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ABSTRACT OF THE DISSERTATION

Reliability Enhancement of Many-core Processors

By
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Professor Nader Bagherzadeh, Chair

Many-core systems are of great importance for building the exascale computing machine tar-

geted for 2020. Last-Level Cache (LLC), as the largest on-chip shared memory in many-core

systems, plays a crucial role in power, area, and more important in reliability. Reliability

in LLC depends on both distributed banks and the communication fabric (Network-on-

Chip (NoC) interconnect). In order to achieve high reliability factor, they both need to be

protected against errors. Existent error coding methods protect the cache and communica-

tion fabric, but in isolation of each other. Based on the observations in this thesis, when

cache and NoC interconnect are considered together, the delay overhead of LLC protection

has been decreased. In this thesis, the main contribution is NARC , an integrated method

that minimize the delay overhead of error protection in many-core architectures by integrat-

ing the error coding of cache and interconnection network. This new approach sets up a

linked error coding scheme that guarantees the end-to-end protection of shared cache data

blocks throughout the on-chip network against both hard and soft errors. NARC partitions

each shared cache block into multiple equally-sized segments. It extends each segment with

a low-cost ECC, and transmits each extended segment as a flit in NoC. NARC eliminates

the large ECC encoder/decoder blocks from the critical path of shared cache remote access

through the network. Using this technique, NARC minimizes latency in the common case of

accessing a shared LLC bank over the network, and potentially accessing a local LLC bank,

x



while providing almost the same error protection as strong multi-bit ECC in cache blocks

using a segmented per flit ECC. It has been evaluated that on a 6 by 6 platform with mesh

NoC, NARC improves the performance of the many-core systems on average of 9.6% about

and it can go up to 22% compared to a baseline approach.
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Chapter 1

Introduction

1.1 Background

Every major shift in computer architecture has led to dramatic changes, and the move to

exascale computing will be no exception. At the hardware level, feature size in silicon will

almost continue to decrease at the Moore’s law pace by the end of this decade. To remain

effective in high-end computing systems and in consumer electronics, computer chips must

change in radical ways. Exascale computer systems are needed for the growing number

of problems where experiments are impossible, dangerous, or expensive. These machines,

along with parallel computing, will enable the analysis, modeling and processing of massive

amount of data which leads to advances in various areas of science and technology.

Exascale computing is challenging due to the strict constraints in power requirements, re-

quiring new communication infrastructure and software approaches to exploit parallelism

and scalability. Based on the current technology, scaling today’s systems to an exaflop level

would consume more than a gigawatt of power [43]. Reducing the power requirement by a

factor of at least 100 is a challenge for both future hardware and software technologies.
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Today’s top supercomputer systems include approximately 0.5 to 3 million cores [1]. By

2020, due to design and power constraints, the clock frequency is unlikely to change, which

means that a HPC system will have approximately one billion cores [39][15]. An immediate

consequence is that the power consumption and hence temperature will increase while timely

power and thermal management become much more difficult. Mathematical models, numer-

ical methods, and software implementations will all need new conceptual and programming

paradigms to make effective use of unprecedented levels of concurrency.

1.2 Why Many-core systems

Power wall, memory wall, and ILP wall which were the most big problem in single core

systems bold the need for multi-core systems. Although these limitations were no longer in

multi-core systems, there are still some limitations such as imperfect scaling, difficulty in

software optimization, and maintaining concurrency over a number of cores for multi-core

processors. These limitations in multi-core systems led to the need for many-core systems.

Many-core platforms have become mainstream for the many-core systems where Last-Level

Cache (LLC) shared memory architecture supports low-level communication among cores.

Last-level caches in many-core systems are formed of multiple distributed memory banks

which are linked by a sophisticated interconnection infrastructure, often a Network-on-Chip

(NoC). Since NoC has become the foundation of many cores’ interconnection network, re-

liability becomes a major design challenge by increasing the complexity of these platforms.

An important increase in both permanent faults and transient errors is expected due to

advanced technology nodes, higher integration, voltage scaling, parametric variations, and

higher power density that endanger the reliability of many-core platforms [42] [66]. Hence,

both cache banks and interconnection fabric (NoC) in shared cache extremely suffer from pos-

sible fault occurrences. Though researchers have extensively explored techniques to protect
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data in caches, most of the proposed solutions ignore interconnects or assume a simplified

case in which data transmission among cores are reliably done through the interconnec-

tions. Error correcting code (ECC) approaches are very common in both cache memories

and communication/links in NoCs independently to protect cache banks and interconnection

fabric against errors, respectively [32][8]. In cache memories, Error correcting Code (ECC)

schemes can be as simple as a single-bit error-correcting (SECDED) or as complex as strong

multi-bit ECCs [32]. Such approaches suffer from inefficiencies such as high cost and lack

of scalability when applied to large shared caches in many-core systems. In case of NoCs,

ECC schemes can be implemented in the switch-to-switch (s2s) and end-to-end (e2e) lev-

els [41][47][53]. The choice of either an e2e or s2s ECC scheme in NoCs has power, area,

and performance tradeoffs that vary with the fault rate, size, and topology of the system.

However, due to limited level of error protection, an e2e scheme is inefficient in emerging

many-core systems with high error rates. We can observe from all related work that there is

no previous effort that consider reliability of both cache and interconnection fabric together.

However, in many-core architecture with distributed shared caches that a large amount of

memory accesses are passed through the network, it is necessary to protect them against

errors in a unified manner. One simple solution is directly integrating conventional error

protection schemes available for both cache and NoC interconnect to protect them together.

However, since such schemes are designed in isolation of each other, this approach would be

costly and inefficient. Consequently, a unified system-wide approach that guarantees the e2e

protection of shared cache blocks without imposing a conspicuous overhead is essential for

future many-core architectures.

In this thesis, the main contribution is NARC , an integrated method that minimize the

delay overhead of error protection in many-core architectures by integrating the error coding

of cache and interconnection network. This new approach sets up a linked error coding

scheme that guarantees the end-to-end protection of shared cache data blocks throughout

the on-chip network against both hard and soft errors. NARC partitions each shared cache
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block into multiple equally-sized segments. It extends each segment with a low-cost ECC,

and transmits each extended segment as a flit in NoC. NARC eliminates the large ECC

encoder/decoder blocks from the critical path of shared cache remote access through the

network. Using this technique, NARC minimizes latency in the common case of accessing

a shared LLC bank over the network, and potentially accessing a local LLC bank, while

providing almost the same error protection as strong multi-bit ECC in cache blocks using a

segmented per flit ECC. It has been evaluated that on a 6 by 6 platform with mesh NoC,

NARC improves the performance of the many-core systems on average of 9.6% about and it

can go up to 22% compared to a baseline approach.
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Chapter 2

Background and Related Work

2.1 NoC Fundamentals

2.1.1 Network-on-Chip Systems

With the continuous rising developments of semiconductor fabrication technology, incorpo-

rating additional transistors within a single chip turned to be visibly achievable. The idea of

Network-on-chip (NoC) has been brought by Benini, which provides better communication

capabilities and performance for the System-on-Chip (SoC). Network-on-Chip is a technol-

ogy that supports a new scheme for communication in the system-on-chip and it provides

better performance measures [45]. Thanks to this fast growth of the technology of semicon-

ductor integration, the complexity of a uni-processor chip grows as the Moore’s law defines,

while the growth of the capability of memory system increases so little. This leads to a huge

gap between the processors and memories called memory gap. So, improving the capability

of memory systems tries to close this gap [7].

Network-on-chip (NoC) is an interconnect network for SoCs, MPSoC, and FPGAs and
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it has become an important resource in the Chip Multiprocessors (CMPs). NoC is a

scalable communication infrastructure and its main objective is to provide a scalable ef-

ficiency/performance in hardware area and power. Figure 2.1 shows basic components of a

2D mesh NoC, where each light gray tile represent a core, and to have those cores commu-

nicate with each other, we use the routers, signified by the dark gray tiles, for each core.

Communication happens through the physical links and directed by the routers.

The baseline NoC router, utilized in this thesis, is designed with five bidirectional ports, to

support mesh and torus topologies. It is composed of three main components including an

input buffer, a management and routing unit, and a crossbar switch [21, 66, 6, 61, 3], and

error handling (Hamming).

Router interface

Core element

Core interface

Physical link

Figure 2.1: Mesh-based NoC

2.2 Related Work

This work represents a convergence of three main bodies of related research: fault-tolerant

cache design, fault-tolerant NoC interconnect, and memory reliability in multi/many-core

architectures.
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Fault-tolerant Cache Design: There is a rich body of literature on design for error

resiliency in cache memories. Earlier experiments on fault-tolerant cache design suggested

using redundant rows/columns to the cache [56] or applying cache down-sizing techniques

by disabling a faulty line or block of cache [44]. Some of them use circuit-level techniques

to improve the reliability of each SRAM cell. Apart from the familiar 6T SRAM cell, 8T

SRAM cell and 10T SRAM cell [13] have been proposed. Most of these designs have a large

area overhead which poses a significant limitation for performance and power consumption

of caches. At the system level, a wide range of EDC and ECC have been used [14]. ECC

is proven as an effective mechanism for handling soft errors [58]. However, in a high-failure

rate situation, most coding schemes are not practical because of the strict bound on the

number of tolerable faults in each protected data chunk. In addition, using ECC codes

incurs a high overhead in terms of storage for the correction code, large latency, slow and

complex decoding [30]. There is a recent approach developed by [25] as a fault-tolerant cache

coherence protocols.

Several architectural techniques have also been proposed to improve reliability of on-chip

caches by employing relatively sophisticated fault tolerance mechanisms, such as block/set

pairing [2, 60, 51], address remapping [5] and so on. In sum, since most of these techniques

are designed for a single-core processor with one or two cache banks and uniform cache access

designs, none of them considers the effects of a faulty interconnect on their approach, unlike

our proposed approach.

Fault-tolerant NoC Interconnect: Network-on-Chip communication might be subject

to errors. Reliability and fault-tolerance are outstanding research challenges in NoC de-

sign [36]. There are many efforts to investigate the robustness of NoCs, mostly in the

areas of routing algorithms [50, 49], communication infrastructure [12, 40, 46, 54], or micro-

architecture [33, 38]. A fault-aware IP-core mapping to NoC routers is proposed in [35].

They address the problem of transient link failures by means of temporally and spatially re-
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dundant transmission of messages. A stochastic communication paradigm is proposed in [12]

to provide a fault-tolerant communication. This approach is based on probabilistic broad-

cast where packets are forwarded randomly to the neighboring nodes. However, none of

them protect faulty datapath inside routers. In [9], the authors deploy some error correcting

schemes to achieve combined energy minimization and reliability optimization design goals.

A fault-tolerant router architecture is proposed in [22] to guarantee the functionality of the

NoC in the presence of faults. They detect the most tenuous components of router against

different sources of faults first and then tolerate them to save power and area overhead of

employing fault-tolerant techniques. An adaptive fault-tolerant NoC router with the power

consumption consideration is proposed in [38]. They improve error correction capability

of their design based on the frequency of fault occurrence. Furthermore, all of the related

experiments tolerate failures inside the NoC, ignoring any failure of their memory/cache

components; in this thesis, using the consolidation of those approaches it is tried to address

this issue.

There is no ending for demanding the fault-tolerant design feature which is still one the

major concern of future technologies [62, 23, 17, 64, 63, 16, 19, 31, 67, 68, 18].

Memory Reliability in Multi/Many-cores: There are some recent efforts addressing

memory resiliency in NoC-based CMP architectures. [4] presented a mechanism to maintain

a reliable integrated memory subsystem for a NoC-based system. The idea is to have a

reliable backup memory (in addition to the main memory) to store all the critical data. The

NIs are responsible for redirecting the critical data access in case of a failure in the main

memory. Although, this scenario provides some percentage of reliability to the memory,

it has drawbacks like redundancy of data and not being transparent to the programmer.

In another work [57], Wang addresses fault-tolerance of NUCA cache in NoC-based CMPs.

They proposed a utility-driven address remapping technique to tackle the capacity loss in

NUCA cache of NoC-based CMP architectures. However, their address remapping technique

8



is at the bank-level, and they have not leveraged the NoC fabric for fault-tolerance of the

cache. In a work done in 2010 by [59], they proposed Hi-ECC technique that incorporates

multi-bit error-correcting codes on eDRAM caches to reduce refresh time and cache power

consumption. However, their approach achieves a significant reduction in refresh power in

cache, they have not considered SRAM caches in this approach.

Some recent work by [69, 65, 20, 24] use qualitative techniques to addresses resiliency of NoC

routers.

Proposed approach is different from all the related work as follows. Unlike all previous

efforts in fault-tolerant cache design that consider an error-free and reliable interconnect,

proposed approach considers errors of both cache and interconnects simultaneously. Also, the

proposed is the first work that proposes an integrated approach to error coding of cache and

interconnect in large interconnected many-core platforms to minimize the error protection

costs.

9



Chapter 3

Proposed Architecture

This chapter explains the NARC approach idea and architecture in detail and discusses the

possible questions and concerns to better elaborate and justifies the decisions made in this

thesis.

3.1 Background and Motivation

Many-core systems usually use large last-level shared caches which are shared and NUCA

among all cores and access latency of LLCs has a considerable effect on the cost of system [29].

Figure 3.1 shows the percentage of the total number of local cache accesses in a 6 × 6

platform with shared LLC running PARSEC benchmarks. As demonstrated in this figure,

remote accesses to LLC banks through the interconnect are much higher than the local

ones. The remote cache access number for each workload would be the subtraction of local

access rate from 100%. Having calculated the local versus remote cache accesses, the latency

contributions of the ECC logic to the overall shared cache access latency can be estimated.

Also, Figure 3.11 clarifies the fact that in such platforms most of the cache block accesses

10
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Figure 3.1: Percentage of the total number of local cache accesses in a 6 × 6 platform
with shared LLC running PARSEC benchmarks. The remote cache access number for each
workload would be the subtraction of local access rate from 100%.

are remote and through the interconnect. It can be observed that a large amount of remote

shared cache access latency is imposed by LLC cache ECC logic; especially if the requesting

core is closer to the target LLC cache. The observation from both Figure 3.1 and Figure 3.11

inspires that there is a high chance of improving the performance of the shared-memory

systems by reducing the latency of error handling architecture of shared caches which is in

the critical path of LLC accesses.

3.1.1 Error Correction Coding Overview

This section discusses the various aspects of coding methods as the dominant fault tolerant

approach being used in many-core systems.

Fault tolerant approaches leveraging error correcting codes can protect systems from errors

11



which have a significant effect on system reliability. A common solution for addressing errors

in memory components is applying Error Detecting/Correcting Codes (EDC/ECC). Typi-

cally, EDC techniques are composed of parity bits, while the most common ECC methods

employ Hamming [27] or Hsiao [28] codes with the capability of Single bit Error Correc-

tion and Double bit Error Detection (SECDED). More complex codes such as DECTED,

QECPED (Quad (4-bit) Error Corrections and Panta (5-bit) Error Detection) [30] and also

BCH [48] are considered when higher error detection is needed. However, they are merely

used in large cache memories, since the area, delay, and power overheads of ECC grow

drastically as the correction capability is increased [30]. Depending on the level of error

detection/correction and complexity of implemented coding algorithm, there are various

reliability, performance, power and area trade-offs [52].
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Figure 3.2: Power consumption of Hamming(n,k) encoder and decoder for different data (k)
sizes

To better understand the overhead of error correction using coding techniques, Figures 3.2, 3.3,

and 3.4 illustrates the effect of Hamming SECDED scheme on power, latency, and area for

various data sizes. This result is provided by implementing different sizes of Hamming de-

coder and encoder, and synthesized it using Synopsys Design Compiler tool in 28nm process

technology. As it is observed, as the data size increases, the power consumption and area

grows exponentially,but the latency increases linearly. The reason is that Hamming is im-
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plemented using balanced XOR tree. Based on this observation, which is one of the key

motivations of this thesis, it is tried to utilize the low ECC sizes when architecting the NoC

and cache to avoid exponential growth in power consumption.

Hamming(n,k)
H(15,11) H(31,26) H(63,57) H(127,120) H(255,243) H(511,502) H(1021,1011)

N
or

m
al

iz
ed

 L
at

en
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Encoder
Decoder

Figure 3.3: latency of Hamming(n,k) encoder and decoder for different data (k) sizes
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Figure 3.4: Area of Hamming(n,k) encoder and decoder for different data (k) sizes

For interconnected architectures using NoCs, if the data paths are infected by any faults,

instantaneous fault detection can be provided by a combination of forward error correction

(FEC) and error detection codes. ECC schemes can be implemented in the data link layer

as s2s or in transport layer as e2e scheme [40]. In the s2s approach, the flits are encoded and

decoded in each hop of the transmission from the sender to the receiver and the encoders

(decoders) of the ECC are implemented in the output and/or input ports of the routers of

the NoC. In the e2e approach, encoding flits happens in the sender side and decoding them

13



happens only at the receiver side and the encoders (decoders) of the ECC are implemented

in the network interface (NI) of the cores. The area overhead of e2e approach includes one

encoder, one decoder, and registers of extended buffer, while for s2s policy, the area overhead

equals to overhead of four decoder, four encoder, and registers of extended buffer [26]. When

faults rates are low, robust s2s encoding schemes consume excess power which is unnecessary

and can be avoided by e2e schemes. At the same time, s2s schemes can provide better fault

coverage than e2e schemes when fault rates are high, especially in large hop networks. The

choice of either e2e or s2s fault detection scheme in NoCs has power, area and performance

trade-offs that vary with the number of CMPs and fault rate in the system. The e2e error

handling method is better to be selected for low-noise applications whereas the s2s can be

utilized in noisy environments. The e2e error handling architecture is considered as the

future work for this thesis.

CPU

 LLC 

 Bank

NoC Interconnect

NoC ECC

Cache ECC

Cache ECC:

   - e2e

   - High latency

   - Large encoder/decoder

                          NoC ECC:

                               - s2s

                               - Cache agnostic

Figure 3.5: An abstract view of error handling in baseline approach; There are separate error
detection/correction approaches in NoC and shared cache.
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3.1.2 Overview of Baseline Approach

The baseline approach uses ECC separately in NoC interconnect and shared cache banks

to protect remote cache accesses through the network from unexpected errors. Figure 3.5

shows an abstract schematic of error coding for both LLC and NoC interconnect in baseline

approach. As the figure depicts, the most common error coding methods consider NoC and

cache banks separately.
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Figure 3.6: Baseline architecture with a relatively expensive Hamming encoder/decoder in
the local/remote cache access path.
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Figure 3.6 shows a more detailed architecture of baseline method in which each cache line

owns an ECC extension, and every read/write requires error detection/correction encoding,

respectively. Also on the NoC side, each flit is protected with s2s ( hop by hop ) ECC which

protects data packet against error over the interconnect. Figure 3.6 depicts that each cache

bank has its own encoder/decoder which are in critical path of both local core and network

accesses. Based on this architecture, for each shared cache access (regardless of access type;

local or remote), the entire requested cache line is required to be encoded in write path or

decoded in read path. And as discussed before, encoding/decoding the entire message at one

shot imposes a large amount of power consumption. Since in shared Non-Uniform Cache

Access (NUCA) caches significant number of accesses to cache banks are from remote cores,

the cache blocks need to be protected in the interconnection network as well. On the other

hand, based on Figure 3.6, cache ECC uses large encoder/decoder which are in critical path

of each LLC bank access and due to significant number of remote accesses in large CMPs,

it will impose high latency and energy overhead to the system.

CPU

LLC Bank

        

NoC InterconnectN C I

NARC ECC:

   - Cache protection

   - NoC protection

   - Small encoder/decoder

   - Integrated encoder/decoder

                        

NARC ECC

Figure 3.7: NARC in essence; The idea is to integrate the NoC and shared cache error
handling mechanism by leveraging from existing NoC error recovery method.
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Figure 3.8: Detailed NARC architecture; The encoder/decoder path for both local and
remote access is modified. Local LLC cache access includes four small encoder/decoder to
handle error detection/correction for each data segment in the cache and the corresponding
ECC. Also the remote cache access is directly connected to network interface which improves
the remote shared cache access latency. The ECC section in the LLC is now broken into
multiple smaller ECCs.

3.2 NARC, a NoC-Assisted Reliable Cache method

The proposed architecture in this thesis, called as NARC, a NoC-Assisted Reliable Cache

scheme, is an integrated error coding method which leverages from switch-to-switch ECCs

used in NoC flits, in order to protect shared cache memory banks. These ECC blocks
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are located in segmented manner in each cache line. Figure 3.7 shows an abstract figure

of proposed error coding for both LLC and NoC interconnect in NARC approach. This

approach reduces the latency and power of shared LLC protection while providing the same

level of reliability compared to conventional approaches. In NARC, block-level strong ECC in

LLC banks are replaced with a segmented low-cost ECC and ECC bit chunks are sent along

the block through the network as it is presented in Figure 3.8. Using this design, NARC

removes the large encoder/decoder of cache banks from the critical path of LLC access.

Compared to the baseline design, NARC incurs a small ECC storage overhead compared

to the baseline approach and that’s because of having multiple smaller ECCs for the entire

cache line As depicted in Figure 3.8, LLC controller and network interface components inside

each tile require small architectural modification to be able to support NARC.
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 NI
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NoC Encoder
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  Data2           ECC2
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Flit0

Flit1

Flit2

Flit3

Figure 3.9: Network interface and LLC controller interaction in baseline method. The ECC
for each flit is generated inside network interface in the read path, and in the write path, the
ECC of each flit is stripped off and only the data is delivered to LLC controller for further
error handling.
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In LLC banks, the data array needs to store the ECC segments from each NoC flit at the

end of each cache line. The large cache-level encoder/decoder blocks are now substituted

by multiple less stronger and hence faster ones, but parallel and only on the path between

shared cache and private local L1 cache/core. With this scheme, there is no large cache-level

encoder/decoder blocks in the critical path of remote data accesses, as shown in Figure 3.8.

The encoder/decoder blocks inside network interface are also removed from the LLC access

channel and its internal logic is modified to transfer the ECC bits of each cache segment

along the data during flit de-fragmentation(assembly) process. As it is depicted in Figure 3.9,

baseline approach uses large encoder/decoder to fragment each cache data block. Figure 3.10

illustrates the fragmentation process of each cache block and construction of data flits in the

proposed architecture, based on 3.9 and 3.10, in proposed approach, for each flit in each

cache line, there is an ECC which is sent to network interface too.

3.3 Discussion

In this section, some of the possible concerns about the devised approach is being addressed

in style of question and answer.

3.3.1 Theoretical Reliability Calculation

Question: One big flaw of the method is the theoretical calculations of error probability.

Recent studies have shown, that errors created by for example radiation generates correlated

multiple errors. Moreover the errors generated by the transport net, like crosstalk, also

generate correlated errors. So the assumption of uncorrelated errors is not the state of the

art.
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Figure 3.10: Network interface and LLC controller interaction in NARC approach. There is
no need for error handling inside network interface, since flits will be error checked in the first
NoC router, and each data segment of a cache line fits into one flit, hence the corresponding
ECC for each data segment can be applied to each flit.

Answer: Recent development in cache physical fabrication has resolved the correlated

multiple-bit error issue. Article [55] discusses the interleaving of SRAM or DRAM cells

to create a logical checkword from physically disperse areas of the memory array. This sep-

aration of bit lines and word lines is often called column and row stride. Hence with this

solution, the multi-cell upset will lead to multiple single-bit errors, NOT a multi-bit error

which helps us to consider the error rate uniform throughout the cache.

3.3.2 Error Rate Impact

Question: This approach will be better if the impact of error rate is evaluated from various

aspects, since the error rate has correlation with area, wire length, impedance, capacitance,
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radiation, etc.

Answer: Perhaps with growth of error rate, there will be a need for stronger ECC for

each segment. In this case, the cache block size will grow and so the cache access time.

Also there is a need for more complex encoder and decoder which will add extra timing

overhead to the cache access. Considering the exponential behavior of decoder/encoder

in power consumption and area occupation, in NARC approach due to breaking the data

blocks into multiple smaller segments for local accesses, less power consumption and area

will be observed compared to baseline method. For remote cache accesses, with elimination

of decoding/encoding inside cache, also less latency and power and area will be observed

compared to baseline method.

3.3.3 Network Protocol

Question: A major concern might be that the network protocol flits will need to be encoded

and decoded at each router to allow routing and provide reliability, but how about the flits

generated by the router?

Answer: In NARC approach the Network-on-Chip protocol is intact. Overall in Fault

Tolerant (FT) NoC architectures, in order to keep the critical path untouched the header

flits never get encoded; hence no need for decoding.

3.3.4 ECC Latency to Cache Access Latency Ratio

Question: The motivation of this thesis might be still questionable without having the latency

contributions of the ECC logic (both cache line and s2s or e2e) in the overall access latency.

If the delay percentages of the ECC logic are not significant, the proposed scheme will not

have any benefits.
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Figure 3.11: Total ratio of error recovery latency contribution to remote shared cache access
latency for different NoC sizes with XY dimension-order routing for three different scenarios.

Answer: The ratio of ECC logic latency to total remote LLC cache access time is depicted

in Figure 3.11. This question is a valid concern. For example, if the remote cache access

latency is 500ns, and the average ECC generation/check latency is 5ns, the overall gain of

NARC will be about 1%, which would be negligible.
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Figure 3.12: Total LLC cache access latency
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However, as it is shown in Figure 3.11, the is not the case for even a 256-core SoC. The ideal,

average, and worst case scenarios for ECC logic latency to total remote LLC cache access

time ratio depicted in Figure 3.11. In ideal case the least remote cache access is achieved

when the requested cache line resides in the neighbor tile which with one hop of network

communication it can be fetched.

In average and worst cases, the NoC routing protocol plays a critical role in number of hop

counts. In this thesis, all evaluations are performed with the XY dimension-order routing

protocol. Therefore, the worst-case cache access would be when the cache line requester

and responder cores are located on the two sides of network diameter. As it is observed,

NARC can achieve up to 60% improvement in lowering the remote cache access latency.

On average and having 256 core in a network of 8x8 tiles, which is an extreme case, still

NARC gains about 20% lower cache access latency.

Similarly, Figure 3.12 depicts total LLC cache access latency versus number of cores. As it

is shown, on average the cache access latency of networks with higher number of cores is

non-linearly higher.
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Figure 3.13: Hamming redundancy ratio
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3.3.5 ECC Information Redundancy Overhead

Question: How does ECC overhead affects in choosing the segment size?

Answer: In order to better understand the ECC overhead, Figure 3.13 demonstrates the

redundancy overhead rate for Hamming method (selected as a SECDED method in this

thesis).

As it is observed, as the information size grows and so does the ECC bits, the overhead rate of

redundancy bits lowers exponentially. Therefore, for choosing the segment size, it is desired

to have the largest size possible for each segment. However, on the other hand, as the data

size in each segment grows, the probability of failure in each segment and in total is higher,

as depicted in Figure 3.14. In order to elaborate the effect of cache line/segment data size
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Figure 3.14: Probability of failure versus correction capability per segment for cache line size
of 64-bit and BER of 0.03.

and bit error rate on the probability of failure, couple of experiments are performed and the

result is depicted in Figures 3.14-3.18. As it is shown, as the data size in each segment grows,
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the probability of failure increases accordingly. The reason is that the correction capability

is fixed to 1-bit due to utilization of SECDED hamming method. It can be concluded that

in the application with higher bit error rate, the architecture can be invigorated by using

stronger ECC methods like BCH.
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Figure 3.15: Probability of failure versus correction capability per segment for cache line size
of 128-bit and BER of 0.03.
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Figure 3.16: Probability of failure versus correction capability per segment for cache line size
of 256-bit and BER of 0.03.
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Figure 3.17: Probability of failure versus correction capability per segment for cache line size
of 512-bit and BER of 0.03.
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Figure 3.18: Probability of failure versus correction capability per segment for cache line size
of 1024-bit and BER of 0.03.

In a similar experiment, the data size in each cache line is kept the same at 512-bits, and the

bit error rate is increased from 0.005 to 0.01. As it is expected, as the bit error rate grows

the probability of failure increases as well, however having more number of segments leads

to less probability of failure.
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Figure 3.19: Probability of failure versus correction capability per segment for cache line size
of 512-bit and BER of 0.005.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10

P
ro
b
a
b
il
it
y

 o
f 
fa
il
u
re

Number of correction bits per segment

Bit Error Rate 0.001  

1 Segment  (512  bits each)

2 Segments (256  bits each)

4 Segments (128  bits each)

8 Segments (64  bits each)

Figure 3.20: Probability of failure versus correction capability per segment for cache line size
of 512-bit and BER of 0.001.

In order to elaborate the effect of having more segments per cache line on the total informa-

tion redundancy, Figure 3.22 depicts the total required ECC bits versus various correction

capabilities for different number of segments. It is observed that having more number of

segments per cache line leads to the additional redundancy memory overhead. In this thesis,
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Figure 3.21: Probability of failure versus correction capability per segment for cache line size
of 512-bit and BER of 0.01.

the cache/NoC is tuned to support four segment cache blocks. The reason is that the ECC

information redundancy rate for 4-segment, considering 1-bit correction, is relatively small,

also the probability of failure for 4-segment is tolerable.

�

���

���

���

���

���

���

���

� � � � � � � � 	 
 ��

�
�
��
��
�
�
�
�	

�
�

��	�������������
���	
��������������

����������������������

�����������������������

������������	����������

	���������������������

Figure 3.22: Total ECC bits versus number of correction bits per segment
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Chapter 4

Empirical Evaluations

4.1 Methodology

To evaluate the efficacy of NARC, full system simulations are performed using the GEM5

simulator with the Ruby memory system and the Garnet network on chip model [11]. The

primary results are for a chip multiprocessor (CMP) with 36 in-order Alpha cores [37]. The

focus is on in-order cores as their small size and power efficiency allow aggressive exploitation

of thread-level parallelism. The rest of the configuration is shown in Table 4.1. Unless

otherwise specified, there is no prefetching. Unless otherwise specified, we use applications

from the PARSEC benchmark suite [10] with their pre-defined medium-size inputs. Results

for all benchmarks that execute in our simulation environment are shown. Cacti 6.5 is

utilized with a 32nm process [34] to estimate the power and area of caches.

Figure 4.1 demonstrates the shared cache power consumption, including the data mem-

ory, ECC memory, and error detection/recovery logic. The numbers are normalized to the

DECTED, which shows the maximum power consumption. Hamming and BCH are uti-

lized as the SECDED and DECTED methods, respectively. As it is shown, a major portion
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Table 4.1: Simulated system configuration

Cores 36 cores, 2GHz

ISA ALPHA

Private (L1) Caches 32KB, 2-way set, 3 cycle-access

Shared LLC Cache Shared, 2MB per core, 8-way set, distributed (one
per core), 15 cycle-access

Cache lines 64 bytes

Coherence protocol MESI

Memory controllers 4, one at each corner, each one DDR3-1600 x64
channel, Micron MT41J512M8

Topology 6x6 mesh, deterministic routing, single-cycle 16-
byte channels, 5-stage routers
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Figure 4.1: Shared cache power consumption, including the data memory, ECC memory,
and error detection/recovery logic. The result is normalized to the DECTED, which shows
the maximum power consumption. Hamming and BCH are utilized as the SECDED and
DECTED methods, respectively.

of power is consumed by the extra memory allocated to ECC, which is slightly more in

NARC approach due to more number of ECC bits in this method. However, having seg-
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mented ECC in NARC approach leads to lower error detection/recovery logic compared

to DECTED scheme. All in all, it can be seen that NARC consumes less power in total

compared to DECTED.
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Figure 4.2: Remote cache access latency for each approach.

Figure 4.2 depicts the remote LLC cache access latency for different approaches. As it is

seen and expected, in NARC the remote cache access latency is the least of all fault-tolerant

approaches, and the reason is that the expensive error handling is eliminated from the data

path.

In order to elaborate more on shared cache power, Figures 4.3 and 4.4 illustrate the shared

cache dynamic power consumption for read and write operations, respectively, versus differ-

ent number of segments in a cache line. The results include the data memory, ECC memory,

and error detection/recovery logic, for various number of segments. As it is shown, as the

number of segment increases, the ECC encoder (in write path) and the decoder (in the read

path) power consumption decreases, and they are getting less stronger, and hence less num-

ber of XOR gates. However, the cache memory power increases as the number of segments

grows due to slight grow in the number of segmented ECC bits stored in the shared cache.
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Figure 4.3: Shared cache dynamic power consumption for read operation, including the data
memory, ECC memory, and error detection/recovery logic, for various number of segments.

The inherent higher power consumption in read path is due to the fact that decoding logic

is always more complex than encoding which leads to more power consumption in the read

operation.
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Figure 4.4: Shared cache dynamic power consumption for write operation, including the data
memory, ECC memory, and error detection/recovery logic, for various number of segments.
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NARC does not modify NoC router architecture, rather baselines a fault-tolerant NoC router

architecture, and modifies the flit size in accordance with the segment size. In order to clarify

more on the NoC architecture used for NARC method, the NoC router power and area is

reported in Figures 4.5 and 4.6, respectively. The number of ECC bits varies according to

the flit sizes; Data flit sizes in range for these results are varied from 32 to 256 bits.
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Figure 4.5: NoC router power breakdown for main components: input buffer, control unit,
and error handing logic. This result is reported for four different routers based on their
resiliency. FT-H stands for Fault tolerant with Hamming method, and combination of (n,k)
represents code and data, respectively.

Figure 4.5 depicts NoC router power breakdown for main components: input buffer, control

unit, and error handing logic. This result is reported for four different routers based on their

resiliency. FT-H stands for Fault tolerant with Hamming method, and combination of (n,k)

represents code and data, respectively. Input buffers, because of their inherent sequential

logic (implemented either with SRAM or Flip-Flop) and being in the critical path of NoC

routers, consume the most amount of power among NoC router components. Error handling

logic, for high bandwidth routers, consumes more power than the control logic, as ECC logic

resides in the router data path, imposing dynamic power.

Similarly, Figure 4.6 shows NoC router area occupation breakdown for main components:
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Figure 4.6: NoC router area occupation breakdown for main components: input buffer,
control unit, and error handing logic. This result is reported for four different routers based
on their resiliency. FT-H stands for Fault tolerant with Hamming method, and combination
of (n,k) represents code and data, respectively.

input buffer, control unit, and error handing logic. This result is reported for four different

routers based on their resiliency. ECC logic consumes less area than the control unit but

lower than input buffers.
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Chapter 5

Conclusions and Future Roadmap

5.1 Summary of Contributions

I summarize the contributions of this thesis in the following sections. This thesis devises

NARC, a Network-on-Chip Assisted Reliable Cache architecture to lower the last-level shared

cache access latency in shared-memory many-core systems. It is explained the severity of

error coding codes in latency and power. Subsequently, it is demonstrated by leveraging from

existing error detection/correction logic in NoC routers, remote cache accesses throughout

a many-core system are accessed faster, with almost the same reliability rate. Throughout

the thesis, various trade-offs are discussed and explored to provide more elaboration on the

efficacy of the proposed method. At the end, experimental results are provided to support

the effectiveness of NARC. Also, a comprehensive study and analysis of reliability issues in

cache memory banks are detailed.
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5.2 Future Work

The potential future research work worth pursuing are categorized in the following areas:

5.2.1 Extending NARC to support DMA and memory (DRAM)

controllers.

5.2.2 Explore NARC architecture for end-to-end fault tolerant

scheme.

5.3 Concluding Remarks

In conclusion, the work presented in this dissertation provides an insight to make the shared

memory many-core architectures faster at the same time reliable.
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