
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require more training data to achieve the same accuracy as a NN trained/tested with narrow, 

consistent data—if equivalent performance can be achieved at all (Runyan et al., 2022). 

Finally, it is important to emphasize that accuracy and consistency of expert ground truth 

point labeling play a major role in NN predictions, both in achieved accuracy and ability to 

measure it. Learning from imperfect labeling is possible, but generally leads to less accurate 

predictions, as the patterns NNs learn to make distinctions with during training are not consistent 

(Song et al., 2022). Additionally, imperfect ground truth affects accuracy determined by 

evaluation/test datasets: a NN that is 100% accurate evaluated with labels that are 90% accurate 

will be reported as 90% accurate.  

No two coral experts will produce 100% identical classifications for a large number of 

points. Studies internally and published (Beijbom et al., 2015) show disagreement rates of 5-25+%, 

again depending on the difficulty/specificity of the labeling task. No completely reliable ground 

truth is available for classifications used in this study, as tissue samples or other ~100% reliable 

taxonomic identification methods were not part of the image survey procedures—classifications 

considered correct were produced by fallible experts. 

 

4.3.2   EXPERIMENT 2 

To evaluate how much time can be saved by using CoralNet’s AI predictions, we selected 

three participants for this study from within our lab. They are all coral experts with advanced 

degrees and specific familiarity with their assigned regions: Katie Lubarsky labeled images from 

the Maldives, Clinton B. Edwards labeled images from Micronesia, and Nathanial Hanna 

Holloway labeled images from the Caribbean.  Each participant was given a regional CoralNet 

source trained with the 5000 image datasets also used for Experiment 1. Each participant used the 
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CoralNet annotation tool to label 50 points each on 200 images with all AI assistance functions 

turned off, recorded how much time it took, and then repeated the procedure on 200 different 

images, this time with AI predictions assistance. The 200 images per region used for this 

experiment were not part of the NN training datasets.  

To perform the component of this experiment incorporating CoralNet AI assistance, we 

adjusted the confidence threshold of CoralNet for each region/source to the level at which 75% of 

points were labeled automatically. This means that the 75% for which AI predictions were most 

confident were labeled automatically, while the other 25% were not labeled by CoralNet. The 

experts were tasked with reviewing these automated predictions, and also labeling the remaining 

25% of points. For all points, the experts were shown CoralNet’s prediction of which taxonomic 

categories were most likely correct.  

 Results for Experiment 2 are shown in Table 3. Without CoralNet AI assistance, the three 

experts required an average of 4.61 seconds to assign a taxonomic category to a single point in an 

image, while introducing CoralNet AI predictions reduced the time required to 2.97 seconds—a 

reduction in time of 36%. As labeling sample points on images of coral reefs is slow and very 

demanding on the labelers, a 36% reduction of the time required to do so is very significant. 

Additionally, Experiment 1 showed that neural network accuracy was still increasing for most 

genera when the 5000 image training datasets were exhausted—this result implies that, as more 

training data becomes available, the CoralNet AI predictions will improve, likely further 

increasing how much time using them saves, as fewer will need to be corrected and suggestions to 

the experts will be more reliable.  

 

4.3.3 USING CORALNET PREDICTIONS WITHOUT EXPERT VERIFICATION 
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These results suggest an important question: Why can’t we let neural networks annotate 

image survey products without editing or verification? After all, editing predictions takes orders 

of magnitude more time than generating them, so NN tools that do not require post-prediction 

editing are vastly more useful than those that merely reduce expert editing time.   

This question has been investigated in the context of CoralNet—experiments have shown 

that CoralNet can produce accurate percent cover data without expert editing and verification of 

its predictions. If researchers only need percent cover data, CoralNet can be trained to provide it 

(Williams et al., 2019). However, Williams et al. (2019) only investigated bulk coral cover (the 

percentage of the benthos covered by all coral taxonomies), as well as a few common coral genera. 

Our results from Experiment 1 show that CoralNet is much less reliable when predicting rarer 

genera/species, at least with the datasets we had available. Rare taxonomic categories present a 

difficult problem: because they are so rare, it is likely that any single rare taxonomy is the correct 

label for only a small number of points, even in large datasets. Incorrect predictions of only a few 

points will therefore dramatically alter the relative area assigned to a given rare taxonomy. For 

example, if CoralNet predicts 66% of the benthos to be occupied by all coral, and the correct coral 

cover percentage was 67%, it can be considered quite accurate for that task. However, if a rare 

taxonomy composing 0.05% of total area cover is predicted to cover 0.1%, the total error of 0.1% 

is a big problem, as it represents a 100% relative error for that single taxonomy. Therefore, 

CoralNet predictions might be reliable for bulk metrics like total coral cover and therefore useful 

without expert verification for some applications, but verification is required for investigating all 

but the most common genera.  

If coral cover metrics for all corals or specific genera/species are generated at a site, 

changes in time can be investigated by revisiting the site, conducting another image survey, and 
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point sampling those new images. However, studying trends in time often requires a number of 

time points for statistical confidence, and long time series of coral reef image surveys are 

uncommon, both because the image survey methodology is relatively new and because point 

sampling the resulting images is very time-consuming. Therefore, point sample labels need to be 

as accurate as possible, in order to confidently reveal trends as quickly as possible and examine 

dynamics between individual time points. Identifying trends with data containing the 

error/uncertainty associated with unverified AI predictions would require longer time series to 

identify trends, and also reduce the significance of changes between any two time points. 

Additionally, performance of the NN may change across time—a problem not identifiable unless 

some predictions are verified.  

Tracking coral at a single site across a few points in time might require very accurate 

measurements for maximal utility, but what about tracking the growth of all coral or a specific 

genus across a large area such as a region or the entire world? Tens of thousands, if not many 

more, images would be available for such an experiment, providing much more statistical 

information than short time series. If NN predictions were generated on those thousands+ images, 

it is conceivable that trends could still be identified even if the predictions were only 70-90% 

accurate. However, this is not true if individual predictions are biased by an unknown degree, 

rather than exhibiting consistent variation around a mean.  To determine if the NN predictions are 

biased, one has to test how the NN behaves at different sites, with different lighting conditions, 

and more. That testing requires expert-generated ground truths.  

We find editing predictions to high accuracy provides the most useful form of data for 

investigating coral ecology. In the future, larger training datasets might make it possible to train a 

NN that is relatively unbiased on most possible inputs, or at least its bias can be characterized with 
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reasonable confidence. Such a neural network could be used to investigate trends across many 3D 

models, even if it is not perfectly accurate on a per-coral basis, because the bias in its predictions 

can be accounted for.  
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TABLES 

Table 4.1: Location and date of dataset collection (experiment 1). 

Region Site Year(s) collected 

Maldives Maldives 2020, 2021 

 

Micronesia 

Ant 2014 

Pohnpei 2018 

Palau 2017 

 

 

Caribbean 

Curacao 2015 

Montserrat 2015 

Windward Islands 2016 

Antigua 2017 
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Table 4.2: Location and date of test dataset collection (experiment 2). 

Region Site Year(s) collected Expert labeler 

Maldives Maldives 2022 Katherine Lubarsky 

Micronesia Palau 2022 Clinton Edwards 

Caribbean Windward Islands 2018 Nathaniel Holloway 
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Table 4.3: Time required to label a point with and without CoralNet predictions. 
 
 
Time without CoralNet 
(seconds per point)   

Time with CoralNet 
(seconds per point)   

Percent difference (%) 

4.61 2.97 36% 
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FIGURES 

 

 

 

Figure 4.1: Accuracy of NN predictions (Maldives validation set), by number of training images 

(a, c) and number of training points (b, d). 
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Figure 4.2: Accuracy of NN predictions (Maldives test set), by number of training images (a, c) 

and number of training points (b, d). 
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Figure 4.3: Accuracy of NN predictions (Micronesia validation set), by number of training images 

(a, c) and number of training points (b, d). 
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Figure 4.4: Accuracy of NN predictions (Micronesia test set), by number of training images (a, c) 

and number of training points (b, d). 
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Figure 4.5: Accuracy of NN predictions (Caribbean validation set), by number of training images 

(a, c) and number of training points (b, d). 

 



124 
 

 

 

Figure 4.6: Accuracy of NN predictions (Caribbean test set), by number of training images (a, c) 

and number of training points (b, d). 
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Figure 4.7: Bar plot showing fraction of total points by label for the Maldives dataset. The first 

two columns are Turf and CCA respectively. Full data for this chart can be found in Supplemental 

Information Table 4.S1. 
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Figure 4.8: Screenshot of CoralNet website showing accuracy by total label set and the more 

generic functional group label set. 
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Supplemental Material 

 

Table 4.S1: Complete label set from Maldives experiment and point label incidence number 

 

     
Label N  Label N 
Turf 66820  Turbinaria (algae) 19 
CCA 20475  Leptoseris 19 
Porites 11999  Other invertebrate 16 
Peyssonnelia 5877  Encrusting green algae 16 
Acropora 2944  Stylophora 15 
Pocillopora 2713  Coscinaraea 15 
Montipora 1360  Limestone stable substrate 15 
Sand 1216  Gorgoniidae 15 
Favites 689  Pachyseris 14 
Halimeda 602  Lobophyllia 14 
Leptastrea 582  Millepora 12 
Pavona 562  Pachyclavularia 11 
Zoanthid 517  Anemone 9 
Leather Coral 493  Tridacna: Giant clam 8 
Goniastrea 483  Chlorodesmis 8 
Astreopora 420  Leptoria 7 
Psammocora 294  Merulina 7 
Sponge 261  Green fleshy algae 7 
Black Fungus Disease (BFD) 222  Gardineroseris 6 
Tunicate 194  Encrusting brown algae 6 
Cyanobacteria 187  Diploastrea 4 
Galaxea 175  Other Algae 4 
Hydnophora 149  Avrainvillea 4 
Platygyra 139  Dictyota 4 
Heliopora 133  Padina 4 
Dipsastraea 128  Caulerpa 4 
Lobophora variegata 119  Green diplosoma 4 
Fungia 97  Herpolitha 3 
Cyphastrea 90  Sandolitha 3 
Echinopora 68  Red fleshy algae 3 
Tydemania spp. 66  Seriatopora 3 
Astrea 58  Palmophyllum crassum 3 
Other hard coral 56  Halomitra 3 
Symphyllia 46  Porites superfusa 2 
Goniopora 31   2 
Echinophyllia 25  
Hydrozoa 21  
Acanthastrea 20  
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Table 4.S2: Complete label set from Micronesia experiment and point label incidence number 

 

 

 

     
Label N  Label N 
CCA 44040  Cyphastrea 145 
Halimeda 37510  Diploastrea 130 
Turf 27114  Goniopora 130 
Porites 13226  Zoanthid 124 
Acropora 12671  Tunicate 112 
Peyssonnelia 8502  Leptoseris 107 
Montipora 7419  Green diplosoma 82 
Pocillopora 3529  Astrea 82 
Heliopora 2782  Leptoria 71 
Isopora 2586  Tridacna: Giant clam 66 
Pavona 1924  Gardineroseris 62 
Black crust 1881  Anemone 42 
Lobophora variegata 1633  Turbinaria (algae) 40 
Dipsastraea 1619  Dictyosphaeria cavernosa 39 
Microdictyon 1545  Symphyllia 35 
Pachyclavularia 1396  Echinophyllia 31 
Rhipilia spp. 1154  Lobophyllia 30 
Sand 1005  Physogyra 27 
Millepora 916  Gorgoniidae 27 
Echinopora 896  Dictyota 26 
Caulerpa 881  Avrainvillea 25 
Sponge 825  Corallimorpharia 24 
Platygyra 761  Dictyosphaeria versluysii 22 
Red fleshy algae 552  Mycedium 13 
Merulina 537  Green fleshy algae 12 
Hydnophora 509  Coscinaraea 12 
Favites 496  Hydrozoa 11 
Porites superfusa 484  Tubastrea 10 
Leather Coral 478  Limestone stable substrate 10 
Leptastrea 475  Lace Coral 9 
Stylophora 452  Ctenactis 9 
Goniastrea 350  Acanthastrea 8 
Psammocora 264  Stylocoeniella 8 
Galaxea 229  Other 7 
Fungia 217  Padina 6 
Cyanobacteria 214  
Seriatopora 204  
Pachyseris 200  
Astreopora 186  
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Table 4.S3: Complete label set from Caribbean experiment and point label incidence number 

Label N   Label N   Label N 
Turf 145519   Madracis decactis 273   Ventricaria ventricosa 8 
Sand 110274   Other invertebrate 225   Dipsastraea 8 
Cyanobacteria 30554   Diploria labyrinthiformis 222   Isophyllia rigida 8 
Dictyota 28253   Chondrilla 197   Branching algae 7 

CCA 10200   
Stephanocoenia 
intersepta 193   

Dictyosphaeria 
cavernosa 7 

Seagrass 8328   Diploria clivosa 179   Liagora 7 
Gorgoniidae 7656   Green fleshy algae 178   Madracis senaria 6 
Madracis mirabilis 6887   Acropora palmata 156   Isophyllia sinuosa 6 
Sponge 6713   Muricea 143   Stylaster roseus 4 
Encrusting sponge 5166   Stable substrate 137   Schizothrix 4 

Lobophora variegata 3443   Turbinaria (algae) 135   
Colpophyllia 
breviserialis 4 

Peyssonnelia 3441   Clionid 120   Scolymia lacera 4 
Montastraea cavernosa 2684   Zoanthid 102   Tubastrea 4 
Porites astreoides 2561   Dendrogyra cylindrus 96   Madracis pharensis 4 
Plexaura 2487   Red fleshy algae 88   Mycetophyllia ferox 4 
Millepora 2395   Dichocoenia stokesi 86   Millepora squarrosa 4 
Halimeda copiosa 2370   Acropora cervicornis 84   Caulerpa serrulata 4 
Pseudopterogorgia 2182   Antipatharia 75   Agaricia grahamae 3 
Siderastrea 2026   Eusmilia fastigiata 71   Orbicella 2 
Sargassum hystrix 1756   Udotea 59   Scolymia cubensis 2 
Diploria strigosa 1613   Other 48   Porites branneri 2 
Agaricia 1608   Agaricia lamarcki 47   Mussa angulosa 2 
Montastraea faveolata 1599   Galaxaura 44   Acropora prolifera 2 
Montastraea annularis 1551   Hydrozoa 44   Porites divaricata 2 
Pseudoplexaura 1340   Muriceopsis 43       
Branching Gorgonian 1295   Agaricia humilis 37       
Colpophylia natans 1195   Siderastrea radians 28       
Palythoa 1169   Wrangelia penicillata 27       
Millepora complanata 953   Briareum 25       
Amphiroa 952   Trididemnum 25       
Eunicea 832   Madracis 21       
Montastraea franksi 828   Plexaurella 18       
Meandrina meandrites 552   Montastraea 17       
Erythropodium 459   Diploria 15       
Sargassum 421   Stypopodium 15       
Sargassum fluitans 381   Padina jamaicensis 12       
Porites 378   Neomeris 10       
Calcium Carbonate 356   Dictyopteris 9       
Padina boergesenii 331   Rhipocephalus phoenix 9       
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CONCLUSIONS 

 

 In this dissertation, I investigated and discussed means to improve the collection of 

oceanographic measurements. In Chapter 1 I showed that Junge-type power law models do a poor 

job of capturing oceanographic particle size distributions, and in Chapters 2, 3, and 4 I presented 

a range of novel information to the coral science community on field instrumentation and the 

processing and analysis of 2D and 3D image products with machine-learning-based tools.  

In Chapter 2, my coauthors and I showed that power law models do not adequately 

parametrize oceanic particle size distributions, based on a large dataset of high-resolution particle 

size distributions collected by Dariusz Stramski, Rick Reynolds, and others over decades in the 

Arctic Ocean. When tested with this large dataset, power law models did a poor job predicting 

measured particle size fractions. This is an important result, because power law models are often 

used to parametrize particle size distributions in oceanography. Particle size directly physically 

affects light, so the particle size distribution affects the signals of optical instruments. We also 

showed that models based on CDF percentile diameters predicted particle size fractions well. If 

relationships between these percentile diameters and optical measurements can be found, it may 

be possible to measure some particle size characteristics from space, and separate the components 

of satellite optical signals that are due to particle size from those influenced by other seawater 

constituents and characteristics.  

In Chapter 3 I discussed methods for large-area underwater image surveys of coral reefs. 

We proposed reporting standards for large-area-image-survey-derived 3D models, and explained 

how to acquire clear images with substantial overlap over the entire field site. Calculating accurate 

3D models requires many overlapping clear views of each point on the bottom of the ocean. The 

goal of this study is to increase the number of coral reef labs around the world using large-area 
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image surveys, and to provide some useful resources on how to do the image surveys well. More 

labs doing large-area image surveys means more experiments on how to get useful coral science 

information out of 3D models, more potential users for AI tools, and more sharable high-quality 

training and testing databases.  

Chapters 3 and 4 evaluated AI methods for expediting processing of the huge volumes of 

image-derived data the surveys produce. In Chapter 3, we compared the performance of 2D, 2.5D, 

and 3D neural networks to segment 3D models of coral reefs and 2D/2.5D orthoprojections 

thereof. Neural networks segmented 2D orthoprojections and 3D models of field sites equally well. 

We also discussed many possible reasons to prefer a 2D workflow over 3D or vice versa, but 

concluded that the performance of machine learning models should not be a determining factor at 

this point. Desired data outputs and available image data product annotation software are more 

important factors when deciding if working in 3D is worth the extra effort. This study was the first 

to be published on using 3D neural networks to segment 3D point clouds of coral reefs; it shows 

that 3D segmentation works, and can become a useful tool for coral researchers with further 

development.   

In Chapter 4, we evaluated the publicly-available neural-network-driven software 

CoralNet. We used very large datasets (5000 images per region, 5-50 points per image), but found 

that, when working with large sets of possible taxonomic categories, there will be few training 

points for most taxonomies because a few commonly-occurring taxonomies account for most of 

the training points. This imbalance led to relatively good overall CoralNet prediction accuracy, 

because accuracy scores are dominated by common classes, but unreliable performance on most 

taxonomic categories, as most of them are relatively rare. We also presented evidence that 
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CoralNet, despite its imperfect accuracy with our training and testing datasets, reduced the time 

required to point sample an image by 36%.  

These four investigations occurred at different scales in different ecosystems, but they work 

towards the same goal: improving the ability of researchers to collect valuable data about the 

environments they study by using optical instruments. Chapter 1 reversed the long-held belief that 

oceanographic particle size distributions are well represented by a Junge-type power law model. 

Taken together, Chapters 2, 3, and 4 represent a significant contribution to the coral research 

community’s understanding of large-area image surveys and machine-learning-assisted annotation 

of the resulting image products. 

 

DIRECTIONS OF FUTURE ML CORAL RESEARCH 

 In Chapter 3, we compared the performance of neural networks trained on 2D 

orthoprojections and 3D pointclouds. To expand on this study, one could investigate the addition 

of a time dimension, resulting in a neural network designed to input 4D information, or 3D but 

with a time dimension instead of the third spatial dimension. Neural networks designed to segment 

videos perform an analogous task—interpreting successive 2D frames as the contents advance in 

time. The Sandin and Smith labs have been collecting image surveys of sites on Palmyra annually 

since 2013, so reasonably long time series of coral reef 3D models and 2D orthoprojections are 

available.  

Time dimension information can be used in two different ways. First, if an expert-verified 

ground truth is known for one point in time, it can be projected forward. Logically, it’s reasonable 

to suspect that a neural network, when predicting a segmentation of a coral reef site, would perform 

better if shown an expert-verified ground truth of the site from the previous year. The task is much 
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simpler that way, as few corals grow from nothing or move in short to intermediate periods of 

time, so most taxonomic identities could be inferred from the previous year. It’s likely that this 

method would be particularly advantageous for segmentation of time series, as an accurate expert-

verified ground truth of the site in the first year would assist automated predictions of the following 

years.  

Time dimension information can be useful even if an expert-verified ground truth is not 

available for any of the points in time. A neural network can be given additional information by 

providing it with 3D models or 2D orthoprojections of a site across many points in time, which 

might improve performance. This arrangement is analogous to providing a bird identification 

neural network with multiple frames from a video as a bird flew by—a neural network that can 

consult multiple frames at once has more information than one viewing a solitary frame. For our 

coral 3D models we take images from the same top-down perspective every year, so the 

information benefit of consulting multiple years’ models at once might be limited, but I think it is 

worth investigating.  

 A different but also potentially valuable direction of research is unsupervised learning. It 

may be possible to improve domain generalization and reduce training data volume demands by 

pre-training a neural network on the entire unlabeled database of thousands of coral reef 3D 

models. As these models add up to something like a petabyte of pointcloud information, an 

unsupervised learning operation would require substantial database engineering to support, and 

might take a long time or require a very high number of GPUs. Unfortunately, many of the Sandin 

lab 3D models are stored on UCSD library servers. The library servers are set up as an archive, so 

they do not support rapid transfer of large volumes of data, which are necessary for unsupervised 

learning from a large database.  



142 
 

 

ACCURACY LEVEL REQUIRED FOR BIOLOGICAL SIGNIFICANCE 

 It is important to ask the question: When can we let neural networks annotate image survey 

products without editing or verification? Editing predictions takes orders of magnitude more time 

than generating them, so it would be a huge benefit if we did not have to do it.  

This question has been investigated in the context of CoralNet—experiments have shown 

that CoralNet can produce accurate percent cover data without expert editing and verification of 

its predictions. If researchers only need total coral percent cover data, CoralNet can be trained to 

provide it. More information can be found in “Leveraging Automated Image Analysis Tools to 

Transform Our Capacity to Assess Status and Trends of Coral Reefs” by Williams et al., published 

in 2019. I discussed this issue in more detail in Section 4.3.3 of Chapter 4.  

What about segmentation? Measuring growth of individual corals that amounts to 

millimeters or centimeters a year requires precise measurements, so the imprecision of unedited 

neural network predictions that are only ~80% accurate is undesirable. However, as I discussed in 

Chapter 3, the expert-generated ground truth used to generate that accuracy metric is not 100% 

reliable. Different experts will produce different ground truth segmentations. Therefore, AI-

generated predictions do not have to be 100% accurate to be useful, they just have to be as accurate 

as an average expert. However, accuracy and consistency of coral experts has been poorly studied 

and remains difficult to quantify, so future experiments are needed to create benchmarks against 

which to compare automated predictions.  

In the meantime, we can then ask the question: can unedited neural network predictions be 

useful even if they are less accurate than experts? In Chapter 3, my coauthors and I found that 

experts were about 90% accurate relative to a consensus of them, while neural networks were 
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about 80% accurate, so predictions are still likely to be less accurate than experts in coral 

applications. Unfortunately, we find that editing automated segmentations to the standard of an 

expert is strongly preferable to using them unedited, for some complex reasons. 

In the context of tracking the growth of an individual coral through time, it is important to 

consider that only a few time steps are generally available, as collecting time series of coral reefs 

can be quite hard. Segmentations of corals need to be precise in order to confidently reveal trends 

as quickly as possible and examine dynamics between individual time points.  

Tracking a single coral across a few points in time might require very precise 

measurements for meaningful results, but what about tracking the growth a specific genus across 

a large area? Tens or hundreds of 3D models would be available for such an experiment, providing 

much more statistical information than short time series of individual corals. If predicted 

segmentations of that genus were generated on hundreds of 3D models, it is conceivable that trends 

could still be identified even if the predictions were only 80% accurate. However, this is not true 

if individual predictions are biased by an unknown degree, rather than exhibiting consistent 

variation around a mean. While the segmentation neural networks we trained were approximately 

unbiased on the data we tested them on, it is likely they would become biased when making 

predictions on 3D models that vary significantly from the training data, due to e.g. different 

geography or water clarity.  For such predictions to be meaningful measurements, the neural 

network’s bias on each unique 3D model would have to be evaluated by segmenting some of each 

model manually, or the predictions would need to be edited and verified by experts. We find editing 

predictions to high accuracy provides the most useful form of segmentation for investigating coral 

ecology. In the future, larger training datasets might make it possible to train a segmentation neural 

network that is relatively unbiased on most possible inputs, or at least its bias can be characterized 
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with reasonable confidence. Such a neural network could be used to investigate trends across many 

3D models, even if it is not perfectly accurate on a per-coral basis, because the bias in its 

predictions can be accounted for.  

 

GENERAL THOUGHTS AND CONCLUSIONS  

 The projects in all four chapters suffer from much-smaller-than-ideal datasets, limited by 

both expensive/laborious processing and the time/resources required to get instruments to field 

sites. My first chapter drew from a few hundred measurements in the Arctic, collected over 

approximately a decade. This Arctic dataset is the largest of its kind, and yet it is quite small 

compared to an ideal dataset, which would cover the entirety of the Arctic at a variety of depths at 

many points in time. Chapter 3 used a time series from a single site on the island of Palmyra, 

because—to be best of my knowledge—that is the largest existing dataset of traced 3D high-

resolution coral reef pointclouds. The datasets from the Maldives, Micronesia, and the Caribbean 

used in Chapter 4 were comprised of tens of thousands of point sampled images; however these 

images contained only tens, hundreds, or thousands of points assigned to coral and algae 

genera/species scientists wish to study, resulting in NN accuracies that were still rising when the 

last of our training data was exhausted. This suggests more training data would result in more 

accurate, more useful AI. 

Initiatives to work at globally-comprehensive scale are already underway. The study 

discussed in Chapter 1 was based on data only from the Arctic, but Dariusz Stramski and Rick 

Reynolds continue to pursue PSD, POC, and other algorithms globally, enabled by their dogged 

commitment to acquiring field data, and decades of investment by NASA and other American and 

international science supporting agencies and institutions. Chapter 3 was based on data concerning 
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one genus at one site on one island, but the Sandin and Kuester labs too are aspiring globally with 

admirable initiatives like their 100 Island Challenge, which entails visiting a dozen sites on 100 

islands twice in five years. We are making progress, but there is a long way to go, especially at the 

federal/institutional level above the many scattered, independent research groups. 

 In a nutshell, we need way, way more data. An optical satellite algorithm that is accurate 

in all oceans, at any time of the day or year, requires a similarly comprehensive database of 

measurements of seawater optical and particulate characteristic. The same is true of AI for coral—

without globally comprehensive training and testing databases, we will not be able to build 

globally comprehensive AI tools. Without a comprehensive database, we will not even be able to 

test how an AI tool behaves in all situations. How can we expect anyone to trust it if we cannot 

even test it? 

 To expand the collection of measurements, I see three primary areas of focus. The first is 

obvious—go get more! Funding agencies should support scientists, who have the experience 

necessary to collect good field data, to get out in the field with better and more instruments manned 

by larger teams of employees, graduate students, and postdocs. Further emphasis should be given 

to standardization of field collection and data processing/storage procedures to simplify pooling 

of datasets from disparate research groups. 

 A second area of emphasis is technology: instruments, platforms, and software to process 

and analyze instrument data. New instruments (e.g., NASAs hyperspectral PACE mission), 

combined with new platforms (e.g., unmanned vehicles), should be developed to expand what we 

are able to measure in terms of accuracy and breadth in parameters measured, spatial coverage, 

and chronological repetition. 
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User-friendly, fast, minimally-infuriating software is necessary to help scientists evaluate 

this ever-growing volume of data. NASA is a leading example of supporting broad and detailed 

availability of its data products and underlying algorithms. Vid Petrovic/Falko Kuester’s Viscore 

3D pointcloud software and Oscar Beijbom/David Kriegman’s cloud-based CoralNet point 

sampling tool are exemplary, but they and similar initiatives require an order of magnitude more 

financial support and dozens of engineers to reach/satisfy a global user base, many of whom have 

limited familiarity with math and programming. Unfortunately, many innovative software tools 

are distributed primarily by code made publicly available at websites like GitHub—this is a great 

way for programmers to share, but is not very accessible to many oceanographers and biologists. 

The third avenue I see for progress is probably the most important—staffing. I began this 

dissertation, and this conclusion, by decrying the scale of our datasets relative to the magnitude of 

the world’s oceans. However, the original theme of my dissertation was not that we do not have 

enough sensors or field measurements, but that we can already collect more than we are able to 

process and analyze. This not true of in situ particle size measurements (we have relatively few of 

them and processing procedures are well-established), but it IS true of the satellite imagery they 

aim to help interpret—if satellites collect images that we lack algorithms to extract information 

from, they are not being maximally processed, analyzed, or utilized. The situation in the cases of 

coral and satellite optical data collection is the same: we can take pictures, but we cannot access 

all the information they contain. 

To address this shortcoming, we need more people. Coral scientists need more people 

annotating field imagery, and satellite oceanographers need more people on more ships making 

measurements in the field. We will not be able to maximally extract information from optical 
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sensors until we have robust algorithms, models, or neural networks to interpret measured optical 

signals. 

   




