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Aim: Dendrimers dendritic structural design holds vast promises, predominantly for drug delivery, owing to their unique properties. 
Dendritic architecture is widespread topology found in nature and offers development of specific properties of chemical substances. 
Dendrimers are an ideal delivery vehicle candidate for open study of the effects of polymer size, charge, and composition on biologi-
cally relevant properties such as lipid bilayer interactions, cytotoxicity, bio-distribution, internalization, blood plasma retention 
time, and filtration. This article reviews role of dendrimers in advanced drug delivery and biomedical applications.
Key Words: dendrimers, drug delivery vehicle, lipid bilayer interactions, dendritic architecture.

Dendrimers are exceedingly branched, globular 
macromolecules with many arms emanating from 
a central core [1, 2]. The atomistic feature of den-
drimer structure has lagged behind this fast prog-
ress in synthesis and design [3]. To date, more than 
fifty families of dendrimers exist, possessing unique 
properties, since the surface, interior and core can 
be tailored to diverse types of applications [4].The 
derivatization of low molecular weight and protein-
based therapeutics with polymers has been shown 
to advance their pharmacokinetic and pharmaco-
dynamic pro perties [5, 6]. One of the most talented 
applications of nanotechnology is in the field of medi-
cine. Certainly, a whole novel field of “nanomedicine” 

is promising [7]. Nanomedicine plays a vital role 
to advance drug delivery, cancer treatment, and 
so on. Dendrimers are nano-sized, radially symmet-
ric molecules with fine-defined, homogeneous and 
monodisperse composition consisting of tree-like 
arms or embranchment [8, 9]. Dendrimers are iden-
tified by unique properties like globular shape, well 
defined three dimensional structure, cavities, high 
functionality and small size. These properties make 
them unique for using in nanotechnology and diverse 
biomedical applications [10–12]. Dendrimer struc-
tures are formed with a fundamental atom or group 
of atoms tagged as the core. From this central struc-
ture, branches of other atoms called “dendrons” raise 
through diverse chemical reactions [8].

Dendrimers show considerably enhanced physical and 
chemical properties compared to traditional linear poly-
mers. A number of significant properties of dendrimers 
are: (1) monodispersity; (2) nano-size and shape; (3) 
biocompatibility; (4) periphery charge; (5) dendrimer-
membrane interaction; and (6) pharmacokinetics [13–17].
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TYPES OF DENDRIMERS
A quick growth of dendritic new carrier has been 

probable because of recent advances in synthetic 
chemistry and characterization methods. Also a variety 
of dendritic scaffolds has become accessible with de-
fined nanoscopic size and plenty numbers of functional 
end groups [18].

Nowadays there are more than fifty families 
of dendrimers each with unique properties that are 
undergoing investigation for use in a diversity of dif-
ferent biomedical applications [19]. Dendritic poly-
mers are similar to proteins, enzymes, and viruses, 
and are simply functionalized. Dendrimers and other 
molecules can either be linked to the rim or can be en-
capsulated in their internal holes. Current medicine 
uses a diversity of this material as potential blood 
substitutes, for example polyamidoamine (PAMAM) 
dendrimers [20]. For instance, phosphorus-containing 
dendrimers have demonstrated antiprion activity and 
can potentially be used as inductors for gene therapy 
Boronated starburst PAMAM dendrimer-monoclonal. 
Antibody immune compounds as potentially effective 
anticancer reagent containing boron neutron capture 
were used [21, 22].

APPLICATIONS
Multifunctional end groups and occurrence of vari-

ous internal cavities cause to be dendrimers appropri-
ate for possible pharmaceutical uses counting a variety 
of therapeutic and biomedical applications [23–25].

Dendrimers and various routes of drug deli
very. Nano scale materials have unique properties, 
such as structural uniformity, efficient membrane 
transport, high purity, high drug pay load, good col-
loidal, targeting potential, and shelf stability. Because 
of these unique features, dendrimers are one of the 
talented technologies of recent times and have served 
as an exceptional platform to reach the development 
as new drug delivery scaffolds; for instance, PAMAM 
dendrimers have carried the antitumor drug metho-
trexate and fluorescein for tracking [26–28]. The best 
dendrimer must have a low molecular weight to be ef-
fortlessly filtered by the kidneys [29]. Due to the unique 
characteristics of dendrimers, such as well-defined 
size, shape, molecular weight and monodispersity, 
these molecules have wide applications in drug de-
livery [30, 31]. Drug molecules can be physically 
trapped inside the dendrimers or be adsorbed on the 
dendrimer surfaces using electrostatic interaction, 
hydrogen bonding, or van der Waals force. Drug mole-
cules can also be covalently attached on the dendrimer 
surfaces to provide dendrimer-drug conjugates [32].

Oral drug delivery. Among the various routes 
of drug delivery, the oral route is may be the one mostly 
favored by patients and clinicians. For several available 
and novel drugs for example peptidomimetics, thera-
peutic peptides, oligonucleotides and other cases, 
oral bioavailability is in the most of cases below pass-
able levels. To control this problem and to guaranty 
an adequate high oral absorption, the use of effective 

oral drug delivery systems is significant [33]. An ef-
fective oral macromolecular drug carrier should have 
the capability to prevent the drugs from degrading. 
They might decrease non-specific interactions with 
food proteins and let increased absorption through 
the intestinal epithelium. The potential use of PAMAM 
dendrimers as oral drug delivery carriers have been 
demonstrated by several studies [34–44]. In a study 
that was done by Kitchens et al. [45] it was demon-
strated that transepithelial transport and microvascular 
extravasation of PAMAM dendrimers are dependent 
upon their structural properties such as molecular 
geometry, molecular size, and surface chemistry. 
These consequences indicate that by optimizing fac-
tors such as the size and surface charge of PAMAM 
dendrimers, it is possible to expand oral drug delivery 
systems based on these carriers.

Ocular drug delivery. Dendrimers have attracted 
remarkable attention as ocular drug delivery systems, 
because of their tailorable structure, well-defined size 
and potentially favorable ocular biodistribution [46]. 
Surface-modified PAMAM dendrimers with carbo xylic 
or hydroxyl surface groups, have been reported in in-
creasing residence time and improving bioavailability 
of pilocarpine in the eye [47]. Conjugating of den-
drimers with polyethylene glycol (PEG), create hydro-
gels that have applications including cartilage tissue 
production and for sealing ophthalmic injuries [48, 
49]. Consequently, the improvement of ocular drug 
delivery by dendrimers may be a promising method 
for clinical applications.

Transdermal drug delivery. Drug delivery via 
the skin to get a systemic effect of drug is generally 
known as transdermal drug delivery [50]. The per-
meability of dendrimers via the skin is determined 
by physicochemical parameters such as surface 
charge, molecular weight, generation size, compo-
sition and concentration [51, 52]. Dendrimers have 
been demonstrated to be effective as transdermal 
drug delivery systems for nonsteroidal anti-inflam-
matory drugs (NSAIDs), antimicrobial, antiviral, an-
ticancer or antihypertensive drugs. Yiyun et al. [53] 
and other researchers have shown that PAMAM 
dendrimers can considerably increase transdermal 
delivery of diflunisal and ketoprofen, two model 
NSAIDs [53, 54]. Encapsulation of cisplatin, a plati-
num based anticancer drug into PAMAM dendrimers 
gave conjugates that presented higher accumulation 
in solid tumors, slower release, and lower toxicity 
compared to drug [55, 56].

Targeted drug delivery. Targeted drug deli-
very is a technique of delivering a therapeutic agent 
to a specific cell type or tissue in a site-specific man-
ner. Dendrimers have been studied as one kind of ve-
hicle for application in targeted drug delivery [1, 2, 57, 
58]. Targeted delivery of chemotherapeutics to tumor 
cells decreased side effects compared to systemic 
delivery [49]. Patri et al. [57] reported the synthesis 
of generation 5 PAMAM dendrimer conjugated with 
folic acid for the targeted delivery of methotrexate.
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Magnetic resonance imaging (MRI). Recently 
the use of dendrimers as a new class of macromo-
lecular MRI contrast agents has been explored. 
The most generally used MRI contrast agents are 
gadolinium-based contrast agents [59, 60]. The 
covalent attachment of Gd(III) complexes to PAMAM 
dendrimers to generate unique macromolecular con-
trast agents for MRI have been reported by several 
research groups. Kojima et al. [61] have prepared 
fully PEGylated PAMAM dendrimers loaded with 
Gd-diethylenetriamine pentaacetic acid (DTPA). For 
conjugation of Gd-DTPA to the side chain, Lysine 
(Lys) was attached before the PEG modification [62]. 
Their results showed that PEGylation of a Gd-labeled 
PAMAM dendrimer decrease the relaxivity and plasma 
clearance, and variations susceptibility to temperature. 
Even though PEGylation decreases relaxivity by re-
ducing access to water, by using a bigger dendrimer 
(G5 vs G4) this effect can be improved with intrinsic 
higher relaxivities because of slower molecular tum-
bling rates. The calculation of PEG to a dendrimer 
increased retention in the vascular pool, a feature 
that could be useful for vascular imaging in cancer, 
atherosclerosis, and inflammatory disorders, as well 
as for improving drug delivery [61].

Photodynamic therapy (PDT). PDT is a talented 
approach to treat certain kinds of cancer. PDT was 
planned as a helpful oncology tool more than 30 years 
ago, but it has restrictions. The success of PDT de-
pends mostly on photosensitizers and improvement 
of an effective second generation is continuing. PDT 
is a hopeful treatment methodology whereby diseased 
cells and tissues are destroyed by reactive oxygen 
species by using a combination of light and photosen-
sitizers. Dendrimers possess architecture appropriate 
for incorporating particular functional moieties and 
are a hopeful venue for further researches [63, 64].

Delivery of bioactive. The core and the interior 
branches of a dendrimer can be synthetic or based 
on natural peptide or saccharide structures. When 
adorned with peptide or carbohydrate ligands 
throughout surface functional groups, dendrimers are 
endowed with the bioactivity to mediate the interac-
tion with cell surface receptors. Bioactive dendrimers 
can attach with particular receptors on cell mem-
brane [65–70]. When linking peptides or carbohy-
drates, the general ligation strategies can be applied 
directly to generating bioactive dendrimer conjugates. 
However, there are at least two factors characteristi-
cally related with the ligation of dendrimer scaffolds: 
one of them is the type and generation of dendrimer 
trellis that would ascertain the shape and size of final 
products and another one is the number of peripheral 
branches and modification level that could affect the 
multivalent spatial arrangement and receptor binding 
properties of bioactive ligands [71].

Dendrimers in gene delivery. Dendrimers can 
be used as a transporter in gene therapy. For instance, 
PAMAM dendrimers have terminal amino groups 
which interact with phosphate group of nucleic acid. 

As a result PAMAM dendrimers have been tested 
as a genetic material vector [72]. Dendrimers were 
discovered in 1970 by Tomalia and co-workers [1]. The 
first article using the term “dendrimer” and describing 
in detail the preparation of poly(PAMAM) dendrimers 
was presented in 1984. They are polymeric symmet-
ric monodisperse complexes that comprise of well-
defined branches around a small molecule, called 
core. Dendrimers of lower generations (0, 1, and 2) 
have highly asymmetric shape and have more open 
structures as compared to higher generation [73–75]. 
Dendrimers become densely packed as they extend 
out to the periphery, which forms a closed membrane-
like structure [76]. Dendritic copolymers are a specific 
group of dendrimers, two different types of copolymers 
were recognized: Segment-block dendrimers are ob-
tained by attaching different wedges to one polyfunc-
tional core molecule. Layer-block dendrimers consist 
of concentric spheres of differing chemistry [76].

DNA molecules are well suited for these purposes 
because of their unique molecular detection fea-
tures. Linear DNA chains can assemble into a range 
of non-linear structures: branching of the double helix 
is induced by breaking the run of the complementarity 
of the part strands. Dendrimers with arms terminat-
ing in oligonucleotides of the same or of different 
sequences could be used to build cages, cryptands, 
tubes, nets, scaffolds and other more complex three-
dimensional (3-D) structures [76–80]. An important 
characteristic of nucleic acids is the sharp melting 
transition of the base-paired double strand. It is im-
portant to know how dendrimerisation affects this 
behavior in order to understand how branched nucleic 
acids may be used as molecular building blocks [81].

Recognition features ability to deliver pieces 
of DNA to the required parts of a cell includes many 
challenges. To maintain the activity of DNA during 
dehydration, the dendrimer/DNA complexes were 
encapsulated in a water-soluble polymer, and then 
deposited on or sandwiched in functional polymer 
films with a fast degradation rate to mediate gene 
transfection. Based on this method, PAMAM den-
drimer/DNA complexes were used to encapsulate 
functional biodegradable polymer films for substrate 
mediated gene delivery. Research has shown that the 
fast degrading functional polymer has great potential 
for localized transfection [82, 83]. Apart from small 
drug particles dendrimers are thoroughly examined 
for the delivery of DNA. PAMAM dendrimers, and 
polycationic molecules can form complexes with DNA 
through sequence-independent electrostatic interac-
tion between anionic phosphate groups of nucleic acid 
and cationic primary amino surface groups. These 
opposite charges neutralize; therefore, the net charge 
modifications result in changes of physicochemical 
and biological properties. The nature of “dendriplexes” 
are affected not only by concentration of the DNA 
phosphate groups and dendrimers surface amino 
groups, also by the shape of dendritic polymers and 
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solvent’s properties such as pH, salt concentration, 
buffer strength and the dynamics of mixing [84–87].

Targeted delivery of dicersubstrate siRNAs. 
Small interfering RNAs (siRNA) are talented as new 
therapeutic agents, given that convenient delivery 
systems that are available. Dendrimers, a particular 
group of synthetic macromolecules, demonstrate 
an exciting delivery platform by virtue of their well-
defined dendritic structure and unique multivalency 
and cooperativity limited within a nanosized volume. 
Significant interest has been considered to capita-
lize on dendrimer nanocarriers for the delivery of the 
emerging RNA interfe rence (RNAi) based nucleic 
acid drugs [88, 89]. The delivery of RNAi therapeutics 
should be not only efficient but also targeted in the 
right site in order to achieve higher efficacy and less 
toxicity.

Cancer therapy. During the past few years there 
has been considerable advancement in the application 
of biocompatible dendrimers for cancer treatment, 
including their use as drug delivery systems for che-
motherapeutic agents such as cisplatin and doxoru-
bicin [90]. The necessity for using of biodegradable 
dendrimers appeared as a strategy to generate the 
desired large molecular weight carriers which lead 
to high retention and accumulation in tumor tissue, 
while permitting rapid and safe omission of dendrimer 
fragments into the urine to prevent nonspecific toxic-
ity [91]. Lee et al. [92] synthesized biodegradable 
cationic G3 dendrons and G2 dendrimers by the 
convergent synthetic method and introduced them 
as candidates for biomedical applications. Because 
of excellent properties of PEGylated dendrimers, 
such as tunable pharmacokinetics and ability to carry 
multiple copies of bioactive molecules, these materials 
are attractive for many biological applications. The fast 
and efficient synthesis of a robust and biodegradable 
PEGylated dendrimer based on a polyester-polyamide 
hybrid core is demonstrate by Frechet, Szoka and co-
workers [93].

CONCLUSION
Role of dendrimers in advanced drug delivery 

and biomedical applications is briefly reviewed. 
Dendrimers are known as extremely defined artificial 
macromolecules, which are characterized by a com-
bination of a high number of functional groups and 
a condensed molecular structure. Pharmacokinetic 
property is one of the most important aspects in the 
successful applications of dendrimers, for example, 
imaging, drug delivery, PDT, etc. The variety of po-
tential applications of dendrimers in medicine results 
in increasing attention in this area.
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