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Abstract

Allocation of Space and the Costs of Multimodal Transport in Cities

by

Eric Justin Gonzales

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Carlos F. Daganzo, Chair

Cities worldwide face growing demand for mobility with limited transportation in-
frastructure. This dissertation addresses how street space should be allocated and
how transport modes should be operated for different city structures. City structure
is characterized by the density of travel demand and the amount of space available for
transportation. Several costs are associated with transportation systems, including
time, money, space, and externalities. Building on macroscopic models of traffic and
transit operations in urban networks, the relationship between the costs of providing
mobility with various transport modes and the structure of the city served is modeled
recognizing that vehicles require space. Cities served by an individual mode (e.g.,
cars) and/or a collective mode (e.g., buses) are analyzed for three cases: constant
demand over time (travelers can choose their mode); evening peak demand (travelers
can choose their mode); morning peak demand (travelers can choose mode and depar-
ture time). In all cases, the system optimal use of space and modes which minimizes
total system costs is identified along with a pricing strategy to achieve the optimum
at user equilibrium. The results of this study show systematically how to allocate
street space, operate transport systems, and price modes to minimize the costs of
mobility for any city structure.
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Chapter 1

Introduction

1.1 Motivation

People all over the world need access to jobs, markets, education, healthcare, and
social interaction in order to live and participate in the modern global economy. In
order to get to these activities and opportunities, people use transportation to traverse
space, but limitations of the transportation system translate to limitations of access.
Cities exist as a solution to the access problem by bringing people and opportunities
into close physical proximity in which transportation can yield greater access. Thus,
transportation is of critical importance to the life and operation of cities worldwide
because it is the accessibility that transportation affords that makes cities desirable
and economically viable places to live and do business.

Accessibility depends both on the city structure and transport mobility. At a basic
level, city structure describes how urban space is used which determines the origins
and destinations of trips and the available space for the transportation systems to
serve them. Mobility describes how quickly the transportation system allows people
to travel across space. A city’s structure can be described by the allocation of space
to transportation and other uses—the amount of area provided as streets and the
density of residents as well as the opportunities to which they seek access. Mobility
is a consequence of the design of the transportation system and the modes which
compose it. In order to operate, these modes incur many different types of costs
such as time, money, and environmental externalities. As such, accessibility and its
multidimensional costs are physically related to the operating characteristics of the
transportation system and the structure of the city it serves.

Cities worldwide are growing rapidly as people continue to flock to urban areas
seeking access to greater economic, educational, and social opportunities. This poses
a challenge because the very accessibility that draws so many people together is also
threatened by the ensuing congestion of the transportation system. This problem is
exacerbated by the increasing rate of motorization, particularly in developing coun-
tries where a growing middle class means that more and more people can afford more
comfortable, yet more costly, forms of transportation.
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In order to plan effectively to maintain accessibility in the future, we need to be
able to answer the following question: What are the costs of providing accessibility
for cities of different structures? Since transport modes require physical space to
serve trips, and the space available for transportation in cities is constrained, these
costs must be modeled in a way that explicitly considers the spatial requirements of
the transportation system. A model built on correct traffic physics which relates city
structure and the costs of accessibility is need. Such a model will shed insights on
how urban space should be allocated to different transportation modes and how these
modes can be operated and priced to achieve efficient results.

The remaining sections of this chapter present a review of the related literature,
identify the contributions of this research, and provide on overview of the structure
of the following chapters of this dissertation.

1.2 Literature Review

The literature related to accessibility, the costs of transportation, and the connection
between transportation and city structure is extensive. This section discusses the
existing work in these areas as a foundation for the methodology and contributions
of this dissertation.

First, ways of quantifying accessibility are explored, and the benefits of using an
approach based on cumulative opportunities which can be accessed within a travel
constraint are discussed. This is followed by a review of the various works to assess
the costs of transportation systems, recognizing the different dimensions of those costs
incurred. Empirical work examining how city structure is related to the performance
of urban transportation systems shows that a systematic relationship exists. However,
a theory of the urban physics underlying the connection between city structure and
the costs of providing accessibility has not yet been developed.

A review of the work on traffic operations and the economics associated with
pricing and allocating space to different transport modes is also presented. Although
systems with a single transport mode have been studied at the level of individual roads
and for urban networks, multimodal networks have not been studied systematically
with realistic traffic physics.

1.2.1 Quantifying Accessibility

Accessibility is an important indicator of social welfare. A number of studies have
shown that greater accessibility is associated with improved economic opportunity and
social equity (Kain, 1968; Wachs & Kumagai, 1973; O’Regan & Quigley, 1998). The
concept of accessibility is widely used in the fields of transportation and city planning
and generally refers to a measure describing the ability of people to reach opportu-
nities such as employment (Handy & Niemeier, 1997; Harris, 2001; Hanson, 2004).
The two most common ways to measure accessibility are by weighting opportunities
by an impedance function or by counting the cumulative number of opportunities
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that can be reached within a time or cost constraint (Koenig, 1980). The meaning of
accessibility, however, depends on how it is measured.

The first mathematical impedance model was proposed by Hansen (1959), ex-
pressing accessibility between analysis zones as the number of opportunities in the
destination zone divided by an increasing function of travel time or distance called the
impedance function. This qualitatively makes sense because the greater the distance
between an origin and destination, the less accessible one is from the other. This
model is the basis of the gravity model commonly used in traffic forecasting, but a
major weakness is that these impedance functions require calibrated variables that
lack physical meaning.

An alternative way to think about accessibility is in terms of time-space con-
straints as described by Hägerstrand (1970). By recognizing that a person’s activi-
ties, and travel between them, can be expressed as a path in time and space, feasible
activity paths are constrained by physical, social, and institutional limitations. Burns
(1979) use the concept of a prism to illustrate how travel time and spatial separa-
tion determine accessibility. Although this aggregated approach has been criticized
for giving equal weight to near and far opportunities (Pirie, 1979), the cumulative
opportunity measure of accessibility depends only on the choice of a time constraint
which has an easily understandable physical meaning. More recently, Hägerstrand’s
time-space framework has been applied to study accessibility with geographic infor-
mation systems (Miller, 1991; Kwan et al., 2003). However, these studies do not
realistically account for the effects of congested traffic on travel time.

The cumulative opportunity measure of accessibility depends, of course, on the
time constraint chosen. One candidate for the constraint is the travel time budget
proposed by Zahavi & Talvitie (1980) which reported consistent travel time expen-
ditures for one-way commute trips worldwide. This time budget is estimated to be
about 30 minutes each way for trips where travel is at least at the speeds achieved
by motorized modes (Zahavi & Ryan, 1980). Goodwin (1981) observes that if this
universal travel time budget does indeed exist, travel time savings could not be mea-
sured as the benefit of transportation improvements because people will travel further
as vehicle speeds increase. This supports the notion that accessibility is a benefit to
be weighed against the costs of the transportation system. The existence of a travel
time budget is disputed (Mokhtarian & Chen, 2004), and variation in travel times
across city sizes (Gordon et al., 1989) and over time (Tanner, 1981; Toole-Holt et al.,
2005) has been observed.

Efforts to model peoples’ realized travel patterns is limited by the enormous data
requirements of activity-based models (Axhausen, 1998; Doherty, 2003). Pendyala
et al. (2002), however, shows that there is consistency in the time-space constraints
for individuals even though their actual travel patterns may vary considerably within
this accessible space. Therefore, even if one cannot predict the specific trips that will
be made, by increasing mobility one can be assured that accessibility is increased.
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1.2.2 Costs of Transportation

Providing accessibility via a transportation system involves costs associated with
vehicles, infrastructure, and operations. Numerous studies have compared the costs
of investing in different transport modes. A notable early study is Meyer et al.
(1965) which compares the monetary costs of using different modes to serve commuter
demand along a corridor in a monocentric city. The work is interesting but limited
because it does not consider the effects of traffic congestion and is confined to a
corridor analysis. Several studies have since compared the monetized cost of using
motorized modes such as cars, buses, and commuter rail to serve commuter demand
in a monocentric city (Mohring, 1972; Keeler & Small, 1975; Boyd et al., 1978).

Considering only the monetary or economic costs of different modes is incom-
plete accounting. Without considering the full costs of transportation investments,
Mishan (1967) observes that we will tend to over-endorse modes which have large
negative external costs. Likewise, underrating the benefits of non-motorized modes
such as walking and cycling leads to underinvestment in infrastructure for alternatives
(Litman, 2003).

In recent years, there has been a greater push to quantify the external costs
of transportation. The results show that there are significant monetary and non-
monetary costs associated with motor-vehicle use in terms of infrastructure as well
as environmental and social impacts (Murphy & Delucchi, 1998; Delucchi, 2007).
The magnitude of environmental externalities may be large in some cases (Wadhwa
& Wirasinghe, 2003), and the value of accounting for the full costs in designing
transportation systems and deciding how to allocate road space to modes is now
being recognized (Currie et al., 2007). Chester & Horvath (2009) present work to
quantify the full life-cycle environmental impacts of passenger transportation modes
and represent an example of the type of environmental accounting that should be
considered.

One dimension of cost that has received considerable attention in the literature
is time. Just as individuals have a budget of money from which they can choose
how much to spend on various goods and services, DeSerpa (1971) points out that
activities require time as well, and everyone ultimately has a time budget of 24 hours
per day to use for sleep, activities, and the travel in between. This idea has been
extended to consider the amount of time an individual must work in order to afford
the resources to pay for travel. As far back as the mid 19th century, Thoreau claimed
in Walden (1854) that “the swiftest traveller is he who goes afoot” when the time that
a person must work to purchase a train ticket is included in the calculation of speed.1

This phenomenon has been called time pollution (Whitelegg, 1993) and describes the
idea that the technologies designed to save time are sustained by resources which take
time to acquire.

1In his essay Energy and Equity, Illich (1974) argued with rough calculations that the average
American man spends a quarter of his waking hours driving, maintaining, and working to pay for
his car. If this time is included in the calculation of speed, travel by car would be no faster than by
bicycle.
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Typically, in order to account for the costs and benefits of a project a generalized
cost in monetary units is considered. This requires time expenditures to be converted
to money by a value of time. Studies to estimate value of time span decades (Beesley,
1965; McKean et al., 1995; Hensher, 2001), but this value can differ greatly from
person to person, and using a single value can be problematic (Daganzo, 1997). Fur-
thermore, value of time is not observable, so it can only be estimated with imperfect
information (Sharp, 1967). Therefore, the selection of a value of time for computing
generalized costs always carries a bias, so the value of time should be treated more like
a policy variable than a physical parameter to be estimated. This supports the notion
that costs in different dimensions should be accounted separately before determining
politically how they should be compared and traded off against one another.

1.2.3 Connecting Transportation and City Structure

So far, we have looked at how accessibility is quantified and how transportation
systems influence the cost and city space required to provide this accessibility. But
the performance of the transportation system itself influences the structure of the
city it serves. The connection between land use and transportation is the subject
of extensive empirical research. Pushkarev & Zupan (1977) account for the costs of
transportation systems, acknowledging that land use and city structure are important
factors in determining mode costs. Studies of the cost of developing new rail transit
systems in North America tend to claim that not enough people will use the systems to
make them cost effective (Pickrell, 1985). This boils down to the inherent connection
between city structure and transportation, because the density of travel demand in a
city will affect the cost at which trips can be served.

To investigate the aggregate impact of land use on transportation, Kenworthy &
Laube (1999, 2001) collect data characterizing cities in terms of population density
and income, transportation infrastructure, and the performance of the transportation
system. They identify empirical relationships which support the notion that cities
are physical systems that behave with consistency. Laube et al. (1999) use empirical
evidence to argue that urban mobility can be described systematically as a conse-
quence of urban form and transportation infrastructure. More recently, Cameron
et al. (2003) use dimensional analysis to look for physical relationships between the
values describing city structure and transportation performance. The strength of
this empirical work is that it is focused on physical dimensions that have universal
meaning. However, the models are constructed to describe the data collected and are
therefore missing a theory to describe the underlying physical connections in a way
that demonstrates causal relationships.

Disagreements about how cities should be developed and served by transportation
underscore the need for an understanding of how these factors relate to accessibility.
While Newman & Kenworthy (1989) argue that denser cities operate more efficient
transportation systems, others conclude that the market chooses to develop at low
densities and that this is more efficiently served by private automobiles (Gordon &
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Richardson, 1997; Levinson, 1998). Disputes about the most desirable form of city
structure ultimately depend on the objective, which in the end must be determined
politically and not academically. Harris (1967) notes that optimizing cities is prob-
lematic because there are multiple competing objectives and how these should be
balanced against one another depends on policy goals which will differ from person to
person and place to place around the world. Therefore, models of city structure and
transportation should present each of the costs associated with providing accessibility
separately. Then the choice of how to design transportation to serve cities can be
made transparently based on the policy goals of decision makers. This will be the
approach taken in this thesis.

1.2.4 Single Mode Systems

Systems of single modes are well understood at the level of a single road. Recent work
has advanced our understanding of urban networks serving single modes, particularly
our ability to model the dynamics of traffic congestion on networks serving cars.

Single Roads

There is an extensive body of literature on traffic operations and congestion on in-
dividual roads. Queues develop at bottlenecks when the arriving demand of vehicles
exceeds the capacity, and the dynamics of this system can be modeled with kine-
matic wave theory (Lighthill & Whitham, 1955; Richards, 1956) and queuing theory
(Newell, 1971). These methods describe the dynamic nature of car traffic on a road,
and thus can be used to model the evolution of queues over time in response to
exogenous demand.

Economic models have also been developed to model the user equilibrium and
system optimum travel patterns accounting for the dynamics of congestion at a bot-
tleneck. The morning commute problem for a single mode was introduced in Vickrey
(1969) which considers a population of car commuters who must use a single route
with a fixed capacity bottleneck to get to work at a desired time. When the demand
exceeds the capacity of the bottleneck it is not possible for everyone to travel on time,
so each commuter chooses when to travel in order to minimize the sum of his or her
own cost of travel, delay, and penalty associated with schedule deviation. A unique
user equilibrium exists even for a population with a general distribution of wished
departure times (Hendrickson & Kocur, 1981; Smith, 1984; Daganzo, 1985).

The bottleneck model of the morning commute has been studied extensively for
the case where all commuters are identical and wish to depart the bottleneck at a com-
mon time. For example, Arnott et al. (1990b) proposes an optimal time-dependent
pricing scheme (or fine toll) to eliminate the equilibrium queuing delay. Related work
investigates a system with elastic demand (Arnott et al., 1993).
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Urban Networks

Economic models have been applied to study the allocation of urban space to devel-
opment and transportation. This body of work is based on Alonso (1964) which looks
at the trade-off between land rents and the cost of transportation to access a central
business district. Recognizing that transportation infrastructure requires space itself,
Solow & Vickrey (1971) analyze traffic patterns in an idealized linear city to find an
economic equilibrium allocation of space to balance land value and congestion costs.
These models have been developed to identify the costs and externalities of trans-
portation (Solow, 1972, 1973; Wheaton, 1998) and identify equilibrium and optimum
urban land use patterns (Anas et al., 1998; Anas & Xu, 1999; Rossi-Hansberg, 2004).

Urban economic studies on the allocation of space are important in recognizing
that transportation competes with other land uses for urban space. However, eco-
nomic literature overlooks the fact that while transportation infrastructure takes up
space, so do the vehicles themselves. By assuming that the speed of traffic at a loca-
tion on the network is a function only of the flows at that location, the spillover effects
responsible for traffic congestion in cities are ignored. Lago (2003) shows that using
these models with and without spillover effects can lead to very different conclusions.

Recent advances have been made in modeling urban networks that serve cars, ac-
counting for realistic traffic physics. It has been shown both theoretically (Daganzo
& Geroliminis, 2008) and empirically (Geroliminis & Daganzo, 2008) that there is a
consistent relationship between the average vehicle flow on a network and the aver-
age vehicle density. This relationship is called the Macroscopic Fundamental Diagram
(MFD). The MFD has a strong advantage over more disaggregate approaches to mod-
eling traffic networks, because this relationship depends only on the characteristics of
the network and is insensitive to the details of the origin-destination tables which are
difficult if not impossible to attain. Although the current theory only considers one
mode at the city scale, the MFD connects the physical road space to performance of
the transportation system based on realistic physics of urban traffic and congestion.
This serves as an important spring-board to build a connection between the allocation
of space to transport modes in cities.

If the average length of trips on a network is not changing over time, then the
MFD defines the rate at which trips can exit the network as a function of the vehicle
accumulation in the network (Daganzo, 2007). The rate that cars exit the network is
analogous to the discharge flow at a bottleneck, and since the network capacity de-
pends on the number of vehicles in the system, a network can often be macroscopically
modeled as a single bottleneck with state-dependent capacity. The network capacity
is a function of the number of vehicles in the network and decreases as queues grow
on the streets. The congestion resulting from this reduced capacity has been called
hypercongestion (Small & Chu, 2003).

Although the morning commute problem has been studied for very simple net-
works of parallel routes between an origin and destination (Arnott et al., 1990a), an
important extension of the bottleneck model is the morning commute problem on ur-
ban networks where origins and destinations are distributed across space. Geroliminis
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& Levinson (2009) employs a macroscopic method to analyze the user equilibrium and
examine pricing strategies for the morning commute problem in a city with a single
mode (cars).

The analysis of transportation systems at the network level has not been exclu-
sively focused on cars. There is also a body of literature looking at how public transit
networks should be structured and operated. A macroscopic approach to model tran-
sit system structure was adopted to consider how the design of a transit system affects
the costs for users and agencies (Holroyd, 1967; Newell, 1979; Daganzo, 2010). Al-
though strictly speaking Wirasinghe et al. (1977) considers the design of a system
with trains and buses, these are part of a single transit system.

1.2.5 Multiple Modes

The literature on multimodal transportation systems is not as developed as for a
single mode. It has long been recognized that some modes use road space more
efficiently than others. Navarro et al. (1985), for example, compares the space per
person required by non-motorized modes with automobiles and buses in an urban
environment. There are more detailed studies that evaluate traffic operations and
the economics of single roads serving multiple modes. However, the existing work at
the network level is limited to urban economic studies, which use static traffic models
that do not correctly account for the spatial requirements of transport modes.

Single Road

Studies since Sparks & May (1971) have evaluated the effectiveness of priority lanes
for high occupancy vehicles (HOVs) to move people rather vehicles. More recent
work has brought this analysis into the urban environment to compare alternatives
for dedicating urban road space to HOVs or buses. There are varying degrees to which
space can be shared or separated by mode based on the range of vehicle types allowed
to use a lane (Black et al., 1992). Currie et al. (2004) promote the idea of full cost
accounting for deciding whether or not to dedicate road space to transit service. These
detailed comparisons are site-specific and based on disaggregated microsimulation, so
they cannot be scaled-up to look at the performance of the transportation system
across entire neighborhoods or cities. An exception to this is Eichler & Daganzo
(2006) which looks at how a lane can be dedicated intermittently to allocate space
to buses only when dedicated space is needed to serve them. This work is based on
traffic theory that can be applied generally, and it effectively shows how a non-integer
number of lanes can be dedicated to a transport mode.

Economic models for single roads serving multiple modes, such as Mohring (1979),
are still being extended (Arnott & Yan, 2000; Ahn, 2009). Like the static models
described for a single mode, these do not consider the physical evolution of congestion
over time and therefore collapse the dynamics out of the problem.

The morning commute problem, which is dynamic, has been studied for systems
with cars and transit to identify equilibrium patterns and optimal pricing schemes
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(Tabuchi, 1993; Braid, 1996; Huang, 2000; Danielis & Marcucci, 2002). This work
has been limited in two main ways. First, commuters have been assumed to share an
identical desired bottleneck departure time, and second, only unrealistically simple
families of transit mode cost functions have been considered. Existing models, for
example, do not recognize that transit operations reduce the remaining capacity for
cars, and the frequency of real transit service is adapted to the number of transit
riders. Furthermore, unlike the case of the single bottleneck with distributed demand,
the literature does not provide a system optimum solution with two modes, and
whether it can be achieved with pricing.

Urban Network

Detailed, disaggregate models of multi-modal networks (Ferrari, 1999; Li et al., 2007)
suffer from the same drawbacks as disaggregate models of single mode networks. The
economics literature has long recognized that multiple modes can be used on city
streets (Sharp, 1967), and this work is still being extended (Mogridge, 1997; Kitamura
et al., 1999; Ferrari, 2005). A weakness of the economic literature for multiple modes
in networks is that the models are static, and therefore cannot recognize the inherently
dynamic nature of traffic conditions on urban networks.

1.3 Research Contribution

The literature review shows that extensive work has been done to understand the costs
associated with the transportation systems we use to provide accessibility in cities.
Traffic operations and the economics of single mode systems are well understood at
the level of a single road, and recent advances have been made in modeling urban
networks with a single mode. Tools now exist to look at cities with single modes in
a macroscopic way, recognizing the spatial requirements of vehicles and the dynamic
nature of transportation on urban networks. However, the literature on multimodal
systems is either limited to looking at individual roads or does not account for the
dynamic nature of traffic congestion.

Cities are complex and chaotic systems. Much of the work on transportation sys-
tems in cities is site-specific, but there is value in understanding the basic underlying
relationships that apply to all cities and all transport modes in general. The road
space in real cities can be used by multiple modes. No work puts together all the
pieces to describe the systematic physical relationships that connect city structure,
transportation, and the resulting costs of providing access. This must be done with
recognition that vehicles themselves require space. What is needed is a theory of
urban physics which relates the costs of multimodal transportation systems to the
structure of cities.

The contribution of this dissertation is in advancing the understanding of urban
networks with multiple modes. This is done using macroscopic models with correct
physics which allow us to recognize that vehicles require space. This macroscopic
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approach can be used to to develop functions describing the various costs and spatial
requirements of any mode operating in isolation.

The research method is to start by analyzing the physics of the simplest case before
complicating the model by relaxing assumptions. Even an idealized model provides
insights for how the costs of transport systems depend on the characteristics of a city.
As a building block, it is shown how modes should operate together in an idealized
city with constant demand that does not vary with time. Then, more realistic cities
in which the demand is peaked in time are considered in order to incorporate the
dynamics of transportation operations in an urban network.

The results of this research are normative models for how road space should be al-
located to different modes, and how these modes should be priced in order to minimize
the total system cost of providing accessibility in cities.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 presents the methodology for
relating the costs and spatial requirements of individual modes to city structure.
Chapter 3 shows how total system costs are minimized in idealized cities with con-
stant (time-independent) demand, focusing on two modes: cars and transit. Then, the
analysis is extended to the more realistic case of cities with peaked (time-dependent)
demand. Chapter 4 presents the evening commute in which the start time of trips is
determined exogenously, and commuters can choose their mode. Chapter 5 presents
the morning commute in which both the mode and travel time are chosen by com-
muters. First, the morning commute problem is presented for a single bottleneck
that can serve two modes with demand that is distributed over time. Then, it is
shown how the results for the single bottleneck apply to networks. Pricing strategies
to obtain system optimum allocation of space and use of modes are discussed in each
chapter. Finally, Chapter 6 includes a summary of contributions, conclusions, and
some directions for future work.
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Chapter 2

City and Transport Cost Models

Cities are complex and intricate systems which are impossible to model in perfect
detail. The approach taken in this dissertation is to look at cities and their trans-
portation systems at a macroscopic level. Rather than trying to capture the detailed
patterns of land use and the fine geometry of the transportation network, we will look
instead at aggregated, neighborhood-level, characteristics. The two primary charac-
teristics of city structure which are the focus of study in this dissertation are the
demand density and the available road space for transportation.

A city viewed through this macroscopic lens resembles a flattened plane in which
the population, demand patterns, and transportation infrastructure appear the same
everywhere. This aggregate approach provides a clean look at the character of dif-
ferent cities and transportation systems. From this perspective, we may treat a city
in an idealized way as if it were made up of identical individuals (e.g., same value of
time, trip length) distributed uniformly across space and served by a road network
that is a dense uniform grid. As a starting point, we consider a city that has constant
demand over time. This assumption is relaxed in the subsequent chapters.

This chapter presents the methodology for using a macroscopic approach to model
transport costs. Section 2.1 describes the core elements of city structure that deter-
mine transport costs. Section 2.2 presents the macroscopic model used to relate road
space to the performance of the transportation system. Then, Section 2.3 lays out
the basic structure for modeling the costs associated with any transport mode. Indi-
vidual and public transit mode cost functions are described in Section 2.4. Finally,
Section 2.5 assembles the assumptions and models described in the preceding sec-
tions to present the methodology for combining costs which is used in the remaining
chapters of this dissertation.

2.1 City Structure

City structure describes how space in cities is used. Urban space is allocated to many
different types of uses. For example land can be developed with structures where
people are housed or employed, or it can be kept open as parks and other green
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space. The patterns of land use are important determinants of the costs associated
with transportation systems. Two characteristics of city structure are particularly
important in determining the costs of transport systems: demand density and avail-
able road space. The city structure also affects the character of the demand, such as
the length of trips made.

2.1.1 Demand Density and Road Space

Urban development consists of housing for residents (origins) and the activities and
opportunities they access (destinations). The demand for travel per unit area of city λ
(trips/m2·sec) is based on the overall population density D (ppl/m2) and the average
rate at which each person makes trips δ (trips/ppl·sec):

λ = Dδ. (2.1)

At the macroscopic level, we are not concerned with the details of each origin desti-
nation pair. Instead, we will assume that each of the trips making up λ have similar
characteristics and are distributed uniformly across space so that the city is transla-
tionally symmetric.

Land which is developed with buildings or left open as green space varies for
different types of cities. The area in a city that remains available for roads (if needed)
per area of city is described by R (white area in Figure 2.1). This road space for
moving vehicles may take up a significant amount of the surface area in cities. On
Manhattan’s Upper West Side, over one third of the surface space is devoted to
streets. The road space per person, however, is much less than in suburban Pleasant
Hill, California. The demand for travel must be served within the available road space
or with modes like subways which do not operate at the surface.

A significantly greater amount of space is often dedicated to parking in cities.
With the exception of curb parking which could be eliminated to add an extra lane
for moving traffic, most parking is provided off-street in garages or parking lots. This
space is another characteristic of city structure, but it will not be a focus of analysis
in this dissertation.

2.1.2 Accessibility and Trip Length

The purpose of the transportation system is to provide accessibility for the residents
of a city. The accessible number of opportunities associated with a trip length d is
affected by the city structure. Each trip is associated with a reachable area a which
is proportional to d2. The reachable area is important, because opportunities are
scattered across the area of a city, so the accessibility associated with d is the total
number of opportunities located within this area. The shape and size of the reachable
area depends on the network geometry, and for a flat city with a dense grid, the area
is a diamond (see Figure 2.2) where a = 2d2.

The average reachable area ā depends on the distribution of the lengths of indi-
vidual trips. If the trip lengths follow a single-parameter distribution, then E(d2) is
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Pleasant Hill, California

D = 2,300 ppl
km2

R = 0.11 m2

m2

North Berkeley, California

D = 5,900 ppl
km2

R = 0.20 m2

m2

Mission District, San Francisco, California

D = 16,400 ppl
km2

R = 0.26 m2

m2

Upper West Side, New York, New York

D = 64,000 ppl
km2

R = 0.35 m2

m2

Figure 2.1. Examples of population density, D, and road space per unit area,
R, in four neighborhoods (Source: Microsoft Virtual Earth, 2009)
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Figure 2.2. Diamond-shaped area reached by making a trip up to length d on a dense,
orthogonal grid network

proportional to E(d)2, where the average trip length is E(d) = d̄. They are related by
a factor of 2 for a negative exponential distribution or 4/3 for a uniform distribution.

In order to translate the reachable area into an expression for accessibility, the
distribution of opportunities over space can be expressed as a density. Cities can
be characterized by densities of jobs, schools, hospitals, or any other opportunity of
interest. Using population as a proxy for opportunities, the cumulative number of
opportunities that can be reached within a trip length d is the product of ā and D.
The average accessibility per trip, A (reachable opportunities), is:

A = Dκd̄2 (2.2)

where κ is a dimensionless constant including the constant that relates a to d2 based on
network geometry and a factor which relates E(d2) to E(d)2 based on the distribution
of trip lengths. The value of κ may also include a constant describing the number
of opportunities per population (e.g., jobs per population). This physical definition
shows how the cumulative opportunity measure of accessibility is related to the city
structure and length of trips. From this point on, we will consider trip length as a
parameter of the demand, because minimizing the cost of serving trips of length d is
the same as minimizing the costs of providing accessibility A.

2.2 Traffic on Urban Networks

Now that we have described the road space available for surface transportation, R,
as a property of city structure, let us look at how R relates to the performance of
the street network. Just as a macroscopic approach can be used to look at city
structure, traffic on urban streets is modeled macroscopically. This method allows us
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to recognize that all vehicles that use the streets require space. First, the performance
of a street network serving only cars is described. Then, a way to model networks
serving multiple modes is presented.

2.2.1 Macroscopic Fundamental Diagram

Traffic on individual city streets is chaotic and unpredictable, and to model these
streets microscopically requires huge data collection. Recent work suggests that there
is a consistent relationship between the average network vehicle density and average
network flow called a Macroscopic Fundamental Diagram (MFD) (Geroliminis & Da-
ganzo, 2008). This relationship is a property of the network and does not depend on
the demand pattern.

Figure 2.3 shows macroscopic traffic data from measurements in Yokohama and
simulations of San Francisco and Nairobi. Symbols indicate different cities (squares
are Yokohama, diamonds are San Francisco, and circles are Nairobi), and different
shades represent different days. In the simulations of San Francisco and Nairobi,
dramatically different origin-destination tables were used for the different simulation
scenarios shown, yet the macroscopic relationships remain robust. Note that the
macroscopic data for each of these three cities is plotted on axes which are normalized
to control for network size. The MFD shows the average flow and density per lane
on the network. Clearly, different network structures across different cities can create
very different traffic outcomes.

0 0.02 0.04 0.06 0.08 0.1
0

0.025

0.05
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0.1
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0.15

Yokohama, Japan

San Francisco, USA

Nairobi,
Kenya

k

q
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lane∙m(       )
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lane∙sec(       )
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Network
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Figure 2.3. Experimental Macroscopic Fundamental Diagrams (MFDs) from measure-
ment in Yokohama (Geroliminis & Daganzo, 2008) and simulations in San Francisco
(Geroliminis & Daganzo, 2007) and Nairobi (Gonzales et al., 2011)
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If the street network is redundant, homogeneous, uniformly loaded, and minimally
affected by turning vehicles, Daganzo & Geroliminis (2008) shows how the MFD
can be predicted analytically using variational theory.1 This analytical MFD is a
concave function Q(k) that provides an upper bound for the average network flow,
q (veh/sec·lane), associated with any average network density, k (veh/lane·m). A
generic concave MFD is illustrated in Figure 2.4.

q veh
lane∙sec(       )

k veh
lane∙m(      )

Μqm

k*

vm

Q(k)

Figure 2.4. A generic concave Macroscopic Fundamental Diagram (MFD)

The maximum network flow qm (at point M in Figure 2.4) consistently occurs at
the same critical vehicle density k∗ regardless of the demand pattern. This is verified
by observation of Figure 2.3, especially for Yokohama and San Francisco which have
consistent peaks. If the goal is to maximize mobility, then this is done by maximizing
the network flow. Any flow below qm is associated with two densities; one less than
k∗, the other greater. Traffic states to the right of M (dashed line in Figure 2.4) are
congested because the same flows could be served to the left of M with fewer cars
on the road. Therefore, a well-managed network should never allow the density to
exceed k∗.

The average network speed for a traffic state, including stops for traffic signals
and queuing, is represented on the MFD as the slope from the origin to the traffic
state. For example, the average speed at which the vehicle can traverse the network
when the flow is maximized, vm, is given by:

vm =
qm
k∗
. (2.3)

Since congested traffic states serve the same traffic flow with greater vehicle density,
they are also associated with slower speeds.

1The shape of the analytical MFD depends on the average block length, signal phasing and offsets,
maximum discharge rate per lane, free flow speed of vehicles, and the jam density for a single lane.
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2.2.2 Vehicle Footprints

Every vehicle requires road space to move efficiently through the city. This footprint
of required space can be thought of as the area of road that must be rented for the
duration of a trip in order for a vehicle to move on the network. Thus, the footprint
has components of physical area and time.

For cars, the area component is described by the lane width, w, and the average
spacing of vehicles, which is the inverse of the vehicle density. According to the
MFD, this area is w/k∗ at maximum network flow (point M in Figure 2.4). The time
component is the duration of a trip, tm, because the area required by a car is occupied
for this time. The footprint, r, is given by:

r =
wtm
k∗c

(2.4)

where c is the number of trips per car, or the car’s passenger occupancy. Note that
the area required for a car to move is much greater than its physical dimensions.2

The travel time is determined by dividing the length of a trip, d, by vm. If the
length of a trip is taken into account, the critical vehicle density and speed can be
removed from (2.4) by substituting (2.3), and the footprint is:

r =
wd

qmc
. (2.5)

Clearly, the footprint is minimized when the flow on the network is maximized. Every
other feasible network flow is associated with either a low-density uncongested traffic
state or a high-density congested state. Both require the same road space per vehicle
because the smaller area associated with greater density is paired with longer trip
durations due to slower speeds. Congestion is a suboptimal use of space, and it is
doubly wasteful by imparting delays.

If we assume that the block length and signal phasing for a network are fixed,
then the same MFD should apply if the size of the network is increased uniformly
(e.g., by widening all roads). Based on the individual footprints expressed by (2.5),
the minimum road space, R (as defined in Section 2.1.1), to serve demand λ with cars
is:

R = λr =
λwd

qmc
. (2.6)

This expression could also be manipulated to identify the maximum λ that can be
served with a given R.

The MFD approach applies to individual modes like cars, but public transit sys-
tems also require space. Since a transit system can be centrally controlled by an
operating agency, its footprint depends on how the agency chooses to provide service.
This relationship is described in greater detail in Section 2.4.3.

2For example, if San Francisco has lane widths of 3 m, then a car requires about 100 m2 of road
to move (k∗ ≈ 0.03 veh/lane·m from Figure 2.3). This is substantially greater than the 10 m2 size
that the car itself occupies.
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2.2.3 Network Exit Function and Multimodal Networks

The MFD reveals the footprint of street space required by cars when traffic is in a
steady state, but it can also be used to model the dynamics of traffic conditions in
a network if demand is changing over time. When the average trip length is fixed,
the MFD defines a consistent function relating the number of cars in the network
to the discharge flow of cars exiting the network (Daganzo, 2007; Geroliminis &
Daganzo, 2008). We call this second relationship the Network Exit Function (NEF).
This relationship describes the state-dependent discharge rate from a network as a
function of the number of vehicles in the network.

A generic concave MFD (as shown in Figure 2.4) describes the average network
flow q = Q(k) for all possible vehicle densities. Daganzo (2007) shows that the MFD
can be used to derive the NEF which expresses the flow of cars exiting the network,
f (veh/sec), as a function of the total number of vehicles circulating in the network,
n (veh):

f = F (n) =
l

d
Q
(n
l

)
(2.7)

where l (lane·m) is the total length of the network. Note that the exit function,
F (n), is simply a rescaling of the MFD, Q(k), to account for the size of the network
and length of trips (see the bold curve in Figure 2.5). We will study this system
assuming that the instantaneous exit flow depends only on the number of vehicles in
the network at that time.3

f veh
sec(    )

n (veh)

Μfm

nm

vm
d F(n)

F(n)˜

Μ̃

Figure 2.5. A generic concave Network Exit Function (NEF).

The maximum feasible exit flow is associated with point M in Figure 2.5. The
duration of trips of length d, tm, is the reciprocal of the slope from the origin to the
traffic state on the NEF, vm/d. This is analogous to the slope on the MFD which
represents traffic speed.

3This assumption holds when traffic is in a steady state. Transitions between steady states are
not instantaneous but have durations comparable to a trip time (Daganzo, 2007). The effect of these
transitions is small if the traffic conditions change slowly.
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In reality, transit services often share the same street space as other vehicles, so
deploying buses will reduce the remaining capacity available for cars. If road space
is dedicated to transit uniformly across the network, the effect should be the same
as reducing the network size for cars to α < 1 times the original network length.
For fully dedicated transit lanes, α will be directly related to the length of lanes
from which cars are banned, reducing the network length for cars from l to αl. For
buses and trams operating in mixed traffic lanes, α must account for the losses due
to conflicts between the different types of vehicles. The result is that the capacity of
each individual street to serve cars is reduced to an average of α times its original.

Since the change in network size is uniform and none of the other determinants
of network capacity have been altered, the MFD as described by Q(k) should remain
unchanged. However, the NEF for cars when transit is operated, F̃ (n), is scaled by
α. So from (2.7),

F̃ (n) =
αl

d
Q
( n
αl

)
(2.8)

which is shown in Figure 2.5. Note that the point M associated with the maximum
exit flow moves along the ray with slope vm/d towards the origin (to point M̃) so the
travel time per trip associated with maximum exit flow does not change.

The NEF describes how the size of the street network relates to the rate that car
trips can be served. In a multimodal network where modes are deployed efficiently
and independently, the footprint associated with one mode is not affected by the
operations of another. In this way, multimodal systems can be modeled by accounting
for each mode in isolation as is described in Section 2.4. Their costs can then be
combined as described in Section 2.5.

2.3 General Cost Model

There are many types of costs associated with transportation systems, and these
depend on the structure of the city, the characteristics of the demand, and the prop-
erties of the transport modes used. Section 2.3.1 presents a general methodology for
building cost functions based on the physical relationships between mode and trip
characteristics. Section 2.3.2 discusses how these costs can be combined into gener-
alized cost functions or held as constraints, depending on the policy objectives of a
city.

2.3.1 Physical Components and Costs

Any trip from an origin to a destination can be broken down into a series of segments
which depend on the mode used (see Figure 2.6). For example, a trip from home to
work using a bus system requires an access segment to get from home to the bus stop,
some time waiting for the vehicle to arrive, some time riding in the vehicle, and then
an egress segment after alighting the bus to reach the destination. If the trip involves
a transfer, there may be additional access, waiting, and in-vehicle segments.
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Figure 2.6. Structure of the cost model

Each of these segments is associated with unavoidable physical components which
depend on the mode used. A trip by any mode requires the user to spend travel time,
and a vehicle must be owned and stored for some time and operated over distance.
The vehicle also occupies a footprint of road space on the network. Vehicles while not
in-use require parking infrastructure to store them, and whether or not the vehicle is
in use, there are resources and costs associated with manufacturing and owning the
vehicle that can be amortized over time.

Each of these physical components are associated with costs which can be broadly
categorized as time, money, externalities, and space. Each of these costs have different
physical units, but they can all be related analytically to how modes are deployed
to serve demand. Since combining these costs into generalized cost functions embeds
policy decisions in the analysis, we start by building functions for each type of cost
individually.

Time

Every mode of transportation requires time to traverse distance. The time required
to make a trip is more than just the time moving in-vehicle. The door-to-door trip
time using any mode can be broken into component parts: access time, waiting time
(in the case of scheduled modes), and time moving toward the destination. The time
cost, TZ , is the sum of all the components of travel time.

Money

Transportation modes also require financial resources to operate. The money cost
per trip includes cost of vehicles per time including vehicle purchase and insurance,
ct, cost of mode operation per distance including fuel and maintenance, cd, and cost
of required paved infrastructure, ci. These unit costs are mode-specific and apply to
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the various physical components to make up the monetary cost:

MZ = ctVt + cdVd + ci(R +Rp) (2.9)

where Vt is the vehicle hours of ownership, Vd is the vehicle distance traveled, R is the
road space required for moving trips, and Rp is the space required for parked vehicles.
While the physical components are basic properties of the mode, the cost coefficients
may vary across different parts of the world as the availability of resources and the
costs of doing business vary.

Some of the monetary costs are paid directly by the user proportionally to how
much they travel (e.g., gasoline to travel by car) while other costs are incurred by
public institutions which receive funding from taxes paid by everyone (e.g., construc-
tion and maintenance of streets and sidewalks). It is important not to double count,
so monetary costs such as bridge tolls or transit fares will not be counted as mode
costs in our analysis because these are politically determined transfers between users
and institutional providers which do not affect the total system cost of transportation.
The costs incurred by users, however, will likely affect the modes people use to travel,
so pricing can be used as a mechanism to achieve optimal use of the transportation
system.

Externalities

Externalities are the broadest category of costs associated with transportation and
include many environmental impacts but can be extended to consider such aspects
as safety and human health outcomes. Travel time itself is not directly responsible
for external costs, but vehicle operations and paved infrastructure are connected to
the consumption of energy and emissions of pollutants, for example. The energy
consumption is roughly proportional to the emission of greenhouse gases, particulate
matter and other pollutants.

A simplistic model of how these relate to the transportation system is similar to
the expression for monetary costs:

EZ = etVt + edVd + ei(R +Rp) (2.10)

where et, ed, and ei are mode-specific coefficients describing how the external costs
of interest relate to the vehicle use and infrastructure requirements. Although this
research is not focused on conducting life-cycle analysis of transportation, policy
decisions can be made taking into account environmental effects by counting these as
yet another dimension of cost.

Space

As described in Section 2.2, moving vehicles need space on streets to operate. The
required space for moving vehicles, R, is the aggregation of footprints associated with
all trips in the city.
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2.3.2 Generalized Cost Functions and Constraints

Each of the costs associated with the transportation system (right column of Fig-
ure 2.6) may be combined in generalized cost functions or held as constraints, de-
pending on the policy objectives of a city. There are many ways to do this. In this
dissertation, we will focus on the problem of minimizing the generalized system cost
Z which includes time, money, and externalities, subject to constrained road space
R. This type of problem may be of interest to a city which is already built, and where
streets cannot be easily widened.

The generalized cost requires converting all costs into the same units. If Z is
expressed in units of time (per area and time of analysis), then:

Z = TZ +
1

β
MZ +

γ

β
EZ (2.11)

where TZ is the time cost, MZ is the monetary cost, EZ is the externality of interest
(for concreteness we will focus on greenhouse gas emissions), and β and γ are politi-
cally determined parameters to relate different types of cost. Using generalized cost in
units of time will be useful in later discussions of pricing. It is common in economics
literature to relate time and money by a value of time β which may be expected to
increase with wealth. Recently there have been efforts to put a price on carbon, γ,
and although it is difficult to do this on a scientific basis, this is already being done
as a policy.4 Then, the costs are structured in a way that can be minimized subject
to a maximum road space requirement, R.

The methods used to study this particular optimization problem can be applied
to any other formulation of generalized costs and constraints. An alternative, for
example, may be to minimize the costs subject to a maximum quantity of greenhouse
gas emissions. Such a formulation will have a similar structure mathematically, and
could be used to identify ways to meet greenhouse gas emission targets.

2.4 Comparing Modes in Isolation

Before modeling jointly deployed transport modes in cities, cost models for modes
operating in isolation are constructed using the methodology proposed in Section 2.3.
As discussed at the beginning of this chapter, the macroscopic approach adopted for
modeling cities and transportation systems is consistent with the idea of an idealized
city which is completely uniform and symmetric.

As a starting point, we look at the costs of transportation in cities which are time-
independent (demand is constant over time). The cost models for each mode are built
on the assumptions that demand and the transportation network are uniformly dis-
tributed over space, modes operate independently (vehicle footprints are independent

4The Chicago Climate Exchange trades carbon futures based on the cost of carbon off-set pro-
grams, and carbon taxes are beginning to be implemented. However, there is an enormous range
of estimates for the marginal social cost of greenhouse gas emissions ranging from 5–155 $/tCO2-eq
(IPCC, 2007).
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of other mode operations), and efficiently (traffic flows are served without congestion
and transit is optimized to minimize system costs). Under these assumptions, the
minimum possible costs associated with each transport mode are identified. By for-
mulating costs in this way, we are looking at the least possible costs for each mode
to serve uniform demand.

Modes are classified as either individual (private) or collective (public transit),
and the fundamental physical components are modeled according to the way vehicles
perform. The associated costs are presented here on a per trip basis but could also be
determined on a total system-wide basis if costs are multiplied by the total number
of trips. Although the approach is generic and any mode can be modeled, the focus
will be on comparing two specific cases: cars and a bus transit system.

2.4.1 Individual Modes: Cost Components

Individual modes are those for which people travel at the time of their own choosing
and using their own vehicle. This includes modes such as walk, bicycle, or car. All
modes require the passenger’s time for travel as well as road space to provide mobility.
Except for walking, a vehicle is also associated with travel and must be used for
the duration of the trip. First, we identify the physical components related to the
operating characteristics of these modes. Then, these components are associated with
costs which make up the generalized cost function and road space requirement.

Travel Time

Each trip using an individual mode begins with an access segment from the origin
to where the vehicle is parked followed by the travel time spent in-vehicle and finally
ends with an egress segment from the parked vehicle to the destination. The access
is typically by walking, but the formulation below is general to any access mode. The
total travel time required per trip is the sum of access and in-vehicle time:

T̄ = ta +
d

vm
(2.12)

where ta is the time required to access the vehicle at the beginning and egress at the
end of a trip.

Vehicles

With the exception of walking (in which case the vehicle is the human body itself) a
vehicle must be purchased or rented. If each trip is associated with ψ vehicle hours
(when in use and parked), then

V̄t = ψ (2.13)

which has units of vehicle time per trip. This term will be used to prorate fixed costs
associated with vehicle production and ownership across trips.
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Additionally, vehicles are used to traverse distance, and the length of each trip d
represents the vehicle distance traveled.

V̄d = d (2.14)

This term relates to variable costs that are associated with the vehicle distance per
trip.

Road Space

As described in Section 2.2.2, vehicles such as cars need an area several times the size
of the vehicle in order to move at network capacity. Space is also required for vehicles
to park when they are not moving, and for the access portion of the trip which is
typically walking. The road space required during the trip is the sum of the footprint
for the in-vehicle travel, given by (2.5), and the road space required for access:

R̄ =
wd

qmc
+
wava
qaca

ta, (2.15)

where the subscript a denotes values associated with the access mode: lane width,
wa, average speed, va, lane capacity, qa, occupancy, ca, and access time, ta. The road
space for access is expressed in terms of the time a mode is used.

The minimum space for parked vehicles can be determined from the number of
vehicles per person and the amount of time these vehicles are not being used. A
vehicle is in use for tm each trip, but it must be parked during the remaining time
even when it is not used. Prorating the space for parking to each trip, the minimum
space for parking required per car trip if no space is wasted is:

R̄p =

(
ψ − d

vm

)
rp (2.16)

where rp is the area of a parking spot and the required space for the vehicle to
maneuver in and out of it. This is a very optimistic case, because a flat city with
time-independent demand has no days and nights. In a time-dependent city where
people sleep at night, much more space for parking would be required to park all of
the vehicles simultaneously.

2.4.2 Individual Modes: Generalized Cost

The generalized cost of a trip with an individual mode can be constructed as described
by (2.11) and the components described in the Section 2.4.1. Note that for individual
modes, the travel time, vehicle operation, and minimum space required depends only
on the trip length d and are independent of demand λ. Therefore, the total generalized
cost for all trips is proportional to demand.
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For concreteness, we will focus on a system of cars. Then the total generalized
cost for cars serving car demand λC is:

ZC(λC) = αCλC (2.17)

where αC is a coefficient that includes all of the various parameters and policy vari-
ables described above. The explicit function which describes αC in terms of travel
time, vehicle operation, and footprint is described in detail in Appendix B.

The road space that these car trips require has a similar form. If we are concerned
only with the spatial constraint for moving vehicles, then the road space required per
car trip rC = R̄, as described by (2.15), is:

RC(λC) = rCλC (2.18)

In this dissertation we will suppose that parking space is provided off-street so that
parking does not compete for space with moving traffic. However, the space for
parking is considered in terms of the cost of infrastructure.

2.4.3 Public Transit Modes: Cost Components

While individual modes allow people to travel at the time of their own choice, public
transit modes are collective and require trips to be consolidated in time and space
so that vehicles carry multiple passenger trips. There are many ways to structure
transit services, and any of these structures can be systematically analyzed using the
same methodology employed above.

Suppose that in the uniform city, we are given a demand for transit, λT , which
will be served with a grid bus network. The fewest necessary design parameters for
this system are the route/stop spacing, s, which determines spatial coverage, and
the service headway, H, which determines temporal coverage. The system structure
is illustrated in Figure 2.4.3, and it provides uniform service everywhere in the city
similar to the grid structure proposed in Holroyd (1967).

Travel Time

The travel time for a trip by a transit mode involves three components: access time,
waiting time, and in-vehicle time. Assuming that the demand is uniformly distributed
across space and riders access the nearest station using the dense grid of streets, the
average access time at the beginning and end of the trip combined is:

ta =
s

va
. (2.19)

If travelers must wait half a headway on average for each vehicle they board and
allow an extra headway to be sure they arrive to their appointment at the destination
on time, the total waiting time is:

tw = 2H (2.20)
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Figure 2.7. Structure of a simple 2-dimensional transit system

for a trip with one transfer. If the spacing s � d, and the possible destinations are
uniformly distributed on the frontier of the reachable area, then nearly every trip will
involve a transfer.

The in-vehicle travel time involves modeling the average speed v of the transit
vehicles taking into account the time lost for making stops. The time in-vehicle, tm
is proportional to the pace of a transit vehicle 1/v. This includes the time it takes to
traverse distance at cruising speed vm, the fixed loss time per stop, y, and the time
required per boarding and alighting passenger, x, counted per unit distance:

tm =
d

v
= d

(
1

vm
+
y

s
+
xλT sH

2

)
. (2.21)

The number of boarding and alighting passengers per stop is a consequence of both
s and H.5 For transit services where boarding and alighting is efficient and the loss
time per stop is relatively independent of the number of riders (e.g., systems with
pre-paid fares such as bus rapid transit or metro), x becomes very small, and the last
term becomes insignificant.

The total travel time is the sum of these three components, and substituting

5The number of passenger trips per time served by each stop is λs2, and λs2H are served in each
headway. These passengers are equally likely to travel in any of 4 directions, and each trip involves
2 vehicles because of the transfer. So, the number of passengers boarding and alighting a vehicle at
each stop is 2

4λs
2H.
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(2.19), (2.20), and (2.21) into the expression, we get that

T̄ = ta + tw + tm (2.22)

=
s

va
+ 2H + d

(
1

vm
+
y

s
+
xλT sH

2

)
. (2.23)

So, the travel time on a transit mode is a function of the design parameters, s and
H, and the demand, λT .

Vehicles

The total vehicle hours of transit operations per area-time is simply the expression
for the number of transit vehicles per area, which is 4/sHv.6 Dividing this by the
transit demand and using the average transit speed v implied by (2.21), the vehicle
hours per transit trip is:

V̄t =
4

sHλT

(
1

vm
+
y

s
+
xλT sH

2

)
. (2.24)

The vehicle distance traveled is simply the product of V̄t and the average speed
of a transit vehicle, v:

V̄d =
4

sHλT
. (2.25)

Note that unlike individual modes, the vehicle operations associated with an individ-
ual public transit trip depend on the total transit demand. This is the consequence
of sharing vehicles among multiple trips. Furthermore, since the mode operations
are determined by s and H, the vehicle operations are independent of the length of
individual trips.

Road Space

The footprint of a transit trip is most easily represented by considering the entire
footprint of the transit system and dividing it by the transit demand. Each of the
4/sHv vehicles requires a lane of width w and a clear headway h in order to operate
without disruption from other traffic, so the transit vehicle requires a length of hv
clear lane. The footprint per transit passenger trip is:

R̄ =
4wh

sHλT
+
was

qaca
(2.26)

where the second term is the space required by the access mode following (2.5). In
this case the length of the access trip is s/2 at the beginning and end of the trip, and
this total distance determines the access footprint. For systems where an entire lane

6There are 1/s routes per direction in 4 directions (north, south, east, and west). On each route,
the density of transit vehicles per length of route is 1/Hv.
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is dedicated to transit, the headway for clear transit operations equals the service
headway (h = H).

Transit vehicles also require space to be parked in their maintenance yard. The
required parking space is proportional to the number of transit vehicles:

R̄p =
4

sHλT

(
1

vm
+
y

s
+
xλT sH

2

)
rp (2.27)

where rp is the area required per vehicle. The parking requirements for transit are
very small compared to the requirements for individual modes, but they are included
here for completeness.

2.4.4 Public Transit Modes: Generalized Cost

Just as shown for individual modes, the generalized cost of public transit can be
expressed by combining each of the components described in Section 2.4.3. Each
of these components depends on the demand for transit, λT , and the design of the
system as determined by s and H, so the generalized cost, as defined by (2.11), is a
function, Z(λT , s,H).

An efficiently run transit system should be operated to minimize the total system
costs to serve the demand. Note that Z is a convex function of s and H so the system
can be optimized by setting the first derivative equal to zero. It is straightforward to
determine the optimal headway endogenously by this method, and this is a reasonable
assumption to make because a transit agency can adjust the service headway relatively
easily. Although there is not a simple analytical solution for the optimal route/stop
spacing, the optimal s is insensitive to demand. So, the physical structure of the
transit network is treated as fixed, and this is also reasonable, because it is costly and
difficult for a transit agency to change the alignment of routes across the network after
they are built. Further details on the optimization of the transit mode are presented
in Appendix B.

The general form of the transit cost function for a grid network is given by:

ZT (λT ) = α0 + α1λT +
√
α2λT + α3λ2

T (2.28)

where each α incorporates the various physical components when the headway has
been optimized. The coefficients capture the user cost of travel time and agency costs
of capital, operations, infrastructure investments as they relate to the demand for
transit service. These coefficients capture the cost components as follows:

• α0 is the fixed cost of infrastructure investment which must be paid for any
λT > 0 independent of vehicle operations (e.g., tunneling for metro). This is
only significant when the total system infrastructure footprint is independent
of the service headway.

• α1 incorporates the user costs per trip which are independent of the service
headway, primarily the access time and in-vehicle riding time of customers.
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• α2 captures the cost of transit operations required to provide service at the
optimal headway.

• α3 includes the additional cost of transit operations required to maintain the
optimal headway as a result of boarding and alighting loss time per passenger.

Some of the α values become zero depending on the specific operating conditions.
For example, a Bus Rapid Transit (BRT) system that shares streets with traffic and
has a loss time per stop that is independent of the number of boarding and alighting
passengers has only coefficients of α1 and α2 (see Appendix B).

The road space required for the transit system has a similar structure:

RT = r1λT +
√
r2λT + r3λ2

T (2.29)

where each r is a coefficient of road space and depends on the various physical compo-
nents. Similarly, r3 depends on x and therefore is not significant for modes like BRT.
Detailed expressions for each of the cost and road space components are presented in
Appendix B.

Other transit structures such as radial or hybrid networks can also be modeled
in a similar way (Daganzo, 2010). The important feature of cost functions for public
transit systems are that they typically exhibit economies of scale in that greater
demand reduces the cost per trip. This is expected, because greater demand decreases
the optimal headway so that all users enjoy more frequent service, and the transit
infrastructure and vehicles are shared among more people.

2.4.5 Comparison of Modes

As presented in the previous sections, the generalized costs and spatial requirements of
modes can be modeled based on their physical operating characteristics in a network.
These models show how each mode operates in isolation.

For different types of trips, different modes may be more appropriate than others.
A comparison of individual modes is shown in Figure 2.8 for different trip lengths
and values of time. For short trips, the travel times for slow modes do not amount to
much, so their lower cost makes them competitive. As trips get longer, faster modes
like cars become more competitive even when they are more costly. Transit systems
are a little difficult to compare in this way, because the costs per trip depend on
demand.

The α values in (2.17) and (2.28) depend on characteristics of the trips as de-
scribed in Appendix B and capture the user cost of travel time and agency costs
of capital, operations, and infrastructure investments as they relate to the demand
for transit service. We are interested in cases where transit has the potential to be
cost-competitive with cars (αC > α1 +

√
α3).7 Table 2.1 shows typical values of α

7This occurs whenever the generalized cost of access and in-vehicle riding time for a transit trip
as well as the small contribution of an individual’s boarding and alighting time to vehicle operating
costs is less than the complete generalized cost of a car trip including vehicle depreciation and other
out-of-pocket costs. This condition generally holds unless β or d are very large.
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Figure 2.8. Comparison of individual modes over trip length and value of time showing
which mode provides the minimum generalized cost per trip

for a city where people value time at β and make trips of length d. The values are
expressed in units of money rather than time to avoid confusion in the units between
an hour of cost and an hour of the day. Since there is so much uncertainty in the
appropriate values for γ, environmental externalities have been omitted from these
values. However, the results presented in the following chapters are general, so any
of the values of α can be modified to reflect different relative valuations of costs.

Table 2.1. Cost Coefficients (β = 20 $/hour, d = 3000 m)

Mode βα0 βαC , βα1 β2α2 β2α3

[$/m2·hour] [$/trip] [$2/m2·hour·trip] [$2/trip2]

Walk 16.7
Bicycle 7.01
Car 8.75
Bus 6.27 0.00726 3.65
BRT 6.09 0.0118
Metro 0.00465 6.27 0.00820

Bicycles appear very cost-effective for a wide range of trip lengths and values.
For trips with d = 3000 meters and β = 20 $/hr, Figure 2.8 shows that bicycle is
the most cost effective of the individual modes. This is also verified in Table 2.1.
Bicycles appear so competitive because they are fast and very inexpensive compared
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to motorized modes. However, not everyone is able to use a bicycle, and not every
trip can be served by a bicycle. Furthermore, it is difficult to account for perceived
costs related to inclement weather and fatigue which are associated with bicycle
trips. Therefore, the comparison of modes in the remaining chapters focuses on
cars and transit, because in most developed cities these are the primary modes of
transportation.

Typical values for r are summarized in Table 2.2 where metro requires no surface
road space since lines are built in tunnels. Input parameters used to attain the values
in Tables 2.1 and 2.2 are shown in Table B.2.2. The the combined road space for
moving vehicles and for parking is the sum of the road space functions with the
coefficients from Table 2.2. As explained in Section 2.4.2, road space for parking
is not considered as a spatial constraint in the analysis presented in this thesis so
this would be consistent with using only the coefficients in the “Moving” column.
However, the costs of parking infrastructure are included in the cost coefficients in
Table 2.1.

Table 2.2. Road Space Coefficients (β = 20 $/hour, d = 3000 m)

Mode rC , r1 r2 r3

[m2·hour/trip] [m2·hour/trip] [m4·hour2/trip2]
Moving Parking Moving Parking Moving Parking

Walk 1.67 0
Bicycle 6.87 5.75
Car 23.5 212.4
Bus 0.266 0.420 0.0335 0.0044 16.9 2.2
BRT 0.212 0 0.0326 0.0059

2.5 Summary of Methodology

This chapter has presented the definitions and methodology for modeling the costs of
transportation in cities. This is done by taking a macroscopic view of city structure,
and using macroscopic models of urban transportation networks. Trip length is used
as a proxy for accessibility, so trips are characterized by their length to account for
costs. In order to analyze the relationship between transportation costs and city
structure in a systematic way, we will study an idealize city that behaves according
to the following assumptions:

1. Travel demand is distributed uniformly across the city, and all trips share the
same characteristics (i.e., trip length and value of time). (Section 2.1)

2. The road network is a symmetric grid which is uniform across the city. (Sec-
tion 2.2.1)
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3. Each mode operates independently of the others (without conflicts) so that
the costs and road space requirements depend only on its own demand. (Sec-
tion 2.2.3)

4. Each mode is deployed efficiently so that trips are served at the least cost
possible. (Section 2.4)

Under these assumptions, modes can be deployed jointly, and the total costs and road
space requirements are simply the sum of those for each mode used.

In the following chapters, the focus will be on analyzing a city served by two
modes: cars and buses. The total system cost function is then given by:

Z(λC , λT ) = ZC(λC) + ZT (λT ) (2.30)

and the total road space required for moving vehicles is:

R(λC , λT ) = RC(λC) +RT (λT ). (2.31)

These analytical models, based on the physics of urban traffic and parameters of city
structure establish bounds for what is physically achievable.

First, the simple case of a city with constant demand is analyzed using the same
assumptions and cost functions presented here (Chapter 3). Many insights about
the effect that constrained road space has on transportation costs can be gained by
comparing modes in this way. Once this simple system is understood, more realistic
cities with peaked demand are considered. The evening peak case is presented for
which demand is peaked in time, but travelers can change only which mode they use
(Chapter 4). Then, this case is extended to the morning peak in which travelers can
change both their mode and when they travel (Chapter 5).

32



Chapter 3

City with Constant Demand

This chapter presents a first level of analysis for how road space should be allocated
and how modes should be jointly used in cities. We start by considering a city with
constant, uniform demand over time as described in Chapter 2. This analysis focuses
on minimizing the total generalized cost of travel by individual modes (e.g., car) and
collective public transit modes (e.g., bus, metro). The relevant question is how total
demand, λ, should be split between two modes (car, λC , and transit, λT ), and how
modes should be jointly deployed to minimize the total social cost of the transport
system, Z(λC , λT ). Using (2.30) and (2.31), this problem can be expressed as the
following mathematical program:

min Z = ZC(λC) + ZT (λT )

s.t. RC(λC) +RT (λT ) ≤ R

λC + λT = λ.

For this analysis, we consider the space in a city available for transportation, R, as
given. Only the streets needed to serve λC and λT must be built and paid for, but
there is only space to build them up to R. All of the demand must be served by cars
or transit. We will look at how the optimized transportation system depends on the
city characteristics, λ and R.

We first consider a city where there is unlimited space available for potential
road infrastructure (R = ∞) in Section 3.1. Then in Section 3.2, realistic cases
where road space is constrained by existing buildings or other protected land (R <
∞) are considered. Section 3.3 shows how the user equilibrium differs from the
system optimum, and Section 3.4 shows how prices should be set to achieve system
optimum. Section 3.5 discusses how parameter inputs which describe trip and mode
characteristics affect the results, and Section 3.6 summarizes the contributions of this
chapter.
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3.1 System Optimum: Unlimited Road Space

Suppose that mode costs are given by generalized cost functions of the form (2.17)
and (2.28). Suppose also that streets are managed so that the spatial requirements of
one mode are not affected by the trips made with another as described in Chapter 2.
In other words, the cost of serving a trip when modes share the right of way is the
same as if the modes were operated in isolation so that the least cost of each mode is
a function only of its own users. Thus, the total cost of transportation per area-time
when the demand is (λT , λC) is given by (2.30), Z(λT , λC) = ZT (λT ) + ZC(λC), and
the optimal deployment of each mode is determined by the modal split that minimizes
this cost.

Since ZT (λT ) is concave and ZC(λC) is linear, Z is concave in (λT , λC). Therefore,
the contours of constant cost plotted on the λC versus λT plane are always convex
to the origin. From (2.17) and (2.30), the iso-cost contours Z(λT , λC) = K, are the
family of functions

λC(λT ) =
K

αC
− ZT (λT )

αC
. (3.1)

Note that K increases moving away from the origin, displayed by thin gray lines in
Figure 3.1. The total demand for travel, λ = λC + λT , are represented by lines with
slope −1 (heavy black lines in Figure 3.1) with demand increasing moving away from
the origin.
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0 1000 2000 3000
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Demand = λ
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Figure 3.1. Cost contours and demand for a city with cars and transit
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The mode split which minimizes Z(λT , λC) for a total demand λ corresponds to
the point on the demand line which lies on the lowest cost contour (closest to the
origin). Since the contours are convex, this will always happen at an extreme point
on either the vertical axis (λC = λ) or the horizontal axis (λT = λ). All other points
along the total demand line represent transport service with a mixture of modes and
cannot be optimal. Therefore, since the optimal modal split will be with all cars or
all transit, it is sufficient to compare the cost of the two modes. This comparison can
be done systematically for all values of λ by considering the difference of the cost of
serving all trips by transit and by car, ZT (λ)− ZC(λ), as in Proposition 1.

Proposition 1. If ZT (λ) − ZC(λ) is unimodal, concave, and it is non-negative and
increasing at λ = 0, then ∃λcrit > 0 such that

ZT (λ)− ZC(λ) > 0 for λ < λcrit,

ZT (λ)− ZC(λ) = 0 for λ = λcrit,

ZT (λ)− ZC(λ) < 0 for λ > λcrit.

Proof. Since ZT (λ) − ZC(λ) is a unimodal concave function, then there must be a
demand λcrit > 0 where ZT (λ) = ZC(λ); see Figure 3.2. This implies that for values of
λ < λcrit, the cost difference is positive and car serves the demand at lower generalized
cost than transit. Likewise, for λ > λcrit, the cost difference is negative so transit
serves the demand at the lowest cost.

Demand
λ trips

km2∙hr(      )

Cost Difference
ZT(λ) – ZC(λ) hrs

km2∙hr(      )

λcrit

α0

0

Figure 3.2. Cost difference between transit and car for different λ

Since ZC(λ) is linear-increasing and ZT (λ) is concave-increasing, and at λ =
0 these functions are non-negative, then ZT (λ) − ZC(λ) is concave and unimodal
whenever αC > α1 +

√
α3. So, Proposition 1 applies. This property is also shown in

Figure 3.1 where the demand line associated with λcrit intersects the same cost contour
at both axes. Lower demands intersect the lowest cost contour on the vertical axis
(all car), while greater demands intersect the lowest cost contour on the horizontal
axis (all transit).

35



3.2 System Optimum: Limited Road Space

Now suppose that the city has a finite amount of space available for roads, R. This
can be approximately accomplished with technologies such as intermittent priority
(Eichler & Daganzo, 2006) so that capacity is not wasted by interactions between
modes. The space required by the modes must not exceed the space available:

RC(λC) +RT (λT ) ≤ R (3.2)

The road space requirements for each mode are given by (2.18) and (2.29).
The solution for a city with cars and bus rapid transit (α0 = 0 and α3 = 0) is

presented in Section 3.2.1. The general solution is represented graphically by a single
figure. The effect of changing the transit technology is discussed in the following
sections for cases when α3 > 0 (Section 3.2.2) and α0 > 0 (Section 3.2.3).

3.2.1 Car and Bus Rapid Transit (BRT) System

For the case of car and BRT, illustrated in Figure 3.3, both modes require road space,
and the constraint takes the form:

λC ≤
R

rC
− RT (λT )

rC
. (3.3)

For any given R, the boundary of the space constraint is a curve R which, like the
cost contours, is convex-decreasing on the (λT , λC) plane. These curves also move
away from the origin as R is increased, but they are much flatter because the transit
system’s footprint is much smaller than that of car.

Solution with Road Space Constraint

Consider now what happens when constraint (3.2) is added to the optimization prob-
lem. Since Z(λT , λC) is concave and the feasible mode splits for λ lies on a line segment
in the (λT , λC) space, the optimal mode split must still be at an extreme point at
the edge of the feasible region. Figure 3.3 shows a road space constraint boundary
R1 associated with R = R1. For realistic transit services, dRT (λT )/dλT < rC , so
the slope of R1 is always flatter than the demand line. Note that R1 can cross each
possible demand line no more than once, and therefore the feasible mode splits on
each demand line form a contiguous segment.

We will use a superscript to denote the demand line passing through a point,
so λ(A) and λ(B) are defined as the total demands associated with points A and B,
respectively. Then, for example, the feasible demand segment for λ(B) is BC in Fig-
ure 3.3. For λ ≤ λ(A), the feasible demand segment extends from the vertical axis (all
car) to the horizontal axis (all transit). When λ > λ(A), the feasible demand segment
extends only to R1 where the road space is used at capacity by a mix of modes. In
order to determine the least cost operating strategy, we only need to compare the cost
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Figure 3.3. Cost contours and space constraints for a city with car and BRT

of all transit to the cost at the other extreme: all car or operating mixed modes with
the available space fully utilized. We now show how this comparison can be made
quickly by identifying the tipping point where the cost of mixing modes is the same
as serving all trips by transit.

In Figure 3.3, the curve L is the locus of points (λT , λC) where Z(λT , λC) = ZT (λ);
i.e., where the total cost is the same with mixed modes as if everyone was served by
transit. To find L, express each cost contour as:

ZT (λT ) + ZC(λ− λT ) = K. (3.4)

For any value of λ, the mode split that yields the same cost as serving all trips by
transit is attained by solving (3.4) for λT when K = ZT (λ). By substituting (2.17)
into (3.4), the expression can be rewritten in the form:

ZT (λ)− αCλ = ZT (λT )− αCλT . (3.5)

Note that because ZC(λC) is linear, the right side is the same function used in Propo-
sition 1, which is shown for the car and bus case in Figure 3.4. If the axes cross at a
cost of ZC(λ), the same figure hold for all λ.

Let us define λMC as the demand when (3.5) has a unique solution at λT = λMC .
This is the density associated with the maximum cost in Figure 3.4. Then, for λ ∈
(λMC , λcrit), there are two solutions which satisfy (3.5): λT = λ and λT = λT

(L) <
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Figure 3.4. Total generalized cost of car and BRT system

λMC . At λ = λcrit, λT
(L) = 0, and λT

(L) increases as λ decreases until they are both
equal at λMC . The values of λT

(L) define L which must be a declining curve (see
Figure 3.3). L extends from (0, λcrit) to (λMC , 0).

Note that for a BRT system with only cost coefficients for α1 and α2 in (2.28),
the generalized cost function is:

ZT (λT ) = α1λT +
√
α2λT (3.6)

and λcrit and λMC are given by:

λcrit =
α2

(αC − α1)2
(3.7)

λMC =
α2

4(αC − α1)2
(3.8)

where (3.7) is the result of setting car cost equal to transit cost as defined in Propo-
sition 1, and (3.8) is obtained by setting their first derivatives (marginal costs) equal
to one another. Therefore, λMC = λcrit/4.

In Figure 3.3, the feasible demand segment for any λ > λ(B) intersects R1 to the
right of L. This means that the minimum feasible transit demand must lie in the
interval [λT

(L), λ] which is associated with a greater cost contour than serving all trips
by transit. This is shown in Figure 3.4 where the left side of (3.4) is greater than
ZT (λ) in this interval. If a feasible demand segment lies entirely to the right of L, then
it is optimal to serve all trips with transit. Whenever the feasible demand segment
extends to the left of L (λ < λ(B)) it is optimal to operate at the left-most extreme
point, because it is on a lower cost contour. This is achieved by serving all trips by
car (λ ≤ λ(A)) or mixing modes such that the space is fully utilized (λ(A) < λ < λ(B)).

We define Rcrit
.
= RC(λcrit), which is the road space required to serve all of λcrit

by car. Values of R ≥ Rcrit never pose an active constraint since adequate space
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is available to serve each λ with the least cost mode. Note that for cities where
R < Rcrit, the minimum demand at which all trips should be served by transit may
be much less than the demand where transit otherwise becomes cost competitive; i.e.,
λ(B) < λcrit.

Graphical Representation of Solution

Figure 3.5 summarizes the results for the above analysis using Figure 3.3 for all
possible values λ and R. The axes are scaled to normalize the demand, dividing
by λcrit, and the road space, dividing by Rcrit. The axes represent dimensionless
measures of demand and road space. For a BRT system with parameters α1 and α2,
the scaled demand and road space are:

Demand = λ
(αC − α1)2

α2

(3.9)

Road Space = R
(αC − α1)2

rcα2

. (3.10)

With the axes scaled in this way, a demand of 1 represents the critical demand, and
a road space of 1 represents the critical road space. Now, the single figure represents
the set of all city structures and incorporates all of the elements of the generalized
cost functions. This single graphical solution thus represents all possible parameters
when αC > α1.

Figure 3.5 shows whether a single mode or a mix of modes serves demand at
the lowest total social cost. Consider a city with road space R1 < Rcrit, the space
constraint is shown asR1 in Figure 3.3 and a horizontal line at R = R1(αC−α1)2/rCα2

in Figure 3.5. For low demand (λ < λ(A)), the lowest cost is along the vertical axis
of Figure 3.3 so these demands are in the all car regime in Figure 3.5. The range of
demands that intersectR1 between A and B in Figure 3.3 are where the available road
space should be fully utilized with a mix of modes provided, and in Figure 3.5 these
demands fall in the mixed car and transit regime. The demand λ(B) passes through
both points B and C in Figure 3.3, and this represents a tipping point where the cost
of providing a minimal transit system is the same as serving all trips by transit. This
transition is represented by the single point B, C in Figure 3.5 which lies on a line
indicating the jump to an all transit system. For all greater demands (λ > λ(B)), the
total social cost of transportation in the city is minimized when all trips are carried
by the transit system. There is a small set of cities with very constrained road space
for which even a bus transit system cannot adequately meet demands. This case is
most likely to emerge if there is a political reason why few streets can be dedicated
to transit service.

The average generalized cost per trip in the system optimum is shown systemati-
cally for all cities in Figure 3.6. The generalized cost of each car trip, zC , is always the
same value as described by the car cost function (2.17). The magnitude of the cost
depends of the parameters of the generalized cost functions. Intuitively, when road
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Figure 3.5. Summary of system optimum for all city structures with car and BRT
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Figure 3.6. Average trip cost at system optimum for cars and BRT
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space is a binding constraint, costs are greater than without. Note that once a city is
served by all transit, increased demand lowers the cost per trip. This is the result of
public transit’s economies of scale. Costs are greatest for cities with contrained space
and low demand. This is because transit service is required to meet demand, but the
system is so small that it cannot be run cost-effectively.

3.2.2 Car and Standard Bus System

The results are similar for a standard bus service where the loss time per stop depends
on the number of boarding and alighting passengers. For this type of transit system,
the generalized cost function includes α3 > 0:

ZT (λT ) = α1λT +
√
α2λT + α3λ2

T . (3.11)

The analysis with cost contours is the same, but the values of λcrit and λMC are
different. Applying Proposition 1, (3.7) becomes:

λcrit =
α2

(αC − α1)2 − α3

. (3.12)

The value of λMC is sought using the same method as for (3.8) and setting the first
derivatives of the car and transit cost functions to equal each other. So, λMC must
satisfy:

λMC =
(α2 + 2α3λMC)2

4(αC − α1)2(α2 + α3λMC)
(3.13)

We can now show that λMC < λcrit/4. Since α2α3λMC > 0, then it is true that:

(α2 +2α3λMC)2 < (α2 +2α3λMC)2 +α2α3λMC = (α2 +α3λMC)(α2 +4α3λMC). (3.14)

where the equality of the middle and last expressions can easily be verified by algebra.
By manipulating (3.14), we see that (α2 +4α3λMC) > (α2 +2α3λMC)2/(α2 +α3λMC).
Substituting the left side of this inequality into (3.13) and isolating λMC establishes
an upper bound for λMC :

λMC <
α2

4(αC − α1)2 − 4α3

=
λcrit

4
. (3.15)

The implication of these changes compared to the BRT solution is that the system
optimum can still be represented on the normalized axes as in Figure 3.5, but the curve
delineating mixed and all transit operations shifts to the left. The lowest demand for
which an all transit solution is optimal moves to a value λMC((αC −α1)2−α3)/α2 <
0.25.

This effect tends to get larger as α3 increases, which means that larger loss times
per passenger increase the relative range of cities which should be served by transit.
This can also be interpreted as the effect of loss time per boarding and alighting
passenger, which, all else held equal, makes low capacity transit systems less cost-
efficient, and mixing modes less desirable.
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3.2.3 Car and Metro System

Bus transit requires street space, so there can be high demands which cannot be served
even with a surface transit system. This is shown in Figure 3.5 for cities where R is
very low. In this case, demand can only be met with a transportation system which
does not use streets (such as metro). The same methods described above still apply,
although the cost function for metro has a discontinuity because there is a significant
fixed cost component, α0, for infrastructure.1 The generalized cost function for metro
is:

ZT (λT ) =

{
α0 + α1λT +

√
α2λT if λT > 0

0 if λT = 0.
(3.16)

The cost function jumps from 0 to α0 when λT > 0, because tunnels, tracks, and
stations must be built before the first passenger can be served.

In Figure 3.7, the demand line for λcrit intersects both axes on the same cost
contour satisfying ZC(λcrit) = ZT (λcrit). It follows from (2.17) and (2.28) that λcrit =
ZT (λcrit)/αC , and substituting this into (3.1) for K = ZT (λcrit), the cost contour is:

λC(λT ) = λcrit −
ZT (λT )

αC
. (3.17)

For λT � 1 (approaching the vertical axis) this expression is approximately

λC(λT ) ≈ λcrit −
α0

αC
. (3.18)

So, the cost contour for ZT (λcrit) approaches the vertical axis at λcrit−α0/αC rather
than λcrit (see Figure 3.7). This difference is the amount of car demand that could
be served for the fixed cost of metro.

The discontinuity of the cost function for metro also creates a truncation of the
L curve. Let λ(D) be the demand at point D in Figure 3.7 where L meets the vertical
axis. This is the demand satisfying ZC(λ(D)) = ZT (λ(D)) − α0. This point is also
shown in Figure 3.8, where it is clear that for λ > λ(D), there is only one positive-
valued solution to (3.5) at λT = λ. For λ ∈ (λMC , λ

(D)), there exists a λT
(L) > 0, and

L slopes downward toward λMC just as described for the case of a bus transit system.
The same method to determine the optimal mode split for a city with cars and

buses applies to a city with cars and metro. Figure 3.7 shows a space constraint,
R2, for a city with road space R2 < Rcrit. The same three possible regimes of mode
split are shown in Figure 3.9 as in 3.7: all car for λ ≤ λ(A), mixed car and metro for
λ(A) < λ < λ(B), and all metro for λ ≥ λ(B). The difference between metro and bus is
that for λ > λ(D) (right of point D in Figure 3.9), it is never optimal to mix modes.
In this case, demand is either not constrained by road space so all trips should be
served by car, or the feasible demand segment (below R2) is entirely to the right of
L and all trips should be served by metro.

1This discontinuity exists to some extent for all transit modes. Even a simple bus system will
require some initial investment for signs at bus stops. However, this cost cannot be neglected for
a mode with expensive fixed costs such as metro because metro tunnels and tracks must be built
before the first train can run.
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Figure 3.7. Cost contours and space constraints for a city with car and metro
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Figure 3.9. Summary of system optimum for all city structures with car and metro

An alternative interpretation of Figures 3.5 and 3.9 is to consider a city with
fixed demand, λ. For a city with all cars, as road space is restricted (e.g., due to
a policy of “road diets”) there is always a range of R where all available space for
roads should be full and mixed car and bus operations yield the least total social
costs before switching entirely to transit. In a metro city, however, there are levels of
demand (λ > λ(D)) where everyone would be best off by switching suddenly to metro
as soon as the road space is filled, so the available road space should never be utilized
completely. This is expected, because in many cases, the enormous infrastructure cost
for a metro system is only justified if it will be fully utilized and the infrastructure
is shared by as many users as possible. Similar patterns as those presented here for
bus and metro will arise for transit systems with more complex structures such as
hierarchical routes or combined bus and metro operations, because ZT (λT ) for these
systems are also concave and increasing.

3.3 User Equilibrium

The system optimum solutions presented in the previous sections show how road space
should be allocated and modes should be used to minimize the total generalized cost
of the system. Individual users are not expected to choose this outcome on their
own if they seek to minimize the generalized cost of their own trip. The generalized
cost per trip is zC for a free-flow car trip, and zT for a transit trip. Note that in
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Figures 3.5 and 3.9, transit is used for demands less than λcrit when the road space
is constrained. Therefore, following from the definition of λcrit in Proposition 1:

zT (λ) > zC for λ < λcrit. (3.19)

We will suppose that as a default, modes are priced to cover their own operating costs
and externalities, so that each user pays the generalized cost of his or her own trip.

In equilibrium, users choose the mode with the lowest generalized cost. In the city
with constant demand where everyone has the same trip characteristics and prefer-
ences, both modes are used simultaneously in equilibrium only if they are associated
with the same generalized cost (Wardrop, 1952). If only one mode is used, then it
must have the lowest generalized cost.

The system optimum solutions shown in Figures 3.5 and 3.9 are also user equilib-
rium solutions when the road space is not an active constraint (i.e., when λ ≥ λcrit
or above the diagonal when λ < λcrit). When demand is a constraint, the system op-
timum is not in equilibrium because passengers would not choose the transit system
if the streets are uncongested and a single car trip would be less costly.

Once the network capacity to serve cars at rate fm is fully utilized, any greater
demand requires the provision of a transit service. Otherwise congestion will result,
lowering the network capacity and causing delays to grow without a bound. Therefore,
even in user equilibrium, a transit service will operate when road space is constrained
because the cost of transit is less than infinite delay. However, a small transit system
is costly per passenger, so it will only be used when the generalized cost of driving
including delays increases so that the generalized cost of both modes are equivalent.
The equilibrium traffic state can be estimated using the Network Exit Function (NEF)
introduced in Section 2.2.3, and reproduced here in Figure 3.10.

f veh
sec(     )

n (veh)

Μfm

nm

vm
d F(n)

N

vn
d

Figure 3.10. Network exit function showing congested user equilibrium state

The free flow trip time is represented on the NEF as the inverse of the slope
from the origin to the traffic state. For example, when the network is operating at
maximum capacity (point M), the trip time is tm = d/vm. Assuming that the transit
system is operated with some dedicated space and priority to avoid congestion, then it
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will have a consistent generalized cost per rider which depends on the transit demand,
zT (λT ). In equilibrium, when zT (NT ) > zC , then the traffic state will move to the
right, down the congested branch of the NEF (see Figure 3.10) until the the delay
satisfies the equilibrium condition: e.g., to a point N where d/vn−d/vm = zT (λT )−zC .

The resulting equilibrium solution can be summarized on the same scaled axes
used to compare system optimum solutions, and this is shown in Figure 3.11. The
difference between the user equilibrium and system optimum is that when space is
constrained, modes are always mixed. The equilibrium mixing is suboptimal with
wasteful, persistent congestion. Naturally, we would like to look for ways to push
users to behave in the system optimum way. One way to do this is with pricing as
described in the next section.

R (αC −α1)2

rC α2

Road Space

λ (αC −α1)2

α2

Demand

1

1

All Car

All Transit

Mixed
with persistent congestion

Figure 3.11. User equilibrium in city with constant demand

3.4 System Optimal Pricing

An optimal pricing strategy must move the user equilibrium mode choices to the
system optimum presented in Section 3.2. Therefore, when the prices are set correctly,
the system optimal use of modes will be a Wardrop (1952) equilibrium wherein users
experience the same cost by either mode. The prices must make up the difference
between the generalized cost of a free-flow car trip and the generalized cost of a transit
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trip. The magnitude, $, of the price must satisfy

$ = zT (λ∗T )− zC (3.20)

where λ∗T is the transit demand at system optimum, and zC is the generalized cost of
a car trip (zC = αC for an uncongested car trip with the cost functions presented).
This price, $, can be in the form of a toll for cars, a subsidy for transit fares, or
some combination of the two. The optimal prices are not unique, because any pair
which makes users indifferent between transit and car will allow both modes to be
used simultaneously.

The magnitude of these prices is shown systematically for the full range of cities in
Figure 3.12. The shading shows the prices scaled relative to $MC which is the required
subsidy when the marginal costs of both modes are equal. For cities where road space
is not a binding constraint, no pricing intervention is needed because the system
optimum is a user equilibrium. However, subsidies for transit are justified when the
road space is constrained. The subsidy per trip is greatest when modes are mixed,
because the transit system is serving a low transit demand, and the generalized cost
per passenger is high. The all transit cases require much less subsidy per passenger,
because the systems are larger and more efficient.
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λ (αC −α1)2
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Figure 3.12. Required car toll or transit subsidy to achieve system optimum
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The ability to choose how to make up the pricing difference with tolls and subsidies
provides flexibility to achieve other policy objectives. For example, a city could seek
to make the pricing system revenue neutral. These analyses could also be extended
to consider elasticity of demand and the effect of the magnitude of user cost on total
demand.

3.5 Influence of Parameters

The system optimum, user equilibrium, and pricing solutions in the preceding sections
have all been presented on scaled axes which establish a plane representing the set of
all city structures (i.e., all combinations of λ and R). The scale factors include the
coefficients of the generalized cost functions and the car footprint so that one figure
shows the solution for all possible parameter values. What this means is that such
figures (i.e., Figures 3.5, 3.11, and 3.12) do not change if the properties of the trip or
mode parameters change. What would change, however, is the location of a city on
the solution plane.

Figure 3.13 shows the position of a hypothetical city on the scaled axes, and how
it will move if various parameters are changed in isolation. Clearly, if the demand λ
in this city increases, the city will move to the right, and if the road space available
increases, the city will move up.

All parameters that affect the relative generalized cost of a car trip versus a
transit trip result in a shift along the ray from the origin. As a car trip becomes more
competitive on the basis of generalized costs, a city will move towards the origin
(direction 1 in Figure 3.13). This effect can result from decreased costs associated
with cars, increased costs associated with transit, or an increase in the value of time,
β. As transit becomes more competitive, a city will tend to move away from the
origin toward the critical demand at which transit is more efficient than an all car
system (direction 2 in Figure 3.13).

Note that all of these shifts along the ray toward or away from the origin do
not change whether a city’s road space is an active constraint, because this is also
represented by a diagonal with slope 1 passing through the origin. Essentially, this
means that changing only the relative costs of modes does not change the severity
of the road space constraint. What may change is the system optimum solution. As
cities move toward the origin, cars serve trips more cost-effectively and if space is
constrained, mixing modes is more likely to be desirable.

A different kind of shift happens as the result of changing trip length d, because
this affects not only generalized costs, but also the footprint of a car trip. As trips grow
longer, faster modes like car tend to become more competitive based on generalized
costs (as shown in Figure 2.8). Longer trips also require a bigger footprint because
road space must be occupied for a longer time. The result is that as trip lengths
increase, a city will move down and to the left as illustrated in Figure 3.13. As
expected, growing trip lengths can cause streets in cities to fill, activating the road
space constraint.

48



Insufficient Space for Transit

R (αC −α1)2

rC α2

Road Space

λ (αC −α1)2

α2

Demand

1

10.25

All Car

All Transit

Mixed

R

λ

d
1

2

road space

demand

trip length

car cost

transit cost

Figure 3.13. Effect of trip and mode parameters on a city’s location on the scaled
(λ,R) plane

By understanding the impact of various parameters, we can also compare real
world cities. This analysis is idealized by flattening geography and assuming constant
demand, so placing real cities on the figure is problematic, but we can discuss their
relative positions qualitatively. Recall the 4 neighborhoods presented in Figure 2.1:
Pleasant Hill, Berkeley, San Francisco, and New York. The population density and
road area of each of these neighborhoods is increasing, so if all other parameter
values are equal, they would fall on Figure 3.5 progressively to the right and above
the one before it. Note that the road area increases less quickly than population
density (which is a proxy for demand density). New York’s Upper West Side almost
certainly lies within the constrained region because the city already experiences traffic
congestion even though a large number of trips are served by transit. Pleasant Hill,
on the other hand, is likely situated well to left and above the diagonal representing
full streets. Low density suburban environments are only likely to get congested if the
network is poorly connected so that many streets are unable to serve through trips.

3.6 Summary of Findings

This chapter has shown how space should be allocated and modes should be priced
in cities with constant demand that can be served by cars and transit. By explicitly
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characterizing the shape of the cost functions for cars and transit, the system optimum
solution is systematically identified for all possible city structures. The results for a
city with cars and BRT are summarized on a single figure which incorporates all of
the relevant parameter values. The effects of changing the cost function to model a
standard bus or metro system reveal results which are qualitatively the same.

The system optimum for a city with two modes can be in one of three regimes.
As demand increases, the regimes are passed in the following order:

1. All Car in which there is sufficient space for all trips to be served by cars when
car trips have lower generalized cost than transit.

2. Mixed Car and Transit in which roads are fully utilized and only enough transit
is provided to meet the road space constraint; the transition from cars to mixing
is continuous.

3. All Transit in which the cost of serving all trips by transit is less than with mixed
modes; the transition from mixing to all transit is a sudden abrupt change.

It has also been shown that when the road space constraint is active, the user
equilibrium is suboptimal, but an optimal pricing strategy always exists to subsidize
transit (or price cars) in order to achieve system optimum. In all of these cases,
transit subsidies are justified in that they reduce the total generalized cost of the
transportation system by eliminating congestion.
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Chapter 4

Rush Hour City: Evening Peak

Up to this point we have been looking at the very idealized case of cities with constant
demand. Real cities, of course, have rush hours, and the demand for transportation
tends to be peaked in the morning and evening. The evening commute problem
is more complicated than constant demand, because congestion in the network is
dynamic so the travel decisions of commuters in the beginning of the rush affect the
conditions faced by the commuters who follow.

This chapter investigates the evening commute in which the demand for trips
varies over a rush period, and the only choice commuters have is their own transport
mode. We will suppose for the evening commute that travelers do not adjust their
departure time in response to traffic conditions. This is reasonable if we imagine that
workers leave their place of employment at the end of the day and wish to get home
as soon as possible.

Section 4.1 presents modifications to the cost functions to incorporate the time-
dependent nature of the system. Section 4.2 shows how the Network Exit Function,
introduced in Section 2.2.3, can be used to build queuing diagrams to model the
evolution of traffic congestion on the network. The user equilibrium is presented in
Section 4.3, and the system optimum which minimizes the generalized costs including
delay is presented in Section 4.4. Section 4.5 shows a simple pricing strategy to
achieve system optimum. Then, Chapter 5 will analyze a similar problem but with
the added flexibility that commuters can also choose when they travel in addition to
the mode choice.

4.1 Time-Dependent Mode Costs

The cost functions presented in Chapter 2 were based on the assumption that the
demand is constant over time. When demand changes over time, the cost functions
must be modified to reflect this. Suppose that within a period of the day of length tmax
there is a peak in demand. We can think of tmax as the maximum length of the rush
before the next peak period begins. The biggest change is that capital investments
must be paid for the whole day even if infrastructure and vehicles are only used for
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a short period in the peak. The infrastructure cost, for example, is decoupled from
the mode cost function because it is determined by R, and it is not affected by the
mode operations.1

Rather than expressing costs in terms of the demand rate, we are now considering
a whole peak period, so costs are a function of the total number of trips during that
period. The generalized cost for an uncongested car trip remains constant, and the
total cost for cars (not including queuing delays) is:

ZC(NC) = α̂CNC (4.1)

where α̂C is the generalized cost not including infrastructure costs, and NC is the
total number of car trips in the analysis period.

The cost function for transit changes a little more noticeably. Suppose that transit
service is operated for a period of time tT < tmax. Operating costs are only accrued
for the time that the system is operational, tT (e.g., fuel, labor). Capital costs (e.g.,
vehicles, maintenance facilities) are amortized over the whole day and must be paid
whether transit service is running or not. The generalized cost function for an efficient
bus system like BRT changes from (3.6) to become:

ZT (NT ) = α̂1NT +

√
α̂2tTNT + ˆ̂α2tmaxNT (4.2)

where α̂1, α̂2 and ˆ̂α2 are the generalized cost coefficients for this dynamic case. Note
that as the tT approaches tmax (which is the case for constant demand), the two
terms in the square root can be combined into one α2 coefficient which results in the
same functional form as (3.6). Examples of these new cost coefficients for dynamic
transportation systems are shown in Table 4.1. Further details about how the cost
coefficients relate to the physical components of travel are shown in Appendix B.3.

Table 4.1. Cost Coefficients for Peaked Systems (β = 20 $/hour, d = 3000 m)

Mode βα̂C , βα̂1 β2α̂2 β2 ˆ̂α2

[$/trip] [$2/m2·hour·trip] [$2/m2·hour·trip]

Car 8.64
BRT 6.09 0.009 0.021

4.2 Dynamics of Network Congestion

The Network Exit Function (NEF), introduced in Section 2.2.3, describes the rate
that vehicles are able to exit the network as a function of the number of vehicles in

1By separating infrastructure costs from mode costs, we are essentially supposing that the provi-
sion of road space in a city has been determined a priori, and the problem remains to optimize the
use of the existing space. To consider the effect of changing road investment, we simply consider the
effect of changing the road space constraint R.
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the network. If trip lengths do not change over time, and we assume that a stable
NEF exists, then we can model delay using queuing diagrams as if the network were a
FIFO bottleneck with state-dependent capacity. This is consistent with observations
in Geroliminis & Daganzo (2008) and analysis of adaptive driver behavior (Daganzo
et al., 2011). Using the NEF, we can estimate the total delay in the system for
any arrival pattern of cars entering the network. We use the NEF rather than a
strict constraint on footprints to evaluate the dynamic congestion effects of vehicles
interacting on the network.

An example NEF is shown in Figure 4.1, and this function defines the exit flow of
cars depending on the number of vehicles in the network, f = F (n). For the evening
commute, we will define delay as the travel time exceeding the travel time at the
traffic state with maximum exit flow (point M).2 To track only the excess travel time
(delay), it is useful to define ne = nn − nm when traffic states are on the congested
branch of the NEF. Since nm is a fixed quantity, we can express exit flow as a function
of ne by:

f = Fe(ne) (4.3)

where Fe(ne)
.
= F (nm +ne). The state of traffic in the network is defined at any time

by the number of vehicles in it, because the excess accumulation determines the rate
at which people leave.

f veh
sec(     )

n (veh)

Μfm

nm

vm
d F(n)

N

vn
d

nnne

Figure 4.1. Network exit function showing congested traffic state N and excess vehicle
accumulation

The excess accumulation of vehicles in the network can be shown graphically
by plotting the cumulative number of vehicles that enter and exit the network over
time. We will define two relevant cumulative curves: A(t) is the cumulative number
of vehicles that have entered or arrived in the network by time t, and D(t) is the
cumulative number of vehicles that have exited by t. The pattern of arriving vehicles

2In the morning commute, we will take a more general approach and allow a city to choose any
uncongested state as a target operating traffic state. The restriction here to point M simplifies the
analysis of the dynamics of congestion which, it will later be shown, should not occur in the morning
commute system optimum.
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is described by the demand. Since the demand is no longer a constant value, it is
a function of time by λ(t). Denoting the first derivative with respect to time with
a dot, Ȧ(t) = λ(t) is the rate that vehicles enter the network. If these curves are
plotted so that the vertical difference is the excess accumulation at time t, then
ne(t) = A(t)−D(t).

If the vehicle accumulation is expressed as a function of time, n(t), then the state
of the network follows the mass conservation equation (Daganzo, 2007):

dn

dt
= Ȧ(t)− Ḋ(t) (4.4)

where Ȧ(t) is the rate that cars enter the network, and Ḋ(t) is the rate that they
exit. Since the exit rate follows from the NEF, Ḋ(t) = F (n(t)). We can use (4.3)
to equivalently express this flow as a function of the excess number of vehicles, so ne
can be tracked as the state variable. The system delay is the total excess vehicle time
spent in the system, and this is identified by integrating the excess accumulation over
time.

For illustrative purposes, we will consider an evening peak characterized by a Z-
shaped A(t) which has a slope of 0 outside of the rush, and a slope of λ during a peak
period which exceeds the network capacity. Therefore A(t) satisfies:

Ȧ(t) =

{
λ t ∈ (0, tp)
0 t ∈ (tp, tmax)

(4.5)

where tp is the end of the period of peak demand and tmax is the end of the total
analysis period. The total demand over the time interval (0, tmax) is N = A(tmax).

This arrival curve is shown as a cumulative count in Figure 4.2. If the network fills
quickly with cars at the start of the rush, then the excess accumulation will start to
grow and the D(t), whose slope is defined by the number of vehicles in the network,
falls below A(t). D(t) can be estimated at all times by tracking the state of the
network in short time intervals and using (4.3) to define the slope of the departure
curve in each time step.

As ne increases, the traffic state moves into the congested (right) side of the NEF,
and the exit flow decreases. Therefore the slope, Ḋ(t) will diminish over the rush until
the arrival rate Ȧ(t) drops at the end of the peak. If the vehicle accumulation ever
reaches the jam value where the exit flow of the NEF is 0 at the far right, then accu-
mulation can never diminish because Ȧ(t) ≥ 0 by definition as a cumulative count,
and no vehicle can exit the network. This case results in permanent gridlock. If the
queue does not clear by tmax, then the system will experience persistent congestion,
and although demand is peaked, it will begin to behave more like a city with con-
stant demand. In Figure 4.2, the excess number of vehicles eventually diminishes as
A(t) flattens, and D(t) curves upward as vehicles exit the network and the congestion
decreases. The total delay is simply the area between these curves, and we will call
this total delay C.

The relationship between the road space available in a city and the NEF requires
an assumed MFD. If the NEF is a scaling of the MFD based on the network size
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Figure 4.2. Queuing diagram for cars in a network in which exit flow declines with
excess vehicle accumulation

and trip length (as described in Section 2.2.3), then its shape is related to R. By
definition, qm = Q(k∗) is the maximum flow on the MFD. Then, using (2.7) and
recognizing that the network length per area of city is l = R/w (where w is the lane
width), the maximum exit rate per area of city is:

fm =
Rqm
wd

. (4.6)

When transit is operating, the NEF is assumed to scale as described in Section 2.2.3.
A tilde (˜) indicates a value associated with the NEF while transit is operating; e.g.,
f̃m is the reduced capacity remaining for cars. In this way, the road space in a city
is related to the dynamics of traffic states on the network. The demand density, of
course, is described by λ(t) which defines the slope of the arrival curve.

4.3 User Equilibrium

If the demand λ(t) can be served by either cars or buses, we can separate the arrivals
of travelers on each mode into two arrival curves, AC(t) for cars and AT (t) for transit,
such that

A(t) = AC(t) + AT (t). (4.7)

The problem is to determine how these modes will be split. In this section, the goal
is to first understand the AC(t) curve which will arise at user equilibrium. Then, if
we identify a system optimal AC(t), we can design a time-dependent pricing strategy
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that is consistent with the Wardrop (1952) equilibrium conditions. We suppose for
the evening commute that all queues are stored on streets in the network (rather than
in garages), so all arriving cars force their way onto the streets and contribute to the
total vehicle accumulation.

Recall that in a user equilibrium, each user will choose the mode with the lowest
generalized cost (Wardrop, 1952). Therefore, if there is enough demand that serving
all trips by transit makes the generalized cost of a transit trip, zT (NT ), less than the
generalized cost of a free-flow car trip, zC , everyone will choose transit. This tipping
point defines the critical demand, Ncrit, which is analogous to λcrit for the city with
constant demand. If zT (N) > zC , then people will choose to drive until the delays on
the network make the cost of both choices equivalent. Then users will be indifferent
between the two modes and both will be used simultaneously.

If multiple choices are used in equilibrium, they must have the same cost, so transit
establishes an upper bound for the generalized cost of a car trip including delay.
Therefore, the maximum delay for drivers that will be observed in user equilibrium,
T , is:

T = zT − zC . (4.8)

For this user equilibrium, we will assume that the transit service is given, so zT is
fixed. Then there is a unique user equilibrium travel pattern.

The user equilibrium is illustrated in Figure 4.3 for the Z-shaped A(t) described
by (4.5). At the beginning of the rush (point A in Figure 4.3), the delays are small,
so the generalized cost of a car trip (including delay) is less than transit. The rush
period begins with everyone choosing to drive; AC(t) = A(t). The traffic state will
move down the congested branch of the NEF (see Figure 4.1) until the delay is equal
to T. This will happen when the accumulation reaches nn such that:

T =
nn

F (nn)
− d

vm
. (4.9)

The time it takes to reach this point, tB, depends on the shape of the NEF and the
slope ȦC(t) which determines how quickly the traffic state moves along the NEF. At
point B transit becomes competitive, and users will choose to use it at a rate that
maintains delay T . A transition must occur if transit takes up space and changes the
NEF. Then, there will be additional congestion until nn moves to the ñn such that
T = ñn/F̃ (ñn)− d/vm.

For the remainder of the rush, transit and cars will both be used. Cars will arrive
at the same rate that they can be served, f̃n, and the remaining demand, λ− f̃n, will
choose transit. The arrival curve for cars is therefore given by:

ȦC(t) =


λ for t ∈ (0, tB)

f̃n for t ∈ (tB, tp)

0 otherwise

. (4.10)
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Figure 4.3. User equilibrium in the evening rush

The transit arrival curve is the complement following from (4.7), and it is given by:

ȦT (t) =

{
λ− f̃n for t ∈ (tB, tp)

0 otherwise
. (4.11)

This implies that the number of transit riders is NT = (tp − tB)(λ− f̃n).3

In this user equilibrium, there are three phases listed below, each with a corre-
sponding total delay as labeled in Figure 4.3.

Phase 1. Only cars are used in the interval (0, tB). The cost of each car trip is less
than transit, and delays increase with each arriving commuter (segment AB).

Phase 2. Cars and transit are used simultaneously in the interval (tB, tp) such that
delay neither grows nor diminishes (segment BC); the total delay associated
with this phases is a parallelogram.

Phase 3. There are no more arrivals in the network after tp (segment CD); delay
diminishes and the queues clear as vehicles exit the network.

As illustrated in Figure 4.3, the total delay is:

C = C1 + C2 + C3 (4.12)

where each of these delay components depends on AC(t) and the shape of the NEF.
The user equilibrium is suboptimal, because the network becomes congested before
transit is used, and then it remains congested throughout the rest of the rush.

3If the transit service were optimized for the number of users, then (4.8) and (4.9) can be used
to define fn and f̃n as a function of NT . This requires knowing the function F (n) which is the NEF.

57



4.4 System Optimum

In the system optimum, we face the same problem as presented in the preceding
sections, except that we assume that the choice of mode can be controlled. The
method for identifying the system optimum is to start by supposing that the number
of transit users, NT , is known, and then finding the optimal AC(t) and AT (t). Then,
the system optimum is identified by choosing the value of N∗T ∈ [0, N ] that minimizes
the total system cost.

Minimum Generalized Cost for Given Transit Ridership

In the system optimum, the goal is to minimize the total system cost which includes
the generalized costs of mode operations described by ZC in (4.1) and ZT in (4.2), as
well as the total delay C. First an operating rule is proposed which minimizes the
delay for cars, subject to a given number of transit riders. Suppose that the NEF
has a maximum exit flow, f̃m, when transit is operating, and that this traffic state
is associated with the free-flow speed. This would be true of a triangular NEF, for
example. With a more general concave NEF, points to the left of M may have shorter
trip times. This possible trade-off between flow and travel time is addressed in detail
in Chapter 5, Section 5.5.

Proposition 2. Suppose that the following are given: a Z-shaped A(t) with slope 0
outside of the rush and slope λ > fm for t ∈ (0, tp); network exit functions F (n)
and F̃ (n) where f̃m is associated with the free-flow speed; and NT transit riders. The
following strategy first minimizes the total system delay first, and then the generalized
cost of the transit system (see Figure 4.4):

If NT ≥ tp(λ− f̃m):

ȦC(t) =

{
λ− NT

tp
for t ∈ (0, tp)

0 otherwise
(4.13)

ȦT (t) =

{
NT
tp

for t ∈ (0, tp)

0 otherwise
(4.14)

If NT < tp(λ− f̃m)

ȦC(t) =


f̃m for t ∈ (0, tT )

λ for t ∈ (tT , tp)

0 otherwise

(4.15)

ȦT (t) =

{
λ− f̃m for t ∈ (0, tT )

0 otherwise
(4.16)

where tT = NT/(λ− f̃m).
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Figure 4.4. System optimum in the evening rush

Proof. The highest possible AC(t) during the rush interval (0, tp) that does not result
in delays is AC(t) = f̃mt. By definition, AC(tp) = λtp−NT . If NT ≥ tp(λ− f̃m), then
AC(tp) ≤ f̃mtp. Therefore, it is possible to serve NT without any delays for cars by
running transit for the full interval (0, tp) so that ȦC(t) ≤ f̃m. The minimum capital
investment for efficient transit service is associated with the steadiest arrival rate,
because peaks in transit demand require additional vehicles for a short period in the
rush. So, transit arrivals should be at a steady rate ȦT (t) = NT/tp for t ∈ (0, tp).
This establishes (4.14). Car arrivals must make up the difference which is ȦC(t) =
λ−NT/tp in the same interval, establishing (4.13).

If NT < tp(λ − f̃m), then delay cannot be avoided completely because AC(tp) >
f̃mtp. There is no delay as long as ȦC(t) ≤ f̃m, and because f̃m is associated with the
free-flow speed, there is no benefit for cars to arrive at a lower rate. Therefore, we
should only consider arrival curves with rate satisfying:

AC(t) ≥ f̃mt. (4.17)

because delays will occur, and we seek to minimize them. The arrival curve for cars
AC(t) is associated with the departure curve for cars DC(t) by the mass conservation
equation, (4.4). In this case, the exit flow is given by F̃e(ne) because transit is
operating simultaneously. According to the NEF, Ḋ(t)

.
= F̃e(ne(t)). F̃e(ne) is a non-

increasing function because the maximum exit flow is associated with the free-flow
speed, so any slower speed (or greater ne) cannot be associated with a greater exit
flow.

Suppose that at some time t′ in the rush, one and only one additional vehi-
cle arrives and creates a new arrival curve denoted by hat, ÂC(t′) = AC(t′) + 1.
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Then, ÂC(t) > AC(t), ∀t > t′, and the vehicle accumulation in the network at t′ is
n̂e(t

′) = ne(t
′)+1. The exit flow is non-increasing, so F (n̂e(t

′)) ≤ F (n)e(t
′), which by

definition implies that D̂C(t′) ≤ DC(t′). Then at every subsequent time, the pattern
perpetuates: n̂e(t) > ne(t) causing Fe(n̂e(t)) < Fe(ne(t)) and D̂C(t) < DC(t) until
the queue clears. Therefore, the additional vehicle arriving at time t′ causes delays
for every subsequent trip to be at least as great as before. This implies that the
minimum delay impact is if additional trips are added as late as possible in the rush.

Let us start with the undelayed arrival curve AC(t) = f̃mt. Then to be in agree-
ment with NT total transit riders, all additional travelers must be served by car. The
extra delay contributed by these car arrivals is minimized if they occur as late as
possible in the rush. Since the arrival rate for cars cannot exceed the total rate of
arrivals, ȦC(t) = λ at the end of the rush, and the resulting patterns are given as
(4.15) and (4.16).

Once delay for cars is minimized, the total generalized cost of the transit system
is minimized by serving transit riders at a constant rate. The transit cost model is
a simplification of reality by assuming that transit service is an on/off system, and
passengers ride transit at a constant rate while it operates. This approximation
makes the cost function tractable, and it is near the optimum because a steady
transit demand requires less capital investment than if there are additional peaks
within the service period. The trade-off is that by not optimizing delay and transit
simultaneously the operating interval may be slightly longer than the true optimum,
but this effect is small because delays accumulate much faster than transit costs.

System Optimum Transit Ridership

Proposition 2 establishes a method to minimize the total cost of delay and the gen-
eralized cost of transit when NT is given. These costs can be expressed as functions
of NT . The system optimum problem is to choose the value of N∗T which minimizes
the total generalized cost of the transportation system. ZT (NT ) is still a concave
function, so it behaves similarly to one for the city with constant demand. Now,
congestion could be present in system optimum, depending on its cost relative to the
cost of the transit service required to avert it.

The delay is defined as a function C(NT ), and it also depends on the demand rate
λ and the shape of the NEF. Most realistic NEFs have a concave shape which makes
an analytical expression for C(NT ) difficult if not impossible to find. In practice,
the delay can be estimated numerically by constructing arrival and departure curves
governed by the exit function (4.3) and the mass conservation equation (4.4). The
calculation procedure is the same as described for the user equilibrium in Section 4.3,
except AC(t) is as defined by Proposition 2. The delay always increases as a convex
function of the number of cars served in the peak, NC .

Figure 4.5 shows the generalized car cost for different values of R.4 This is the sum

4The curves in this figure were constructed using a simple triangular NEF, but the convex in-
creasing shape will result from any concave NEF.
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of the free-flow car cost and the total delay: ZC(NC) + C(NC), where the number
of car trips is related to the number of transit trips by NC = λtp − NT . This is
different from the constant demand case where a constraint on road space means that
vehicles could either be served without congestion or not at all. The dynamic nature
of peaked demand allows for congestion to emerge in the network when demand is
high and decline when the demand subsides. Because networks can jam completely
if the jam state at the bottom right of the NEF is reached, there are infeasible values
of NC for each R. Now, the amount of congestion in the network is a choice, and it
depends on the road space available for the demand using it.

NC

αC

no delay ZC(NC)

Generalized Cost Increasing R
ZC(NC) + C(NC)

0 1000 2000 3000 trips
km2(    )

Car Demand0

1000

2000

1500

2500

500

R = 0.01

hrs
km2(     )

0.02 0.03 0.04 0.05

^

Figure 4.5. Total generalized car cost including delay (tp = 1 hr)

In order to identify the system optimum N∗T , it is useful to plot the total gener-
alized cost as a function of the number of transit riders (as was done in Figures 3.4
and 3.8); an example result is shown in Figure 4.6. Demand is expressed as a total
number of commuters N instead of the a rate λ. The effect of delay is clearly visible
as shown for different values of R. This figure allows us to identify the solution for
a range of R given the values of λ, tp, and tmax. There are three possible system
optimum solutions, and each is illustrated in Figure 4.6:

1. All Car – The minimum cost is achieved when all trips are served by car, so the
lowest point is on the left axis. The entire function may be concave if R is large
enough (Case A), or there may be a suboptimal local minimum with mixed
modes if R is more restricted (Case B). In both cases illustrated, there is some
limited congestion in the system optimum with all cars because the generalized
cost functions do not intersect the left axis at 0.
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2. Mixed Modes – The minimum costs is at a local minimum which is lower than
the all car and all transit costs (Case C). Mixed modes is always associated
with congestion because the local minimum must have its first derivative equal
to 0, so it will not lie on the uncongested curve unless the total demand is NMC .
Also note that this is no longer a smooth transition as we observed for the city
with constant demand.

3. All Transit – The minimum cost switches suddenly to the right axis. This can
occur when there is another local minimum with mixed modes (Case D), or
when R is so restrictive that costs are declining for all values of transit demand
(Case E).

ΝMC

Α

Β

C

D E

ZC(N)

N

Transit Demand
NT

trips
km2(    )NC

Car Demand
trips
km2(    )
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ZC(NC) + C(NC) hrs
km2(     )

Decreasing R

Figure 4.6. Total generalized cost of car and transit in the evening with congestion

The results are summarized on axes of scaled road space and demand, so that
the system optimum solution for all possible city structures and input parameters is
shown. In the evening rush, there is an additional variable of interest which is the
peakedness of the rush (tp compared to tmax). Two examples are shown in Figure 4.7
to show the effect of peaked demand. Notice that the shape is similar to the solution
for the city with constant demand, resulting in the same three regimes. The difference
is that peaked demand causes the edges delineating the regions to bow down and to
the right, so there are more cities that should be served with all cars or a mix of
modes. Below the diagonal, it is not possible to serve all cars without congestion. So,
for some cities allowing congestion is optimal.

62



R (αC −α1)2

rC (α2tp + α2tT)

Road Space

N (αC −α1)2

α2tp + α2tT

Demand

1

10.25

All Car

All Transit

Mixed
Insufficient Space for Transit

^ ^

^ ^̂

^ ^

^ ^̂

(a) Evening Peak (tp = 1 hour, tmax = 10 hours)

1

10.25

All Car

All Transit

Mixed Insufficient Space for Transit

R (αC −α1)2

rC (α2tp + α2tT)

Road Space
^ ^

^ ^̂

N (αC −α1)2

α2tp + α2tT

Demand
^ ^

^ ^̂

(b) Evening Peak (tp = 0.5 hour, tmax = 10 hours)

Figure 4.7. Summary of system optimum for cities with peaked evening demand
served by cars and transit. Grey indicates no peak (constant demand) as a reference.
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The effect of the peak becomes more pronounced as the peak gets shorter. This is
intuitive, because an investment in transit capital and operating expenses is required
in order to avoid congestion. If the peak is short, then the delays caused by limited
road space are not very severe. When the congestion is very light, the investment in
transit that will only be used for a short period of the day may not be worthwhile.

4.5 System Optimal Pricing

When the system optimum travel pattern involves using transit because of the road
space constraint, users will not choose transit optimally in equilibrium. The system
optimum can be achieved, however, by using pricing. Since the evening commute
problem is posed so that users can choose which mode to use but not when they
travel, the pricing strategy is very similar to the approach used in the city with
constant demand (Section 3.4). At equilibrium, all modes that are used must have
the same cost (Wardrop, 1952). Since the mode split changes over time, so should
the pricing.

In the system optimum, the N∗T transit riders should be served at the beginning
of the rush as shown in Section 4.4 to prevent congestion from building up on the
network. The user equilibrium differs, because congestion must develop and slow
traffic before users are indifferent between the two modes. The optimal price at each
time $(t) must make up the difference of the generalized cost per trip. So a toll for
cars, a subsidy for transit, or some combination must make up the difference:

$(t) = zT (N∗T , t
∗
T )− zC for t ∈ (0, t∗T ) (4.18)

where t∗T is the duration of transit operations in the system optimum rush. There
should be no congestion during this time period, so the price will be constant during
the full time interval. This type of pricing can easily be implemented as static fares
over the interval (0, t∗T ) when transit service needs to be operated.

4.6 Summary of Findings

This chapter has shown how the cost and traffic models developed for an idealized
city with constant demand can be extended to cities with peaked demand. Since
traffic congestion on networks is a dynamic phenomenon, we make use of a dynamic
model to track the evolution of traffic conditions over time.

This chapter has focused on a city with cars and a BRT network. For cases
where the generalized cost of a transit trip exceeds the generalized free-flow cost
of a car trip, the user equilibrium must become congested before transit becomes
a competitive alternative. By letting the network become congested first, the total
delays in the network increase substantially.

The system optimum solution is also identified for the evening, in which users
can choose different modes but not arrival times in the network. The result is that
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optimal transit use should occur at the beginning of the rush in order to prevent
congestion from building up. The solution has been summarized graphically for the
set of all cities and parameter inputs. As demand increases there are still 3 possible
regimes: 1) all car, 2) mixed modes, and 3) all transit. The difference between the
evening peak and constant demand is that the boundaries between the regimes are
bowed downward and to the right which leaves more cities to be served by cars.
The explanation for this is that with peaked demand, allowing a small amount of
congestion is less costly than investing in a transit system to avert these delays. It is
not surprising that as the peak gets concentrated (tp gets much less than tmax), this
bowing effect gets more pronounced and more cities should be served with car and
suffer some congestion.

The evening commute problem suffers from depending heavily on the shape of
the network exit function and operating in congested conditions which may be unsta-
ble. Some of these issues become less problematic in the morning commute problem.
Chapter 5 addresses the more general morning commute problem in which user can
choose when they travel in addition to their transport mode.
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Chapter 5

Rush Hour City: Morning Peak

This chapter considers the morning commute for competing modes serving a popula-
tion of travelers who are identical except for their wished travel time past a bottleneck.
Whereas the evening peak problem works on the assumption that the arriving rate
of users to the system is given, and they can only choose their mode, the morning
commute recognizes that people also have a choice of when they travel. The results
can be applied to urban networks modeled as bottlenecks whose capacity to serve
vehicle trips declines as the network becomes crowded.

This chapter includes an analysis of the morning commute for a general S-shaped
wish curve and a choice between passing a fixed-capacity bottleneck by car or using
a general uncongestible alternative transit mode. Section 5.1 shows that the user
equilibrium with a fixed capacity bottleneck is unique for a given transit service. Sec-
tion 5.2 identifies the unique system optimal travel pattern which minimizes the so-
cial costs (or equivalently maximizes welfare). Section 5.3 presents a dynamic pricing
strategy which moves the user equilibrium to system optimum. Qualitative insights
are described. Finally, Section 5.5 shows that even though the user equilibrium for
the network problem with state-dependent capacity is somewhat complex, it turns
out that the system optimum version of the problem reduces to the fixed-capacity
bottleneck model. Therefore, with suitably modified cost functions, the system opti-
mal travel pattern, pricing strategies, and insights identified in Sections 5.2 and 5.3
apply to multimodal urban networks.

5.1 User Equilibrium

We first review the bottleneck model for a single mode from Hendrickson & Kocur
(1981) and then add a transit mode. Consider the morning commute problem with
a population of commuters who are identical (e.g., values of travel time and queuing
delay) except for when they wish to get to their destination. If commuters drive, they
must pass a bottleneck with capacity µ. The total number of commuters that wish
to depart from the bottleneck by time t is described by a wish curve, W (t), which is
S-shaped. The slope of this curve is the time-derivative of W (t) (denoted by a dot),
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Ẇ (t), and it satisfies:

Ẇ (t) > µ for t ∈ (t1, t2)

Ẇ (t) ≤ µ otherwise
(5.1)

as shown in Figure 5.1. As a result of the first inequality, there will be a rush
period starting at te ≤ t1 and ending at tL ≥ t2 during which N commuters will
experience queuing delay. Suppose that each commuter experiences a penalty for
schedule deviation from their wished departure time which is described by a piecewise
linear penalty function. Each minute of earliness is associated with a penalty of e
equivalent minutes of travel time such that 0 < e < 1, and each minute of lateness is
equivalent to L minutes of travel time such that L > 0.

t

#

TC

W(t)

D(t)

A(t)

μ
μ

1+L

μ
1−e

te t1 t t2 tL

Ne

NL

˜

Figure 5.1. User equilibrium for a fixed capacity bottleneck using a single mode

In the absence of an alternative mode, and assuming that commuters arrive and
pass the bottleneck in order of wished departure (first-wished, first-in, first-out or
FWFIFO), we look for the beginning and end of the rush and for the equilibrium
departure curve from the bottleneck which has slope Ḋ(t) = µ for t ∈ (te, tL). This
determines the time t̃ when a delayed commuter departs on time, as well as the
number of commuters delayed by the bottleneck, N , Ne of which depart early and
NL depart late (see Figure 5.1). We also look for the user equilibrium arrival curve
at the bottleneck, A(t), which does not allow commuters to reduce their own travel
costs by unilaterally changing their own arrival times. The slope of the arrival curve
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in equilibrium, shown in the figure, must satisfy:

Ȧ(t) =

{
µ

1−e for commuters who depart early
µ

1+L
for commuters who depart late.

(5.2)

Otherwise, early and late commuters could reduce their travel costs by arriving earlier
if the slope was greater or arriving later if the slope was less than those specified in
(5.2). The result is that a critical commuter with wished time t̃ departs the bottleneck
on time but experiences the maximum travel cost as queuing delay:

TC =
NeL

µ(e+ L)
. (5.3)

All travelers wishing to pass the bottleneck before t̃ are early in equilibrium, and all
travelers wishing to pass after t̃ are late in equilibrium. Their excess costs (queuing
and schedule penalty) are less than TC .

If an alternative public transit mode becomes available, then commuters are able
to choose when to travel and which mode to use. It is assumed in this section that
the transit agency charges a fixed fare and operates on a fixed headway. Suppose that
when transit is operating, it is fully segregated on its own lane so that transit service
is not subject to traffic congestion. The transit system requires a fixed amount of
dedicated space, so the bottleneck’s remaining capacity to serve cars when both modes
are operating is µ̃ ≤ µ. Transit users can always choose to pass the bottleneck at
their wished times because use of the mode is not limited by congestion.1 Therefore,
given our assumptions, each transit rider has an identical generalized cost, zT . This
quantity and all costs appearing in this paper are expressed in units of equivalent
queuing time (hours). A car trip without delay has a generalized cost of zC (hours)
which is independent of the number of car drivers. Thus, the total cost of driving
through the bottleneck will be the sum of the cost of a free-flow trip and the excess
costs of queuing delay and schedule penalty.

Following Wardrop (1952), it is assumed that at equilibrium each commuter
chooses the mode and travel time which minimizes his or her own generalized cost.
Transit will be competitive with the car for at least part of the rush hour if zT is less
than the generalized cost that the critical commuter would experience if transit is not
provided: zC +TC . At equilibrium, the generalized cost of car and transit must be the
same when both modes are used, and the generalized cost of a car trip cannot exceed
that of a transit trip when only cars are used. Therefore, zT is an upper bound for the
cost of a trip by either mode. When competitive transit is provided, the maximum
delay by car, T , satisfies:

T = zT − zC < TC . (5.4)

In order to distinguish between the travel patterns of cars and transit, we will
consider the arrival and departure curves for each mode. Again, we assume FWFIFO

1This assumption is reasonable for a service using sufficiently large vehicles operated at regular
headways but without a fixed schedule. The travelers cannot avoid the waiting time at a transit
stop, but they can always board the next vehicle.
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in both cases. DC(t) is the cumulative number of car departures at the bottleneck,
and AC(t) is the cumulative number of car arrivals. DT (t) is the cumulative number of
transit departures, and the arrival curve of transit is the same curve, AT (t) = DT (t),
because all transit trips can be completed on time.

An equilibrium is easy to find in two cases: if zT < zC , then a transit trip is
less costly than even a free-flow car trip, and all trips will be made by transit; if
zT > zC+TC , then there is always a lower cost for traveling by car and the equilibrium
will be the same as for the single mode problem. The following proposition addresses
the remaining cases.

Proposition 3 (User Equilibrium, 2 Modes). If W (t) is S-shaped, and each com-
muter can choose between traveling by car (with free-flow cost zC per trip) through the
bottleneck and an alternative transit mode with given cost per trip zT ∈ (zC , zC + T ),
there is a unique FWFIFO user equilibrium with the following properties (see Fig-
ure 5.2):

1. Ne, the number of early car commuters, is given by Ne = µT/e. They travel at
the beginning of the rush, t ∈ (te, t̃e).

2. NL, the number of late car commuters, is given by NL = µT/L. They travel at
the end of the rush, t ∈ (t̃L, tL).

3. No, the number of on-time car commuters in the rush, is a strictly decreasing
function of T , No = No(T ). They travel in the middle of the rush, t ∈ (t̃e, t̃L).

4. NT , the number of transit riders, is a strictly decreasing function of T , NT =
NT (T ). They also travel in the middle of the rush, t ∈ (t̃e, t̃L).

Proof. Consider point A (t = te) where the first early commuter departs. Since the
excess cost of driving (queuing delay and schedule penalty) is less than T shortly
after this time, only cars are used and therefore ḊC(t) = µ. For an equilibrium,
the slope of the arrival curve for cars at the bottleneck should be as in Figure 5.2:
ȦC(t) = µ/(1 − e), so that queuing time increases at rate e/µ with each additional
commuter. Clearly, the queuing time is T for the Ne = µT/e early commuters in
agreement with property 1. We choose the unique location of point A such that
commuter Ne departs on time at t̃e (point B) as shown in the figure. This ensures
that the excess cost of driving increases monotonically from 0 to T for commuters
departing in (te, t̃e) in FWFIFO order. Therefore, no transit is used during the early
interval. This establishes property 1.

A similar FWFIFO construction is used for the late part of the rush to identify
the unique segment CD and the time interval (t̃L, tL) where the excess cost of driving
declines monotonically from T to 0. In this interval, queuing time declines at the rate
L/µ with each departing commuter, so the number of late commuters is NL = µT/L.
This establishes property 2.
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Figure 5.2. User Equilibrium for a bottleneck with a transit alternative

In the middle of the rush (t̃e, t̃L), the number of commuters served is the length
of segment FC. Both cars and transit are used. Thus, cars depart in FWFIFO order
at rate Ḋ(t) = µ̃. They experience a queuing delay T and no schedule penalty.
Therefore, their number is No = (t̃L − t̃e)µ̃ as shown by segment EF. The number of
transit users, NT , is given by the length of segment CE. They also pass the bottleneck
in FWFIFO order, and experience no queuing or schedule delay. Note, NT is always
greater than 0 because Ẇ (t) > µ ≥ µ̃ in the middle of the rush.

Finally, note from the geometrical construction that if T increases, then t̃e in-
creases and t̃L decreases; i.e., point B moves to the right along W (t), and point C
to the left. Clearly then, both No and NT strictly decrease with T . This establishes
properties 3 and 4.

Note from Figure 5.2 that the departure curve for cars is piecewise linear in the
rush with the slope always equal to the capacity of the bottleneck for cars. From
Proposition 3, it follows that the number of commuters who depart early and late
must satisfy:

Ne

NL

=
L

e
. (5.5)

In this equilibrium, all commuters with wished times in (t̃e, t̃L) travel on time and
experience the same travel cost, zT = zC + T . The transit service is only used during
this period. All early and late commuters travel only by car and experience a lower
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cost. The total number of travelers in the rush is given by the sum:

N = Ne +NL +No +NT . (5.6)

Each of these values, including N , is uniquely determined for any given {W (t), e, L,
µ, µ̃}.

Note by comparing Figures 5.1 and 5.2 that the maximum cost of a trip in the
two-mode equilibrium is less than that of a single-mode equilibrium. Since NT > 0
implies T < TC , it follows from properties 1 and 2 of Proposition 3 that there are
fewer early and late commuters than for the single-mode equilibrium. These are
represented by shorter segments AB and CD in Figure 5.2, which implies that the
rush starts later and ends earlier with two modes than with all commuters traveling
by car. Therefore, the rush period with multiple modes is shorter and involves fewer
commuters. Provision of a competitive public transit alternative to congested driving
is a Pareto improvement because every delayed commuter experiences a reduced travel
cost, even those who travel by car at the beginning and end of the rush when no transit
service is used.

5.2 System Optimum

The system optimal travel pattern will minimize the total system cost (or maximize
welfare) associated with the bottleneck. Since queuing delay is an avoidable waste of
time, AC(t) must equal DC(t) at system optimum. Thus, to find the system optimum,
it suffices to identify the departure curves for cars and transit that minimize the
monetary mode costs (e.g., vehicles, fuel, infrastructure, etc.), the free-flow travel
time, and the schedule penalty.

In order to minimize the total system cost, we must consider the total generalized
cost function of each mode. It is assumed that the transit spatial coverage is given,
but its headway is chosen to minimize the sum of the agency and user costs (including
the out-of-vehicle waiting time) for the given number of transit riders, NT . Thus, the
system optimum transit cost is a function of the number of transit users, ZT (NT ).2

The system optimum problem is approached in two steps. First, we determine how car
users and transit riders should behave if we are given that there is a total of NT transit
riders by the end of the peak period, tmax. The resulting costs are also determined.
Then, the optimal number of transit riders, N∗T , is identified by minimizing the system
cost. All values associated with the system optimum are denoted with ∗.

To start, let us define the curve WL(t)
.
= W (t) − NT . This is a lower bound to

WC(t), the number of car users that wish to depart the bottleneck by time t when
there are NT transit users. Logically, W (t) is an upper bound for WC(t).

Proposition 4. For a given wish curve, W (t), and a given number of transit riders,
NT , there is a unique system optimal departure curve for cars, DC(t), and transit,

2ZT (NT ) is a concave function that increases with
√
NT when the headway is determined en-

dogenously to minimize the total generalized cost of the transit system as shown in Chapter 2.
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DT (t). The DC(t) curve is piecewise linear with 3 segments going from W (t) to WL(t)
(see Figure 5.3):

Phase 1. Ḋ(t) = µ while above W (t), serving N∗e trips (segment AB); WC(t) = W (t);
no transit is used.

Phase 2. Ḋ(t) = µ̃ from W (t) to WL(t), serving N∗o trips (segment BC); WC(t) =
DC(t); and DT (t) = W (t)−WC(t).

Phase 3. Ḋ(t) = µ while below WL(t), serving N∗L trips (segment CD); WC(t) =
WL(t); no transit is used.
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˜
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Figure 5.3. The departure curve for car that minimizes schedule delay given NT

Proof. Since NT is given, all monetary costs and free-flow travel times are fixed. Thus,
the optimal departure curves must minimize only the remaining schedule delay for
cars. In order to identify the optimal DC(t) and DT (t) we must also identify WC(t).
This curve is bounded above by W (t) and below by WL(t) = W (t) − NT and must
satisfy the following criteria (illustrated in Figure 5.3): WC(t) must start on W (t)
and end on WL(t); and for all t, 0 ≤ ẆC(t) ≤ Ẇ (t).

We now show that there is a unique system optimal solution with the stated
properties, as depicted in Figure 5.3. Consider the point B where the WC(t) diverges
from W (t). To the left of B, the schedule delay is minimized because DC(t) is as low
as possible and WC(t) is as high as possible. Note, there is no transit use because
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W (t)−WC(t) = 0. Thus, for the given B, phase 1 is optimum. Likewise, to the right
of point C where WC(t) joins WL(t), the schedule delay is minimized when DC(t) is
as high as possible and WC(t) is as low as possible. There is also no transit because
ẆC(t) = Ẇ (t). Thus for a given point C, phase 3 is optimum.

The schedule penalty can be made equal to 0 in phase 2 by choosing WC(t) =
DC(t). Therefore, for a given B, DC(t) should be chosen to minimize the schedule
delay in phase 3. This is achieved by choosing the highest possible slope for DC(t).
Note that Ẇ (t) > µ in phase 2, so transit is used. Thus, Ḋ(t) = µ̃ in phase 2, as
shown in Figure 5.3, and DT (t) = WT (t) = W (t) −WC(t) because all transit trips
are served on time. Clearly, for a given B, there is a unique segment BC in phase 2,
representing WC(t) and DC(t), that minimizes the schedule penalty.

Since point C is uniquely determined by point B, it only remains to pick the point
B which corresponds to the minimum total schedule cost of earliness and lateness. An
upward shift of B along W (t) corresponds to a shift of the departure curve for early
car commuters by dne and for late car commuters by dnL (see Figure 5.4). Consider-
ation of Figures 5.3 and 5.4 shows that this corresponds to an increase in earliness,
(eNe/µ)dne, and a decrease in lateness, (LNL/µ)dnL. Therefore, the schedule cost is
minimized at the unique point when these two quantities (i.e., the shaded areas in
Figure 5.4) are equal. This unique B defines the optimal solution.
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Figure 5.4. Decrease in earliness and increase in lateness resulting from a shift of B

Since Proposition 4 shows that there are unique pairs of wished curves and depar-
ture curves for cars and transit, given NT , we can define three functions of NT : the
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total transit system cost, ZT (NT ); the total car cost, ZC(NT ); and the total schedule
cost, S(NT ). The value of NT that minimizes the sum of these three functions is
the system optimum transit ridership which we sought, N∗T . We use N∗e and N∗L to
denote the values obtained with the construction of Figures 5.3 and 5.4 for the system
optimum N∗T . We will also define λ∗e

.
= Ẇ (t̃∗e) and λ∗L

.
= Ẇ (t̃∗L), which are the slopes

of W (t) at the system optimum points B and C, respectively.

Proposition 5. At system optimum, the wished curves and departure curves for cars
and transit are such that:

N∗e
N∗L

=
L(λ∗e − µ̃)(λ∗L − µ)

e(λ∗e − µ)(λ∗L − µ̃)
. (5.7)

Proof. Figure 5.4 shows that the effect of an incremental shift of B up and to the
right along W (t) is associated with shifting segment BC up by dno. This causes a
upward shift of the departure curve for early car commuters by dne and for late car
commuters by dnL. Due to the geometry, these differentials are related by:

dno = dne
λe − µ̃
λe − µ

= dnL
λL − µ̃
λL − µ

, (5.8)

where λe = Ẇ (t̃e) when the first on-time commuter departs the bottleneck and
λL = Ẇ (t̃L) when the last on-time commuter departs the bottleneck. At the sys-
tem optimum, the schedule cost is minimized when the resulting change in total
earliness balances the lateness:

eNe

µ
dne =

LNL

µ
dnL. (5.9)

By manipulating (5.9) to express Ne/NL in terms of dne and dnL, then substituting
expressions for these differentials from (5.8), it follows that the relative number of
early and late commuters in the system optimum is:

N∗e
N∗L

=
LdnL
edne

=
L(λ∗e − µ̃)(λ∗L − µ)

e(λ∗e − µ)(λ∗L − µ̃)
, (5.10)

which establishes (5.7).

If W (t) is Z-shaped so that the demand is constant during the peak, then λ∗e = λ∗L,
and N∗e /N

∗
L = L/e. Note that this not true in general, because λ∗e may not equal λ∗L

(e.g., with the S-shaped W (t) illustrated in Figure 5.4). Thus, the ratio of early to
late commuters is different in the user equilibrium and system optimum. In order to
identify the system optimum, it only remains to determine the optimal value of N∗T
which minimizes the total cost of the transportation system:

Z(NT ) = ZT (NT ) + ZC(NT ) + S(NT ). (5.11)
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Proposition 6 (System Optimum, 2 Modes). If W (t) is S-shaped, and each com-
muter can be served either by car (with free-flow cost zC per trip) through a bottleneck
or using an alternative transit mode, then the system optimal travel pattern for both
cars and transit is as in Figure 5.3, satisfies Proposition 5, and also satisfies:

S ′(N∗T ) = −eN
∗
e (λ∗e − µ)

2µ(λ∗e − µ̃)
− LN∗L(λ∗L − µ)

2µ(λ∗L − µ̃)
. (5.12)

Proof. Refer to Figure 5.5, and note that an increase in transit ridership by dNT

results in a downward shift of WL(t) by dNT . If instead we keep point C fixed, we
obtain the lower departure curve corresponding to the segment BeCe (thinner curve).
This maintains the same NL before and after the shifts but Ne is decreased. If point
B is not moved, we obtain the top departure curve corresponding to segment BLCL

(thicker curve). This maintains the same Ne before and after the shift, but NL is
reduced. Obviously, neither of these solutions satisfy Proposition 5. The optimal
departure curve (the dashed line in Figure 5.5) lies between these two extremes and
corresponds to the segment BC which balances Ne and NL in the proper ratio as
established by (5.10).
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Figure 5.5. Change in earliness and lateness resulting from a change in NT

The vertical difference between segments BeCe and BLCL is dNT . Therefore,
the sum of the vertical displacement between segments BeCe and BC and between
segments BC and BLCL must be dNT . Recall that (5.8) describes the relationship
between a vertical shift of segment BC by dno and the vertical shifts of the departure
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curves for early commuters, dne, and late commuters, dnL. Then using (5.8), the sum
of vertical displacements can be expressed as:

dNT = dne
λe − µ̃
λe − µ

+ dnL
λL − µ̃
λL − µ

. (5.13)

where dne describes the shift from segment BeCe to segment BC which contributes to
the reduction in earliness, and dnL describes the shift from segment BLCL to segment
BC which contributes to the reduction in lateness.

In order to maintain system optimum, the relative magnitudes of dne and dnL
must satisfy (5.9) so that the change in earliness is equal to the change in lateness.
Using substitution from (5.10) into (5.13), we have:

dne
dNT

=
λe − µ

2(λe − µ̃)
(5.14)

dnL
dNT

=
λL − µ

2(λL − µ̃)
, (5.15)

and the change in schedule delay with respect to NT at the system optimum is:

S ′(N∗T ) =
dS(N∗T )

dNT

=
dEarliness

dne
· dne
dNT

+
dLateness

dnL
· dnL
dNT

= −eN
∗
e

µ
· (λe − µ)

2(λe − µ̃)
− LN∗L

µ
· (λL − µ)

2(λL − µ̃)
.

The first order necessary condition for optimization is given by setting the first deriva-
tive of (5.11) equal to zero and substituting−zC for Z ′C(NT ). This gives the expression
for Z ′(N∗T ) at system optimum.3

Intuitively, the slope of the optimal departure curve for cars, DC(t), is always the
bottleneck capacity during the rush period. Like the user equilibrium, when transit
is being used, all car commuters should pass the bottleneck on time. The result
is a piecewise linear departure curve for cars in the rush. Note, however, that the
relative number of early and late commuters as expressed in (5.7) is not the same
ratio as in (5.5) in the user equilibrium. Therefore, when cars and transit share road
capacity, the system optimal departure curves are not the same as the user equilibrium
departure curves. This is different from the result for a bottleneck serving a single
mode in which case the system optimum is the same as the user equilibrium with
delay removed by setting the arrival curve equal to the departure curve.

In order to identify the system optimum more concretely, we need to know the
shape of the W (t). Let us now consider the same Z-shaped demand that was analyzed
in Chapter 4. For the morning commute, the demand defines W (t) as shown in
Figure 5.6.

3The second order necessary condition to minimize the cost requires that we calculate
d2S(N∗

T )/dNT
2, so additional information is needed about the shape of W (t).
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Figure 5.6. System optimal schedule delay for Z-shaped W (t)

Lemma 1. If W (t) is Z-shaped with slope λ during a peak of length tp and 0 otherwise,
then the schedule delay is given by:

S(NT ) =


(
tp − NT

λ−µ̃

)2
λeL(λ−µ)
2µ(e+L)

for NT < tp(λ− µ̃)

0 otherwise.
(5.16)

Proof. Consider Figure 5.6 illustrating the Z-shaped W (t) and the optimal DC(t) for
NT as given by Proposition 4. In the middle of the rush, transit demand is λ− µ̃, so
to serve NT commuters, transit is operated for a duration of time, NT/(λ − µ̃). All
of the demand in the remaining time is served only by cars. This demand, Ne +NL,
is the difference between the total demand λtp and the total demand in the middle
of the rush λNT/(λ− µ̃), i.e.:

Ne +NL = λ

(
tp −

NT

λ− µ̃

)
. (5.17)

Since the demand rate is always λ during the peak, then λ∗e = λ∗L = λ. According to
Proposition 5, Ne/NL = L/e at system optimum. Substituting this ratio into (5.17),
Ne and NL are each defined by NT as:

Ne =
L

e+ L
λ

(
tp −

NT

λ− µ̃

)
(5.18)

NL =
e

e+ L
λ

(
tp −

NT

λ− µ̃

)
(5.19)
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when NT < tp(λ − µ̃). Otherwise, transit operates for the full duration of the rush
and there are no early or late commuters.

The total earliness is the area between DC(t) and WC(t) when commuters de-
part early (the triangle below segment AB): Ne/2 (Ne/µ−Ne/λ). The cost of the
earliness is the product of this area and e. Similarly, the total lateness is the area
between DC(t) and WL(t) when commuters depart late (the triangle above CD):
NL/2 (NL/µ−NL/λ). The cost of the lateness is the product of this area and L.
The sum of these two costs is the total schedule cost, S, and by simplifying we find:

S =
(
eN2

e + LN2
L

) λ− µ
2λµ

. (5.20)

Now S is expressed in terms of Ne and NL which are both functions of NT . Substi-
tuting (5.18) and (5.19), the system optimal schedule cost is expressed as a function,
S(NT ). By simplifying the result, we obtain (5.16).

Proposition 7. If W (t) is Z-shaped with slope λ during a peak of length tp and 0
otherwise, then the total number of trips is N = λtp. The optimal transit ridership,
N∗T , is the value which minimizes:

Z(NT ) = ZT (NT ) + ZC(N −NT ) + S(NT ). (5.21)

N∗T takes one of three possible values:

1. N∗T = 0; all trips served by car; then Z = zCN .

2. N∗T = λtp = N ; all trips served by transit; then Z = ZT (N).

3. N∗T ∈ (0, tp(λ− µ̃)); trips served by a mix of cars and transit; then Z = Z(N∗T ).
This happens only if ∃N∗T in the specified interval that satisfies:

Z ′T (N∗T )− zC −
eL

µ(e+ L)

(
tp −

N∗T
λ− µ̃

)
= 0 (5.22)

Z ′′T (N∗T ) +
eL

µ(e+ L)(λ− µ̃)
> 0. (5.23)

Proof. The total cost is composed of three terms: ZT (NT ), ZC(NT ) = zC(N − NT ),
and S(NT ). For real transit systems, Z ′′T (NT ) is negative but increasing because the
total transit system costs increase with

√
NT when headways are optimized. Note

from (5.16) that S ′′(NT ) is constant when schedule delays exist (i.e., NT < tp(λ− µ̃)).
Otherwise it is zero, and of course, Z ′′C(NT ) = 0. Clearly then, the sum of these
parts, Z ′′(NT ), can cross 0 at most once while schedule delays exist, and it must
be negative to left and positive to the right of the inflection point. For NT > N̂T ,
Z ′′(NT ) = Z ′′T (NT ) which is negative. Thus, if there is range of NT over which Z(NT )
is convex, then it is contiguous and to the left of tp(λ − µ̃), and there can be at
most one isolated local minimum. The first order optimality condition is expressed
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explicitly for the Z-shaped wished curve by substituting S ′(NT ) into the relation,
Z ′T (NT ) + Z ′C(NT ) + S ′(NT ) = 0, and recognizing that Z ′C(NT ) = −zC . The result is
(5.22). A similar manipulation for the second order condition, Z ′′T (NT ) + Z ′′C(NT ) +
S ′′(NT ) > 0, yields (5.23).

Note that NT is bounded by the total demand λtp. If Z ′(tp(λ − µ̃)) < 0 or
Z ′′(tp(λ − µ̃)) < 0, then there cannot be any local minimum with mixed modes,
because Z(NT ) is convex only for transit ridership exceeding that at which Z ′′T (NT ) =
0 and less than tp(λ − µ̃). Thus, in these cases the optimal solution is a boundary
point, either N∗T = 0 (all car) or N∗T = λtp (all transit). Otherwise, there is a
convex region in the feasible range of NT which contains at most one unique local
minimum, the optimal solution is either N∗T = 0 (all car), N∗T = tpλ (all transit), or
the N∗T ∈ (0, tp(λ− µ̃)) satisfying (5.22) and (5.23) (dual mode system optimum).

For a Z-shaped W (t), there is a unique system optimal solution for every demand
and length of the peak. Following from Proposition 6, the optimal N∗T is either with all
trips served by car, all trips by transit, or the unique mix of modes satisfying the first
and second order optimality conditions. Although W (t) is not directly observable, if
it is Z-shaped, S(NT ) can be estimated from the observable values: NT , µ, µ̃, λ− µ̃
(demand rate on transit), λtp (total number of commuters). The values of e and L
can be estimated from revealed preferences in equilibrium by measuring the rate at
which delays increase and decrease over the rush. Thus, if the basic shape of W (t) is
assumed, all of the parameters required to identify system optimum can be estimated.

5.3 System Optimal Pricing

Now that the user equilibrium and system optimum have been identified for a bottle-
neck serving cars and transit, we will turn our attention to a pricing strategy that will
achieve system optimal behavior in equilibrium. Commuters are assumed to choose
when to travel and which mode to use based on the generalized cost of their own trip,
the various components of which (travel time, vehicle costs, schedule delay, etc.) can
be combined and expressed in units of equivalent queuing time. Since delay is time
lost that cannot be otherwise productively used, an equivalent toll can be charged
to road users so that they experience the same trip cost, but the delay is converted
into money which can be redistributed back to society (Arnott et al., 1990a). This
section presents a time dependent pricing strategy for cars and transit which achieves
system optimal (welfare maximizing) use of modes and infrastructure as identified in
Section 5.2.

The system optimal pricing strategy adjusts commuter behavior so that AC(t) =
DC(t) which eliminates delays. Suppose that in the absence of pricing, the users of
each mode must cover the mode’s costs, so drivers pay zC as a base rate and transit
riders pay zT . The pricing strategy will define the additional car toll $C(t) and transit
fare $T (t). These prices are expressed in units of equivalent queuing time. Therefore,
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the user cost of a free-flow car trip is zC + $C(t) (hours) and the user cost of a transit
trip is zT + $T (t) (hours). A negative price represents a subsidy.

Proposition 8 (Optimal Prices). For any time-dependent car price satisfying

$̇C(t) = e for t ∈ (t∗e, t̃
∗
e)

$̇C(t) = −L for t ∈ (t̃∗L, t
∗
L)

−L < $̇C(t) < e otherwise,

(5.24)

the following time-dependent price for transit:

$T (t) = zC − zT + $C(t) for t ∈ (t̃∗e, t̃
∗
L), (5.25)

achieves system optimum.

Proof. If an early driver departs dt later, then the schedule penalty for that trip is
reduced by edt. We charge the driver an additional edt as a toll to cancel the benefit
of departing later. Thus, the optimal toll must increase at rate e when commuters
depart early in the system optimum, and by the same argument, the toll must decrease
at rate −L for commuters who depart late in the system optimum. Any commuter
who departs on-time by car or transit will not have an incentive to change his or her
own departure time if the change in cost is in (−L, e).

The transit service is only used during the middle of the peak, t ∈ (t̃∗e, t̃
∗
L), so its

price must only be set for this interval. When car and transit are used simultaneously,
the user cost of travel by both modes must be equal in order to maintain the Wardrop
equilibrium; i.e., $T (t) + zT = $C(t) + zC . So, the price of transit which eliminates
congestion and realizes the system optimal travel pattern is as in (5.25).

Note that for the case without transit, the prices defined in Proposition 8 are
the Vickrey (1969) prices which convert wasteful delay into toll revenue. Figure 5.7
illustrates optimal prices for a special case in which the car price is fixed at $C(t) =
$off-peak
C outside the rush. From the system optimum described in Section 5.2, N∗e car

commuters depart the bottleneck early at rate µ between t∗e and t̃∗e (points A and
B). Since the toll must increase at rate e during this interval, the car toll increases
by ∆$∗e = eN∗e /µ from the first to the last early commuter. Likewise, the car toll
decreases by ∆$∗L = LN∗L/µ for late commuters from t̃∗L to t∗L. In the middle of
the rush, (t̃∗e, t̃

∗
L), all commuters are on time, so the optimal price can follow any

curve from point B to C satisfying the third condition of (5.24) (e.g., the solid curve
shown). Feasible prices are bounded by the dashed diamond. The system optimal
price of transit is the same shape as $C(t) translated down by zT − zC as defined in
(5.25).

Any vertical translation of the transit and car curves satisfies (5.24) and (5.25)
and therefore will result in the same system optimal travel pattern. Thus, by shifting
these prices up or down, it is possible to achieve additional policy objectives such as
any particular car toll during the off-peak (including no toll) or revenue neutrality.
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Figure 5.7. The system optimal time-dependent price for car and transit for the
special case when the car toll is fixed at $C(t) = $off-peak

C in the off-peak

From the system optimal cumulative departures of cars DC(t) and of transit DT (t),
the net revenue $net is given by:

$net =

∫ tmax

0

$C(t)ḊC(t) + $T (t)ḊT (t)dt, (5.26)

where tmax is the amount of time until the next rush period. Since the car price can
take any value in the off-peak, there is always a system optimal pricing strategy which
is also revenue neutral.

5.4 Comparing Pricing Strategies for Bottlenecks

The optimal pricing strategy presented in Proposition 8 (Section 5.3) depends on
the ability to charge a different price at every departure time from the bottleneck or
the network. Although advancements in technologies are making fine time-dependent
tolls increasingly feasible for bridges and congestion charge zones, this requires in-
frastructure investments and political support. In reality, tolling schemes are more
limited. This is partly due to the difficulty of communicating and collecting tolls
and fares which are changing in time and political resistance to dynamic congestion
charges.

This section presents some alternative pricing strategies which are optimal for
some real-world constraints. Without optimal time-dependent pricing, queues will

81



develop in the system, so the analysis for each of these strategies is only applicable to
single roads with fixed-capacity bottlenecks. Although this is restrictive, the results
are nevertheless applicable to facilities like bridges and tunnels. The insights are that
there is a trade-off between efficiency and equity in pricing. More efficient strategies
which eliminate more of the delay (and therefore reduce total system costs) also tend
to result in bigger variation between the highest and lowest travel cost experienced.

The following sections present expressions for the total system cost Z and the
difference between the lowest and highest user cost per trip which is either the maxi-
mum queuing delay T or the change in toll ∆$. The three pricing strategies compared
are: ∗) optimal time-dependent prices, a) time-dependent transit prices with time-
independent car prices, and b) time-independent prices for both cars and transit.

5.4.1 Optimal Time-Dependent Prices

The optimal prices which achieve the system optimum travel pattern for cars and
transit are described in Proposition 8 and illustrated in Figure 5.7. The total system
cost associated with this pricing scheme is the Z(N∗T ) as given by (5.11) and the
optimal departure curves described in Section 5.2.

The difference in car toll between the first early commuter who pays the minimum
and the last early commuter who pays the maximum toll is ∆$∗e (as described in
Section 5.3). Similarly, the difference in car toll between the first late commuter
who pays the maximum and the last late commuter who pays the minimum is ∆$∗L.
Combine this result with Proposition 6, then express (5.12) in terms of Ne using (5.7).
Substitute the result into the first derivative of (5.11), and then substitute ∆$∗e for
eNe/µ to get:

∆$∗e = (Z ′T (N∗T )− zC)
λe − µ̃
λe − µ

. (5.27)

Use the same procedure, substituting NL and then ∆$∗L to get:

∆$∗L = (Z ′T (N∗T )− zC)
λL − µ̃
λL − µ

. (5.28)

Since (5.27) and (5.28) are the differences between car tolls for on-time travelers, the
only other cost these travelers experience is the cost of a free-flow car trip. Therefore,
∆$∗e and ∆$∗L are the difference between the least and greatest user cost for early
and late commuters respectively. Clearly, commuters experience different travel costs
depending on their wished departure time. We can use these as a basis for comparing
how equitable other pricing strategies are.

5.4.2 Time-Dependent Transit Prices, Time-Independent
Car Price

An alternative pricing policy addresses the difficulty of dynamic pricing for individual
car trips. Suppose that cars are priced at $C , but the transit fares can change over
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time.4 Recall that in equilibrium the user cost of all modes used must be the same, and
from Proposition 8, the change in cost (as described by car price) must be bounded
by (−L, e) for on-time commuters. In Section 5.3, the argument was made that for
any car price, the transit price must fluctuate according to (5.25).

Without time-dependent prices for cars, additional cost to drivers will be experi-
enced as queuing delay which can be expressed as a function of time, T (t). Therefore,
we can re-write (5.25) to express the condition for equilibrium as:

$T (t) = zC − zT + $C + T (t). (5.29)

For the period when both modes are used, and all commuters travel on-time, the
equilibrium delay will depend on the price of transit.

By the same logic as presented for car tolls in Proposition 8, commuters will have
no incentive to change their chosen departure time from the bottleneck as long as
the transit price changes slowly. In Section 5.3 it was shown that the transit price
should follow from the optimal car toll, but the optimal car toll can be identified
following from the transit fare. Given a transit price satisfying −L < $̇T (t) < e, the
total cost per car trip must increase and decrease in the same way when both modes
are used. This change in user cost is not a change in car toll but a change in the
queuing delay at equilibrium. By changing the transit price slowly in the middle of
the rush, commuters will choose the same departure time but with a varying amount
of queuing delay. The consequence of this is that the transit price can be lowered
during the peak to reduce delay.

Note that delay cannot be negative, so with fixed prices for cars, the transit price
must hold constant when T (t) = 0. This is illustrated in Figure 5.8 for a case where
the middle of the rush is long enough that delay can be completely eliminated for
part of the rush as indicated by the section of flat cost between t̃e and t̃L.

A superscript a denotes values associated with the optimal implementation of this
pricing strategy. The price of transit at the beginning and end of the rush is given
by:

$T (t̃e) = zC − zT + $C + T ae (5.30)

$T (t̃L) = zC − zT + $C + T aL (5.31)

where T ae and T aL are the queuing delays experienced by car commuters at t̃e and t̃L,

respectively. To minimize delay, the price should decrease at rate $̇T (t) = −L until
$peak
T = zC − zT + $C , where it holds constant until increasing at the end of the rush

at rate $̇T = e to satisfy (5.31). Thus, T ae is the maximum queuing delay experienced
early in the rush, and T aL is the maximum queuing delay experienced late in the rush.

The total system cost when priced this way, Za, will now include a term for the
queuing delay, so (5.11) becomes:

Za(Na
T ) = ZT (Na

T ) + ZC(Na
T ) + S(Na

T ) + Ca(Na
T ) (5.32)

4Typically, transit services already charge users a fare. With the growing prevalence of automated
fare collection and smart cards, it is not technically difficult to make the transit price time-dependent.
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Figure 5.8. Time-dependent pricing for transit to minimize cost when the car toll is
fixed at $C at all times

where Ca is the queuing delay in equilibrium when transit is priced dynamically to
minimize the delay as described above. Since the maximum delay at the beginning
and end of the rush can be determined separately, the ratio of Ne and NL can be
fixed according to (5.7) in order to minimize schedule delay. Now, T ae = eNa

e /µ and
T aL = LNa

L/µ. Then, by taking the first derivative of (5.32) and substituting T ae and
T aL into (5.12), he get:

T ae = (Z ′T (Na
T )− zC + C ′a(Na

T ))
λe − µ̃
λe − µ

(5.33)

T aL = (Z ′T (Na
T )− zC + C ′a(Na

T ))
λL − µ̃
λL − µ

. (5.34)

These values indicate the difference in user cost between car trips without delay and
the maximum cost due to queuing delay experienced by the last early commuter and
the first late commuter (see Figure 5.8). These magnitudes can be compared directly
with (5.27) and (5.28) to assess the relative equity of this pricing strategy to the
optimal time-dependent prices.

5.4.3 Time-Independent Pricing

Finally, we consider the most restrictive pricing policy in which only a fixed price
can be applied to car and transit trips. Whether this is due to technical or physical
constraints, time-independent pricing is the most common pricing strategy in cities.
This includes the special case when car is unpriced ($C = 0). Since it will not be
possible to price away congestion, prices must be picked to minimize the total cost
including queuing delay that will result in equilibrium. We can add a fixed car toll
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$C to zC and a transit fare $T to zT so that when both modes are used:

zT + $T = zC + $C + T (5.35)

where T is the maximum queuing. Essentially, this is the user equilibrium problem
presented in Section 5.1 where all drivers travel on time in the middle of the rush
while both modes are used and experience the same queuing delay, T .

The cost function and optimal values for the time-independent pricing are denoted
with a superscript b. The total cost function to be minimized is now:

Zb(N b
T ) = ZT (N b

T ) + ZC(N b
T ) + S(N b

T ) + C(N b
T ) (5.36)

where C(NT ) is the total equilibrium queuing delay.
Since the prices for each mode are constant, the resulting equilibrium will be as il-

lustrated in Figure 5.2 and the number of early and late commuters must satisfy (5.5).
Therefore, N b

e and N b
L correspond to the same T b as described by the correspondence

between Ne, NL, and T from Proposition 3. Then, the total cost is minimized by
taking the first derivative of (5.36) and substituting T b into (5.12):

T b =
(
Z ′T (N b

T )− zC + C ′(N b
T )
) 2
λe−µ
λe−µ̃ + λL−µ

λL−µ̃
. (5.37)

This maximum queuing delay is also the difference between the cost of an on-time
free-flow car trip and the cost experienced by all on-time drivers in the middle of the
rush. The relative equity of time-independent prices can be compared with the other
pricing schemes by comparing T b with the maximum delays that result from giving
only transit time-dependent prices and the difference in optimal time-dependent car
price.

5.4.4 Comparison of Equity and Efficiency

Three possible pricing strategies have been presented which minimize total system
costs of the morning commute with varying degrees of restrictiveness. The optimal
pricing strategy eliminates all queuing delays and achieves system optimum in cities
where time-dependent prices can be charged to users of cars and transit. Two alter-
natives have also been presented which account for some real-world constraints but
limit the amount of queuing delay which can be eliminated.

Now we can compare these strategies in terms of equity (the difference between
the highest and lowest user cost of a trip) and efficiency (least total system cost).
To evaluate equity, we only need to compare the difference in the cost of car trips,
because the cost of a car trip equals the cost of a transit trip when both modes are
used. Therefore, a comparison of equity is a comparison of the maximum change in
car toll for early and late commuters (∆$∗e and ∆$∗L) with the maximum queuing delay
for early and late commuters with time-dependent transit fares (T ae and T aL) and the
maximum queuing delay with fixed prices (T b). Comparing efficiency is even more
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straightforward, because more efficient pricing strategies achieve lower total system
costs, so this is simply a comparison of Z(N∗T ), Za(Na

T ), and Zb(N b
T ).

Before we can make these comparisons, we must first know something about the
cost functions for each of the pricing strategies. Specifically, we need to know how
the total queuing delay varies with the total number of transit riders, because this
is needed to determine the change in queuing delay with optimal transit ridership.
A proposition is presented which is useful for proving the relative efficiencies of the
pricing strategies.

Proposition 9. The total user equilibrium queuing delay, C, is a strictly decreasing
function of the number of transit riders, C = C(NT ), and C ′(NT ) < −T . For the
total queuing delay when car tolls are fixed and transit is charged an optimal time-
dependent price, Ca, it is also true that Ca(NT ) < C(NT ) and C ′a(NT ) < 0.

Proof. From the geometry of the user equilibrium (see Figure 5.2), the total delay is
the area between AC(t) and DC(t) which includes delay for early, late, and on-time
drivers. At the beginning of the rush while drivers are early and queuing delay is
growing, the total queuing delay is 1

2
NeT , where T = eNe/µ as described in Proposi-

tion 3. From this, a similar expression for queuing delay at the end of the rush can
be expressed, and with No commuters experiencing T = eL(Ne + NL)/µ(e + L), the
total equilibrium queuing delay is:

C =
eN2

e

2µ
+
LN2

L

2µ
+
eL(Ne +NL)

µ(e+ L)
No. (5.38)

Following Proposition 3, Ne(NT ), NL(NT ), and No(NT ) are functions of NT . By
substituting T using the relations of Proposition 3, the change in total delay with
respect to NT can be written as:

C ′(NT ) = T (N ′e +N ′L +N ′o) +
eLNo

µ(e+ L)
(N ′e +N ′L) . (5.39)

From the S-shape of W (t), a decrease in T makes the rush period indicated by the in-
terval (te, tL) start later and end sooner which corresponds to a reduced N . Therefore
N ′ ≤ 0, and from (5.6) it must be true that:

N ′e +N ′L +N ′o ≤ −1. (5.40)

Since Proposition 3 gives that No and NT are both strictly decreasing functions of T ,
then N ′o > 0 and N ′e +N ′L < −1. Thus, C ′(NT ) < −T .

Now, we turn our attention to the queuing delay associated with Ca. When the
rush period is sufficiently long, then the delay occurs in two independent periods at
the beginning and end of the rush (as illustrated in Figure 5.8). The pricing strategy
actively reduces delay in the middle of the rush compared to the user equilibrium in
which the queuing delay is constant while both modes are used. Therefore, it follows
that Ca(NT ) < C(NT ). The total queuing delay associated with the beginning of the
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rush is 1
2
NeTe(1 + µ̃/µ) and similarly the total queuing delay at the end of the rush

is 1
2
NeTe(1 + µ̃/µ). By substituting Te = eNe/µ and TL = LNL/µ, the queuing delay

is:

Ca =
eN2

e

2µ

(
1 +

µ̃

µ

)
+
LN2

L

2µ

(
1 +

µ̃

µ

)
. (5.41)

Since Ne(NT ) and NL(NT ) are decreasing functions of NT , and all of the other pa-
rameters are positive-valued, it follows that C ′a(NT ) < 0.

We now consider how equity and efficiency compare in the most general case
where µ̃ = µ. Furthermore, we will assume that Z ′T (NT ) does not increase as transit
ridership grows. This is typically true for transit services which are designed to
minimize the sum of user and agency costs; e.g., Holroyd (1967). The following
results is true for typical cases where cars and transit systems share the same road
space.

Proposition 10. When Z ′T (NT ) is non-increasing,

T ae <∆$∗e (5.42)

T aL <∆$∗L (5.43)

T b <∆$∗e,∆$∗L (5.44)

and
Z(N∗T ) < Za(Na

T ), Zb(N b
T ), (5.45)

where Z(N∗T ) is the total system cost function for system optimum as expressed in
(5.11).

Proof. We begin by comparing the first two pricing strategies: optimal time-
dependent prices and time dependent pricing only for transit. Let’s start by supposing
that Z ′T (Na

T ) = Z ′T (N∗T ). Then,

Z ′T (Na
T )− zC + C ′a(Na

T ) < Z ′T (N∗T )− zC (5.46)

which by comparing (5.33) to (5.27) and (5.34) to (5.28) implies that T ae < ∆$∗e and
T aL < ∆$∗L. Since NT increases as T decreases, this also implies that Na

T > N∗T .
Z ′T (NT ) is non-increasing, so (5.46) holds, and (5.42) and (5.43) are true.

We now compare optimal time-dependent prices with fixed, time-independent

prices. To simplify algebra, we define φ
.
= 2/

(
λe−µ
λe−µ̃ + λL−µ

λL−µ̃

)
. Note that φ > 0.

Proposition 9 shows that C ′(N b
T ) < −T b, so (5.37) gives us the relation:

T b < φ
(
Z ′T (N b

T )− zC − T b
)

T b <
φ

1 + φ

(
Z ′T (N b

T )− zC
)

(5.47)
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where φ/(1 + φ) < 1. Since µ̃ ≤ µ, it is clear that (λe − µ̃)/(λe − µ) > 1 and
(λL − µ̃)/(λL − µ) > 1. Now, suppose that Z ′T (N b

T ) = Z ′T (N∗T ). Then by comparing
(5.47) to (5.27) and (5.28), it is true that

φ

1 + φ

(
Z ′T (N b

T )− zC
)
<
λe − µ̃
λe − µ

(Z ′T (N∗T )− zC) (5.48)

φ

1 + φ

(
Z ′T (N b

T )− zC
)
<
λL − µ̃
λL − µ

(Z ′T (N∗T )− zC) (5.49)

so it follows that T b < ∆$∗e and T b < ∆$∗L. Since NT increases as T decreases, then
N b
T > N∗T . With a non-increasing Z ′T (NT ), (5.48) and (5.49) still hold, and (5.44) is

true.
Finally, it is clear that Z(N∗T ) < Za(Na

T ) and Z(N∗T ) < Zb(N b
T ) because Z(N∗T ) is

the system optimal cost which is by definition the minimum system cost.

The alternative pricing strategies result in lower maximum cost than optimal time-
dependent pricing. The trade-off for more equitable prices is greater total system cost.
For the same off-peak price of car, the alternative pricing strategies are associated with
lower transit fares as indicated by (5.25), (5.30), (5.31), and (5.35). This means that
greater subsidies for transit are justified with alternative pricing strategies than with
optimal pricing. With a lower relative cost of transit compared to cars brought on
by higher subsidies, correctly implemented alternative pricing should result in greater
transit use. This is expected, because less of the queuing delay can be eliminated for
car drivers, so total system costs are minimized by serving more trips on transit.

We can now gain some additional insights by considering the special case where
the bottleneck capacity to serve cars is not affected by transit operations (µ̃ = µ).
This will be the case if transit uses a separate guideway, such as a rail system, or
if bus lanes are dedicated all of the time. Now, we can make comparisons with the
unpriced user equilibrium for which relevant values are denoted by a superscript UE.
The total system cost of the user equilibrium is described by the same function as
presented for fixed prices: Zb(NUE

T ).

Proposition 11. When Z ′T (NT ) is non-increasing and µ̃ = µ,

∆$∗e = ∆$∗L < TUE (5.50)

where TUE is the maximum queuing delay in the unpriced user equilibrium, and

Za(Na
T ), Zb(N b

T ) < Zb(NUE
T ), (5.51)

where Zb(NUE
T ) is the total system cost in the unpriced user equilibrium.

Proof. When µ̃ = µ, then (5.27) and (5.28) are equivalent, so:

∆$∗e = ∆$∗L = Z ′T (N∗T )− zC . (5.52)
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Suppose that the user equilibrium had the same number of transit riders such that
N∗T = NUE

T . The transit system exhibits economies of scale in that zT (NT ) > Z ′T (NT )
because Z ′T (NT ) is non-increasing. Then from (5.4) we see that:

Z ′T (N∗T )− zC < zT (NUE
T )− zC (5.53)

which implies that ∆$∗e,∆$∗L < TUE. Since T decreases as NT increases (Proposi-
tion 3), N∗T > NUE

T . So, Z ′T (N∗T ) < Z ′T (NUE
T ) which still satisfies (5.53). Therefore

(5.50) is true.
Now, let’s turn our attention to the total system cost with sub-optimal pricing

and the unpriced equilibrium. The comparison between Zb(N b
T ) and Zb(NUE

T ) is
straightforward because the time-independent pricing problem is simply to minimize
the user equilibrium cost function. We know from (5.44) and (5.50) that T b < TUE,
so it must also be true that N b

T > NUE
T . Since N b

T minimizes Zb(NT ), any other value
(such as NUE

T ) must be associated with a greater total system cost, so Zb(N b
T ) <

Zb(NUE
T ).

Finally, we compare Za(Na
T ) and Zb(NUE

T ). We know from (5.42) and (5.43)
and (5.50) that T ae , T

a
L < TUE, and Na

T > NUE
T because T decreases with increased

NT . Since Na
T minimizes Za(NT ), any other value must be associated with a greater

total system cost. Therefore, Za(Na
T ) < Za(NUE

T ). We can also see that the only
difference between (5.32) and (5.36) is the queuing delay term. Proposition 9 states
that Ca(NT ) < C(NT ), so Za(NUE

T ) < Zb(NUE
T ), and it must be true that Za(Na

T ) <
Zb(NUE

T ).

In the special case that µ̃ = µ, all the pricing strategies reduce the maximum user
cost compared to the unpriced user equilibrium. The total system cost for all of the
pricing strategies presented is also lower than without pricing, so it is clear that it is
more efficient and more equitable to use prices to change commuter behavior. Even
if optimal time-dependent prices cannot be charged, there are benefits for equity and
efficiency when using alternative pricing strategies including charging fixed tolls and
transit fares.

5.5 Urban Networks with Competing Modes

The previous sections have shown the user equilibrium and system optimum for two
competing modes using a single bottleneck with fixed capacity. Here, we extend the
results to urban networks. A bottleneck on a road will discharge vehicles at fixed
capacity as long as there are vehicles in a queue feeding it.5 However, the capacity of
an urban network to discharge vehicles to their destinations depends on the number
of vehicles circulating in the network. Unlike a bottleneck on a single road, queues of
vehicles in a network tend to block other streets and impede network flow.

5This is approximately true, although evidence suggests that the queue discharge rate is reduced
when queues grow very long (Koshi et al., 1992).
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Recent work identifying a consistent Macroscopic Fundamental Diagram (MFD)
that relates flow to vehicle density on a network is discussed in detail in Section 2.2.1.
The connection between the MFD and a similarly consistent relationship between
the rate that cars exit the network and number of vehicles in it called the Network
Exit Function (NEF) is described in Section 2.2.3. Using these tools, we will study
this system assuming that the instantaneous exit flow depends only on the number
of vehicles in the network at that time. In this way, a vehicle exiting a network is
analogous to a vehicle departing a bottleneck, so we can think of the network as a
bottleneck with the state-dependent capacity given by the exit function. Figure 5.9
shows a general concave MFD and two NEFs associated with it: F (n) when there is
no transit, and F̃ (n) when transit is operating.
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(b) Network Exit Function (NEF)

Figure 5.9. The MFD and NEF are shown for a network with and without transit.
Dashed lines indicate congested traffic states, and solid lines are uncongested states
where a target operating state P may be reasonably chosen.

The maximum feasible exiting flow is associated with point M in Figure 5.9. For a
given traffic state on the MFD (such as point P), the slope from the origin represents
the average vehicle speed across the network, vµ, which includes time spent at signals
and in queues. The total time required to complete a trip of length d is the reciprocal
of the analogous slope on the NEF, vµ/d. Traffic states to the right of M (dashed
lines in Figure 5.9) are congested and should always be avoided because the same
network and exit flow can be achieved with greater traffic speeds and fewer vehicles
on the road to the left of M (solid lines in Figure 5.9).

Geroliminis & Levinson (2009) provides a numerical method to construct the user
equilibrium for a single mode on a network with a stable, single-valued NEF. The
user equilibrium problem in networks is complicated by the reduced exit flow when
the network becomes congested. Fortunately, the system optimal network problem is
not affected by this complication because only uncongested traffic states (to the left
of M) should occur. Geroliminis & Levinson (2009) also presents the system optimum
and optimal pricing for a network with a single mode taking advantage of this result.
Now, by keeping the traffic states only on the uncongested side of the NEF, we look
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at how the morning commute problem with two modes applies to the network system
optimum.

Although point M corresponds to the maximum feasible exit flow, a city could
choose to put a limit on exit flow by capping it at a target exit flow µ associated with
point P to the left of M. A lower target exit flow lengthens the rush but serves each
vehicle with less travel time. Figure 5.9(b) shows that at point P, µ is associated with
a critical accumulation of vehicles on the network, nµ, such that µ = F (nµ). We will
define delay as the excess travel time over d/vµ for a trip of length d. So, in system
optimum where delays are avoided, d/vµ can be interpreted as the maximum travel
time guarantee.

If the transit service uses a separate right of way and has no impact on the street
network (e.g., metro or permanent dedicated bus lanes), then F (n) does not change,
and µ̃ = µ. By applying system optimal pricing as described in Section 5.3, car
commuters will choose to travel at rate µ, so the network will maintain a steady
accumulation of nµ vehicles. No delay will be experienced.

In reality, transit services often use the same street space as other vehicles, so
deploying buses will reduce the remaining capacity available for cars. This effect on
the NEF is represented by (2.8) in Section 2.2.3. Examples of NEFs with and without
transit operations are shown in Figure 5.9(b). Note that the point P associated with
the target exit flow moves along the ray with slope vµ/d towards the origin so the
travel time per trip does not change. This peak is associated with the same density
kµ as before, so the optimal car accumulation when both modes are operating, ñµ,
and the exit flow (capacity) for cars, µ̃, are given by:

ñµ = αnµ (5.54)

µ̃ = αµ. (5.55)

Note that kµ̃ = kµ, because the network is managed to operate at the same point P on
the MFD (Figure 5.9(a)) with and without transit operations. Expressions (5.54) and
(5.55) describe the traffic state for cars when transit and cars are operating together
on the network in the middle of the rush. This is shown in Figure 5.10 by the slope of
the departure curve for cars exiting the network in the middle of the rush (segment
BC).

The procedure for identifying the system optimum is the same described in Sec-
tion 5.2. Conditional on the segment BC, the total earliness and lateness are mini-
mized by serving car trips at the maximum possible rate before t̃e and after t̃L. Then,
segment BC can be slid up or down until the sum of the schedule penalties for all
early and late commuters is minimized.

For most of the rush, early and late commuters can be served at rate µ associated
with point P, and vehicle accumulation nµ. In the middle of the rush, when both
transit and cars operate together on the street network without delay, the average
vehicle density in the network cannot exceed kµ and the total car accumulation cannot
exceed ñµ. Therefore, just before transit service begins at t̃e, the vehicle accumulation
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Figure 5.10. System optimal departure curve for cars exiting a network when transit
operates

must be reduced to ñµ and the network exit rate µα is given by:

µα = F (ñµ). (5.56)

This results in a shift of the traffic state to the left from P to Pα along F (n) in
Figure 5.9(b). If the duration of this transition is very short compared to the length
of the rush, then the effect is small and the departure curve for cars in the network
system optimum (see Figure 5.10) is approximately the same piece-wise linear pattern
identified in Proposition 4.

In reality, there are two competing secondary effects of the transition from nµ
to ñµ: 1) increased total earliness, and 2) travel time savings for faster trips. More
details about the transition and these effects are presented in Section 5.5.1. This
transition effect does not occur when transit service ends because cars are able to
freely enter and rapidly raise the vehicle accumulation to nµ at t̃L.

In order to eliminate queuing delay, the optimal prices presented in Proposition 8
are required so that users choose to travel at the system optimal departure time.
In equilibrium, the price for car users must increase at rate e for early drivers and
decrease at rate L for late drivers; otherwise queuing delays will emerge as commuters
seek to adjust their travel times in order to reduce their own experienced cost. In
order to achieve the transition from P to Pα, some additional network control (e.g.,
adjusting signal timings) is required, but the optimal prices ensure that congestion
does not develop. The time intervals (te, t̃e) and (t̃L, tL) are determined by the target
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exit flow µ as shown in Figure 5.10. These determine the optimal car toll and transit
fare as described in Section 5.3.

5.5.1 Traffic State Transition

The Network Exit Function (NEF) describes the relationship between the number of
cars in a network and the rate that vehicles exit the network as described in Sec-
tion 5.5. In order to prevent delays for traffic when transit service begins, the vehicle
accumulation in the network must be reduced to ñµ immediately before the start of
transit service at t̃e. This corresponds to a transition in the rate that cars discharge
from the network from µ to µα as shown by points P and Pα (see Figure 5.9(b)).
Since the NEF is concave, µ̃ ≤ µα, and the slope from the origin to µα is no less than
to µ̃. Therefore, vehicle trips before transit starts operating are at least as fast as
when both modes are operating together and no delays are incurred. The effect on
vehicle departures is illustrated by DC(t) to the left of point B in Figure 5.11.
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Figure 5.11. System optimal departure curve for early cars in a network transitioning
from departure rate µ to µα.

If the vehicle accumulation is expressed as a function of time, n(t), then recall
that the state of the network follows the mass conservation equation (Daganzo, 2007)
as expressed in (4.4):

dn

dt
= Ȧ(t)− F (n(t))

where Ȧ(t) is the rate that vehicles enter the network. We define τ as the transition
time for the vehicle accumulation to drop from nµ to ñµ. Then, τ is minimized if
no vehicles enter the network (Ȧ = 0), and trips exit according to the NEF. The
conservation equation (4.4) is an ordinary differential equation which can be solved
as a boundary value problem to obtain τ :

τ = −
∫ ñµ

nµ

1

F (n)
dn. (5.57)
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Recall from (5.54) that ñµ = αnµ.
The transition from nµ to ñµ results in two competing effects. First, the total

earliness cost is increased because the maximum departure rate for early commuters
cannot be sustained at µ for the entire interval (te, t̃e). The reduced exit flow im-
mediately preceding transit service adds τe additional earliness to nearly every early
commuter (see Figure 5.11). This is the difference between the transition time, and
the time it would have taken for the same (1− α)nµ trips to exit at rate µ:

τe = τ − (1− α)nµ
µ

. (5.58)

Since nearly every early driver experiences τe additional earliness, the total system
cost increases by approximately eNeτe.

Second, some travel time savings are experienced by early commuters in the tran-
sition period of length τ which reduces the total system cost. This occurs because the
transition from point P to Pα decreases the exit flow to µα. Since µ̃ ≤ µα and both
flows are associated with ñµ, the travel time for Pα will be at least as short as for
P, if not shorter. The aggregated travel time savings, TTs, is the difference between
the total travel time for (1− α)nµ trips to exit while the network accumulation is nµ
and the total travel time during the transition period for the same number of trips
to actually exit:

TTs =
(1− α)n2

µ

µ
−
∫ τ

0

n(t)dt (5.59)

The first term of (5.59) is the product of the time it takes (1 − α)nµ to exit the
network at rate µ and the nµ vehicles which are present in the network at all times.
Upper bounds for the magnitude of these effects can be determined by considering
two NEFs: µα = µ̃, and µα = µ (see Figure 5.12).
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Figure 5.12. Example NEFs for cases with maximum earliness cost (Case 1) and
maximum travel time savings (Case 2).
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Case 1: Maximum Earliness The largest possible change in exit flow from P to
Pα is a transition from µ to µα = µ̃. In this case, NEF must be linear to the left of
P as shown in Figure 5.12(a). This will result in the greatest possible transition time
τ and additional earliness τe, because the exit rate can be no lower for each vehicle
accumulation if F (n) is concave. For this case, the exit flow is given by:

F1(n) =
µ

nµ
n for n ∈ (0, nµ). (5.60)

We can solve for τ by substituting (5.60) into (5.57), and solving the integral with
ñµ = αnµ:

τ = −nµ
µ

lnα. (5.61)

Then, by substituting (5.61) into (5.58), the added earliness for each early commuter
is:

τe =
nµ
µ

(− lnα− 1 + α) . (5.62)

This is an upper bound for the τe associated with any concave NEF. Note that nµ/µ is
the average travel time for a trip of length d, and τe will be small for many reasonable
values of α (e.g., τe is less than 3% of the uncongested travel time for values of
α > 0.8).

The NEF in this case is linear to the left of P, so all traffic states are associated
with the same slope to the origin for n ≤ nµ (see Figure 5.12(a)). The average travel
time per trip in the network does not change over the course of the transition, and
therefore there are no travel time savings experienced. This can be verified by solving
the mass conservation equation, (4.4), with (5.60) and substituting the result into
(5.59).

Case 2: Maximum Travel Time Savings The largest possible reduction in
travel time from P to Pα is when the exit flow transitions from µ to µα = µ. In this
case, the NEF has a constant value between Pα and P as shown in Figure 5.12(b).
Although we would expect the point P always to be chosen as the left most point
with exit flow µ, this case provides an upper bound for the total travel time savings
as µα approaches µ.

Since the exit flow is always µ, the number of vehicles in the network at any time
during the transition is given by:

n(t) = nµ − µt. (5.63)

We also know that the duration of the transition for (1−α)nµ vehicles to depart will
be:

τ = (1− α)nµ/µ. (5.64)

Substituting (5.63) and (5.64) into (5.59), and solving the integral, results in a total
travel time savings of:

TTs =
(1− α)2n2

µ

2µ
. (5.65)
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This is an upper bound for the TTs associated with any choice of P on the uncongested
side of a concave NEF. Note that this value is independent of the number of early
commuters as long as the length of the period when commuters travel early is longer
than the transition period.

The NEF in this case does not contribute any additional earliness to the other
early commuters (τe = 0). This result can be easily verified by substituting (5.64)
into (5.58) and occurs because the exit flow is always maintained at µ until transit
service starts operating. Therefore, the departure curve for cars in this case is still
represented by Figure 5.10, and the system optimal solution will be exactly the same
as the travel pattern identified in Section 5.2.

5.5.2 System Optimum and City Structure

To relate this work back to the characteristics of city structure (road space and
demand), we can summarize the system optimum result on scaled axes just as was
done for the city with constant demand and the evening peak. For these illustrations,
we will focus on a special case where the wished curve is Z-shaped, and then we can
use the result of Proposition 7. Since the rate that riders will use transit is always
λ − µ̃, the duration of transit service, tT , is uniquely determined by NT . Therefore
the transit cost function, (4.2) is a function only of NT , so it is straightforward to
identify if and where a possible multimodal optimum exists.

The results are shown in Figure 5.13 and they are qualitatively very similar to
those of the evening commute. There are still three regimes: 1) all car, 2) mixed
modes, and 3) all transit. The difference is in how the modes are operated in the
various regimes. In the morning commute system optimum there should be no con-
gestion, but there may be extra costs associated with schedule penalty which occur
in the system optimum travel patterns identified in Section 5.2. The delineations
between the regimes bow increasingly downward and to the right as the demand gets
more peaked. The interpretation for this is similar to that of the evening commute,
except in this case the trade-off is that for some cities the total schedule penalty
associated with everyone driving is too small to justify investing in a transit system
to avoid these costs.

5.6 Summary of Findings

This chapter includes the most general analysis in this dissertation. The morning
commute problem on a network with multiple modes consists of individuals whose
desired departure times from the network are distributed in time. Using the frame-
work introduced in Vickrey (1969) and developed in Hendrickson & Kocur (1981), a
single bottleneck used by multiple modes is studied, and the results are applied to
urban networks.

As a starting point, a single bottleneck with fixed capacity that serves both cars
and transit has been studied. Commuters choose which mode to use and when to
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Figure 5.13. Summary of system optimum for cities with peaked morning demand
served by cars and BRT.
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travel in order to minimize the generalized cost of their own trip. The transit agency
chooses the headway and when to operate. The following results are shown for this
type of bottleneck:

1. If the transit agency charges a fixed fare and operates at a given headway, and
only when there is demand, then there is a unique user equilibrium.

2. If the transit agency chooses its headway and time of operation for the common
good, then there is a unique system optimum.

3. Time-dependent prices exist to achieve system optimum.

4. Optimal prices are not always the difference between the system optimum and
user equilibrium costs.

Finally, it is also shown that results 2 and 3 apply to urban networks.
For both the single bottleneck and network, the provision of public transit is a

pareto improvement because everyone experiences a lower cost than in the single
mode case. Public transit has also been shown to reduce the duration of the rush
period in user equilibrium. When cars and transit share the same road capacity, the
system optimum travel pattern differs from the user equilibrium. Although optimal
time-dependent prices always exist, they do not simply price the delay out of the
equilibrium result. The optimal prices are also not unique, so there is flexibility to
pursue other policy objectives.

Other results included in this chapter are a comparison of various pricing strategies
for the bottleneck with cars and transit. These alternative prices address realistic
constraints that make optimal time-dependent pricing difficult to implement. The
relative efficiency and equity of these strategies are ranked based on analysis of a
general S-shaped wished curve. Although none of the alternatives are as efficient as
the optimum, some are more equitable in that the difference between the maximum
trip cost and minimum trip cost can be diminished.
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Chapter 6

Conclusion

Transportation is of critical importance to the life and operation of cities worldwide
because it provides people with access to opportunities. With limited resources to
continue expanding urban transportation infrastructure, cities need to be able to
manage their streets, and the transportation systems which use them, cost effectively.
This dissertation has ought to address this problem by answering the question: What
are the costs of providing accessibility for cities of different structures? The focus has
been on looking at how urban space should be allocated to different transport modes,
and how these modes should be operated and priced efficiently.

Viewing cities at the macroscopic level, this work focuses on revealing the phys-
ical relationships between city structures, transportation systems, and the costs of
serving travel demand in cities. Unlike existing work which is either site-specific or
empirically shows a relationship between city structure and the costs of mobility, this
research builds a theory of urban physics that can be applied to any city or any mode.
Using macroscopic models of traffic and transit systems, a systematic analysis of the
allocation of space and use of modes for any city has been presented. These models
recognize that vehicles require space, and demonstrate the effect of spatial limitations
of cities on how transportation systems can and should be operated and priced.

The reality is that no city will operate with perfect efficiency, and no two cities
will behave exactly alike. The models developed in this dissertation establish bounds
for what is physically possible. By understanding what can be achieved with a trans-
portation system in a city, and the mechanisms that affect performance outcomes,
the results of this work can be used as a basis for developing plans to address real
challenges related to the growing demand for limited urban space.

The remaining sections of this chapter include a summary of the key contribu-
tions of the dissertation research, some alternative applications that could be further
developed, and directions for future research.
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6.1 Contributions

The contributions of this dissertation are connecting recent advances in understanding
the behavior of urban transportation networks with economic theory. Starting with
the modeling methodology, this dissertation develops functional relationships between
characteristics of city structure, travel demand, and transport modes, and the various
types of costs associated with transportation systems. This is done recognizing that
vehicles require space, and that the physical extent of queuing on networks affects
the networks’ ability to move vehicles.

Using these models, several insights are gained from studying the idealized case
of cities with constant demand, and more realistic cities with evening and morning
peak demand. The analysis has focused on a comparison of two modes (individual
cars and collective public transit) in a city where all trip characteristics are homoge-
neous among the population. For each of the cases, analysis has been done for the
user equilibrium and system optimum, and pricing strategies have been developed to
achieve the system optimum.

In summary, the main contributions of this dissertation are:

1. There are three possible operating regimes for the system optimum: all car,
mixed modes, and all transit. As demand increases, cities that start with plen-
tiful street space eventually fill their roads and make a gradual transition to
mixed modes where just enough transit is provided to fit the demand on the
road space available. Then, the transition to all transit is a sudden jump when
the cost of mixing modes exceeds serving everyone on transit.

2. The availability of competitive public transit reduces the trip costs for all users.
In the morning commute, this is caused by making the rush period shorter, in-
volving fewer people. Furthermore, every singe commuter experiences a reduced
trip cost even if he or she travels when no transit is available.

3. Transit subsidies (or car tolls) can make everyone better off in cases where road
space is constrained.

4. The effect of peaked demand is to increase the range of cities for which it
is optimal to serve all trips by car. The result is that there are additional
costs associated with car trips in equilibrium (schedule delay in the morning,
congestion in the evening). These costs may not be large enough to justify the
expensive investments in transit systems needed to avoid those costs.

User equilibrium, system optimum, and optimal pricing solutions are identified
for cities with constant demand, evening peaks, and morning peaks. The morning
peak results are important because they provide insights on how to efficiently manage
a network without congestion. The following are identified for the morning commute:

1. Unique user equilibrium when the transit service level is given;
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2. Unique system optimum when the transit agency can choose the headway and
operating time for the common good;

3. Existence of time-dependent prices to achieve system optimum;

4. Results for the fixed capacity bottleneck apply to the system optimum network
problem.

The broader contribution of this work is that normative models have been con-
structed with realistic physics in order to identify the efficient allocation of space and
operation of modes.

6.2 Other Applications

All of the modeling in this dissertation was built on the same cost function and
constraint: minimize some combination of time, money, and externalities, subject to
a road space constraint. This is a reasonable framework for a city that is already well-
developed with street infrastructure essentially built. In this city, the goal may be to
find ways to make the existing transportation infrastructure operate more efficiently.

An alternative formulation is alluded to in the dissertation, but not discussed
in depth: e.g., to view some type of environmental impact such as greenhouse gas
emissions as a constraint on the transportation system. Since the functional forms
are the same for many different types of costs, the qualitative solutions will be the
same. The changing magnitudes of cost parameters merely moves cities to different
positions on the solution space.

6.3 Future Work

There are many ways to improve the applicability of this work by relaxing assumptions
which restrict how well the results describe real cities. Although the analytical models
can only be pushed so far, the theory developed in this dissertation can be used as a
basis for numerical or simulated approaches. Some areas for future related research
are:

1. Investigating the effects of heterogeneity among users, particularly with respect
to trip lengths and value of time. These are both important determinants of
mode choice, and yet the values vary from person to person and from trip to
trip. An expected outcome of this heterogeneity is that cities should see a richer
variety of modes than the results of this dissertation suggest.

2. Considering the effects of using different modes in combination. The models
are structured to account for the characteristics of the access mode, but more
sophisticated ways to operate cars and transit together, or transit systems with
different types of services, for example, could provide insights for designing
hierarchical transportation systems.
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3. Studying the effects of vehicle interactions on network performance. This dis-
sertation research is built on assumptions that transit lanes are well-managed
and space is dedicated so that there are no conflicts between different vehicle
types which reduce capacity. A better understanding is needed of how networks
are able to serve multiple modes. This is an important step to identifying the
passenger-carrying rather vehicle-carrying capacity of transportation networks.

4. Understanding the environmental performance of transportation as a system
rather than merely the sum of its components. Most of the existing work on
the life-cycle impacts of transportation focuses on studying individual vehicles
and scaling them up, but the macroscopic approach used in this research is well
suited for studying large complex systems like transportation systems in cities.
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Appendix A

Glossary of Symbols

Introduced in Chapter 2

a = reachable area associated with trip length d [dist2]
A = accessibility per trip [reachable opportunities]
α = proportion of network for cars when transit operates [–]
αC = cost per uncongested car trip [time/trip]
α0 = cost coefficient for transit [time/dist2·time]
α1 = cost coefficient for transit [time/trip]
α2 = cost coefficient for transit [time/dist2·trip]
α3 = cost coefficient for transit [time2/trip2]
β = value of time [$/time]
c = vehicle occupancy [trips/veh]
ca = vehicle occupancy of access mode [trips/veh]
cd = vehicle operating cost per distance [$/veh·dist]
ci = infrastructure cost per unit area (e.g., paving streets) [$/dist2·time]
ct = vehicle cost per time [$/veh·time]
d = length of a trip [dist]
D = population density, number of people per area [ppl/dist2]
δ = trip-making rate per person [trips/ppl·time]
ed = environmental impact of vehicle operation per distance [#/veh·dist]
ei = environmental impact per unit area of infrastructure [#/dist2·time]
et = environmental impact of vehicle per time [#/veh·time]
EZ = total external impact of interest [#/dist2·time]
f = flow of vehicles exiting the network [veh/time]
γ = monetized value of external impact (policy variable) [$/#]
h = clear headway required for transit vehicle operation [time/veh]
H = headway of transit service [time/veh]
k = average network density [veh/lane·dist]
k∗ = critical network density associated with qm [veh/lane·dist]
κ = constant relating accessibility to D and d2 [opportunities/ppl]
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l = total network length [lane·dist]
λ = demand rate, trip generation per area per time [trips/dist2·time]
λC = demand rate for cars [trips/dist2·time]
λT = demand rate for transit [trips/dist2·time]
MZ = total money cost [$/dist2·time]
n = number of vehicles accumulated in the network [veh]
ψ = vehicle time per trip [veh·time/trip]
q = average network flow [veh/time·lane]
qa = maximum flow for access mode [veh/time·lane]
qm = maximum flow [veh/time·lane]
r = vehicle footprint per trip [dist2·time/trip]
rC = vehicle footprint per car trip [dist2·time/trip]
rp = physical area required per parking space [dist2]
r1 = road space coefficient for transit [dist2·time/trip]
r2 = road space coefficient for transit [dist2·time/trip]
r3 = road space coefficient for transit [dist4·time2/trip2]
R = road space available for moving transportation per area of city [–]
R̄ = road space for moving required per trip [dist2·time/trip]
RC = total road space required by the car transportation system [–]
Rp = parking space available per area of city [–]
RT = total road space required by the transit system [–]
R̄p = parking space required per trip [dist2·time/trip]
s = route and stop spacing for transit system [dist]
ta = access time [time/trip]
tm = travel time in-vehicle for trip of length d [time/trip]
T̄ = total travel time per trip [time/trip]
tw = waiting time out of vehicle [time/trip]
TZ = total time cost per time [time/dist2·time]
v = average transit speed including stops for passengers [dist/time]
va = average speed of access mode [dist/time]
vm = average network speed associated with qm [dist/time]
Vd = total vehicle distance operated per time [veh/dist·time]
V̄d = vehicle distance per trip [veh·dist/trip]
Vt = total vehicle time (fleet size) [veh/dist2]
V̄t = vehicle time per trip [veh·time/trip]
w = lane width for mode [dist]
wa = lane width for access mode [dist/lane]
x = loss time per passenger for boarding and alighting [veh·time/trip]
y = loss time per stop [time]
Z = total generalized cost of the transportation system [time/dist2·time]
ZC = total generalized cost of the car system [time/dist2·time]
ZT = total generalized cost of the transit system [time/dist2·time]
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Introduced in Chapter 3

fm = maximum exit flow when network serves only car [veh/time]
K = total generalized cost for iso-cost contour [time/dist2·time]
L = locus of points (λT , λC) where Z(λT , λC) = ZT (λ)
λcrit = critical demand at which ZC(λcrit) = ZT (λcrit) [trips/dist2·time]
λMC = demand rate at which marginal costs are equal [trips/dist2·time]
nm = accumulation of vehicles associated with fm [veh]
$ = system optimal price per trip in units of time [time/trip]
$MC = optimal price when transit is λ∗ [time/trip]
vn = average network speed associated with state N [dist/time]
R = boundary of road space constraint
zC = average generalized cost per car trip [time/trip]
zT = average generalized cost per transit trip [time/trip]

Introduced in Chapter 4

A(t) = cumulative arrival curve to the network
AC(t) = cumulative arrival curve of car trips
AT (t) = cumulative arrival curve of transit trips
α̂C = cost per peaked uncongested car trip [time/trip]
α̂1 = cost coefficient for peaked transit [time/trip]
α̂2 = cost coefficient for peaked transit [time2/dist2·time·trip]
ˆ̂α2 = cost coefficient for peaked transit [time2/dist2·time·trip]
C = total queuing delay [time]
D(t) = cumulative departure curve from the network
fm = maximum exit flow for network with only car [veh/time]

f̃n = exit flow associated with congested state Ñ [veh/time]

f̃m = maximum exit flow for network with cars and transit [veh/time]
ne = excess accumulation of vehicles [veh]
nm = accumulation of vehicles associated with fm [veh]
nn = accumulation of vehicles associated with state N [veh]

ñn = accumulation of vehicles associated with state Ñ [veh]
N = total number of trips in rush period [trips]
NC = total number of car trips [trips]
NT = total number of transit riders [trips]
N∗T = total number of transit riders in system optimum [trips]
$(t) = system optimal price per trip at t in units of time [time/trip]
tmax = maximum length of the rush [time]
tp = duration of peak demand [time]
tT = duration of transit operations [time]
T = maximum delay for drivers [time]
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vn = average network speed associated with state N [dist/time]
w = lane width for mode [dist]
zC = average generalized cost per uncongested car trip [time/trip]
zT = average generalized cost per transit trip [time/trip]

Chapter 5

e = schedule penalty for earliness [equivalent queuing delay]
kµ = average network density associated with µ [veh/dist]
L = schedule penalty of lateness [equivalent queuing delay]
λ∗e = demand rate at t̃∗e [veh/time]
λ∗L = demand rate at t̃∗L [veh/time]
µ = maximum departure flow with only cars [veh/time]
µ̃ = max. departure flow of cars when transit operates [veh/time]
µα = departure flow associated before transit operates [veh/time]
dne = incremental vertical shift of early departures associated with dno
dnL = incremental vertical shift of late departures associated with dno
nµ = accumulation of vehicles associated with µ [veh]
ñµ = accumulation of vehicles associated with µ̃ [veh]
dno = incremental vertical shift of on-time departures of cars
Ne = total number of early commuters [trips]
NL = total number of late commuters [trips]
No = number of on-time car commuters in middle of rush [trips]
S = total cost of schedule penalties [time]
$C(t) = price (toll) for a car trip at time t [time/trip]

$off-peak
C = price (toll) for car trips in the off-peak [time/trip]

∆$∗e = difference in optimal car price between first and last early trip
∆$∗L = difference in optimal car price between first and last late trip
$net = net revenue of pricing policy
$T (t) = price (fare) for a transit trip at time t [time/trip]
t̃ = departure time of critical commuter in 1-mode equilibrium
te = beginning of the rush when first early commuter travels
t̃e = departure time of first on-time commuter in rush
tL = end of the rush when last late commuter travels
t̃L = departure time of last on-time commuter in rush

t1 = first time when Ẇ (t) exceeds capacity

t2 = last time when Ẇ (t) exceeds capacity
TC = maximum delay for drivers in 1-mode equilibrium [time]
Te = delay experienced by the last early driver [time]
TL = delay experienced by the first late driver [time]
TTs = aggregated travel time savings in transition period [time]
τ = transition time to shift from nµ to ñµ [time]
τe = additional earliness from transition time [time]
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vµ = average network speed associated with µ [dist/time]
W (t) = cumulative wished departure curve from the network
WC(t) = cumulative wished departure curve of car trips
WT (t) = cumulative wished departure curve of transit trips
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Appendix B

Cost Model Coefficients

The general structure of the cost model for different types of modes is presented
in Chapter 2. In Sections 2.4.1 and 2.4.3, detailed expressions for the individual
components of travel time, footprints, and vehicles are presented. These contribute
to the generalized cost functions and road space requirements of the modes, which
are presented in a general form in Sections 2.4.2 and 2.4.4. In this appendix, the
expressions relating the generalized costs to the various components are presented.

B.1 Individual Modes

Each component associated with a trip using an individual mode is independent of the
demand. So, the total system generalized cost and road space required are attained
by multiplying the values for a single trip by the demand λC .

Generalized Cost Coefficient

Each of the costs contributing to the generalized cost function are combinations of
physical components with cost coefficients shown in Section 2.3.1. These are then
combined into a generalized cost function as described in Section 2.3.2. First we
substitute cost components from (2.15), (2.16), (2.13), and (2.14) into (2.9) and
(2.10). Then, we substitute these quantities along with (2.12) into (2.11) to get the
coefficient for individual modes such that ZC(λC) = αCλC :

αC = ta +
d

vm

+
1

β

(
ctψ + cdd+

ciwavata
caqa

+
ciwd

qmc
+ cirp

(
ψ − d

vm

))
+
γ

β

(
etψ + edd+

eiwavata
caqa

+
eiwd

qmc
+ eirp

(
ψ − d

vm

))
(B.1)
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Required Road Space Coefficient

The road space coefficient for moving cars is simply the footprint identified by (2.15),
so rC = R̄. The road space for parking is given by R̄p from (2.16).

B.2 Public Transit Modes

The public transit modes involve more complex relationships between the demand
and the generalized costs of the system, because the cost of each trip depends on the
total demand for the system, λT .

B.2.1 Surface Transit on Shared Streets (e.g., Buses)

Generalized Cost Coefficients

The costs of the public transit system depend on its designed route/stop spacing, s,
and headway, H. By substituting components from (2.23), (2.26), (2.24), and (2.25)
as done above produces a generalized cost function of three variables ZT (λT , s,H).
This is a convex function of H, and a closed form solution for the optimal headway,
H∗, which minimizes the generalized cost can be found by setting the first derivative
with respect to H equal to zero:

H∗ =

√√√√√(ct + γet)
(

1
vm

+ y
s

)
+ cd + γed + (ci + γei)

(
wh+ rp

vm
+ rpy

s

)
λT sβ

2
+

dxβλ2T s
2

8

. (B.2)

This optimal headway can then be substituted back into the total generalized cost
function. The route and stop spacing could also be optimized, but this is not straight-
forward to do analytically, and furthermore, it is unrealistic for transit agencies to be
changing the value of s frequently. Since the optimal s is insensitive to demand, it is
sufficient to treat the physical structure of the network as fixed.

The generalized cost is of the form expressed in (2.28). By collecting terms, each
of the coefficients is defined as follows:

α1 =
s

va
+

d

vm
+
yd

s
+

1

β

(
2(ct + γet)x+ (ci + γei)

(
was

qaca
+ 2rpx

))
(B.3)

α2 =
32

sβ

(
(ct + γet)

(
1

vm
+
y

s

)
+ cd + γed + (ci + γei)
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wh+

rp
vm

+
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s
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(B.4)

α3 =
8xd

β

(
(ct + γet)

(
1

vm
+
y

s

)
+ cd + γed + (ci + γei)

(
wh+

rp
vm

+
rpy

s

))
(B.5)

Required Road Space Coefficients

The required road space has the same functional form as the generalized cost. Assum-
ing that the transit agency always operates the optimal headway to serve demand,
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we simply substitute (B.2) into (2.26). The resulting road space coefficients are:

r1 =
was

qaca
+ 2rpx (B.6)

r2 =

8β
s
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wh+ rp

vm
+ rpy

s

)2

(ct + γet)
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1
vm

+ y
s

)
+ cd + γed + (ci + γei)
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s

) (B.7)

r3 =
2dxβ
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(
wh+ rp

vm
+ rpy

s

) (B.8)

As described in Section 2.4.4, this model represents a transit system which operates
on a grid network and shares street space with other modes. If the loss time per
stop becomes independent of the number of passengers boarding and alighting (e.g.,
a BRT with prepaid fares) then x approaches zero, so r3 and α3 are eliminated.

B.2.2 Transit on Dedicated Guideway (e.g., Metro)

Generalized Cost Coefficients

To consider systems with a significant fixed infrastructure investment per route length
(e.g., dedicated guideway systems), the cost function requires further modification.
In this case, the effective headway of the transit vehicle in traffic equals the operating
headway, h = H, so the headway drops out of the expression for required road space
for moving vehicles. Thus, all of the infrastructure costs for routes are included in α0

and are eliminated from α1, α2, and α3.

α0 =
4w(ci + γei)

βs
(B.9)

α1 =
s

va
+

d

vm
+
yd

s
+

(ci + γei)was

βqaca
(B.10)

α2 =
32

βs

(
(ct + γet)

(
1

vm
+
y

s

)
+ cd + γed + (ci + γei)

(
rp
vm

+
rpy

s

))
(B.11)

Required Road Space Coefficients

If transit is operated on streets, such as a BRT system with fully dedicated lanes, the
required road space is simply the route length per area multiplied by the lane width:

r0 =
4w

s
. (B.12)

For modes that operate on entirely separate guideways that do not require street
space, this term is 0. For example, metro systems which are built in tunnels re-
quire huge infrastructure investments which are accounted for in the generalized cost
function, but these systems require almost no surface space.
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B.3 Costs for Time-Dependent Demand

In Chapters 4 and 5, the demand for cars and transit peaked over the course of the
day. As explained in Section 4.1, there are some costs, such as capital investments
in vehicles and infrastructure which must be paid for whether they are used all day
long or sit empty. The following sections show how the parameters of the generalized
cost functions change when this is taken into consideration.

B.3.1 Individual Modes

The costs of road infrastructure are incurred whether the road is being used or not,
so these components are decoupled from the cost parameter. The remaining costs of
an uncongested car trip are still the same for each trip. We revise (B.1) to be:

α̂C = ta +
d

vm
+

1

β
(ctψ + cdd) +

γ

β
(etψ + edd) . (B.13)

The capital costs associated with unused cars is incorporated by the hours of vehicle
ownership attributed to each trip, ψ, which is also used in the generalized cost function
for the constant demand case.

B.3.2 Public Transit Modes

The generalized cost function for transit requires a little more modification for the
time-dependent case, because in addition to the street infrastructure, each vehicle is a
capital investment that must be paid for whether in service or empty. The expressions
are similar to those in Section B.2.1, omitting the infrastructure costs. The difference
is that the operating costs per time are slightly modified to ĉt and êt to reflect that
the fixed capital investment in vehicles is considered separately as ĉv and êv which are
the costs incurred over the entire analysis period of length tmax and are independent
of tp. The time-dependent cost coefficients for a BRT system (where x = 0) are:

α̂1 =
s

va
+

d

vm
+
yd

s
(B.14)

α̂2 =
32

sβ

(
(ĉt + γêt)

(
1

vm
+
y

s

)
+ cd + γed

)
(B.15)

ˆ̂α2 =
32

sβ

(
(ĉv + γêv)

(
1

vm
+
y

s

))
(B.16)

In the case of constant demand these two components combine together at an hourly
rate to make up about $78 per hour as reported in Table B.2.2. Based on estimates
from the National Transit Database (2009), approximately $70 of this is hourly op-
erating expenditures for labor, fuel, and maintenance. The remaining $8 per hour is
attributed to the capital cost of the vehicle.
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