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Some exact results in chiral gauge theories
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We analyze dynamics of chiral gauge theories based on the SUðNÞ gauge group with one antisymmetric
tensor A and (N − 4) antifundamentals Fi when N is odd. Based on the continuity to the supersymmetric
gauge theories with anomaly-mediated supersymmetry breaking, we claim that the global SUðN − 4Þ
symmetry is spontaneously broken to SpðN − 5Þ. There are N − 5 massless fermions as a fundamental
representation of SpðN − 5Þ, and another massless fermion, together saturating the anomaly matching
conditions. When N is even, the unbroken flavor symmetry is SpðN − 4Þ while there are no massless
fermions. Our result is different from the dynamics suggested by tumbling where the full SUðN − 4Þ
symmetry is unbroken, but the tumbling picture can be modified via the addition of a second condensate to
produce the symmetry breaking pattern predicted from our method.

DOI: 10.1103/PhysRevD.104.065018

I. INTRODUCTION

Non-Abelian gauge theories [1] are the basis of our
modern understanding of microscopic physics. Quantum
chromodynamics (QCD) based on the SUð3Þ gauge group
is a prime example with vectorlike particle content. In
general, SUðNÞ gauge theories with Nf quarks in the
fundamental representation are called QCD-like theories.
Inspired by the light pions and Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity [2], Nambu and Jona-
Lasinio conjectured dynamical chiral symmetry breaking
[3,4], which is now believed to be the correct dynamics of
QCD-like theories.
However, the dynamics of chiral gauge theories are

difficult to understand. There has been theoretical progress
in representing chiral gauge theories on the lattice [5–13],
which is a potential avenue for future numerical simula-
tions; yet they are numerically expensive and progress is
slow. Arguably, understanding the dynamics of chiral
gauge theories is one of the most important open questions
in quantum field theories.

While there is no established systematic approach there
does exist a conjectured framework for the dynamics of
chiral gauge theories called tumbling [14]. It postulates
certain fermion bilinear condensates that dynamically break
the gauge symmetry until the remaining gauge group
becomes QCD-like. For example, an SUðNÞ gauge theory
with an antisymmetric tensor A and (N − 4) antifundamen-
tals F̄i was argued [15] to break the gauge symmetry by the
condensate hAabF̄b

i i ¼ v3δai ≠ 0 to an SUð4Þ gauge theory
that confines. It assumes massless symmetric tensor
composite fermions AF̄fi;F̄jg. Even though the conjecture
satisfies nontrivial ‘t Hooft anomaly matching conditions, it
has never been clear if it is the correct understanding.
Recently, these proposals have undergone further scrutiny
in [16,17], by applying new discrete anomaly matching
conditions [18] involving the center symmetry Zn of the
gauge group, in the spirit of [19–21]. We do not elaborate
more on these generalized consistency conditions, since
they seem to automatically hold for our proposal of the IR
dynamics, due to its continuous connection to the super-
symmetric theory.
In [22], a novel approach was proposed to study the

dynamics of nonsupersymmetric gauge theories via anom-
alymediated supersymmetry breaking (AMSB) [23,24]. It
is based on the Weyl compensator field

Φ ¼ 1þ θ2m; ð1Þ

where m dictates the size of the supersymmetry (SUSY)
breaking. The UV theory has mass for squarks and
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gauginos, which decouple from dynamics when m is
increased, and it is therefore continuously connected to
nonsupersymmetric gauge theories. Due to the ultraviolet
insensitivity of the AMSB [25,26], the dynamics can be
studied using the particle content and interactions at each
energy scale. In particular, a consistent picture was
obtained for QCD-like theories [22]. For other approaches
to extrapolating from supersymmetric theories to their non-
SUSY counterparts, see, for example, [27,28].
In this paper, we apply the AMSB methodology to

analyze the dynamics of nonsupersymmetric chiral gauge
theories. We begin the discussion with the simplest and
most well-known chiral gauge theory; SUð5Þ with an
antisymmetric tensor and an antifundamental Weyl fer-
mion. Its supersymmetric version is well known to break
SUSY dynamically, though the actual dynamics is not
calculable. We point out that in the SUSY breaking
minimum we expect a massless composite fermion, which
is expected to persist in the nonsupersymmetric theory after
adding AMSB. Next we analyze the general SUðNÞ
(N ¼ 2nþ 1 odd) theories with an antisymmetric tensor
and N − 4 antifundamentals. Again the SUSY version with
AMSB can be worked out exactly, leading to the dynamical
breaking of the SUðN − 4Þ ×Uð1Þ global symmetry to
SpðN − 5Þ × Uð1Þ, as well as massless fermions in the
fundamental and singlet representations of SpðN − 5Þ. This
picture continuously connects to the non-SUSY limit,
while it does not agree with the simplest tumbling pre-
dictions. We show however that one can extend the
tumbling picture by adding another condensate in the
second most attractive channel to obtain a symmetry
breaking pattern that agrees with the non-SUSY limit of
the AMSB approach. Finally we also discuss the case of
even N ¼ 2n with no massless fermions content.

II. ANOMALY MEDIATION

Anomaly mediation of supersymmetry breaking is para-
metrized by a single number m that explicitly breaks
supersymmetry in two different ways. One is the tree-level
contribution based on the superpotential

Ltree ¼ m

�
ϕi

∂W
∂ϕi

− 3W

�
þ c:c: ð2Þ

The other is the loop-level supersymmetry breaking effects
in trilinear couplings, scalar masses, and gaugino masses,

AijkðμÞ ¼ −
1

2
ðγi þ γj þ γkÞðμÞm; ð3Þ

m2
i ðμÞ ¼ −

1

4
_γiðμÞm2; ð4Þ

mλðμÞ ¼ −
βðg2Þ
2g2

ðμÞm: ð5Þ

Here, γi ¼ μ d
dμ lnZiðμÞ, _γ ¼ μ d

dμ γi, and βðg2Þ ¼ μ d
dμ g

2.

When the gauge theory is asymptotically free, m2
i > 0

which stabilizes the theory against runaway behaviors.
Note that Eq. (1) also breaks theUð1ÞR symmetry explicitly
and hence we do not need to study its anomaly matching
conditions.

III. SUð5Þ WITH Að10Þ AND F̄ð5̄Þ
This is the simplest and most well-known chiral SUSY

gauge theory which has a nonanomalous Uð1Þ5 symmetry
Aðþ1Þ, F̄ð−3Þ (see Table I). This theory breaks supersym-
metry dynamically [29]. (See [30] for how this theory is
related to the 4 − 1 and 3 − 2 models.) Even though the
theory is intrinsically strongly coupled, it was shown that
adding a pair of F þ F̄ allows for a weakly-coupled
analysis [31] (see also [32,33]). Once a mass term is added
to the pair, one can explicitly calculate the actual SUSY
breaking minimum of the potential. (See the Supplemental
material [34] for details of the analysis.)
Surprisingly, one of the most important features of the

SUSY breaking minimum has so far (to the best of our
knowledge) not been discussed in the literature. We are
finding that in spite of the strong dynamics the Uð1Þ5
global symmetry remains unbroken, implying the presence
of a massless fermion that can be identified with the
composite fermion AF̄ F̄ [35]. This massless fermion exists
in addition to the massless Goldstino required for SUSY
breaking. It has charge −5 and one can readily check that it
saturates all ‘t Hooft anomalies

Uð1Þ5gravity2∶ 10ðþ1Þ þ 5̄ð−3Þ ¼ ð−5Þ;
Uð1Þ35∶ 10ðþ1Þ3 þ 5̄ð−3Þ3 ¼ ð−5Þ3: ð6Þ

This nontrivial ‘t Hooft anomaly matching is already a very
strong argument in favor of the existence of the unbroken
Uð1Þ5 symmetry, which as explained above can be inde-
pendently verified by analyzing the theory with the extra
flavor added, which is done explicitly in the Supplemental
material [34].
Since supersymmetry is already spontaneously broken,

adding small explicit supersymmetry breaking via AMSB
does not change the dynamics, while the goldstino acquires
a mass. On the other hand, the other massless fermion AF̄ F̄
is protected because of the anomaly matching condition

TABLE I. Particle content of the SUð5Þ theory with one
antisymmetric A and one antifundamental F̄. The composite
fermion AF̄ F̄ matches all anomalies.

SUð5Þ Uð1Þ5
A þ1

F̄ □̄ −3
AF̄ F̄ 1 −5

CSÁKI, MURAYAMA, and TELEM PHYS. REV. D 104, 065018 (2021)

065018-2



and remains massless even in the nonsupersymmetric
theory. The appearance of the unbroken Uð1Þ5 and the
corresponding massless fermion is our first example of
exact results in chiral gauge theories. Extrapolating
m ≫ Λ, we expect the same massless fermion remaining
in the theory while the goldstino decouples.
Interestingly, in this particular case our analysis is

consistent with results suggested by tumbling [14,36]. In
that approach one would postulate that the operator
ϵabcdeAbcAde corresponding to the most attractive channel
(MAC) condensate [37], breaking the SUð5Þ gauge sym-
metry to SUð4Þ, while retaining a global Uð1Þ. Under the
unbroken SUð4Þgauge ×Uð1Þglobal, A decomposes as 60 þ
4−5=2 while F̄ as 4̄5=2 þ 1−5. The degrees of freedom
charged under SUð4Þ are vectorlike, and so they condense
just like in QCD and become massive. However, 1−5 is
chiral, and remains as a massless fermion, which can be
identified with the composite Að4−5=2ÞF̄ð45=2ÞF̄ð1−5Þ. Note
that for general SUðNÞ our method leads to predictions that
differ somewhat from those in [14]. However we will see
that the tumbling scheme can be augmented to produce
results consistent with ours.

IV. SUðNÞ WITH A AND (N − 4) F̄
Next we consider the generalization of the above SUð5Þ

theory to SUðNÞ with N ¼ 2nþ 1 odd. Table II shows the
matter content and the symmetries of the theory. In the
SUSY limit, the theory has the D-flat direction

AA† þ A†A − F̄�
i F̄

T
i ¼ 0; ð7Þ

A¼ φffiffiffi
2

p
�JðN−5Þ 0

0 05×5

�
; F̄¼φ

�IðN−5Þ 0

0 05×1

�
; ð8Þ

where JðN−5Þ ¼ iσ2 ⊗ IðN−5Þ=2. As we will see below, in
our scenario the flat direction will ultimately be stabilized
at large vacuum expectation values (VEVs), and so a

weakly coupled analysis is appropriate here. Along the
flat directions the gauge symmetry is broken to SUð5Þ
while the SUðN − 4Þ global symmetry is broken to
SpðN − 5Þ. This is easily seen from the fact that

AF̄iF̄j ¼
1ffiffiffi
2

p φ3Jij; i; j ≤ N − 5; ð9Þ

on the flat directions. There is also an unbroken Uð1Þ0
global symmetry whose generator is Q0 ¼ Q − N

2
TN−4

where Q is the generator of the original Uð1Þ. Here
TN−4 ¼ diagð1…; 1;−ðN − 5Þ; 0; 0; 0; 0; 0Þ, is an unnor-
malized generator in SUðN − 4Þ=SpðN − 5Þ. The dynami-
cal scale of the unbroken SUð5Þ is given by

Λ13
5 ¼ Λ2Nþ3

N

ðPf 0AF̄ F̄ÞðPf 0AÞ ; ð10Þ

where the Pfaffians involve only the N − 5 components, as
indicated by the prime. This unbroken SUð5Þ will have the
same matter content as in the previous example, hence it
confines and breaks supersymmetry at the scale Λ5. Here
and below, we absorb renormalization-scheme-dependent
numerical constants [39] into the definition of the scale Λ’s
which does not affect any of the discussions below. The
vacuum energy has a runaway dependence on φ

V ≈ Λ4
5 ¼

�
Λ2Nþ3
N

φ2N−10

�
4=13

; ð11Þ

without a stable ground state. It can be stabilized by adding
λAF̄iF̄jJij to the superpotential [29].
With AMSB there is no need to add a tree-level super-

potential, since the run-away behavior is stabilized by the
scalar masses-squared along the flat direction

m2
A;F̄i

¼ g4

ð8π2Þ2 2Cið2N þ 3Þm2; ð12Þ

where

Ci ¼
( ðNþ1ÞðN−2Þ

N for A;

N2−1
2N for F̄i:

ð13Þ

Note that Eq. (11) is a runaway potential from dynamical
supersymmetry breaking, not a superpotential. Therefore,
there is no accompanying tree-level AMSB piece
from (2) to stabilize it. This is a key difference from the
Affleck-Dine-Seiberg case of QCD-like theories [22], and
from the even-N case discussed in the next section. The
theory has a stable ground state at

φ ≈ Λ
�
4πΛ
m

�
13=ð4N−7Þ

≫ Λ: ð14Þ

TABLE II. Particle content of the SUðNÞ theory with one
antisymmetric A and N − 4 antifundamentals F̄i. N ¼ 2nþ 1 is
odd. The operators AF̄iF̄N−4 are interpolating fields for massless
fermions. Decompositions of fields under the unbroken SpðN −
5Þ ×Uð1Þ0 symmetry are also shown. The Uð1Þ0 charges are
given separately for the fundamental and singlet of the unbroken
SpðN − 5Þ global symmetry.

SUðNÞ Uð1Þ SUðN − 4Þ SpðN − 5Þ Uð1Þ0
A −N þ 4 1 1 −N þ 4

F̄i □̄ N − 2 □

□
1
2
ðN − 4Þ

1
ðNþ1ÞðN−4Þ

2

AF̄iF̄N−4 1 N □
□

NðN−4Þ
2

1 NðN − 4Þ
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Therefore, the physics is weakly coupled at the scale φ and
our analysis is justified.
We now present a heuristic description of the dynamics

in the Higgs picture, before passing to a purely gauge
invariant formulation below. In this picture the UV theory
has Að1

2
NðN − 1ÞÞ þ F̄ðN̄Þ × ðN − 4Þ chiral superfields.

N2 − 1 − 24 are eaten when the SUðNÞ gauge symmetry
is Higgsed to SUð5Þ. Of the remaining ones, 15 ¼ Að10Þ þ
F̄N−4ð5̄Þ are charged under the gauge SUð5Þ, and the other
1
2
ðN − 4ÞðN − 5Þ contain the Nambu-Goldstone bosons for

the broken global symmetry [40].
The SUð5Þ dynamics with Að10Þ and F̄N−4ð5̄Þ is along

the lines of the previous section; SUð5Þ is Higgsed to
SUð4Þ, supersymmetry is spontaneously broken, and there
is a massless goldstino and an additional massless fermion.
Anomaly matching is then satisfied by this fermion,
together with the fermions in the first N − 5 components
of F̄N−4, which are neutral under the unbroken SUð5Þ
gauge group and remain massless.
In gauge invariant language, the IR theory has N − 4

massless fermions AF̄iF̄N−4 [42] in the singlet and funda-
mental of the unbroken SpðN − 5Þ global symmetry. These
correspond to the N − 5þ 1 massless fermions of the
Higgs picture.
The massless fermions match all of the anomalies for the

unbroken SpðN − 5Þ ×Uð1Þ0; Uð1Þ0gravity2:
1
2
NðN − 1Þð−N þ 4Þ þ N̄ðN − 5Þ 1

2
ðN − 4Þ

þ N̄
1

2
ðN þ 1ÞðN − 4Þ

¼ ðN − 5Þ 1
2
NðN − 4Þ þ NðN − 4Þ; ð15Þ

Uð1Þ03:

1
2
NðN − 1Þð−N þ 4Þ3 þ N̄ðN − 5Þ

�
1

2
ðN − 4Þ

�
3

þ N̄

�
1

2
ðN þ 1ÞðN − 4Þ

�
3

¼ ðN − 5Þ
�
1

2
NðN − 4Þ

�
3

þ ðNðN − 4ÞÞ3; ð16Þ

Uð1Þ0SpðN − 5Þ2:

N̄
1

2
ðN − 4Þ ¼ 1

2
NðN − 4Þ; ð17Þ

and SpðN − 5ÞWitten:

N̄ ¼ 1ðmod 2Þ: ð18Þ

In addition, there are massless Nambu-Goldstone
bosons of the ½SUðN − 4Þ ×Uð1Þ�=½SpðN − 5Þ ×U0ð1Þ�

coset space, together with the Wess-Zumino-Witten term
[43,44] given that π5ðSUðN − 4Þ=SpðN − 5ÞÞ ¼ Z for the
SUðN − 4Þ anomalies not contained in SpðN − 5Þ induced
by the one-loop diagrams of massive fermions [45]. This is
the second example of exact results on chiral gauge
theories.
When m is increased, the field values approach the

strong scale, and we lose control of the dynamics. The
nontrivial anomaly matching conditions depend only on
the presence of the massless fermions and may well persist
to the limit m ≫ Λ. While there may be a phase transition
that lifts the massless fermions discontinuously, our analy-
sis provides a concrete suggestion for the dynamics of the
nonsupersymmetric chiral gauge theory, which should be
checked explicitly by lattice methods. It would also be
interesting to see whether the entire chiral compensator Φ
could be embedded in a fully supersymmetric theory with
spontaneous SUSY breaking, giving rise to the scale m
governed by some holomorphic parameters of the UV
complete theory. In that case one may perhaps argue against
the presence of a phase transition in the m → ∞ limit.

V. COMPARISON TO TUMBLING

While there is no controlled analysis for the study of the
dynamics of chiral nonsupersymmetric gauge theories,
there is a framework proposed by Raby, Dimopoulos,
and Susskind [14] that goes broadly under the name of
“tumbling”. One first finds the MAC among the charged
fields and assumes that it condenses, breaking part of the
gauge symmetry. This process is then iterated until one
arrives at a QCD-like theory (or when the gauge group is
fully broken). Applying this method of tumbling to the
nonsupersymmetric SUðNÞ theory with chiral fermions

, one finds [15] that the most

attractive channel is the antisymmetric tensor Aab and
the antifundamentals F̄bi combined into fundamentals.
This leads to a condensate

hAabF̄bii ∼ Λ3δai ≠ 0; i; a ≤ N − 4: ð19Þ
The above condensate breaks the SUðNÞ gauge symmetry
down to SUð4Þ while locking N − 4 colors and flavors.
This leaving unbroken a global SUðN − 4Þ, which is the
diagonal combination of the SUðNÞ gauge group and
the SUðN − 4Þ global symmetry. The remaining SUð4Þ
symmetry is vectorlike and hence assumed confining. The
global anomalies of the unbroken SUðN − 4Þ symmetry are
matched by a massless fermion in the symmetric tensor
representation of SUðN − 4Þ corresponding to the fer-
mionic composite AF̄fi;F̄jg. While this picture appears
possible, there are no controlled limits where the theory can
be studied reliably along this line of analysis.
Comparing to the results of our nonsupersymmetric

AMSB limit we can see that the above tumbling picture
indeed appears to be incomplete. For the SUSYþ AMSB
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case we have found that the remaining global symmetry is
SpðN − 5Þ × Uð1Þ0 instead of the full SUðN − 4Þ ×Uð1Þ,
with two massless fermion composites. It is actually easy to
reconcile the tumbling picture with our SUSY-inspired
predictions. One needs to simply consider the second most
attractive channel corresponding to two antifundamentals
in the antisymmetric combination, and assume another
condensate along this direction,

hF̄aiF̄bji∼Λ3JabJij ≠ 0; 1≤ i; j;a;b≤N − 5; ð20Þ
in addition to the one in Eq. (19). Since the gauge indices
are antisymmetric between a and b to make this channel
attractive, the flavor indices i and j will also have to be
antisymmetric. Note that the symmetric combination δabδij
is repulsive and no condensate along that direction is
expected. The condensate Eq. (20) breaks the global
SUðN − 4Þ symmetry left by Eq. (19) further down
to SpðN − 5Þ.
The condensate in Eq. (20) is a good description in the

weakly-coupled Higgs picture. When we increase m, the
theory becomes strongly coupled and this description is no
longer valid. Instead, we should refer to a gauge invariant
order parameter for a consistent description, which in our
case is

hðF̄iF̄jÞ½a;b�ðF̄�kF̄�lÞ½a;b�i∝JijJkl;1≤ i;j;k;l≤N−5: ð21Þ
The candidate Nambu-Goldstone bosons eaten by the

SUðNÞ=SUð4Þ massive gauge bosons are AabF̄bi for the
upper (N − 4)-dimensional block and ApbF̄bi for the off-
diagonal block where p ¼ 1;…; 4 denotes the SUð4Þ
index. Finally, JabF̄aiF̄bj are the candidates for the uneaten
Nambu-Goldstone bosons for the global SUðN − 4Þ=
SpðN − 5Þ coset.
The condensate AabF̄bi separates the F̄i into the first

F̄1…ðN−5Þ components and F̄N−4. These end up in the
SpðN − 5Þ fundamental and singlet parts of the IR
composite fermions AF̄iF̄N−4 (see Table II for their
charges). Under the unbroken SUð4Þ symmetry, the
charged fermions decompose as Að6þ 4Þ and F̄ið4̄Þ.
These remaining degrees of freedom are vectorlike, and
become massive. The anomaly matching conditions
remain the same and satisfied exactly as in the case of
SUSYþ AMSB. Therefore, this modified tumbling picture
with the second condensate has the identical symmetry
breaking pattern and massless fermion content as the SUSY
theory with the AMSB, hence we find the two to be likely
continuously connected. We expect this modified picture to
provide the proper low-energy dynamics of the nonsuper-
symmetric theory.

VI. EVEN N

Once again, we consider SUðNÞ gauge theories with an
antisymmetric tensor A and (N − 4) antifundamentals F̄i,

but for even N ¼ 2n. (See Table III for quantum numbers.)
In this case, the D-flat directions break the gauge group to
Spð4Þ ¼ SOð5Þ (see [46] and also the Supplemental
material [34]), whose gaugino condensate induces a
dynamical superpotential [32,33,46],

W ¼
�

Λ2Nþ3

ðPfAF̄ F̄ÞðPfAÞ
�

1=3

: ð22Þ

The AMSB Eq. (2) balances the superpotential against
the supersymmetry breaking such that both A ∼ F̄ ∼
ΛðΛ=mÞ3=2N and all fermions acquire mass. The global
SUðN − 4Þ and Uð1Þ symmetries are broken dynamically
to SpðN − 4Þ which does not have anomalies. The anoma-
lies of broken symmetries are saturated by the Nambu-
Goldstone bosons with the Wess-Zumino-Witten term
given π5ðSUðN − 4Þ=SpðN − 4ÞÞ ¼ Z. This is the third
example of exact results on chiral gauge theories.
Again this dynamics can persist to m ≫ Λ. We can

interpret the dynamics in the non-SUSY limit with the
fermion bilinear condensates

hAabF̄bii ∼ Λ3δai ;

hF̄aiF̄bji ∼ Λ3JabJij
i; j; a; b ≤ N − 4: ð23Þ

Note that in this case F̄N−4 is not singled out by the
condensate, and there are no corresponding massless
fermions. The remaining theory is Spð4Þ with Að6þ 4Þ
and F̄ð4Þ which is vectorlike and becomes massive. The
massless degrees of freedom are chiral Lagrangians of
SUðN − 4Þ × Uð1Þ=SpðN − 4Þ with the Wess-Zumino-
Witten term.

VII. CONCLUSIONS

In this paper, we outlined how dynamics of chiral gauge
theories can be studied by perturbing the supersymmetric
version with anomaly-mediated supersymmetry breaking.
In particular, we worked out dynamics of SUðNÞ gauge
theories with an antisymmetric tensor and N − 4 antifun-
damentals. We came up with a consistent picture that
connects supersymmetric gauge theories perturbed by
the anomaly-mediated supersymmetry breaking to

TABLE III. Particle content of the SUðNÞ theory with one
antisymmetric A and N − 4 antifundamentals F̄i. N ¼ 2n is even.
Decompositions under the unbroken SpðN − 4Þ symmetry are
also shown.

SUðNÞ Uð1Þ SUðN − 4Þ SpðN − 4Þ
A −N þ 4 1 1

F̄i □̄ N − 2 □ □

AF̄iF̄j 1 N

PfA 1 − 1
2
NðN − 4Þ 1 1
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nonsupersymmetric gauge theories. The symmetry break-
ing pattern suggested differs from that based on the original
tumbling argument, which however can be extended to
match the picture obtained here. It would be interesting to
extend this analysis to other examples of chiral gauge
theories. Ultimately, lattice gauge theory simulations will
have the final verdict on the picture.
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