UC Irvine
ICS Technical Reports

Title
Propositional semantics for default logic

Permalink
https://escholarship.org/uc/item/7s38b6n1

Authors

Ben-Eliyahu, Rachel
Dechter, Rina

Publication Date
1992

Peer reviewed

eScholarship.org

Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/7s38b6n1
https://escholarship.org
http://www.cdlib.org/

Propositional Semantics for Default Logic

Rachel Ben-Eliyahu
rachel@cs.ucla.edu
Cognitive Systems Laboratory
Computer Science Department
University of California, Los Angeles, CA 90024

Rina Dechter
dechter@ics.uci.edu
Information and Computer Science
University of California, Irvine, CA 92717

Technical Report 92-65

April, 1992
revised July, 1992

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Appeared in the Proceedings of the Nonmonotonic Workshop, Vermont, 1992.

This work was supported in part by the Air Force Office of Scientific Research, AFOSR

900136, NSF grant IRI-9157636, GE Corporate R&D and by Toshiba of America.

“drespdoal ak Ll L{H" -"'"t)f Y‘\‘\”-\ MOl Sy 2 T .
VIS A ke e Te=Sen LM T '} JQY‘/*\Q h'(‘ /m Qa 7 | qq? Rf(l:lﬁlgucal Repozt

July 1992

Propositional Semantics for Default Logic

Rachel Ben-Eliyahu Rina Dechter
rachel@cs.ucla.edu dechter@ics.uct.edu
Cognitive Systems Laboratory Information & Computer Science
Computer Science Department University of California
University of California Irvine, California 92717

Los Angeles, California 90024

July 27, 1992

Abstract

We present new semantics for propositional default logic based
on the notion of meta-interpretations — truth functions that assign
truth values to clauses rather than letters. This leads to a proposi-
tional characterization of default theories: for each such finite theory,
we show a classical propositional theory such that there is a one-to-
one correspondence between models for the latter and extensions of
the former. This means that computing an extension and answering
questions about coherence, set-membership, and set-entailment are
reducible to propositional satisfiability. The general transformation is
exponential but tractable for a subset which we call 2-DT which is a
superset of network default theories and disjunction-free default the-
ories. This leads to the observation that coherence and membership
for the class 2-DT is NP-complete and entailment is co-NP-complete.

Since propositional satisfiability can be regarded as a constraint
satisfaction problem (CSP), this work also paves the way for applying
CSP techniques to default reasoning. In particular, we use the tax-
onomy of tractable CSP to identify new tractable subsets for Reiter’s
default logic. Our procedures allow also for computing stable models
of extended logic programs.

1 Introduction

Researchers in artificial intelligence have found Reiter’s default logic [Rei80]
very attractive and have used it widely for declarative representations of prob-
lems in many areas, including diagnosis. inheritance networks, logic programs
and natural language Processing.

However, while knowledge can be specified in a natural way in default
logic, the concept of extension, as presented by Reiter, is very tricky. More-
over, as Reiter has shown, there is no procedure that computes extensions
of an arbitrary default theory, and recent research has indicated that the
complexity of answering basic queries on propositional default logic is very
high (5 or IT§ complete [Sti92, Got]) and even for very simple propositional
default theories, the problem is NP-hard [KS91, Sti90)].

In this paper we attempt to overcome the above difficulties by introducing
a new semantics for propositional default logic which is more in the spirit of
the traditional semantics for classical logic. Our approach leads to effective
ways of computing extensions and testing membership and entailment and
to the identification of new tractable subsets for default logic.

We introduce the concept of meta-interpretations — truth functions that
assign truth values to clauses rather than logical symbols — and define when
such a truth function is a model for a given default theory. By studying the
properties of these models, we are able to show that any finite propositional
default theory can be compiled into a classical propositional theory such that
there is a one-to-one correspondence between models of the classical theory
and extensions of the default theory. Thus, queries about coherence and en-
tailment in default logic reduce to queries about satisfiability in propositional
logic.

The main advantage of this mapping is that it reduces computation in
default logic to propositional satisfiability, a task that has been explored
extensively. Moreover, our method introduces a deterministic algorithm for
computing extensions of any finite propositional default theory. Previous
algorithms [Eth87a] are guaranteed to produce an extension only for ordered
default theories.

In general, our translation is exponential. However, there is an impor-
tant sublanguage, which we call 2-default theories (2-DT), that is tractable
and includes the so-called network default theories — the default-logic ver-
sion of inheritance networks [Eth87a]. Another important subclass of 2-DT

comprises the disjunction-free default theories, in which formulas with dis-
junction are forbidden. It has been shown (GLI1] that this sublanguage can
embed extended logic programs, in the sense that answer sets of the latter co-
incide with extensions of the former. Thus. techniques developed for finding
extensions for 2-DT are applicable for computing logic programs as well.

As a by-product of our translation, we learn that the coherence problem
and the entailment problem for the class 2-DT is NP-complete, and the en-
tailment problem for the class 2-DT is co-NP-complete. The translation also
provides a general framework for identifying more NP-complete subclasses.

Once a default theory is expressed as a propositional theory, we can use
many heuristics and algorithms that exist in the literature on propositional
satisfiability. In particular, we show how topological considerations can be
used to identify new tractable subsets and how constraint satisfaction tech-
niques can be effectively applied to tasks of default reasoning.

This paper is organized as follows: In the Section 2 we briefly review
Reiter’s default logic and discuss its applicability for specifying inheritance
networks and logic programs. After introducing some necessary basic defi-
nitions in Section 3, we introduce in Section 4 a new semantics for default
logic by defining the concept of a model for a default theory. In Sections
5 and 6 we show how these models can be treated as classical models of
propositional logic, and we associate with each finite default theory a clas-
sical propositional theory that characterizes its models. Then, in Section 7,
we use constraint satisfaction techniques to show how our approach leads to
the discovery of new tractable subsets for default logic. Section 8 provides
concluding remarks.

1.1 Default logic, inheritance networks, and logic pro-
grams

1.1.1 Reiter’s default logic

The following is a brief introduction to Reiter’s default logic [Rei80]. Let
L be a first-order language over a countable alphabet. A default theory is
a pair A = (D, W), where D is a set of defaults and W is a set of closed
well-formed formulas (wff) in £. A default is a rule of the form

(0 3 ,131.....,-3,1

(1)
"

where a, 3y, ..., 3,, and 7 are formulas in £.!

A default ¢ can also be written using the syntax « : By Bnfy. ais
called the prerequisite (notation: pre(é)); 3i,..., 3, the Justifications (no-
tation: just(é)); and v the conclusion (notation: conel(é)). The intuition
behind a default can be stated as “If I believe in @ and I have no reason to
believe that one of the 3; is false, then I can believe v.” A default a : 8/ is
normal if v = 3. A default is semi-normal if it is in the form a : BA v/7. A
default theory is closed if all the first-order formulas in D and W are closed.

The set of defaults D induces an eztension on W. Intuitively, an extension
is a maximal set of formulas that can be deduced from W using the defaults
in D. Let E~ denote the logical closure of £ in £. We use the following
definition of an extension:

Definition 1.1 (extension) (/Rei80], Theorem 2.1) Let E C L be a set of
closed wffs, and let (D, W) be a closed default theory. Define

L, E():H’. (lﬂ(i

2. For1 20 Eiyy = EfU {vla : B1,...,0:./y € D where a € E; and
~Biserer B & E}.

E is an extension for A iff for some ordering E = U2 E;. (Note the ap-
pearance of E in the formula for E;;.) O

Many tasks on a default theory A can be formulated using one of the
following queries:

Coherence: Does A have an extension? If so, find one.

Set-Membership: Given a set of clauses T, is T contained in some exten-
sion of A?7?

Set-Entailment: Given a set of clauses 7', is T contained in every extension
of A??

It has been shown that default logic is a formalism powerful enough to
embed both inheritance networks and logic programs. The following two
subsections elaborate on this.

1Empty Justifications are equivalent to the identically true propomhon true.
%if |T| = 1 this problem will be called Membership.
3if |T| = 1 this problem will be called Entailment.

ot

1.2 Inheritance networks and network default theo-
ries

An inheritance network is a knowledge representation scheme in which the
knowledge is organized in a taxonomic hierarchy, thus allowing representa-
tional compactness. If many individuals share a group of common properties,
an abstraction of those properties is created, and all those individuals can
“inherit” from that abstraction. Inheritance from multiple classes is also
allowed. For more information on this subject, see [Eth87a] or [Tou84].

Etherington ([Eth87a]) proposed a subclass of default theories, called
network default theories, as suitable for providing formal semantics and a
notion of sound inference for inheritance networks.

Definition 1.2 (network default theory) [Eth87a] A default theory A is
a network theory iff it satisfies the following conditions:

1. W contains only

(a) literals (i.e., atomic formulas or their negations) and

(b) disjuncts of the form (a Vv 3) where o and B are literals.

2. D contains only normal and seminormal defaults of the form: a : 3/3
ora:B3ANA...Av./3 where o, 3, and ¥i are literals. O

Etherington suggests formalizing inheritance relations in network default
theories. His translation is as follows:

Strict IS-A: “A’s are always B’s”. Etherington suggests translating this to
the first-order formula Vz.A(z)— B(z). Since we restrict our treat-
ment to propositional theories, we will translate this link to the propo-
sitional rule schema A(z)— B(z).

Membership: “The individual a belongs to the class A”. This is repre-
sented by the fact A(a) (which denotes here a propositional literal).

Strict ISN’T-A: “A’s are never B’s”. Etherington translates this to the
first-order formula Vz.A(z)—-B(z). We will translate this link to
the propositional rule schema A(z)—-B(z).

Nonmembership: “The individual a does not belong to the class A”. This
is represented by the fact —A(a).

Default IS-A: “A’s are normally B’s, but exceptions are allowed”. This
can be represented by the default rule schema A(z) : B(z)/B(z).

Default ISN’T-A: “Normally A’s are not B’s, but exceptions are allowed”.
This can be represented by the default rule schema A(z) : =B(z)/=B(z).

Exception: “Normally A’'s are (not) B’s, unless they have at least one of
the properties C,,....C,". This translates to the default rule schema
A(z): Blz) A =Cy(z) A ». NC,(z)[Blx),

(A(z) : =B(z) A =Ci(z) A ... A =Cy(z)/~B(z)).

An extension of a network default theory then corresponds to a set of
coherent conclusions one could draw from the inheritance network it repre-
sents. Thus all the queries defined above (coherence, set-membership, set-
entailment) are still very relevant when dealing with network default theories.

1.2.1 Default theories and logic programs

Logic programming is a paradigm for representing programs and data in a
declarative way using symbolic logic. Originally, the language used by logic
programs was restricted to Horn clauses, but later its expressive power was
greatly improved when the use of negation in the body of the rules was
introduced. This negation was usually interpreted as “negation by default”
rather then classical negation, so that a grounded predicate is considered
false iff it can not be proved from the program. For an overview of this field,
see [KH92).

The idea behind the logic programming paradigm is that programs will be
written in a declarative way using logic and will be independent of any specific
mechanism for processing them. Thus, programmers will be concerned only
with the meaning of their programs rather than with implementation issues.
Therefore, the meaning of the program— in other words, its semantics—
should be clear and well understood by the user.

The search for an appropriate semantics for logic programs with nega-
tion has occupied the logic programming community for years. The main
approaches are well summarized in [PP90].

One of the most prominent semantics for logic programs, stable model
semantics, was proposed by Gelfond and Lifschitz [GL91]. They have also
shown how stable model semantics can be generalized naturally to the class of
extended logic programs, in which two types of negation— classical negation
and negation by default— are used.

An extended logic program is a set of rules of the form

70 < P1y-+.s P10t gy, ..., N0t ¢y, (2)

where each of r, p, and ¢ is a literal and not is a negation-by-default operator.
Stable model semantics associates a set of models, or answer sets, with such
an extended logic program.

Gelfond and Lifschitz have established a one-to-one correspondence be-
tween extended logic programs and disjunction-free default theories by iden-
tifying a rule of the form (2) with the default

PLA APy~ Y

: §

7o

where ~¢ stands for the literal opposite to g (~P = =P, ~=P = P). They
have shown that each extension of such a default theory corresponds to an
answer set of its twin logic program. A similar idea was introduced by Bidoit
and Froidevaux [BF87], who showed that logic programs can be specified
within the formalism of default logic.

The above discussion leads to the conclusion that any algorithm that
computes extensions of a default theory also computes answer sets of logic
programs under stable model semantics. Furthermore, any semantics at-
tached to a default theory gives meaning to a logic program as well.

2 Definitions and Preliminaries

We denote propositional symbols by uppercase letters P,Q,R..., proposi-
tional literals (e.g. P, =P) by lowercase letters p,q,r,..., sentences by a, 3, ...,
conjunctions of literals by d, d,. ..., and disjunctions of literals (clauses) by
C, €1, €y, The empty clause is denoted by A. The set of all resolvents of
two clauses ¢y, ¢; will be denoted by res(ci,¢c;). The resolution closure of a
set of clauses T is the set obtained by repeatedly resolving pairs of clauses
of T' and adding the resolvents to 7 untjl a fixed point is reached.

oD

A sentence is in a conjunctive normal form (CNF) iff it is a conjunction of
clauses. A sentence is in disjunctive normal form (DNF) iff it is a disjunction
of conjunctions of literals. Each sentence has equivalent sentences* in CNF
and DNF. The function CNF(a) (DNF(a)) returns a sentence in CNF (DNF)
that is equivalent to a. When convenient, we will refer to a clause, a sentence
in CNF, and a sentence in DNF as a set of literals, a set of clauses, and a set
of conjunctions of literals, respectively.

A propositional theory (in brief, a theory) is a set of propositional sen-
tences. An interpretation for a theory T is a pair (S, f) where S is the set of
atoms used in T and f is a truth assignment for the symbols in S. A model
for T is an interpretation that satisfies all the sentences in T. TFa means
that a is propositionally provable from premises T, and T|=a means that T
entails a, that is, every model of T is a model for a as well. In propositional
logic, T+ iff Tl=a. Hence we will use these notations interchangeably.

The relation < between interpretations is defined as follows: 6, < 8, iff
the set of symbols to which 6, assigns true is a subset of the set of symbols
to which 6, assigns true. An interpretation 6 is minimal among a set of
interpretations [iff there is no #' # 6 in [such that ¢ < 4.

The logical closure of a theory T', denoted T, is the set {w|T+w}. How do
we compute the logical closure of a theory T'? Since the closure is an infinite
set, it is obvious that we cannot compute it explicitly. However, when the
theory is finite, we can compute a set that will represent the closure by using
the notion of prime implicants as presented by Reiter and de Kleer [RAK87].

Definition 2.1 A prime implicant of a set T of clauses is a clause ¢ such
that

1. Tt=e and
2. there is no proper subset ¢’ of ¢ such that Tk=c. O

The prime implicants of a theory T will be denoted by PI(T). As Reiter
and de Kleer note, a brute force method of computing PI(T) is to repeatedly
resolve pairs of clauses of T', add the resolvents to 7', and delete subsumed
clauses, until a fixed point is reached ®. There are some improvements to that

“Two sentences a, 3 are equivalent iff & = 3 and 8 [a.
%It is clear that this method will not generate all the tautologies, but these exceptions
are easy to detect and handle.

method (see for example [MR72]), but it is clear that the general problem is
NP-hard since it also solves satisfiability. Nevertheless, for special cases such
as size-2 clauses, the prime implicants can be computed in O(n®) time.

Throughout the paper, and unless stated otherwise, we will assume w.l.g.
that all formulas we use in default theories are in CNF, W is a set of clauses,
the conclusion of each default is a single clause, and each sentence in the
justification part of a default is consistent®,

3 Propositional Semantics for Default Logic

An extension is a belief set. that is, it is a set of formulas that are believed to
be true. A single classical interpretation cannot capture the idea of a belief
set. In other words, we cannot in general represent a belief set by a single
model by identifying the set of all formulas that the model satisfies with the
belief set. The reason is that a classical interpretation assigns a truth value
to any formula, while an agent might not be able to decide whether a piece
of information is true or false, namely, whether a sentence or its negation
belongs to the agent’s set of beliefs.

We propose to use meta-interpretations to represent belief sets. In meta-
interpretations we assign truth values to clauses rather then to propositional
atoms, with the intuition that a clause is assigned the truth value true iff it
belongs to the belief set. If both P and =P are not in my belief set, they will
both be assigned false by the meta-interpretation that represents my belief
set. This motivates the following definition:

Definition 3.1 (meta-interpretation) Let £ be a set of propositional sym-
bols. A meta-interpretation 6 over £ is a pair (S, f), where S is a set
of clauses over £ and f is a classical propositional interpretation for the
set of symbols Ls = {I.|c € S}7. That is, f is a function from Lg into
{true, false}. A clause belonging to S will be called an atomic clause, O

We are usually interested in a belief set of a rational agent. If such
an agent has the clause c in her belief set, she will automatically have all
supersets of this clause in her belief set, since these are trivial consequences of

®Note that if a default has an inconsistent Justification we can simply ignore it.
"We chose this notation because intuitively, I. = true means that ¢ is In the belief set.

10

c. Hence, in order to keep the size of the meta-interpretations as manageable
as possible, we can assume that if a clause is assigned the value true in the
meta-interpretation, then it is as if all its supersets were assigned true. In
the same spirit, an arbitrary formula will be considered true iff all the clauses
in one of its conjunctive normal forms are true. These ideas are summarized
in the following definition. in which we state when a meta-interpretation
satisfies a formula.

Definition 3.2 (satisfiability) A meta-interpretation § = (S, f) satisfies
a clause ¢ (§|= c) iff either ¢ is a tautology in classical propositional logic
or there is an atomic clause ¢ C ¢ such that f(Iy) = true. A meta-
interpretation 8 = (S, f) satisfies the sentence c; Aca A ... Acn (B c1 Ay A
. Nep) iff for all1 <1 < n Of ¢;. A meta-interpretation satisfies a sentence
8 in propositional logic iff it satisfies CNF(s). O

Note that this definition of satisfiability has the desirable property that
it is not the case that, for a given sentence s, O s iff Op—s.

Example 3.3 Consider the meta-interpretation M2 in Table 1.
M2KP, M2K~-P. O

In classical propositional logic, an interpretation for a theory is an assign-
ment of truth values to the set of symbols that are used by the theory. In
analog to the classical case, we now define which meta-interpretation will be
considered an interpretation for a default theory. Meta-interpretations assign
truth values to clauses, not to atomic symbols. So the question is which set of
clauses should be represented as atomic symbols in our meta-interpretation.
We suggest that it will be a set of clauses that contains all the prime im-
plicants of any possible extension, because this way we can make sure that
each clause in the extension will be representable by the meta-interpretation.
Hence the following definitions:

Definition 3.4 (closure) Let A = (D, W) be a default theory. We will say
that a set of clauses S is a closure of A iff S is a superset of all prime
implicants of any possible extension of A. O

Definition 3.5 (interpretation)
Let A be a default theory. An interpretation for A is a meta-interpretation
(S, f), where S is a closure of A.O

11

It is easy to find a closure S of a given a default theory A = (D, W). We can
choose S to be the set of all clauses in the language of A, for example, or the
resolution closure of W union the set of all conclusions of defaults from D.
However, in general, we would like the size of S to be small. We can show
that the set prime(A), defined below, is a closure of A.

Definition 3.6 (prime(A)) Given a default theory A = (D, W), we first
define the following sets:

Cp s the set of all conclusions® of defaults in D, that is,

Cp = {cla: 3i....3,/c € D}

p(A) is the resolution closure of Cp and PI(W) with the restriction that no
two resolvents are from PI(W).

We can now define prime(A): Let A = (D, W)be a default theory. The set
prime(A) is the union of p(A) — {A} and PI(W). O

Proposition 3.7 (prime(A) is a closure) Let A be a default theory. prime(A)
is a closure of A. O

Example 3.8

Consider the following default theory:

D={A:P[P: A/A,: ~A[-A},
W={-PV B}.

PI(W) = {-PV B}, Cp = {P,A,-A}, and p(Ao) = PI(W)UCpU{B, A}.
Therefore, prime(A) = {-P VvV B, P, A, - A, B}.
As we will see later, this theory has two extensions:

Extension 1 (El): {A, P, B}"
Extension 2 (E2): {-A,-PV B}*

and indeed prime(A) is a superset of all prime implicants of E1 and E2.
We now want to build an interpretation (S, f) for A. For reasons to
be explained later, we will choose S to be prime(A)U{=P}. So we get

12

| [1a s Ip Iz Ip I-pvp |
Ml|T F T T F T
M2(F T F F F T
M3\ F T T T F T

Table 1: Three meta-interpretations

‘CS = {I.pve,Ip,I-p, 14, 1.4,1g}. Since |£S| = 6, we have 2° different
interpretations over this fixed S. Table | lists three of them. O

In classical propositional logic, a model for a theory is an interpretation
that satisfies the theory. The set of sentences satisfied by the model is a set
that is consistent with the theory, and a sentence is entailed by the theory if
it belongs to all of its models. In the same spirit, we want to define when an
interpretation for a default theory is a model. Ultimately, we want the set
of all the sentences that a model for the default theory satisfies will be an
extension of that default theory. If we practice skeptical reasoning, a sentence
will be entailed by the default theory if it belongs to all of its models.

Since each is supposed to represent an extension that is a deductively
closed theory, each model for a default theory is required to have the property
that if a clause ¢ follows from a clause ¢ and Ic’ is true, then I, will be true
too. Formally,

Definition 3.9 (deductive closure) A meta-interpretation § = (S, f) is
deductively closed iff it satisfies:

1. For each two atomic clauses c, ¢’ such that ¢ C &, if f (I.) = true then
f(Iy) = true.

2. For each two atomic clauses c,c, if f (I.) = true and f(Iy) = true
then then Ofs res(c,c’). O

A model of a default theory will also have to satisfy each clause from W
and each default from D, in the following sense:

8Note that we have assumed that the conclusion of each default is a single clause.

13

Definition 3.10 (satisfying a default theory) A meta-interpretation 6 sat-
isfies a given default theory A iff

1. For eachce W, Bk c.

2. For each default from D, if 6 satisfies its preconditions and does not
satisfy the negation of each of its Justifications, then it satisfies its con-
clusion. O

Finally, we would also like every clause that the model satisfies to have a
“reason” to be true:

Definition 3.11 (being based on a default theory) A meta-interpretation
0 is based on a default theory A iff, for each atomic clause ¢ such that Ok c,
at least one of the following conditions holds:

1. c 1s a tautology.
2. There is an atomic clause ¢, such that c1 C ¢ and 0 ¢,.

3. There are atomic clauses ¢, c, such that Or ¢1,c; and c € res(cy, c;).

4. ce W,

)1

There is a default a : 3,,...,3,/c in D such that 0|~ a, and for each
1<i1<n 5. O

Example 3.12 Consider the following default theory A:

W= {)
Fz R
D_T.

Clearly, {Q} is a closure of \, and the meta-interpretation @ that assigns
true to the clause Q is an interpretation for A. Note that 8 satisfies A but
it is not based on A. Indeed, the set {Q}* is NOT an eztension of A. O

We first define when a meta-interpretation is a weak model for a default

theory A. As we will see later, for what we call acyclic default theories, every
weak model is a model.

14

Definition 3.13 (weak model) Let A be a default theory. A weak model
for A is an interpretation 0 for A\ such that

1. 8 is deductively closed,
2. 0 satisfies A, and
3. 0 is based on A.

In general, however, weak models are not models of a default theory,
unless each clause that they satisfy has a proof, where a proof is a sequence
of defaults that derive the clause from 1.

Definition 3.14 (proof) Let A = (D, W) be a default theory, and let 6 be
an interpretation of A. A proof of a clause ¢ w.r.t. 8 and A is a sequence of
defaults é,,...,8,, such that the following three conditions hold:

1. c € (WU{concl(6,), ..., concl(6,)})".

2. For all1 <t < n and for each 3; € just(§;), the negation of B; is not
satisfied by 6.

3. For all 1 <1 < n pre(d;) C (WU{concl(6y), ..., concl(§;-1)})*.

O

Definition 3.15 (model) Let A be a default theory. A model for A is a
weak model 6 for A such that each atomic clause that 0 satisfies has a proof
w.r.t. 8§ and A.

Our central claim is that if a meta-interpretation is a model for a default
theory A, then the set of all sentences that it satisfies is an extension of A,
and vice versa. Formally,

Theorem 3.16 (model-extension)
Let A be a default theory. A theory E is an extension for A iff there is a
model 0 for A such that E = {s|0k s}. O

gy

This theorem suggests that given a default theory A = (D,W) we can
translate queries on this theory to queries on its models as follows: A has
an extension iff it has a model, a set T of sentences is a member in some
extension iff there is a model for A that satisfies T, and T is included in
every extension iff it is satisfied by every model for A.

Example 3.17 (Erample 3.8 continued)

M1 and M2 are models for A. The set of sentences that M1 satisfies is equal
to £1. The set of sentences that M2 satisfies is equal to E2. M3 is not a
model for A. because M2 is a model and M2 < M3. O

The idea behind the definition of a proof is that each clause that the
model satisfies will be derivable from W using the defaults and propositional
inference. An alternative way to insure this is to assign each atomic clause an
index that is a non-negative integer and require that if this clause is satisfied
by the meta-interpretation, the clauses used in its proof have a lower index.
Clauses from PI(W) will get index 0, and this way the well-foundedness
of the positive integers will induce well-foundedness on the clauses. The
following theorem conveys this idea. Elkan [E1k90] used the same technique
to insure that the justifications supporting a node in a TMS are noncircular.

Theorem 3.18 (indexing and proofs) A weak model 6 = (S, f) for A is
a model for A iff there is a function p : S— N+ such that for each atomic
clause c the following conditions hold: '

1. ce W iff p(c) = 0.
2. If c ¢ W then at least one of the following conditions hold:

(a) There is a default 6 = o : B1y...,Bn/c € D such that 8 satisfies a
and does not satisfy any of —3; and, for all ¢, € CNF(a), there
is an atomic clause c; C cl such that p(c;) < p(c).

(b) There are two atomic clauses ¢, and c; such that c is a resolvent
of &1 and ¢3, 0 satisfies ¢ and ¢, and p(c;), p(cz) < p(c).

(¢) There is ¢ C ¢ such that 8k ¢ and p(c') < p(c).

16

Figure 1: Dependency graph

The above theorem is very useful in proving that for what we call acyclic
default theories every weak model is a model for A.
Acyclicity is defined as follows:

Definition 3.19 (dependency graph) Let A be a default theory and S a

closure of A. The dependency graph of A w.rt. S, GA g, is defined as
follows:

L. For each c € S there is a node in the graph.

2. There is an edge from node c to node ¢ iff ¢ ¢ W and at least one of
the following conditions hold: ~

(a) cCc
(b) There is a clause " € S such that ¢ € res(e,c").
(c) There is a default o : By, ..., 3,/ in D and c € a.

A default theory A is acyclic w.r.t. a closure S iff GA g is acyclic. O

Hence, if A is acyclic w.r.t. S, the order that G A.S induces on S satisfies
the conditions of Theorem 3.18. So we can conclude the following:

Theorem 3.20 (models for acyclic theories) If § = (S, f) is a weak
model for an acyclic default theory A, then 6 is a model for A. O

Example 3.21 (example 3.8 continued) The dependency graph of A is shown
in Figure 1. A is acyclic w.r.t. S. O

We can also show that every model for a default theory is a minimal weak
model.

Theorem 3.22 (minimality of models) Every model of a default theory
A is a minimal weak model for A.

For meta-interpretations over a fixed set of atomic clauses, minimality is
defined w.r.t. the following partial order: § < @' iff the set of atomic clauses
that @ satisfies is a subset of the set of atomic clauses that 8’ satisfies. We
will say that # is minimal among a set of meta-interpretations [iff there is
no @ # 6 in I such that ¢’ < 6. Given a default theory A and a closure of
A, S, an interpretation (S, 8) is minimal iff 8 is minimal among the set of all
meta-interpretations over S.

4 Expressing an Acyclic Default Theory as
a Propositional Theory

An interpretation (S, f) for a default theory A may be viewed as a classical
interpretation over S, where each clause in S is treated as a propositional
symbol. Our next task is to identify those classical interpretations that are
models of A by constructing a propositional theory that they satisfy (in the
classical sense). In this section we will concentrate on acyclic default theories.
Given a finite acyclic default theory A and a closure of A, S, we will show
a propositional theory PA g that characterizes these models: If (Cs,f)isa
classical model for that propositional theory, then (S, f) is a model for A;
and, vice versa, if (S, f) is model for A, then (Ls, f) is a classical model for
PAS- In the next section we will generalize this approach for the class of all
finite default theories.
We will first demonstrate our method with an example.

Example 4.1 (example 3.8 continued)

Consider the default logic A in example 3.8. A is acyclic. For this theory,
PA g is the following set of sentences:

18

(1) [.p— I pyB, Ig—1.pyB, IpAI..vg—Ip
(2) I-pvB. [4s A=l p—1p, [4— 14, “[4— 14
(3) La—la, Ly=—ly, Ip— 14 A -1 p,

Ig—Ip A [-pys, -~I.p

The first group of sentences expresses the requirement that a model for A
must be deductively closed. It says that if one of B or =P is true in the model
then =P V B should be true too, since B and =P are subsets of ~P V B.
Similarly, since B is a resolvent of =P V B and P, if both of them are true
then B must be true too. Note that we do not have, for example, the sentence
I-g A I.pyg—1-p since =B does not belong to S at all.

The second group of sentences expresses the requirement that the model
should satisfy A. For example, since =PV B belongs to W, the first sentence
in the second group says that =PV B must be true; since we have the default
A: P/P in A, we add the second sentence in the group, which says that if
A 1s true in the model and —P is not, then P should be true in the model.

The third group of sentences says that a model for A should be based
on A. For example, since the only way to add A to an extension is to use
the default : A/A in A, the first sentence in this group says that if A is true
in the model, then the model must not satisfy —=A, otherwise the default
: A/A could not be activated; since no combination of formulas from W and
consequences of defaults in A can derive =P (except =P itself), =P will not
be in any extension, so P g includes the sentence —1p.

The reader can verify that M1 and M2 are the only models of Pas- lfwe
look at M1 and M2 as meta-interpretations, we see that the set of sentences
that M1 satisfies is equal to the extension E1 and the set of sentences that
M2 satisfies is equal to the extension £2.0

Before presenting the translation algorithm, some assumptions and defini-
tions are needed. From now on we will assume that S contains all the clauses
that appear in A, including clauses that appear in the CNF of the negation
of each justification. We will also need the following notational shortcuts:
For a given A and a closure of A, S, we will define the macros in() and
cons() which translate sentences over £ into sentences over £g. Intuitively,
in(a) says that a is satisfied by the interpretation, that is, for each clause ¢
in CNF(a), there is an atomic clause ¢’ such that ¢ is a subset of ¢ and I
is true. in(a) is defined as follows:

1. If a is a tautology, then in(a) = true.

19

(]

If a is an atomic clause ¢ that is not a tautology, then in(a) = I..

3. If @ is not an atomic clause ¢ and is not a tautology, then in(a) =

Ve is atomic.¢ Ce J’rc’

4. If a = ¢; A ... Acn, then in(a) = A<icnin(e)

5. If o is not in CNF, then in(a) = in(CNF(a)).

The function cons(f3) is defined using the function in(). Intuitively,
cons(/) means that the negation of 3 is not satisfied by the interpretation.
cons() is defined as follows:

cons(3) = —[in(—-3)].

The algorithm shown in figure 2 compiles a given finite propositional
default theory A and a closure of A, S, into a propositional theory, PA.S’
that characterizes the models of A. The appealing features of PA g are
summarized in the following theorems.

Theorem 4.2 Let A be a finite acyclic default theory. 0 is a classical model
for pA,S off (0, f) is a model for A. O

Theorem 4.3 Let A be a finite acyclic default theory. Suppose PA.S is sat-

isfiable and 6 = (S, f) is a classical model for Pp g, and let E = {c|c € S, 0F c}.

Then
1. E contains all its prime implicants.

2. E* is an extension of A. O

5 Translating Cyclic Default Theories

So far we have shown that for any finite acyclic default theory A and a closure
of A, S, we can find a propositional theory, PA g, such that if § = (S, f)
is a classical model for Pp g, then 9 is a model for A. In this section
we will generalize this result for default theories that might have cycles.
This will imply that for any finite default theory, the questions of coherence,
membership and entailment reduce to solving propositional satisfiability. We

20

Algorithm TRANSLATE-1

begin:

le Ppg=0

2. Pas =Pas+{llce W}

3. Pag =Pas+ { in(a)A cons(31) A ... A cons(Bp)— 1. | a: By,...,0nfc € D}
4. PAos =Pas+{lo—I;|c1.c2€S8.e1Cez }

5. PAg=Pag+{ Iy Al;—I., | cr.c,c3€S, and ¢3 € res(cy,¢2)}

6. For each atomic clause ¢, define:

Se={c|c,ei€Sande; Ce}

=™
I

{(c1,¢2) | €1,c2 € S,c = res(e1, ¢2)}
e = (@ Bryssn) | @i Byyiii Brfe €D)}

o

SUBSET-reasons(c)= [V s, in(ey)]
RESOLUTION-reasons(¢)= V(. o;)er.[in(c1) A in(ez2)]]
DEFAULT-reasons(¢)= [V, 3,.. 4.)1eD. [in(a) A cons(f;) A ... A cons(f,)]

7. For each atomic clause ¢ ¢ W, if S.UR.UD. = 0,
then Pp g = Pp g+ {I.—false} ;
else PA.S =PA,S+
{I.—[SUBSET-reasons(c)
VRESOLUTION-reasons(c)
VDEFAULT-reasons(c)|}

end.

Figure 2: An algorithm that translates an acyclic default theory into a propo-
sitional theory

will use Theorem 3.18, which suggests the use of indices to verify that the
interpretations are grounded in the default theory.

When finite default theories are under consideration, the fact that each
atomic clause gets an index and the requirement that an index of one atomic
clause will be lower than the other's can be expressed in propositional logic.
Let #cstand for “The index associated with ¢”, and let [#¢1 < #c;] stand for
“The number associated with ¢, is less than the number associated with ¢;”.
We use these notations as shortcuts for formulas in propositional logic that
express these assertions (see appendix). Using these new index variables and
formulas, we can now express the conditions of theorem 3.18 in propositional
logic over the language L'q = LqU{#L.|I. € Lg} in a way similar to the
translation in algorithm TRANSLATE-1.

The size of the formulas #c and [#¢, < #c2] is polynomial in the range
of the indices we need. Note that we do not have to index all the clauses in S.
We examine Ga g If a clause appearing in a prerequisite of a default is not
on a cycle with the default consequent, we do not need to enforce the partial
order among these two clauses. Indices are needed only for clauses that reside
on cycles in the dependency graph. Furthermore, since we will never have to
solve cyclicity between two clauses that do not share a cycle, the range of the
index variables is bounded by the maximum number of clauses that share a
common cycle. In fact, we can show that the index variable’s range can be
bounded further by the maximal length of an acyclic path in any strongly
connected component in GAs-

The strongly connected components of a directed graph are a partition
of its set of nodes such that for each subset C in the partition and for each
z,y € C, there are directed paths from z to y and from y toz in G. The
strongly connected components can be identified in linear time [Tar72]. Note
that if the default theory is acyclic, we do not need any indexing. This was
also implied by Theorem 3.20.

We summarize all the above discussions by giving an algorithm for com-
puting PA g for a given finite default theory A and a given closure of a5.8,
In addition to the one-place macro in(), the algorithm uses a two-place macro
in(a, ¢) which means “a is true independently of ¢”, or, in other words, “a
is true, and, for each clause ¢’ € a, if ¢ and ¢ are in the same component in
the dependency graph, then the index of ¢ is strictly lower then the index of

»

Eis

o
(8]

Algorithm TRANSLATE-2, step 6

6. For each atomic clause ¢, define:

Sc={a|gea€Sande Ce}
R. = {(c1,¢2) | 1,62 € S, c € res(cy,ez)}
D, = {(a,B1,...s0n) | @: B1y.... Bufc €D }

SUBSET-reasons(c)= [Ves, in(ey,c) |
RESOLUTION-reasons(c)= [V(c,.c)er.[tn(c1,€) A in(cq, c)]]

DEFAULT-reasons(c)=
[V(a.31....80)€D. [in(a,c) Acons(By) A ... A cons(Br)]]

Figure 3: Step 6 of algorithm TRANSLATE-2

The function in(a,¢) is defined as follows®.

1.

4.

D

If a is a tautology, then in(a,c) = true.

If @ = ¢’ where ¢’ is a clause not in the same component in the depen-
dency graph as ¢, then in(a,c) = Lo,

If a = ¢’ where ¢ is a clause in the same component in the dependency
graph as c, then in(a,c) = [I4 A [#c < #]).

If @ =c; A... Acq, then in(a,c) = Ai<icnin(ci,c)

If a is not in CNF, then in(a,c) = in(CNF(a),c).

Except for Step 6, which is shown in Figure 3, algorithm TRANSLATE-2
is identical to algorithm TRANSLATE-1.

The following theorems summarize the properties of our transformation.
In all of these theorems, PA g is the set of sentences resulting from translating
a given finite propositional theory A and a closure of A, S, using algorithm

TRANSLATE-2.

Note that in(a, c) is undefined when ¢ or « contains a non-atomic clause, but that is
not problematic since we will use it only when this situation does not occur.

23

Theorem 5.1 Let A be a default theory. Suppose PA.g is satisfiable and 8
15 a model for Px g, and let E = {c|c is atomic. 8 = 1)
Then:

1. E contains all its prime implicants.

2. E* is an extension of A. O

Theorem 5.2 For each extension E"for a default theory A, there is a model
0 for P g such that a clause c is in E* ff Oz c. O

These two theorems suggest a necessary and sufficient condition for the co-
herence of a finite propositional theory:

Corollary 5.3 A default theory A has an extension iff PA g is satisfiable.
a

Corollary 5.4 A set of clauses T is contained in an ertension of a default
theory A iff there is a model 8 for P A g such that for each c € T, 0 |= in(c).

Corollary 5.5 A clause c is in every extension of a default theory A iff each
model 0 for P g satisfies in(c), in other words, iff Pa s FEin(c). O

These theorems suggest that we can first translate a given finite propo-
sitional theory A to Pag and then answer queries as follows: To test
whether A has an extension, we test satisfiability of PAS; to see whether
a set T of clauses is a member in some extension, we test satisfiability of
PAS + {in(c)lc € T}; and to determine whether T is included in every
extension, we test whether P A g entails the formula [A.erin(c)].

5.1 Complexity considerations

Clearly, the transformation presented above is exponential in general. How-
ever, there are tractable subsets. For example, if the default theory is what
we call a 2-default theory (2-DT), then the transformation can be done in
polynomial time and the size of the propositional theory produced is polyno-
mial in the size of the default theory. The class 2-DT is defined bellow. Note
that this class is a superset of network default theories and logic programs
(“disjunction-free default theories”).

24

Definition 5.6 A 2-default theory (2-DT) is a propositional default theory
A where all the sentences in W are in 2-CNF and, for each default o :
Biy.s B/ in D, a is in 2-CNF, each 3, is in 2-DNF, and + is a clause of
size 2. 0

A step-by-step analysis of the complexity of algorithm TRANSLATE-2
for a default theory A = (D, W) that belongs to the class 2-DT is shown
below.

Let n be the number of letters in £, the language upon which A is built,
and let d be the maximum size of a default (in number of conjuncts or
disjuncts in the formulas appear in it). We assume that S, which is the
closure of A, is the union of prime(A), the set of all clauses appearing in
A, and the set of all clauses that appear in the CNF of all negations of
justifications'®. Note that S can be computed in O(n® + |D| * d) steps (see
algorithm in appendix). We denote by [the length of the longest acyclic
path in any component of G5 g, by d. the maximal size of D,, and by r,
the maximal number of pairs of clauses in S that yield the same clause when
resolved. Note that r < n. p denotes the maximum number of clauses
that appear in any prerequisite and reside on a cycle on the dependency
graph (note that p is smaller than d and smaller or equal to the size of any
component in the dependency graph. so p < min(d,n)).

step 2 Takes O(n?) time. Produces no more than O(n?) sentences of size 1.

step 3 The reason we require the justification to be in 2-DNF is that we can
transfer the negation of it into a 2-CNF representation in linear time.
We get that this step can be done in time O(|D|*d) time and produces
| D| sentences of size O(d).

step 4 Takes O(n?) time. Produces O(n?) sentences of size 2.
step 5 Takes O(n®) time. Produces O(n®) sentences of size 3.

steps 6-7 For this step, we first have to build the dependency graph of A
with respect to S. This takes O(n? + |D| * d) time. We assume that
at the end of the graph-building phase, there is a pointer from each

'Note that the justifications are in 2-DNF, and hence their negation translates very
easily into a 2-CNF.

o
(7]

clause to its component and to all the defaults for which the clause is
a conclusion.

For each clause ¢ in S, the size of S, is < 2 , the size of R. is O(r),
and the size of D, is O(d.). Computing in(c,c) takes O({?) time and
produces a sentence of size O(/?); computing in(a, c) takes O({*+p) time
and produces a sentence of size O(/? * p). Therefore, for each clause c,
computing SUBSET-reasons takes O(/?) time and produces a sentence
of size O({*). Computing DEFAULT-reasons takes O(d. * (d + pi?))
time and produces a sentence of this size. Computing RESOLUTION-
reasons takes O(n) time and produces a sentence of size O(r). Since we
have O(n?) clauses, the whole step takes O(n*(I* + n) + | D| * (d + pi?))
time and produces O(n?) sentences of size O(maz(d. * (d + pi?),r)).
Note that maxz(d. = (d + pl*).r) < d. * (d + ni?).

Proposition 5.7 For 2-DT, the above transformation takes O(n?(I* +n) +
|D| * (d + pl?)) time and produces O(n?) sentences of size O(d. * (d + ni?). O

The above theorem shows that there is a direct connection between the
complexity of the translation and the cyclicity of the default theory trans-
lated, since for acyclic theories | = 1.

For disjunction-free default theories we have a lower upper bound:

Proposition 5.8 For disjunction-free default theories, the above transfor-
mation takes O(|W|+|D[+(d+pl*)) time and produces O(|W|+|D|) sentences
of size O(|D| = (d + pi?)). O

Note that if the disjunction-free default theory is acyclic, then it can be
compiled into a propositional theory in linear time.

Combining Proposition 5.7 and Corollaries 5.3-5.5 we get the following
results on the complexity of the class 2-DT:

Corollary 5.9 The coherence problem (i.e. eztension existence) for the
class 2-DT is NP-complete.

Corollary 5.10 The membership problem for the class 2-DT is NP-complete.

Corollary 5.11 The entailment problem for the class 2-DT is co-NP-complete.

26

6 Tractable Subsets for Default Logic

Once queries on a default theory are reduced to propositional satisfiability,
we can use any of a number of techniques and heuristics to answer them.
For instance, entailment in default logic can be solved using any complete
resolution technique, since we have shown that it is reducible to entailment
in propositional logic.

Our approach is useful especially for the class 2-DT, since our algorithm
compiles a 2-DT in polynomial time. So if a 2-DT translates into an easy sat-
isflability problem, queries on the knowledge it represents can be answered
efficiently. In other words, each subclass of 2-DT that translates into a
tractable subclass of propositional satisfiability is a tractable subset for de-
fault logic. So we can identify easy default theories by analyzing the charac-
teristics of 2-DT that would translate into tractable propositional theories.
We will give an example of such a process by showing how some techniques
developed by the constraints based reasoning community can be used to iden-
tify new tractable subsets for default logic.

Constraint-based reasoning is a paradigm for formulating knowledge in
terms of a set of constraints on some entities, without specifying methods
for satisfying such constraints. Some techniques for testing the satisfiability
of such constraints, and for finding a setting that will satisfy all the con-
straints specified, exploit the structure of the problem through the notion of
a constraint graph.

The problem of the satisfiability of a propositional theory can be also
formulated as a constraint satisfaction problem (CSP). For a propositional
theory, the constraint graph associates a node with each propositional letter
and connects any two nodes whose associated letters appear in the same
propositional sentence.

Various parameters of constraints graph were shown as crucially related to
the complexity of solving CSP and hence to solving the satisfiability problem.
These include the induced width, w*, the size of the cycle-cutset, the depth
of a depth-first-search spanning tree of this graph, and the size of the non-
separable components ([Fres5]),[DP88], [Dec90]). It can be shown that the
worst-case complexity of deciding consistency is polynomially bounded by
any one of these parameters. Since these parameters can be bounded easily
by a simple processing of the graph, they can be used for assessing complexity
ahead of time. For instance, when the constraint graph is a tree, satisfiability

27

can be answered in linear time.

In the sequel we will focus on two specific CSP techniques: tree-clustering

[DP89], which we will describe in detail, and cycle-cutset decomposition
[Dec90], which we will discuss briefly.

6.1 Tree-clustering for default theories

We will show how tree-clustering can be used in default reasoning in two
steps: we will show first how this technique can be used to solve satisfiability
and then how it can be adopted for answering queries about a default theory.

The tree-clustering scheme has a tree-building phase and a query-processing
phase. The complexity of the former is exponentially dependent on the
sparseness of the constraint graph, while the complexity of the latter is always
linear in the size of the database generated by the tree-building preprocessing
phase. Consequently, even when building the tree is computationally expen-
sive, it may be justified when the size of the resulting tree is manageable and
many queries on the same theory are expected. The algorithm is summa-
rized in Figure 4. It uses the triangulation algorithm, which transforms any
graph into a chordal'! graph by adding edges to it [TY84]. The triangulation
algorithm consists of two steps:

L. Select an ordering for the nodes (various heuristics for good orderings
are available).

2. Fill in edges recursively between any two nonadjacent nodes that are
connected via nodes higher up in the ordering.

Since the most costly operation within the tree-building algorithm is gen-
erating all the submodels of each clique (step 5), the time and space com-
plexity of this preliminary phase is O(|T| * n % 2I°l), where |C| is the size of
the largest clique, |T'| the size of the theory and n is the number of letters
used in T'. It can be shown that |C'| = w* + 1, where w* is the width 1? of
the ordered chordal graph (also called induced width). As a result, for classes
having a bounded induced width, this method is tractable.

1A graph is chordal if every cycle of length at least four has a chord.

?The width of a node in an ordered graph is the number of edges connecting it to nodes
lower in the ordering. The width of an ordering is the maximum width of nodes in that
ordering, and the width of a graph is the minimal width of all its orderings

o
GO

Tree building(7,)

input: A propositional theory 7" and its constraint graph G.

output: A tree representation of all the models of T'.

1.

2.

Use the triangulation algorithm to generate a chordal constraint graph.

Identify all the mazimal cliques in the graph. Let Cj, ..., C, be all such
cliques indexed by the rank of their highest nodes.

Connect each C; to an ancestor C; (j < i) with whom it shares the
largest set of letters. The resulting graph is called a join tree.

Compute M;, the set of models over C; that satisfy the set of all sen-
tences from T composed only of letters in C;.

For each C; and for each C; adjacent to C; in the join tree, delete from
M, every model M that has no model in M; that agrees with it on the
set of their common letters (this amounts to performing arc consistency
on the join tree). O

Figure 4: Propositional-tree-clustering:Tree-building phase

e e e

Once the tree is built it always allows an efficient query-answering process,
that is, the cost of answering many types of queries is linear in the size of the
tree generated. The query-processing phase is described below (m bounds
the number of submodels for each clique):

Propositional Tree-Clustering - Query Processing

1. T is satisfiable if none of its .M,’s is empty, a property that can be
checked in O(n).

QW]

To see whether there is a model in which some letter P is true (false),
we arbitrarily select a clique containing P and test whether one of
its models satisfies (does not satisfy) P. This amounts to scanning a
column in a table, and thus will be linear in m. To check whether a
set of letters A is satisfied by some common model, we test whether all
the letters belong to one cluster C,. If so, we check whether there is
a model in M, that satisfies A. Otherwise, if the letters are scattered
over several cliques, we temporarily eliminate from each such clique
all models that disagree with A, and then reapply arc consistency. A
model satisfying A exists iff none of the resulting M;’s becomes empty.
The complexity of this step is O(n * m * logm). O

We next summarize how tree-clustering can be applied to default reason-
ing (now n stands for the number of symbols in the default theory, m for the
number of submodels in each clique; note that m is bounded by the number
of the extensions that the theory has):

l. Translate the 2-DT to propositional logic (generates O(n?) sentences
of size O(d, * (d + nl?)).

2. Build a default database from the propositional sentences using the
tree-building method (takes O(|T'|n? * exp(w* + 1)), where |T| is the
size of the theory generated at step 1).

3. Answer queries on the default theory using the produced tree:

(a) To answer whether there is an extension, test whether there is an
empty clique. If so, no extension exists (bounded by O(n?) steps).

(b) To find an extension, solve the tree in a backtrack-free manner:

30

In order to find a satisfying model we pick an arbitrary node C; in
the join tree, select a model M, from M;, select from each of its
neighbors C; a model M; that agrees with M; on common letters,
unite all these models, and continue to the neighbors’s neighbors,
and so on. The set of all models can be generated by exhausting
all combinations of submodels that agree on their common letters
(finding one model is bounded by O(n? x m) steps).

(c) To answer whether there is an extension that satisfies a clause ¢
of size k, check whether there is a model satisfying [VC;cC derlel
(this takes O(k* * n* x m * logm) steps). To answer whether c is
included in all the extensions, check whether there is a solution

that satisfies [Ac’c 'er 1] (bounded by O(k*n?m) steps).

As was stated before, given a default theory A and a closure of A, S, the
complexity of the algorithm presented above depends on the topology of the
constraint graph of the propositional theory PA§- One of the advantages of
the algorithm we suggest is that it is possible to asses the cost of the whole
process by examining the default theory prior to the translation step. We
are able to show a characterization of the tractability of default theories as
a function of the topology of their interaction graph.

The interaction graph is an undirected graph where each clause in S is
associated with a node. Arcs are added such that for every default

ClyeoesCn i lpg1y ey ngm

1

Co
there are arcs connecting co.ci, ..., ¢y, CNF(=dny1), ..., CN F(=dn4m) in a clique;
every two clauses c,c’ are connected iff ¢ C ¢’ or if there exist ¢’ such that
c=res(c,).

The next theorem characterizes the complexity of our algorithm in terms
of the induced width of the interaction graph.

Theorem 6.1 For a 2-DT A whose interaction graph has an induced width
w*, ezistence, membership, and entailment can be decided in O(n? * (n +
QW™+1) 4 | D| «d) steps when the theory is acyclic and O(n?(nW "+ 4 n +13) +

|D| = (d + pl*)) steps when the theory is cyclic. O

Note that an upper bound to w* is 2n? and that the upper bound is always
at least as large as the size of the largest default in the theory. We believe,

31

however, that this algorithm is especially useful for temporal reasoning in
default logic, where the temporal persistence principal causes the knowledge
base to have a repetitive structure. as the following example demonstrates:

Example 6.2

Suppose [park my car in the parking lot at time ¢;. If it was not removed
from the lot by being stolen or towed between time t; and t,,, I expect my
car to be there during any time ¢; between ¢, and ¢,,. This can be formalized
in the following default theory, where we have n defaults of the form

parked(t;) : parked(t;4,)
parked(¢;4)

b

and in W we have n sentences for each of the forms:

stolen(t;) — moved(t,)
towed-away(t,) — moved(t;)
moved(t;) — - parked(t;4;)

For notational convenience, we abbreviate the above rules as follows:

Pti : ptis
ptin
§t;—rmt;
tt,—smt,;

mt,——pt; 1,

The interaction graph of this theory for the closure { pt;, —pt;, ~mt;, —st;,
~tti, ~mt; V -pt;, 2st; Vomt;, ~tt; V mt, } is shown in Figure 5. If we use the
ordering shown in the figure, we find that w* < 2 for this particular set of
problems. Thus, as the number of time slots (n) grows, the time complexity
for answering queries about coherence, set-membership, and set-entailment
using the tree-clustering method grows linearly. Note that according to Sel-
man and Kautz’s classification [KS91], this family of theories belongs to a
class for which the complexity of answering such queries is NP-hard.

H‘t’,

ttb “'3 t’t3

Figure 5: Constraints graph for Example 6.1

6.2 Cycle-cutset for default theories

The cycle-cutset algorithm is another method for solving CSPs that exploits
special features of the constraint graph. The cycle-cutset method is based
on two facts: that tree-structured CSPs can be solved in linear time, and
that variable instantiation changes the effective connectivity of the constraint
graph. The basic idea is to instantiate a set of variables that constitute a
cycle-cutset of the constraint graph, where a cycle-cutset is a set of nodes
that, once removed, render the graph cycle-free. After the cycle-cutset is
instantiated, the remaining graph is a tree, and we can apply the linear-time
tree algorithm for solving the rest of the problem. If no solution is found,
we have to try another instantiation of the cycle-cutset variables, and so on.
Clearly, the complexity of this approach is exponentially bounded by the size
of the cycle-cutset that is used. For more details on this method, see [Dec90).
We have the following complexity bound on reasoning tasks in 2-DT:

Theorem 6.3 For a 2-DT whose interaction graph has a cycle-cutset of car-
dinality c, existence, membership, and entailment can be decided in O(n? *
(n +2°) + |D| « d) steps when the theory is acyclic and O(n*(n° + n + ?) +
|D| * (d + pl?)) steps when the theory is cyclic. O

7 Conclusions

Reiter’s default logic is a useful formalism for nonmonotonic reasoning. How-
ever, the usefulness of default logic is limited by the lack of intuitive semantics
for the set of conclusions that the logic ratifies and by the high computational
complexity required for drawing such conclusions.

33

In this paper we have addressed some of the these problems. We have
presented a new semantics for default logic which clarifies the concept of
extension, have shown a procedure that computes an extension for any fi-
nite propositional default theory. and have identified new tractable default
theories.

Using the concept of meta-interpretations, we defined a model for a propo-
sitional default theory. We then showed an algorithm that compiles any finite
default theory into a classical propositional theory such that models of the
last coincide with extensions of the first. This means that queries on de-
fault theories are reducible to propositional satisfiability, a problem that has
been largely explored. For instance, in order to compute whether a formula
is in every extension of a default theory, we need not compute or count all
the extensions, since the problem of entailment in default logic is reduced to
propositional provability.

In general, the translation algorithm is exponential, but it is polynomial
for the class 2-DT which is expressive enough to embed inheritance networks
and logic programs. This leads to the observation that Membership and
Coherence is NP-complete and Entailment is co-NP-complete for the class
2-DT. Using constraint satisfaction techniques, we have identified tractable
subclasses of 2-DT. We have shown how problems in temporal reasoning can
be solved efficiently using the tree clustering algorithm.

Related results for autoepistemic logic were reported in [MT91], where it
was shown that the question of an atom’s membership in every expansion of
an autoepistemic theory can be reduced to propositional provability. Also,
Elkan [E1k90] has shown that stable models of a logic program with no clas-
sical negation can be represented as models of propositional logic, thus our
work extends his results for the full power of default logic.

There have been attempts in the past to relate default logic to other forms
of nonmonotonic reasoning systems, such as autoepistemic logic, circumscrip-
tion, and TMS [Kon88, MT89, Eth87b, JK90]. We believe that embedding
default logic in classical logic is just as valuable since classical logic is a
very well-understood formalism supported by a large body of computational
knowledge.

34

8 Proofs

8.1 Useful theorems and definitions

Definition 8.1 ([tL67]) If S is any set of clauses, then the resolution of S,
denoted by R(S), is the set consisting of the members of S together with all
the resolvents of the pairs of members of S. O

Definition 8.2 ([tL67]) If S is any set of clauses, then the n-th resolution
of S, denoted by R"(S), is defined for n > 0 as follows: R° = S, and for
i =0 S)= B(R™(S)). O

Theorem 8.3 ([tL67]) Given a set S of clauses, if a clause ¢ is a logical
consequence'® of S, then for some n > 0, there ezist a clause ¢ € R*(S8),
such that ¢/ Cec. O

Proposition 8.4 Suppose c,c.c,, ¢}, ¢, are clauses, ¢, Ca, d, Ccy and
c =res(cr,cz). Then at least one of the following conditions must hold:

8 T8
2. Ce.
3. There is ¢’ C ¢ such that ¢’ € res(c},c}).

Proof: Suppose

C1:C3VP
C2:C4Vﬁp
c=c3Vey

and suppose conditions 1 and 2 do not hold. Then it must be that

C’1=C5VP
& =5 VP

where cs is a subset of c3 and cg is a subset of of ¢4. Clearly, c5 V cg is both
a resolvent of ¢| and ¢ and a subset of ¢. O

13We assume c is not a tautology.

35

Corollary 8.5 If a meta-interpretation is deductively closed, then if it sat-
isfies ¢, cz, it must also satisfy res(c,.c;). O

Theorem 8.6 ([Rei80], Corollary 2.2) A closed default theory (D, W) has

an inconsistent extension iff W is inconsistent. O

Proposition 8.7 Let 8 be a deductively closed meta-interpretation, and sup-
pose § satisfies a set of clauses A, and A }=c. Then 0 satisfies c.

Proof: By Theorem 8.3, there is i such that for some ¢ € R'(A), ¢ Cec. We
will prove by induction on this i that 8 ¢, and hence 6 satisfies c. For =0,
the assertion is clear. For i > 1, there must be ¢;,¢, € R*"'(A) such that

¢’ = res(c,c2). By the induction hypothesis, 8 satisfies c; and c;. So by
Corollary 8.5, 6 satisfies ¢’. O

8.2 Proofs

Proof of Proposition 3.7 (prime(A) is a closure) Let A be a default
theory. prime(A) is a closure of A.

Proof: Suppose E is an extension of A = (D, W). By Definition 11,
for some ordering, £ = |J2,E;, where E; is as defined there. We will
show that for each ¢ € E, there is a clause ¢ in prime(A) such that
¢’ € c. The proof will go by induction on min(c), where min(c) is the
minimal ¢ such that ¢ € E,.

Case min(c) = 0: In this case, it must be that ¢ € W, and our claim
must be true since prime(A) contains PI(W).

Case min(c) = 1: In this case, it must be that either W = cor ¢ € Cp.
In any case, the assertion clearly holds.
Assume the claim is true for min(c) = n, where n > 0, show that
it is true for m = n + 1 (m > 1). From now on we assume that
¢ # A, since by Lemma 8.6, if ¢ = A then ¢ € PI(W), so min(A)
must be < 1.
Suppose ¢ was introduced first at E,,. So either c € Cp or E, =
If ¢ € Cp, then clearly our assertion holds. Assume Fu f=ne.
So by Theorem 8.3, for some j, there is ¢’ € Ri(E,) such that
¢’ C c. We will show by induction on such a minimal 7 that there

36

is ¢’ € prime(A) such that ¢’ C ¢. For j = 0, this is clear due
to the induction hypothesis on n. For j > 0, let ¢;, c; be clauses
in R'(E,), | < j, such that ¢ € res(ci,cz). By the induction
hypothesis, there are ¢{, ¢; in prime(A) such that ¢} C ¢;, ¢, C .
By Proposition 8.4, either ¢; C ¢’ or ¢, C ¢” or there is ¢c3 in
res(cy,¢y) such that e; C ¢”. Since min(c) > 1, it can’t be that
both ¢} and ¢} are in PI(W), so c3 € p(A) = A C prime(A). O

Proof of Theorem 3.16 (model-extension) Let A be a default theory.
A theory E is an extension for A iff there is a model 8 for A such that

E = {50k s}. O

Proof: Let A = (D, W) be a default theory and 8 = (S, f) a model of
A. Let A be the set of all clauses that @ satisfies. We will show that A
is an extension'* of A.

We define

1. B =W,

2. For: 2 0 E;yq = E7U {c|a: By ...y Bnfc € D where a € E; and
=B1,...7Bn & A and c € A}, and

3. E=2E:.
It is easy to verify that £ C A. We will show that A C E, and so by
Theorem 1.1 A is an extension of A.

Let ¢ € A. By definition, ¢ has a proof w.r.t. (S,f) and A. By
induction on the number of defaults used in the shortest proof, we can
easily show that c € E.

To prove the other direction, suppose E is an extension of A. We will
show that 8 = (S, f') is a model of A, where f' is defined as

forallce S, f'(c) = trueec € E.

It is easy to verify that 6 is deductively closed and satisfies A. By
Theorem 1.1, there are sets Ey, E\, ... such that

1. E(): W,

"*w.l.g., we assume in this proof that an extension is a set of clauses.

37

B

2. Fori 20 Eiyy = E7U {c|a : $,....Bn/c € D where a € E; and
=31,...7P3, ¢ E}, and

3. E =U2,E.

By induction on the minimal i such that an arbitrary clause ¢ belongs
to E;, we can show that ¢ has a proof in # and that @ is based on A. O

Proof of Theorem 3.18 (indexing and proofs) A weak model § = (8, 1)
for A is a model iff there is a function p : S— N* such that for each
atomic clause ¢ the following conditions hold:

l. e € Wifl ple) = 0.
2. If ¢ € W then at least one of the following conditions hold:

(a) Thereis a default § = a : 3,,..., B./c € D such that @ satisfies
« and does not satisfy any of —=3; and, for all ¢, € CNF(a),
there is an atomic clause ¢, C ¢l such that ple2) < p(e).

(b) There are two atomic clauses ¢; and ¢; such that c is a resol-
vent of ¢; and ¢,, # satisfies ¢, and ¢, and pcr), p(e2) < p(c).

(c) There is ¢’ C ¢ such that f ¢ and p(¢) < ple).

Proof: We can show that each atomic clause has a proof w.r.t. # and
A by induction on p(c). O

Proof of Theorem 3.20 (models for acyclic theories) If § = (S, f) is
a weak model for an acyclic default theory A, then 8 is a model for A.

Proof: If the theory is acyclic, the dependency graph induces on S an

ordering that complies with the requirements stated in Theorem 3.18.
O

Proof of Theorem 3.22 (minimality of models) A model for A is a min-
imal weak model for A.

Suppose that & = (S, f) is a model for A. It is obviously a weak
model. We want to show that it is minimal. By definition, for each
atomic clause c in S there is a proof of ¢ w.r.t. # and A. Assume by
contradiction that 6 is not minimal. So there must be a weak model

38

6’ = (S. f') such that A= C A, where

A~ = {c|c is atomic, f '(c) = true}
A = {c|e is atomic, f (¢) = true}

We will show that if ¢ has a proof w.r.t. A and 6, it must be satis-
fied by ¢, and so A C A~ — a contradiction. The proof will go by
induction on n, the number of defaults used in the proof of ¢. If n = 0,
the assertion is clear since ¢ € W=*. In case the proof of ¢ uses the
defaults é1,...,6,41, we observe, using the induction hypothesis, that
(WU{concl(éy), ..., concl(8,)})" is satisfied by &. So since 8 must sat-
isfy A, it must satisfy concl(é,4;) as well, and since it is deductively
closed, it must satisfy W(J{concl(é,), ...yconcl(d,41)}", so it satisfies c.
a

A Expressing Indexes in Propositional Logic

Suppose we are given a set of symbols L to each of which we want to assign
an index variable within the range 1 — m.

We define a new set of symbols: L'={P,P=1,P=2,..,P=m|P¢€ L},
where P =1 for ¢ = 1,...,m denote propositional letters with the intuition
“P will get the number i” behind it. For each P in L', let Np be the following
set of sentences :

PelVP=2V..VNP=m
P=1—[~(P=2)A-(P=3)A..A~(P =m)]
P=2—[~(P=3)A-(P=4)A..A~(P =m)]

P=m—1—-=(P =m).

The set Np simply states that p must be assigned one and only one
number.

39

e

For each P and Q in L', let [#P < #Q], which intuitively means “The
number of P is less than the number of Q”, denote the disjunction of the
following set of sentences:

P=1AQ=2P=1AQ=3,...P=1AQ=m
P:'_}AQ:.‘}....‘P=2/\Q=m

P=m-1AQ=m.

Thus, for each symbol P to which we want to assign an index, we add
Np to the theory, and then we can use the notation [#P < #Q)] to express
the order between indexes.

Acknowledgements

We thank Gerhard Brewka and Kurt Konolige for very useful comments on
an earlier version of this paper and Judea Pearl for fruitful discussions.

References

[BF87] N. Bidoit and C. Froidevaux. Minimalism subsumes default logic
and circumscription in stratified logic programming. In LICS-87:

Proceedings of the IEEE symposium on logic in computer science,
pages 89-97, Ithaca, NY, USA, June 1987.

(Dec90] Rina Dechter. Enhancement schemes for constraint processing:
Backjumping, learning, and cutset decomposition. Artificial In-
telligence, 41:273-312, 1990.

[DP88] Rina Dechter and Judea Pearl. Network-based heuristics for con-
straint satisfaction problems. Artificial Intelligence, 34:1-38, 1988.

[DP89] Rina Dechter and Judea Pearl. Tree clustering for constraint net-
works. Artificial Intelligence, 38:353-366, 1989.

40

[E1k90]

[Eth87a]

[Eth87b]

[Fre85]

(GL91)

[Got]

[JK90]

[KH92J

[Kon88]

(KS91]

[MR72]

Charles Elkan. A rational reconstruction of nonmonotonic truth
maintenance systems. Artificial Intelligence, 43:219-234, 1990.

David W. Etherington. Formalizing nonmonotonic reasoning sys-
tems. Artificial Intelligence, 31:41-85, 1987.

David W. Etherington. Relating default logic and circumscription.
In [JCAIL-87: Proceedings of the 10th international joint conference
on artificial intelligence, pages 189-494, Detroit, MI, USA, August
1987.

E.C. Freuder. A sufficient condition for backtrack-bounded search.
J. ACM, 32(4):755-761, 1985.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation Computing,
9:365-385, 1991.

George Gottlob. Complexity results for nonmonotonic logics. In the
working notes of the 4th International Workshop on Nonmonotonic
Reasoning, Plymouth, Vermont, May 1992.

Ulrich Junker and Kurt Konolige. Computing the extensions of
autoepistemic and default logics with a TMS. In AAAI-90: Pro-
ceedings of the 8th National Conference on Artificial Intelligence,
Boston, MA, 1990.

R.A. Kowalski and C.J. Hogger. Logic programming. In Stuart C.
Shapiro, editor, Encyclopedia of Artificial Intelligence, pages 873~
891. John Wiley & Sons, 2nd edition, 1992.

Kurt Konolige. On the relation between default and autoepistemic
logic. Artificial Intelligence, 35:343-382, 1988.

Henry A. Kautz and Bart Selman. Hard problems for simple default
logics. Artificial Intelligence, 49:243-279, 1991.

Eliana Minicozzi and Ray Reiter. A note on linear resolution strate-
gies in consequence-finding. Artificial Intelligence, 3:175-180, 1972.

41

[MTS89]

[MT91]

[PP90]

[RAK87)

[Rei80]

[Sti90]

[Sti92)

[Tar72)

(tL67)

Wiktor Marek and Miroslaw Truszczynski. Relating autoepistemic
and default logic. In Ronald J. Brachman, Hector J. Levesque, and
Raymond Reiter, editors, KR-89: Proceedings of the first inter-
national conference on principles of knowledge representation and
reasoning, pages 276-288, San Mateo,CA, 1989. Morgan Kaouf-
man.

Wiktor Marek and Miroslaw Truszczynski. Computing intersec-
tion of autoepistemic expansions. In Logic Programming and Non-
monotonic Reasoning: Proceedings of the st International work-
shop, pages 37-50, Washington, DC USA, July 1991.

Halina Przymusinska and Teodor Przymusinski. Semantic issues in
deductive databases and logic programs. In R. B. Banerji, editor,
Formal Techniques in Artificial Intelligence: A sourcebook, pages
321-367. North-Holland. New York, 1990.

Raymond Reiter and Johan de Kleer. Foundations of assumption-
based truth maintenance systems: Preliminary report. In The na-
tional conference on Al pages 183-188, Seattle, WA, July 1987.

Raymond Reiter. A logic for default reasoning. Artificial Intelli-
gence, 13:81-132, 1930.

Jonathan Stillman. It’s not my default: The complexity of member-
ship problems in restricted propositional default logics. In AAAI-
90: Proceedings of the Sth national conference on artificial intelli-
gence, pages 371-578, Boston,MA, 1990.

Jonathan Stillman. The complexity of propositional default log-
ics. In AAAI-92: Proceedings of the 10th national conference on
artificial intelligence, pages 794-799, San Jose,CA, 1992.

Robert Tarjan. Depth-first search and linear graph algorithms.
SIAM Journal on Computing, 1:146-160, 1972.

Char tung Lee. A completeness theorem and a Computer Program
for finding theorems derivable from given azioms. PhD thesis, Uni-
versity of California, Berkeley, 1967.

42

[Tou84]

(TY84]

David S. Touretzky. Implicit ordering of defaults in inheritance
systems. In AAAI-84: Proceedings of the national conference on
artificial intelligence, pages 322-325, Austin,TX, 1984.

Robert E. Tarjan and M. Yannakakis. Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs
and selectively reduce acyclic hypergraphs. SIAM Journal on Com-
puting, 13(3):566-579, 1984.

43

MAY 27 1993

