
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Applied ML for Robust Network Applications

Permalink
https://escholarship.org/uc/item/7s32x3ck

Author
Fahim, Abdelrahman

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7s32x3ck
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Applied ML for Robust Network Applications

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Abdulrahman Fahim

September 2024

Dissertation Committee:

Dr. Srikanth V. Krishnamurthy, Chairperson
Dr. Zhiyun Qian
Dr. Evangelos Papalexakis
Dr. Zhaowei Tan

Copyright by
Abdulrahman Fahim

2024

The Dissertation of Abdulrahman Fahim is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I want to express my gratitude to the University of California, Riverside, and the Depart-

ment of Computer Science and Engineering for the excellent facilities and resources provided

throughout my PhD journey.

I am deeply thankful to my advisor, Professor Srikanth Krishnamurthy, for his

invaluable guidance, unwavering support, and patience throughout my studies. His exten-

sive knowledge has been a source of inspiration and encouragement in both my academic

research and daily life.

I also extend my thanks to Professor Vagelis Papalexakis and Professor Zhiyun

Qian for their relentless efforts in mentoring me and helping me grow as a scientist.

My appreciation goes to my friends—Basem, Refaat, Ahmed Abdo, Sedqy, Foad

and Charle—for the cherished moments we’ve shared together. A special thank you to my

wife, Nouran, who has been a constant source of support through all the challenges, my

absences, and moments of frustration. Her encouragement, idea exchanges, and support in

managing our family during my graduate studies have been invaluable.

iv

I am deeply grateful to my father, Professor Yousef Fahim, and my mother,

Professor Nahed Abdellatif, for their unwavering love and for providing me with the

opportunities and experiences that have shaped who I am today.

To my child, Dan, you are the most cherished and meaningful part of my journey

through graduate studies.

I also want to thank my family back home for their constant and exceptional love,

assistance, and support. I am especially thankful to my sisters—Esraa and Rawda,

for always being there for me.

Lastly, I honor the memory of my beloved aunts, Nothaila and Faiza, my

grandmothers, Zahira and Zebeda, and my uncle, Abdo, who passed away during

my graduate studies. I regret not having had the chance to say goodbye.

v

ABSTRACT OF THE DISSERTATION

Applied ML for Robust Network Applications

by

Abdulrahman Fahim

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2024

Dr. Srikanth V. Krishnamurthy, Chairperson

Machine learning has opened up numerous opportunities and applications for vari-

ous networking applications. This dissertation focuses on ML-based solutions in constrained

environments for different networking applications.

First, we present a framework that detects and summarizes key global events

from distributed crowd-sensed data in a bandwidth-constrained environment. We introduce

BigEye, a novel framework that only transfers limited data from distributed producers to a

central summarizer, supporting highly accurate detection and concise visual summarization

of key events of global interest.

Second, we develop AcTrak, a framework to control steerable cameras through a

network to retrieve telemetrics of interest. AcTrak automates a camera’s motion to switch

appropriately between zooming in on existing targets in a scene to track their activities and

zooming out to search for new targets arriving in the area of interest. We aim to achieve

a good trade-off between these two tasks, ensuring that new targets are observed by the

camera before they leave the scene while frequently monitoring the activities of existing

vi

targets.

Third, we uncover a vulnerability that enables fast and stealthy data exfiltration

over DNS channels. While existing defenses against such attacks appear robust, we demon-

strate that our carefully designed and novel DNS exfiltration attack, Dolos, which uses

a generative adversarial network (GAN), can encode sensitive data to evade these detec-

tors unlike existing state-of-the-art attack methods. Additionally, Dolos can significantly

expedite exfiltration compared to prior methods.

vii

Contents

List of Figures x

List of Tables xiii

1 Introduction 1

2 BigEye: Detection and Summarization of Key Global Events from Dis-
tributed Crowd-sensed Data 5
2.1 Introduction . 6
2.2 Baseline case: Centralized detection . 11
2.3 Overview and assumptions . 12
2.4 Distributed Event Detection . 16
2.5 Event Consolidation . 22
2.6 Composition of visual summaries . 25
2.7 Implementation and evaluations . 29

2.7.1 Datasets collection and distribution 30
2.7.2 Evaluation parameters . 33
2.7.3 Results on distributed event detection 36
2.7.4 Results with regards to consolidation 38
2.7.5 Results on visual content retrieval 39
2.7.6 Scalability . 42
2.7.7 Holistic output of BigEye . 44

2.8 Related work . 45
2.9 Conclusions . 48

3 AcTrak: Controlling a Steerable Surveillance Camera using Reinforce-
ment Learning 54
3.1 Introduction . 55
3.2 Our RL based Control Framework . 60

3.2.1 Functionalities and associated trade-offs 60
3.2.2 Problem Formulation . 64
3.2.3 Design of the immediate reward . 66

viii

3.2.4 Learning the camera control policy 69
3.3 Realizing AcTrak in practice . 71

3.3.1 System setup . 72
3.3.2 Simulator . 74

3.4 Evaluations . 79
3.4.1 Evaluations with datasets . 82
3.4.2 AcTrak performance with change in “crowdedness” in the scene . . . 89
3.4.3 Real world experiments . 90

3.5 Discussion: . 93
3.6 Related Work . 97

4 DNS Exfiltration Guided by Generative Adversarial Networks 103
4.1 Introduction . 104
4.2 Background and Threat model . 108

4.2.1 Background . 108
4.2.2 Threat model . 111

4.3 System Overview . 114
4.4 GAN based encoder-decoder design . 116

4.4.1 Properties of Dolos’s encoder/decoder 116
4.4.2 Encoder and Decoder design . 120
4.4.3 Practicalities . 122
4.4.4 Training algorithm . 123
4.4.5 Composing spurious queries . 125

4.5 Tuning the exfiltration online . 125
4.6 Evaluations . 130

4.6.1 Preliminaries . 130
4.6.2 Evaluation results . 137
4.6.3 Dolos Complexity . 144
4.6.4 Real implementation details and results 145

4.7 Discussion . 146
4.8 Related Work . 148
4.9 Conclusions . 149

5 Conclusions 152

Bibliography 154

ix

List of Figures

2.1 A high level depiction of BigEye with its modules 14
2.2 H(Y |s) with varying ps. p0s and p1s are two intersecting points with H(Y)−

threshold . 18
2.3 A map of the United States, representing two hours of tweets collected from

the Florence dataset. Blue dots represent producers and red dots represent
the locations of tweets. Each tweet (red dot) is sent the nearest producer
(blue dot). 33

2.4 CDF of the number of detected discriminative pairs with different global
thresholds. 36

2.5 The performance of our distributed event detection with varying number of
producers . 36

2.6 Performance of our distributed event detection with different data distributions 36
2.7 Distributed consolidation accuray with respect to centralized consolidation

(Storyline [259]) . 38
2.8 Bandwidth savings from BigEye’s distributed consolidation approach in terms

of total amount of data sent from producers to summarizer. 38
2.9 Delay in visual content retrieval with different number of producers. 41
2.10 Summarization quality of visual summary with different number of producers. 41
2.11 Delay in visual content retrieval with different number of objects required to

compose summary. 41
2.12 Summarization quality of visual summary with different numbers of required

objects . 41
2.13 Performance of the dirstibuted event detection module with multiple datasets

(scalable setting). 42
2.14 Bandwidth savings from BigEye’s distributed consolisdation with multiple

datasets (scalable setting). 42
2.15 BigEye’s distributed consolidation accuracy with multiple datasets (scalable

setting). 42
2.16 Florence dataset . 45
2.17 Protest dataset . 45
2.18 Disaster dataset . 46

x

3.1 Zoomed out (left) and zoomed-in (right) views. The zoomed out view enables
the detection of new targets as they enter the scene. However, it is insufficient
for inferring target activities. The zoomed in view facilitates inferring target
activities (i.e., a target reads a book) but only partially covers the scene.
AcTrak balances zooming in and out such that target activities are captured,
while ensuring that arriving targets are detected quickly when they step in
to the scene. 56

3.2 ZoomIn Scenarios. In Figures A and B, we show different camera strategies
of zooming-in on existing targets (Note the arrows). The overall time to
visit all targets of the strategy in Figure A in higher in comparison with the
scenario in Figure B due camera’s longer (wasteful) moves. 61

3.3 A high level depiction of AcTrak . 71
3.4 The neural network architecture of the Delay Estimator model 76
3.5 A given frame is processed to compose the state as described in §3.3.1, upon

which the the agent selects an action (selecting the new PTZ). We compute
the latencies associating with PTZ change. Subsequently, we skip a number
of frames that correspond to the computed latency and use the first retrieved
frame. If the selected action is zoom-in, a cropped frame is passed to the
frame processor. Otherwise, the entire frame is passed. 78

3.6 AcTrak Model Architecture: The neural network consists of multiple layers
as shown. First, for each target, a vector composed of its collected features
(i.e., features related to timeliness, location and number of visitations as
described in §3.2.2) is fed to a NN layer of size 64. The camera location
and time coverage tour latency (both features are part of the state) are
concatenated and fed to an NN layer of size 64. Subsequently, the outputs
are concatenated into a layer of size 64 * (N+1) with a ReLU activation
function. Subsequently, the output is fed to two subsequent neural layers
followed by the RL duelling layer. 82

3.7 Average reward accrued by the AcTrak agent and greedyB (with 10% and
90% confidence intervals) as a function of # of steps taken. This is collected
with the Zara dataset. 83

3.8 CDF of the time gap between target’s entry and discovery for Zara (left) and
Virat datasets. 87

3.9 CDF of the maximum time away from target for Zara (left) and Virat datasets. 87
3.10 Complementary CDF of target’s number of visits/s for Zara (left) and Virat

datasets. 88
3.11 Live camera: frequency of visits per target. (NumV) 91
3.12 Live camera: maximum time camera is away from a target. (MTA) 91

xi

3.13 Snapshots from the surveillance videos obtained by AcTrak and the baseline
(we hide targets faces for privacy reasons). In the first image, a single target
is observed via a zoom out view (blue shirt at bottom left near door). AcTrak
zooms-out much less frequently than greedyB, learning that the scenario does
not change (no new targets arriving). The second image shows that AcTrak

while zooming in on the first target, discovers a new target that appears in
the scene (light green shirt). The third image shows greedyB ’s behavior in a
similar scenario; it zooms out much more than necessary. There was no other
target stepping in to the scene, and instead of zooming in on the red target
it zoomed out; this leads to much fewer high resolution images per target,
thereby potentially missing activities. 92

3.14 Snapshots from the surveillance videos obtained by AcTrak and the baseline
(we hide targets faces for privacy reasons). The first picture shows a case
where greedyB goes back to a target and finds the location empty because the
target has already left its marked location. This is due to the computational
and mechanical latencies and the unorganized patterns of zoom-in on targets
(which greedyB does not account for). The final image shows that AcTrak

is able to zoom in on the green shirt target when eating chips and at that
point it also re-locates the blue shirt target. 93

4.1 An example of DNS exfiltration. An attacker embeds credit card information
(in red) in a DNS query destined for its remote domain, “attacker.com”. The
query is routed to “attacker.com” to resolve the IP address of CreditCardInfo,
which enables the attacker to acquire the information. 109

4.2 Threat Model: employed policies by the defense. 113
4.3 Offline training phase of Dolos. The data from the encoder is constrained to

fool a discriminator, and must be decoded by the decoder with high accuracy. 117
4.4 Online attack phase of Dolos. Dolos sniffs benign traffic to tune the ex-

filtration rate in terms of number of queries transmittable in a time window
and chunk length. Next, it divides the data into chunks and encodes them
as DNS queries. If the encoded query is decodable, it is sent as is; else the
error recovery module is used. 125

4.5 On the left is the blackbox detection probability when baseline methods use
a constant exfiltration rate commensurate with the average rate of Dolos
with deployed anomaly and rule based detection methods. On the right is
the maximum rate that baselines can send with a fixed BDP of 0.15. . . . 136

4.6 Detection rate with Jawad et al., and Ishikura et al., with multiple exfiltra-
tion sites (60 and 80 sites).

136
4.7 Jawad et al. defense [10] PFQ on Text, Credit Card, and Logs and Im-

ages datasets, respectively, for varying exfiltration rates. The PFQ when
using Dolos is much lower than encoding baselines. The red stars represent
Dolos’s (holistic) performance. 143

xii

List of Tables

2.1 Key notation . 49
2.2 Florence Hurricane Summarization . 51
2.3 Protest Summarization . 52
2.4 Disaster Summarization . 53

3.1 Key notation . 100
3.2 Baselines evaluations (Zara dataset) . 101
3.3 Virat dataset results. 101
3.4 Continuous high resolution shots (video) Results. 101
3.5 Performance with varying crowdedness. 102
3.6 Results of Real world experiments. 102

4.1 Key notation . 119
4.2 Detection probability of defensive methods against the considered attacks.

Dolos evade all detection methods because of the similarity of its encoding
to benign traffic; the baselines are flagged by at least a sub-set of the defenses.142

4.3 Detection probability of rule based defensive methods against attacks (em-
powered with Dolos’s rate tuning). 142

4.4 AUC scores of encoding methods with Jawad et al. 142

xiii

Chapter 1

Introduction

In an era where digital technology and data play crucial roles in various domains,

the integration of advanced systems for real-time monitoring, data analysis, and security is

becoming increasingly significant. This thesis explores the machine learning based solutions

in constrained environments for different networking applications. This thesis explores

innovations in three key areas: distributed real-time event detection and summarization in

network constrained environment, dynamic control of Pan-Tilt-Zoom (PTZ) surveillance

cameras over a network to retrieve telemetrics of interest, and stealthy data exfiltration

over DNS channels.

Distributed real-time event detection and summarization: Social media

platforms have emerged as critical sources of real-time information, particularly in disaster

scenarios and significant events. Posts shared by individuals on platforms such as Twit-

ter serve as a form of crowd-sensing, where user-generated content acts as an informal yet

potent sensor network. The challenge lies in efficiently managing and processing this vast

1

amount of data to detect global events with minimal latency. Prior work has demonstrated

that raw data from geographically dispersed sources can overwhelm central processing sys-

tems and networks, necessitating solutions that focus on efficient data summarization and

event detection. This thesis builds upon these challenges by introducing BigEye, a system

designed to detect key global events with high accuracy while significantly reducing the

volume of transmitted data. BigEye’s approach involves transferring minimal metadata to

a central entity for event detection and subsequently retrieving only essential visual content,

thereby addressing the issues of data overload and network congestion. We demonstrate

that BigEye achieves equivalent accuracy in detecting key events as a system with cen-

tralized data access, despite transferring only 1% of the raw data volume. Additionally,

BigEye’s parallelized approach to transferring visual content results in a 67% reduction in

average delay compared to baseline methods. Our solution as well as the results are detailed

in Chapter 2 of this dissertation.

Dynamic Control of PTZ Surveillance Cameras: As surveillance technology

becomes more prevalent, there is a growing need for sophisticated camera systems that pro-

vide comprehensive scene coverage while capturing detailed information on specific targets.

Traditional fixed cameras often fall short in dynamic environments, where both broad scene

coverage and fine-grained activity monitoring are essential. Pan-Tilt-Zoom (PTZ) cameras

offer a solution with their ability to adjust their field of view and zoom capabilities. This

thesis presents a novel framework that optimally controls PTZ cameras to balance the dual

objectives of quickly identifying new targets and capturing high-resolution images of ex-

isting ones. By employing a Markov Decision Process (MDP) and reinforcement learning

2

techniques, Our method adapts to the evolving scene to manage the trade-offs between

coverage and detail, thus enhancing the effectiveness of surveillance systems. Through sim-

ulations with real datasets, we demonstrate that AcTrak identifies newly arriving targets

30% faster than a non-adaptive baseline and has a significantly lower miss rate, detecting

nearly all targets compared to the baseline, which can miss up to 5%. Additionally, our

implementation of AcTrak on a real camera shows that it captures approximately twice as

many high-resolution images of targets as the baseline. The details of this problem formu-

lation and the underpinning algorithms for dynamic control of PTZ cameras is described in

details in Chapter 3.

Stealthy and fast DNS exfiltration attachs: In the domain of cybersecurity,

data exfiltration remains a significant threat, particularly when attackers use sophisticated

techniques to covertly extract sensitive information. One such method is DNS exfiltration,

where data is hidden within DNS queries to evade traditional security measures. Despite ad-

vances in detection technologies, attackers continually refine their methods to bypass these

defenses. This thesis introduces Dolos, a cutting-edge DNS exfiltration tool designed to cir-

cumvent modern defenses through a generative adversarial network (GAN)-based encoding-

decoding framework. Dolos employs a generative model to create DNS queries that are

nearly indistinguishable from benign traffic, effectively evading state-of-the-art detection

systems. By optimizing the encoding process and incorporating a novel rate-tuning mod-

ule, Dolos achieves high efficiency and stealth in data exfiltration. The approach not only

demonstrates resilience against current detection techniques but also provides insights into

the ongoing evolution of exfiltration methods. Our evaluations reveal that Dolos maintains

3

a detection probability of 12%, even when six of the nine state-of-the-art defenses we tested

are used simultaneously. In contrast, achieving the same detection rate with current base-

line exfiltration techniques would almost certainly lead to detection. If baseline techniques

reduce their rates to achieve a detection probability slightly higher than Dolos (0.15), they

take 25 times longer to complete the exfiltration. With the remaining three defenses, the

baselines are almost invariably detected, whereas Dolos remains relatively undetectable re-

gardless of the exfiltration rate. The detailed Dolos ’s implementation and evaluations can

be found in details in Chapter 4.

4

Chapter 2

BigEye: Detection and

Summarization of Key Global

Events from Distributed

Crowd-sensed Data

Social media postings using smartphones (referred to as crowd-sensed data) can

often facilitate real time detection of key physical events in applications like disaster recovery

or in smart cities. These postings also often contain visual content (e.g., images) that can

be used to obtain zoomed-in views of such events. This crowd-sensed data is likely to be

of large volume and distributed across a plurality of producers (e.g. cloudlets). Blindly

transferring this large volume of raw data from the producers to a consumer will induce

information overload and consume very high bandwidth. The problem is exacerbated in

5

scenarios with limited bandwidth (e.g., after a disaster).

In this work, we design BigEye, a novel framework that only transfers very limited

data from the distributed producers to a central summarizer, and yet supports (a) highly

accurate detection and (b) concise visual summarization of key events of global interest. In

realizing BigEye, we address several challenges including (a) identifying events that have the

highest global interest via the transfer of appropriate limited metadata from the producers

to the summarizer (b) reconciling metadata that could be inconsistent across the producers

and (c) timely retrieval of visual summaries of the key events given bandwidth constraints.

We show that BigEye achieves the same accuracy in detecting key events, as a system where

all data is available centrally while transferring only 1 % of the raw data volume. Compared

to baseline approaches, BigEye ’s parallelized transfer of visual content reduces the average

delay by 67 %.

2.1 Introduction

People share and disseminate postings on real-life events on social networks via

smartphones (which can be considered the de facto most widely used IoT devices today).

Such postings provide an inherent sensing capability [255] (defined as crowd-sensing or social

sensing in the literature [97]). Specifically, as pointed out in prior papers [16,255,259], user

posts relating to real-time information about events (e.g., protests, earthquakes) on social

media networks, can be considered as IoT sensor outputs that provide knowledge of interest

with regards those events. In fact, news reports suggest that Harvey storm victims used

social media to communicate about critical events [202] during/after the disaster. We also

6

point out that it is quite common for such user postings (e.g., using Twitter) to contain

images that can be used for composing zoomed-in (or more informative) visual summaries

of key events.

In scenarios like disaster aftermaths, one can visualize crowd-sensed data to be dis-

persed across a set of geographically distributed “producers,” because of strained infrastruc-

ture. For example, one can envision the user postings (we also call them microblogs) within

a local geographical region to be sent (streamed) to a common server (e.g., a cloudlet [213]

or a local server [136, 237]), which can be considered to be a producer. While using mi-

croblogs as IoT sensed outputs towards detecting physical events has received some recent

attention (e.g., [16, 259]), these prior efforts assume that all crowd-sensed data is available

centrally instead of being distributed across geographically spread producers; the latter is

a more accurate representation of what happens in practice.

Blindly transporting all the raw data from such producers to either the consumer,

or to a central entity for analytics will not only cause an information overload at that entity,

but also strain the network in terms of bandwidth consumption potentially resulting in

network congestion. In addition, a large part of this voluminous data will have redundant

information, and might not contribute to extracting useful information (e.g., detecting

events of interest). The problem of data transportation is exacerbated in scenarios such

as natural disasters wherein it is very common for network infrastructure to be damaged;

in such cases, the available bandwidth is constrained significantly making it prohibitive to

transfer raw data. Again, going back to the example of the tropical storm Harvey, the failure

of several cell towers [236] strained the available bandwidth. Because of this, it becomes

7

imperative to only retrieve small amounts of data from the distributed producers, and yet

be able to detect events of global significance with high accuracy. Our work targets this

important problem.

Specifically, in this paper, we design an IoT service, we call BigEye, using which

global events can be detected with very high accuracy, by only sharing very small amounts

of information (metadata) between the distributed producers (with raw crowd-sensed data)

and a central entity (which we call summarizer). Once global events are detected, BigEye

facilitates the transport of limited content in the form of images/videos to the summarizer,

which then composes a visual summary from the same detected events to provide the

appropriate information to gain insights with regards to these events of interest. These

summaries can then be sent to a consumer (e.g., search and rescue personnel after a disaster).

We implement BigEye using Twitter (which provides user postings of the type of interest)

as a proxy, and showcase its benefits. Thus, without loss of generality, in the rest of the

paper we refer to user postings as tweets.

Challenges: The challenges in designing BigEye are multifold. First, each pro-

ducer only has a local view of events and thus, is unable to by itself determine which events

are of global significance. On the other hand, transferring all local data from all producers

to the central summarizer is prohibitive and wasteful. The challenge then is “how do we

identify key global events by only transferring limited metadata from each producer to the

summarizer?” Second, multiple producers may detect the same global event via sensed

triggers, but there is no easy way to determine that the triggers correspond to the same

event. Unless we are able to make this determination, redundant content (e.g., unnecessary

8

visual data) may be retrieved by multiple producers. Thus, “how do we reconcile (possibly

inconsistent) metadata from multiple producers that correspond to a common event?” Fi-

nally, once the events are detected, we seek to retrieve a limited amount of visual content

with minimum latency from the multiple producers to compose a summary. The challenge

here is to identify “which producer will send what content in order to maximize the level

of parallelization of retrieval, given that the bandwidths to the different producers could be

different.”

Approach in brief: Briefly, with BigEye, each producer first, individually identi-

fies local events likely to have global importance (or interest) using a metric which is called

the local information gain. The producer then pushes metadata pertaining to these local

events to a central summarizer. The summarizer then assesses the need for any additional

metadata and pulls the same from the proper subset of producers. As one of our contribu-

tions, we formally show that via an appropriate choice of the number of local events at each

producer, we can guarantee that the detected key global events are identical to the ones

detected if all the data is made available centrally. Once the global events are detected,

BigEye uses a lightweight method to reconcile common events across a plurality of produc-

ers. Finally, using lightweight measurements of bandwidths to the various producers, it uses

an intelligent algorithm to parallelize the transfer of visual content from the producers to

compose visual summaries of all such events within a very short time (ideally we want to

do this in minimum time but we show this is NP-hard). This paper is an extension of our

work [74], where in this work we introduce all BigEye modules and show its overall merits.

9

Summary of our Contributions. A summary of our contributions in this paper

are as follows:

• We propose a method within BigEye that allows the detection of key global events when

the crowd-sensed data is distributed across multiple distributed producers. Via the trans-

fer of just 1 % of the data from the producers to a central summarizer (in the form of

metadata), we show that BigEye is able to detect all key global events that would have

been detected if all the data was available centrally.

• BigEye includes a module that reconciles events across producers without having to

transfer the entire content corresponding to these events to the central entity (§ 2.5). We

call this “consolidation” of events across producers. We show that consolidation further

reduces the communication costs by 60% on average.

• We show that we can map the problem of selecting visual objects with the highest scores

to be sent from each producer to the summarizer, such that we ensure a certain number

of visual objects per event while minimizing latency, to a multi-dimensional knapsack

instance [100]; this is an NP-Hard problem. Given this, we design an online algorithm

that (a) dynamically estimates bandwidth to each producer, and (b) fetches visual objects

in parallel greedily from the producers given these estimates. Our experiments show that

compared to baseline approaches, BigEye’s parallelized transfer of visual content reduces

delay by 67 %.

10

2.2 Baseline case: Centralized detection

We first provide a description of a baseline method which allows global event

detection when all the data are centrally available. The approach is largely based on the

approach (called Storyline) by Wang et al., in [259]. We start by describing the “information

gain metric” used to detect global events in Storyline in this section. In § 2.4, we show how

we can transition from this global metric to an appropriate local metric that facilitates the

detection of key global events in the distributed settings that we are interested in.

“Information gain” is a commonly used metric for detecting discriminative features

[270]. In Storyline, this metric is used to measure the burstiness in the co-occurrence of

pairs of uncommon words (keyword pair) in a stream of tweets (microblog objects are

used as sensor outputs) between two time epochs. The keyword pairs are considered to be

discriminative features and to be associated with physical events of interest. For example,

given a key physical event where ”a drunk driver kills a running dog on the bridge,” the

microblog data would experience a bursty surge in the keyword pair (driver, drunk) at a

specific time epoch. The approach enables event demultiplexing, i.e., identifying separate

events that belong to the same global scope. For example, in a disaster scenario one might

be interested in distinguishing between multiple areas with humans in distress (and not

identify them as the same issue) so that the human responders can take proper actions.

Formally, the information gain associated with a keyword pair sz, across time windows

k − 1 and k is given by infoGain [259]:

infoGain = H(Y)−H(Y |sz) (2.1)

11

In the above equation H(Y) and H(Y |sz) are computed as follows:

H(Y) = − Nk

Nk + Nk−1
log

Nk

Nk + Nk−1

− Nk−1

Nk−1 + Nk
log

Nk−1

Nk + Nk−1
and,

(2.2)

H(Y |sz) = −
N z

k

N z
k + N z

k−1

log
N z

k

N z
k + N z

k−1

−
N z

k−1

N z
k−1 + N z

k

log
N z

k−1

N z
k + N z

k−1

(2.3)

where, Nk is the number of tweets in the current (kth) time window, and Nk−1 is the num-

ber of tweets in the immediately previous time window, k−1. N z
k and N z

k−1 are the number

of tweets that contain the keyword pair sz in the current and previous time window, respec-

tively. Note that roughly these expressions characterize the entropy (conditional entropy)

relating to the occurrence of tweet volume (number of tweets with the specific keyword

pair) in consecutive time windows. More details can be found in [259] and are omitted in

the interest of space. A threshold is chosen, and all keyword pairs whose information gains

are higher than that threshold are considered to have associated physical events that are of

interest.

2.3 Overview and assumptions

We envision that BigEye is used in an architecture that comprises a set of produc-

ers, a summarizer and one or more consumers (users). BigEye seeks to identify key events of

global interest, occurring at specific time windows of fixed duration (we also call these win-

dows epochs). A producer is an entity that collects sensed data from within a local region

(e.g., a microblog repository). Let m be the number of producers; each producer is denoted

12

by Pi, where i = 1, 2, ...,m. In BigEye, we assume that the time epochs are synchronized

across all producers (we assume that protocols such as NTP can enable this [172]); without

loss of generality, we denote the index of the time window of interest by k.

The summarizer is a central entity (e.g., a server) that receives appropriate data

from all the producers, identifies key events, and composes a summary. We assume that all

the producers are connected to the summarizer via a network of arbitrary topology. The

transfer of all local data from the m producers to the central summarizer is considered

to be large and prohibitive in terms of bandwidth consumption (either because of limited

bandwidth, congestion or both). This will typically be the case in scenarios such as disaster

recovery, wherein loss of infrastructure can induce significant constraints on the available

bandwidth (e.g., fewer functional base stations or access points). Blindly sending the large

volume of data can have significant consequences. First, because of the sheer volume,

significant delays may be experienced. This in turn induces significant delay in aggregating

the data of interest (or importance) from the multiple producers. This in turn, delays

the inferences relating to events detection, which can cause response delays (especially in

disaster scenarios when fast response is critically). We point out that if instead, inferences

are based on partially received data, sub-optimal decisions may be made and the response

resources may be directed at less than critical points of need.

Without fine-grained information relating to the events of interest, the summarizer

may experience confusion with respect to multiple events, often categorizing them to be the

same. This increases the rate of false negatives (some of these may be missed completely). It

is also possible, that the false positive rates relating to events could increase due to decisions

13

Distributed
event

detector

Distributed
event

consolidation

Visual
summary
generator

Figure 2.1: A high level depiction of BigEye with its modules

made with coarse grained information. In this work, we propose, BigEye, a system that

deals with the aforementioned conditions and is able to detect events accurately with low

latency. Furthermore, it has the ability to disambiguate events that occur across a wide

reach (referred to as global events), thereby allowing their precise identification for proper

response delivery.

In BigEye, each producer identifies a set of local events that are likely to be of

global interest or importance. It generates appropriate metadata corresponding to these

events, and pushes the metadata to the summarizer. While multiple producers may report

the same global event albeit with inconsistent metadata, BigEye allows the summarizer to

reconcile/consolidate such events. With BigEye, the summarizer also triggers the intelligent

retrieval of visual content from the appropriate producers to compose visual summaries of

all the key events within a very short time. These precise visual summaries will enable

disambiguation across events, thereby allowing response delivery to all events that are of

importance. A depiction of the modules and composition of BigEye is shown in Fig. 3.3.

A consumer or user is connected to the summarizer, and queries for summaries

of key events. We assume that a query provided by a user belongs to a specific scope

(e.g., protest, army conflicts etc.) and the producers collect the data that match such

14

queries1. Each producer observes postings composed of short descriptions of their context

with attached multimedia (videos/images) (e.g., tweets). BigEye takes this information as

an input and produces summaries that are composed of global events of interest plus a

visual summary that provides additional context which provide detailed information and

also allow disambiguation of similar but separate events.

Motivating our vision: To exemplify our vision, we describe an example where

our framework can find application and help significantly. A rescue operator is interested

in identifying/detecting the key global events in a disaster affected area. Let us recall

the previously mentioned example relating to hurricane Harvey, wherein the victims posted

tweets relating to their surroundings, with textual and visual content. The postings are sent

to the nearest cell tower or cloudlet (we refer to these as producers in this paper); because of

bandwidth constraints, carrying a possibly a large sets of tweets with visual content beyond

this local infrastructure in near real-time will be problematic. Thus, a central controller

where the rescue operator (user) resides might not be able to receive this information, or

process it in a timely manner. Here is where BigEye comes into place; it enables the rescue

operator who only has limited connectivity to the producers, to identify the key global

events without retrieving the raw generated data in its entirety, from the producers. For

example, the global event may be a “major flooding in a specific street or neighborhood”,

“pets are in danger in a certain area” or “the 911 network has broken-down”. The rescue

operator can then take proper action, based on on the detected “event level” information.

The key notations used in the paper are summarized in Table 3.1.

1The communications between the user and the summarizer are out of the scope of this paper.

15

2.4 Distributed Event Detection

Compared to prior approaches (in particular the baseline described in § 2.2),

BigEye distinguishes itself in that it applies in a realistic scenario where the crowd-sensed

data is dispersed across a plurality of geographically distributed producers. If one were to

blindly transporting all the raw data that is available at these producers to a central sum-

marizer (which can then create summaries as discussed before), the bandwidth consumed

will be prohibitive, especially in scenarios such as disaster recovery. Because of this con-

straint, when building BigEye we try to answer the question “How can we determine the

events that are of global significance without having to transfer all raw data to the central

summarizer?”

The information gain metric previously discussed in § 2.2 is based on an underlying

assumption that the entire raw data is centrally available. However, this assumption does

not hold and each producer only has a local view. Thus, needed is an approach wherein the

significance of a local event can be estimated with respect to its the global importance (i.e.,

will a local event also be flagged as a key global event if the data was available centrally

?). If all the producers were to simply report the “number of tweets” to the summarizer,

in the two consecutive time windows of interest (say k− 1 and k), H(Y) can be computed.

However, the challenge lies in computing H(Y |sz) globally since (a) all keyword pairs and

the associated tweets are not known centrally and (b) each producer will only see part

of the data and can only compute H(Y |sz) based on its local dataset. To address these

issues, we first map a global requirement on information gain (and thus H(Y |sz)) to a local

requirement at each individual producer. Later, we reconcile inconsistencies by having the

16

summarizer pull appropriate data from a subset of producers.

What values should the global H(Y |sz) take to achieve high information

gain? Before, we describe our approach in more detail, we first ask the above question.

As pointed out above, H(Y) only depends on the number of tweets in consecutive time

windows. Thus, the discriminatory term that dictates the information gain with respect to

a keyword pair (say sz) is H(Y |sz). It is obvious that the lower the value of this term, the

higher the information gain associated with the keyword. With reference to Equation 2.3,

let us define ps =
Nz

k
Nz

k+Nz
k−1

. Then,
Nz

k−1

Nz
k−1+Nz

k
= 1 − ps. In Fig. 2.2, we plot H(Y |sz) as a

function of ps. We see that the lowest values of H(Y |sz) (yielding the highest information

gain) are achieved when ps is very small or very large (approaches 1). Since ps corresponds

to the probability of having a high number of tweets in frame k relative to the previous

frame, it must be large (not small) in order to reflect a new event of interest (otherwise it

indicates an event that was of interest in frame k − 1 but has died down). In other words,

the takeaways from the above discussion are (a) H(Y |sz) must be small (say some small

value ϵ) and (b) the corresponding probability ps as defined above must be large (we require

it to be > 0.5).

Let r be the ratio of occurrence of a keyword pair in the current time epoch to the

corresponding occurrence in the previous time epoch. Let p∗s be the value of ps that makes

H(Y |sz) = ϵ. Since we cannot directly obtain p∗s in closed form by solving H(Y |sz) = ϵ,

we numerically solve it using the Newton method [159] and from among the results, choose

the value that is > 0.5. From p∗s, we compute
Nz

k
Nz

k−1
and denote it as r∗. r∗ is the minimum

(global) threshold with respect to the ratio of occurrences of a keyword pair in consecutive

17

Figure 2.2: H(Y |s) with varying ps. p0s and p1s are two intersecting points with H(Y) −
threshold

time epochs, that must be met if the associated keyword pair is to signify an event of interest.

In other words, if for a keyword pair r ≥ r∗, then that keyword pair is a discriminative pair.

Next, we provide a formal proof of this claim.

Lemma 1 Any pair with ps ≥ p∗s has a ratio of occurrence, r greater than or equal to r∗

Proof.

ps =
N z

k

N z
k + N z

k−1

(2.4)

psN
z
k −N z

k = −N z
k−1ps (2.5)

N z
k

N z
k−1

=
ps

1− ps
(2.6)

Note that r is nothing but
Nz

k
Nz

k−1
. If we can show that ps

1−ps
is non decreasing function i.e.,

ps
1−ps

≥ p∗s
1−p∗s

if ps ≥ p∗s, then we can infer that r ≥ r∗ if p ≥ p∗s. Let us denote ps
1−ps

by

F (ps). We show that F (x) ≤ F (y) for 0 < x ≤ y < 1. We need to show that

x

1− x
≤ y

1− y
or, (2.7)

18

x(1− y) ≤ y(1− x) or, (2.8)

x− xy ≤ y − xy or, (2.9)

x ≤ y (2.10)

which is true by assumption.

Choosing a local threshold: Given the global threshold, r∗, we need to derive

an appropriate local threshold; each producer would estimate r with respect to each keyword

pair and if this r is lower than the local threshold one can deem that those keyword pairs

are not of global interest. In order to retrieve all the discriminative pairs of global interest

(those that would have been detected if all data was available centrally) we need to be

conservative i.e., the choice of the local threshold must account for the worst case scenario.

By doing so, we can achieve the same precision and recall values with BigEye, compared to

a centralized baseline (discussed in § 2.2). We point out here, that one may experience an

outlier case, where there are no (zero) tweets with a keyword pair in window (k − 1) but

a significant number in window k; to avoid the divide by zero possibility, we assume that

each pair appears at least once at each time window; this fix has almost no influence on the

ratios that we are trying to compute.

Given the above threshold and based on the following theorem, we choose the local

threshold to be r∗

m if there are m producers.

Theorem 2 If a keyword pair has a global ratio of occurrence r which is ≥ r∗, the local

ratio of occurrence of that keyword pair must be larger than or equal to r∗

m at one or more

of the m producers.

19

Proof. Let the number of occurrences of a keyword pair in the current and pre-

vious time windows be N z
k and N z

k−1, respectively. The ratio of occurrence of the pair at

the global level (
Nz

k
Nz

k−1
) ≥ r∗.

Case 1:
Nz

k
m is an integer :

Let the number of occurrences of the pair in the current time window (window k)

at the local producers be the following:

Nz
k

m + c1,
Nz

k
m + c2,...,

Nz
k

m + cm, where ci and
Nz

k
m are integers.

The summation of all the occurrences, across all producers should be equal to the

global count N z
k , i.e., (

Nz
k

m + c1) + (
Nz

k
m + c2) + ... + (

Nz
k

m + cm) = N z
k .

Thus, m
Nz

k
m +

∑
i ci = N z

k , hence,
∑

i ci = 0

Case 1A: Pi with ci ≥ 0.

The ratio of occurrence of the keyword pair of interest at Pi is
Nz
k

m
+ci

Nz′
k−1

, where

1 ≤ N z′
k−1 ≤ N z

k−1. Here, N z′
k−1 is the number of occurrences of the keyword pair in the

previous time window (window (k − 1)) at Pi; naturally this is ≤ the global count in that

window.

The next step shows that the theorem holds regardless of the value of N z′
k−1.

Nz
k

m
+ci

Nz′
k−1

=
Nz

k

mNz′
k−1

+ ci
Nz′

k−1

≥ Nz
k

mNz′
k−1

≥ Nz
k

mNz
k−1

.

But
Nz

k
mNz

k−1
≥ r∗

m and hence, the local rate of occurence at Pi is higher than r∗

m .

Case 1B: Pi with ci < 0.

20

Since
∑

i ci = 0, there there must be at least one other producer with cl > 0, l ̸= i;

Case 1A will now apply to that producer l.

Case 2:
Nz

k
m is not an integer :

If all occurrences at local producers are ⌊N
z
k

m ⌋, their summation becomes smaller

than N z
k . Hence, the number of occurrences with respect to at least one of the producers,

denoted as Pi, must be ≥ ⌈N
z
k

m ⌉. In other words, the ratio of occurrence at Pi is
⌈Nz

k
m

⌉
Nz′

k−1

, where

1 ≤ N z′
k−1 ≤ N z

k−1. Similar to the previous case,
⌈Nz

k
m

⌉
Nz′

k−1

≥ r∗

m

Distributed event detection algorithm: Based on the above findings, BigEye

applies the following algorithm for distributed event detection.

1. Each producer computes the ratio of occurrences of keyword pairs available locally

and transmits the pairs having ratios larger than or equal to r∗

m to the summarizer.

2. The summarizer sends a list of the received pairs to all the producers and inquires

about the occurrences of those pairs at the producers. Any producer that had identi-

fied that keyword pair, but had not reported it (because it did not meet the threshold)

now reports the number of occurrences of that pair. Once this information is available,

the summarizer computes the global ratios of all pairs received in step (1).

3. The summarizer filters out pairs with the global ratios less than the global threshold,

r∗.

21

Theorem 2 proved that any globally significant keyword pair “will” be reported

by at least a single producer in the first step above. This proves the following lemma.

Lemma 3 BigEye’s distributed detection algorithm achieves 100% precision and recall, rel-

ative to centrally available data.

Discussion: The performance of our algorithm degrades when the local threshold

is very small. When the local threshold becomes very small, the number of keyword pairs

sent by the producers to the summarizer increases drastically. Specifically, this happens

when the number of producers m is very large or the global threshold r∗ is very small, or

both. When the local threshold becomes very small (say has a value 1) each producer sends

all the pairs; to avoid division by zero we had implicitly set the ratio of occurrence of any

pair at a local producer to be greater than or equal to 1. However, in practice, these cases

are not of interest. A very large set of producers will imply that the local data consists

of small sets, and thus, it will be hard to detect events that are of global interest. A very

small threshold will also fail in discriminating between key events of interest and others.

2.5 Event Consolidation

Different discriminative pairs detected by the summarizer (based on local reports

from the producers) may refer to the same physical event. This is because a single event

can be characterized by multiple discriminative keyword pairs. We demonstrate this phe-

nomenon using an example. The discriminative keyword pairs (boy, drowning) and (boat,

rescue) could refer to the same event where a drowning boy in a river, was rescued by a

fishing boat. Because these allude to the same event, we need to merge the key word pairs,

22

and thus avoid unnecessary retrieval of redundant visual summaries pertaining to this same

physical event. For merging similar events, BigEye packs microblogs containing specific

“keyword pairs” into clusters. To consolidate two keyword pairs representing the same

event, the similarity between two clusters represented by these keyword pairs is computed.

If the similarity score is larger than a given threshold both the clusters pertaining to the

keyword pairs are consolidated.

Assessing this similarity in a distributed setting is challenging. Naively sending

the entire cluster of words associated with a keyword pair to the summarizer for comput-

ing similarity scores defeats the purpose of reducing communication costs. Thus, BigEye

consists of an approach to consolidate events across producers, in bandwidth constrained

distributed environments. The approach consists of two steps described below.

Step I: In the first step, BigEye tries to consolidate keyword pairs representing

similar events at the local producers. Specifically, it consolidates events corresponding to

“keyword pairs,” the clusters associated with which have content that are very similar. It

uses the Jaccard distance [185] to measure the similarity between the two clusters (events).

Previous work [259] has reported that the Jaccard distance outperforms other similarity

metrics for event consolidation in this way.

Returning to our earlier example, “a drowning boy was rescued by a fishing boat

in the river” have the discriminative keyword pairs (boy, drowning) and (boat, rescue).

One can expect that the similarity score between the two local clusters of the corresponding

discriminative keyword pairs (boy, drowning) and (boat, rescue) to be high (we find such

scores to be consistent with what is observed in the case when all data is available centrally).

23

Based on this, the similarity between clusters of microblogs is computed at each local

producer. If the distance between any two clusters of events exceeds a certain threshold

with regards to the Jaccard distance, the local producers notify the central summarizer that

they should be consolidated.

Note here that such approaches (although not identical to what we propose) have

been previously used in event detection [79,259]. In our case, we start by having a number

of clusters equal to the number of detected keyword pairs; after the consolidation phase, we

end up having only C clusters of microblogs representing the physical events. Our algorithm

is similar to the one used in [259] for consolidating similar events.

To assess the similarity between microblogs belonging to two clusters, we measure

the similarity between the words belonging to the two sets of microblogs. Specifically,

we measure the ratio of the number of unique words that are present in “both” sets of

microblogs to the total number of unique words in both sets. This metric referred to as

Jaccard similarity [185] has been reported to outperform other metrics in assessing the

similarity of datasets, and in particular for event consolidation. [259]. At summarizer, if the

majority of the producers (≥ 50%) indicate that two keyword pairs should be consolidated,

the summarizer sends feedback to all the producers to merge the contents associated with

these keyword pairs. This helps to consolidate highly similar events at individual producers,

without sending the entire cluster contents to the summarizer.

Step II: In the second step, BigEye further tries to consolidate global events that

do not have very high similarity locally at individual producers, and were not consolidated

in Step I. To achieve this objective, it seeks to only exchange minimal information with

24

the summarizer to limit bandwidth consumption. Specifically, it employs minHash [40] and

Locality Sensitive Hashing (LSH) [101] functions at each producer, to convert a cluster of

words represented by a discriminative keyword pair into a set of hash integers. minHash and

Locality Sensitive Hashing (LSH) are techniques commonly used to measure the similarity

of large documents within reasonable running times ([101, 144]). The probability that

hashes of two sets are similar is equivalent to the corresponding Jaccard similarity of the

same sets [23,144]. Each producer transmits the computed hash values to the summarizer.

The summarizer compares the hash values across clusters to measure the similarity globally.

The bandwidth consumed on sharing the value generated by minHash is significantly smaller

than the bandwidth consumed on sharing the entire cluster to the summarizer (as will be

shown in § 2.7). At this point, BigEye has tried to reconcile the possibility that a single

global event of interest was perhaps identified as different events because there were multiple

keyword pairs from tweets that were used as discriminatory features for this event. While

we are not able to completely eliminate a single event being wrongly classified as multiple

events, this process drastically reduces the possibility.

2.6 Composition of visual summaries

The final module of BigEye deals with the retrieval of a set of multimedia objects

(e.g., images) from producers to visually summarize an event; the goal is to achieve this

retrieval in the minimum amount of time. Without loss of generality, we assume that the

number of objects (fixed) required to compose a visual summary for each detected event,

is set a priori (e.g., by a consumer) and that this number is the same for all events of

25

interest. Without a priori knowledge of what events occur, this ensures that every event is

summarized fairly, with no priority of one event over others. However, by applying proper

weights it is easy to extend the approach to account for cases wherein events are to be

prioritized.

A summary should include multimedia objects that best describe the correspond-

ing event of interest. Thus, we assign a score to each object based on a set of fea-

tures (e.g.,retweet count, favorite count etc.). We denote this set of selected features as

f1, f2, . . . , fF and the score associated with each item is equal to fj = γ1f1+γ2f2+· · ·+γF fF ,

where j is the item index. The summarizer then looks for a set of multimedia objects that

maximizes f =
∑

fj .

maximize

n∑
j=1

fjxj

subject to
n∑

j=1

w1
ijxj ≤ Bi, i = 1, . . . ,m.

n∑
j=1

w2
ejxj ≤ Ce, e = 1, . . . , E.

w1
ij =

wj j ∈ Pi

0 otherwise

w2
ej =

1 j ∈ Ce

0 otherwise

xj ∈ {0, 1}, j = 1, . . . , n.

(2.11)

The objects to be retrieved may be of heterogeneous sizes; wj denotes the size of

an object j. Let the bandwidth between a producer and the summarizer be Bi, where i

26

is the producer index. We denote the number of images to be retrieved from each cluster

(event) by Ce. The total number of events is denoted as E. Since there is a bandwidth

constraint imposed by the network, retrieving the images with the highest quality (score)

may induce large delays. Selecting what to send from each producer to maximize the

objective function while respecting the bandwidth and the event coverage constraints is an

NP-Hard problem [130]. This is because the problem can be mapped to a multidimensional

knapsack instance as shown in eq:knapsack. The optimization problem aims to maximize

the objective function by picking up the multimedia objects with the highest scores subject

to a set of constraints – the bandwidth between the producer and the summarizer, and the

number of images belonging to a certain event should not exceed the limit that is imposed.

This is akin to filling up a multidimensional knapsack with objects subject to constraints

on the knapsack sizes.

Online algorithm. Solving the above optimization problem is not trivial for two reasons.

First, as mentioned above, it is known that knapsack is an NP-Hard problem [130], and

thus obtaining the optimal solution would require an exponential running time. Second,

in real-world scenarios, the bandwidth allocated to a producer is not known a priori. The

estimated bandwidth in the idle state is different from the available bandwidth in real time,

as the producers might share the same paths and thus affect the bandwidths available to

each other (in addition to traffic dynamics). Thus, the optimization problem needs to be

solved online. Generally, this problem is known in the literature as knapsack of unkown

capacity [66].

27

As evident from the problem formulation, there is a trade-off between the retrieval

time and the quality of the retrieved items (the total score). We design our algorithm such

that it is flexible to allow the operator to favor the quality over time or vice versa. First,

each producer sends the metadata (size and score) of multimedia objects to the summarizer.

Next, the summarizer sorts the objects based on a rank given by the ratio,
1+Lfj
wj

. This

ratio captures the relation between the score of the object and its size. L is a normalizing

factor which can allow favoring one metric (e.g., score) over the other as desired by the

deployer. For example, if L = 0, the algorithm retrieves the objects with the smallest sizes

which lead to shorter retrieval times but can cause poor quality objects to be retrieved.

Initially, when no bandwidth estimates are available, BigEye obtains an initial

estimate of the bandwidth between each producer and the summarizer, using the iperf

utility [11]. Next, the algorithm updates this bandwidth estimate during execution as

follows. It considers a fixed period of time (denoted by T), and the summarizer retrieves the

maximum number of multimedia objects from each producer, that are retrievable within this

period. Partially retrieved objects (complete retrieval not possible in T) are not counted.

Based on the objects retrieved and their sizes, from a producer, the summarizer estimates

the bandwidth to that producer (data retrieved divided by T).

At any given point, the summarizer has the sorted objects as described earlier, and

the bandwidths to each of the producers. It then tries to pull up an object from producers

in order from the ranked list. For each object, the summarizer first checks if the object

is still relevant (meaning that the necessary number of objects have already been received

for the corresponding event). If not, the object is discarded. Otherwise, it checks if the

28

retrieval of the object violates the bandwidth constraints to the corresponding producer

(i.e., can the object be retrieved within T seconds, given the estimate of the bandwidth

to that producer). If there is no violation, the object is retrieved from the producer and

the bandwidth to that producer is decreased by the size of the object. In particular, if

the estimate of the available bandwidth to producer Pi was Bi and the object size was wj ,

B − i is updated to Bi = Bi − wj . Further, the number of objects that are needed for the

summary corresponding to that event (say e) is decreased by 1 (i.e., Ce = Ce − 1).

For each new time period, the producer’s bandwidths are implicitly updated during

the above process. The summarizer repeats these steps until the total number of required

objects are retrieved for all events (
∑

eCe = 0). The procedure is formally summarized in

Algorithm 1.

2.7 Implementation and evaluations

The implementation and experimentation environments are described first in this

section. Subsequently, our evaluations of BigEye are provided. Each module is evaluated

separately to showcase the benefits of each. We consider the holistic performance of our

system at the end of the section. To emulate a network, we use Mininet [173], a popular

software defined network (SDN) emulator. To show the realism of our approach, we use

the NDN test-bed topology to represent the network [178]. This topology is used in a real

deployment where distributed producers are connected. We change the default latencies

and bandwidth per link in some experiments to showcase and demonstrate the scenarios of

interest (bandwidth constrained environment).

29

We use the ONOS SDN controller [203] to manage the communication and rout-

ing between producers and the summarizer (and vice versa). Each producer receives mi-

croblogs (e.g., tweets) of interest, and by using BigEye, the necessary computations and

communications are performed at both the producer and summarizer sides, as described in

the aforementioned three stages of the system. Finally, BigEye outputs a summary of the

global events of interest plus a concise visual summary (the holistic output of the approach

is discussed in § 2.7.7)

2.7.1 Datasets collection and distribution

We collect tweets using Apollo [21], a framework that retrieves information from

Twitter using Twitter API. The framework allows its users to collect tweets that match

keywords of interest such as “disaster” and “wild fires”. The collected datasets are cleaned

by removing (1) re-tweets, (2) stop words and special characters [206] and (3) URLs. Sub-

sequently, we apply stemming [201] to the collected data. We note that this is a common

practice in data mining applications. We use Python-NLTK tokenizer [241] and the Porter

stemmer [201], which are common tools used for these purposes. The collected datasets are

summarized in the following:

• Protest. This dataset is collected using the keyword “protest”. The dataset has

tweets related to protests and it was collected from March 18, 2018 to April 18, 2018.

It consists of approximately 300K tweets after applying the aforementioned filtering

methods.

30

• Florence. The dataset contains information about the Hurricane that occurred in

the Carolinas in 2018. The dataset was collected using the keywords “hurricane”

and “florence” from Sept 14, 2018 to Sept 24, 2018. It contains approximately 100K

tweets after conducting the aforementioned filtering methods.

To emulate a scenario in real time, the data is streamed and fed to the producers

with respect to the time stamps collected from the tweets. For the purpose of experimen-

tation in this paper, we choose a window size of 24 hours. The term instance refer to the

data corresponding to each such window size. Thus, for the above datasets, we have 40

instances in total. The datasets are distributed over multiple producers with two different

scenarios that are described below.

1) Natural distribution: In practice, the tweets are posted by Twitter users

from different geographical locations. One can use those locations to cluster the tweets into

different geographical zones, which can be later associated with the producers. However,

not all tweets contain associated geolocation information; in fact less than 2% of tweets have

this information [49]. This makes the problem of simulating exact real-word geographical

distribution of tweets hard. So, the addresses of users (which can be obtained from users

profiles) are used to mimic the geographical distribution of tweets (tweets from the same

user are assumed to be made from his/her profile’s geolocation information). Using this

approach, we are able to retrieve 70% and 60% of this information, from users associated

with the Florence and Protest datasets, respectively. We are unable to decipher the rest

because some users had provided vague addresses (e.g., “space” and “floor”). We use an

API provided by HERE.com to convert the provided addresses to geolocations [104].

31

As mentioned earlier, we used the NDN topology which reflects a real world net-

work (real server locations); we assume each tweet is sent to the nearest physical producer

(assuming that each server is a producer). Fig. 2.3 shows an example demonstrating the

approach. We extend the same idea when a variable number of producers (different from

the original number of servers in the NDN-topology) is considered,from as follows. First,

each tweet is assigned to its nearest producer and among all producers we select the top m

(ones that receive the most number of tweets) producers. Next, we assign tweets to nearest

producer from these top selected m producers. For tweets where we could not retrieve the

geographical locations, they are assigned randomly to a producer.

2) Synthetic distribution To further evaluate the performance of BigEye, we

consider uniform and skewed distribution of tweets across multiple producers. (i) Skewed

distribution: The distribution of the data over the producers follow a Gaussian distribution

with µ = Nk
m and σ2 = β ∗ µ; we vary the β to control the skew. (ii) Uniform distribution:

The distribution of the data over the producers follows a uniform distribution.

We also collect the images associated with the tweets and stream them on the pro-

ducers according to the selected distribution. For tweets scores, we select three features (fj

as discussed in § 2.6): retweet count, favorite count and follow ratio defined as # of followers
of following

2.

We also select L to be 1. Twitter allows users to post more than one multimedia object

in a single tweet. We treat each as independent object while giving each the same score as

their associated tweet. Twitter API keeps multiple versions of the videos each with different

quality. To avoid redundancy, we pick only a particular version randomly.

2Assessing how good the selected features are in practice is beyond the scope of this paper.

32

Figure 2.3: A map of the United States, representing two hours of tweets collected from

the Florence dataset. Blue dots represent producers and red dots represent the locations of

tweets. Each tweet (red dot) is sent the nearest producer (blue dot).

2.7.2 Evaluation parameters

Our evaluations of the performance of BigEye consist of a comparison with an

approach wherein all data is made available centrally. Our evaluations are on the datasets

that were discussed in the prior section. We stream each dataset separately, in line with

our assumption (streaming data is aligned with the scope of a realistic scenario) in § 2.3.

The results that we obtain are then integrated before we discuss them for two reasons.

First, we find that the performance with BigEye is consistent across both datasets, when

the data is distributed over geographically separated producers, compared to when the

data is centrally available. Second, the generality of BigEye ensures that its behavior with

any crowd-sensed dataset, belonging to a particular scope, is consistent. As a consequence

of these two reasons, an independent discussion of the details of the performance of each

dataset provides no new information, and is wasteful of space.

Our experiments are performed with all instances from all of the datasets (40 in

total), considered one at a time. For statistical significance, experiments are repeated 50

times. BigEye’s three components are integrated holistically; however, first we indepen-

33

dently evaluate each component to provide microscopic views of the benefits of each. The

following describe for these module specific set ups.

Distributed Event Detection Module: As described in § 2.4, we find that our

method always yields the same precision and recall with respect to detection of key events,

as that of an ideal system which considers that all data can be made available centrally.

We experimentally validated this and do not further showcase the event detection accuracy

in the interest of space.

To evaluate if the number of keyword pairs that are returned by BigEye to the

summarizer is reasonable, we compare the number with the best case scenario. In particular,

we consider an oracle that does a brute force search, considering all possible subsets of the

keywords pairs sent (the ranked orders of those pairs are still maintained), and checks if

any of those subsets yields the same precision and recall as our approach (and the central

approach). We choose the smallest subset among these as the best possible scenario (we

label it as oracle prediction in the results that we present). In other words, instead of

choosing a threshold r∗

m , we find a the smallest value l ≤ m such that choosing r∗
l results in

the detection of all events of interest.

Consolidation of events: Our proposed distributed consolidation is evaluated

next. Specifically, BigEye’s approach is compared with a case all the data associated with

the clusters is sent to the summarizer which then applies a consolidation. We denote the

baseline as central consolidation. We point out that this is the consolidation used in the prior

work Storyline [259], where the data is centrally made available and similarity assessment

is based on Jaccard distance.

34

The metrics of interest are accuracy (defined next) and the amount of data sent

from the producers to summarizer for the purposes of consolidation. Accuracy is defined

to be the ratio of the number of keyword pairs that are grouped correctly (the events

are correctly consolidated) to the total number of keyword pairs. Two keyword pairs are

incorrectly grouped if (a) these pairs belong to the same event but are put in different

groups and (b) if they belong to different groups (events) but are consolidated into the

same group. We also compare the amount of sent data from the producers to summarizer

with our approach (in bytes), with the other approach.

Composition of visual summaries: We assess the “quality” from BigEye’s vi-

sual summary module with respect to the centralized case (where no bandwidth constraints

are present). In particular, if data is located centrally, the summary can be composed us-

ing the objects that have the highest associated scores. However, objects with the highest

scores are not always retrieved in BigEye to meet timeliness constraints as discussed in

§ 2.6. To evaluate the impact of this, we evaluate the quality which is defined as the the

ratio of the summation of the scores of the multimedia objects retrieved with BigEye, to

the corresponding sum score achieved in the centralized case.

We also evaluate the delay in retrieving the visual objects. Formally, this delay

is defined as the time it takes for the summarizer to receive the data used for the visual

summary from the producers. Specifically, the metric we use is the average delay incurred

in receiving 1 MB of data (we normalize this since the sizes of the visual summaries could be

different for different events). We compare the delay of BigEye’s visual summary module

with the following baseline (denoted as baseline). Each producer is assigned the job of

35

sending information related to a specific event. If the number of events are more than

the number of producers, the events are evenly distributed across the producers. If a

producer is assigned more than an event, the resources are shared equally between them

with no priority given to one over the other. Our goal here is to showcase the efficacy of

our parallelization approach with a second approach (the baseline) that also parallelizes

transfers but is not bandwidth-aware (does not take into account the different bandwidths

to the different producers).

Figure 2.4: CDF of the

number of detected discrim-

inative pairs with different

global thresholds.

Figure 2.5: The performance

of our distributed event de-

tection with varying number

of producers

Figure 2.6: Performance of

our distributed event detec-

tion with different data dis-

tributions

2.7.3 Results on distributed event detection

First, we evaluate our distributed event detection module using the aforementioned

metrics. We recall our discussion in § 2.4 (H(Y |sz) was to be a small value ϵ), and select ϵ

to be 0.08, 0.09 and 0.1 (r∗ = 100,87 and 76, respectively). Here, we also refer the reader

to Table 3.1 since the notation therein is used in the discussion.

Effect of r∗ on the total number of pairs retrieved by the summarizer.

We plot the CDFs of the number of events (corresponding to identified discriminative key

36

word pairs) detected with each value of r∗ in Fig. 2.4. As one might expect, as r∗ increases,

the number of pairs retrieved decreases (with higher r∗ only the most significant events are

detected). This effect is also seen in Fig. 2.5.

Effect of increasing number of producers. In Figure 2.5, we plot the ratio

of the number of retrieved keyword pairs to the total number of keyword pairs identified,

versus the number of producers. We assume that the data are distributed as per the

natural distribution. As one might expect, the number of key-words pairs returned to the

summarizer increases when as the number of producers, m, increases. This is because

because r∗

m decreases i.e., a lower or more conservative (local) threshold is used at each

of the producers. It is worth noting that with small r∗ = 76, (H(Y |sz) = 0.1) and large

m = 18, the total number of received pairs is less than 1% of the total number of keyword

pairs considered globally.

Comparison with oracle. Next we examine how the number of keyword pairs

retrieved with BigEye compares to what is obtained by an oracle, when the data is spread

across the producers as per the different data distributions (discussed in subsec:datasets).

For the skewed distribution, we choose µ = Nk
m and σ2 = 0.5 ∗ µ; this ensures a high skew.

We fix ϵ = 0.09 (r∗=87), and m to be 10.

In Figure 2.6, we plot the CDF of the ratio of the number of pairs received at the

summarizer to the number of global discriminative pairs with both BigEye and the oracle

based approach described earlier. We see that the performance of BigEye is similar to that

of the oracle when data is dispersed as per the natural distribution. However, when the

distribution is skewed, the performance of the BigEye degrades compared to the oracle.

37

This is because the producers with large numbers of tweets have a large number of keyword

pairs that pass the conservative threshold selected by BigEye; thus, they end up sending a

large number of pairs that are not useful in detecting key events.

Figure 2.7: Distributed consolida-

tion accuray with respect to central-

ized consolidation (Storyline [259])

.

Figure 2.8: Bandwidth savings from

BigEye’s distributed consolidation

approach in terms of total amount

of data sent from producers to sum-

marizer.

2.7.4 Results with regards to consolidation

Next, we evaluate the benefits from BigEye’s consolidation module. In our eval-

uations we use the same ϵ values mentioned earlier in § 2.7.3. Recall that BigEye consoli-

dates events over two steps. In the first step, we consider a similarity requirement of 0.99

(Jacquard distance) to consolidate events at individual producers. For the second step, we

consider three minHash signatures of length 64, 128, and 256 integers. We consider different

minHash signatures as it has been reported that the length of generated minHash signatures

affects the similarity scores [144]. We also vary the consolidation thresholds that are used

centrally from 0.4 to 0.9 with a stepsize of 0.1.

38

In Figure 2.7, we compare BigEye’s consolidation approach with different minHash

lengths. We observe that the similarity estimation improves as the length of the minHash

signature increases (less collisions). Similar phenomena have also been reported in previous

literature [144]. We observe that, for a minHash signature of length 128, almost 85% of

instances show a consolidation accuracy of larger than 70% of what is achieved if all data

was available centrally. BigEye provides consistent consolidation accuracies irrespective of

the number of producers.

We show next the consolidation benefits in terms of the reduction in the volume of

data sent from producers to summarizer in bytes, compared to sending all keywords in the

clusters (needed for central consolidation); Fig. 2.8 shows that our approach reduces the

communication costs significantly compared to that baseline approach, and in particular

the average cost by 60% (fewer bytes).

2.7.5 Results on visual content retrieval

Next, we evaluate the performance of BigEye’s visual summary module with re-

spect to the baseline approach discussed in § 2.7.2.

Delay performance with different numbers of producers. We evaluate the

performance of BigEye’s final module with different numbers of producers (we consider

2, 6 and 10 producers). We assume that the data is distributed uniformly over these

producers. We plot the CDFs of the average delay (over the instances) with BigEye and

the baseline in Figure 2.9. First, we observe that our approach outperforms the baseline

by approximately 67% on average. Furthermore, we also see that the delay decreases as

the number of producers increases initially. This is because of the increased parallelization

39

in retrieval that is possible due to this. However, the benefits reach a point of diminishing

gains. Specifically when the number of producers increases beyond a certain number (e.g.,

above 6 and 10 in Figure 2.9) because of limitations in the NDN network structure very

little additional parallelization is possible (the producers share common paths). We have

manually constructed a tree network where each producer is connected to the summarizer

with a dedicated link. In this case, we do observe significant performance enhancements

between the cases of 6 and 10 producers since parallelization is now viable. We omit showing

these results to conserve space.

Impact on summary quality. We plot the CDF of the quality of the visual

summaries obtained with different numbers of producers versus the baseline approach in

Fig. 2.10. We see that the best quality is achieved when there are only two producers.

Typically, if all data is at a single producer, it is natural to pick the objects with highest

scores (
fj
wj

) according to the global sorted list shown in Algorithm 1. However, when the

number of producers increases and we try to achieve parallelization of transfers, the highest

ranked objects in the global list are not always retrieved. In particular, if a single producer

has most of the highest ranked objects, we will retrieve objects of inferior quality from other

producers. In other words, the summarizer pulls other objects (with lower rank) from other

producers, which in turn affects the achieved quality (the trade-off is the reduction in terms

of the delay).

Data requirement to compose summaries. Next we evaluate the performance

of BigEye when the user imposes different requirements on the number of objects that are

needed in the visual summary. Specifically, we impose requirements of (25%, 50%, 75%) of

40

Figure 2.9: Delay

in visual content

retrieval with dif-

ferent number of

producers.

Figure 2.10: Sum-

marization quality

of visual summary

with different num-

ber of producers.

Figure 2.11: De-

lay in visual con-

tent retrieval with

different number of

objects required to

compose summary.

Figure 2.12: Sum-

marization quality

of visual summary

with different num-

bers of required ob-

jects

the total number of multimedia objects (corresponding to each detected event) to compose

the summary. We use the skewed data distribution with β = 1 (very skewed distribution).

This means that a small subset of the producers has a large number of multimedia objects,

while others have only few. We fix the number of producers to be 6. As shown in Fig. 2.11,

when the required number of objects is only 25% of the total, the lowest delay is achieved. As

evident, as this requirement increases, the delay increases. In fact, because of the skewed

distribution, when we need 75 % of the objects, the summarizer is forced to abandon

parallelization and retrieve all objects from the producers with the large number of objects.

This drastically affects delay.

Fig. 2.12 shows, as one might expect, that the quality of the composed summary

improves as the number of required objects to compose the summary increases. However

this improvement is not drastic. This is because the first objects that are retrieved have

the highest scores; later objects contribute less and less to the quality of the summary.

41

Figure 2.13: Performance of

the dirstibuted event detec-

tion module with multiple

datasets (scalable setting).

Figure 2.14: Bandwidth

savings from BigEye’s dis-

tributed consolisdation with

multiple datasets (scalable

setting).

Figure 2.15: BigEye’s dis-

tributed consolidation accu-

racy with multiple datasets

(scalable setting).

2.7.6 Scalability

To showcase BigEye’s scalability where the generated data is much larger, we use

a dataset collected on election day in the United States. It consists of around six million

tweets and we clean it up as we discussed earlier in § 2.7.1. We point out here that the

datasets used in the results shown earlier (Florence and Protest) are small in comparison

to the Election dataset (by a factor of about ≈ 20). We select global thresholds such that

an approximate constant number of top events (10 and 30) are retrieved, and assess the

performance of our modules. Specifically, we examine how the results scale with the dataset

size (in comparison to the smaller ones). We point out here that tuning the global threshold

to get the exact same number of events across all datasets is hard; thus we choose thresholds

such that the ratio of events retrieved across each pair of datasets varies between 0.9 to

1.1 (i.e., the numbers are approximately 10 or 30 but not exact). We select the number

of producers, m, to be 10 and a hash of length 128. The accuracy of our distributed

event detection module remains at 100% like in the case where all the data is available

centrally (similar to the results reported earlier) even when the dataset is large. The ratio

42

of the recieved keyword pairs (after processing by BigEye) to the total number of keyword

pairs is drastically smaller with the Election dataset (only 0.002%) in comparison with

Florence hurricane and Protest datasets as shown in Figure. 2.13. One might expect this

to be the case since the total number of keyword pairs is much larger in comparison to the

candidate discrminative keyword pairs (with a local ratio of occurrence larger than r∗

m , the

local threshold); recall that only these candidates are sent from the producers to the central

controller. In large datasets (e.g., the Election dataset), the total number of keyword pairs

is much larger than the correponding number in smaller datasets (e.g., Florence); since we

choose a target number of top events to be detected, the ratio of candidate discriminative

key word pairs to the total number of keyword pairs becomes drastically smaller. Thus,

the takeaway is that one can expect even further reductions in overhead with BigEye as the

dataset sizes grow, because of large reductions (if we seek to detect a certain target number

of top events).

We next evalute our second module (consolidation) with a large dataset in terms

of both bandwidth savings and consolidation accuracy. With the new larger dataset, the

number of words that mapped on to each event increases significantly; thus, BigEye’s ap-

proach of sending a fixed hash representation of the event contents (as compared to sending

the raw words corresponding to the event) reduces the overall proportion of transmitted

data in comparison to the smaller data sets as shown in Figure. 2.14. However, as shown in

Figure. 2.15, we see that with the Election dataset, we have a slighlty lower consolidation

accuracy in comparison with the results obtained with the other datasets. This is because

the used hash length is small (only 128) and hence it is not sufficient to capture the sim-

43

ilarity between the detected events in this large dataset. As indicated earlier, a possible

way to enhance the consolidation accuracy is to increase the hash length (see Figure. 2.7).

This is because the similarity estimation improves as the length of the hash increases [144].

To verify that this is applicable on large datasets, we increase the hash length to 256 and

run BigEye with Election dataset and we achieve consolidation accuracy of 90% when the

number of events equal to 30.

2.7.7 Holistic output of BigEye

Next, we show the holistic output of BigEye. We select random instances from

three datasets. We use the previously mentioned Protest and Florence datasets, and a new

dataset (called disaster dataset [127]) that is available for public use to further show the

merits of our proposed framework. The summaries are composed of (1) the discriminative

key word pairs, (2) textual summaries (complete tweets) describing the observed events and

(3) the visual summaries (we select the best images to avoid cluttering). The discriminative

pairs and the textual summaries of the three datasets are shown in Tables 2.2, 2.3 and 2.4,

and the corresponding visual summaries are shown in Figures 2.16 to 2.18. To elaborate,

we’ll go through a sample of the results associated with Protest dataset. On March 30, two

major protests were detected. The first related to teachers in Kentucky schools, who were

protesting against a pension bill which forced schools to close (an image of the protest is

shown). The second event is related to a protest in Gaza where seven people were killed

and dozens were injured. One can easily understand and differentiate between these by

44

following the textual summaries of the events and their corresponding visual summaries.

Event I on Sept 15

.
Event I (left) and Event II (right) on Sept 16

Figure 2.16: Florence dataset

Event I (left) and Event II (right) on March

29

Event I (left) and Event II (right) on March

30

Event I on March 31
Event II on March 31

Event III on March 31

Figure 2.17: Protest dataset

2.8 Related work

Postings on social networks have been recently used as sensor outputs [256, 257]

that can be used to discern events. There exist some prior studies on detecting events

45

Event I on Jan 14

.
Event II on Jan 14

Figure 2.18: Disaster dataset

from such sensors’ data (with goals aligned with those of BigEye). Allan et al. [17], used

“term frequency” (tf) and “inverse document frequency” (idf) features to build a query

representation for content from news stories and identified an event, when the similarity

score of new news story was less than a given threshold in comparison to any previous news

query in memory. Similarly, Shamma et al. [217], used a normalized term frequency to

identify peaky topics, the terms which are particular to a time window, to detect highly

localized events of interest. Benhardus et al. [30], also used tf-idf analysis and relative nor-

malized term frequency analysis, on twitter documents to identify trending topics. However,

these approaches were reported to be inefficient in differentiating between separate event

instances [259]. Moreover, unlike tf-idf, BigEye works by only computing information gain

over two consecutive time windows.

Text stream clustering has also been applied for event detection. Ordonez et al.

[192], Zhong et al. [279] and Aggarwal and Yu [8], used optimizations of k-means algorithms

to cluster data streams for events detection. Similarly, communication patterns [50], social

network topological features [7], language specific features [87, 239, 261], and location of

tweets [39,145,253] have also been used by researchers for clustering data to detect events.

46

Nevertheless, precisely defining the number of clusters (k) for online streaming data is

not feasible. Researchers have also used topic modeling for event detection [110, 142, 281].

However, topic based approaches have been reported to be inefficient in identifying events

happening in parallel instances [259]. Unlike these methods, BigEye detects events by

measuring the temporal bursts in the word-pairs that do not co-occur frequently. BigEye’s

event detection approach is closely related to Storyline that was proposed by Wang et

al. [259]. However, unlike BigEye, Wang et al. only focuses on event detection when data

is centrally located.

A different line of work considers the problem of truth finding in social sensing

blogs [148, 218]; however, these only work when all the data is made available centrally

unlike BigEye. In contrast, BigEye is targeted for a distributed setting, wherein the data

is distributed across multiple producers that are geographically separate.

BigEye centers around the detection of global events by only sharing minimal

amounts of information between distributed producers and a central summarizer. There

have been some prior works on selectively sending information to a central entity [98, 132,

162]. There are also related works focusing on calibrating distributed sensors with the

objective of finding global measurements from those sensors (e.g: measuring urban air pol-

lution) [175,268]. However, unlike BigEye, these approaches do not focus on event detection.

Closely relevant to our study is the study by McCreadie et al. [167]. Unlike BigEye, they

do not consider bandwidth constraints and only try to minimize the event detection time

by distributing the computational costs of processing documents across multiple machines.

47

2.9 Conclusions

In this paper, we address the important problem of detecting global events from

crowd-sensed data. Towards this, we design and implement BigEye, a system that enables

(a) the detection of key global events based on distributed crowd-sensed data that exists at

geographically spread out producers and (b) the crafting of visual summaries that provide

concise zoomed-in views of such events. BigEye distinguishes itself in that it is extremely

thrifty in terms of the bandwidth that it consumes, i.e., very little of the raw crowd-sensed

data from the producers needs to be transferred to a central entity for both event detection

and the subsequent visual summarization. In spite of its thriftiness, it is able to achieve 100

% precision and recall compared to approaches where all crowd-sensed data is made available

centrally. Via emulations of realistic scenarios, we show that BigEye only consumes 1 %

of the crowd-sensed data for detecting key global events, and its parallelization of visual

content retrieval reduces the average delay by 67 % compared to baseline approaches.

48

Table 2.1: Key notation

Symbol Description

Nk # of tweets in time window k

Nz
k # of tweets in time window k that con-

tain the pair sz

ps
Nz

k

Nz
k+Nz

k−1

k index of the data stream window

∈ H(Y)− threshold

m # of producers

i Producer index

Pi ith producer in the the system

r ratio of occurrence of keyword pair sz in

time window k to the corresponding oc-

currence in time window k − 1

n total # of multimedia objects

j multimedia object index

wj size of the jth multimedia object

fj score of the jth multimedia object

Bi Bandwidth between Pi and the summa-

rizer

Ce # of multimedia objects inquired from

event e

49

Algorithm 1 Multimedia objects retrieval

CalibrateFunction Calibrateend (ReceivedObjects[i])

Bandwidth[i] ←
∑

wj , j ∈ ReceivedObjects[i]

BestBw[i] ← Bandwidth[i]

for i in I do MaxBW[i] ← iperf (Pi, summarizer) Bandwidth ← MaxBw

BestBw ← Bandwidth

objects ← sorted (objects,
1+Lfj
wj

)

while
∑

eCe ̸= 0 do

for all j in objects do i← j ∈ Pi

if Bandwidth[i]- wj ≥ 0 & Ce- 1 ≥ 0 then Bandwidth[i]= Bandwidth[i]- wj

Ce = Ce - 1

RequestObject(j, Pi)

wait (timeWindow)

Bandwidth ← BestBw

50

Table 2.2: Florence Hurricane Summarization

Date Detected keywords Textual summary

Sept 15

Event I: sympathy, hurricane,

deepest, hurricane

”My deepest thoughts and prayers are with

those in North and South Carolina, and Vir-

ginia affected by Hurricane Florence”

Sept 16

Event I: ’abandon’, ’hero’, ’six’,

’dog’

“Six dogs have been rescued from rising flood

waters, after they were locked in a cage and

abandoned by their owners”

Event II: ’dog’, ’64’, ’rescue’,

’hurricane’

“As Florence loomed, a pet lover escaped

South Carolina with 64 dogs and cats on a

school bus”

51

Table 2.3: Protest Summarization

Date Detected keywords Textual summary

Mar 29

Event I: ’viral’, ’plung’, ’califor-

nia’, ’cliff’

”Washington state family famed for protest photo

died when SUV goes off California cliff”

Event II: ’NBA’, ’office’ “Police, DSS Invade Ikeja NBA Office To Foil

Protest Coinciding With Buhari’s Visit”

Mar 30

Event I: ’bill’, ’school’,

’teacher’, ’kentucki’

“Kentucky schools close as teachers protest GOP-

passed pension overhaul”

Event II: ’gaza’, ’border’,

’palestinian’, ’kill’, ’israel’

“7 Palestinians killed, dozens injured as Israel

suppresses massive protest in Gaza”

Mar 31

Event 1: ’Stephon’ , ’clark’,

’car’, ’hit’

“Sheriff’s Car Knocks Down Activist During

Stephon Clark Shooting Protest”

Event II: ’student’ ’Howard’,

’protest’

“Howard University students stage sit-in to

protest financial aid scandal”

Event III: ’deadly’, ’day’, ’15’,

’palestinian’, ’kill’, ’israel’

“15 Palestinians reported killed by Israeli fire as

Gaza border protest builds”

52

Table 2.4: Disaster Summarization

Date Detected keywords Textual summary

Jan 14

Event I:’Australia’, ’forest’ ’fire’ “13 years ago we predicted that the worst fire

seasons would be directly observable in aus-

tralia by the year 2020”

Event II: ’volcano’, ’Philip-

pine’, ’Taal’, ’erupt’

“Taal volcano, located 70 km from Manila,

Philippines. In addition to the eruption it-

self, the so-called volcanic tsunami”

53

Chapter 3

AcTrak: Controlling a Steerable

Surveillance Camera using

Reinforcement Learning

Steerable cameras that can be controlled via a network, to retrieve telemetries

of interest have become popular. In this paper, we develop a framework called AcTrak,

to automate a camera’s motion to appropriately switch between (a) zoom ins on existing

targets in a scene to track their activities, and, (b) zoom out to search for new targets

arriving to the area of interest. Specifically, we seek to achieve a good trade-off between

the two tasks, i.e., we want to ensure that new targets are observed by the camera before

they leave the scene, while also zooming in on existing targets frequently enough to monitor

their activities. There exist prior control algorithms for steering cameras to optimize certain

objectives; however, to the best of our knowledge, none have considered this problem,

54

and do not perform well when target activity tracking is required. AcTrak automatically

controls the camera’s PTZ configurations using reinforcement learning (RL), to select the

best camera position given the current state. Via simulations using real datasets, we show

that AcTrak detects newly arriving targets 30% faster than a non-adaptive baseline and

rarely misses targets, unlike the baseline which can miss up to 5% of the targets. We also

implement AcTrak to control a real camera and demonstrate that in comparison with the

baseline, it acquires about 2× more high resolution images of targets.

3.1 Introduction

Networked surveillance cameras are becoming ubiquitous. It is estimated that

around one billion surveillance cameras are currently installed globally [96, 198, 252]. A

standard surveillance camera has a fixed and limited view of the scene of interest depending

on its orientation and the width of its lens. In many applications however, there is a need for

a complete coverage of the scenes of interest (e.g., trespass prevention) and leaving parts of

the scene uncovered can lead to security breaches. In addition, in many applications, high

resolution/ fine grained images of suspicious targets or objects are crucially needed. Pan-

Tilt-Zoom (PTZ) cameras have been considered a suitable solution satisfying these demands

[26,226]. Such cameras have the ability to maneuver around, covering the entire scene unlike

standard surveillance cameras. The “zoom” feature offered by such cameras, allows the

camera to zoom in to acquire high resolution images of the targets and objects of interest,

and yet provide wide view coverage when needed (via a zoom out). Most PTZ cameras can

be controlled remotely over a network to satisfy various surveillance requirements, which

55

Figure 3.1: Zoomed out (left) and zoomed-in (right) views. The zoomed out view enables

the detection of new targets as they enter the scene. However, it is insufficient for inferring

target activities. The zoomed in view facilitates inferring target activities (i.e., a target

reads a book) but only partially covers the scene. AcTrak balances zooming in and out such

that target activities are captured, while ensuring that arriving targets are detected quickly

when they step in to the scene.

opens up opportunities for building reliable and autonomous surveillance systems [18, 26].

One fundamental, unexplored question that arises in this case is: in an evolving scene,

how to automatically control a PTZ camera to facilitate applications where there will be

a need to (a) zoom out to identify any new target quickly when it enters the scene of

interest and (b) frequently zoom in on existing targets to be able to monitor their fine-

grained activities via high resolution images. For example, we envision scenarios with a

need to capture prohibited activities (e.g., eating/drinking or photographing in museums,

and smoking in shopping centers). Another application relates to deployments in shopping

centers, to track target shopping interests i.e., what products customers are looking at, in

addition to catching shoplifting activities. Such information would aid data analytics to

understand customer behavior and/or even guide re-organizing product placements across

aisles (e.g., distribute popular products to enable Covid-19 social distancing needs).

56

Challenges: The control algorithm require a good balance between the actions

of zooming in and out. A simple example is shown in Figure 3.1. If we focus on target

zoom-ins, we may miss out on arriving targets in the lower left corner and a continuous

zoom out does not shed light on target activities. Achieving this balance by changing the

camera’s views is challenging due to two delay components associated with camera motion:

mechanical camera movements incurred due to motion from one position (e.g., zoom out)

to another (e.g., zoom in) and computational and networking latencies of processing and

retrieving the captured frames. Therefore, a careful orchestration is needed for managing

the frequency and patterns of zoom ins among targets especially in the case when several

targets exist in the scene, while ensuring that we do not miss new targets.

Related Work: Multi-objective surveillance problems have been studied widely

in static and steerable multi camera systems [199]. Cameras usually co-ordinate to achieve

one or more objectives such as scene coverage, opportunistic acquisition of zoom-in images

of targets [65], tracking [47, 204, 230, 271] or power efficient surveillance [133]. However, in

our work we consider a single camera that balances the trade-off between two conflicting

objectives (Figure 3.1), and previous work on multi-camera solutions cannot satisfy these

objectives in a single camera setup. The closest work to ours is [65], where the authors

consider a multi camera system that (1) fully covers the physical scene all times and, (2)

opportunistically captures high resolution shots of existing targets. This is different from

ours in two aspects. First, the physical scene coverage constraints cannot be used in our

setup (when single camera is used), because when the camera zooms-in on a target, only

a partial view of the scene is obtained (violating the physical scene coverage constraints).

57

If for cost constraints (multiple camera deployments are more expensive) the full physical

scene cannot be covered, one has to manage the zoom-in shots of targets without sacrificing

coverage of new targets arriving to the scene; we consider this specific case in our work.

Second, we consider continuous zoom-in tracking of existing targets for activity recognition,

unlike the work in [65], where the focus is on opportunistic acquisition of high resolution

shots. More discussion is provided later (§ 3.5) on why a single camera solution can be

desirable, and we tackle this important problem in this work. While there is prior work

on controlling the PTZ of steerable cameras (e.g., [120, 182]) in a single camera setup,

they have different objectives from ours; importantly, none consider changes in the target

population in the scene (new arrivals) and most do not consider arbitrary motions of targets.

For example, the authors in [120] propose an approach to orient the camera to zoom in on

various (but fixed and pre-determined) chosen locations. Their approach allows the tuning of

how frequently these locations are to be visited, but leaves other locations uncovered. Thus,

this method is ineffective when tracking targets activities outside the selected locations is

required. We argue that the camera should focus on activities rather than location coverage

(since coverage of unoccupied locations yields little or no information).

Contributions: In this paper, we design and implement, AcTrak, to control a

PTZ camera such that, it (a) quickly identifies dynamically arriving targets to a scene and,

(b) with appropriate frequency (target specific), obtains high resolution images of each

target in the scene to capture their activities at fine time scales1. Importantly, AcTrak

accounts for the associated latencies when determining the camera movement.

1Note that we do not store biometric features of targets (for privacy reasons), but rather use high
resolution shots for activity recognition.

58

We formulate the problem as Markov decision process (MDP), where a reinforce-

ment learning (RL) agent that dynamically learns, and thereby determines the best PTZ

configuration given the current situation. This works in an online fashion i.e., it contin-

uously tunes the camera PTZ dynamics to cope with the evolving scene. Importantly, it

tries to minimize the latencies incurred in changing the camera views, by choosing visita-

tion patterns in an informed way. Furthermore, it does not require expensive computations

to derive its next PTZ configuration during runtime (a single feed forward neural network

operation is needed).

In brief, our key contributions in this paper are as follows:

1. We design AcTrak, a framework for the PTZ control of a steerable camera. AcTrak is

based on MDP, which selects the PTZ configuration that provides the highest utility

(discussed later) in terms of a trade-off between the goals of balancing rapid acquisition

of new targets and obtaining fine grained information about existing targets, while

minimizing latency penalties due to camera motion.

2. Typically, RL agents need heavyweight training to deliver high accuracy [106]. While

creation of the requisite, huge number of training instances is possible on fast ma-

chines, it is time-prohibitive in our scenario since camera mechanical movements and

networking and computational latencies can be in order of seconds. Hence, instead,

we develop a simulator to mimic the camera, target movements and other dynamics

to enable training and we deploy the trained agent during test time.

3. We showcase the merits of AcTrak via both simulations and real world experiments

with an implementation on an off-the-shelf PTZ camera. In our real world experiments

59

AcTrak outperforms a non-adaptive baseline by acquiring 2 × more high resolution

images of targets. Our simulations using public datasets show that our agent detects

new targets that arrive to the scene 30% faster than a state of the art baseline.

3.2 Our RL based Control Framework

In this section, we first describe the trade-offs between the functionalities we seek

to achieve (zoom outs to find new targets and zoom in to track current targets). Next, we

provide an overview of AcTrak, and then describe it in detail.

3.2.1 Functionalities and associated trade-offs

Scene coverage. The camera can zoom out to cover the entire scene (to find

new targets) and we call this the coverage tour. Invoking unnecessary coverage tours at

high frequencies will reduce the time for (frequency of) acquiring high resolution images of

existing targets. Instead, if the camera undervalues coverage tours, new targets may leave

unseen.

Zoom-ins. Upon identifying a target, AcTrak marks its location so that the

camera can zoom in on it again in the near future, to track its activity; this obviates the

need to zoom out each time in order to find that object. To acquire the high resolution

image, an appropriate PTZ configuration is chosen to direct the camera at the last known

(updated) location of the target. Since targets can be located at different distances from

the camera, each target requires a different zoom level denoted as Zj , where j is the target’s

index. Target locations are updated during coverage tours and the zoomed in visitations.

60

Figure 3.2: ZoomIn Scenarios. In Figures A and B, we show different camera strategies of

zooming-in on existing targets (Note the arrows). The overall time to visit all targets of the

strategy in Figure A in higher in comparison with the scenario in Figure B due camera’s

longer (wasteful) moves.

A location becomes outdated when the target moves outside its previous zoom-in view,

which depends on the target’s motion (e.g., walking, jogging). The camera must obtain an

updated location before zooming in on the target.

Managing zoom-ins of multiple targets. AcTrak’s control algorithm is driven

by two objectives: (A) if a target has not been visited recently, the highest priority should

be given to that target, and (B) try to maximize the number of targets that can be seen

with the same camera beam or field of view (this is dictated by the camera’s orientation

and targets’ proximity to each other). The second objective saves time via visits to cover

multiple targets (instead of multiple different visits to cover those targets). An auxiliary

benefit not explicitly considered is that it can detect target group interactions (e.g., when

multiple people meet as a group).

Scheduling visitations across multiple targets have to be carefully orchestrated in

order to minimize the overall latency associated with changing the PTZ configuration to

switch targets; recall that this is a latency expensive operation. For example in Figures 3.2-

A and 3.2-B, there are two distant clusters, each containing targets in close proximity. If

61

the camera alternates between targets from the two clusters (as in Figure 3.2-A), the overall

time for making a visit to all targets will be large due to wasteful, repeatedly large PTZ

configuration changes. However, if it visits the targets within one cluster before it moves to

the other cluster (as in Figure 3.2-B), this overall time will be much smaller (small changes

to the PTZ configuration at each step). Thus, the proximity of targets has to considered

while zooming in on different targets.

Continuing with the example, assume that there are only two targets within a

cluster and there is a time budget λ s, associated with visiting these two targets. The

camera can stay with the first target for λ/2 s, and move on to the second target and stay

with the latter for remaining λ/2 s. A better strategy is to alternate between the targets,

staying with each for a small period each time. In the first strategy, the camera stays with

a target for a longer time collecting continuous (and more) high resolution shots; however

these shots are unlikely to yield new information and the other target is not monitored for

a big time gap (λ/2 s). In the second strategy, fewer high resolution shots of each target

are obtained due to additional PTZ changes, but the time gap for which a target is not

monitored is smaller. Further, each visit is more more likely to capture new activity (e.g.,

due to a new posture). As discussed later, our framework can be tuned to trade-off between

the two strategies.

Overview. As discussed earlier, we seek to balance two tasks (a) tuning the

frequency of coverage tours and (b) managing zoom-ins across the multiple targets in the

scene. AcTrak seeks to avoids wasteful PTZ configuration changes to the extent possible

(i.e., zooming out when no new targets have arrived and zooming-in on obsolete locations

62

of current targets which have moved). RL has been shown to be effective in applications

needing adaptive parameter tuning (e.g., [263]), which is what we need to achieve the

balance we seek. Our trained RL agent determines the next visit while accounting for the

impact of this decision on future decisions, via a simple and quick feed forward operation,

depending on the current state of the environment (determined by for example, clustering

of targets, application needs, etc.).

To learn the appropriate frequency of coverage tours we monitor: (1) target ar-

rivals: if no target appears within the current period between coverage tours, the camera

learns to decrease the frequency of coverage tours and (2) new target locations: if new targets

have moved significantly from the coverage boundaries (have not been detected for a while),

the camera infers that it needs to increase the coverage tour frequency. With regards to

managing zoom ins, we seek to efficiently determine the next visit while accounting for the

impact of this decision on future decisions. A trained RL agent determines this via a simple

and quick feed forward operation, depending on the current state of the environment.

In an evolving scene, given what is observed by the camera beam, AcTrak’s control

algorithm seeks to determine a PTZ configuration that maximizes a given utility that cap-

tures our goal. Then, the camera changes its current PTZ configuration to that new PTZ

configuration. The PTZ configuration is adapted over a sequence of steps (time epochs)

denoted as k ∈ [1,∞). We can model this problem as a Markov decision process (MDP),

wherein we seek to make a decision with regards to an action relating to a PTZ configura-

tion change, towards either a coverage tour or a specific zoom in, based on the utility. This

utility is the long term reward (discussed later) accrued by a Q-learning agent. In an offline

63

phase, the agent learns a camera control policy that is to be deployed in the online phase

to maximize the given utility. Our approach is consistent with previous work [141,215,258].

While alternatively, the problem can be formulated as a semi-MDP that captures steps

(i.e., camera PTZ change) of different lengths corresponding to different distances of move-

ment [233], we choose the MDP formulation due to its simplicity and success with previous

work (where steps of varying length are also present [141]).

3.2.2 Problem Formulation

AcTrak is geared towards a single camera system monitoring a dynamic scene

with dynamic target arrivals and departures. As discussed, it considers discrete time epochs

k ∈ [1,∞) over which it continously adapts the PTZ configuration based on scene evolution.

It tracks targets that exist in the scene and saves them in a list. We note that this list may

not exactly reflect the ground truth because the camera may only have a partial view of the

scene at several of these steps. At each step k, new targets may arrive and may be observed

by the camera; we denote those targets as Ok and the size of the set of these new objects

as Ok. Note that it is possible for the camera to find new targets in a zoom-in view (e.g.,

while zooming in on a door to observe a target that is leaving, a new target may arrive).

We denote a set of targets that exist in the scene at step k as Nk; this set includes targets

that previously existed at step k − 1 and Ok; formally, Nk ← Nk−1 ∪ Ok. If the action at

step k is a coverage tour, we may remove targets ∈ Nk−1 that do not appear in the scene

(i.e., those targets that have left the scene). The maximum number of targets that can exist

in the scene is assumed to be N . The key notations is shown in Table 3.1.

64

We collect features about existing targets (e.g., locations, time stamps at which

they were last observed) which we use to compose the state in our MDP formulation (dis-

cussed next).

State. The state sk describes the environment at the kth step of the evolving

scene and is defined by the following extracted features from the environment:

1. The camera PTZ at step k; the Pan and tilt ranges are (0, 360)◦, and (−90, 90)◦,

respectively and the zoom ranges from 0 to m×. We denote camera’s zoom magnifi-

cation level at step k as Ck.

2. Location vectors: We add three vectors (each of size N) to describe the targets’

locations in terms of their associated PTZ configurations: (a) a vector with the most

recently updated locations of all targets at step k, (b) the penultimate location where

each target was observed and (c) the location base, which is the location of a target

at which the system was last “positively rewarded” (rewards are discussed later) for

observing that target.

3. Time vectors: We add three vectors (each of size N) that capture the following time

features for each target. Specifically, we add the time difference between the time

instance at step k and (a), (b) and (c), respectively: (a) the times when the targets

were last observed in a zoom-in mode, (b) the times when the camera acquired the

penultimate location for each target and, (c) the time when the agent got a positive

reward for each target.

4. Coverage tour latency: We also add a feature that includes the time difference between

the time recorded at the kth step and the time of the last coverage tour.

65

5. Number of visitations: Finally, we include a vector of size of N that contains the

number of visitations that the camera has made to each of the targets up to step k.

Action. An action ak is performed at each state and leads to a new PTZ configu-

ration which causes a new state to be composed. There are a discrete set of N + 1 possible

actions. These correspond to visiting a specific target (recall that the maximum number of

targets is N), or a coverage tour to determine if new targets have arrived.

Rewards. Upon transiting from a state sk to state sk+1 via action ak, the agent

accrues an immediate reward, rk. The projected cumulative reward at step, k, is computed

as:

R = rk +

∞∑
c=1

γcrk+c (3.1)

where, γ ∈ [0, 1) is a discount factor for the future rewards.

Policy. The policy π selects an action (the next PTZ configuration) at each given

state that maximizes the projected cumulative reward for current and future actions. This

is defined formally as follows.

π(sk) = arg max
a

E[R|sk, a, π] (3.2)

where a is the action selected from the action space and E[R] is the expected value of the

cumulative reward.

3.2.3 Design of the immediate reward

We define the immediate reward, rk, when an action ak is taken in state sk to be:

rk = PRk −NRk (3.3)

66

In the above, we decompose the immediate reward into two parts, a positive reward (PR)

and a negative reward (NR), that together drive the trade-off between zooming in and out.

Positive rewards (PRk): The agent gets rewarded if it discovers new targets

regardless of the camera’s zoom (this is captured in the first term in the equation below) or

successfully revisits an existing target in a zoom in mode if certain conditions are satisfied

(captured in the second term in the equation). Formally, this is expressed as:

PRk =

Ok∑
j=1

α11(Tj /∈ Nk−1) + ρV
k
j α2{1(Tj ∈ Nk−1)1(Ck ≥ Zj)1(t− tbasej ≥ τ, |lj − lbasej | ≥ d)}

(3.4)

where, Tj represent the targets captured with the camera’s PTZ at the kth step. 1(.) is an

indicator function that is equal to 1 if at least one of its argument conditions holds true,

and 0 otherwise. We capture the prior existence of a target in the scene with the indicator

1(Tj /∈ Nk−1) = 1− 1(Tj ∈ Nk−1) as follows:

1(Tj /∈ Nk−1) = 1(min
i∈Nk−1

[|v(Tj)− v(Ti)|] ≤ σ) (3.5)

where, v(Tj) represent the visual features of target Tj and σ is a pre-defined threshold; the

target was in the scene previously if the visual features match those of a target seen at step

k − 1.

A reward of α1 ∈ [0, 1] is accrued if the target is new (Tj /∈ Nk−1), regardless of

the zoom configuration of the camera. A reward of ρV
k
j α2 is obtained when the camera

zooms in on a target but with different conditions (discussed next); ρ is a factor ∈ (0, 1]

and V k
j is the number of zoom in visits that are made by the camera to obtain the fine

grained features of target Tj . This means that for each repeated visit to the same target,

67

(if ρ < 1) the camera receives a lower reward than in its previous visits. This ensures that

the camera visits other targets with fewer high resolution images, rather than revisiting a

target repeatedly. The reward is accrued if the conditions 1, 2 and at least one of 3(a) or

3(b) are satisfied:

1. The observed target has been seen in the prior step i.e., (Tj ∈ Nk−1).

2. Ck, is larger than the required magnification level for obtaining the fine grained fea-

tures of the target Tj , (referred to as Zj as discussed in § 3.2.1).

3. (a) The time gap (t− tbasej), between two consequent zoomed in visitations is larger

than a threshold, τ , where tbasej is the last time the camera is rewarded when it

zoomed in on the target and t is the time instance at the kth step. Note that we

make the assertion tbasej = t when the camera visits a target and gets a reward

of ρV
k
j α2.

(b) The target’s displacement between two consequent visitations is larger than a

threshold, d, where lbasej is the target’s location at which the camera was last

rewarded when it zoomed in on the target and l is the location of the target at

the k-th step. Similarly, We make lbasej = lj when the camera visits a target and

gets a reward of ρV
k
j α2.

The last condition helps control the time gap between acquiring two consequent

images of the same target. For example, if the user is interested in receiving a continuous

sequence of a target’s images (video), τ can be set to zero. Similarly, if the user is only

interested in tracking a target’s activities when its location changes by a certain distance,

d can be set to that value.

68

Negative Rewards (NRk): The positive rewards do not guarantee that targets

are left without being visited (the camera can stick with only one target and still get

rewarded). Hence, next we introduce negative rewards (penalty) that coerces the agent to

visit targets that have not been visited for a while. Specifically, this penalty (NR) increases

in proportion to the time the camera was away from the target (not zooming in on the

target) and is given by β
∑Nk−1

i=1 (t− ti), where ti is the last time when the camera zoomed

in on target Ti, and t is the time of the k-th step.

Note that α1, α2 and β ∈ [0,1], are coefficients that are selected to balance the

positive and negative rewards.

3.2.4 Learning the camera control policy

We find the optimal policy π∗ that selects the best action in each state towards

maximizing the accumulated reward, R. Since the problem is stateful (i.e., the action is

selected based on the state), we use a Q-learning approach [262] as a basis, due to its

relevance and ease of deployment. The value of E[R|sk, a, π] is denoted as Q(sk, a), where

the Q-value is updated by the following:

Qk+1(sk, ak) = (1− η)Qk(sk, ak) + η(rk + γ max
a

Qk(sk+1, a)) (3.6)

where η ∈ (0, 1] is the learning rate and Qk(sk, ak) is value of the state action pair

at step k (the Q-value is learned by updates at each step).

69

The optimal value of the accumulated reward at step k that is achieved by taking

the action ak, is given by Q∗(sk, ak) and is computed using the well known Bellman equation

as follows [232]:

Q∗(sk, ak) = rk + γ max
a

Q∗(sk+1, a) (3.7)

Our model has a finite action space but an extremely large state space, since the targets can

exist in any location in the scene. If we have L (quantized) locations where the N targets

can exist, the complexity of the state space is O(LN). Thus, creating a table with the Q

values of every state action pair combination is prohibitive. Thus, we use a neural network

to approximate the Q value for a given state action pair [106]. The neural network is trained

based on previously assigned rewards, and predicts the reward (similar to regression) when

a new state action pair is encountered.

For reducing complexity and uncertainty we use a Double Deep Q Network (DDQN)

[247], which uses two neural networks to provide an approximate Q value for a state action

pair; one is used for action selection and the other for action evaluation. We also use the

duelling architecture from [260] to enhance the performance of our model. The interested

reader can find details in [260] and [247].

We use the mean square error between the output of the neural network and the

Q value as the loss function to be minimized. We apply an ϵ greedy exploration policy,

where a random action is selected at a given state with probability ϵ while the action that

currently maximizes the reward is chosen with probability 1− ϵ; ϵ, the exploration rate, is

tuned to balance exploration and exploitation.

70

Figure 3.3: A high level depiction of AcTrak

3.3 Realizing AcTrak in practice

The implementation of our RL framework is on a real camera platform, but a

simulator is used for training prior to online deployment. Specifically, we implement our

system on Avipas HD PTZ camera (Model: Av- 1080w) [26]. The camera allows pans and

tilts with ranges ± 135 and ± 35 degrees, respectively. The camera has a 10× optical zoom

capability, quantized over 33 zoom levels. We have developed all our code using Python3 on

an Apple Macpro machine, and both the camera and machine are part of wired local network

where the machine acquires the frames for processing and controls camera’s movement. Our

model is capable of adapting to variations in computational, communication and mechanical

latencies that could be specific to the system and the setting.

71

3.3.1 System setup

The camera frames undergo the the following pre-processing steps to compose the

RL-state. A pre-trained tiny-Yolo model (YOLOV3 [60]) is used to detect targets in the

frames (yielding bounding boxes in terms of frame coordinates) [60, 207]. While tiny-Yolo

can detect targets in the processed frame, it cannot determine if the observed targets in the

current processed frame have been observed before. This is important for composing the RL

state (as discussed in §3.2.2). For that purpose, we crop each target’s region from the frame

and feed it to the humanReid module, which associates the observed target with previously

seen targets2. Although we obtain the targets’ locations in the frame coordinates (using

tiny-Yolo), the associated PTZ configuration that makes the target appear in the middle of

the frame, with the required zoom level Zj , is not known. We use the Location Predictor

module to estimate this. Finally, using the outputs of the two modules, we compute the

step rewards and compute the RL-state as discussed in § 3.2.2. A depiction of AcTrak is in

Figure 3.3.

humanReid:

humanReid (human re-identification module) associates current targets with pre-

viously seen targets. Human re-identification is very challenging in itself [24, 249], and is

beyond the scope of this work. For ease of experimentation, our targets wear distinctive

colored apparel to enable the use a light weight pre-trained humanReid deep learning ar-

2Technically, we can re-train a new model from scratch that performs the two tasks simultaneously
(identifying targets from the raw frame and associating identified targets in the current frame with previously
observed targets). However, we choose to use off the shelf trained models and architectures for ease of use,
given that these existing models serve their intended purpose.

72

chitecture, mobileNet [108]. We further tune the model by training it with traces of targets

in different colors viz., red, blue, green and black. We collect 24 one minute videos where

each target walks in an area of interest with these colored shirts, and we randomly sample

frames of those traces to train the model.

Location predictor:

The PTZ configuration required by the camera to observe the target in a zoomed in

view cannot be accurately obtained from the bounding box dimensions in frame coordinates.

This is because the depth relating to the target (how far is the target from the camera)

is not known. The depth can be obtained using monocular depth estimation approaches

[32,62,275] that estimate the depth of each pixel in the captured frame; however associating

the depth information with the required PTZ configuration to zoom on targets given the

camera’s intrinsic parameters such as focal length and distortion is not straight forward

[166]. A better solution would be camera calibration, a technique via which we can learn

the position and the orientation of the camera with respect to the world’s 3D coordinates

and its intrinsic parameters such as focal length and distortion [277]. However, camera

calibration is sophisticated and may not be accurate because of optical lens distortion that

may exist in PTZ cameras [120, 264]. Our aim is to make our solution generic and usable

by non expert users with a simple pre-setup process.

The approximation we make to support flexibility and generality by trading off

accuracy is to estimate the PTZ configuration for an object based on the size of the detected

bounding box surrounding that target (detected by tiny-Yolo): the larger the area of the

bounding box the more likely the target is closer to the camera. To infer targets locations’

73

in PTZ coordinates, we use a Decision Tree Regressor [68] that takes as input the camera’s

current PTZ and the bounding box frame coordinates and outputs the PTZ coordinates for

the target. We point out that this approach has sufficient accuracy for our purpose but it

is not extremely accurate for two reasons. First, the size of the bounding box is sensitive

to the size of the person (e.g., children have smaller bounding boxes than adults even when

their depth in the scene is similar). Second, if the size of the bounding box is not accurately

determined (due to mis-detection from tiny-Yolo), the estimated location is also affected.

As will be discussed, in our real camera and simulation experiments, we were not affected

by such mis-detections that may be have been caused by tiny-yolo. Note that estimating

the depth is orthogonal to our contributions and our method (i.e., controlling a camera

using reinforcement learning) can work in scenes where camera calibration is computed; in

other words, it can be combined with a camera calibration method.

3.3.2 Simulator

Creating a large number of training instances with a PTZ camera where each

mechanical movement induces high delay (up to 3s in our camera), is inconvenient and

prohibitive. For example, training our agent with ≈ 800K+ camera movements requires

more than 18 days (assuming many targets and training round the clock and that each

movement takes 2 seconds). In areas with sparse pedestrians, training will take much longer.

Thus, we build a simulator that mimics targets and camera movements to accelerate the

learning process. With our simulator, the training takes less than 18 hours as is the norm

in such experiments.

74

Composing training datasets

We evaluate our model via simulations with public datasets, and real camera

experiments for which we collect a training dataset (discussed in § 3.4).

Public datasets: We use two datsets (described later) with ground truths of

targets’ locations (described by bounding box coordinates). This obviates the need for

the object detection model or the humanReid model; our Location Predictor module uses

the ground truths of targets’ locations to associate them with PTZ configurations. When

zooming in on a target in a dataset, we pick an image patch that coincides with the bounding

box of the target. We associate the PTZ configuration latencies associated with moving from

the acquisition of one image patch to another. We acknowledge that there is an implicit

assumption that the cameras capturing those videos are similar to ours (similar overall

delays exist), but since both our platform and these are based on a real world camera, we

believe that this assumption is realistic.

Real camera dataset : We collect training videos from the area of interest with the

maximum zoom out and label the ground truth target locations for all frames, which can

be obtained using the models from tiny-yolo, humanReid and Location Predictor.

Accounting for AcTrak’s mechanical and computational delays

Accounting for the delays experienced in live experiments while training the agent

in the simulator is important to ensure that the simulator emulates reality. Otherwise the

discrepancy between the real system and the simulator leads to poor performance during

75

Panstart
 Tiltstart
 Zoomstart

Panend
Tiltend
Zoomend

NN layer
(64 neurons)

R
eL

U

NN layer
(32 neurons)

R
eL

U

NN layer
(16 neurons)

NN (1 neuron)

NN inputs

Estimated delay

Figure 3.4: The neural network architecture of the Delay Estimator model

run time (test time).

Modeling camera’s mechanical delays: The time it takes the camera to

change its PTZ configuration, depends on the displacement magnitude and the speeds of

the camera’s mechanical control motors across its axes. We observe that the camera motor

does not move with a constant speed, but there is an acceleration component that makes

the prediction of the time taken hard. We also observe that the camera’s average speed

along an axis (e.g., the pan axis) changes even with the same displacement magnitude,

if there is simultaneous movement on another axis (e.g., tilt). Besides mechanical delays,

there are other factors such as camera response times and network communication latency

that contribute to the overall latency. To deal with these challenges, we use a machine

learning predictor that takes as an input the starting and ending PTZ configurations, and

predicts the time it takes for the displacement (after accounting for all sources of latency).

We have collected delay traces from random changes in the PTZ configurations and used

76

these to train the neural network. We use a simple 3 multilayer perceptron model (shown

in Figure 3.4) and a loss function that captures the normalized difference between the true

and estimated latencies; more formally, the loss function is | time−time
time |. Our model has a

mean normalized absolute error of 4% and a mean absolute error of 40 ms. We denote this

model as Delay Estimator.

Modeling computational delays: In real world experiments, we run a tiny-

yolo module to detect targets in the scene. To emulate edge device computations, we run

all computations on a standard computer (with no GPU). Because of that and due to the

large frame size of the HD camera, we observe that the computational latency of tiny-yolo

is very large (up to 3s in some cases), which causes significant latency. To account for this

delay, we run 1000 tiny-yolo queries and record their response times. The response time of

95% of the queries are between 1.8s and 2.5s. We use the average (2.15s) and add a random

value in the range of ± 0.35s when processing each frame, so that the model can account

for computational latencies that occur in real deployments.

Modeling camera focus delays: We also experience a delay during the process

of the camera focusing on a target. Specifically, we observe that images collected even when

the camera has slight motion, are blurry and cannot identify observed targets. Hence, we

stabilize the camera at its selected location for 0.2s to ensure that no mechanical noises

affect the quality of captured images. We account for this latency in the training as well.

77

Figure 3.5: A given frame is processed to compose the state as described in §3.3.1, upon

which the the agent selects an action (selecting the new PTZ). We compute the latencies

associating with PTZ change. Subsequently, we skip a number of frames that correspond

to the computed latency and use the first retrieved frame. If the selected action is zoom-in,

a cropped frame is passed to the frame processor. Otherwise, the entire frame is passed. .

Training the RL agent

We train AcTrak with multiple episodes where each episode is a training video that

is made available to the simulator. A flowchart of the training process is shown in Figure

3.5. The frame is processed to compose the RL state that is made available to the agent.

The agent then selects an action either based on its learned policy or by randomly selecting

an action from the action space depending on the value of ϵ (RL exploration rate). We

assume that the camera does not acquire images of the scene while it is processing a frame

and changing its PTZ configuration. For computing the mechanical latencies, the new PTZ

associated with the selection of the action is now provided, along with the current PTZ, to

the Delay Estimator, which returns the estimated time (latency incurred) that the camera

would need to make such a move. To account for the delays, we skip a number of frames

that correspond to the latency obtained from Delay Estimator and other latencies, and feed

the first retrieved frame to to the object detection system for the subsequent processing.

78

If the selected action is a zoom out, then the entire frame is considered and the

agent can observe all the targets in the scene and record their updated locations. With a

zoom in, a cropped image of the frame that makes “the ratio of the size of the bounding

box surrounding the target to the cropped image” equal to a pre-selected value, denoted

as M , and centered around the target’s last observed location, is provided to the object

detection system. If the system detects a target(s), it compares its features with those in

the existing list of targets, and if there is a match, the system updates the target’s most

recent location. Otherwise, it adds the newly identified target(s) to the list of the existing

targets. Next, the system computes the rewards as described in Eqn. 3.3. A new state is

created with the most recent locations of the targets, and the system continues in the same

fashion. During test time, we set the exploration rate to zero so that the agent relies solely

on its learned policy.

Differences between the trained agent with the live camera and that

with the public datasets: When processing public datasets, both in training and

testing, we exclude the computational and camera focus latencies so that we can observe the

performance under the effect of the mechanical latencies solely. In real camera experiments,

we used all the associated latencies while training the agent so that it can work in live

experiments and showcase the performance in this realistic setup.

3.4 Evaluations

In this section, we present results from simulations, and from real experiments on

our camera platform, to showcase the effectiveness of AcTrak.

79

Baselines: We consider the following baselines:

1. Standard tour: We propose this simple baseline that makes the camera greedily hover

only across the hot spots (areas of interest). We select four hot spots (the most heavily

populated locations) using the method proposed in 1001[120]. Note that we did an

exhaustive search to find the locations which have the highest populations per unit

time; we also find via a search of a plurality of dwelling times that the best value for

this parameter is 1 s.

2. Panoptes [120]: This is similar to the Standard tour but uses a machine learning model

to predict targets’ mobility. The model takes as input a target’s location and predicts

its new hotspot location after a “look ahead” time period. If Panoptes predicts a

new hotspot location for a target, it re-schedules the camera tour accordingly (details

in [120]). The look ahead times depend on the hotspot locations, and are computed

by measuring the average time targets in the dataset take, to move from one hotspot

location to another. The mechanical delays for the camera to switch from one location

to the other are accounted for while computing the look ahead time periods.

3. Tracking greedy (greedyB): Inspired by Panoptes and Standard tour, this is a greedy

algorithm which, instead of hovering over hot spot locations, sequentially hovers over

targets’ last observed locations and zooms out to discover if new targets have arrived.

This baseline uses the same system setup and pre-processing modules as that of AcTrak

(see § 3.3). We add rule based enhancements to the previous baselines for better

performance i.e., if the camera views a target with an incorrect zoom, it zooms in

further for the higher resolution image. Since the targets can appear anywhere and

80

not just at hotspots, and move arbitrarily, we do not try to perform look ahead

predictions; we show that greedyB already outperforms Panoptes later.

Metrics: We consider the following evaluation metrics.

• Time gap between a target’s entry and its discovery (TG): The difference between the

time the camera first observes a target and the time of the target’s entry to the scene.

• Percentage of unseen targets (UT): The fraction of targets that enter the scene but leave

unseen by the camera.

• Percentage of targets with zero zooms-ins (ZZI): The fraction of targets observed by the

camera via a zoom out but for which, the camera never acquires a zoom-in image.

• Number of visits per target (NumV): The number of high resolution shots acquired for

each target normalized by the total time the target spends in the scene (# of visits/

second).

• Maximum time away from target (MTA): The maximum gap for which the target’s activ-

ity was not monitored (i.e., the maximum time between any two consecutive visits to the

same target or the time between when the last high resolution target image was acquired

and when the target left the scene).

Model: Our model is implemented using Keras (TensorFlow based platform) and it is

trained on a Tesla 100 GPU. As discussed in § 3.2.2, we use the DDQN approach [247],

where two neural networks with identical architectures but with different weights (updated

while learning), are used to compute the Q-values of the state action pairs. The neural

network architecture is described in Figure 3.6. We set the discount factor, γ, to be 0.975

81

Figure 3.6: AcTrak Model Architecture: The neural network consists of multiple layers as

shown. First, for each target, a vector composed of its collected features (i.e., features

related to timeliness, location and number of visitations as described in §3.2.2) is fed to a

NN layer of size 64. The camera location and time coverage tour latency (both features are

part of the state) are concatenated and fed to an NN layer of size 64. Subsequently, the

outputs are concatenated into a layer of size 64 * (N+1) with a ReLU activation function.

Subsequently, the output is fed to two subsequent neural layers followed by the RL duelling

layer.

and the exploration rate, ϵ, decays from 1 to 0 at a rate of 0.00001. The learning rate of

the neural network is 0.00001. We use the concept of experience replay [106], where we

train the agent on its past experiences. We store the actions, states and rewards from the

last 30000 camera transitions in memory, where we sample from to train the agent. We

show the learning curves of AcTrak in terms of the average accrued rewards as a function

of number of steps taken by the agent in Figure 3.7.

3.4.1 Evaluations with datasets

Setup: For our dataset based evaluations we use the Virat [189] and Zara datasets

[143]. Zara consists of two videos that are taken from a birds eye view in front of a shopping

mall, where most of the targets are seen almost with the same depth with respect to the

82

Figure 3.7: Average reward accrued by the AcTrak agent and greedyB (with 10% and 90%

confidence intervals) as a function of # of steps taken. This is collected with the Zara

dataset.

camera. The duration of the first video is 7 minutes and the second is 6 minutes. The

videos have footages of large crowds (148 and 204 pedestrians) with different motion speeds

and arbitrary entry and egress times. We use the first video for training and the second

for testing. Virat contains 28 videos of various durations. The footages are from a camera

looking at the scene from an inclined angle where targets are viewed with different zooms.

Experiments with Virat show that AcTrak works with different camera view angles and

heights. Our model is trained with the 20 shortest videos and tests are on the other 8

longer videos (to evaluate AcTrak in long term surveillance).

Targets perform different activities in the scene (e.g., walking, standing at a STOP

sign); thus the overall times they spend in the scene vary. Hence, in each dataset, we sort the

targets according to their speeds in the scene. We estimate a target’s speed by measuring

83

the target’s overall displacement divided by the overall time the target spent in the scene.

We report the results on 50 % of the fastest and slowest targets, individually to show the

merits of our method (they are denoted as fast targets and slow targets, respectively).

Tuning reward function coefficients: The coefficients are selected based on

synthetically collected validation data from the training instances, where we instrument the

targets in the training dataset by changing their arrival times to the scene. We tune the

coefficients with the objective of minimizing the number of unseen targets and configure

AcTrak so as to acquire high resolution single shots (the exact coefficients values are defined

within the experiment descriptions corresponding the specific dataset). We also report other

results (with other coefficients) where we favour the acquisition of continuous high resolution

images of targets (video) at the cost of less frequent coverage tours (shown in Table 3.4).

Baseline comparisons: We mentioned earlier that the tour mode incorporated

in both Standard tour and Panoptes [120] fail when the goal is to track activities of targets

that may span the entire scene of interest (locations not limited to hotspots). To show

this, we evaluate their performance using the Zara dataset and show the results Table 3.2.

The two most important metrics that we are interested in are UT and MTA, because the

goal is to ensure discovery of targets that appear in the scene (measured by UT), and

track their activities frequently with small time gaps (captured by MTA). Clearly Tracking

greedy (greedyB) outperforms the other two baselines with regards to both these metrics.

This is because many targets do not appear in the locations of interest (i.e., the hot spots).

Furthermore, many targets may arrive at these hot spots and leave while the camera is

pointed at another hot spot. Although Standard tour and Panoptes are superior in other

84

metrics, the big gap in UT, TG and MTA make them unsuitable in achieving our dual

objectives. Since they are outperformed by Tracking Greedy, we exclude them from the

following discussions and use Tracking Greedy (with the label greedyB).

We note that adding a prediction module to greedyB, to predict or account for

targets’ future locations is difficult because it is hard to know when and where targets could

be, in our scenarios. A simple prediction model similar to the one used in Panoptes [120]

cannot be applied because, unlike Panoptes, the target can be exist in any location of the

scene, which makes the prediction uncertainty high; we have run experiments and observe

that it does not make greedyB any better (not shown due to space constraints) and even

makes it worse many a time. Coming up with a more sophisticated location prediction

method in such scenarios is difficult. This is because the problem of what and when to

observe data (i.e: targets’ locations) in order to maximize a long term objective (e.g.,

reliable mobile target location prediction) is a hard problem and is referred to as Active

sensing [246,274]. While there are existing solutions that tackle similar problems in different

contexts, none, to the best of our knowledge, has tackled this problem before. The closest is

called PatchDrop [246], and we discuss in (§ 3.6) why it cannot be utilized in our scenario.

We point out here that in fact, AcTrak is an deep RL based method that does this task

implicitly and outperforms all the baselines (as shown next).

Experiments with Zara: In these experiments, we set α1 and α2 to be 0.15 and

0.08, respectively. We set τ to be 2s (50 frames), β to be 0.00035 and ρ to be 0.85. We

first evaluate AcTrak in terms of the cumulative distribution function (CDF) of the time

gap between the arrival of targets to the scene and when they are first discovered by the

85

camera. As shown in Figure 3.8, 90% of the arriving targets are discovered within 2s, while

greedyB takes around 4s to do so, for both fast and slow targets. The average time gap with

AcTrak is 1.25s for both slow and fast targets, whereas the greedyB ’s time gap is 1.76s and

1.82s for slow and fast targets, respectively. This is because AcTrak adapts its zooming out

frequency with the expected arrival rate leading to fast capture of targets that step into the

scene. On average, AcTrak detects new targets in the scene 30% faster than greedyB. As

shown in Table 3.2, due to this fast detection of arriving targets, our agent rarely misses

targets that arrive to the scene.

From the observed targets, AcTrak captures high resolution images of ≈ 92% of the

targets while greedyB does so for ≈ 84% of the targets. This is because AcTrak prioritizes

visits to targets that were not visited before, in addition to smart scheduling of its zoom-ins

to capture as many targets as possible without wasteful PTZ changes.

In Figure 3.9, we evaluate the maximum time gap between two consecutive zoom-

ins on the same target. AcTrak has higher gains in the case of fast targets in comparison with

the case of slow targets. This is because, with greedyB fast targets’ locations observed by

the camera become outdated faster than those of the slower targets; hence, when the camera

visits a target at its previous location, it does not observe the (fast) target (leading to a

wasteful zoom-in visit). AcTrak avoids wasteful zoom-ins by observing target displacements

and adapting target visits accordingly.

We finally evaluate the number of visits for each target as shown in Figure 3.10.

Both AcTrak and greedyB relatively, exhibit the same performance. The key difference

between our agent’s visits and greedyB ’s visits is that the agent’s visits are distributed over

86

Figure 3.8: CDF of the time gap between target’s entry and discovery for Zara (left) and

Virat datasets.

Figure 3.9: CDF of the maximum time away from target for Zara (left) and Virat datasets.

time whereas greedyB visits are concentrated over the same time periods leading to big time

gaps where certain targets’ activities are not monitored (this can be verified from Figure

3.9).

Experiments with Virat: For this dataset, we tune the values of the coefficients

α1, and α2 to be 0.3, and 0.06, respectively. We set τ to be 4s (100 frames), β to be 0.00025

87

Figure 3.10: Complementary CDF of target’s number of visits/s for Zara (left) and Virat

datasets.

and ρ to be 0.75. As shown in Table 3.3, the percentage of unseen targets are relatively

higher in comparison with the other dataset (but we still outperform greedyB). This is

because the dataset has mostly videos with random start and end times, and so some

targets may appear in the scene in only a very few frames; they appear in the scene right

before the video ends or they leave just after the video starts. With the other metrics, we

observe a similar trend with this dataset (compared with the Zara dataset) but with lower

gains. This is because the camera is positioned with an inclined angle with respect to the

scene of interest where targets can move deeper in the scene (their distances to the camera

increase) but target’s displacement in terms of x and y coordinates (translated to pan and

tilt) does not change significantly. Thus, the camera does not lose track of targets easily,

as is the case with the Zara dataset (even if the zoom magnification is not met when the

camera visits a target, it can potentially know its updated location). The plots associated

with the results of this dataset are Figures 3.8, 3.10 and 3.9. We observe that in cases with

sparse target arrivals, greedyB zooms out unnecessarily wasting opportunities for acquiring

88

high resolution images. AcTrak avoids these and does better in terms number of visits to

each target as shown in Figure 3.9. Note that this effect is also seen in our in real camera

experiments discussed later.

Understanding the variable τ : In this experiment, we tune the coefficients of

the agent’s reward function to bias it towards acquiring sequences of high resolution images

of targets (videos) rather than single shots as in earlier experiments. Here, our aim is to

showcase the merits of AcTrak in performing different tasks and its flexibility in tuning the

trade-off between zoom ins and coverage tours for different applications. The key parameter

that we tune towards this is τ ; unlike previously, we now select a small value to cause the

agent to acquire a sequence of images (video) of targets. We run again the prior experiment

on Zara, but with a different set of reward coefficients. We set α1 and α2 to be 0.0 and

0.025, respectively. We set τ to be 0.08s (2 frames), β to be 0.00025 and ρ to be 1. We use

the same baseline (greedyB) but we vary its dwelling time, so that it can acquire a sequence

of images of the same target. With regards to this experiment, we report the average time

of continuous video acquired per target, denoted as TCVA. The results are in Table 3.4. As

shown, AcTrak misses 1% of the targets while greedyB misses 5.4% of the targets.

3.4.2 AcTrak performance with change in “crowdedness” in the scene

In many practical scenarios, the number of targets (referred to as crowdedness

[156]) in the scene changes over the day, even in the same scene. We show the performance

of AcTrak with varying crowdedness. We consider a single scene associated with the Zara

89

dataset but we create synthetic data where we tune the arrival rates of targets to create

varying crowdednesss. In particular, we tune target arrivals rates (i.e., number of targets per

minute) in accordance with a Poisson distribution, with mean arrival rates of λsmall, λmedium

and λlarge per minute; these values are 2, 5 and 10, respectively. Targets’ entry and exit

locations into and from the scene are selected randomly and the targets speeds are chosen

randomly from three different speeds equal to the 25% and 50% and 75% percentile of target

speeds in Zara dataset. We evaluate AcTrak using the trained model on the Zara dataset on

this setup and the results are reported in Table 3.5. As shown, as the arrival rate increases,

it becomes harder for the camera to visit targets frequently. AcTrak outperforms greedyB

with respect to all metrics of interest. For example, in a scenario where the target’s arrival

rate is tuned to be λlarge (more frequent arrivals), the percentage of observed targets with

zero zoom-ins (ZZI) is 20% when greedyB is used. However, while using AcTrak, the ZZI is

only 9%.

3.4.3 Real world experiments

We showcase our approach in an IRB approved, real-world setting where volunteers

walk randomly in a scene on interest. Figure 3.1 (left) shows the scene at which the real

experiments are conducted. To train our agent, we have collected a total of 12 traces of

individual random walks (each ranges from 90 seconds to 150 seconds), and we obtain their

PTZ coordinates using our Location Estimator module. In our simulator (used for training),

we further instrument those targets to vary their arrival times over different execution runs,

and create many different possible target interactions to enable the agent to learn how to

adapt to different scenarios and conditions. For this experiment, we set up the reward

90

Figure 3.11: Live camera: frequency

of visits per target. (NumV)

Figure 3.12: Live camera: maximum

time camera is away from a target.

(MTA)

coefficients (α1, α2, β and τ) to be 0.15, 0.1, 0.00001, 8s (200 frames), respectively.

At test time, we have four volunteers that were asked to move randomly in the

scene of interest. We select their entry locations and time instances arbitrarily for each new

experiment. We have repeated the experiment 5 times using our trained agent, and 5 times

using the baseline algorithm). Each experiment lasts for 3 minutes. Our model on average

obtains 38 zoomed in shots (per experiment).

Quantitative results. The results from the real camera experiments are shown

in Figures 3.11 and 3.12 and Table 3.6. Because of higher PTZ change latencies (associated

delays with tiny-Yolo), we observe that the baseline makes many more wasteful moves

(zooms on outdated locations of targets or zooms in on a target with a zoom level lower

than the required zoom). We also observe that due to the sparsity of arrivals (only four

targets over a long period), the baseline zooms out more often than necessary. Our agent

outperforms the baseline by a big margin in terms # of acquired high resolution shots. In

particular, on average, the agent obtains 2x more high resolution images of targets.

91

Figure 3.13: Snapshots from the surveillance videos obtained by AcTrak and the baseline

(we hide targets faces for privacy reasons). In the first image, a single target is observed via a

zoom out view (blue shirt at bottom left near door). AcTrak zooms-out much less frequently

than greedyB, learning that the scenario does not change (no new targets arriving). The

second image shows that AcTrak while zooming in on the first target, discovers a new target

that appears in the scene (light green shirt). The third image shows greedyB ’s behavior

in a similar scenario; it zooms out much more than necessary. There was no other target

stepping in to the scene, and instead of zooming in on the red target it zoomed out; this

leads to much fewer high resolution images per target, thereby potentially missing activities.

Case studies: Next we present two microscopic case studies of both algorithms

from our real deployment (see Figures 3.13 and 3.14).

Unnecessary zoom-outs (Figure 3.13): In this scenario, a single person appears

alone in the scene and stays for some long time (around 50s). greedyB reacts to this by

alternating between zoom ins on the target and zoom outs to continuously check for new

targets. However, AcTrak, learns upon zooming out and not discovering new targets; it

then zooms in on the target for longer times and avoids wasteful zoom outs.

Adapting to high latency (Figure 3.14): We observe that the high latency makes

greedyB zoom in on empty places because the targets have already left their marked locations

(stale data). AcTrak’s RL agent learns to tackle this issue and thereby avoids zooming

in on outdated locations and performing unnecessary zoom outs. It does so by visiting

fast moving targets more frequently, avoiding expensive moves and by opportunistically

obtaining updated target locations while it is capturing other targets.

92

Figure 3.14: Snapshots from the surveillance videos obtained by AcTrak and the baseline

(we hide targets faces for privacy reasons). The first picture shows a case where greedyB

goes back to a target and finds the location empty because the target has already left

its marked location. This is due to the computational and mechanical latencies and the

unorganized patterns of zoom-in on targets (which greedyB does not account for). The final

image shows that AcTrak is able to zoom in on the green shirt target when eating chips and

at that point it also re-locates the blue shirt target.

3.5 Discussion:

Single camera vs multicamera: A single camera can address the multiple goals com-

pared to using multiple camers, but provides significant cost reductions. A quick search

on Amazon.com [20] and Bhphotovideo.com [33] reveals that a two lens PTZ camera and

supporting optical zoom is more than twice the price of a single camera. Thus, our ap-

proach can be desirable to small business owners who can just use one standalone camera

instead of networking multiple cameras with associated issues such as synchronization and

configuration issues, camera calibration issues [225], incompatible software from different

vendors and so on. If two cameras are used, one can provide target locations at all times

and the other can be used for acquisition of high resolution images. AcTrak can be used

with the second camera to manage the frequency and patterns of zoom ins on targets. A

study of how to harmonize multiple cameras for surveillance is left to future work.

AcTrak’s computational overhead: We process the captured frames from the camera

93

using popular models from computer vision viz., MiniYolo (identifying targets) and human-

Reid (associating observed targets with existing targets). Recall that the baseline, greedyB,

uses the same pre-processing modules that are used by AcTrak. The only difference is in

executing the trained RL agent that determines what action to take given a state. We

run the 10000 random queries using the trained model for Zara dataset on a regular Ap-

ple macpro machine, and find that the average response time in terms of determining the

proper action, is 4.3ms which is negligible in comparison to the latencies incurred with the

computer vision models themselves and the camera’s mechanical latencies (which are of the

order of seconds). Our expectation is that this time will not increase by three orders of

magnitude, even if a less powerful computation machine was used.

Impact of the tiny-yolo’s performance on the takeaways: AcTrak accounts for

latencies due to various factors and this is a key reason why it outperforms greedyB. We

show that AcTrak outperforms greedyB in various simulation and real camera setups where

different latencies (e.g., mechanical and computational latencies) are accounted for. In the

simulation setup, computational costs are ignored (including those relating to tiny-yolo)

and only mechanical latencies are included; this causes the overall latencies to be much

smaller than in the case of the real camera setup. This is similar to lowering some of the

processing latencies in the real deployment (that might decrease from GPU usage). Based

on these results, we do not expect that the take-aways from the real camera experiments

will change in flavor, when we run tiny-yolo on GPU or when using a low resolution camera

(lower processing delays).

94

AcTrak ’s performance when the runtime setup is different from the training

setup: In this part, we discuss different forms of ‘deviation’ between training and test

scenarios in the following list:

• AcTrak ’s trained model can adapt to crowdedness change: We observe that the trained

model can work even if crowdedness changes over the day with no need to retrain. To

showcase this, we run a set of experiments, wherein we vary the arriving rates of targets

to the scene of interest. We use the setup associated with the Zara dataset, but we create

synthetic data with three different arrival rates. We show that the same exact same

trained agent on the Zara dataset can work even if ‘crowdedness’ changes and can still

outperform the baseline. We present these results in Table 3.5.

• AcTrak ’s transferability across different scenes: AcTrak cannot transfer to scenes that

are not part of the training. For example, the model trained on the Zara dataset may

not work on Virat dataset and vice versa. This is because the nature of the scene varies.

In the Zara dataset, all targets are viewed from a bird’s eye view (e.g., all of them are

approximately at the same distance); thus, there is not much variation in the zoom level

required to zoom in on targets. In contrast, in the case in Virat, the camera is observing

the scene from an angle such that the target distances from the camera vary significantly.

Thus, the policy learned by the agent from the training samples from Zara dataset cannot

be applied on Virat. In this work, we do not consider transfer learning (i.e., learning a

global model with different scenes). This is beyond the scope of this work and requires

significant new effort.

95

• AcTrak ’s performance may degrade if target profiles significantly change: In cases

where target profiles significantly change, one can expect the performance of AcTrack

to degrade. For example, let us say AcTrack is trained on a dataset from a public park

for kids. If the park is repurposed and now teenagers with skateboards and bikes can

play in the park, the performance of AcTrack may degrade since the testing data/setup

has completely changed from the training setup. In this case, retraining with the new

target profiles may be necessary to boost the performance. We argue that in practice

such dramatic changes in target profiles are uncommon. In scenes with various target

profiles, the training dataset collected from the scene should cover those various profiles.

Thus, AcTrack is expected to work. In conclusion, as long as the training video(s) have

a good coverage of scenarios and target profiles expected to be present during test time,

AcTrack is extremely effective.

• AcTrak can be extended to scenes with dynamic target profiles by using an ensemble of

models: In cases where target profiles and dynamics change dramatically, AcTrack can

be simply extended by using an ensemble of trained models, each tuned to the specific

dynamics with specific target profiles. During run time, the camera uses the maximum

zoom out to observe targets’ movements (i.e., targets’ profiles) for a small time period.

It can then use a neural network which is trained to determine the model that best fits

the profile - (it outputs the best model for the specific scenario). For example, consider

a public street with walking pedestrians. In the uncommon event of protest/ parade, the

model associated with such events can be deployed on the camera. We leave examining

this possibility for the future.

96

Sensitivity of selected reward coefficients: Any RL Framework is sensitive to reward

function coefficients (i.e., hyperparamaters) [118, 248]. The rewards need to be tuned with

respect to the given setup. We give an example by considering the coefficient τ . To recall,

an agent is given a positive reward for visiting the same target if the time gap between two

consequent zoom-in is larger than τ . In the Virat dataset, target zoom requirements vary

significantly and thus moving from one target to another incurs higher delays in comparison

with Zara dataset where all targets have very similar zoom requirements. When selecting a

smaller τ (= 2s) similar to Zara dataset), we observe that the camera favors the continuous

zoom ins of targets (video) and does not move quickly to different targets. The exercise

suggests that using the Virat coefficients blindly, with the Zara dataset or vice versa causes

the model to underperform, even to significant extents in some cases. One solution is to use

the correct set of hyperparameters with each member of the ensemble from the previous

paragraph; in other words, each model in the ensemble has its own set of hyperparameters

appropriate for the scenario in which it is to be used. Thus, by using the ensemble, the

hyperparameters are also properly changed as scenario dynamics evolve, and thus, can

provide superior performance. These aspects are beyond the scope of this current paper,

and will be investigated in future work.

3.6 Related Work

There are works that model camera based tracking as a NP-hard, travelling sales-

man problem [182]. The problem is different from ours in two ways. First, it does not

97

consider dynamic new target arrivals to the scene (where the camera has to capture and

subsequently track them). Second, in our context, targets move arbitrarily with different

velocities. Prior work such as [182], impose a pre-determined deadline within which a target

has to be visited [182]. This assumption is unrealistic when there is unexpected mobility

(the target will be missed). We assume no such deadlines; rather, dynamically changing

deadlines are implicitly learnt and the camera avoids wasteful moves (e.g., when it zooms

in on an expected target location, it does not find it). Further, BigEye induces zoom outs

with appropriate frequencies to detect new targets.

There is work in multi-camera networks on co-ordination among the cameras to

achieve a particular goal such as target tracking [47, 204, 271] or scene coverage [245] or

both [37,65,122,211]. The key difference is that these works assume using multiple cameras

to cover the entire scene, thus obviating the need for adaptation to the arrival rate of new

targets. However, deploying additional cameras incurs cost, and if certain areas are sparsely

populated deploying cameras to cover them always is wasteful (dual optical PTZ cameras

are at least twice the price of mono optical PTZ cameras [18]). We consider a more cost

effective single camera setting, wherein the frequency of zoom outs to cover the scene fully,

are tuned in accordance with target arrival rates while zooming in at other times to acquire

high resolution images for activity tracking. We point out that in [65,122,211], the focus is

on only obtaining high resolution images of existing targets.

There is prior work on using RL to control a PTZ camera’s to achieve a single

simpler objective. In [27], the authors use RL to opportunistically zoom in on targets that

satisfy certain conditions (e.g., a frontal pose available for face recognition). In [135], the

98

authors use RL to rapidly tune the camera’s PTZ to zoom in on a target with a required

magnification level from a zoomed out view. However, unlike in BigEye, they do not consider

the problem of fine-grained tracking of multiple targets nor do they invoke zoom outs to

capture new arrivals.

A recent work called PatchDrop formulates an RL approach wherein the goal is

to select where and when to acquire high resolution data (patches) to train a model while

preserving training accuracy [246]. This work is different from ours in two aspects. First,

the work assumes the availability of lower resolution data at all times (the environment is

completely observable). In contrast, we assume only a single camera and the environment

to be only partially observable while zooming-in. Second, the work does not account for the

delays associated with switching between low and high resolution data acquisitions (incurred

by PTZ mechanical movements) and between different patches (different targets).

Very few efforts consider a realistic scenario setup like ours viz., the use of a

single camera system with multiple objectives [120, 219]. In Panoptes [120], the authors

propose a mobility-aware camera scheduling algorithm over a few pre-selected fixed locations

(maximizing coverage in these locations only). In contrast, we consider mobile targets whose

locations change arbitrarily (not tied to fixed locations). We show in the evaluation section

that their approach is not suitable for target activity tracking.

99

Table 3.1: Key notation

Symbol Description

k A time step in the discrete set of time steps

Ok Set of new targets appear in the scene at time k

Ok # of new targets appear in the scene at time k

Nk Set of targets exist in the scene at time step k

Ck Camera’s zoom magnification level at step k

Zj Zoom level requirement for target j

Tj Target j

τ A threshold on the time gap between two consequent visitations

for the same target

d A threshold on the target’s displacement two consequent visita-

tions for the same target.

tbasej The last time the camera is rewarded when it zoomed on target j

lbasej Target’s location at which the camera was last rewarded when it

zoomed in on the target j

V k
j # of zoom in visits to Tj up to step k

v(Tj) Visual features of target j

γ Discount on the future rewards

ϵ Exploration rate to balance exploration exploitation tradeoff

100

Table 3.2: Baselines evaluations (Zara dataset)

Metric TG UT ZZI MTA

Standard

tour

5.24s 59% 0% 98s

Panopets

[120]

5.56s 52% 0% 91s

greedyB 1.79s 0.89% 16% 8.1s

AcTrak 1.25s 0.09% 8.1% 6.2s

Table 3.3: Virat dataset results.

Methods TG UT ZZI MTA

AcTrak 1.49s 1.1% 0.027% 8s

greedyB 2.3s 1.3% 0.11% 9s

Table 3.4: Continuous high resolution shots (video) Results.

Methods TG UT ZZI MTA TCVA

AcTrak 1.95s 1% 18% 9s 1.2s

greedyB 3.3s 5.4% 24% 15.8s 1.1s

101

Table 3.5: Performance with varying crowdedness.

Arrival Rate (λ) Method TG UT ZZI MTA

λsmall

AcTrack 1.15s 0% 0% 5.2s

greedyB 1.3s 0% 6% 6.7s

λmedium

AcTrack 1.4s 0% 3% 7.6s

greedyB 1.9s 0% 11% 9.7s

λlarge

AcTrack 2.0s 0.3% 9% 10.1s

greedyB 2.4s 0.8% 20% 11.5s

Table 3.6: Results of Real world experiments.

Methods TG UT ZZI MTA

AcTrak 5 0% 0% 25s

greedyB 7 0% 0% 33s

102

Chapter 4

DNS Exfiltration Guided by

Generative Adversarial Networks

Today, DNS exfiltration attacks are detected by checking for anomalies present

in the traffic, such as unusually high transmission rates to a single domain and/or DNS

query patterns that are very different from those in benign queries. While such approaches

are seemingly robust, we show in this paper that our carefully designed and novel DNS

exfiltration attack, Dolos, that uses a generative adversarial network (GAN), can guide

the encoding of sensitive data in a manner that both evades these detectors and significantly

speeds up the exfiltration rate compared to prior methods. At its core, Dolos divides the

exfiltration data into smaller chunks, and projects each chunk into a representation that

is very similar to benign queries. In addition, Dolos adaptively tunes its exfiltration rate

to conform with benign DNS traffic from the compromised host, and introduces proper

levels of spurious traffic to reduce entropy. Importantly, Dolos evades machine learning

103

(ML) based detectors with no prior knowledge of their architectures or training sets (i.e., it

is a blackbox exfiltration). We perform extensive evaluations using multiple datasets and

also have a real implementation of Dolos. Our evaluations show that Dolos has a 12%

detection probability even if 6 out of the 9 state-of-the-art defenses that we consider, are

jointly used to detect exfiltration; if any of today’s baseline exfiltration techniques try to

achieve the same rate as Dolos in this setting, they are almost surely detected. If we reduce

the rates of the baselines to achieve even a low albeit slightly higher detection probability

than Dolos (0.15), we see that they take 25× longer to achieve the exfiltration. With the

other three defenses, we find that baselines are almost surely detected while Dolos remains

relatively unaffected regardless of the rate of exfiltration.

4.1 Introduction

Attempts to steal sensitive information of interest (e.g., credit card details) from

compromised hosts is an ongoing goal of attackers [125,234]. One technique for stealing sen-

sitive information is DNS exfiltration [41], wherein adversaries hide and thereby exfiltrate

data in DNS queries. Untill a decade ago, DNS exfiltration was not seen as a major threat

and thus, enterprises had overlooked inspecting DNS traffic in their intrusion detection sys-

tems and firewalls [115]. This seemingly has resulted in an increase in DNS exfiltration

incidents [82] and thus, in stolen sensitive data from private networks [125]. In light of

this, many enterprises have begun to monitor DNS traffic and have deployed many recent

DNS exfiltration defenses [10,177,197], bringing about the belief that DNS exfiltration has

been effectively curbed. Such defenses mainly rely on recognizing distinctive patterns in

104

existing/previoius exfiltration traffic compared to benign DNS queries (e.g., entropy of the

query, number of capital letters) [10]. In addition, exfiltration detectors monitor traffic to

unexpected domains and (1) measure the volume of DNS traffic or/and (2) apply sophis-

ticated information-theoretical approaches to estimate the amount of exfiltrated data that

might be potentially embedded in the observed stream [196,197]. Thus, in the absence of a

careful tuning of the exfiltration rate or when simplistic encoding schemes (e.g., Iodine [54])

are used to represent the exfiltration data, these detectors can easily catch exfiltration

attempts. In this work we ask: is DNS exfiltration viable in spite of these defenses?

Today’s exfiltration methods. Existing DNS exfiltration attacks leverage general-purpose

encoders (e.g., Base-32/Base-64) to create DNS queries from sensitive data. These methods

(agnostic to the type of exfiltration data) transform any arbitrary input data into a specific

representation space to comply with DNS rules (e.g., the limited character set allowed in

DNS queries) [174]. While they have shown success in the past [125], recently proposed ma-

chine learning (ML)-based defenses can differentiate these exfiltration attacks from benign

queries with high accuracy [10,177].

Challenges in the presence of today’s defenses. Even if an attacker manages to com-

promise a host (e.g., in an enterprise via a phishing attack), accomplishing a successful

DNS exfiltration attack is not easy. First, an attacker has no knowledge of the defenses

deployed by the victim; DNS exfiltration detectors can range from signature-based scanners

to much more sophisticated ML-based detectors [10,48]. Second, the encoding of the exfil-

tration data must allow exfiltration to occur at reasonably high rates to exploit the data in

a timely way. To do so, the encoding must be compact. Beyond this, since detectors often

105

consider host-specific volumes to detect anomalies, the attacker’s malware must determine

the proper exfiltration rate that is as high as possible and yet evades detection, with low

runtime complexity.

Our approach. In this paper, we design Dolos (named after the Greek spirit of trickery),

a stealthy and efficient black-box DNS exfiltration attack. At its core, Dolos has an

encoding-decoding framework, which is built atop a generative adversarial network (GAN).

In brief, by iteratively trying to fool a discriminator neural network (that continuously learns

to distinguish between benign and fake queries), the generator learns to map exfiltrated data

to a latent space representation which is almost indistinguishable from that of benign DNS

queries (and hence, can elude strong state-of-the-art detectors). Because the discriminator

is arguably the best detector, refining queries towards evading the discriminator makes the

generated encoding extremely effective in blackbox settings (can fool several of today’s ML

based detectors). Note that formally, a latent space is defined as an abstract, possibly multi-

dimensional space that encodes a meaningful internal representation of externally observed

inputs. To aid fast exfiltration, the mapping (encoding) is kept as compact as possible, while

ensuring that it is decodable with high accuracy at the attacker’s external site. Although

Dolos’s training uses benign traffic different from that at a compromised host, it learns the

intrinsic patterns of benign DNS queries; thus, its outputs online are very similar to such

queries even when it is applied to previously unseen exfiltration data. Note that training

a deep-learning-based generator on the host itself encumbers high computation cost and

requires a lot of training data which is hard to obtain online in a timely way. Dolos

circumvents this issue by training its models offline and porting them onto the victim.

106

We account for multiple practical constraints, such as composing the exfiltrated

data into small chunks that adhere to the specifications of DNS queries [174]. Dolos also

includes a novel rate-tuning module that adjusts the exfiltration rate, guarantees decodabil-

ity at the remote the site (the encoding itself only provides decodability with high accuracy

but no guarantees on its own) and injects appropriate spurious queries based on observed

benign traffic from the victim; this prevents the attack from being detected and maximizes

the exfiltration efficiency to the extent possible. Put together, Dolos achieves stealthy,

efficient, reliable and stable DNS exfiltration in the wild.

Contributions. A summary of our contributions are:

• We design and prototype a novel generative encoding-decoding framework for stealthy

encoding of arbitrary data, efficiently into DNS queries.

• We include a novel exfiltration-rate-tuning module, that includes online mechanisms to

ensure proper spurious query injection and reliability in data extraction in conjunction

with the above framework, to design Dolos, a stealthy and efficient DNS exfiltration tool

for secretly collecting data from compromised hosts evading several of today’s defenses.

• We evaluate Dolos (with datasets and to a limited extent with a prototype implementa-

tion) against 9 state-of-the-art defenses [10,43,48,107,116,154,177,196,197] and compare

its performance with traditional exfiltration attack baselines. We find that Dolos ex-

periences a 12 % detection rate even if 6 of the 9 defenses we consider are jointly used;

if the baselines try to achieve the same rate of exfiltration as Dolos, they are almost

surely detected by at least one of the defenses. If their rates are reduced to achieve a 0.15

detection probability (still slightly higher than that with Dolos), we see that they are

107

25 × slower than Dolos. With the other three defenses that require to be trained with

malicious examples of the attack method, the baselines are almost always detected while

Dolos is almost never detected regardless of the rate of exfiltration.

4.2 Background and Threat model

4.2.1 Background

Malware on a compromised host can exfiltrate stolen data by embedding the same

in DNS queries. Since DNS resolvers are recursive, such exfiltration queries are delivered

to a primary domain of the attacker (e.g., attacker.com). An example of DNS exfiltra-

tion is shown in Fig. 4.1, where credit card information is extracted from a victim. DNS

exfiltration allows opportunistically accessed data to be streamed over a long period with-

out interruption or detection. Importantly, being a critical service, DNS cannot be com-

pletely blocked by administrators [13]. In contrast, protocols like ftp and HTTP may be

blocked/restricted [52,72]. For example, FramePos, a malware targeting networked Point of

Sale (POS) machines, exfiltrated 56M credit card records over six months via DNS queries,

after capturing information when cards were processed by the victim POS host [85, 125].

However, state-of-the-art detection methods are effective in detecting and thwarting such

attacks [177].

Today’s DNS exfiltration attacks. Next, we discuss measures attackers currently take

towards successful exfiltration using DNS, while remaining stealthy.

108

Figure 4.1: An example of DNS exfiltration. An attacker embeds credit card information

(in red) in a DNS query destined for its remote domain, “attacker.com”. The query is

routed to “attacker.com” to resolve the IP address of CreditCardInfo, which enables the

attacker to acquire the information.

Acquiring aged domains. If there is a large traffic volume to a new domain,

many defenses (e.g., a popular one from Palo Alto Networks [180]) trigger an alarm suspect-

ing that the domain was created for DNS exfiltration. To counter, attackers either purchase

or compromise aged domains [193].

Choosing common DNS lookup types. DNS supports multiple lookup types

[174], the most common ones being A and AAAA, to resolve IP domains. Other DNS lookup

types include TXT, used for domain ownership verification and email spam prevention; such

lookups carry larger volumes of data [174] and are uncommon. Exfiltration using these

latter types is faster, but these types often trigger alerts due to their rarity [105,177]. Thus,

attackers typically use A and AAAA, which limit the rate of exfiltration, but cannot be easily

detected.

Bypass caching by choosing small TTLs. Most DNS resolvers cache pre-

viously resolved DNS queries to avoid repeated resolutions. DNS responses carry Time-

To-Live (TTL) values [174] that dictate how long the resolved query stays valid (in the

109

cache). Attackers’ domains typically respond with very small TTL values to force the DNS

resolver to repeatedly resolve the malware’s requests to increase the volume of exfiltrated

data. Since benign domains also commonly use small TTL values (≤ 60s as per a previous

study [197]), detecting exfiltration based on small TTL values is error prone. We point out

that in [10], 38% of requests in the studied dataset have TTL values of 0s (no caching).

Thus, any method that relies on TTL for classification will cause high false positives. To

the best of our knowledge, there is no detection method that uses TTL values to make

inferences.

Managing transmission rates. Aggressive transmission of exfiltration queries

(at high rates) can be detected even by defenses that simply count requests to a remote do-

main within short time windows [196]. Hence, attackers use grace periods (e.g., ≈ minutes)

between queries. One detection method counts the number of cache misses to flag attacks;

this implicitly limits the number of exfiltration queries that can be sent in the time win-

dow [116]. To compensate for this rate reduction, exfiltration queries can be made longer;

however, there are limits on the lengths of DNS queries [174]. Moreover, other defenses can

more accurately detect long queries than short ones [123,177,196]. Thus a challenge in fast

exfiltration is how to generate long queries without being detected.

Encoding exfiltration data. Attackers typically encode exfiltration data for

two reasons. First, encoding ensures that the generated query complies with standard DNS

protocols. For instance, common DNS request types (i.e., A and AAAA [174]) only accept

64 characters as the alphabet for body text (i.e., alphanumerical letters, hyphen and dot).

Second, it offers some obfuscation aiding stealth. Sending raw data, even if viable, may

110

trigger defenses that compare embedded DNS traffic with sensitive data (i.e., potential

exfiltrated data) from the compromised machine.

To the best of our knowledge, current DNS exfiltration attacks only use general-

purpose data encoders (e.g., Base-32/64 and Hex) to map data into a representation space

of the characters used in DNS queries [54, 85]. Such encodings however, may differ from

benign DNS queries and expose the attack (discussed earlier and in § 4.6.2).

Defensive efforts to detect exfiltration. Previous works assume full knowledge of DNS

traffic content (in plaintext) by the detector/defender [10,177,196,197]. We follow the same

assumption. While there is increasing encrypted DNS traffic on the public Internet [158],

in enterprise environments where DNS exfiltration attacks constitute a major threat, DNS

encryption is uncommon [158]; this is because network operators are motivated to monitor

DNS traffic and deploy existing defenses to protect the enterprise network [6, 114] .

DNS exfiltration detection. Many legitimate domain names appear to be

randomly generated (e.g., “vwdfusdgdkshjdsd.aws.amazon.com”) and have become pop-

ular [177,197]. Thus, naive defenses relying on the readability of domain names are ineffec-

tive. This has motivated smarter defenses that check either the rates at which queries are

sent to individual domains or apply machine learning to determine if the features in DNS

queries are suspicious. While these defenses are effective in thwarting today’s exfiltration

attacks, as shown in § 4.6.2, they are ineffective against Dolos.

4.2.2 Threat model

Attack scenario and assumptions. In this work, we consider targeted attacks [266]

where the malware acquires and exfiltrates a specific type of data (e.g., credit card numbers

111

as in the FramePos attack [85]). We assume the attacker has already controlled one or

more victim hosts, e.g., via insiders or compromises (this is how exfiltrations happen in the

real world) [134, 137]. Similar to the “solarwinds” attack [80, 234], the initial malware file

is very small. Subsequently, the Dolos malware downloads the ML model and necessary

files (each of small size) that are used later for exfiltration. Downloading a set of small files

to avoid easy detection is commonly used by many advanced malware [80, 234] (users can

easily notice large unexplainable files). The malware is assumed to acquire the data either

from that machine or from the private network to which the machine is connected (e.g.,

accessing sensitive infrastructure logs in the private network). The malware can spread to

multiple hosts in an enterprise network and all infected hosts engage in exfiltration; this was

seen in previous DNS exfiltration attacks (e.g., [137], where roughly 6K devices belonging

to the same company were infected).

Similar to FramePos [85], data is assumed to be acquired opportunistically, and

the attacker seeks to exfiltrate the data as soon as viable (i.e., timeliness is considered

critical for effective use of the data) while evading detection. Fast exfiltration allows quick

remuneration. In other words, we assume that the goal of the attacker is fast but stealthy

exfiltration.

Defender. Even though the attacker has infiltrated the network, it does not mean that it

can exfiltrate the data undetected, as many industrial [13, 114, 209] and research solutions

(e.g., [123, 177]) are targeted to stop exfiltration1. In practice, such exfiltration detection

mechanisms are unknown to the attacker. Upon detecting suspicious primary domains or

1Note that exfiltration detection is deployed to catch outbound traffic instead of inbound i.e., our
downloaded ML models can still be obtained, hidden as benign HTTP traffic (e.g., with a Trojan Down-
loader [186]).

112

Figure 4.2: Threat Model: employed policies by the defense.

queries, operators can choose one of two strategies to handle them (shown in Fig. 4.2): (1)

quarantine, which pauses traffic to the suspected domain for a preset period. This strategy

suits scenarios that expect higher positive rates from detectors, since it is impractical to

manually inspect and verify all suspicious traffic; (2) termination, which completely disal-

lows ongoing and future DNS queries to the suspected domain.

Attacker. The malware seeks to steal sensitive data via DNS exfiltration, bypassing an

unknown defense using Dolos. Exfiltration can take place to a single or multiple domains,

the later acheiving the full potency of the attack. If the defense uses a quarantine strategy,

and this is known to Dolos, it can probe and estimate the best transmission rate that

can maximize exfiltration efficiency while avoiding quarantine. Otherwise, Dolos observes

benign traffic on the compromised host, using a sniffer tool (e.g., [223]) to capture the rate

of benign DNS requests; Dolos then tunes the exfiltration rate to be consistent with this

rate to avoid detection. We assume that the attacker can attain high privileges on the hosts

and mimic benign DNS traffic rates. This is possible via local privilege escalation exploits,

which are common [45,91,267].

113

Dolos is trained with samples of exfiltration data offline before infecting the

victim. These samples are assumed to be similar to data exfiltrated online. Such samples,

for example, for credit card records or computer logs, have well-known formats and can

be obtained/synthesized. Similarly, a model trained with an English text dataset can be

used for e-mails or other text data, or a model trained with specifiic classes of images (e.g.,

medical images) can exfiltrate similar images in the wild.

We assume that the attacker has purchased/compromised old domain(s), and uses

common DNS query types. Thus, defenses cannot use these to discern exfiltration traffic

and must detect the attack based on its encoding and rate only.

4.3 System Overview

We design Dolos to generate embedded DNS queries akin benign traffic; in ad-

dition, Dolos includes mechanisms that boost exfiltration rate, while ensuring that the

aggregation of exfiltration queries remains undetected.

Dolos is based on an efficient encoding method, customized to the data of interest

(e.g., credit card records or emails). While prior encoding methods (e.g., Base-64) are

generic (no prior knowledge of data is necessary), we argue that using customized encoders

for different data types trades off generality (see §4.7) for stealth and speed.

An overview of Dolos’s encoder-decoder framework. Dolos’s encoder and decoder

are trained offline with benign DNS and exfiltration datasets. The encoding ensures that the

exfiltrated data representation has high similarity to benign data. It is relatively straight-

forward to categorize the broad type of networks where exfiltration occurs, e.g., enterprises

114

(Windows environments, user-facing applications) and data centers (Linux environments,

server applications). We can then feed the corresponding types of benign DNS datasets in

the offline training phase. We leave the possibility of leveraging a victim’s DNS traffic as

‘supplemental online training data’ as future work. Note that the full training cannot be

done on the victim host since it may require a long time, large amounts of training data,

and high computational power.

After training, both the encoder and decoder are integrated with the malware

which infects the compromised host (reasons for including the decoder are discussed be-

low). The decoder is also used at the attacker’s remote site, to which the encoded data is

exfiltrated.

An overview of Dolos’s online functions. At this point, assume that the malware

(equipped with the trained encoder) infects a victim host. Blindly performing exfiltration

can still expose the attack because the volume of the aggregated exfiltration queries may not

conform with benign volumes generated by the victim. Thus, Dolos’s malware includes

a module to sniff the host’s benign traffic and tune the exfiltration rate and inject some

necessary spurious requests (that are also seen in benign DNS streams), accordingly. A

bank of spurious queries is generated offline (consistent with benign traffic) and is shipped

with the Dolos malware, and used during exfiltration. We choose this offline approach

since the malware does not have a method to craft spurious queries that are stealthy online;

thus online generation may result in anomalies that trigger the detector. In addition, it

helps that these offline generated spurious queries can be easily compared with the bank at

the external site and discarded.

115

Finally, note that the encoding generated by Dolos is lossy (although we ensure

that the loss rates are very small during training). To fix this issue, Dolos validates the

decodability of each exfiltration query with the decoder shipped with the malware. If it is

decodable, it is sent as is. If not, Dolos uses an error recovery module (using a traditional

lossless compression method in an exterme case) to ensure its decodability. Upon the receipt

of a chunk, the remote site uses a simple method (discussed in § 4.3) to apply the proper

decoding and recover data. Since such cases are rare, Dolos is still able to evade all

considered defenses with very high probability.

4.4 GAN based encoder-decoder design

Next, we describe Dolos’s encoder/decoder, trained offline.

4.4.1 Properties of Dolos’s encoder/decoder

In this section, we describe the set of desirable properties that guide the design of

Dolos’s encoder-decoder framework.

Stealthy encoding. Traditional encoding (e.g., Base-64) does not account for stealth, and

thus, a steady stream of such outputs are easily detectable by current detectors. To achieve

stealth, we need to coerce the encoded exfiltration traffic to resemble benign DNS traffic.

While this is challenging, we identify an opportunity to use Generative Adversarial Networks

or GANs (details on GANs in [88]) in a novel way towards overcoming it. GANs have been

shown to generate examples that mimic a given distribution (e.g., images resembling real

humans). However, they have not been previously used to morph DNS exfiltration data.

Our key idea is to train a generator to encode exfiltration traffic with the aid of an evolving

116

Encoder

Public Benign
DNS Traffic

Dataset

Discriminator
(Classifier)

Public Dataset
of Credentials

Encoded
Credential Data

Reconstructed
Credential

Data

Decoder

Feedback

nw
am
m-
ir
t

ad
.b
ig
aa
h

google.
com

FakeReal

Example
Benign

DNS Query

Example

DOLOS

Encoding

5194
2813
8232
2221

5194
2813
8232
2221

Example
Credit Card

Number

Figure 4.3: Offline training phase of Dolos. The data from the encoder is constrained to

fool a discriminator, and must be decoded by the decoder with high accuracy.

discriminator (trained with benign traffic) that disambiguates such traffic from benign DNS

traffic. A well-trained generator then becomes an effective encoder that can transform the

exfiltration data into a representation akin to benign DNS traffic. While similar training

of a GAN for a single objective (not in the DNS context) has been done in other prior

efforts, unfortunately, by itself, this does not suffice. One must also ensure high decoding

accuracy at the external site, which is critical for successful exfiltration. Note that fulfilling

multiple objectives using the same GAN have been explored to a limited extent in the ML

community [14, 51, 273]. However, to the best of our knowledge, the first work to apply

this approach to realize a DNS exfiltration attack.

Decoding accuracy. To ensure that the generated codes can be correctly decoded with

very high probability, in addition to accomplishing stealth, Dolos includes a second dis-

117

criminator (we abuse the term here) that is, in effect, an evolving decoder. This decoder

is trained jointly with the generator and imposes a second objective to be fulfilled by the

latter. Specifically, the encoded representation (a) must deceive the first discriminator and

(b) must be translatable to its original form by the decoder. To reiterate, to the best of our

knowledge, prior GAN efforts do not consider multiple, different objectives during training.

Code compactness. An encoding that is both stealthy and decodable with high probabil-

ity, could entail high overhead (lower encoding efficiency). Minimizing this overhead is key

for efficient exfiltration. Towards this, we model the problem of finding the most compact

encoding as a search problem2. Specifically, we begin by considering different levels of com-

pactness (corresponds to different encoding overheads). We use a greedy approach where

we try the considered compactness levels in an ascending order (most compact to least). For

each, we try to generate an encoding (satisfying stealth and decoding constraints) within a

predetermined time period. If unsuccessful, we move to the next. The approach iteratively

continues until an encoding is found. More details are provided in § 4.4.4.

Blackbox exfiltration. The discriminator is arguably the best anomaly detector since it

learns to discern exfiltration queries as they are iteratively refined to be similar to benign

DNS traffic. Thus, if the generation process goes through several rounds of interaction with

the discriminator, the encoding is likely to be sufficiently tuned to be similar to benign

traffic and can evade blackbox anomaly detectors (as shown in §4.6).

2We tried to include a compactness constraint directly in the encoder-decoder formulation, but it increased
the time complexity significantly.

118

Table 4.1: Key notation

Notation Description

Enc,

Dec, Dis

The encoder, decoder and discriminator neural

networks, respectively

θEnc,

θDec, θDis

The parameters of the Enc, Dec and Dis, respectively

Lmi The length of the exfiltration chunk data

LEi The length of the encoding of an exfiltration chunk of data

γ
Ratio of the encoding length of a chunk

to the length of an exfiltration chunk

VD Validation dataset

accD Validation decoding accuracy

H Maximum # of batches used for training

B # of samples in a training batch

α
A weighting hyperparameter to balance the updates

from the decoder and discriminator networks.

119

4.4.2 Encoder and Decoder design

Before delving into the details of our design, we define some notation used in

what follows (summarized in Table 4.1). We define random variables that represent the

benign traffic and exfiltration data as x and z, respectively. These random variables will

have their own distributions in terms of characters in the query, the correlations across the

characters, etc. The offline phase relates to jointly training three neural network blocks,

viz., an encoder (Enc), a decoder (Dec) and a discriminator (Dis). The parameters of these

neural networks (weights) are denoted as θEnc, θDec and θDis, respectively. The data to

be exfiltrated is divided up into chunks, and each chunk is to be encoded and confined to

one fake DNS query. We denote a set of chunks as M , and each chunk is represented by

mi ∈M . The encoder, thus, takes a chunk of the exfiltration data of size Lmi , consisting

of a sequence of characters c = (c1, c2...cj ...cL
mi), and tries to map that on to a codeword

y = (y1, y2...yL
Ei) of length LEi . Note that Lmi may not be equal to LEi . The mapping

function of the encoder is represented by Enc(c) = fθEnc
(c).

The decoder takes a codeword (y) from the encoder as its input and estimates the

original (raw) exfiltrated chunk as a sequence of characters viz., ĉ = (ĉ1, ...ĉj .. ˆcL
mi). Given

the input y, the decoder function Dec(y) represents the probability that the output ĉ = c,

and is denoted by Dec(y) = fθDec
(y).

The discriminator learns how to differentiate between a benign DNS query and

a codeword generated by the encoder. Specifically, the discriminator function, Dis(s) =

fθDis
(s) yields the probability that the given input s, belongs to the distribution of the

benign samples. The offline training is depicted in Fig. 4.3.

120

Stealth. Since the discriminator seeks to differentiate between benign and fake exfiltra-

tion queries, it tries to minimize the cross entropy loss between the input and the correct

output (which is known as ground truth during training). Let us denote the probability

of the discriminator’s prediction on the generated queries (fake) and the benign queries as

Dis(Enc(z)) and Dis(x), respectively; here, z is the exfiltration data fed to the encoder, and

x is a benign DNS query. To minimize the cross-entropy as alluded to above, the discrim-

inator will seek to minimize the loss function: min[−log(Dis(x)) − log(1 −Dis(Enc(z)))].

This, in turn, is equivalent to max[log(Dis(x)) + log(1−Dis(Enc(z)))].

At the same time, the encoder seeks to fool the discriminator by minimizing the

discriminator’s confidence (probability) with regards to labeling the generated fake queries.

In other words, it wants to minimize log(1−Dis(Enc(z))).

Given the conflicting objectives of the discriminator and the encoder, we can model

their interactions as an iterative minimax game with the following loss function (Ex and Ez

are the expectations over benign and exfiltration data):

min
θEnc

max
θDis

Ex[log(Dis(x))] + Ez[log(1−Dis(Enc(z))]. (4.1)

Decodability. To ensure the decodability of the generated codes, we jointly train a de-

coder. Here, both the encoder and the decoder seek to maximize the probability of correctly

predicting the original characters from the latent space encodings. This translates to a min-

imization of the average cross entropy between the inputs and the ground truth labels. This

cross entropy loss minimization is given by:

min
θEnc,θDec

Ez[−log(Dec(Enc(z)))]. (4.2)

121

4.4.3 Practicalities

Neural network architecture. We need a neural network architecture that captures

semantic relationships as well as short- and long-term dependencies across the characters in

a benign DNS query. If the learnt embeddings reproduce these properties, they can better

mimic those queries. There exist many neural network architectures that satisfy the above

properties, especially in the NLP space, where capturing semantic relationships is critical.

Among those, we choose transformers [251] as our choice since a transformer allows for

parallel computations of sequential data, which makes the training fast. One nuance is

that, typically, transformers take words as inputs; since we want our approach to work with

different types of input data (e.g., credit card numbers, text data), we choose our inputs to

be characters instead of words. Note that as discussed in detail later, even more complex

data forms (e.g., images, which we consider in this work) can be represented using this

method (e.g., with an image, each byte representing pixel intensity can be considered as a

character and fed to the model).

Representation of the latent space. DNS queries A and AAAA permit only 64 characters.

Thus, the encoder’s output (i.e., y1, ..yL
Ei) is a sequence of discrete characters from these.

Non-differentiable discrete latent space. Our inputs are discrete characters, and so

are our latent space encodings. Back-propagation, used to tune the neural network weights,

cannot be directly applied to discrete variable representations that are non-differentiable

(i.e., they have zero gradients) [121]. To overcome this, we use a popular solution for discrete

representations, viz., the softmax-Gumbel approximation [121]. The idea is to use discrete

variables in the forward pass, but use continuous approximations in the backward pass.

122

4.4.4 Training algorithm

We train Dolos to optimize the objectives in Eqns. (1) and (2) using an iterative

algorithm. Iterative methods are often used in GANs [88]; however, as discussed, the novel

aspect of our work is that we also seek very high likelihood of decodability and compaction.

Towards iteratively optimizing the objectives in equations (1) and (2), we update

the weights of the neural networks after each batch of inputs, until we generate stealthy

and decodable, fake DNS queries. Specifically, we first sample a batch from benign DNS

traffic and a batch from the output of Enc to update the weights of Dis. In the second

iterative step, the same batch from the Enc is fed to both the Dec and Dis, and feedbacks

from both are used to update the weights of Enc. Since the updates from both networks

may vary in magnitude and effect, the encoder may be forced to favor one objective over

the other. We use and tune a hyper-parameter α to balance the two objectives. In the

third step, we update the Dec weights to enhance the decoding accuracy. The three steps

are repeated until Dolos is able to successfully bypass a validation step (discussed below

in what follows). The offline training of Dolos is captured in Algorithm 2.

Compactness. As discussed in § 4.4.2, we seek compaction to increase the exfiltration

rate. For a given length of a raw chunk, the generator is constrained to output a fixed (to

be determined) length encoded query (regardless of the semantic content of the raw chunk).

We seek to find a value of γ = LEi

Lmi , that allows us to map a raw chunk of length Lmi to the

shortest possible encoding length LEi output by the generator. This would then maximize

the efficiency of the encoding (highest amount of information encoded into the smallest

number of characters in the latent representation). In other words, we search for the smallest

123

value of γ, such that the encoded query is decodable, and preserves stealth. Specifically, any

γ smaller would violate either stealth or decodability or both. For simplicity, we confine the

search space of γ between 0.5 and 1.5 with step 0.1. We begin with the smallest γ (which

yields the most compaction), and if the model does not meet the the criteria used to stop

training (discussed next), we re-initialize the models and train them with the next larger γ

value.

Once γ is thus determined, if we know what is the maximum permissible encoding

length LEi (the maximum length of DNS queries sent by the victim host), we can compute

the corresponding raw chunk length that can be used as LMi = LEi

γ . We then collect tokens

to fill an mi smaller than this length and generate the encoding during online operations as

discussed in § 4.5.

Validation. Since it is very hard to fool the evolving discriminator (as it continuously

learns), we use a validation process to determine when to stop training. After every N

batches (1000 in our evaluations), we first test the decodability of the generated codes

using the trained decoder to ensure it meets the decoding accuracy constraints. Subse-

quently, we test the stealthiness of the generated codes against an anomaly detector (not

the Discriminator) just trained on benign DNS queries. If we fool this detector with a

very high probability (> 99 %), we assume that the GAN has been sufficiently trained. We

note that the anomaly detector is different from the defenses we test Dolos against, and

thus it does not violate the blackbox assumption.

124

Raw Exfiltrated
Data

Compromised
Host

Host Benign
Traffic Analyzer

Data Chunker

Malicious DNS
Server

Benign Traffic

Chunkied
Exfiltrated

Data

Internet

Base32 encoder

Decodable?

Decoder

YesNo

Chunk
Splitter

No

DOLOS

Decodable?DOLOS

Error Recovery

Yes

Detector(s)

Figure 4.4: Online attack phase of Dolos. Dolos sniffs benign traffic to tune the exfiltra-

tion rate in terms of number of queries transmittable in a time window and chunk length.

Next, it divides the data into chunks and encodes them as DNS queries. If the encoded

query is decodable, it is sent as is; else the error recovery module is used.

4.4.5 Composing spurious queries

As discussed in §4.3, we form a bank of spurious queries offline by sampling the

generated traffic from batches in a validation dataset and identifing the most frequent 3-

4 characters. We randomly combine these along with natural separators present in DNS

queries, viz., ‘hyphen’ and ‘dot’, to form spurious queries. We refine these with our dis-

criminator until validation.

4.5 Tuning the exfiltration online

Next, we describe Dolos’s operations on an infected host. We reiterate that

Dolos’s encoder is unaware of the defense, or the policies employed upon flagging a domain

as an attack site.

Most of today’s defenses make an inference on queries sent to each primary domain

(i.e., decide if that domain is an exfiltration site or not) [177,196,197]. Such inferences are

based on the volume, the rate, the repetition of queries and the entropy associated with

125

the aggregation of queries to that domain. To evade detection, Dolos must tune these

parameters for each domain to which it exfiltrates data (can do so independently), towards

achieving evasion with respect to those domains.

The best rate for stealthy exfiltration. Dolos observes benign traffic over an em-

pircally chosen time window (few hours) to estimate the exfiltration rate. In particular,

Dolos needs to choose the number of requests (N), and the average query size, (L), in

each time window. The bigger these values, the more data can be exfiltrated, but if they

are too large, detection is very likely. A naive approach is to observe the number of requests

and the average length of requests to each domain, and from among these, choose the N

and L that would maximize the exfiltration rate (i.e., N ∗ L per time window). However,

as discussed benign traffic consists of many repetitions of queries (either partial overlaps

or full repetitions). To be consistent with benign queries, the attacker has to transmit

unique exfiltration requests and repeated requests, and requires an estimation of the rate

of requests in each category. Note that determining exactly how many times each query is

repeated is not necessary as this value differs across different primary domains and we have

not seen it being used in practical defenses. In other words, the percentage of unique and

repeated queries transmitted to each domain should be consistent with the repetition rate

seen in benign queries sent by the victim host.

Beyond repetitions, many requests are partially similar in benign DNS traffic.

Not accounting for partial similarity may expose the attack [197]. To illustrate, the fol-

lowing two unique requests are considered partially similar: gllto1.glpals.com and,

gllto2.glpals.com. To evade the detector, Dolos includes both repetitive and partially

126

overlapping spurious queries consistent with benign traffic; these are later ignored after

exfiltration.

Key idea. To estimate the volume of “unique” or dissimilar queries for each

primary domain (obtained from the benign traffic on the compromised host), we cluster the

associated queries; those belonging to the same cluster can be deemed similar or repetitions.

From these, Dolos identifies the domain for which the combination of average query length

and number of unique queries yields the highest exfiltration rate, and uses these values in

tuning its exfiltration process.

Clustering algorithm. Existing clustering methods, including even the simplest

of them (i.e., k-means clustering [157]) are expensive. This is because k-means requires

multiple iterations of comparisons among the data to converge, and a large space complexity

to store all the queries from the host. Importantly, the proper “k” is not known a priori.

Because of this, we design a simple algorithm for Dolos. In brief, for each primary domain,

the algorithm processes the streamed queries. With each query, it measures the similarity

between the query and the cluster representatives of previously formed clusters; if the query

is not similar to any representative, a new cluster is created with that query chosen as its

representative.

To assess the similarity between two DNS queries, we use the following approach.

For each pair of queries, we measure the Jaccard similarity [117] by computing intersection

between the characters of the query relative to the length. If this value is greater than

a pre-selected threshold, we consider the queries to be partially similar. To select the

appropriate threshold, we conduct offline analysis using samples of benign traffic and find

127

that a threshold value ranging from 0.7 to 0.8 effectively groups similar queries. The

algorithm has a O(n ∗ d) run time complexity where n and d refer to the number of DNS

queries sent by the host to a primary domain and the number of clusters per primary domain

to which queries are sent, within the time window of interest. This process is captured in

Algorithm 3.

Online exfiltration. Dolos’s online workflow is shown in Fig. 4.4. Dolos computes the

number of unique queries that it can transmit in a time window, as well as the number

of spurious queries it must insert, based on the clustering it has constructed3. Dolos

computes the most frequent characters used in the encoded exfiltration queries; it then

chooses the spurious queries that are closest to the cluster members (in terms of Hamming

distance) from the pre-stored bank (recall § 4.4.5). Subsequently, for the given exfiltrated

data, Dolos encodes chunks of the proper size (it computes the size based on the learned

value of γ as discussed in § 4.4.4) to form fake queries using the pre-trained encoder. The

exfiltration (fake) and spurious DNS queries are sent in that time window.

Decodability assurance: Since the latent representations generated by Dolos

are inherently lossy in nature, a small subset of chunks may not be decodable (details in

§ 4.6.2), despite considering decodability during training. To guarantee decodability, Dolos

checks if the encoded chunk is decodable using the downloaded decoder (a replica of that

used at the remote site). If the chunk is not decodable, Dolos uses an error recovery

method to guarantee decodability. Our module for error recovery attempts to use Dolos’s

encoder but with shorter chunk sizes, and if it fails, Dolos replaces the encoded chunk

3The number of spurious queries is the difference between the total number of queries and the number
of unique queries that are determined by our clustering (for each domain).

128

with a new fake query using Base-32 encoding (which is lossless). We use Base-32 because

it performs better as compared to other traditional encoding methods in terms of stealth

(e.g., Base-64). As shown in § 4.6.2, the fraction of chunks needing error recovery is very

small and the effect on Dolos’s stealth and speed is negligible.

The error recovery model shown in Fig. 4.4 works as follows. Upon finding a chunk

with decoding errors, Dolos’s online module shrinks the input chunk size by a factor β (set

to 0.8 empirically in our experiments) and attempts to encode the new chunk with Dolos,

again. If this fails, the step is repeated a second time. If the two attempts still cause

a decoding failure, Dolos uses Base-32 for encoding. While such queries can be flagged

by defenses, because they are rare, the domain to which data is being exfiltrated are not

deemed malicious by defenses (they need to observe a sustained stream of such queries to

do so) as seen in § 4.6.2.

Decodability at the remote site: Upon receiving a DNS query, the remote site

has to determine whether the received query is encoded using Base-32 or Dolos’s encoder.

We use a simple solution for this task. The receiver attempts to decode the query using a

Base-32 decoder; if the query is not in the correct format, the Base-32 decoder issues an

exception. In that case, the receiver infers that the received query is encoded using Dolos’s

encoder. Otherwise (no flag), it deems that the query is encoded using the Base-32 encoder.

While it is possible for the Base-32 decoder to decode Dolos encoded queries in extremely

rare occasions, we did not observe those in our experiments. To cope with such cases, one

can apply other solutions to make the decoding more robust. For example, the outputs of

both decoders can be combined with previously decoded chunks to evaluate which one is

129

more consistent with the received stream. Another possibility is to use a query classifier

(similar to the work in [48]) that discriminates between Base-32 and Dolos encoded queries.

4.6 Evaluations

We evaluate Dolos with multiple types of exfiltration data and against multiple

defenses, and compare it to prior encoding baselines. We first describe our setup, and then

our experiments and results.

4.6.1 Preliminaries

First, we describe the datasets used, our implementation, the encoding baselines,

and the considered defenses.

Datasets. We use multiple datasets in our evaluations.

Benign datasets: We use two datasets for training Dolos (trained on each at

a time) and two different others for training the ML based defenses. The use of differ-

ent datasets for Dolos and the defenses emulates blackbox settings. Dolos is trained

using:

• Georgia Tech DNS dataset (GT) [235]: This dataset contains DNS traces collected from

suspect Windows executables in a sterile, controlled environment; thus, they often do

not generate malicious queries. These exceutables often use benign DNS queries to test

connectivity [78]4. We collect PCAP files dating from 2015 until December 2020, and use

it to train Dolos5. Dolos that is trained on this dataset is denoted as Dolos (GT).

4To verify that the dataset contains only benign traffic, we use the best defense in our study [10] (discussed
later) on the Georgia Tech dataset, and find that the triggering rate is negligible.

5This dataset was used in [78] but was recently withdrawn. We learned from the authors of [78] that this

130

• ISI-reverse DNS queries (ISI-rdns) [188]: This dataset is collected by using a reverse

DNS scan over the entire IPv4 space. While a subset of the IP addresses may lead to

names that are not associated with real domains, we try our best to filter these out

using heuristics based on our domain expertise. Domains with a fraction of numerical

and capital characters, larger than 30% are removed. Moreoever, many queries (e.g., to

the same primary domain) are similar, and these can create bias in training Dolos. To

remove these, we cluster queries using our method in §4.5 and only use diverse samples.

We denote the version of Dolos that is trained on ISI-reverse DNS queries as Dolos

(ISI-rdns).

Datasets used for training state-of-the-art defenses are:

• Thapar dataset [222]: This dataset was collected from 4,000 hosts in a university over

10 days. We extract DNS queries from successful DNS responses (e.g., DNS queries

associated with NXDOMAIN responses are ignored) [164]. Since the dataset is from an

operational setting, our belief is that it represents data used to train real DNS exfiltration

defenses.

• ISI host Level dataset [187]: This dataset contains massive raw packets collected at a

b-root DNS server with anonymized IP over two days. We group requests by the srcIP

field corresponding to the recursive resolver (i.e., each of which is a host). Since this

huge dataset is collected from real users, our belief is that a defense trained with dataset

should be able to differentiate between benign and exfiltration queries.

was due to funding/maintenance issues.

131

Exfiltration Datasets: We consider multiple types of exfiltration datasets to eval-

uate Dolos. In all cases, we separate the records into training and testing sets. At most a

third of the records (selected randomly) are used for training and validation, while the rest

are used in testing.

• Text dataset: We use the Amazon Reviews Dataset [165] to represent text data (e.g.,

emails or documents) that the attacker may compromise. We consider the data in terms

of characters (not words as discussed in §4.4). This dataset contains 168 unique characters

(English alphanumerical characters and special characters).

• Credit Cards: We mimic real credit card information to create our own synthetic dataset

(2M records). Each synthesized credit card record contains a 16 digit credit card number

where the digits have to pass the Luhn algorithm test [160], a method that is used

to verify synthesized credit card numbers. In addition, the four digit expiry date, the

three digit CVV, the first and last names, the address and billing zip codes are also

generated as follows. The CVV is just three random digits and the expiry date is randomly

chosen between Jan 2024 and Dec 2034. To generate names, we use the dataset in [208]

which contains around two million real names. For the address and billing zip codes, we

download US west, midwest, northeast and south addresses from batch.openaddresses.io

[190].

• Computer Logs: Computer logs can be useful for subsequent reconnaissance attacks (e.g.,

[103, 155]). We use two datasets of logs. The first is a Microsoft Windows “Event Logs”

dataset (from a public GitHub repository of logs collected over 226 days [1]) of size 27GB.

The second is a Linux logs dataset [102], collected from a Linux server over 264 days.

132

• Images: We use a dataset of x-ray images (in PNG formats) that were used in COVID

diagnostics [126]; such data became valuable recently for attackers [210]. We transform

the image from the PNG file into a matrix of bytes (each representing pixel intensity).

Note that PNG image formats offer lossless compression and the actual values of pixel

intensities are retained without change. Thus, this transformation does not result in any

loss of data. Further, the matrix is processed to form a sequence of characters/bytes. In

other words, we flatten the matrix to a single dimension (sequence of bytes) which is then

input to the encoder; the matrix can be reconstructed at the receiver. Dolos initially

transmits the metadata describing the image shape, so that the receiver can reconstruct

the same.

Encoding Baselines. We compare Dolos’s encoding against three types of baselines

(which we implement):

• Iodine [54]: Iodine, the popular DNS exfiltration tool, which compresses data and encodes

it with Base-64 (denoted Iodine-64) or Base-32 (denoted Iodine-32). While Base-128 is

available on Iodine, it does not comply with DNS types A and AAAA.

• DNSCat (Compressed HEX) [112]: DNSCat is a popular DNS exfiltration tool that com-

presses and encodes the data using Hex-encoding into strings.

• FramePos encoding [85]: This encoding was used in the recent attack where credit card

information from POS was exfiltrated over DNS. It is essentially a variant of Hex encoding

that does not compress data. After encoding the exfiltration data, each byte is XOR-ed

with a pre-determined integer value; to decode, the received value is XOR-ed with the

same integer at the attack site to retrieve the original value. Details are found in [85].

133

Defenses. We can categorize defenses into three types: (1) rule based defenses; (2) anomaly

detectors (ML based); and (3) classifiers that distinguish between bengin and malicious

classes using ML.

Rule based defenses impose empirically derived rules on some properties of outgoing

DNS traffic. We summarize rule based defense methods below:

• Zeek flags a domain if (i) the length of any transmitted query or (ii) if the number of

unique queries within a time window, to the domain exceed preset thresholds.

• ZeekQ is similar to Zeek but adds a rule to check if the percentage of numerical characters

in a query exceeds a threshold [107].

• Paxson et al. [197] collects queries to a domain over a time window and compresses them;

if the compressed volume exceeds a certain threshold, the domain is flagged. While Zeek

and Paxson el al., issue alerts based on the traffic volume to a domain, they fail if the

attacker exfiltrates data to multiple domains with low rates.

• Ishikura et al. Unlike the above, [116] builds a shadow least-recently-used (LRU) DNS

cache (a copy not interfering with DNS directly), which counts cache misses in a time

window. If the number of shadow cache misses for a given client exceeds a threshold

(i.e., the maximum number of cache misses across all clients in the prior time window),

the defense flags an attack.

Anomaly detectors, listed below, learn features in benign DNS queries or the ag-

gregation of DNS queries to a domain, in a time window. They detect deviations from

benign queries and flag existing attacks even if exfiltration is at low rates.

• Nadler et al. [177] uses an isolation forest [152] to detect anomalous domains and is

134

adopted by Akamai [13]. The features used are: average length of queries, number of

queries, fraction of unique queries, average length of readable subdomains, the aggregated

entropy of all transmitted queries and the fraction of DNS types that are A and AAAA.

• Jawad et al. [10] uses a set of hand-crafted features to build an isolation forest anomaly

detector. The features are: query length, # of capital letters and numbers, # of subdo-

mains, average and maximum lengths of subdomains, and the entropy of the request.

Classifiers are trained with both benign and malicious samples (assumed to be

known to the defender), and perform classification at a DNS query level. Below we list such

defenses.

• Buczak et al. [43] uses Random Forest to classify benign and malicious queries. A total

of 17 features are used including query shape features such as ratio of distinct characters,

maximum and average length of subdomains and percentage of numerical characters.

• Liu et al [154] uses Support Vector Machine (SVM) to classify benign and malicious

queries. It uses the entropy of the uni-gram, bi-gram and tri-gram of characters as

features.

• Chen et al. [48] trains an LSTM classifier with samples of benign and malicious traffic.

In all cases we follow the directions on training and tuning the defensive models from the

original papers. Since the last three defensive models need adversarial samples to train, for

each attack method, we provide examples generated by the same method (e.g., the classifier

is given Iodine-32 examples, when it is tested against Iodine-32 encoded exfiltration). We

also provide the classifier examples generated by Dolos (for example, we feed malicious

queries generated with Dolos that is trained with GT or the ISI-rdns benign dataset, but

135

Figure 4.5: On the left is the blackbox detection probability

when baseline methods use a constant exfiltration rate com-

mensurate with the average rate of Dolos with deployed

anomaly and rule based detection methods. On the right

is the maximum rate that baselines can send with a fixed

BDP of 0.15.

Figure 4.6: Detection

rate with Jawad et al.,

and Ishikura et al., with

multiple exfiltration sites

(60 and 80 sites).

test them with a different set of queries that are generated with either the same or the

other dataset). One can think of this as providing some form of adversarial training [28]

to these defenses, which make them very powerful. We hypothesize that since Dolos

generates different encodings in each training instance (they all look similar to benign but

are different), it is effective even with such whitebox defenses.

Attack and defense setups. We assume the worst outcome upon detection

because we consider a blackbox setting, i.e., the defense blocks the primary domain that

is flagged. Thus, Dolos monitors and uses the victim host’s DNS query patterns to tune

the online rates of fake and spurious queries. Some of the defenses we consider seek to

detect individual anomalous queries (i.e., ZeekQ and Jawad et al., Chen et al., Buczak et

al. and Liu et al.). We consider queries to the same domain as a flow and incorporate a

rule, wherein if the percentage of flagged queries in a flow (denoted as PFQ) exceeds a

threshold, the flow (domain) is flagged and the attack is detected. We use the following

metrics to evaluate Dolos.

136

• Blackbox detection probability (BDP): We compute the probability that the exfiltrating

primary domain(s) is detected by “at least” one of the defenses. This probability is given

by 1−
∏

i(1− pi), where pi is the probability of being detected by defense method di.

• AUC score: To measure the stealth of Dolos, we measure a defense’s ability to distin-

guish benign and malicious traffic by using the receiver operating characteristic (ROC)

curve, and we report the area under that curve (AUC) score. A low AUC score means

that the defense is poor in performing the distinction, which is good for the attacker (e.g.,

Dolos).

Default settings. Unless otherwise specified, by default we use Dolos (ISI-rdns)

that is trained on the Text dataset, and defenses that are trained on ISI-host datasets. The

results are consistent in behavior with the other datasets and with Dolos (GT), and we

showcase samples of several of those. We also use a single exfiltration domain by default.

4.6.2 Evaluation results

Due to space limits, we present the core results relating to stealth and exfiltration

speed of Dolos in this section.

Holistic evaluation of Dolos. We evaluate Dolos holistically against baselines as they

are used today. We apply all of the rule based and anomaly detection based defenses

sequentially (together) and compute the blackbox detection probability (BDP). The defenses

are trained on the ISI-host dataset. We exclude the classification methods in computing

these plots (i.e., [43, 48, 154]) because they detect the baselines almost surely regardless of

the rate they use, based on simply the features of the encoding, while Dolos is unaffected

137

(details are discussed later in Table 4.2). Our experiments, upon including these defenses,

showed that the absolute performance with Dolos was unchanged from what is discussed

below; however, the BDP with the baselines was≈ 1.0 regardless of the rate, thus, precluding

them from exfiltrating almost any data. Our evaluations are with all considered exfiltrated

datasets together (i.e., Text, credit cards, logs and Images) and we report the average

performance with confidence intervals in Figs. 4.5 and 4.6.

The BDP of baselines are almost close to 1 while Dolos experiences a

BDP of only 0.12, when they exfiltrate data at the same rate: We perform multiple

experiments using Dolos to exfiltrate a set of files from a different exfiltration dataset (e.g.,

medical images, credit cards) in each run, with an average data size of ≈ 5KB from a single

host to one external site; this takes on average, 12 hours. We exfiltrate the same file(s)

with the baselines, with the same average rate of Dolos. To set this rate, we vary the

chunk length and choose the longest one that does not flag any of the methods (making

query length a non-factor). We then choose a constant rate given this query length, to

commensurate with the average rate of Dolos. We see that, at this rate, the BDP of the

baselines are almost close to 1 (> 0.95); the baselines have many disadvantages compared

to Dolos (e.g., their encoding, fixed rate, lack of spurious queries) and these tend to trigger

at least one defense. In contrast, DOLOS has a BDP of just 0.12.

If the baselines use a low rate to avoid detection, Dolos can exfiltrate

data 25× faster (with an even lower BDP): Now, in contrast to keeping the rate fixed,

we fix the tolerable BDP. We search for the most conservative rate that keeps the BDP to

below 0.15 for all the methods (similar to what Dolos achieved in the prior experiment).

138

In such a case, we see in Fig. 4.5 that Dolos is able to transfer 25 times more data than

the baselines in a given fixed time.

Increasing the number of exfiltration sites helps Dolos boost its exfiltra-

tion rate, but does not help baselines. Next, we examine the exfiltration of files from

a single host to multiple exfiltration sites in the control of the attacker. We only use Jawad

et al., and Ishikura et al., as our defenses since these allow us to explicitly showcase the

impact of increasing the number of remote sites. Jawad et al., imposes a maximum length

constraint on the queries sent by the exfiltration methods. Ishikura et al., counts the num-

ber of cache misses per host, which can increase as the number of external sites to which the

attacker sends queries increases. Again, for the baselines, we choose the maximum length

that does not flag Jawad et al., ensuring that rate and the number of external sites are

the only factors that influence detection. Dolos uses its rate tuning to be consistent with

the hosts’s query rates. The results are shown in Fig. 4.6. The baselines are almost surely

detected because unlike Dolos, they send at fixed rate (increased as a consequence of the

length limit due to Jawad at al.) and hence, often exceed the cache miss limit. There is

an increase in the detection probability of Dolos as well, because Ishikura et al., counts

the cache misses across all its connections to the plurality of sites (in fact, as the number

of sites increase the detection rate is likely to increase). However, this increase is modest

as seen in Fig. 4.6.

Stealth against individual defenses. We evaluate Dolos ’s encoding in evading de-

fenses. We consider exfiltration to a single domain, since most defenses are domain specific.

We use the two versions of Dolos (i.e., Dolos (GT) and Dolos (ISI-rdns)) in this exper-

139

iment. We train the anomaly detectors with the two training datasets exclusively used for

defenses (see §4.6.1). Classifiers have access to the attacker’s encoding models. To zoom in

on the benefits of DOLOS’s encoding, we empower the baselines with Dolos’s rate tuning

module (RT); in essence they perform markedly better than they would in their native forms

(as demonstrated later).

Rule based detection methods have low detection rates on all encoding

methods (including baselines) if empowered with Dolos’s rate tuning. Zeek does

not detect any method because the maximum length of the queries and the rate of unique

queries, are consistent with those at the host. Ishikura et al [116] fails to detect exfiltration

as long as the exfiltration rate is consistent with benign DNS query generation on the host

(cache misses rarely exceed threshold in the time window chosen by the method). ZeekQ

does not detect any of the encoding methods including Dolos, because the percentage of

numerical characters conform to its threshold. Paxson et al., has a slightly higher detection

probability on methods that aggressively pursue encoding efficiency (the compressed volume

is higher). Thus, both Iodine-64 and Iodine-32 which have higher information per bit

compared to the others (regardless of query length), are more likely to be detected.

Classification methods almost always detect baselines but Dolos evades

them because of its ability of generative diverse code books. Buczak et al. [43], Liu et

al. [154], Chen et al. [48] learn and thereby almost surely detect signatures generated by the

baseline methods (Table 4.2); however, Dolos goes undetected since it creates diverse sets

of codes by simply re-training the encoding-decoding framework. Thus, these defenses are

unable to build a signatures of traffic from Dolos. We emphasize that these classification

140

methods are whitebox i.e., they have access to the model architecture and the dataset used

to train Dolos; in spite of it, these classification methods fail to detect Dolos queries,

because Dolos generates different codes with each fresh training. The locations of the very

small fraction of queries using Base-32 encoding with Dolos are staggered depending on

the input, and even if a few of these are detected, these defenses cannot easily categorize a

domain as malicious.

Anomaly detection methods are effective in detecting baselines but fail

to detect Dolos due to the similarity of the queries it generates, to benign traffic.

Nadler et al. [177] detects high entropy codes (e.g., Base-64, and Base-32) and thus is

effective in detecting the Iodine variants. The other methods including Dolos are less

easily detectable; specifically, the entropy of Dolos is very similar to that of benign queries.

Jawad et al. [10] achieves much higher detection rates with the baselines (> 0.5 detection

probability), but Dolos goes undetected. This is because even when considering multiple

features, Dolos’s encoding largely resembles benign traffic enabling it evade even this

arguably strongest among defenses that do not need to be trained with malicious samples.

AUC scores. We assess the ability of the encoding methods in generating queries indistin-

guishable from benign traffic, using AUC scores (see §4.6.1) in Table 4.4. Since, Jawad et

al., considers the length of a query in making an inference, to ensure that length is a non-

factor in triggering anomalies (only the encoding matters), we impose that malicious traffic

of the other baselines are also consistent with the benign query lengths (Dolos’s GAN

based encoding ensures this). We use multiple ROC curves where, in each, fake and benign

queries of equal length are plotted. On average Dolos has ≈2× lower AUC score when

141

Table 4.2: Detection probability of defensive methods against the considered attacks.

Dolos evade all detection methods because of the similarity of its encoding to benign

traffic; the baselines are flagged by at least a sub-set of the defenses.

Method

Anomaly Detection methods Classification methods

Nadler et al Jawad et al Buczak et al Liu et al Chen et al

Thapar ISI-HOST Thapar ISI-HOST Thapar ISI-HOST Thapar ISI-HOST Thapar ISI-HOST

Iodine-64 + (RT) 0.75 0.59 1 0.98 0.89 0.9 0.92 0.94 0.94 0.96

Iodine-32 + (RT) 0.25 0.32 0.51 0.54 0.88 0.88 0 0 0.94 0.96

Hex + (RT) 0.03 0.02 0.53 0.58 0.92 0.92 0 0 0.94 0.96

FramePos + (RT) 0 0.09 0.57 0.87 0.92 0.92 0.89 0.91 0.94 0.96

DOLOS (GT) 0.04 0.01 0.03 0.06 0 0 0 0 0 0

DOLOS (ISI-rdns) 0.04 0.02 0.02 0.04 0 0 0 0 0 0

Table 4.3: Detection probability of rule based de-

fensive methods against attacks (empowered with

Dolos’s rate tuning).

Method

Rule Based Methods

Zeek ZeekQ Ishikura Paxson et al

Thapar ISI-HOST Thapar ISI-HOST Thapar ISI-HOST Thapar ISI-HOST

Iodine-64 + (RT) 0 0 0 0 0 0 0.17 0.3

Iodine-32 + (RT) 0 0 0 0 0 0 0.1 0.16

Hex + (RT) 0 0 0 0 0 0 0 0.07

FramePos + (RT) 0 0 0 0 0 0 0 0

DOLOS (GT) 0 0 0 0 0 0 0 0.08

DOLOS (ISI-rdns) 0 0 0 0 0 0 0 0.06

Table 4.4: AUC scores of encoding

methods with Jawad et al.

Method Text Credit Cards Logs Images

Iodine-64 0.996 0.996 0.996 0.996

Iodine-32 0.63 0.62 0.68 0.68

Hex 0.995 0.995 0.995 0.995

FramePos 0.998 0.998 0.998 0.998

DOLOS 0.34 0.35 0.34 0.38

compared against the best baseline (i.e., Iodine-32) when tested against Jawad et al. [10].

The lower AUC with Dolos implies that the baseline encoding methods are more likely to

be detected than Dolos even if query length is not a factor, i.e., the encoding with Dolos

can better evade detection compared to baselines.

A case study from previous DNS exfiltration attacks. In a previous attack [109],

attackers were able to steal 40M credit cards from US Target stores in 2013 (estimated to

be from 1790 stores at that time [265]). The total amount of exfiltrated data was ≈ 4GB.

142

Figure 4.7: Jawad et al. defense [10] PFQ on Text, Credit Card, and Logs and Images

datasets, respectively, for varying exfiltration rates. The PFQ when using Dolos is much

lower than encoding baselines. The red stars represent Dolos’s (holistic) performance.

Motivated by this, we ask how fast we can exfiltrate this amount of data compared to the

baselines when the attacker compromises the same number of devices. We fix the number

of queries per day to 80 and transmit to 120 remote servers, and exfiltrate a 4GB file over

varying number of days. We evaluate Dolos (with the same fixed rate (Dolos (FT)) along

with the baselines with Jawad et al.; this is the best performing defense (other defenses are

inferior as seen in Table 4.2) from those that do not need malicious samples for training.

We also show how holistic Dolos performs.

Dolos can exfiltrate data more than 2.5 × faster, than the baselines,

without being detected, when evaluated with Jawad et al. [10]. We consider the

fastest time to exfiltrate a 4GB file with different PFQ thresholds (see § 4.6.1). The results

in Fig. 4.7 show that Dolos exfiltrates data much faster and yet is undetected. For example,

with the logs dataset, Dolos can potentially go almost undetected even when completing

exfiltration in 3 days; in comparison, the closest baseline takes over 8 days if it is to go

undetected. In practice, the holistic version of Dolos (shown by the red stars) uses rate

tuning (the best fixed rate is unknown) and so performs slightly worse. Importantly, if

any of the baselines was to exfiltrate data within 4.5 days (worst case with full Dolos),

they would almost surely be detected. We also want to emphasize that this is only with the

143

defense by Jawad at al. As discussed earlier, if a plurality of defenses are used, the baselines

almost always are detected, unlike Dolos (e.g., with classifiers).

Queries with decoding errors. Next, we report the percentage of queries that were

handled by Dolos’s error recovery module. The percentages of such queries for Text,

credit cards, Logs and Images datasets are 8%, 5%, 4% and 18%, respectively. While

images have the highest error rates (in comparison with others) the rate is still very small

to significantly affect stealth.

4.6.3 Dolos Complexity

We had earlier discussed the time for training Dolos offline (§ 4.6.1). Here, we

examine its runtime complexity.

Clustering. The complexity of Dolos’s clustering depends on the benign query

rate of the victim and the number of unique domains. Computations are amortized over a

time window and require low CPU workloads. The average number of clusters per domain

is 70 against each of which, each query is compared; this takes 1.5ms. With regards to space

overhead, we store the number of clusters for each unique domain, as well as their represen-

tative queries. The maximum needed space for a 24-hour window is 0.6MB (600KB), which

is insignificant with respect to today’s computers.

Data encoding. We measure the average encoding duration at test time, on a 2.9

GHz laptop CPU with 3 different batch sizes (1, 8 and 16). The average encoding times

are 1.4s, 0.452s and 0.28s, respectively. Since the exfiltration queries are sent at time scales

of seconds/minutes to avoid detection, this overhead has a negligible influence on the rate.

With regards to the space overhead, the model sizes for text, credit card and logs models

144

and images are 59M, 22M and 18M, 30M, respectively. On average, the size of the encoder is

35MB, which is very small given the disk and memory of today’s machines. The size of the

decoder is the same as the encoder associated with a given dataset. The average decoding

times for batch sizes (1,8 and 16) are 1.5s, 0.49s and 0.31s, respectively. We break up

the model into multiple files to reduce the storage footprint; the model can be composed

from these scattered files in the memory during operation with negligible additional time.

Further optimization to smaller and cheaper architectures (e.g., using model pruning or

knowledge distillation) is viable but left for future work.

4.6.4 Real implementation details and results

We host a domain we purchased from godaddy.com, on two name servers as de-

scribed in RFC [174]. The two name servers are Windows server 2019 virtual machines de-

ployed on Microsoft Azure. We use the default Microsoft DNS server [170], and we generate

CNAME DNS records for the generated domain as *.dolos.com (fake name for anonymity

reasons). This makes the server respond to DNS queries with any subdomain under do-

los.com with the default configured IP address. We use the default DNS logging system

to decode queries to their original representations. Client queries (regardless of whether

they are benign or malicious) are generated using a Mac pro laptop with nslookup. We use

three popular public DNS resolvers: Google (IP:8.8.8.8), Control D (IP:76.76.10.0) and

CloudFlare (IP:1.1.1.1). In addition we also experiment with the DNS resolver (owned

by our institution). We capture DNS queries on the local machine and extract the features

required to make an inference using the defenses we considered in § 4.6.1. In our exper-

iments we exfiltrate a 10KB text file with an average chunk length of 90 characters. We

145

repeat the exfiltration with Dolos and each baseline, but the benign queries are only those

that are naturally generated. These constraints are imposed because we do not want to

cause unintentional damage to either the public or our institutional DNS resolvers (e.g.,

DDoS attacks).

Real Implementation results. Since we are unaware if these real systems

deploy defenses, we also pass the traffic through Jawad et al., for safety. Flagged queries

are stopped and do not reach the destination. We use all considered name servers in

this experiment. Finally, we ended up retrieving all fake queries that were not detected

by Jawad et al., which suggests that the public DNS resolvers do not employ any potent

defense (although we cannot verify this explicitly). We will investigate this in the future by

talking to administrators or other means (e.g., security blogs).

4.7 Discussion

Defending against BigEye. One potential defense against BigEye is to use program

analysis to identify programs responsible for creating DNS queries for exfiltration. One can

check if a program accesses (i) confidential files and (ii) inputs those to a processing engine.

However, running such analyses on all programs on all hosts is expensive. Instead, one

can monitor the DNS queries and use a detector or ensemble of detectors with somewhat

lower detection thresholds (i.e., higher detection rate of attacks but high false positives).

Expensive program analysis can be used as a second filtration layer on only those programs

that generated these queries.

146

Exfiltrating multiple types of data. To exfiltrate multiple types of data, one can train

and use multiple encoders. At run time, the malware can include a codeword to indicate

the type of data being exfiltrated. The remote server then uses the appropriate decoder for

recovery.

Whitelists and their impact on BigEye. Enterprises could use whitelists to block

access to BigEye’s remote server. Today, the deployed whitelists specify the only domains

that users can access (i.e., all other domains are inaccessible/blocked by default). [179]

suggests that the top (most popular) one million domains could be used as such, in a

whitelist. However, we argue that such whitelists are highly impractical in the real world,

because access patterns to domains/websites could vary significantly over time. This makes

it infeasible for network operators to keep such lists up to date without inducing blockages

to benign domains. Google reports that about 4% of the 2 billion domains are accessed

with between 10 and 1000 visits, in a month [228]. This is about 80 million websites and

not all of these can be in the top-1-million whitelist described in [179]. In other words,

having whitelists with a million pages causes more problems for defenses in terms of false

positives and thus is not useful against BigEye.

Out-of-order packet delivery. In-order packet delivery from the compromised host to

the remote domain is not guaranteed by the DNS protocol. To ensure delivery guarantees,

new attributes such as sequence numbers may be needed. This aspect is left for future work.

We highlight that BigEye decodes each query independently. Thus, we believe that using

the decoded queries, an ML model can assess the received queries to determine whether

they were received in order and rectify the order if necessary.

147

4.8 Related Work

Text generation. GPT [205] and BERT [64] are ML methods to synthesize text sim-

ilar to training text. However, our problem differs since we seek a latent space repre-

sentation, largely decodable to its raw form. Similarly, GANs have been used for text

generation [139,278] but do not handle multiple goals (mimicking benign traffic and ensur-

ing decodability). Recent work uses multiple generators and discriminators with different

loss functions in order to achieve a single objective (e.g., generating better synthetic im-

ages [86,231]). However, Dolos seeks to fulfil multiple objectives.

Adversarial Perturbations. There is work on perturbing inputs to deceive a neural net-

work (e.g., [244,283]). Such methods cannot be readily applied to modify exfiltration data.

NIDSGAN [283] perturbs packet headers while adhering to domain constraints to deceive

ML-based intrusion detection systems. However, they only have one objective (evasion).

Encoder-decoder frameworks. ML-based encoder-decoder frameworks have been stud-

ied. For example, [76] builds such a framework to send text data over an erasure channel.

This work differs from ours in two ways. First, the latent representations are continu-

ous whereas in our case, they are discrete (they form the fake queries). Beyond this, our

approach has constraints on the latent space (it should resemble benign traffic). A work

close to ours is [124], where the authors design an end-to-end communication system over

an erasure channel but constrain the latent representation to binary values. The problem

differs from ours because, in addition to constraining the representation to characters used

by DNS, we also have additional requirements (e.g., stealth and decodability).

Detection. As discussed, defenses against DNS exfiltration are either rate based [71, 128]

148

or encoding based [61,123,140,149,163,276]. These methods were either considered in our

evaluations in § 4.6.2 or are very similar to those considered and we expect them to fail in

detecting Dolos.

DNS Exfiltration tools. Today’s DNS exfiltration tools such as DNSmessanger [42],

DNSteal [83] and Iodine [54], use DNS query types that do not conform with benign traffic

and/or use the traditional encoding (e.g., Base-64, Base-32 and Hex) that are inefficient and

detectable. For example, DNSmessager uses DNS type TXT, which, as discussed, is easily

detectable.

4.9 Conclusions

In this work, we show that contrary to the common belief that current defenses

have succeeded in curbing DNS exfiltration, our GAN-guided approach, Dolos, can achieve

successful exfiltration. Dolos encodes the exfiltration data such that it not only mimics

benign traffic to fool defenses but also achieves significantly faster exfiltration than what

is possible today. In addition, it includes a rate tuning module that is key in preventing

the attack from being detected in a blackbox setup. Finally, Dolos also ensures that

exfiltrated data is fully decodable at an external site like with traditional methods. Our

evaluations show that Dolos can exfiltrate data 25 × faster than the baselines, if the

detection probability needs to be kept low (< 0.15).

149

Algorithm 2 Training Dolos Encoding

Input: exfiltration and benign DNS datasets , accD

Input: Validation dataset (VD), Validation Model (VM)

Input: Validation model fooling rate threshold (β)

Input: Training time out threshold (H)

for γ in range (0.5,1.5,0.1) do

Initialize Dec, Dis, Enc with latent space of size γ ∗ Lmi

while True do

(1) Sample batches from exfiltration dataset and benign dataset of size B.

(2) Update the Discriminator as follows: ∇θDis
1
B

∑B
k [log(Dis(xk)) + log(1−Dis(Enc(zk))).

(3) Update the Encoder: ∇θEncα
1
B

∑B
k [log(1−Dis(Enc(zk))) + (1− α) ∗ 1

Lmi

∑
j log(pĉj).

(4) Update Decoder with ∇θDec
1

Lmi

∑
j log(pĉj).

if 1
|VD|

∑
v∈VD

1(argmax Dec(Enc(v)) = v) ≥ accD & VM (Enc(VD)) ≥ β then

return trained Dolos

end if

if # of batches ≥ H then

break {Need a bigger encoding size}

end if

end while

end for=0

150

Algorithm 3 Dolos clustering methodology

Input : list requests to a domain (Queries), threshold

Initialize clusters set (ClusSet)

for newQ in Queries do

for q in ClusSet do

if JaccardSimilarity(newQ,q) ≥ threshold then

Break {Found a match}

end if

end for

if no match then

ClusSet ← newQ {Create new cluster with query newQ}

end if

end for=0

151

Chapter 5

Conclusions

In this dissertation, we identified multiple networking applications in constrained

environments where machine learning can advance the state-of-the-art beyond traditional

methods. We first presented BigEye, which detects and summarizes key global events from

distributed data sources using a very limited amount of data. We analytically showed that

BigEye can achieve the same accuracy as cases where data is available centrally, with less

than 1% of the entire data volume empirically demonstrated.

Next, we introduced AcTrak, a reinforcement learning-based control system for

steering camera movements within a specified area of interest. The trained RL agent or-

chestrates camera movements to effectively balance the trade-off between zoom levels.

Finally, we introduced Dolos, demonstrating how ML-based malware can evade

DNS exfiltration defenses to exfiltrate data undetected. Dolos is a framework that trains

an ML-based encoder and decoder to encode exfiltrated data to resemble benign traffic,

thereby evading defenses and ensuring the encoded data can be decoded back to its original

152

representation. Additionally, Dolos uses heuristic approaches to dynamically adjust the

exfiltration rate at runtime to evade detection.

153

Bibliography

[1] Loghub: A collection of system log datasets for intelligent log analysis. https://

github.com/logpai/loghub, 2019.

[2] Kaggle. https://www.kaggle.com/datasets/manann/quotes-500k?select=

quotes.csv, 2020.

[3] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile edge computing:
A survey. IEEE Internet of Things Journal, 5(1):450–465, 2017.

[4] Evangelos Papalexakis Lance Kaplan Srikanth V. Krishnamurthy Tarek Abdelzaher
Abdulrahman Fahim, Ajaya Neupane. Edge-assisted detection and summarization
of key global events from distributed crowd-sensed data. In Proceedings of IEEE
International Conference on Cloud Engineering (IC2E). IEEE, 2019.

[5] Lawrence Abrams. New royal ransomware emerges in multi-million
dollar attacks. https://www.bleepingcomputer.com/news/security/

new-royal-ransomware-emerges-in-multi-million-dollar-attacks/, 2022.

[6] National Security Agency. Adopting encrypted dns in enterprise environ-
ments. https://media.defense.gov/2021/Jan/14/2002564889/-1/-1/0/CSI\

_ADOPTING_ENCRYPTED_DNS_U_OO_102904_21.PDF, 2021.

[7] Charu C Aggarwal and Karthik Subbian. Event detection in social streams. In
Proceedings of the 2012 SIAM international conference on data mining, pages 624–
635. SIAM, 2012.

[8] Charu C Aggarwal and Philip S Yu. A framework for clustering massive text and
categorical data streams. In Proceedings of the 2006 SIAM International Conference
on Data Mining, pages 479–483. SIAM, 2006.

[9] Amir M. Ahmadian and Musard Balliu. Dynamic policies revisited. In IEEE European
Symposium on Security and Privacy, 2022.

[10] Jawad Ahmed, Hassan Habibi Gharakheili, Qasim Raza, Craig Russell, and Vijay
Sivaraman. Monitoring enterprise dns queries for detecting data exfiltration from

154

internal hosts. IEEE Transactions on Network and Service Management, 17(1):265–
279, 2019.

[11] Jeff Ahrenholz, Claudiu Danilov, Thomas R Henderson, and Jae H Kim. Core: A
real-time network emulator. In Military Communications Conference, 2008. MILCOM
2008. IEEE, pages 1–7. IEEE, 2008.

[12] Akamai. Power and protect life online. urlhttps://www.akamai.com/, 2000.

[13] Akamai. Dns: The easiest way to exfiltrate data? https://www.akamai.com/blog/

security/dns-the-easiest-way-to-exfiltrate-data, 2022.

[14] Isabela Albuquerque, Joao Monteiro, Thang Doan, Breandan Considine, Tiago Falk,
and Ioannis Mitliagkas. Multi-objective training of generative adversarial networks
with multiple discriminators. In International Conference on Machine Learning, pages
202–211. PMLR, 2019.

[15] Fatemah Alharbi, Yuchen Zhou, Feng Qian, Zhiyun Qian, and Nael Abu-Ghazaleh.
Dns poisoning of operating system caches: Attacks and mitigations. IEEE Transac-
tions on Dependable and Secure Computing, 19(4):2851–2863, 2022.

[16] Muhammad Intizar Ali, Naomi Ono, Mahedi Kaysar, Zia Ush Shamszaman, Thu-Le
Pham, Feng Gao, Keith Griffin, and Alessandra Mileo. Real-time data analytics and
event detection for iot-enabled communication systems. Web Semantics: Science,
Services and Agents on the World Wide Web, 42:19–37, 2017.

[17] James Allan, Ron Papka, and Victor Lavrenko. On-line new event detection and
tracking. In ACM SIGIR Forum, volume 51, pages 185–193. ACM, 2017.

[18] alsecuritycamera. axis outdoor multi sensor ip security camera. {https://www.

a1securitycameras.com}.

[19] Amazon. AWS for the Edge: Bringing data processing and analysis closer to end-
points. {https://aws.amazon.com/edge/}. [Online; accessed June-1-2021].

[20] Amazon.com. Amazon.com. {https://www.amazon.com/}.

[21] Apollo. Moscow says Twitter ready to store data of users on Russian servers despite
concerns over surveillance . {http://apollo2.cs.illinois.edu/index.html}, Nov,
2014. [Online; accessed Oct-11-2018].

[22] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The trav-
eling salesman problem: a computational study. Princeton university press, 2006.

[23] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity
joins. In Proceedings of the 32nd international conference on Very large data bases,
pages 918–929. VLDB Endowment, 2006.

155

[24] Shayan Modiri Assari, Haroon Idrees, and Mubarak Shah. Human re-identification
in crowd videos using personal, social and environmental constraints. In European
Conference on Computer Vision. Springer, 2016.

[25] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.
Computer networks, 54(15):2787–2805, 2010.

[26] Avipas. Avipas model av-1081 manual. {https://

e7aba150-670b-4b8b-9a25-311a84251d5f.filesusr.com/ugd/6b6a18_

34ff6afc20914be9943327dc3f5a6211.pdf}.

[27] Andrew D Bagdanov, Alberto Del Bimbo, Walter Nunziati, and Federico Pernici. A
reinforcement learning approach to active camera foveation. In ACM international
workshop on video surveillance and sensor networks, 2006.

[28] Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in
adversarial training for adversarial robustness. arXiv preprint arXiv:2102.01356, 2021.

[29] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.
Neural combinatorial optimization with reinforcement learning. arXiv preprint
arXiv:1611.09940, 2016.

[30] James Benhardus and Jugal Kalita. Streaming trend detection in twitter. Interna-
tional Journal of Web Based Communities, 9(1):122–139, 2013.

[31] Michael S Bernstein, Bongwon Suh, Lichan Hong, Jilin Chen, Sanjay Kairam, and
Ed H Chi. Eddi: interactive topic-based browsing of social status streams. In Proceed-
ings of the 23nd annual ACM symposium on User interface software and technology,
pages 303–312. ACM, 2010.

[32] Amlaan Bhoi. Monocular depth estimation: A survey. arXiv preprint
arXiv:1901.09402, 2019.

[33] bhphotovideo.com. bhphotovideo.com. {https://www.bhphotovideo.com/}. [On-
line; accessed June-29-2021].

[34] Jingwen Bian, Yang Yang, and Tat-Seng Chua. Multimedia summarization for trend-
ing topics in microblogs. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management, pages 1807–1812. ACM, 2013.

[35] Andrea Bianco, Paolo Giaccone, Reza Mashayekhi, Mario Ullio, and Vinicio Vercel-
lone. Scalability of onos reactive forwarding applications in isp networks. Computer
Communications, 102:130–138, 2017.

[36] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python: analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,
2009.

156

[37] Niccolò Bisagno, Alberto Xamin, Francesco De Natale, Nicola Conci, and Bernhard
Rinner. Dynamic camera reconfiguration with reinforcement learning and stochastic
methods for crowd surveillance. Sensors, 20(17):4691, 2020.

[38] bleepingcomputer.com. Iranian hackers exposed in a highly targeted es-
pionage campaign. https://www.bleepingcomputer.com/news/security/

iranian-hackers-exposed-in-a-highly-targeted-espionage-campaign/,
2022.

[39] Alexander Boettcher and Dongman Lee. Eventradar: A real-time local event detec-
tion scheme using twitter stream. In 2012 IEEE International Conference on Green
Computing and Communications, pages 358–367. IEEE, 2012.

[40] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-
wise independent permutations. Journal of Computer and System Sciences, 60(3):630–
659, 2000.

[41] Seth Bromberger. Dns as a covert channel within protected networks. National
Electronic Sector Cyber Security Organization (NESCO)(Jan., 2011), 2011.

[42] Edmund Brumaghin. Covert Channels and Poor Decisions: The Tale of DNS-
Messenger. http://blog.talosintelligence.com/2017/03/dnsmessenger.html,
2017. [Online; accessed March-15-2022].

[43] Anna L Buczak, Paul A Hanke, George J Cancro, Michael K Toma, Lanier A Watkins,
and Jeffrey S Chavis. Detection of tunnels in pcap data by random forests. In
Proceedings of the 11th Annual Cyber and Information Security Research Conference,
pages 1–4, 2016.

[44] Luke Burns. FAQ: The “snake fight” portion of your thesis defense. McSweeney’s,
Nov 2010.

[45] Joseph Carson. Privilege escalation on linux: When it’s good and when it’s a disas-
ter (with examples). https://delinea.com/blog/linux-privilege-escalation,
2020.

[46] Surajit Chaudhuri and Raghav Kaushik. Extending autocompletion to tolerate errors.
In Proceedings of the 2009 ACM SIGMOD International Conference on Management
of data, pages 707–718, 2009.

[47] Chung-Hao Chen, Yi Yao, David Page, Besma Abidi, Andreas Koschan, and Mongi
Abidi. Camera handoff and placement for automated tracking systems with multiple
omnidirectional cameras. Computer Vision and Image Understanding, 114(2):179–
197, 2010.

[48] Shaojie Chen, Bo Lang, Hongyu Liu, Duokun Li, and Chuan Gao. Dns covert channel
detection method using the lstm model. Computers & Security, 104:102095, 2021.

157

[49] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you tweet: a
content-based approach to geo-locating twitter users. In Proceedings of the 19th ACM
international conference on Information and knowledge management, pages 759–768.
ACM, 2010.

[50] Flavio Chierichetti, Jon M Kleinberg, Ravi Kumar, Mohammad Mahdian, and
Sandeep Pandey. Event detection via communication pattern analysis. In Proceedings
of ICWSM, 2014.

[51] Jinyoung Choi and Han Bohyung. Mcl-gan: Generative adversarial networks with
multiple specialized discriminators. 2019.

[52] CloudFlare. Http policies. https://developers.cloudflare.com/

cloudflare-one/policies/filtering/http-policies/, 2020.

[53] Cloudflare. Cloudflare Resource Hub. https://www.cloudflare.com/

resource-hub/?resourcetype=Whitepaper, 2022. [Online; accessed Dec-1-2022].

[54] code.kryo.se. Iodine:code.kryo.se. https://github.com/yarrick/iodine, 2021.

[55] Cash J Costello, Christopher P Diehl, Amit Banerjee, and Hesky Fisher. Scheduling
an active camera to observe people. In Proceedings of the ACM 2nd international
workshop on Video surveillance & sensor networks, pages 39–45, 2004.

[56] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006.

[57] Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A survey. IEEE
Transactions on industrial informatics, 10(4):2233–2243, 2014.

[58] Dahuq. Dahuq fish eye camera.

[59] Jason Haddix Daniel Miessler and g0tmi1k. Seclists. https://github.com/

danielmiessler/SecLists, 2022.

[60] darknet. YOLO: Real-Time Object Detection. {https://pjreddie.com/darknet/

yolo/}. [Online; accessed August-10-2022].

[61] Anirban Das, Min-Yi Shen, Madhu Shashanka, and Jisheng Wang. Detection of
exfiltration and tunneling over dns. In 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages 737–742. IEEE, 2017.

[62] Greire Payen de La Garanderie, Amir Atapour Abarghouei, and Toby P Breckon.
Eliminating the blind spot: Adapting 3d object detection and monocular depth es-
timation to 360 panoramic imagery. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 789–807, 2018.

[63] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

158

[64] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[65] Chong Ding, Jawadul H Bappy, Jay A Farrell, and Amit K Roy-Chowdhury. Oppor-
tunistic image acquisition of individual and group activities in a distributed camera
network. IEEE transactions on circuits and systems for video technology, 27(3):664–
672, 2016.

[66] Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller. Packing a knapsack of
unknown capacity. SIAM Journal on Discrete Mathematics, 31(3):1477–1497, 2017.

[67] B. Doroodgar and G. Nejat. A hierarchical reinforcement learning based control
architecture for semi-autonomous rescue robots in cluttered environments. In 2010
IEEE International Conference on Automation Science and Engineering, pages 948–
953, 2010.

[68] Harris Drucker. Improving regressors using boosting techniques. In ICML.

[69] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection
and diagnosis from system logs through deep learning. In Proceedings of the 2017
ACM SIGSAC conference on computer and communications security, pages 1285–
1298, 2017.

[70] EfficientIp. IDC 2021 Global DNS Threat Report. https://www.efficientip.com/
resources/idc-dns-threat-report-2021/, 2021. [Online; accessed April-20-2022].

[71] Wendy Ellens, Piotr Żuraniewski, Anna Sperotto, Harm Schotanus, Michel Mandjes,
and Erik Meeuwissen. Flow-based detection of dns tunnels. In IFIP International
Conference on Autonomous Infrastructure, Management and Security, pages 124–135.
Springer, 2013.

[72] EnterpriseDT. How to secure your sftp server. https://enterprisedt.com/blogs/
completeftp/how-to-secure-sftp-server/, 2020.

[73] Pravallika Etoori, Manoj Chinnakotla, and Radhika Mamidi. Automatic spelling
correction for resource-scarce languages using deep learning. In Proceedings of ACL
2018, Student Research Workshop, pages 146–152, 2018.

[74] Abdelrahman Fahim, Ajaya Neupane, Evangelos Papalexakis, Lance Kaplan,
Srikanth V Krishnamurthy, and Tarek Abdelzaher. Edge-assisted detection and sum-
marization of key global events from distributed crowd-sensed data. In 2019 IEEE
International Conference on Cloud Engineering (IC2E), pages 76–85. IEEE, 2019.

[75] Vivian Fang, Lloyd Brown, William Lin, Wenting Zheng, Aurojit Panda, and
Raluca Ada Popa. CostCO: An automatic cost modeling framework for secure multi-
party computation. In IEEE European Symposium on Security and Privacy, 2022.

159

[76] Nariman Farsad, Milind Rao, and Andrea Goldsmith. Deep learning for joint source-
channel coding of text. In 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 2326–2330. IEEE, 2018.

[77] Mehdi Fatemi, Mary Wu, Jeremy Petch, Walter Nelson, Stuart J Connolly, Alexander
Benz, Anthony Carnicelli, and Marzyeh Ghassemi. Semi-markov offline reinforcement
learning for healthcare. In Conference on Health, Inference, and Learning, pages
119–137. PMLR, 2022.

[78] Aaron Faulkenberry, Athanasios Avgetidis, Zane Ma, Omar Alrawi, Charles Lever,
Panagiotis Kintis, Fabian Monrose, Angelos D Keromytis, and Manos Antonakakis.
View from above: Exploring the malware ecosystem from the upper dns hierarchy.
In Proceedings of the 38th Annual Computer Security Applications Conference, pages
240–250, 2022.

[79] Wei Feng, Chao Zhang, Wei Zhang, Jiawei Han, Jianyong Wang, Charu Aggarwal,
and Jianbin Huang. Streamcube: hierarchical spatio-temporal hashtag clustering for
event exploration over the twitter stream. In 2015 IEEE 31st International Conference
on Data Engineering, pages 1561–1572. IEEE, 2015.

[80] FireEye. Highly Evasive Attacker Leverages SolarWinds Supply Chain to Compromise
Multiple Global Victims With SUNBURST Backdoor. https://www.fireeye.com/

blog/threat-research/, 2021. [Online; accessed June-1-2021].

[81] Dennis Fisher. Ransomware actors leaning on dns tunneling. https://duo.com/

decipher/ransomware-actors-leaning-on-dns-tunneling, 2022.

[82] Romain Fouchereau. IDC 2021 Global DNS Threat Report. https://www.

efficientip.com/resources/idc-dns-threat-report-2021/, 2021. [Online; ac-
cessed April-20-2022].

[83] g0dmode. Dnssteal. https://github.com/m57/dnsteal, 2015.

[84] The Gaurdian. SolarWinds hack was work of ’at least 1,000 engi-
neers’, tech executives tell Senate. https://www.theguardian.com/technology/

2021/feb/23/solarwinds-hack-senate-hearing-microsoft, 2021 @articlegood-
fellow2014generative, title=Generative adversarial nets, author=Goodfellow, Ian and
Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David
and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua, journal=Advances in
neural information processing systems, volume=27, year=2014 . [Online; accessed
September-20-2021].

[85] Gdatasoftware. New FrameworkPOS variant exfiltrates data via
DNS requests. https://www.gdatasoftware.com/blog/2014/10/

23942-new-frameworkpos-variant-exfiltrates-data-via-dns-requests,
2014. [Online; accessed Feb-26-2022].

160

[86] Arnab Ghosh, Viveka Kulharia, Vinay P Namboodiri, Philip HS Torr, and Puneet K
Dokania. Multi-agent diverse generative adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 8513–8521, 2018.

[87] Prasanna Giridhar, Shiguang Wang, Tarek F Abdelzaher, Jemin George, Lance Ka-
plan, and Raghu Ganti. Joint localization of events and sources in social networks. In
Distributed Computing in Sensor Systems (DCOSS), 2015 International Conference
on, pages 179–188. IEEE, 2015.

[88] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Ad-
vances in neural information processing systems, 27, 2014.

[89] Google. Google place autocomplete api. https://developers.google.com/

maps/documentation/places/web-service/autocomplete#maps_http_places_

autocomplete_amoeba-py, 2020.

[90] Google. Google places api. https://developers.google.com/maps/

documentation/places/web-service/overview, 2020.

[91] Google. kctf vrp setup. https://google.github.io/kctf/vrp.html, 2022.

[92] Google. Public kctf responses. https://docs.google.com/spreadsheets/d/e/

2PACX-1vS1REdTA29OJftst8xN5B5x8iIUcxuK6bXdzF8G1UXCmRtoNsoQ9MbebdRdFnj6qZ0Yd7LwQfvYC2oF/

pubhtml, 2022.

[93] grammarly. Great Writing, Simplified]. https://www.grammarly.com/, 2020. [On-
line; accessed July-10-2022].

[94] Chao Gui and Prasant Mohapatra. Power conservation and quality of surveillance
in target tracking sensor networks. In Proceedings of the 10th annual international
conference on Mobile computing and networking, pages 129–143. ACM, 2004.

[95] Adrien Guille and Cécile Favre. Mention-anomaly-based event detection and tracking
in twitter. In Advances in Social Networks Analysis and Mining (ASONAM), 2014
IEEE/ACM International Conference on, pages 375–382. IEEE, 2014.

[96] Sonali P Gulve, Suchitra A Khoje, and Prajakta Pardeshi. Implementation of iot-
based smart video surveillance system. In Computational intelligence in data mining,
pages 771–780. Springer, 2017.

[97] Bin Guo, Zhu Wang, Zhiwen Yu, Yu Wang, Neil Y Yen, Runhe Huang, and Xingshe
Zhou. Mobile crowd sensing and computing: The review of an emerging human-
powered sensing paradigm. ACM Computing Surveys (CSUR), 48(1):7, 2015.

[98] Himanshu Gupta, Vishnu Navda, Samir Das, and Vishal Chowdhary. Efficient gath-
ering of correlated data in sensor networks. ACM Transactions on Sensor Networks
(TOSN), 4(1):4, 2008.

161

[99] Adnan Gutub and Manal Fattani. A novel arabic text steganography method using
letter points and extensions. 2007.

[100] Said Hanafi and Arnaud Freville. An efficient tabu search approach for the 0–1 mul-
tidimensional knapsack problem. European Journal of Operational Research, 106(2-
3):659–675, 1998.

[101] Taher Haveliwala, Aristides Gionis, and Piotr Indyk. Scalable techniques for cluster-
ing the web (extended abstract). In Third International Workshop on the Web and
Databases (WebDB 2000), 2000.

[102] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Loghub: a large col-
lection of system log datasets towards automated log analytics. arXiv preprint
arXiv:2008.06448, 2020.

[103] J Dinal Herath, Ping Yang, and Guanhua Yan. Real-time evasion attacks against
deep learning-based anomaly detection from distributed system logs. In Proceedings
of the Eleventh ACM Conference on Data and Application Security and Privacy, pages
29–40, 2021.

[104] Here.com. Location data processing, (accessed June, 2018).

[105] Dominik Herrmann, Christian Banse, and Hannes Federrath. Behavior-based track-
ing: Exploiting characteristic patterns in dns traffic. Computers & Security, 39:17–33,
2013.

[106] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining improvements in deep reinforcement learning. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[107] Hhzzk. Dns-tunnels. https://github.com/hhzzk/dns-tunnels, 2017.

[108] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[109] Elise Hu. Hackers stole 40 million credit, debit card num-
bers from target. https://www.npr.org/2013/12/19/255559793/

hackers-stole-40-million-credit-debit-card-numbers-from-target, 2013.

[110] Yuheng Hu, Ajita John, Dorée Duncan Seligmann, and Fei Wang. What were the
tweets about? topical associations between public events and twitter feeds. In Pro-
ceedings of ICWSM, 2012.

[111] Ting Hua, Feng Chen, Liang Zhao, Chang-Tien Lu, and Naren Ramakrishnan. Au-
tomatic targeted-domain spatiotemporal event detection in twitter. GeoInformatica,
20(4):765–795, 2016.

162

[112] iagox86. Dnscat2. https://github.com/iagox86/dnscat2, 2022.

[113] illinois urbana champaign. Social sensing tool, (accessed June, 2018).

[114] Infoblox. Data exfiltration and dns. https://www.infoblox.com/wp-content/

uploads/infoblox-whitepaper-data-exfiltration-and-dns-closing-the-back-door.

pdf, 2020.

[115] Infoblox. Preventing dns-based data exfiltration. https://www.infoblox.com/

wp-content/uploads/infoblox-solution-note-preventing-dns-based-data-exfiltration.

pdf, 2020.

[116] Naotake Ishikura, Daishi Kondo, Vassilis Vassiliades, Iordan Iordanov, and Hideki
Tode. Dns tunneling detection by cache-property-aware features. IEEE Transactions
on Network and Service Management, 18(2):1203–1217, 2021.

[117] GI Ivchenko and SA Honov. On the jaccard similarity test. Journal of Mathematical
Sciences, 88(6):789–794, 1998.

[118] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Don-
ahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al.
Population based training of neural networks. arXiv preprint arXiv:1711.09846, 2017.

[119] Mark Jager, Christian Knoll, and Fred A Hamprecht. Weakly supervised learning
of a classifier for unusual event detection. IEEE Transactions on Image Processing,
17(9):1700–1708, 2008.

[120] Shubham Jain, Viet Nguyen, Marco Gruteser, and Paramvir Bahl. Panoptes: Ser-
vicing multiple applications simultaneously using steerable cameras. In IPSN, pages
119–130, 2017.

[121] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016.

[122] Paul Jasek and Bernard Abayowa. Visual sensor network reconfiguration with deep
reinforcement learning. arXiv preprint arXiv:1808.04287, 2018.

[123] Iram Jawad, Jawad Ahmed, Imran Razzak, and Robin Doss. Identifying dns exfiltra-
tion based on lexical attributes of query name. In 2021 International Joint Conference
on Neural Networks (IJCNN), pages 1–7. IEEE, 2021.

[124] Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, and
Pramod Viswanath. Turbo autoencoder: Deep learning based channel codes for point-
to-point communication channels. Advances in neural information processing systems,
32:2758–2768, 2019.

[125] Chris Johnston. Home Depot: 56 million credit cards com-
promised. https://www.theguardian.com/business/2014/sep/19/

home-depot-56m-credit-card-numbers-compromised, 2014. [Online; accessed
June-15-2022].

163

[126] Kaggle. Covid-19 Image Dataset. {https://www.kaggle.com/datasets/

pranavraikokte/covid19-image-dataset}, 2021. [Online; accessed Jan-10-2023].

[127] Kaggle. Disaster tweets dataset. {https://www.kaggle.com/vstepanenko/

disaster-tweets}, Jan, 2021. [Online; accessed Jan-05-2021].

[128] A Mert Kara, Hamad Binsalleeh, Mohammad Mannan, Amr Youssef, and Mourad
Debbabi. Detection of malicious payload distribution channels in dns. In 2014 IEEE
International Conference on Communications (ICC), pages 853–858. IEEE, 2014.

[129] Alla Katsnelson. Colour me better: fixing figures for colour blindness. Nature, Oct
2021.

[130] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin,
Germany, 2004.

[131] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Introduction to np-completeness
of knapsack problems. In Knapsack problems, pages 483–493. Springer, 2004.

[132] Karim Khalil, Azeem Aqil, Srikanth V Krishnamurthy, Tarek Abdelzaher, and Lance
Kaplan. Nest: Efficient transport of data summaries over named data networks.
In 2018 IFIP Networking Conference (IFIP Networking) and Workshops, pages 1–9.
IEEE, 2018.

[133] Umair Ali Khan and Bernhard Rinner. Online learning of timeout policies for dynamic
power management. ACM Transactions on Embedded Computing Systems (TECS),
13(4):1–25, 2014.

[134] Mahmoud Khonji, Youssef Iraqi, and Andrew Jones. Phishing detection: a literature
survey. IEEE Communications Surveys & Tutorials, 15(4):2091–2121, 2013.

[135] Dongchil Kim, Kyoungman Kim, and Sungjoo Park. Automatic ptz camera control
based on deep-q network in video surveillance system. In ICEIC. IEEE, 2019.

[136] Data Center Knowledge. Twitter Adding More Data Center Space
(Again). {https://www.datacenterknowledge.com/archives/2011/09/19/

twitter-adding-more-data-center-space-again}, Sept 19, 2011. [Online;
accessed Oct-11-2018].

[137] krebsonsecurity.com. Deconstructing the 2014 sally-
beauty breach. https://krebsonsecurity.com/2015/05/

deconstructing-the-2014-sally-beauty-breach/, 2015.

[138] R Bala Krishnan, Prasanth Kumar Thandra, and M Sai Baba. An overview of text
steganography. In 2017 Fourth International Conference on Signal Processing, Com-
munication and Networking (ICSCN), pages 1–6. IEEE, 2017.

[139] Matt J Kusner and José Miguel Hernández-Lobato. Gans for sequences of discrete
elements with the gumbel-softmax distribution. arXiv preprint arXiv:1611.04051,
2016.

164

[140] Danielle Lambion, Michael Josten, Femi Olumofin, and Martine De Cock. Malicious
dns tunneling detection in real-traffic dns data. In 2020 IEEE International Confer-
ence on Big Data (Big Data), pages 5736–5738. IEEE, 2020.

[141] Shuyue Lan, Rameswar Panda, Qi Zhu, and Amit K Roy-Chowdhury. Ffnet: Video
fast-forwarding via reinforcement learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 6771–6780, 2018.

[142] Jey Han Lau, Nigel Collier, and Timothy Baldwin. On-line trend analysis with topic
models:\# twitter trends detection topic model online. Proceedings of COLING 2012,
pages 1519–1534, 2012.

[143] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. In
Computer graphics forum. Wiley Online Library, 2007.

[144] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Finding Similar Items,
page 68–122. Cambridge University Press, 2 edition, 2014.

[145] Chenliang Li, Aixin Sun, and Anwitaman Datta. Twevent: segment-based event
detection from tweets. In Proceedings of the 21st ACM international conference on
Information and knowledge management, pages 155–164. ACM, 2012.

[146] Rui Li, Kin Hou Lei, Ravi Khadiwala, and Kevin Chen-Chuan Chang. Tedas: A
twitter-based event detection and analysis system. In Data engineering (icde), 2012
ieee 28th international conference on, pages 1273–1276. IEEE, 2012.

[147] Wei Li, Fan Zhou, Kaushik Roy Chowdhury, and Waleed Meleis. Qtcp: Adaptive con-
gestion control with reinforcement learning. IEEE Transactions on Network Science
and Engineering, 6(3):445–458, 2018.

[148] Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan, and Jiawei
Han. A survey on truth discovery. ACM Sigkdd Explorations Newsletter, 17(2):1–16,
2016.

[149] Jianbing Liang, Suxia Wang, Shuang Zhao, and Shuhui Chen. Fecc: Dns tunnel
detection model based on cnn and clustering. Computers & Security, 128:103132,
2023.

[150] Chih-Yu Lin, Wen-Chih Peng, and Yu-Chee Tseng. Efficient in-network moving ob-
ject tracking in wireless sensor networks. IEEE Transactions on Mobile Computing,
5(8):1044–1056, 2006.

[151] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755. Springer, 2014.

[152] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee
international conference on data mining, pages 413–422. IEEE, 2008.

165

[153] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions from videos
“in the wild”. In CVPR 2009, pages 1996–2003. IEEE, 2009.

[154] Jingkun Liu, Shuhao Li, Yongzheng Zhang, Jun Xiao, Peng Chang, and Chengwei
Peng. Detecting dns tunnel through binary-classification based on behavior features.
In 2017 IEEE Trustcom/BigDataSE/ICESS, pages 339–346. IEEE, 2017.

[155] Sheng Liu, Michael K Reiter, and Vyas Sekar. Flow reconnaissance via timing attacks
on sdn switches. In 2017 IEEE 37th international conference on distributed computing
systems (ICDCS), pages 196–206. IEEE, 2017.

[156] Siyuan Liu, Yunhuai Liu, Lionel Ni, Minglu Li, and Jianping Fan. Detecting crowd-
edness spot in city transportation. IEEE Transactions on Vehicular Technology,
62(4):1527–1539, 2012.

[157] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Informa-
tion Theory, 28:129–137, 1982.

[158] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming Zhang, Chun-
ying Leng, Ying Liu, Zaifeng Zhang, and Jianping Wu. An end-to-end, large-scale
measurement of dns-over-encryption: How far have we come? In Proceedings of the
Internet Measurement Conference, pages 22–35, 2019.

[159] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming, volume 2.
Springer.

[160] Hans Peter Luhn. Computer for verifying numbers. US Patent, 2(950):048, 1960.

[161] Huadong Ma, Dong Zhao, and Peiyan Yuan. Opportunities in mobile crowd sensing.
IEEE Communications Magazine, 52(8):29–35, 2014.

[162] Yajie Ma, Yike Guo, Xiangchuan Tian, and Moustafa Ghanem. Distributed clustering-
based aggregation algorithm for spatial correlated sensor networks. IEEE Sensors
Journal, 11(3):641–648, 2010.

[163] Samaneh Mahdavifar, Amgad Hanafy Salem, Princy Victor, Amir H Razavi, Miguel
Garzon, Natasha Hellberg, and Arash Habibi Lashkari. Lightweight hybrid detection
of data exfiltration using dns based on machine learning. In 2021 the 11th Interna-
tional Conference on Communication and Network Security, pages 80–86, 2021.

[164] VASILENA MARKOVA. What is nxdomain? https://www.cloudns.net/

blog/what-is-nxdomain/#:~:text=NXDOMAIN%20stands%20for%20a%20non,the%

20domain%20does%20not%20exist., 2024.

[165] Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: modeling
the evolution of user expertise through online reviews. In Proceedings of the 22nd
international conference on World Wide Web, pages 897–908, 2013.

[166] Robert McCraith, Lukas Neumann, and Andrea Vedaldi. Calibrating self-supervised
monocular depth estimation. arXiv preprint arXiv:2009.07714, 2020.

166

[167] Richard McCreadie, Craig Macdonald, Iadh Ounis, Miles Osborne, and Sasa Petrovic.
Scalable distributed event detection for twitter. In Big Data, 2013 IEEE International
Conference on, pages 543–549. IEEE, 2013.

[168] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approx-
imation and projection for dimension reduction. arXiv preprint arXiv:1802.03426,
2018.

[169] Microsoft. Implementing a zero trust security model at mi-
crosoft. https://www.microsoft.com/en-us/insidetrack/

implementing-a-zero-trust-security-model-at-microsoft, 2022.

[170] Microsoft. Quickstart: Installing and configure dns server. https:

//learn.microsoft.com/en-us/windows-server/networking/dns/

quickstart-install-configure-dns-server?tabs=powershell, 2022.

[171] Microsoft. White papers on the cloud and Azure. https://azure.microsoft.com/

en-us/resources/whitepapers/search/?type=WhitePaperResource&Page=1,
2022. [Online; accessed Dec-1-2022].

[172] David Mills et al. Network time protocol. Technical report, RFC 958, M/A-COM
Linkabit, 1985.

[173] Mininet. Mininet.org, (accessed June, 2018).

[174] P. Mockapetris. RFC 1035 Domain Names - Implementation and Specification. In-
ternet Engineering Task Force, November 1987.

[175] Sharon Moltchanov, Ilan Levy, Yael Etzion, Uri Lerner, David M Broday, and Barak
Fishbain. On the feasibility of measuring urban air pollution by wireless distributed
sensor networks. Science of The Total Environment, 502:537–547, 2015.

[176] Arslan Munir, Prasanna Kansakar, and Samee U Khan. Ifciot: Integrated fog cloud
iot: A novel architectural paradigm for the future internet of things. IEEE Consumer
Electronics Magazine, 6(3):74–82, 2017.

[177] Asaf Nadler, Avi Aminov, and Asaf Shabtai. Detection of malicious and low through-
put data exfiltration over the dns protocol. Computers & Security, 80:36–53, 2019.

[178] NDN-testbed. Named Data Networking, (accessed June, 2018).

[179] NetCraftsmen. USE DNS WHITELISTS TO STOP MAL-
WARE IN ITS TRACKS. https://netcraftsmen.com/

use-dns-whitelists-to-stop-malware-in-its-tracks/, 2022. [Online; ac-
cessed July-20-2022].

[180] PaloAlto Networks. Detecting DNS tunneling. https://www.paloaltonetworks.

com/resources/videos/lightboard-dns-security-service, 2019. [Online; ac-
cessed October-01-2021].

167

[181] PaloAlto Networks. Stop attackers from using DNS against you. https://start.

paloaltonetworks.com/protect-your-dns-traffic-against-threats.html,
2022. [Online; accessed June-01-2022].

[182] Joao C Neves and Hugo Proença. Dynamic camera scheduling for visual surveillance
in crowded scenes using markov random fields. In AVSS, pages 1–6. IEEE, 2015.

[183] Nam T Nguyen, Svetha Venkatesh, Geoff West, and Hung H Bui. Multiple camera
coordination in a surveillance system. ACTA Automatica Sinica, 29(3):408–422, 2003.

[184] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat. Deep reinforcement learning robot
for search and rescue applications: Exploration in unknown cluttered environments.
IEEE Robotics and Automation Letters, 4(2):610–617, 2019.

[185] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Supacha-
nun Wanapu. Using of jaccard coefficient for keywords similarity. In Proceedings of
the International MultiConference of Engineers and Computer Scientists, volume 1,
2013.

[186] norton.com. What is a trojan downloader? https://us.norton.com/blog/malware/

what-is-a-trojan-downloader, 2018.

[187] University of Southern California-Information Sciences Institute. Day in the life of the
internet (ditl). https://www.impactcybertrust.org/dataset_view?idDataset=

884, 2022.

[188] University of Southern California-Information Sciences Institute. Reverse dns. https:
//www.impactcybertrust.org/dataset_view?idDataset=702, 2022.

[189] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen,
Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal, Hyungtae Lee, Larry Davis, et al.
A large-scale benchmark dataset for event recognition in surveillance video. In CVPR
2011.

[190] openaddresses.io. batch.openaddresses.io/data. {https://batch.openaddresses.

io/data}, 2016. [Online; accessed December-1-2021].

[191] OpenAI. ChatGPT: Optimizing Language Models for Dialogue. https://openai.

com/blog/chatgpt/, 2022. [Online; accessed Dec-12-2022].

[192] Carlos Ordonez. Clustering binary data streams with k-means. In Proceedings of
the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge
discovery, pages 12–19. ACM, 2003.

[193] PaloAlto. Strategically Aged Domain Detection: Capture APT At-
tacks With DNS Traffic Trends. https://unit42.paloaltonetworks.com/

strategically-aged-domain-detection/, 2021. [Online; accessed December-15-
2021].

168

[194] Ruchi Parikh and Kamalakar Karlapalem. Et: events from tweets. In Proceedings of
the 22nd international conference on world wide web, pages 613–620. ACM, 2013.

[195] Unsang Park, Hyun-Cheol Choi, Anil K Jain, and Seong-Whan Lee. Face tracking
and recognition at a distance: A coaxial and concentric ptz camera system. IEEE
transactions on information forensics and security, 8(10):1665–1677, 2013.

[196] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
networks, 31(23-24):2435–2463, 1999.

[197] Vern Paxson, Mihai Christodorescu, Mobin Javed, Josyula Rao, Reiner Sailer, Dou-
glas Lee Schales, Mark Stoecklin, Kurt Thomas, Wietse Venema, and Nicholas
Weaver. Practical comprehensive bounds on surreptitious communication over
{DNS}. In 22nd {USENIX} Security Symposium ({USENIX} Security 13), pages
17–32, 2013.

[198] Andy Penfold. How iot is reshaping the future of video surveil-
lance. {https://www.securityandsafetythings.com/insights/

iot-reshaping-future-surveillance}.

[199] Claudio Piciarelli, Lukas Esterle, Asif Khan, Bernhard Rinner, and Gian Luca Foresti.
Dynamic reconfiguration in camera networks: A short survey. IEEE Transactions on
Circuits and Systems for Video Technology, 26(5):965–977, 2015.

[200] Raymond Pompon. Cybersecurity threats to the covid-19 vac-
cine. https://www.f5.com/labs/articles/threat-intelligence/

cybersecurity-threats-to-the-covid-19-vaccine, 2021.

[201] Martin Porter. Porter Stemmer. {https://tartarus.org/martin/PorterStemmer/
}, Jan, 2006. [Online; accessed Oct-11-2018].

[202] NEWYORK POST. Harvey victims are using social media when 911 fails, (accessed
September, 2018).

[203] ONOS project. ONOS SDN, (accessed June, 2018).

[204] Faisal Z Qureshi and Demetri Terzopoulos. Planning ahead for ptz camera assignment
and handoff. In ICDSC, pages 1–8. IEEE, 2009.

[205] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[206] Anand Rajaraman and Jeffrey David Ullman. Data Mining, page 1–17. Cambridge
University Press, 2011.

[207] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv, 2018.

[208] Philippe Remy. Name dataset. https://github.com/philipperemy/name-dataset,
2021.

169

[209] Sam Rhea. Announcing cloudflare’s data loss prevention platform. https://blog.

cloudflare.com/data-loss-prevention/, 2021.

[210] Paul Roberts. What’s The Value of a Stolen Chest X-Ray? More
Than You’d Think. {https://www.digitalguardian.com/blog/

whats-value-stolen-chest-x-ray-more-youd-think}, 2021.

[211] Stefan Rudolph, Sarah Edenhofer, Sven Tomforde, and Jörg Hähner. Reinforcement
learning for coverage optimization through ptz camera alignment in highly dynamic
environments. In Proceedings of the International Conference on Distributed Smart
Cameras, pages 1–6, 2014.

[212] Carlos Sampedro, Alejandro Rodriguez-Ramos, Hriday Bavle, Adrian Carrio, Paloma
de la Puente, and Pascual Campoy. A fully-autonomous aerial robot for search and
rescue applications in indoor environments using learning-based techniques. Journal
of Intelligent & Robotic Systems, 95(2):601–627, 2019.

[213] Mahadev Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–39,
2017.

[214] Manos Schinas, Symeon Papadopoulos, Yiannis Kompatsiaris, and Pericles A Mitkas.
Visual event summarization on social media using topic modelling and graph-based
ranking algorithms. In Proceedings of the 5th ACM on International Conference on
Multimedia Retrieval, pages 203–210. ACM, 2015.

[215] Stefan Schneider, Haydar Qarawlus, and Holger Karl. Distributed online service
coordination using deep reinforcement learning. In 2021 IEEE 41st International
Conference on Distributed Computing Systems (ICDCS), pages 539–549. IEEE, 2021.

[216] securereading. How a hacker can infiltrate your network and what can be done about
it? https://securereading.com/hacking-hacker-infiltrate-networks/, 2016.

[217] David A Shamma, Lyndon Kennedy, and Elizabeth F Churchill. Peaks and per-
sistence: modeling the shape of microblog conversations. In Proceedings of the ACM
2011 conference on Computer supported cooperative work, pages 355–358. ACM, 2011.

[218] Huajie Shao, Dachun Sun, Shuochao Yao, Lu Su, Zhibo Wang, Dongxin Liu,
Shengzhong Liu, Lance Kaplan, and Tarek Abdelzaher. Truth discovery with multi-
modal data in social sensing. IEEE Transactions on Computers, 2020.

[219] Navin K Sharma, David E Irwin, Prashant J Shenoy, and Michael Zink. Multisense:
fine-grained multiplexing for steerable camera sensor networks. In ACM conference
on Multimedia systems, 2011.

[220] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE internet of things journal, 3(5):637–646, 2016.

[221] M Hassan Shirali-Shahreza and Mohammad Shirali-Shahreza. Text steganography in
chat. In 2007 3rd IEEE/IFIP International Conference in Central Asia on Internet,
pages 1–5. IEEE, 2007.

170

[222] Manmeet Singh, Maninder Singh, and Sanmeet Kaur. Ti-2016 dns dataset. https:

//dx.doi.org/10.21227/9ync-vv09, 2019.

[223] Nir Soft. Dns query sniffer. https://www.nirsoft.net/utils/dns_query_sniffer.
html, 2013.

[224] GNU software. wget, (accessed June, 2018).

[225] Liming Song, Wenfu Wu, Junrong Guo, and Xiuhua Li. Survey on camera calibra-
tion technique. In 2013 5th International Conference on Intelligent Human-Machine
Systems and Cybernetics, volume 2, pages 389–392. IEEE, 2013.

[226] Sony. Remotely controlled PTZ color video camera with IP streaming. {https:

//pro.sony/ue_US/products/ptz-network-cameras/srg-300se}.

[227] Sony. Visca command control. {https://aca.im/driver_docs/Sony/

EVI-H100V-S-Tech-Manual.pdf}. [Online; accessed March-30-2020].

[228] Tim Soulo. 90.63% of Content Gets No Traffic From Google. And How to
Be in the Other 9.37% [New Research for 2020]. https://ahrefs.com/blog/

search-traffic-study/, 2022. [Online; accessed July-20-2022].

[229] Tim Stack. Internet of Things (IoT) Data Continues to Explode Exponentially.
Who Is Using That Data and How? {https://blogs.cisco.com/datacenter/

internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how},
Feb 5, 2018. [Online; accessed Oct-11-2018].

[230] Wiktor Starzyk and Faisal Z Qureshi. Learning proactive control strategies for ptz
cameras. In 2011 Fifth ACM/IEEE International Conference on Distributed Smart
Cameras, pages 1–6. IEEE, 2011.

[231] Jingwen Su and Hujun Yin. Efficient multi-objective gans for image restoration. In
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1855–1859. IEEE, 2021.

[232] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
A Bradford Book, Cambridge, MA, USA, 2018.

[233] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999.

[234] Symantec. Sunburst: Supply Chain Attack Targets SolarWinds Users. https:

//symantec-enterprise-blogs.security.com/blogs/threat-intelligence/

sunburst-supply-chain-attack-solarwinds, 2021. [Online; accessed June-15-
2021].

[235] Georgia Tech. Gt malware passive dns data daily feed (07/01/2015 to 12/31/2017).
https://www.impactcybertrust.org/dataset_view?idDataset=520, 2015.

171

[236] Ars Technica. Ars Technica, (accessed August, 2018).

[237] Telegraph. Moscow says Twitter ready to store data of users on Russian servers despite
concerns over surveillance . {https://www.telegraph.co.uk/news/2017/11/08/

moscow-says-twitter-ready-store-data-users-russian-servers-despite/},
Nov, 2017. [Online; accessed Oct-11-2018].

[238] the Broadcast Bridge. The rise of the ptz camera.
{https://www.thebroadcastbridge.com/content/entry/12065/

the-rise-of-the-ptz-camera}, Dec, 2019. [Online; accessed March-30-2020].

[239] Iris Tien, Aibek Musaev, David Benas, Ameya Ghadi, Seymour Goodman, and Calton
Pu. Detection of damage and failure events of critical public infrastructure using social
sensor big data. In IoTBD, 2016.

[240] Rohit Kumar Tiwari and Gyanendra K Verma. A computer vision based framework for
visual gun detection using harris interest point detector. Procedia Computer Science,
54:703–712, 2015.

[241] NLTK Tokenizer. NLTK 3.3 documentation. {https://www.nltk.org/api/nltk.

tokenize.html}. [Online; accessed Oct-11-2018].

[242] Tornado. Tornado web server, (accessed June, 2018).

[243] F. Toutounchi and E. Izquierdo. Enhancing digital zoom in mobile phone cameras by
low complexity super-resolution. In 2018 IEEE International Conference on Multi-
media Expo Workshops (ICMEW), pages 01–06, 2018.

[244] Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple
perturbations. Advances in Neural Information Processing Systems, 32, 2019.

[245] Zongjie Tu and Prabir Bhattacharya. Game-theoretic surveillance over arbitrary floor
plan using a video camera network. Signal, Image and Video Processing, 7(4):705–721,
2013.

[246] Burak Uzkent and Stefano Ermon. Learning when and where to zoom with deep
reinforcement learning. In CVPR, pages 12345–12354, 2020.

[247] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[248] Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes,
and Jeffrey Tsang. Hybrid reward architecture for reinforcement learning. Advances
in Neural Information Processing Systems, 30, 2017.

[249] Rahul Rama Varior, Mrinal Haloi, and Gang Wang. Gated siamese convolutional
neural network architecture for human re-identification. In ECCV, pages 791–808.
Springer, 2016.

172

[250] Varonis. What is DNS tunneling? A detection guide. https://www.varonis.com/

blog/dns-tunneling/, 2020. [Online; accessed Mar-01-2022].

[251] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

[252] The Verge. The us, like china, has about one surveillance camera for ev-
ery four people, says report. {https://www.theverge.com/2019/12/9/21002515/

surveillance-cameras-globally-us-china-amount-citizens}, Dec, 2019. [On-
line; accessed March-30-2020].

[253] Maximilian Walther and Michael Kaisser. Geo-spatial event detection in the twitter
stream. In European conference on information retrieval, pages 356–367. Springer,
2013.

[254] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B Abu-Ghazaleh, Srikanth V
Krishnamurthy, Edward JM Colbert, and Paul Yu. Unveiling your keystrokes: A
cache-based side-channel attack on graphics libraries. In NDSS, 2019.

[255] Dong Wang, Tarek Abdelzaher, and Lance Kaplan. Social sensing: building reliable
systems on unreliable data. Morgan Kaufmann, 2015.

[256] Dong Wang, Md Tanvir Amin, Shen Li, Tarek Abdelzaher, Lance Kaplan, Siyu Gu,
Chenji Pan, Hengchang Liu, Charu C Aggarwal, Raghu Ganti, et al. Using humans
as sensors: an estimation-theoretic perspective. In Information Processing in Sensor
Networks, IPSN-14 Proceedings of the 13th International Symposium on, pages 35–46.
IEEE, 2014.

[257] Dong Wang, Lance Kaplan, Hieu Le, and Tarek Abdelzaher. On truth discovery in
social sensing: A maximum likelihood estimation approach. In Proceedings of the
11th international conference on Information Processing in Sensor Networks, pages
233–244. ACM, 2012.

[258] Qi Wang, Jianmin Liu, Katia Jaffrès-Runser, Yongqing Wang, Chentao He, Cun-
zhuang Liu, and Yongjun Xu. Incdeep: intelligent network coding with deep rein-
forcement learning. In IEEE INFOCOM 2021-IEEE Conference on Computer Com-
munications, pages 1–10. IEEE, 2021.

[259] Shiguang Wang, Prasanna Giridhar, Hongwei Wang, Lance Kaplan, Tien Pham, Aylin
Yener, and Tarek Abdelzaher. Storyline: Unsupervised geo-event demultiplexing in
social spaces without location information. In Proceedings of the Second International
Conference on Internet-of-Things Design and Implementation, pages 83–93. ACM,
2017.

[260] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando
De Freitas. Dueling network architectures for deep reinforcement learning. arXiv
preprint arXiv:1511.06581, 2015.

173

[261] Kazufumi Watanabe, Masanao Ochi, Makoto Okabe, and Rikio Onai. Jasmine: a
real-time local-event detection system based on geolocation information propagated to
microblogs. In Proceedings of the 20th ACM international conference on Information
and knowledge management, pages 2541–2544. ACM, 2011.

[262] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-
4):279–292, 1992.

[263] Tianshu Wei, Yanzhi Wang, and Qi Zhu. Deep reinforcement learning for building
hvac control. In DAC, 2017.

[264] Ziyan Wu and Richard J Radke. Keeping a pan-tilt-zoom camera calibrated. IEEE
transactions on pattern analysis and machine intelligence, 35(8):1994–2007, 2012.

[265] www.statista.com. Number of target stores in the united states from fi-
nancial year 2006 to 2022. https://www.statista.com/statistics/255965/

total-number-of-target-stores-in-north-america/, 2013.

[266] www.trendmicro.com. Targeted Attacks. {https://www.trendmicro.com/vinfo/

us/security/definition/targeted-attacks}, 2020. [Online; accessed June-1-
2022].

[267] xairy. Linux kernel exploitation. https://github.com/xairy/

linux-kernel-exploitation.

[268] Chaocan Xiang, Panlong Yang, Chang Tian, Haibin Cai, and Yunhao Liu. Calibrate
without calibrating: An iterative approach in participatory sensing network. IEEE
Transactions on Parallel and Distributed Systems, 26(2):351–361, 2014.

[269] Yuanlu Xu, Liang Lin, Wei-Shi Zheng, and Xiaobai Liu. Human re-identification by
matching compositional template with cluster sampling. In proceedings of the IEEE
International Conference on Computer Vision, pages 3152–3159, 2013.

[270] Yiming Yang and Jan O Pedersen. A comparative study on feature selection in text
categorization. In Icml, volume 97, pages 412–420, 1997.

[271] Yi Yao, Chung-Hao Chen, Andreas Koschan, and Mongi Abidi. Adaptive online
camera coordination for multi-camera multi-target surveillance. Computer Vision
and Image Understanding, 114(4):463–474, 2010.

[272] Yong Yao and Johannes Gehrke. The cougar approach to in-network query processing
in sensor networks. ACM Sigmod record, 31(3):9–18, 2002.

[273] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dualgan: Unsupervised dual
learning for image-to-image translation. In Proceedings of the IEEE international
conference on computer vision, pages 2849–2857, 2017.

[274] Jinsung Yoon, William R Zame, and Mihaela Van Der Schaar. Deep sensing: Active
sensing using multi-directional recurrent neural networks. In International Conference
on Learning Representations, 2018.

174

[275] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera, Kejie Li, Harsh Agar-
wal, and Ian Reid. Unsupervised learning of monocular depth estimation and visual
odometry with deep feature reconstruction. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 340–349, 2018.

[276] Jiacheng Zhang, Li Yang, Shui Yu, and Jianfeng Ma. A dns tunneling detection
method based on deep learning models to prevent data exfiltration. In Network and
System Security: 13th International Conference, NSS 2019, Sapporo, Japan, Decem-
ber 15–18, 2019, Proceedings 13, pages 520–535. Springer, 2019.

[277] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions
on pattern analysis and machine intelligence, 22(11):1330–1334, 2000.

[278] Guoqiang Zhong, Wei Gao, Yongbin Liu, Youzhao Yang, Da-Han Wang, and Kaizhu
Huang. Generative adversarial networks with decoder–encoder output noises. Neural
Networks, 127:19–28, 2020.

[279] Shi Zhong. Efficient streaming text clustering. Neural Networks, 18(5-6):790–798,
2005.

[280] Kaiyang Zhou and Tao Xiang. Torchreid: A library for deep learning person re-
identification in pytorch. arXiv preprint arXiv:1910.10093, 2019.

[281] Xiangmin Zhou and Lei Chen. Event detection over twitter social media streams. The
VLDB Journal—The International Journal on Very Large Data Bases, 23(3):381–400,
2014.

[282] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. Budget constrained
bidding in keyword auctions and online knapsack problems. In International Workshop
on Internet and Network Economics, pages 566–576. Springer, 2008.

[283] Bolor-Erdene Zolbayar, Ryan Sheatsley, Patrick McDaniel, Michael J Weisman, Sen-
cun Zhu, Shitong Zhu, and Srikanth Krishnamurthy. Generating practical adversarial
network traffic flows using nidsgan. arXiv preprint arXiv:2203.06694, 2022.

175

