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Abstract

Exposure in motion:
assessing disease risk through movement models and metrics

by
Eric R. Dougherty
Doctor of Philosophy in Environmental Science, Policy, and Management
University of California, Berkeley

Professor Wayne Marcus Getz, Chair

Exposure represents but one of several processes that underlie disease transmission dynamics
in animal and human populations. Infection frequently depends on a number of complex in-
teractions among factors related to the clinical properties of the pathogen (or the magnitude
of the dose acquired upon contact) and the immune status of the host. When considering
exposure, however, many of these aspects become trivial; the primary consideration is con-
tact between a host and the infectious agent, whether it is harbored by another animal or an
environmental reservoir. Contact, in turn, emerges from the space-use decisions of animals
over time, potentially resulting in patterns that amplify or dilute the probability of encoun-
tering a pathogen. In this sense, the movement behavior of host animals is a fundamental
determinant of disease dynamics. Using anthrax as its focal system, this dissertation aims
to delve into the exposure process as it relates to the movement behaviors of host animals.

A set of movement trajectories were collected via GPS collars fastened to zebra (Equus
quagga and springbok (Antidorcas marsupialis) in Etosha National Park in Namibia between
2009 and 2010. These data offer insight into the home ranging and habitat selection behaviors
that characterize two ungulate species exhibiting susceptibility to anthrax infection and thus,
form the basis of the analyses and models developed in this dissertation.

Spatial overlap analysis represents one of the most common methods for evaluating the
potential for disease exposure when movement data is available. In the case of an indirectly
transmitted pathogen, such as Bacillus anthracis, the overlap between individuals may be
less important than other characteristics of individual home range usage. Metrics such as



revisitation (the rate at which an animal returns to a specific location) and duration rate
(the length of time spent in a specific location) may be more informative, particularly if
the locations of locally infectious zones (LIZs) are known. To assess the relative risk faced
by zebra and springbok during the anthrax season, I developed a method that reduces
the subjectivity in parameter selection when delineating home ranges using the Time Local
Convex Hull (T-LoCoH) method. Using a cross-validation-based approach, the resulting site
fidelity metrics are more directly comparable. The high values of the two site fidelity metrics
imply that similar home ranging behavior among individuals can result in heterogeneous
outcomes, contingent entirely upon the presence of a LIZ within an individual’s home range.

Much like spatial overlap analyses, habitat selection approaches can offer insight into
patterns of potential risk with respect to exposure to disease, particularly in the case of
environmentally-borne pathogens. When certain environmental characteristics can be asso-
ciated with pathogen persistence, niche models can be developed and directly incorporated
into the resource selection function framework. I used remotely sensed data on soil, bio-
climatic, and vegetation covariates to build such a niche model for anthrax based on soil
samples from 40 carcass sites in Etosha National Park harboring viable anthrax spores two
or more years after deposition. When this risk layer was applied as a predictor in a step-
selection function of zebra, a behaviorally-dependent pattern was evident. When animals
were in the foraging state exhibited an avoidance of high risk areas, whereas the same ani-
mals were apparently attracted to those higher risk areas when moving in a directed manner.
One possible explanation for this pattern is that zebra recognize not only where but also
when they are most susceptible to anthrax, and adjust their behavior to reduce their risk.

Another means of exploring the exposure process is through the use of simulation models.
Due to the difficulty associated with comprehensive monitoring of susceptible host popula-
tions and infectious reservoirs, simulation models represent an ideal approach for extending
general rules emerging from limited movement data to landscapes with known qualities. Us-
ing the behaviorally-contingent habitat selection framework created in Chapter 3, I explored
the relationship between a set of environmental covariate layers and the exposure process
whereby individuals encounter LIZs on the landscape. The method reveals that Wetness
may represent a reasonable predictor of epidemic dynamics, with movement serving as the
mediating process.

The general analytical methods and models applied here serve to elucidate the role of in-
dividual movement behavior in the disease exposure process. Rather than analyzing data on
case incidence or prevalence, these methods offer insight into the potential contact patterns
that might give rise to endemic or epidemic infections. Thus, they reveal the manner by
which analysis of host movements, particularly in conjunction with comprehensive (or sim-
ulated) data on the spatial distribution of infectious agents on a heterogeneous landscape,
might aid in the management of transmission risk before any actual infections occur.
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transmission mode emphasized by the authors. The data that form the basis of
the plot were collected and sorted with the help of Dana P. Seidel and Colin J.
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Conceptual Figure of the Proposed Algorithm A test case of the algorithm
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in the training sets and blue points representing the test points for the later
probability calculation (b,f,j). For each subset of points, a hullset is created using
T-LoCoH, with an arbitrarily chosen s value of 0.5 and & values of 5 (c,g,k),
15 (d,h,1), or 25 (e,i,m). These three subsets serve to illustrate three possible
scenarios as the k values increases: either test points that are not covered by the
hull set at low &k values continue to be uncovered with high & values (left-hand
column), test points that were not originally covered by the hull set at smaller
k values becomes covered (center column), or test points are covered at low k
values and continue being covered at higher k values (right-hand column).

Conceptual Figure of Grid-based Search A probability surface is generated
as the algorithm searches over a grid of alternative s and k values for each in-
dividual movement path. The increments of the grid can be chosen by the user.
The peak in the surface indicates that the home range associated with the par-
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parameter set. . . . . . .. oL oL oL
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range set on the left is based on the sample points from the springbok AG207,
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when all of the recorded movement points are used. Panels ¢ and d represent
the selection functions during the same time periods, but using only the points
during which the individual was in the foraging behavioral state. Finally, panels
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movement state in 2009 and 2010. . . . . . . .. ..
Supplementary Figure 1 Soil and bioclimatic variables used for the 2009 and
2010 predictive anthrax risk map based on the final MaxEnt model. Larger
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parameterize the model. . . . . . ... oL
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Methods Overview: The first component of the approach is the derivation of
the selection maps (A). There were sixteen alternative environmental scenarios,
each with its own unique combination of Wetness and Greenness layers. For each
scenario, these two layers were combined with a mean anthrax risk map and a
static road density map, and the coefficients from the behaviorally-contingent step
selection function (see Chapter 3) were used to create surfaces for the foraging
(purple squares) and directed movement (gold squares) behavioral states. A ran-
dom raster was used as the selection surface during the resting state. (Continued
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(Continued from previous page.) The next component was the movement model
parameterization component (B) wherein a hidden Markov modeling (HMM)
framework was applied to the empirical movement trajectories. The HMM re-
sulted in a set of parameter estimates for the distributions underlying the step
lengths (gamma) and turning angles (vonMises) during each of the behavioral
states, as well as estimates of transition probabilities between the states. Of
these four outputs (selection surfaces, step length distribution parameter esti-
mates, turning angle distribution parameter estimates, and estimated transition
probability matrix), all but the turning angle parameters were used in the simula-
tion approach. This simulation approach (C) consisted of three primary actions,
carried out in sequence and then repeated over the course of the anthrax season.
The first of these actions was the assessment of the behavioral state (yellow cir-
cles). This action drew upon the transition matrix as the basis for a stochastic
process in which the state of the agent at time ¢ was selected based on its state at
time ¢t—1. The next action was the perceptual range construction (orange circles).
This action drew upon the parameters estimates of the step length distribution
emerging from the HMM to determine the size of the radius over which the agent
would search for its next location. The final action was the weighting of the cells
within the perceptual range (red circles). This action drew upon the selection
surfaces derived at the start of the simulation for the scenario in question. Cells
within the radius were assigned weights based on the relative selection probabili-
ties. The actual location of the next step was determined using another stochastic
selection procedure in which the probability of cell being selected corresponded
directly to the weight assigned to it. The behavioral state and the location of
the animal were recorded at each of the 10,800 time steps, and this process was
repeated 1000 times for each of the sixteen sets of selection surfaces. . . . . . . .
Step Size Distributions: A schematic figure of the small, medium, and large
perceptual radii as dictated by the gamma distributions underlying the step
lengths for each behavioral state (Resting, Foraging, and Directed Movement).
In each panel, a set of randomly generated steps were drawn from the gamma
distributions and subsequently colored by the thresholds defined as the small,
medium, and large perceptual range radii. These distributions indicate the rel-
ative probabilities of selecting each of the different perceptual range sizes based
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fashion. . . . . . . .
Contact Calculation Schematic: A schematic diagram of a single contact
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terest in Etosha National Park with the positions of the simulated local infectious
zones mapped and colored by the species of the carcass (green for small-bodied
animals like springbok, red for medium-sized animals like zebra, and blue for the
relatively uncommon large-bodied animal akin to an elephant. . . . . . . . . ..
Foraging Step Size Distribution Comparison: As a means of comparing
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Data: The upper panel represents the fitted non-linear regression curve across
the tested values of Wetness used in the simulations. The bottom panel presents a
histogram of the number of actual anthrax-induced mortalities observed between
1996 and 2009 based on the probable month of death. The inset plot represents
the mean rainfall data over the same period, indicating that the anthrax season
tends to range from wet in the early months to dry in the later months. . . . . .
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a measure of the spatial distribution of a point process. If J(r) is smaller than
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Reanalysis of Contact Rate Trend in Relation to Anthrax Mortality
Surveillance Data: The upper panel represents the fitted non-linear regression
curve across the tested values of Wetness used in the simulations. The con-
tact rates here are derived based on a second set of LIZs distributed across the
landscape. The bottom panel represents a histogram of the number of anthrax-
induced mortalities observed between 1996 and 2009 based on the probable month
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Chapter 1

Introduction: The Nexus of
Movement and Disease

Background

Disease ecology is generally focused on understanding the ecological drivers of epidemiolog-
ical dynamics, which refer broadly to the study of the occurrence, distribution, and control
of disease. Whereas epidemiology conventionally concerns human disease, wildlife epidemi-
ology, and disease ecology in turn, take a systems-based perspective to consider the drivers
of infectious disease transmission. At the core of both human and wildlife epidemiology lies
individual behavior, yet investigations of dynamics in animal population tend to be more
difficult because of the inability to directly interrogate the behavioral aspects underlying
disease spread. Epidemiologists frequently use interviews and observational work to study
how human behaviors, such as sexual activity, international travel, or outdoor labor, become
risk factors for infectious disease. Animal behavior, though just as important to the disease
transmission process, is harder to observe and predict in nature.

Movement ecology uses high-resolution spatiotemporal data to make sense of animal be-
havior. The “movement ecology paradigm” treats movement as the outcome of behavioral
decisions influenced by the interplay of animals’ internal states (e.g., physiological needs),
external biological factors (e.g., predation or competition), and the physical environment
(e.g., mountain ranges or water sources) [115]. Researchers tracking and modeling animal
movement can extract behavioral states from telemetry and associated datasets, test hy-
potheses about what best predicts animal behavior, and explain how individual behavior
scales up to landscape-level patterns of animal distributions. Recent advances in telemetry
technology [83], the development of corresponding analytical methods [93], and the inte-
gration of complimentary datasets (e.g., acceleration data; [165, 143]) have all dramatically
increased movement ecologists’ inferential power. Especially in light of these developments,
ecologists can decompose the impact of individual behavioral heterogeneity on pathogen



spread with much greater ease, making movement ecology a promising avenue for exploring
the behavioral underpinnings of how and why diseases spread in wildlife.

Both movement and disease originate in animal behavior at the individual level, and a
feedback loop between the two emerges over time at broader scales. The complex space-
use patterns produced by movement decisions of individual animals, and how they result
in shared space use, are likely to play a substantial role in influencing the subsequent spa-
tiotemporal dynamics of disease transmission [41]. While some movement decisions place a
host at relatively high risk of contracting an infection, others may effectively shield them
from exposure. Similarly, a shift in the disease state of an animal host can directly im-
pact its subsequent movement decisions, further amplifying or diluting the transmission of a
pathogen through the population. The application of movement analyses to disease systems
may help illuminate this reciprocal process (e.g., how disease state affects animal movement
and, alternatively, how animal movement affects disease transmission; [41])

Understanding ecological links between movement and disease has direct implications
for the way researchers model, forecast, and simulate wildlife disease outbreaks. The most
basic models in epidemiology treat disease transmission as a function of the number of
healthy and infected individuals in a population, linked by a transmission parameter ().
Doing so implicitly combines contact rates and transmission efficiency into one rate [102],
but individual heterogeneity in both is universally recognized as an important contributor
to disease dynamics in humans [92] and animals [125], and heterogeneity in movement can
be an important predictor of this variation [144]. Where tools in movement ecology can
help measure, describe, and predict heterogeneity in transmission between hosts, there are
opportunities to pose novel questions relating to the effects of movement on contact, the
role of contact on transmission, and the impact of infection on movement. This dissertation
aims to explore the first of these sets of questions in detail, while alluding to the others as
potential paths for investigation given additional or slightly different data.

Categorizing the study system

This dissertation focuses on the bacterium Bacillus anthracis, the causative agent of the
disease anthrax. Though it can be transmitted via multiple mechanisms, the primary route
of interest here (ingestion and infection through the gastrointestinal tract [69]) means that
it can quite logically be categorized as an indirectly transmitted pathogen. In other words,
the pathogen occupies an intermediate reservoir between hosts. This form of transmission
means that spatiotemporal overlap between an infected and susceptible host is not necessary,
rather spatial overlap between a host and reservoir is the only requirement for transmission.
As such, the work presented in the following three chapters aims to explore the aspect of
exposure of host animals to environmental reservoirs of an infectious agent. The specific
nature of anthrax and the features of its transmission cycle make it simultaneously unique
and generalizable: though not all indirectly transmitted pathogens have the ability to persist



in harsh environments in the same way, there are numerous infectious agents that exhibit
similarly predictable distribution patterns on landscapes [24]. The extensive set of data
collected from Etosha National Park in Namibia, ranging from ungulate movement data
to immunological assays, enables a fairly comprehensive analysis of the potential role of
movement in an endemic disease system.

Considering indirect transmission

In the case of pathogens transmitted indirectly, such as anthrax, movement data can shed
light on the process by which hosts encounter infectious reservoirs on the landscape. Though
infection often depends on a set of complex interactions among host and pathogen traits (e.g.,
minimum infectious dose, host immune capacity, etc.) [102], exposure can be more readily
inferred from movement data. Various metrics may offer insight into the exposure process,
particularly those that reveal spatial overlap and habitat selection patterns.

A systematic search of the literature concerning the application of movement analyses
in disease research revealed that spatial overlap methods were used in 41 instances of the
91 total analyses found (spread across 70 studies; [41]). These ranged from examinations
of home range dynamics (e.g., [170]) to studies that attempted to measure the number of
contacts between animals (e.g., [167]), often using proximity sensors to do so (e.g., [100]). A
plot of the relative frequency of each of the four classes of analysis can be seen in Figure 1.1
(adapted from the data originally presented in [41]). The importance of spatial overlap
analyses derives from the fact that exposure to a pathogen will depend on a susceptible
animal traversing the same area over which an infected animal previously ranged and shed
the pathogen. The mechanism by which a pathogen is shed varies greatly across species, but
in the case of anthrax, death and the subsequent destruction of the carcass represents the
primary means by which spores exit the infected host.

Exposure, of course, is contingent upon this shedding process. This means that animals
traversing the same area before carcass deposition and after face very different levels of risk,
and this temporal component is difficult to incorporate into analyses of movement data unless
comprehensive data of the locally infectious zones is available. Even so, evaluations of home
ranging behavior can provide insight into which individuals are at relatively higher or lower
risk than others. Of particular interest in this respect are metrics that quantify the fidelity
of an animal to their home range. One method this is especially well suited to deriving such
metrics is the recently developed Local Convex Hull (LoCoH; [60]) method. This algorithm
functions like many other home range delineation methods, building minimum convex poly-
gons (referred to as hulls) around sets of movement points that compose an animal’s full
trajectory. Unlike many of the more traditional home range methods, however, LoCoH has
been extended to directly account for the autocorrelated nature of movement data, judging
proximity as a function of both space and time when constructing hulls (T-LoCoH; [96]).
The resulting home ranges are created by unioning these hulls. This procedure allows for
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Figure 1.1: Movement and Disease Literature Search A frequency plot displaying
the distribution of 91 total analyses (conducted in 71 separate studies) among the four
predominant classes of methods. The bars are colored according to the primary transmission
mode emphasized by the authors. The data that form the basis of the plot were collected and
sorted with the help of Dana P. Seidel and Colin J. Carlson. A more detailed explanation
of the search criteria and procedure can be found in [41].

a more nuanced interpretation of space use patterns, including the ability to differentiate
between rare long visits and frequent short visits to a particular location, something that
would be difficult to ascertain using conventional utilization distribution approaches [169].
Using T-LoCoH-based home ranges, several site fidelity metrics can be calculated, including
the duration of a visit to a particular point or area of interest (sometimes called residence
time) and the rate at which individuals return to them (known as the revisitation or return
rate). Used together, these metrics can offer a means of evaluating the relative risk of contact
or exposure among individuals in a population.

In Chapter 2, a site-fidelity analysis in this vein is undertaken to determine the na-
ture of exposure risk faced by two different ungulate populations in Etosha National Park.
Using the T-LoCoH approach, revisitation and duration rates are calculated for several ze-
bra and springbok during the anthrax season. The work in this chapter also outlines an
algorithm for making more consistent comparisons among individuals (both within and be-
tween species). The conclusion, with respect to the potential for exposure to an indirectly-



transmitted pathogen dispersed across the landscape, is that higher mean visitation and
duration rates should indicate greater heterogeneity of infection risk across individuals in
a spatially-structured population. In other words, high levels of site fidelity will effectively
increase exposure risk if an infectious reservoir is present in the range, but will actually buffer
an individual from exposure if the range is free of relevant pathogens or parasites. Given
the fact that the carcass surveillance effort during the period of interest was likely to reveal
only about 25% of the actual carcasses deposited during that time [9], we cannot draw any
definitive conclusions about the relative risk of each individual. Even so, the overarching
pattern suggests that even animals with very similar home ranging behaviors can face very
different levels of risk.

Another set of important analytical techniques for evaluating exposure risk in systems
harboring an indirectly-transmitted pathogen are habitat selection analyses. In the same
literature search as mentioned previously, these methods were also applied quite frequently,
with 24 cases using selection functions (e.g., [111]) or performing basic comparisons between
habitat types (e.g., [121]). Selection-based approaches were developed to explore landscape-
level patterns and extrapolate probabilities of use of different environmental components.
These approaches consist of comparing the habitat qualities at points used by animals to
the qualities of points that were available to the individual [17, 98]. Ultimately, selection
functions of this variety can illuminate landscape features and types preferred by individual
hosts or the population as a whole [89]. These patterns of host preference might enable
predictions regarding where susceptible individuals might be exposed to disease, particularly
when the infectious agent follows predictable patterns of occurrence and persistence based
on abiotic environmental variables [24].

In Chapter 3, a step-selection function is developed in conjunction with a niche model of
anthrax persistence in the Etosha National Park to evaluate the nature of exposure risk in the
zebra population. Rather than simply assessing the overlap of theoretical selection surfaces
with projections of anthrax risk on the landscape, the niche model was directly incorporated
into the selection framework. The result of such an analysis could offer insight into the
selection for or against areas that represent the highest suitability for anthrax persistence.
Based on our knowledge of the primary mechanism of infection in ungulate hosts, it follows
that susceptible individuals are most vulnerable to exposure when they are foraging [69,
152]. This expectation was evaluated by parsing the individual zebra movement trajectories
into component behavioral states and conducting the step-selection function procedure on
each state separately. As predicted, the analysis of points collected while the animal was
in the foraging state revealed a distinct pattern from that emerging from an analysis of the
directed movement state. In addition, this distinction was largely overwhelmed when all of
the relocation points were analyzed together. Ultimately, the work of this chapter reveals the
potential importance of explicitly accounting for behavior when evaluating habitat selection
patterns. The results indicate that zebra might actively avoid high risk areas when they were
foraging, but were apparently attracted to such areas when moving in a directed manner.



This pattern could imply that zebra recognize both where and when they are at highest risk
and adjust their behavior to reduce their risk of exposure to anthrax.

Modeling exposure

Compartmental models are a nearly universal tool for studying human and wildlife diseases
[3, 84|, and have been applied to a broad range of host-pathogen systems, with numerous
extensions for host-age effects, pathogen-strain effects, or even the influence of pathogens on
host behavior. Such models, however, are not easily adapted to account for the effects of
landscape and population spatial structures on risk of infection. Accounting for this level of
variation requires a representative sample of individuals within the population to be tracked
and their contact rates with other individuals (direct transmission) or infectious environ-
mental locations (indirect transmission) recorded. Mechanistic models allow researchers to
upscale individual patterns (such as behavioral rules or contact patterns) to a broader pop-
ulation, and are frequently used to validate or test experimental results. However, directly
upscaling animal behavioral rules into spatiotemporal patterns of disease may require re-
searchers to build individual- or agent-based models (ABM; [65]).

More specifically, ABMs can use step length, turning angle, canonical activity mode
distributions, habitat or resource preferences, or even various network-based metrics to gen-
erate likely movement paths for all individuals in the population. With basic assumptions
about transmission rates as a function of contact duration, these trajectories can be used to
simulate disease outbreaks on real landscapes with “real” animal movement principles. A
number of ABMs that incorporate mechanistic movement rules to explore disease dynamics
have been constructed [13, 38, 149, 11], though the practice of incorporating movement data
into such models is by no means universal.

In Chapter 4, an simulation model of the anthrax system is developed to extend the
habitat selection framework derived in the previous chapter. Such a model enables the
investigation of the role of environmental heterogeneity in the exposure process whereby
a susceptible host encounters a locally-infectious zone on the landscape. Using empirical
movement tracks to parameterize general rules, alternative possible movement paths can
be simulated in a mechanistic fashion. Each movement decision is based on the selection
function associated with the behavioral state of the individual. By altering the input layers to
these selection functions (e.g., increasing the mean Wetness of the Wetness layer or decreasing
the mean Greenness of the Greenness layer), we can explore the manner by which movement
patterns shift under differing environmental scenarios. Further, we can distribute a set of
simulated LIZs across the landscape and calculate the rate at which a host individual is likely
to encounter infectious agents during its normal activities. Ultimately, the simulation model
offered insight into the mediating role that movement plays between environmental factors
and epidemiological processes; though Wetness generally decreases linearly throughout the
anthrax season, there exists a peak in anthrax mortalities in the middle of the season, and a



similar peak emerged in the calculated contact rates as a gradient of Wetness was explored.
Thus, the relationship between environmental covariates and exposure was obscured without
the incorporation of a host movement component. This has implications for other disease
systems harboring environmentally-transmitted pathogens.

In concert, the following three chapters serve to elucidate the role of individual movement
behavior in the disease exposure process. Though the metrics and models applied throughout
this dissertation are by no means exhaustive, they represent a set of analytical approaches
that can aid in decomposing complex disease dynamics. Rather than analyzing data on case
incidence or prevalence, these methods offer insight into the potential contact patterns that
might ultimately give rise to endemic or epidemic infections. Thus, considerations of host
movements, particularly with comprehensive (or simulated) data on the spatial distribution
of the infectious agent on a heterogeneous landscape, might serve to manage infection risk
before any actual transmission events occur. If the movements underlying exposure can be
explained or predicted, risk can be managed more effectively in the anthrax system that
forms the basis of this work and beyond.
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2.1 Abstract

With decreasing costs of GPS telemetry devices, data repositories of animal movement paths are
increasing almost exponentially in size. A series of complex statistical tools have been developed
in conjunction with this increase in data. Each of these methods offers certain improvements over
previously proposed methods, but each has certain assumptions or shortcomings that make its
general application difficult. In the case of the recently developed Time Local Convex Hull (T-
LoCoH) method, the subjectivity in parameter selection serves as one of the primary impediments
to its more widespread use. While there are certain advantages to the flexibility it offers for
question-driven research, the lack of an objective approach for parameter selection may prevent
some users from exploring the benefits of the method. Here I present a cross-validation-based
approach for selecting parameter values to optimize the T-LoCoH algorithm. I demonstrate the
utility of the approach using a case study from the Etosha National Park anthrax system. Utilizing
the proposed algorithm, rather than the guidelines in the T-LoCoH documentation, results in
significantly different values for derived site fidelity metrics. Due to its basis in principles of cross-
validation, the application of this method offers a more objective approach than the relatively
subjective guidelines set forth in the T-LoCoH documentation and enables a more accurate basis
for the comparison of home ranges among individuals and species, as well as among studies.



2.2 Introduction

Dramatic advancements in GPS telemetry devices have enabled researchers to gain a more compre-
hensive understanding of animal movement behaviors [148]. The decreasing costs of such devices
have resulted in their widespread deployment and a capacity for data collection at unprecedented
spatial and temporal resolutions [39]. Movement ecology has emerged as a discipline in its own
right [115], with numerous methods and tools being developed and disseminated to analyze the
wealth of available data. Ecologists can now quantitatively characterize home ranges and space use
patterns over time. Often, the purpose of applying such quantification methods to movement paths
is comparison of space use among individuals or species in order to examine such processes as niche
partitioning [97, 85], optimal foraging [95, 120], social aggregation [142], or even decision-making
[147]. However, many methods require user-defined input parameters, and results are often highly
sensitive to the selection of such values. For meaningful comparisons, standardization is required
[52], yet protocols to achieve consistency across applications are often non-existent.

One of the most fundamental concepts in movement ecology is the home range, conventionally
defined as “the area traversed by the individual in its normal activities of food gathering, mating,
and caring for young” [22]. Despite the apparent simplicity of this definition, the statistical formal-
ization of the home range remains challenging, with alternative approaches emphasizing different
aspects of animal movement and space use. The lack of a shared underlying theoretical framework
makes comparison and standardization among methods all the more difficult, and the practical
implications of selecting a particular conception of the home range make such considerations im-
portant.

Methods for home range delineation have evolved substantially since the concept of the home
range first emerged in the literature [22]. The Minimum Convex Polygon (MCP) method was the
most commonly used in the early years of home range description [68], despite its sensitivity to
outliers [42] and its inability to further partition internal space [117]. The MCP-based conception of
the home range lends itself naturally to some principles of space use in behavioral ecology, such as
the general rule that individuals of territorial species often exhibit larger home ranges in relatively
lower quality habitat. Kernel Density Estimation (KDE; [169]) emerged as a popular alternative
that overcomes some of the limitations of the MCP method, but numerous parameter choices make
comparisons among studies tenuous and replication of results difficult [87]. The KDE-based con-
ception of the home range offers a probabilistic framing of animal space use, but may obscure some
of the uncertainty inherent in movement data extracted at discrete time points. Both of these
methods and their descendants also treat input points as independent, an assumption that is fre-
quently violated with regularly sampled positions from movement paths. Efforts to overcome this
inherent autocorrelation have included resampling or weighting algorithms [136, 82], but more re-
cently, methods like the Brownian Bridge Movement Model (BBMM; [75]) and autocorrelated KDE
(AKDE; [53]) have been developed to explicitly incorporate the serial nature of movement data.
These more nuanced conceptions of the home range and movement behaviors account statistically
for uncertainty and autocorrelation, but reliance on random walk dynamics and related assump-
tions may not account for the behavioral dependency of animal movements [86]. While some of
the earlier home range delineation methods could be built for multiple individuals simultaneously,
many of these more rigorous methods are parameterized for each individual separately.
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The recently developed Time Local Convex Hull method (T-LoCoH; [96]) builds upon the non-
parametric LoCoH method [59] by explicitly integrating the temporal component of movement data,
effectively scaling time with distance in the construction of local point sets, or hulls. Essentially, this
method is governed by a simpler, MCP-based conception of the home range, but works at a finer
spatiotemporal scale and enables extension to a more probabilistic description of space use. The T-
LoCoH algorithm constructs a utilization distribution (UD) by aggregating local convex polygons,
or hulls, built around each point. The hulls are created by selecting the k nearest neighbors of a
given point and then sorted by density and merged together to form the UD. The selection of nearest
neighbors can be modified by the inclusion of a dimensionless scaling parameter s, which transforms
the time interval between points into a third axis in Euclidean space. The distance between points
in this three-dimensional volume is called time-scaled distance (TSD), and it serves to separate
points that are far apart in time despite their close proximity in two-dimensional space. Thus, an
s value of zero will produce the same home range as the original LoCoH method. Guidelines exist
for choosing appropriate values to construct a suitable home range, but much discretion is left to
the researcher based on the particular subject of their inquiry [96].

A similar approach relies upon the parameter a, which selects nearest neighbors whose distance
from the focal point sums to the value a. This method also requires the s parameter for weighting
the TSD, but the alternative parameterization may be especially useful for more adaptive hull
creation, such that more densely clustered areas of the movement path result in hulls with more
points than areas of sparse usage [96]. A rough sensitivity analysis reveals that small differences in
either of these parameters has dramatic impacts on the qualities of the resulting home range. The
values of these parameters are also contingent upon the movement path itself, meaning that the
paths of individuals of the same (or different) species may not result in comparable home ranges. To
make such comparisons ecologically and statistically sound, the procedure must be standardized,
but to date no such method exists.

Here I demonstrate the use of a novel cross-validation-based method to optimize parameter value
selection for implementing the T-LoCoH algorithm based on the unique qualities of each individual
movement path. This approach overcomes much of the subjectivity inherent in the recommended
parameter selection protocol [96], circumventing the primary challenge to building and interpreting
T-LoCoH home ranges. In addition, this method has the added benefit of enabling comparisons of
home range features and derived metrics across individuals, species, and spatiotemporal scales, as
the same underlying characteristics are used to select the optimal parameter values. I demonstrate
the utility of this method with a case study on herbivore movement in the anthrax-dominated
landscape of Namibias Etosha National Park.

2.3 Methods

Case Study

Pathogens indirectly transmitted via environmental reservoirs (e.g., water, soil, or animal excre-
tions) represent a unique challenge for ecologists and epidemiologists. Risk of infection in such cases
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will depend upon the particular conditions at reservoirs [76, 151], the feeding behavior of the host
[48, 67, 69], and the spatial arrangement of reservoir sites relative to susceptible animals [111], all of
which may serve to facilitate or dilute pathogen transmission. Certain characteristics of movement
behavior may aid in identifying the variation in risk of infection among individuals of the same
and different species, including home range size [14], site fidelity [119, 13], and contact network
structure [127, 36]. Comparisons of movement-associated transmission risk across individuals may
serve to guide management efforts in areas affected by environmentally borne pathogens by iden-
tifying high-risk individuals and areas [92, 153], but a failure to explicitly account for individual
differences may preclude robust evaluations of epidemiologically-relevant space use patterns [15]. I
applied this novel method to the movement trajectories of individuals from two herbivore species
in relation to anthrax (the acute disease caused by the bacterium Bacillus anthracis) in Etosha
National Park, Namibia. As a disease transmitted via environmental reservoirs, anthrax represents
an ideal case study for exploring the connections between individual movement on the landscape
and resulting disease risk.

GPS point locations were obtained for individuals of two different susceptible ungulate species
during the anthrax season in Etosha National Park, Namibia. For both the plains zebra (Equus
quagga) and springbok (Antidorcas marsupialis), the anthrax season was defined as the five-month
period between February 1 and June 31 [153]. Due to differences in the temporal resolutions at
which the data were initially collected, subsets of the data were created so that each individual had
one point location per hour throughout the sampling period. The total number of points for each
individual during this period ranged from 2111 to 3601 (Table 2.1). Any missing data values during
the sampling period were estimated using a Kalman smoothing approach [124]. Plains zebra and
springbok show no sex-related disparity in infection rate [78]. All five zebra individuals chosen for
analysis were female, while four of the six springbok were female and two were male.

Existing Parameter Selection Protocol

The k (number of nearest neighbors) and s (time-scaled to distance) parameter values obtained
using the proposed algorithm (below) were compared to those one might select based on the guide-
lines set forth in the T-LoCoH documentation [96]. In addition, the derived metrics, including
visitation rate (the number of visits to a given hull, separated by a pre-defined amount of time)
and mean duration (the average number of relocations within a hull during each of those visits)
were compared to determine the impact of selecting these alternative parameter sets on epidemi-
ologically and ecologically meaningful measures. Because these values are calculated at the scale
of the hull, they are likely to strongly depend upon the size of the hulls themselves, with larger
hulls leading to relatively higher duration and lower visitation rates as it becomes more difficult to
“leave” a hull. The selection of values for the £ and s parameters will therefore have implications
on the mean values calculated for each individual.

To select appropriate £ and s values using the guidelines, the proportion of time-selected hulls
(PTSH) method was used. The PTSH approach calculates the distances between pairs of points
under a set of alternative s values, and notes the proportion of pairs that are selected due to
their temporal proximity rather than their spatial proximity. Ten repetitions of the method were
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implemented for each trajectory and all s values associated with a PTSH between 0.4 and 0.8 were
obtained from each run. The median value was then chosen from this set and assigned as the s
value for that individual. Using these s values, six potential isopleth sets were created, ranging
from k=5 to k=30 in increments of 5. Isopleths are created after the hulls are merged together
by taking their union, whereby the i*" isopleth contains i-percent of points. The k values used in
subsequent analyses were chosen using two independent researchers who were asked to select an
isopleth set (or range of sets) that satisfied the minimum spurious hole covering criteria, which
calls for the selection of the smallest & value that minimizes the holes present in the core area of
the individuals home range. To convey the subjectivity associated with the k selection procedure,
both the lower and upper bounds of the ranges of k values selected by the independent researchers
were mapped and derived metrics extracted.

Cross-Validation-based Parameter Selection

In developing a cross-validation-based approach to parameter selection, I aim to remove much of the
subjectivity in the process and enable the data to inform appropriate values. The cross-validation
method depends upon the creation of a series of training and testing data sets. For each set, test
points were chosen randomly from the full movement path such that approximately one out of every
450 sampled points was selected as a test point (thus, each point had a probability of 0.002222
of being a test point). To ensure independence of the testing points, the 50 points preceding
and following each selected test point were removed from the full dataset, and the remainder was
considered the training data. For a path with 3600 points, this results in the selection of 8 test
points, on average, for each testing set, leaving 2792 points in the training set. The resulting
training datasets therefore consisted of approximately 80% of the original data points (Figure 2.1).
To minimize variation in the procedure, this stochastic splitting process is repeated n times (in this
case, 100) for each movement path.

A grid-based exploration of parameter space was then conducted (Figure 2.2), whereby each of
the training/testing datasets (i = {1,...,n}) was analyzed at every combination of £ and s values
on the grid. This analysis entailed the creation of local convex hulls with k£ nearest neighbors
and a scaling factor of s. In all subsequent analyses, we assume that the scaling of time follows a
linear formulation; however, when movement patterns more closely exemplify diffusion dynamics,
an alternative equation for the TSD may be more appropriate [96]. The test points (j = {1,...,m})
were then laid upon the resulting hulls.

We formulate the probabilities for out-of-sample points by normalizing the LoCoH surface so
that the probability of an observation occurring at a particular location can be calculated. This
value is obtained by dividing the number of training hulls that contain the test point location
(9i,j) by the summed area of all training hulls (A4;). Then, the log probability was calculated for
each point per training hullset. To avoid log probability values of -co, test points that were not
contained within any hulls were assigned a probability value equal to the inverse of A?, resulting in
substantially lower log probabilities. Finally, a single value (P} 5) was assigned to each combination
of k and s value by summing across all of the test points in all of the training/testing datasets:
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Because the probability of each test point is normalized based on the total area contained within
all of the training hulls, there exists a natural penalty for high k£ values. For example, a k value
equal to the number of training points (kyqq; regardless of the s value) will result in all hulls being
identical and each test point overlapping all of the hulls. However, the large total area of the hullset
when k = kpq, will result in relatively small probability values for each test point (i.e., independent
probability values equal to the inverse of the area of one of the hulls), effectively penalizing the
parameter set containing k... The underlying cross-validation procedure could very easily be
extended for the optimization of the the adaptive parameter in the a-method (as opposed to the
k-method) because of its scaling with the total area of the hullset.

Despite the use of a testing and training dataset in the creation of the hullsets, we deemed that
the use of a measure of sensitivity versus specificity, such as the receiver operator characteristic
(ROC) curve, would not serve as an effective means of comparing alternative parameter sets.
While false negatives (i.e., test points that are not contained within any hulls) are certainly easy to
measure, but without some form of pseudo-absence point, one cannot easily obtain a false positive
rate (i.e., points that fall within the home range defined by the hulls, but not actually a point
occupied by the animal). Rather, the log probability measure was chosen, as test points can be
penalized for being false negatives by assigning a consistent small value as its probability, but there
is no need to create pseudo-absence points or account for false positives in any way.

The grid-based search of parameter space allows for the identification of the combination of s
and k values that maximizes probability (Figure 2.2). In the case that multiple k or s values result
in the same probability, a ridge will appear in the surface. Along these ridges, any of the values
can be used and treated as optimal, but for our purposes, we will select the minimum value of k or
s associated with the maximum probability value.

2.4 Results

An efficient grid-based search algorithm covered s values from 0 to 0.05 and k values between 4 and
800. The algorithm searches across the broadest set of k values in intervals of 20 and s values in
intervals of 0.01. Upon identifying a peak in the probability surface, the algorithm selects a range
of 40 k values around the peak and refines the search there in k value increments of 5. Finally,
another range of 10 possible k values is selected and the finest scale grid-search is conducted in
intervals of 1 and s value intervals of 0.001 before selecting the optimal parameter set.

In the subsequent statistical analyses, the results of paired i-tests are presented to demonstrate
the significance of differences when the proposed method was used relative to the guide-based
parameter selection criteria, beginning with the k¥ and s parameters themselves (Table 2.1). The
mean k value selected using the algorithm for springbok (N = 6) was 225.5 (SE = 66.83) and
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for zebra (N = 5) was 347.2 (SE = 54.36). Because a range of k values were selected using the
T-LoCoH guidelines, the mean & values from each individual are used for comparison with the
algorithm parameters. The mean of these mean values was 22.5 (SE = 1.71) for the springbok
and 20 (SE = 1.58) for the zebra. In both springbok and zebra, these k values were significantly
different from those selected by the algorithm (p = 0.03 for springbok and p = 0.004 for zebra).
The mean s value selected using the algorithm for springbok was 0.02 (SE = 0.008) and for zebra
was 0.0012 (SE = 0.0005). The mean s value selected using the guidelines was 0.005 (SE = 0.002)
for springbok and 0.017 (SE = 0.002) for zebra. In the case of the zebra, the optimal s values
according to the two approaches were significantly different (p < 0.001), but in the springbok, the
s values were not significantly different (p = 0.10).

In terms of the area of the home ranges resulting from each parameter set (Table 2.2; Figure 2.3),
comparisons were conducted using both the low and high values from the range of the guideline-
based parameters relative to the algorithm-based parameter set. The mean home range area for
springbok using the algorithm was 401.64 km? (SE = 127.56 km?) and 1081.29 km? (SE = 162.17
km?) for zebra. The mean home range area for springbok using the low value of the range based on
the guidelines was 251.22 km? (SE = 72.51 km?) and 660.84 km? (SE = 74.30 km?) for zebra. The
mean home range area for springbok using the high value of the guideline-based range was 265.41
km? (SE = 76.23 km?) and 694.43 km? (SE = 80.81 km?) for zebra. Whether considering the lower
or upper value from the range of k£ values based on the guidelines, the difference between home
range sizes derived using the algorithm were significant for both springbok (p = 0.04 and p = 0.05,
respectively) and zebra (p = 0.01 and p = 0.01, respectively). The algorithm-based home ranges
were larger for both species, likely because of the significantly higher number of nearest neighbors
used in constructing hulls.

For the derived fidelity metrics, duration (Table 2.3) and visitation (Table 2.4), comparisons
only concern the mean values of each metric for each individual, though other descriptive statistics
of the distribution of all duration and visitation values may be of interest in some cases. The mean
duration (MNLV) for springbok using the algorithm values was 57.91 (SE = 14.65) and for zebra
was 49.20 (SE = 13.57). Mean duration derived using the low values in the range of s and & values
obtained based on the guidelines were between 21.47 (SE = 3.84) for springbok and 9.72 (SE =
0.47) for zebra. The mean duration derived using the high values in the guideline-based range were
24.35 (SE = 4.20) for springbok and 11.11 (SE = 0.49) for zebra. Whether considering the lower
or upper end of the ranges for springbok, the mean duration values were not significantly different
from the values derived using the algorithm (p = 0.10 and p = 0.08, respectively). In the case of
the zebra, on the other hand, the guideline-based duration values were significantly different from
the algorithm-based values, no matter the selection of the lower or upper k value from the ranges
(p = 0.04 and p = 0.05, respectively).

The mean visitation rate (NSV) for springbok using the algorithm values was 46.18 (SE =
34.47) and 23.61 (SE = 9.62) for zebra. Mean visitation rates derived using the low value from the
range of k values obtained using the guidelines were 8.38 (SE = 2.06) for springbok and 8.39 (SE
= 1.71) for zebra. Using the high value from the guideline-based range, the mean visitation rate is
9.00 (SE = 2.27) for springbok and 9.40 (SE = 1.77) for zebra. In springbok, the visitation rate
derived from the algorithm is not significantly different from the values derived using either the
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lower or upper k values from the guideline-based ranges (p = 0.33 and p = 0.33, respectively). The
same is true of the visitation rates in zebra, where the algorithm-based value was not significantly
different from those derived from the lower or upper values from the ranges of k based on the
guidelines (p = 0.13 and p = 0.15, respectively).

2.5 Discussion

The concept of the home range remains a contentious one, with some researchers suggesting that the
choice of delineation method should be defined by the question at hand [52]. When comparison is an
element of an analysis, however, standardization of sampling protocols and estimation techniques
is required [15, 117]. Considering the multitude of statistical issues overcome by the T-LoCoH
method, it should become an increasingly prevalent tool for such analyses. Therefore, eliminating
subjectivity from the procedure represents an important step for enabling comparisons both within
and among species and studies.

One important consideration is that the “true” k and s values are inherently unknowable. Even
the use of simulation methods, which would offer perfect knowledge of the position of an agent at
any given time, would not enable the construction of a “true” home range because that would entail
the selection of one particular conception of the home range. The approach laid out here offers one
such conception, where consistency, as measured by the ability to capture testing points in home
ranges created using a subsample of the full movement trajectory, is valued above other measures,
such as contiguity or inclusion. By applying this conception of the home range to movement data
from different individuals or species, the proposed method effectively unifies the resulting home
ranges, enabling further comparison.

Recent empirical studies utilizing the T-LoCoH algorithm for delineating home ranges illustrate
the subjectivity involved in parameter value selection [45, 80, 162]. While many studies rely upon
the guidelines set forth in the Tutorial and Users Manual provided by the creators of the t1locoh
package in R [96], there was some variation among studies regarding the selection of s values (i.e.,
choosing different proportions of hulls that are considered time-selected) and whether the &£ or a
approach was used for selecting nearest neighbors. Most of the home range studies applying the
T-LoCoH method do so across multiple individuals, and researchers must decide whether to select
separate parameter values for each individual or to have a single overarching parameter set. This
decision is particularly important in cases where multiple species are being compared [138], as
attribution of differences in home ranges to actual ecology rather than parameter choice may be
muddled. Most troubling, however, is the fact that several studies implementing T-LoCoH neglect
to specify the parameter values they ultimately used for their analyses, making replication of results
nearly impossible.

With regard to the decision about a single parameter set used across individuals or separate
sets for each movement path, we argue that consistency and comparability does not emerge from
the parameter sets themselves. Rather, the resulting home ranges can be unified by the home
range conception that guided their creation. As previously mentioned, the method proposed here
serves as that unifying conception, prioritizing consistency in the home range through the use of a
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cross-validation approach. In order to construct such a home range for a particular individual, a
very different parameter set from another individual may be necessary. Thus, we recommend the
use of the proposed algorithm (and the underlying conception of the home range upon which it is
built) to make home range analyses more readily comparable between movement tracks.

The results from this case study indicate several important trends. The first is that the s values
selected using the algorithm are similar to those selected using the proportion time-selected hulls
(PTSH) method, but the optimal k values are significantly different when using the cross-validation
based approach. This difference, in turn, affects the sizes of the home ranges delineated by the
T-LoCoH method. The home ranges generated from the example paths used here were larger when
the algorithm-based parameter sets were applied, without exception. There is a natural inclination
to reject larger home ranges as they approach the size and shape of the MCP, but in certain cases
(e.g., relatively circular home ranges), the MCP might represent a very reasonable delineation and
should not be dismissed simply because of its size.

Using the algorithm, the derived metrics of mean visitation and duration rate lead to some
notable clusters that do not follow the division between species. In particular, one of the zebra and
one of the springbok were assigned an optimal s value of zero. Though the optimal & values for the
two individuals were very different (156 for the zebra, on the lower end of the spectrum and 554
for the springbok, the highest k value selected), the derived metrics of these two individuals stand
in stark contrast to the nine other paths examined here. These two individuals had substantially
smaller duration values and much higher visitation rates. This trend might indicate that there
exists a cluster of more exploratory individuals and another cluster of more residential animals,
with both clusters containing individuals from both species. This pattern is not readily observed
using the guideline based parameter set, meaning that a very interesting dynamic could be missed
if the cross-validation approach is not used. It is unclear exactly what leads to the selection of
an s value of zero; it could be some particular geometric pattern or a particular pattern of space
use throughout the range. No matter the cause, the cross-validation based approach might be
revealing fundamental characteristics or clusters that cut across species. Such clusters could be
of great significance in ecological terms, especially when considering the potential for exposure to
pathogens.

Differences in site fidelity metrics can have important ecological implications. For diseases
like anthrax, which are caused by indirect pathogen transmission at environmental reservoirs, if
a locally infectious zone (LIZ; [27]) is present within the home range of an individual, a greater
level of site fidelity is likely to place the individual at repeated and extended risk of encountering
the pathogen. However, this same high site fidelity may protect an individual against exposure if
there are no LIZs in the home range. Consequently, higher mean visitation and duration values are
likely to produce a greater level of heterogeneity of infection risk for individuals within a spatially
structured population. More research will be required to determine whether duration or visitation
is most likely to result in contact with locally-infectious zones, but the fact that similarities in these
site fidelity metrics are shared across species suggests that certain movement types, rather than
species, may be more vulnerable to exposure.

In the case of these particular herbivores in the Etosha system, this difference in heterogeneity
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may be observed in the relative likelihood of a lethal versus non-lethal infection in the two species.
The zebra population in Etosha is approximately 13,000 and the springbok population is estimated
at 15,600 [27]. After accounting for imperfect detection [9], carcass surveillance data from 2000-
2013 suggest that the mean annual mortality rate directly linked to anthrax is approximately 1.34%
(95% CI: 0.80% - 1.88%) in zebra and 0.26% (95% CI: 0.18% - 0.35%) in springbok. Additionally,
the rate of sub-lethal exposure as indicated by the existence of antibodies in blood serum samples
is between 52% and 87% for zebra and between 0% and 15% for springbok [27]. Based on the
high values of non-lethal infection, the annual rate of a zebra exposed to anthrax experiencing
a lethal dose is approximately 1.5% whereas exposed springbok experience a lethal dose at an
annual rate of approximately 1.8%. This suggests that the zebra population may experience higher
overall exposure rates to the pathogen, but because of their relatively low mean duration, a large
proportion of the exposed population will contract a non-lethal dose, as they will move on from
LIZs relatively quickly. The greater mean duration value observed in the springbok population
would lead to expectations that some individuals will experience high doses based on repeated and
lengthy visits to LIZs or no exposure, with moderate, non-lethal exposure being fairly rare.

The same principles can be applied to other disease systems, where indirect pathogen trans-
mission may be linked to the spatial overlap of a species shedding a pathogen into the environment
and naive hosts of another species contacting the pathogen during commingling, as in the case of
brucellosis [131]. Commingling, frequently calculated as a function of home range overlap, is a com-
mon measure of inter-specific transmission risk, particularly between livestock and wildlife (e.g.,
bovine tuberculosis [20, 132]). The use of the algorithm enables the construction of comparable
home ranges among different species with greater confidence, thereby overcoming one of the most
important challenges of using and interpreting T-LoCoH and allowing for a broader application in
multi-species disease systems.

Finally, the concept of the probabilistic home range was an important advancement in the home
range literature [87], but in the case of T-LoCoH, where isopleths are built atop a series of hulls, the
resulting home range may represent an overfitting to the data (Figure 2.4; panel b). As such, this
process may be useful for identifying core areas, but may overlook corridors or treat such outlying
landscape features as part of the core area by altering the parameter set to fill in ‘holes’ in the
home range. The guidelines aim to minimize holes in the core area of the home range, but because
they are based on the probabilistic isopleths, the hulls may need to grow considerably (i.e., the k
value must increase) before the underlying hulls predict presence in those areas. Using the hulls
underlying those isopleths themselves may represent an underfitting to the data (Figure 2.4; panel
e), in essence, a return to the MCP concept whereby too much unused space would be considered
suitable. The algorithm circumvents the intermediate step of using isopleths by minimizing holes in
the hullset itself. The home range that one builds from these hulls may therefore represent an ideal
trade-off between the overfitting of the isopleths and the underfitting of the hulls at an inflated &
value.
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2.6 Conclusion

Here I present a unifying protocol for parameter selection based on a cross-validation approach.
Using the hulls created by the T-LoCoH method as the guiding element for choosing appropriate s
and k values, one can maximize the information content of the home range, penalizing parameter
sets that resemble the uninformative MCP while maintaining a level of generality that allows for
inference beyond the telemetry points themselves. This approach enables consistent comparisons
among the derived metrics of different individuals and species, as well as among different time
periods, removing subjectivity from the T-LoCoH parameter selection process. The lack of a
unifying conception of the home range contributes to the broad and inconsistent application of the
term throughout the movement ecology literature and beyond. While the method proposed here
has its own assumptions, it offers an objective alternative that can be applied across taxa and study
sites to unify results. Ultimately, standardization will facilitate a more explicit connection between
animal movement and a particular conception of space use patterns with major implications for
the conservation and management of wildlife.
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2.7 Tables

Table 2.1: Parameter values for analysis. The s and k values selected using the algorithm
and the guidelines in the T-LoCoH documentation. A range of k values were used for the
Guide due to the subjective nature of parameter selection.

ID Species  Sample Points s (Algo) £ (Algo) s (Guide) & Range (Guide)

AGO063 Zebra 2111 0.003 355 0.023125 20-25
AG252 Zebra 3601 0.001 485 0.0140625 20-25
AG253 Zebra 3601 0 156 0.0140625 25-30
AG255 Zebra 3601 0.001 405 0.0184375 20-25
AG256 Zebra 3601 0.001 335 0.0171875 15-20
AG205 Springbok 2887 0.05 182 0.003125 25-30
AG206 Springbok 3601 0.023 187 0.00875 25-30
AG207 Springbok 3601 0.036 155 0.01140625 20-25
AG209 Springbok 2887 0.013 171 0.002421875 25-30
AG214 Springbok 2887 0.001 104 0.00265625 15-20
AG215 Springbok 2883 0 554 0.00328125 25-30

Table 2.2: Home range areas (in square kilometers). The total area of the home range
obtained using the parameter sets recommended by the algorithm and by the guidelines set
forth in the T-LoCoH documentation.

ID  HR Area (Algo) HR Area (Guide Low) HR Area (Guide High)

AGO063 1092.66 570.65 602.61
AG252 1486.18 913.26 958.41
AG253 593.08 501.23 513.06
AG255 871.31 578.60 600.14
AG256 1363.21 740.47 797.94
AG205 369.61 256.03 268.42
AG206 972.84 557.74 287.54
AG207 429.81 298.64 317.98
AG209 347.19 207.30 215.62
AG214 32.22 23.01 25.46

AG215 258.16 164.57 177.42
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Table 2.3: Mean duration (MNLV) values. The derived metrics obtained using the param-
eter sets recommended by the algorithm and by the guidelines set forth in the T-LoCoH
documentation.

ID  MNLV (Algo) MNLV (Guide Low) MNLV (Guide High)

AGO063 48.94 10.02 11.32
AG252 77.32 10.37 11.74
AG253 2.61 10.71 12.45
AG255 75.11 9.50 10.34
AG256 42.04 8.00 9.70
AG205 92.61 24.38 27.10
AG206 80.78 14.32 16.42
AG207 67.92 12.26 14.47
AG209 78.92 23.41 26.04
AG214 24.68 16.54 19.43
AG215 2.57 37.89 42.63

Table 2.4: Mean visitation (NSV) values. The derived metrics obtained using the param-
eter sets recommended by the algorithm and by the guidelines set forth in the T-LoCoH
documentation.

ID NSV (Algo) NSV (Guide Low) NSV(Guide High)

AGO063 13.82 5.82 6.58
AG252 9.11 5.64 6.30
AG253 61.49 15.00 16.04
AG255 19.70 8.07 9.46
AG256 13.95 7.43 8.62
AG205 7.06 4.24 4.50
AG206 8.19 6.46 6.90
AG207 17.83 14.85 15.67
AG209 5.71 3.60 3.80
AG214 20.21 14.56 16.3

AG215 218.07 6.57 6.83
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2.8 Figures

Figure 2.1: Conceptual Figure of the Proposed Algorithm A test case of the algorithm
using a simulated movement trajectory of 1000 relocation points (a). Three of the subsets of
those points, with red points indicating those locations that remain in the training sets and
blue points representing the test points for the later probability calculation (b,f,j). For each
subset of points, a hullset is created using T-LoCoH, with an arbitrarily chosen s value of 0.5
and k values of 5 (c,g,k), 15 (d,h,1), or 25 (e,i,m). These three subsets serve to illustrate three
possible scenarios as the k values increases: either test points that are not covered by the
hull set at low & values continue to be uncovered with high & values (left-hand column), test
points that were not originally covered by the hull set at smaller & values becomes covered
(center column), or test points are covered at low & values and continue being covered at
higher & values (right-hand column).
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Figure 2.2: Conceptual Figure of Grid-based Search A probability surface is generated
as the algorithm searches over a grid of alternative s and k values for each individual move-
ment path. The increments of the grid can be chosen by the user. The peak in the surface
indicates that the home range associated with the particular parameter set offers the highest
probability given the test points. Here, the white boxes denote the maximum probability
value, and thereby, the optimal parameter set.

s value



23

Figure 2.3: Comparison of Resulting Home Ranges An illustration of two sets of home
ranges that result from the parameter sets chosen by the algorithm (red), the low range of
the guide (blue), and the high range of the guide (black). The home range set on the left is
based on the sample points from the springbok AG207, and the largest home range covers
429.81 km?. The home range set on the right is based on the GPS fixes from zebra AG256,
and the largest home range covers 1363.21 km?2.

Springbok
AG207
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Figure 2.4: Hulls versus Isopleths Using the simulated movement trajectory, home ranges
can be delimited using the hulls themselves (a,c,e) or the isopleths (b,d,f) derived from the
level of overlap among hulls (in this case, the 95% isopleth is displayed). When the &k value
is relatively small (k=5), the hulls (a) outline the movements of the animal very closely,
offering insight, not only into core areas, but also potentially important movement corridors.
Using isopleths (b) at low & values may result in large holes throughout the home range
while failing to capture corridors. At moderate and high & values (c,d,e,f), both the hulls
and isopleths begin to fill in many of the ancillary features, delimiting similar home ranges
at slightly different rates (i.e., at k=25, the isopleths (f) resemble the home range outlined
by the hulls at k=15 (c¢)). This illustrates the issue of underfitting when using hulls at high
k values and overfitting when using isopleths at low k values. The algorithm proposed here
serves to balance these two scenarios as effectively as possible.
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Chapter 3

Do zebra mitigate exposure to
anthrax when foraging? Incorporating
behavior into spatial disease risk
models

Eric R. Dougherty Dana P. Seidel Wayne M. Getz

Originally formatted for submission to the Journal of Animal Ecology and reproduced here with
the permission of Dana P. Seidel and Wayne M. Getz.

3.1 Abstract

Despite behavior being an important contributor to habitat selection, the incorporation of behav-
ioral analyses in spatial disease risk models has lagged behind other disciplines (e.g., conservation
biology). In disease systems where spatial distribution models can be developed for a pathogen,
parasite, or vector, the particular habitat preferences of host individuals will affect their probabil-
ities of exposure. If habitat selection at behavioral time scales differs markedly among behaviors,
then exposure risk may change dramatically when behavior is taken into account. Here I parse
animal movement trajectories into behavioral states and construct step-selection functions (SSFs)
conditioned on these behavioral states, incorporating pathogen exposure risk as one of the variables
in these SSFs. For the model of anthrax persistence, I constructed a Maximum Entropy (MaxEnt)
model to associate soil, bioclimatic, and vegetation variables with spore prevalence data from 40
zebra carcass sites detected between 2010 and 2012. I then used a hidden Markov model (HMM)
to identify foraging and non-foraging behavioral states along the movement pathways of nine zebra
during the 2009 and 2010 anthrax seasons in Etosha National Park, Namibia. Using the MaxEnt
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output as a potential predictor variable, I construct a set of SSF's to describe zebra movements and
compare the patterns of selection arising during the foraging and directed movement states. Finally,
these were compared to the results of an analysis of the entire movement trajectory to demonstrate
the value of behaviorally-conditioned analyses. During foraging, individuals actively avoid areas
where the risk of exposure to anthrax is relatively high. Conversely, during the directed movement
state, they appear to actively select for these high risk areas, perhaps to move through them when
in their less vulnerable state. Pathogen (or vector) distribution models may be misleading with
regard to the actual risk faced by host animal populations when specific behavioral states are not
explicitly accounted for in selection analyses. To more accurately evaluate exposure risk, especially
in the case of environmentally transmitted pathogens, selection functions should be built for each
identified behavioral state and then used to assess the comparative exposure risk across relevant
states. Caution, however, is required when interpreting results, particularly as they relate to scale.

3.2 Introduction

The manner in which animals use space is dependent on the dynamic interplay between the internal
state of an individual and the heterogeneous landscape over which it moves [115]. Heterogeneity,
however, has a vast number of contributing factors, ranging from readily measurable features such
as vegetation type or canopy cover to more elusive features like infection risk. Ultimately, animal
movement decisions must be made based on trade-offs between the benefits of satisfying phys-
iological needs and the costs of potential encounters with competitors, predators, or pathogens
[58].

With recent advancements in the technologies that track animal positions through time [165],
a number of path segmentation methods have been developed to parse movement paths into be-
havioral states and more clearly interpret the motivations underlying the decision to move [46,
41]. Such analytical methods offer insight into the space use patterns of animals during specific
activity modes, allowing researchers to understand the manner by which resource selection differs
depending on the internal state of an individual.

In an impressive meta-analysis of 859 habitat selection studies, [103] identified only nine in
which the researchers conducted a multi-level analysis wherein different behavioral states were
treated as giving rise to differential habitat selection. These ranged across taxa and geographical
regions, from the wandering albatross (Diomedea ezulans) in the Southern Ocean [94] to the Canada
lynx (Lynz canadensis) in the Northern Rocky Mountains [145]. In these cases and others, the
incorporation of behavioral state resulted in distinctly different conclusions regarding the space
use patterns of the animals (e.g., [50, 31, 5, 25, 8, 7, 171]). Noting this important trend, others
have emphasized the potential implications of ignoring behavioral state when considering habitat
selection and animal space use patterns [166], particularly in the context of conservation [135, 1].
Despite this recognition, applications of behavioral analysis methods in habitat selection studies
are still rare.

Notably, considerations of behavioral state have not yet permeated the literature regarding the
transmission of disease, where host behavior is a fundamental element of pathogen spread. This is
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particularly the case for pathogens that are transmitted via environmental reservoirs. The spatial
distribution of such pathogens can be readily modeled using remotely-sensed proxies of various
environmental factors [24], making studies of their overlap with host animals especially fruitful
(e.g., [111]). The importance of particular behavioral states has not been explicitly acknowledged
in studies of disease risk thus far, but the implications of excluding this information could be sig-
nificant. For example, habitat selection studies may offer insight into the evolutionary struggle
between host and pathogen. If a pathogen is able to persist in areas that are favored by a host
species, they are likely to induce more infections in the host population (i.e., they represent ecolog-
ical traps; [88]). On the other hand, host animals may be actively avoiding the areas that present
the highest risk of exposure (e.g., [174]), especially during the behavioral states in which they are
most susceptible. An analysis performed on a full movement trajectory might result in dramatically
different estimates of selection coefficients than an analysis of only periods during which the host is
in the vulnerable behavioral state. When ignoring behavior, relatively high selection coefficients for
the habitat types that are suitable for the pathogen would result in overestimates of the risk faced
by the animal. On the other hand, an analysis that disregards behavior might result in relatively
low selection coefficients for those high risk areas, leading to the incorrect conclusion that the an-
imal is safe from exposure. No matter the direction of the difference, the exclusion of behavioral
information is likely to lead to an inaccurate interpretation of the relationship between the host
and pathogen. Similarly, the direct consideration of alternative behavioral states could illuminate
important differences in the ways individuals mitigate risk at particular times. A more accurate
assessment of the ways animals utilize available resources for different purposes can inform wildlife
managers, particularly in systems that harbor environmentally-transmitted pathogens.

The unique nature of environmentally-transmitted pathogens makes them ideal case studies for
demonstrating the impact of the incorporation of behavioral analysis into habitat selection studies.
Here I use a set of movement trajectories collected from a system harboring one such pathogen,
Bacillus anthracis, the causative agent of the disease anthrax. Based on extensive research suggest-
ing that the primary route of anthrax infections in ungulate species is through the gastrointestinal
tract [153], one can deduce that the most important behavioral state for judging the risk of infection
is foraging [69]. Thus, I compare habitat selection models constructed from points assigned to the
‘foraging’ versus the ‘directed’” movement states; where the risk of exposure is likely significantly
lower in the latter. In addition, I compare these interpretations of space use to the conclusions
one would draw by analyzing the entire movement path as opposed to the behaviorally-conditioned
selection analysis. By incorporating maps of predicted pathogen persistence in all of these models,
direct comparisons can be made among the differential use of resources across behavioral states.
Ultimately, I demonstrate that zebra appear to mitigate their risk of exposure when they are in the
behavioral state during which they are most vulnerable. I also illustrate how these patterns may
not be as evident when the analysis does not explicitly account for behavior.
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3.3 Methods

Movement data preparation

Analyses were conducted on GPS trajectories collected from zebra in Etosha National Park in
Namibia between 2009 and 2010. Step-selection functions were developed for the nine zebra (Equus
quagga) for which GPS points were recorded during the anthrax seasons of those years. The anthrax
season was defined as the five-month period between February 1 and June 30, following [153, 40].
This temporal criterion resulted in a dataset consisting of five paths recorded during the 2009 season
and six during the 2010 season. By splitting up tracks by season, the nine zebra produced eleven
separate paths, with two individuals having long enough trajectories to be represented during both
seasons (Table 3.1). The original sampling procedure resulted in two parallel sets of data offset
by one minute. The short interval could offer interesting insight into the movement patterns of
the zebra (e.g., measuring the degree to which zebra movements are diffusive versus dispersive).
However, for the purposes of the analyses here, I focused on the first of the 20-minute data sets by
using only the first, third, and subsequent fixes that were all 20 minutes apart.

Environmental covariate derivation

Several covariate layers were used in constructing the step-selection functions. Three continuous
variables were derived directly from the available bands of the Landsat 4-5 Thematic Mapper
remote sensing data. The Normalized Difference Vegetation Index (NDVI) was calculated using
the standard formula:

NIR — Red
NDVI = ——
v NIR + Red
where Red is Band 4 (B4) and NIR is Band 5 (Bs). Greenness (G) and Wetness (V) were calculated
based on the tasseled-cap transformation equation presented by [32], which utilizes 6 of the 7 bands
in a regression framework to calculate several measures (weights rounded to 2 decimal places):

G =—-0.29B1 — 0.24B5 — 0.54B3 + 0.72B4 + 0.08 B5 — 0.18B7

W =0.15B1 4+ 0.18 By + 0.33B3 + 0.34B4 — 0.71B5 — 0.46 B~

These measures were calculated for the four cloudless images available during the 2009 anthrax
season (March 22, April 23, May 9, and May 25) and the four cloudless images available during the
2010 anthrax season (February 5, April 10, May 12, and May 28). A single mean layer was then
calculated for the Greenness and Wetness metrics in each year. All of these layers were obtained
at a resolution of 30 meters.
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The mean Wetness and mean NDVI measures were highly negatively correlated at the landscape
scale in the region through which the zebra moved (R = —0.95 for the 2009 season and R = —0.94
for the 2010 season). Although the correlation was not observed in the values associated with
the ‘used’ and ‘available’ points of every individual, the mean NDVI covariate was eliminated from
subsequent analyses. The correlations between mean Greenness and mean Wetness at the landscape
scale were relatively low (R = —0.59 in 2009 and R = —0.47 in 2010), so both were maintained as
potential predictors.

To account for the potential impact of human development in the area, primary roads (i.e.,
those made of tar or gravel) were mapped and recast in the form of a road density layer. The
road density layer was created in ArcMap 10.3.1 by calculating the length of road (in meters) per
unit area (square meters) in each 30 meter raster cell. This layer exhibited low covariance with
the other two continuous variables that were maintained in the predictor variable set, resulting
in a total of three potential predictor layers. Other frequently used continuous variables, such
as elevation, slope, and aspect, were eliminated a priori due to the natural homogeneity of the
study site with regard to those variables. Though potentially important, particularly in terms of
aggregating anthrax spores, the minute differences in elevation across Etosha National Park were
not detectable at the resolution at which data were available.

In order to facilitate direct comparisons among the effects of the predictor variables, the layers
were standardized such that the resulting layers had a mean value of zero and unit variance (i.e., the
overall mean was subtracted from each value and the result was divided by the standard deviation).

Anthrax risk map

A predictive layer of anthrax risk was created using an ensemble ecological niche modeling approach.
Separate maps were created for the 2009 and 2010 anthrax seasons based on the presence-only data
gathered from sites in Etosha National Park that contained anthrax spores at least one year after
the deposition of a carcass [152]. The carcass data consisted of 40 points at sites that contained
non-zero concentrations of anthrax spores (in colony-forming units per gram) during sampling one
and two years following initial deposition. Of these 40 sites, 26 were associated with carcasses
deposited in 2010, 4 with carcasses deposited in 2011, and 11 with carcasses deposited in 2012.
Studies show that individual zebra avoid carcass sites for several months after they are created but
are attracted to them during subsequent years, when these sites are still highly infectious [152].
Thus, the risk of infection with anthrax in 2009 and 2010 will depend upon carcass sites from
2007-2008 and 2008-2009, respectively. It should be noted that the carcasses used to derive the
anthrax risk layers do not represent an exhaustive record of anthrax-positive carcasses in the Etosha
region. In fact, it has been estimated that less than 25% of carcasses from zebra that have died
of anthrax are actually observed [9], and this estimate does not account for individuals of other
species, such as springbok, elephant and wildebeest, all of which are also susceptible to anthrax.
In addition, the set of carcasses that serve as the basis for this model exhibit spatial bias, as they
were selected largely because of their proximity and accessibility from the research base in Etosha.
This accessibility is directly related to the density of the road network in the vicinity of the base,
possibly leading to a confounding relationship. The potential effect of this and possible solutions
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in larger datasets are discussed below.

Others have created niche models for the bacterium Bacillus anthracis, but due to the site-
specific nature of the data used, they tend to be applicable only in the region for which they are built
(e.g., [111], [6], [146]). Despite their specificity, these models do offer insight into potential predictor
variables for anthrax persistence and can inform the niche model constructed here (Table 3.3).
Because the carcass data used in developing this particular niche model represent sites at which
anthrax spores were able to persist for multiple years, the risk map does not simply serve as a
predictive map of carcasses. Rather, it relates anthrax persistence to the soil, bioclimatic, and
vegetation covariates at sites previously occupied by a carcass. The presence-only data recorded
here lends itself to the application of Maximum Entropy methods [129].

The initial predictor variable set consisted of three general categories: soil characteristics, bio-
climatic variables, and vegetation indices. The soil quality was summarized using soil pH in HyO
(pH), organic carbon content (OC), and cation exchange capacity (CEC). All three of these layers
were obtained from the SoilGrids database at a resolution of 250m. The five bioclimatic variables
consisted of mean annual temperature (biol), mean temperature range (bio7), annual precipitation
(bio12), precipitation of the wettest month (biol3) and precipitations of the driest month (biol4).
The latter variable was removed because it lacked variation in the region of interest (i.e., every cell
had the same value). The bioclimatic variable layers were obtained from the WorldClim database
at a resolution of 30 arc-seconds (=1 km). The potential vegetation indices were calculated based
on the Landsat 7 NDVI 8-Day Composite layers, which were obtained at a resolution of 30m. Due
to the disparity in resolution, the soil characteristic and bioclimatic variables were resampled to
the finer resolution of the vegetation data. Because anthrax persistence was likely dependent on
vegetation trends during the entire period of sampling (i.e., the year of deposition and the two
subsequent years), the vegetation metrics were calculated for the three year periods between initial
discovery and final sampling. The vegetation indices that served as potential predictors were the
mean normalized difference vegetation index (mean_ndvi), maximum NDVI (max_ndvi), minimum
NDVI (min_ndvi), and the range of NDVT over the period of observation (range ndvi). To minimize
the covariance between predictor variables used in the model for each year, a Pearson correlation
matrix was calculated, and any pairs of variables whose coefficient of correlation was > 0.8 were
reduced to a single variable as explained below.

To parameterize a MaxEnt model, the background distribution of covariates must be considered.
This requires a sampling protocol in which points are randomly dispersed throughout the region of
interest and the values of the environmental covariates at those points (i.e., pseudo-absence points)
are recorded for comparison with the presence points. In this case, 500 background points were
selected. Due to the association of carcasses with a particular deposition year, these background
points were divided into three groups in proportion to the number of observed carcasses in each of
the three years (2010, 2011, 2012). The result was a set of pseudo-absence points consisting of 312,
50, and 138 points associated with 2010, 2011, and 2012 seasons, respectively. The covariate values
were extracted for each presence and pseudo-absence point according to its deposition year. An
initial MaxEnt model was run on these data and the full candidate predictor set using the dismo
package [71] in R (version 3.4.3; [133]). Following an investigation of the variable contributions
to this full model (generated as a standard output of the maxent function), variables exhibiting
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covariance with another predictor were culled such that the variable in the pair with the higher
contribution to the MaxEnt model was maintained and its counterpart eliminated. Finally, another
MaxEnt model was run on the reduced predictor variable set.

In order to obtain an anthrax risk map for both 2009 and 2010, the MaxEnt model was projected
onto the environmental covariate sets associated with those years (Supplementary Figures 1 and 2).
In 2009, this meant that the vegetation indices were calculated over the period from 2007 to 2009,
and for the 2010 risk map, the vegetation indices were calculated over the period between 2008
and 2010. These risk layers were then directly incorporated into the selection functions described
below.

Behavioral analysis

Each animal’s movement path was analyzed using a hidden Markov model (HMM; [123, 122]) in the
moveHMM package [109]. to probabilistically assign each relocation point to one of three different
behavioral states that generally corresponded to resting (state 1), foraging (state 2) and directional
movement (state 3). The foraging state is defined by medium length steps (on the order of 10!
to 10%) and turning angles with a mean close to zero and moderate directionality (concentration).
This state can be differentiated from resting (smaller step sizes on the order of 10° to 10! and low
concentration values indicating a lack of directionality) and directed movement (larger step sizes
on the order of 10? to 10 and higher concentration values indicating persistent direction). The
points that were assigned to the ‘foraging’ and ‘directed movement’ states formed the basis of the
two reduced datasets used for the behaviorally-conditioned step-selection function described below.
Each path was analyzed separately to more accurately reflect the variability among individuals and
properly parameterize the animal-specific step length distributions used in subsequent analyses.
The parameters governing the step length and turning angle distributions of the three behavioral
states can be seen in Supplementary Tables 1-11. In subsequent analyses, the means (u) and
standard deviations (o) in these tables are transformed into the more traditional shape and rate
(i.e., the inverse of scale) parameters of the gamma distribution according to:

2
K _ K
shape = —, rate = 2

q

Though the three-state model described above was ultimately used for the subsequent analyses,
a two-state model was also tested. A simple AIC-based model selection procedure revealed that
the three-state model was a more accurate reflection of the animal behavior in question, so it was
deemed the most appropriate.

Despite uncertainty in the model estimates of parameters and state assignments, this uncer-
tainty was not propagated between steps in the analysis. In other words, the state assignments
were treated as certain (binary) despite their probabilistic nature.
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Step-selection function

The step-selection function (SSF) procedure implemented here follows that of [171] (later used in
[173] and [172]) with some minor adjustments. Conventional SSF approaches often select a certain
number of ‘available’ points for each ‘used’ point based on empirical step length and turning angle
distributions. This represents an extension of the traditional resource selection framework, wherein
‘available’ points are selected from within the home range of the animal [81, 17, 99]. Thus, the SSF
approach eliminates much of the subjectivity associated with home range delineation methods [87]
and directly incorporates the temporally-autocorrelated nature of movement data. The ‘available’
point selection process of the conventional SSF is modified here to more accurately sample the
covariates of the area within reach of the animal from its actual location at a specific time. The
method proposed by [171] has an additional advantage in that it overcomes the potential bias in
inference associated with inappropriate sample sizes of ‘available’ points [118]. By censusing the
entire available area, one can estimate the correct proportions (in the case of categorical variables)
and accurately reflect the distribution (in the case of continuous variables) of covariates associated
with a given ‘used’ point. In this sense, the proposed method abides by the context-dependent
modeling approach [35], as the value of a cell reflects the attributes of that cell as well as the
attributes of the surrounding cells (e.g., the probability of a grassland cell will likely differ if the
cell is situated near an urban area rather than other grassland cells).

The SSF method incorporated the following steps:

1. The empirical step length distribution is fitted using an appropriate density kernel. In [171],
the authors utilize a generalized Pareto distribution, which has a steep curve and long right
tail, to reflect the step lengths of their study species. Here I approximate the empirical steps
lengths using a gamma distribution, which has a similar shape to the Pareto distribution but
with a shorter right tail. This approach was chosen in light of the recommendation by Zeller
et al. to threshold the kernel at the 97.5 percentile or use the maximum observed displace-
ment distance. In every instance, the 97.5 percentile value of the fitted Pareto distribution
was substantially larger than the maximum displacement distance. The tail of the gamma
distribution reflected the observed distribution of step lengths more accurately.

2. After fitting an appropriate kernel, a radius value was calculated as the 97.5 percentile of the
distribution, effectively representing the perceptual range at the scale of each 20 minute time
step (Table 3.2). This radius was then used to construct a buffer around each ‘used’ point.
The area within this buffer was treated as the ‘available’ area. Unlike in the [171] method, I
chose to forgo the construction of a separate 30-meter buffer around each ‘used’ point, which
is intended to account for the potential error associated with the GPS fixes. Due to the
resolution of the underlying predictor layers relative to the locational error of the GPS units,
it was deemed unnecessary to incorporate this additional component of uncertainty.

3. A weighted mean was calculated for each continuous variable, where the weight of each cell
(represented by the point at the center of the cell) was calculated based on the distance of
that cell from the ‘used’ point and multiplied by the value of the kernel density function
at that distance. This procedure places higher weights on areas closer to the ‘used’ point
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and thus, the perceptual range should not be viewed as a uniform buffer. These weighted
mean values are paired with the values extracted based on the position of the ‘used’ points,
resulting in two sets of covariate values associated with each locational fix.

4. A selection model is fitted in a conditional logistic regression framework (also known as a case-
controlled or paired logistic regression; [19]). This method pairs the set of values arising from
each ‘used’ area with the corresponding set of values calculated in the associated ‘available’
area [30, 18, 140]. An SSF involving n covariates, when projected onto a landscape, follows
the structure:

’LU(CUl xn) — eﬁlzl+"'+ﬂn$n
g ey

where the 8 coefficients are estimated by a conditional logistic regression [55, 99]. The f;,
i =1,...n, can be interpreted as selection ratios (i.e., the relative magnitude of selection) and
ePi can be thought of as an odds ratio. Thus, 3; > 0 indicates selection in favor of a particular
covariate (x;) compared to the expectation based on the availability of the covariate, whereas
B; < 0 indicates selection against covariate z;. The w of a given cell is its SSF score, which
can be viewed as the relative desirability based on the combination of environmental predictor
values at that location and weighted by the animal’s preferences for those predictors.

In generating the selection functions, I note that individual ID was treated as a random effect
[63, 44], alongside the fixed effects (Greenness, Wetness, Road Density, and Anthrax Risk).
However, I repeated this analysis separately for each of the two seasons, thereby by deriving
separate waoo9(Z1, ..., Tn) and wag10(21, .., Tn) SSFs. This allowed us to establish whether or
not the results were consistent across consecutive years. I also note that in this conditional
logistic framework, the ‘available’ area around the point at time ¢t would be associated with
the ‘used’ point at time t+ 1, thereby linking the foregone options available from the previous
point with the point ultimately selected by the animal. For inclusion in the behaviorally-
conditioned models, the animal must be assigned to the pertinent behavioral state at time
t + 1, indicating that the choices available at time ¢ (no matter their state) resulted in that
particular behavior.

To allow us to evaluate the sensitivity of the results to the scale of analysis, I increased the scale
of the SSF by a factor of three. Thus, I generated a second set of step-selection functions using
hourly rather than 20 minute fixes. To determine the behavioral states associated with each hourly
fix, I simply used a majority rule, such that the point would be assigned to whichever state the
animal was in for two or more of the twenty minute periods. If there was one of each, the animal
was assigned to the foraging state, as this represented the most conservative approach. For the
hourly step selection function, a new set of buffer lengths were also calculated by fitting a gamma
distribution to the hourly step length distributions using all of the points, only the foraging points,
or only the directed movement points. These buffer radii are presented in Supplementary Table 12.

The resting state was omitted from the step-selection function analyses because selection is
contingent on animals making explicit movement decisions. This determination was made based on
the mean step lengths associated with points recorded while an animal was in each state. Because
the mean step length during the resting phase was less than 42.4 meters (representing the diagonal
distance required to cross a 30 meter resolution cell of the environmental covariate layers used for



34

this analysis), the individual was deemed unlikely to be making a concerted decision to move (or
not move). Alternative thresholds for inclusion could be developed, but given the emphasis on
behavioral state here, this seemed most appropriate.

3.4 Results

Anthrax risk map

The anthrax risk maps produced for the 2009 and 2010 seasons reflect the output of the MaxEnt
model, built using 40 presence points and 422 background points (after 78 were removed for falling
within a region in which data was not available for at least one of the environmental covariates;
Figure 3.1, Panel a). These removed points were distributed haphazardly among the different years,
so additional adjustments were foregone. The final model was built on a set of nine continuous
predictors after the elimination of annual precipitation (bio12) and mean NDVI, which were highly
correlated with precipitation of the wettest month (biol3) and maximum NDVI, respectively (see
Supplementary Tables 13-15 for the covariance matrices in 2010, 2011, and 2012, and Supplementary
Table 16 for the variable contributions associated with the full model). The final model had
an AUC value of 0.937. The variable importance table indicates that the bioclimatic and soil
characteristics were larger contributors than the vegetation indices (Table 3.4). Mean temperature
range dominated the model, contributing 73% to the final model. Soil organic carbon content was
the next highest contributor at 11.2%. The vegetation measures contributed a total of only 7%
to the model, despite being more temporally specific than the other measures. For the sake of
reproducibility, the model coefficients (i.e., lambdas) and associated feature classes emerging from
the MaxEnt algorithm are available in Supplementary Table 17.

The final predictive maps for both 2009 and 2010 show that the greatest level of risk occurs at
the southwestern edge of the Etosha pan (Figure 3.1, Panels b and c). The geographical range of
risk appears to be considerably larger during the 2010 season than during the 2009 season. These
differences are likely driven by differences in the vegetation layers because the soil characteristic and
bioclimatic variables are static between the years. To quantify the differences in the geographic
range of risk, or pertinent transmission zone (PTZ), I set three thresholds representing liberal,
moderate, and conservative cutoffs above which the pixel is treated as risky (Figure 3.2). In 2009,
the area defined as the PTZ based on the most liberal definition of risk (associated with a suitability
value of > 0.1) was approximately 730 km2. The same liberal cutoff in 2010 results in a PTZ of over
943 km?. The moderate threshold (with a suitability value of > 0.25) offers a similar impression of
the disparity in PTZ size across seasons, with 2009 having a PTZ of about 344 km? and 2010 having
one of over 463 km?. Finally, the difference between anthrax seasons is even more pronounced when
the most conservative threshold (a suitability value > 0.5) is applied, with 2009 having a PTZ of
about 76.6 km? and 2010 having a PTZ that is nearly twice as large (133 km?). The PTZs in 2009
represent 10.4%, 4.9%, and 1.1% of the total area in the ~ 7000 km? region of interest in Etosha
National Park for the liberal, moderate, and conservative thresholds, respectively. The PTZs in
2010, however, represent 13.5%, 6.6%, and 1.9% of the total area for the same thresholds.

It is worth noting that both risk layers exhibit a minor diagonal striping pattern that is an
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artifact of a malfunction in the scan line detector during the Landsat 7 mission. The focus in
this case is to demonstrate a methodology for approaching a model of this sort, so I will use the
Landsat images without applying any form of correction. Despite the limitations described, the
environmental layers upon which the risk layer is built represent the best available data.

Step-selection function

To verify the efficacy of the step-selection function method applied here, two rasters were generated
with random values assigned to each cell (based on draws from a normal distribution with a mean
of 0 and a standard deviation of 1). These layers were added as potential predictors in the analysis
of the largest dataset (consisting of all movement points in 2010). This test allowed us to verify
that methodological artifacts, including sample size, were not artificially inflating the significance
of various predictors. Though this basic test cannot rule out the possibility of inflated Type I error
rates, the results indicate that there are no overt issues that need to be addressed upfront. These
results are presented in Supplementary Table 18.

For the sake of comparison, the results of the analysis conducted using all of the movement
points, irrespective of the behavioral state, will be presented first, followed by the results emerging
from the analysis that incorporates behavior. In the latter case, I will distinguish between the
foraging and the directed movement state to determine how selection patterns compare across
behavioral modes as well as across years (Table 3.5).

Applying the step-selection framework to all relocation points revealed some consistent trends
across the 2009 and 2010 anthrax seasons. Wetness represented the covariate with the largest
effect on selection, and in both years, animals actively avoided areas with higher Wetness. In
2009, the avoidance pattern was slightly weaker (fw = —0.52 + 0.039; p < 0.001) than in 2010
(Bw = —0.85 £ 0.023; p < 0.001), but in both cases, the effects were highly significant. In both
years, animals appeared to be slightly, though significantly, attracted to areas with greater Road
Density. In 2009, this attraction was also slightly smaller in magnitude (fgrp = 0.01 £ 0.006;
p = 0.04) than in 2010 (Brp = 0.03 +0.004; p < 0.001). Avoidance of areas with relatively high
anthrax risk was consistent across years, although only significant in 2010. In 2009, the negative
trend was nearly significant (Sar = —0.02 +0.012; p = 0.06), but in 2010, it was highly significant
(Bar = —0.06 £ 0.0108; p < 0.001). The only pattern that was not maintained across years when
all of the points were considered was the role of Greenness. In 2009, Greenness was not a significant
contributor (p = 0.86), meaning that animals were just as likely to select a point with relatively low
Greenness values as one with relatively high values given the option. In 2010, however, Greenness
was a highly significant predictor (Bg = 0.36 £ 0.031, p < 0.001), second only in magnitude to
Wetness.

When the dataset is parsed into different behavioral states, the results offer a slightly different
picture, and also offer insight into the various factors that animals consider when in the foraging
versus directed movement state. When considering only the foraging state, Wetness was no longer
as consistent a predictor of habitat selection. In 2010, the role of Wetness was negative and highly
significant (fw = —0.30 £ 0.030; p < 0.001), but in 2009, the effect was actually positive and
significant (fw = 0.23 + 0.052; p < 0.001). Comparatively, Greenness was the factor with the
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greatest impact on movement decisions during the foraging phase in 2010 (S = 0.43 &+ 0.044;
p < 0.001). In 2009, the effect of Greenness was not significant (p = 0.22). This pattern is
consistent with results when all of the points are analyzed. Unlike when behavioral states were
ignored, though, the role of Road Density is negligible in both 2009 (p = 0.61) and 2010 (p = 0.75).
Importantly, in both years, foraging zebra appear to consistently avoid the areas of highest risk of
exposure to anthrax. Though the effect is slightly stronger in 2009 (Bar = —0.11£0.018; p < 0.001)
than in 2010 (Bar = —0.06 +0.011; p < 0.001), the avoidance behavior when animals are foraging
is significant across both seasons.

Distinctions between the different behavioral states are clarified by considering the selection
patterns that emerge from an analysis of the directed movement points in addition to the foraging
points. When animals exhibit directed movements, with longer steps lengths and relatively little
variance in their heading, they seem to actively avoid areas with high Wetness. The effect was
highly significant in both 2009 (8w = —2.17 £ 0.145; p < 0.001) and 2010 (Bw = —2.19 & 0.075;
p < 0.001). It was this large effect that likely drove the relatively high avoidance patterns when
all of the points were analyzed. There were several factors that exhibited notably different effects
during the directed movement state than during the foraging state. In 2009, the effect of Greenness
was negligible during the foraging state, but animals appeared to actively avoid areas of high
Greenness during the directed movement state (g = —0.54 + 0.130; p < 0.001). The oppositional
trend was repeated in 2010, where foraging animals demonstrated a significance preference for
higher Greenness, but animals in the directed movement state seemed ambivalent to the level
of Greenness (p = 0.80). Similarly, Road Density was a significant predictor of selection during
directed movement in both 2009 (Sgp = 0.04 & 0.012; p = 0.001) and 2010 (Brp = 0.07 £ 0.008;
p < 0.001), where animals actively selected to be in areas with higher Road Density, but the
factor did not appear to significantly affect movement decisions during the foraging state. A
possible explanation for this difference is that roads may facilitate directed movement by eliminating
potential barriers, making them more attractive for longer distance ‘steps’. However, the disparity
between the behavioral states was perhaps most notable with regard to role of Risk in movement
decisions. When animals were in the directed movement state, they consistently selected areas that
correlated with greater risk of exposure, whereas animals tended to actively avoid such high risk
areas when they were foraging. This was the case in 2009: far: direct = 0.13 £0.043 (p = 0.003)
vs. foraging = —0.11 £ 0.018 (p < 0.001). It was also the case in 2010: Sag: direct = 0.09 + 0.024
(p < 0.001) vs. foraging = —0.06 &+ 0.011 (p < 0.001)

To test the robustness of the results from the above analysis, a parallel analysis was conducted
at a coarser scale. Using an hourly fix rate, rather than a 20 minute fix rate, the same general
patterns emerge (Table 3.6). Of particular importance are those trends that were consistent across
seasons in the fine-scale analysis: the selection coefficients for regions with high road density and
areas of high suitability to anthrax. As in the analysis of the fine-scale data, foraging animals
appeared to be affected negligibly by Road Density (p = 0.95 in 2009; p = 0.11 in 2010), but
significantly avoided areas with high anthrax risk in both 2009 (Sar = —0.10 £ 0.032; p = 0.001)
and 2010 (Sag = —0.10+0.018; p < 0.001). Similarly, the attraction to higher Road Density during
the directed movement state was apparent in both 2009 (Srp = 0.06 £ 0.025; p = 0.02) and 2010
(Brp = 0.08 + 0.016; p < 0.001), as was the attraction to areas of higher suitability for anthrax
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persistence in 2009 (Sar = 0.28 + 0.057; p < 0.001) and 2010 (Bar = 0.07 +0.028; p = 0.01).

3.5 Discussion

The selection functions reveal interesting dynamics with regard to the behaviorally-contingent space
use patterns of zebra. In both 2009 and 2010, the zebra exhibit distinct avoidance of areas that are
most suitable for anthrax persistence when they are in the foraging state (indicated by a negative
selection coefficient). Notably, they demonstrate a pattern of attraction (indicated by a position
selection coefficient) to these areas of high risk when they are in the directed movement state.
This pattern was also reflected when the coarser dataset (hourly fixes rather than 20 minute fixes)
were analyzed. Overall, these results suggest that zebra not only recognize where they face the
greatest risk of exposure to anthrax, but that they also recognize their own increased vulnerability
in the foraging state. Further, the results of the behaviorally-conditioned step-selection functions
indicate that foraging animals that approach areas of high risk might actually intentionally alter
their behavior, shifting to a more directed mode of movement with longer step lengths and less
variance in their heading in order to move quickly through the area and avoid contact with a
pathogen. This would explain the apparent selection in favor of these riskier areas during that
state. It is important to note that these general trends do not indicate that animals never forage in
areas with some risk of exposure; it merely implies that animals exhibit a statistically meaningful
preference for areas with lower risk over areas with higher risk while in the foraging state. Similarly,
zebra will, on occasion, exhibit directed movements outside of high risk areas, but there exists a
meaningful preference such that they are more likely to select for areas of high risk than areas with
low risk when they are in the directed movement state. In effect, the zebra analyzed here exhibited
an ability to reduce their risk by altering their behavior depending on their proximity to areas with
higher potential for exposure to anthrax.

It is unclear exactly what the mechanism underlying this avoidance trend during foraging would
be. After a year — and especially after two — carcasses are unlikely to leave visible cues in the
vicinity of the deposition site. The hemorrhagic fluid released during the period of decomposition
following death is unlikely to leave notable signs after that amount of time, and carcasses themselves
tend to be dragged and destroyed by scavenging animals within a few days or weeks (except in
the case of larger elephant carcasses, which were not included in the MaxEnt model). In fact, a
camera trap study conducted in Etosha National Park actually indicated the opposite pattern, that
animals tended to be attracted to the locally infectious zones (LIZs; [56]) due to a vegetation green-
up that occurred in seasons following the release of the nutrient-rich fluids from the carcass [151].
One possible explanation for the avoidance behavior is the existence of a confounding variable
that was not considered in this analysis. For example, if a particular soil or vegetation type is
frequently associated with carcasses, an association might develop in the minds of the vulnerable
host population. Avoiding these more obvious and more permanent cues may give rise to the
behavior observed.

The alternative interpretation that arises based on the results of the selection analysis conducted
here might concern the specific scale at which the analysis was conducted. Given the average size of
the locally infectious zone caused by a zebra carcass, it is not especially surprising that an analysis
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at a 30 meter resolution could miss some of the finer-scale dynamics. At this scale, the signature
of a LIZ site is likely overwhelmed by the averaging of the characteristics of a cell, as the LIZ itself
represents only about one-tenth of the area of a cell (though this depends on the species of the
animal that succumbed at that location). Thus, at the scale of this analysis, animals may, in fact,
select for areas that present lower risk of exposure to a pathogen. This pattern of avoidance has been
noted in other species [34, 130], and has given rise to the concept of the ‘landscape of disgust’ [163].
If, however, an animal ends up in a high risk cell, they might be attracted to the LIZ site within
that cell. Thus, an overall avoidance pattern may be observed across the landscape, but attraction
at the sub-cell scale. This implies a very important point about habitat selection analyses that
are frequently conducted at the finest scale allowed by the environmental data as opposed to the
most meaningful scale from a biological perspective. Interpretations regarding pathogen exposure
risk might depend not only on the behavioral state of the animal, as investigated here, but could
also be influenced by the scale of analysis. It should also be noted, however, that to make use
of such fine-scale environmental data, the temporal resolution of the movement tracks would also
likely need to be finer, perhaps on the order of 1 minute per fix. At the time that these data were
collected in 2009 and 2010, this technology was not widely available, but recent advancements in
GPS devices makes such fine-scale movement data eminently collectible.

In this case, I was only able to account for the potential effect of scale by decreasing the
resolution of the environmental or movement data. The results presented here are fairly robust
when the scale of the movement data is coarsened from a 20 minute fix rate to hourly fixes. Similar
patterns were borne out, including the general attraction to areas of high anthrax exposure risk
during the directed movement state and avoidance of those areas whilst foraging. Insights regarding
the attraction towards areas of high road density and a more pronounced avoidance of wet areas
during directed movement were also replicated at this scale.

These patterns, however, are not as stark when the entire movement path is analyzed without
accounting for different behavioral states. The distinct divergence in the selection coefficients for
the anthrax risk layer that emerges from the behaviorally-conditioned step-selection function is
lost in an analysis of the full trajectories. Though the avoidance pattern is still significant in 2010
and nearly significant in 2009, the dynamic in which animals actively select for the higher risk
areas during directed movements is no longer apparent. This is likely because of the relatively
large proportion of points that were defined as foraging compared to the proportion assigned to the
directed movement state. The attraction is effectively overshadowed by the avoidance associated
with the state that had the larger sample size, further demonstrating the importance of explicitly
considering behavioral states when possible.

The explicit consideration of particular behavioral states in habitat selection studies can offer
important insights, especially in systems with environmentally-transmitted pathogens. The unique
biology of these pathogens enables them to persist in reservoirs outside of hosts for relatively long
periods of time. Anthrax spores, for example, may remain viable in the soil in Etosha for up to
seven years [152]; it is possible that they can persist even longer in systems with more vegetation
cover, potentially giving rise to episodic infection dynamics [24]. Where environmental persistence
is possible, the ability to predict the presence of the pathogen is directly related to the dependence
of the pathogen on particular environmental factors. Anthrax exhibits a dependence on soil with a
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slightly alkaline pH, high organic matter, and high calcium content [76]. The availability of these
remotely sensed data makes it feasible to map the likely niche of anthrax. Ideally, soil samples at
carcass sites in the years following deposition are used to map anthrax suitability, as in the MaxEnt
model built here. However, this strict criterion substantially limited the number of data points
available to inform the anthrax risk layer, from approximately 300 carcasses observed between 2010
and 2012 to only 40 that were subsequently samples for spore persistence. In this way, however,
I was able to directly map suitability for anthrax persistence, and thus, exposure risk, as opposed
to mapping some proxy, such as habitat preferences of animals weakened by anthrax infection.
Importantly, the 40 sites that were sampled in subsequent years were not randomly or haphazardly
chosen from the many carcasses in the region of interest. All of these sites were easily accessible
from the research base at Okaukuejo, and thus, were spatially biased. Because the region closest
to the research base has the highest density of roads in the park, the relationships observed in the
SSF models between Road Density and Anthrax Risk (particularly during the directed movement
state) may be confounded. Due to the relatively small sample size of LIZ sites, I chose to maintain
all of the 40 points rather than applying a subsampling procedure. This is a potentially serious
flaw in the derivation of the risk map, and when sample size allows, appropriate methods for
reducing spatial bias should be applied. Another alternative approach would involve modeling the
probability of spore persistence at a carcass site and projecting that across all observed carcasses
(rather than only those that were sampled in subsequent years). This might increase the sample
size and enable subsampling approaches to reduce bias, but the propagation of uncertainty between
stages of analysis will be important when interpreting the results.

The interpretation of a habitat selection analysis will depend heavily on the environmental
factors that serve as inputs to the model. In this case, remotely sensed data from 2009 and 2010
were limited at the resolution of the analysis. Though Landsat data enabled the creation of mean
Wetness and Greenness layers to help characterize the region, there are likely a number of other
potential abiotic factors that influence animal habitat selection that could not be summarized
meaningfully at the the spatial and temporal scale of this analysis. On a similar note, the unique
nature of the study site in question limited the number of potentially meaningful environmental
covariates. For example, elevation, slope, or aspect are very commonly incorporated into models
of habitat preference, but the lack of heterogeneity within the region of interest investigated here
precluded definitive conclusions regarding such predictors. There are numerous biotic factors that
are very difficult to incorporate meaningfully into such models as well: competition and predation,
for example, are likely to influence movement patterns, particularly at the scale of 20 minute steps,
but these could not be derived from the available data for this period.

It is important to note some additional drawbacks and potential shortcomings of the meth-
ods applied here beyond the issues of scale and data availability. For instance, the selection of
a particular analytical method to parse a movement trajectory into the canonical activity modes
(CAMs; [58]) or behavioral states of which it is composed might introduce an additional layer
of uncertainty. For this study, I have chosen a Hidden Markov modeling (HMM) approach, but
alternative approaches might have resulted in different state assignments. In addition to the un-
certainty associated with assigning points to particular behavioral states, there is uncertainty in
the parameter estimates derived from the model (e.g., step length and turning angle distribution



40

parameters). In the procedure above, I treated these parameter estimates and state assignments as
the basis for subsequent analyses without propagating the associated uncertainty between stages.
Though it is difficult to determine the effect of this simplification, it is likely to bias the results to
some degree. Evaluating the effect of disregarding uncertainty and devising methods to explicitly
account for it will be important considerations when applying behavioral analyses to multi-level
selection functions in the future.

In the case of HMMs, the models that emerge are dependent on user inputs, including an a priori
decision regarding the number of states to which points can be assigned. Here I tested a two- and
three- state model and chose the latter based on AIC (and interpretability), but alternative models
may have fit the data better than the one that I ultimately applied across all of the individuals. This
is another important consideration when researchers intend to incorporate behavior into models
of habitat selection. Recently, telemetry devices have been fitted with auxiliary sensors, such
as accelerometers [116, 165] that might offer additional clarity to researchers wishing to parse
movement tracks. Similarly, several new tracking devices directly account for the movement mode
of an animal by altering the positional fix rate based on the current speed of movement, offering
classification of steps without additional analyses [1]. However, it is unclear exactly what the
ramifications of misclassification would be, and the identification of these effects will be difficult
without definitive knowledge of the “true” behavioral states of an animal through time.

Mapping the host selection of potential locally infectious zones on the landscape may help
guide managers in identifying areas of high anthrax risk and individuals with high exposure po-
tential given their selection patterns. If animal movements can be isolated to a single behavioral
state during which individuals are vulnerable, such analyses can be made even more accurate.
Ultimately, integration LIZ and behavioral information might aid in preventing outbreaks of the
endemic pathogen. Though other disease systems, including those characterized by transmission
via environmental reservoirs, might not involve a particular behavioral state that exhibits a defini-
tively higher level of vulnerability, the consideration of behavior could be important for judging
other epidemiological processes, such as contact or succumbing to infection [41]. In the case of the
former, particular behavioral modes might result in shifting selection patterns that lead to large
aggregations of individuals, thereby placing animals at a higher risk of contacting an infectious
conspecific [54]. When investigating the infection process itself, novel selection patterns may be
induced by infection with a parasite or pathogen, and these shifts might be apparent in a move-
ment trajectory [114, 33]. The growing availability of fine-scale GPS data and the growing set of
analytical methods to infer behavior from such data makes the direct incorporation of behavior an
important and exciting avenue for future exploration.
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Table 3.1: Summary of the eleven regularized zebra tracks for which step-selection functions
were developed. Note that individuals AG063 and AGO68 had paths that spanned two
anthrax seasons, resulting in two separate entries here.

Animal ID Number of Points Missing Points Start Date End Date
AGO059 4,824 5 2009-04-25  2009-06-30
AGO061 4,824 152 2009-04-25  2009-06-30
AG062 4,824 646 2009-04-25  2009-06-30
AGO063 4,824 7 2009-04-25  2009-06-30
AGO68 4,824 11 2009-04-25  2009-06-30
AGO063 6,331 86 2010-02-01  2010-04-30
AGO68 10,800 2,072 2010-02-01  2010-08-29
AG252 10,800 39 2010-02-01  2010-08-29
AG253 10,800 739 2010-02-01  2010-12-17
AG255 10,800 28 2010-02-01  2010-08-29
AG256 10,800 2 2010-02-01  2010-08-29

Table 3.2: Radii of the kernels (in meters) used in producing the step-selection functions for
each individual. Separate radii were used for the full datasets, the foraging only dataset,
and the directed movement only datasets.

Kernel Radius Kernel Radius Kernel Radius

Animal ID (Al) (Foraging) (Directed)
AG059-2009 1131 667 1532
AG061_-2009 739 273 1190
AG062-2009 837 240 1148
AG063-2009 985 o281 1534
AG068-2009 1183 607 1595
AG063-2010 1256 626 1686
AG068-2010 1236 290 1636
AG252.2010 1012 341 1450
AG253.2010 1101 499 1702
AG255.2010 1056 324 1502
AG256-2010 1014 376 1479
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Table 3.3: Set of potential predictor variable layers used in creating the anthrax risk map.
These covariates were compiled based on their use in similar ecological niche modeling efforts
of Bacillus anthracis (see [6] and [111] for more details). Several of these variables were
eliminated, however, due to collinearity with other, more important, variables in the set. An
‘X" in the ‘Final Model’ column indicates the inclusion of that variable in the final MaxEnt
model.

Environmental variable (units) Covariate Data source Final
name Model
Soil pH x 10 in HyO pH SoilGrids* X
Soil Organic Carbon Content (g/kg) ocC SoilGrids* X
Soil Cation Exchange Capacity (cmolc/kg) CEC SoilGrids* X
Mean annual temperature (C°) biol WorldClim' X
Annual temperature range (C°) bio7 WorldClim ' X .
Annual precipitation (mm) biol2 WorldClim'
Precipitation of the wettest month (mm) biol3 WorldClim X
Precipitation of the driest month (mm) biol4 WorldClim'
Mean NDVI NDVI Landsat 74
Maximum NDVI max_ndvi Landsat 7+ X
Minimum NDVI min_ndvi Landsat 7+ X
Range NDVI range_ndvi Landsat 7% X

[70] T [72] ¥ data courtesy of the U.S. Geological Survey

Table 3.4: Variable contribution and importance results from the final MaxEnt model, built
on the reduced environmental covariate set following the elimination of annual precipitation
(bio12) and mean ndvi due to covariance.

. Percent Permutation
Variable Name . . .
contribution importance
Mean temperature range bio7 73 80
Soil Organic Carbon Content oC 11.2 2.6
Precipitation of the wettest month biol3 6.5 7.1
Range of NDVI range_ndvi 4.7 2.3
Maximum NDVI max_ndvi 2 1.6
Mean annual temperature biol 1.2 1.5
Soil Cation Exchange Efficiency CEC 0.6 2.1
Soil pH pH 0.5 0.5

Minimum NDVI min_ndvi 0.3 2.3
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Table 3.5: Results of the conditional logistic mixed effects models as applied to all of the
movement points (n = 22,949 in 2009 and n = 56,495 in 2010), only the foraging points (n =
11,733 in 2009 and n = 27,898 in 2010), and only the directed movement points (n = 4,381
in 2009 and n = 11,486 in 2010).

2009 All Points coef  exp(coef) se(coef) z p sig
Wetness (Sw) -0.52  0.59 0.039 -13.26  <2e-16  ***
Greenness (5q) -0.01  0.99 0.031 -0.18  0.86

Road Density (Srp) 0.01 1.01 0.006 2.03 0.04 *
Anthrax Risk (8ar) 0.02 0.98 0.012  -1.91  0.06

2010 All Points coef  exp(coef) se(coef) z p sig
Wetness (Sw) -0.85 0.43 0.023 -36.58  <2e-16 ***
Greenness (5g) 0.36  1.43 0.031 11.38 <2e-16  ***
Road Density (Brp) 0.03 1.03 0.004 6.16  7.le-10 ***
Anthrax Risk (8ar) -0.06  0.95 0.008 -7.57  3.8e-14 kX
2009 Foraging Points coef exp(coef) se(coef) z p sig
Wetness (Gw) 0.23 1.25 0.052 4.34 1.4e-05 ***
Greenness (5g) 0.06 1.05 0.042 1.22 0.22

Road Density (6rp) -0.00 1.00 0.008 -0.50 0.61
Anthrax Risk (6aRr) -0.11  0.90 0.018 -6.05  1.4e-09 ***
2010 Foraging Points coef exp(coef) se(coef) =z p sig
Wetness (Sw) -0.30 0.74 0.030 -9.98 <2e-16 ***
Greenness (5a) 0.43 1.54 0.044 9.88 <2e-16 X
Road Density (8rp) 20.00 1.00 0.006  -0.31  0.75
Anthrax Risk (8aRr) -0.06 0.94 0.011 -5.85  4.8e-09 ***
2009 Directed Points coef exp(coef) se(coef) z p sig
Wetness (Gw) -2.17  0.11 0.145 -14.97  <2e-16  ***
Greenness (5g) -0.54  0.58 0.130 -4.15  3.3e-05 ***
Road Density (8rp) 0.04 1.04 0.012 3.26  0.001  **
Anthrax Risk (8aRr) 0.13 1.14 0.043 3.01 0.003  **
2010 Directed Points coef  exp(coef) se(coef) =z p sig
Wetness (Sw) -2.19 0.11 0.075 -29.37  <2e-16 X
Greenness (8g) -0.02  0.98 0.097 -0.25  0.80

Road Density (6rp) 0.07 1.07 0.008 8.36 <2e-16 X

Anthrax Risk (Sar) 0.09 1.09 0.024 3.81 1.4e-04 HFH*
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Table 3.6: Results of the conditional logistic mixed effects models as applied to all of the
movement points (n = 7,650 in 2009 and n = 18,908 in 2010), only the foraging points (n =
3,955 in 2009 and n = 9,546 in 2010), and only the directed movement points (n = 1,420 in
2009 and n = 3,735 in 2010), using hourly fixes rather than the finer-resolution 20 minute
intervals.

2009 All Points coef  exp(coef) se(coef) z p sig
Wetness (Sw) -1.07 0.34 0.074 -14.51  <2e-16  ***
Greenness (Sw) 0.11 1.11 0.058 1.83 0.07

Road Density (Srp) 0.02 1.02 0.010 1.91 0.06 .
Anthrax Risk (Sar) -0.04 0.96 0.022 -1.98  0.05 *
2010 All Points coef  exp(coef) se(coef) z p sig
Wetness (Sw) -1.63  0.20 0.043 -37.73  <2e-16 HF
Greenness (5g) 0.84 2.32 0.057 14.64 <2e-16 *H*
Road Density (Brp) 0.04 1.04181  0.008 5.16  2.5e-07 R
Anthrax Risk (6aRr) -0.08 0.92751 0.014 -5.55  2.9e-08 ***
2009 Foraging Points coef exp(coef) se(coef) z p sig
Wetness (Sw) -0.18 0.84 0.094 -1.88  0.06
Greenness (5a) 0.07 1.08 0.076 0.96 0.34

Road Density (6rp) 0.00 1.00 0.015 0.06 0.95
Anthrax Risk (Bag) 0.10 0.90 0.032  -3.19 1.4e03 **
2010 Foraging Points coef exp(coef) se(coef) =z p sig
Wetness (Sw) -0.94 0.39 0.056 -16.63  <2e-16 FF*
Greenness (5a) 0.72  2.05 0.080 9.00 <2e-16 ***
Road Density (Srp) 0.02 1.02 0.011 1.58 0.11
Anthrax Risk (8aRr) -0.10 0.91 0.018 -5.29  1.3e-07 ***
2009 Directed Points coef exp(coef) se(coef) =z p sig
Wetness (Gw) -2.81 0.06 0.226 -12.47  <2e-16  ***
Greenness (5g) 021 1.24 0.164 1.29 0.20

Road Density (Srp) 0.06 1.06 0.025 237  0.02 *
Anthrax Risk (8ar) 0.28 1.32 0.057 4.87 1.1e-06  ***
2010 Directed Points coef exp(coef) se(coef) z p sig
Wetness (Sw) -1.66 0.19 0.090 -18.39  <2e-16  ***
Greenness (5q) 0.41 1.50 0.112 3.64  2.7e-04 KX
Road Density (Srp) 0.08 1.08 0.016 4.98 6.2e-07 ***

Anthrax Risk (8aR) 0.07 1.07 0.028 2.55 0.01 *
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3.7 Figures

Figure 3.1: Predicted Anthrax Suitability Maps MaxEnt derived maps of suitability for
anthrax persistence within the region of interest in Etosha National Park, Namibia. Panel
a illustrates the spatial distribution of presence points (large black dots) and background
sampling points (small gray dots) for the MaxEnt algorithm. Panels b and c are the resulting
predictive maps of suitability for anthrax spores in 2009 and 2010.

(a) Anthrax Presence and Background Points

o
o
o
o_
Al
o
N~ s
~..' . .t
o ° .
o . '
o d L S o
S .o ¥ :
(2} @ . . .
N~ R . . ‘
¢ @ . '." > e
e . -
o °
o . ...u X
3 -."‘o-: © J :
8_ / . ‘- . c
o) . c DI .
N~ Lo ‘e o ° . . )
a . . -
Y
.
o
o
8_ s s .
©
[e0]
N~

[ I [ I [ I
560000 580000 600000 620000 640000 660000

(b) Predicted Anthrax Risk Map (2009) (c) Predicted Anthrax Risk Map (2010)

0.8

I
o
©

0.6

0.4

I
p.
j
°
kS

0.2

7860000 7880000 7900000 7920000
#

7860000 7880000 7900000 7920000
o

T T T T T T T T T T T T
560000 580000 600000 620000 640000 660000 560000 580000 600000 620000 640000 660000



46

Figure 3.2: Pertinent Transmission Zones PTZs for anthrax as delimited using three
different thresholds: >10%, >25%, and >50% probability of suitability, corresponding to a
liberal, moderate, and conservative estimate of the area in which anthrax is likely to persist,
respectively. The two columns represent the same three thresholds applied to the 2009 season
(left column) and 2010 season (right column).

(a) 2009 Liberal PTZ for Anthrax (b) 2010 Liberal PTZ for Anthrax
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(c) 2009 Moderate PTZ for Anthrax (d) 2010 Moderate PTZ for Anthrax
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(e) 2009 Conservative PTZ for Anthrax (f) 2010 Conservative PTZ for Anthrax

7920000
I
7920000
I

7900000
I
7900000
I

0.8

0.6

0.4

7880000
I
7880000
I

0.2 0.2

0.0

7860000
I
7860000
I

T T T T T T T T T T T T
560000 580000 600000 620000 640000 660000 560000 580000 600000 620000 640000 660000



47

Figure 3.3: Step Selection Function Projected Surfaces Step selection functions pro-
jected within the region of interest in Etosha National Park, Namibia. Panels a and b
illustrate the selection functions for anthrax seasons 2009 and 2010, respectively, when all
of the recorded movement points are used. Panels ¢ and d represent the selection functions
during the same time periods, but using only the points during which the individual was in
the foraging behavioral state. Finally, panels e and f illustrate the selection surfaces when
the animals were in the directed movement state in 2009 and 2010.

(a) Zebra SSF (2009; All Points) (b) Zebra SSF (2010; All Points)
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(c) Zebra SSF (2009; Foraging Points) (d) Zebra SSF (2010; Foraging Points)
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(e) Zebra SSF (2009; Directed Points) (f) Zebra SSF (2010; Directed Points)
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Figure 3.4: Hourly Step Selection Functions Alternative SSFs within the region of
interest in Etosha National Park, Namibia based on hourly fixes. Panels a and b illustrate
the selection functions for anthrax seasons 2009 and 2010, respectively, when all of the
recorded movement points are used. Panels ¢ and d represent the selection functions during
the same time periods, but using only the points during which the individual was in the
foraging behavioral state. Finally, panels e and f illustrate the selection surfaces when the
animals were in the directed movement state in 2009 and 2010.

(a) Hourly SSF (2009; All Points) (b) Hourly SSF (2010; All Points)
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(c) Hourly SSF (2009; Foraging Points) (d) Hourly SSF (2010; Foraging Points)
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(e) Hourly SSF (2009; Directed Points) (f) Hourly SSF (2010; Directed Points)
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Table 3.7: HMM results for AG059 during 2009 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)

mu (m) sigma (m) (r:(lieizrﬁs) concentration
Resting 23.5 27.6 -2.5 0.03
Foraging 193.6 178.6 0.01 1.8
Directed 853.8 299.0 -0.01 20.5

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models

Table 3.8: HMM results for AG061 during 2009 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)

mu (m) sigma (m) (rarileizlris) concentration
Resting 6.0 4.7 -3.0 0.27
Foraging 78.3 73.4 0.02 0.89
Directed 405.8 306.8 0.01 3.8

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models

Table 3.9: HMM results for AG062 during 2009 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)
mean

mu (m) sigma (m) (radians) concentration
Resting 2.9 2.1 2.9 0.28
Foraging 68.0 64.7 -0.02 0.57
Directed 386.4 297.0 0.01 2.6

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models
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Table 3.10: HMM results for AG063 during 2009 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)
mean

mu (m) sigma (m) (radians) concentration
Resting 30.7 36.4 -0.15 0.17
Foraging 188.1 151.8 0.01 1.8
Directed 758.0 332.0 -0.03 5.6

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models

Table 3.11: HMM results for AG068 during 2009 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)
mean

mu (m) sigma (m) (radians) concentration
Resting 11.5 13.1 -2.97 0.15
Foraging 173.4 163.0 0.03 1.4
Directed 907.7 304.5 -0.01 12.3

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models

Table 3.12: HMM results for AG063 during 2010 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)

mu (m) sigma (m) (r;?ﬁzrﬁs) concentration
Resting 23.9 274 -3.01 0.1
Foraging 205.6 163.0 < 0.01 1.4
Directed 818.9 369.5 0.01 4.1

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models
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Table 3.13: HMM results for AG068 during 2010 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)
mean

mu (m) sigma (m) (radians) concentration
Resting 24.2 30.2 -1.26 0.02
Foraging 187.0 155.0 0.04 1.4
Directed 852.0 339.9 -0.02 4.1

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models

Table 3.14: HMM results for AG252 during 2010 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)
mean

mu (m) sigma (m) (radians) concentration
Resting 17.6 16.5 0.17 0.27
Foraging 110.9 88.9 -0.01 1.6
Directed 600.1 348.1 < 0.01 3.1

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models

Table 3.15: HMM results for AG253 during 2010 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)

mu (m) sigma (m) (r;?ﬁzrﬁs) concentration
Resting 24.5 24.6 0.17 0.27
Foraging 154.1 131.8 -0.01 1.6
Directed 785.5 385.5 0.01 2.4

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models
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Table 3.16: HMM results for AG255 during 2010 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)

mu (m) sigma (m) (rfiﬁiis) concentration
Resting 5.49 4.65 3.07 0.41
Foraging 97.1 86.1 -0.04 0.89
Directed 560.1 376.3 -0.01 3.7

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models

Table 3.17: HMM results for AG256 during 2010 season

Behavioral State

Step Lengths (Gamma)*

Turning Angles (vonMises)
mean

mu (m) sigma (m) (radians) concentration
Resting 5.98 5.69 3.09 0.30
Foraging 108.4 100.9 0.03 1.1
Directed 581.8 362.9 0.01 3.5

*Gamma distributions may be parameterized with an additional zero-mass value,
but these are excluded here because their magnitude was negligible in all models
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Table 3.18: Radii of the kernels (in meters) used for in producing the step-selection functions
for each individual at the hourly fix rate. Separate radii were used for the datasets containing
all of the movement points, only the foraging points, and only the directed movement points.

Kernel Radius Kernel Radius Kernel Radius

Animal ID (Al) (Foraging) (Directed)
AG059-2009 3022 1585 3990
AG061-2009 1827 738 2782
AG062-2009 1942 691 2543
AG063-2009 2424 1391 3644
AG068-2009 3363 1548 4322
AG063-2010 2895 1469 3988
AG068-2010 3165 1438 4038
AG252.2010 2453 1009 3425
AG253.2010 2584 1384 3944
AG255.2010 2643 919 3592
AG256-2010 2498 964 3596

Table 3.19: Pearson Correlation matrix among predictor variables for carcasses deposited in
2010

pH OCC CEC biol bio7 biol2 biol3 mean max min range

pH 1 0.32 046 -0.12 023 -0.50 -0.52 -0.40 -0.22 -0.17 -0.15
occC 0.32 1 045 004 025 -018 -0.19 -0.35 -0.33 -0.22 -0.26
CEC 0.46  0.45 1 021 043 -0.30 -0.30 -0.39 -0.24 -0.21 -0.15
biol -0.12  0.04 0.21 1 0.50 -0.17  -0.11 -0.07  0.00 -0.02 0.01
bio7 0.23 0.25 0.43 0.50 1 -0.24  -026 -046 -0.31 -0.24 -0.20
biol2 -0.50 -0.18 -0.30 -0.17 -0.24 1 0.98 0.02 -0.14 -0.14 -0.07
biol3 -0.52  -0.19 -0.30 -0.11 -0.26  0.98 1 0.03 -0.16 -0.13 -0.10

mean_ndvi -0.40 -0.35 -0.39 -0.07 -0.46 0.02 0.03 1 0.89 0.80 0.49

max_ndvi -0.22 -0.33 -0.24 0.00 -0.31 -0.14 -0.16 0.89 1 0.71 0.74
min ndvi -0.17 -0.22 -0.21 -0.02 -0.24 -0.14 -0.13 0.80 0.71 1 0.05
range ndvi -0.15 -0.26 -0.15 0.01 -0.20 -0.07 -0.10 0.49 0.74  0.05 1
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Table 3.20: Pearson Correlation matrix among predictor variables for carcasses deposited in
2011

pH OCC CEC biol bio7 biol2 biol3 mean max min range

pH 1 0.32 0.46 -0.12 023 -0.50 -0.52 -041 -0.21 -0.16 -0.15
occC 0.32 1 045 004 025 -018 -0.19 -0.34 -0.30 -0.22 -0.22
CEC 0.46  0.45 1 021 043 -0.30 -0.30 -0.41 -0.23 -0.16 -0.18
biol -0.12  0.04 0.21 1 0.50 -0.17 -0.11 -0.10 -0.04 0.03 -0.07
bio7 0.23 0.25 0.43  0.50 1 -024 -0.26 -0.50 -0.33 -0.21 -0.26
biol2 -0.50 -0.18 -0.30 -0.17 -0.24 1 0.98 0.06 -0.15 -0.08 -0.13
biol3 -0.52 -0.19 -0.30 -0.11 -0.26  0.98 1 0.07 -0.17 -0.06 -0.17

mean_ndvi -0.41 -0.34 -0.41 -0.10 -0.50  0.06 0.07 1 0.85 0.72 0.57

max-ndvi -0.21 -0.30 -0.23 -0.04 -0.33 -0.15 -0.17 0.85 1 0.61 0.83
min ndvi -0.16 -0.22 -0.16 0.03 -0.21 -0.08 -0.06 0.72 0.61 1 0.06
range_ndvi -0.15 -0.22 -0.18 -0.07 -0.26 -0.13 -0.17 0.57 0.83  0.06 1

Table 3.21: Pearson Correlation matrix among predictor variables for carcasses deposited in
2012

pH OCC CEC biol bio7 biol2 biol3 mean max min range

pH 1 0.32 0.46 -0.12 023 -0.50 -0.52 -0.44 -0.30 -0.20 -0.26
OCC 0.32 1 0.45 004 025 -0.18 -0.19 -0.34 -0.29 -0.26 -0.22
CEC 0.46  0.45 1 021 043 -030 -0.30 -042 -0.24 -0.21 -0.18
biol -0.12  0.04 0.21 1 0.50 -0.17  -0.11 -0.09 0.02 0.07r -0.01
bio7 023 0.25 0.43  0.50 1 -024 -0.26 -0.50 -0.31 -0.21 -0.26
biol2 -0.50 -0.18 -0.30 -0.17 -0.24 1 0.98 0.06 -0.13 -0.04 -0.13
biol3 -0.52  -0.19 -0.30 -0.11 -0.26 0.98 1 0.07 -0.13 0.00 -0.15

mean_ndvi -0.44 -0.34 -0.42 -0.09 -0.50 0.06 0.07 1 0.87 0.66 0.71

max_ndvi -0.30 -0.29 -0.24 0.02 -0.31 -0.13 -0.13 0.87 1 0.59 0.90
min_ndvi -0.20 -0.26 -0.21 0.07 -0.21 -0.04 0.00 0.66 0.59 1 0.18
range_ndvi -0.26 -0.22 -0.18 -0.01 -0.26 -0.13 -0.15 0.71 0.90 0.18 1
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Table 3.22: Variable contribution and importance results from the full MaxEnt model, built
on the full environmental covariate set. Due to covariance observed in Supplementary Tables
13-15, two pairs of covariates were considered for variable set reduction: biol2 with biol3

and mean_ndvi with max_nndvi.

. Percent Permutation
Variable Name . . .
contribution importance
Mean temperature range bio7 72.6 71.5
Soil Organic Carbon Content oC 11.3 2.6
Precipitation of the wettest month biol3 5.3 15.5
Range of NDVI range_ndvi 4.7 0.9
Maximum NDVI max_ndvi 2.4 1.5
Annual precipitation biol2 2 4.2
Mean annual temperature biol 1.1 0.8
Soil pH pH 0.5 0.7
Soil Cation Exchange Efficiency CEC 0.1 1.7
Minimum NDVI min_ndvi 0 0.8
Mean NDVI men_ndvi 0 0
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Table 3.23: Final MaxEnt model ‘lambda’ values associated with the variables (and their
derivatives) ultimately included.

Variable Lambda Min Max
CEC 0.222 7.075 26.000
oC -5.052 0.000 58.429
biol 0.669 22.225 23.194
biol3 3.481 86.000 116.000
bio7 8.804 27.285 30.536
max_ndvi 0.000 0.092 0.639
min_ndvi 3.044 -0.309 0.160
pH 0.000 72.655 83.327
range_ndvi 0.000 0.087 0.589
CEC"2 2.560 50.052 676.000
biol"2 0.522 493.929 537.960
bio7"2 2.072 744.498 932.440
‘0OC -1.015 0.000 0.350
‘biol3 -0.369 86.000 95.000
‘range_ndvi -1.278 0.382 0.589
"biol -0.421 23.093 23.194
"biol -0.546 23.092 23.194
"bio7 -1.240 30.280 30.536
'range_ndvi -0.324 0.382 0.589
‘pH -0.882 72.655 78.347
‘max_ndvi -1.746 0.092 0.355
"biol -0.183 23.090 23.194
‘0OC -0.180 0.000 1.008
"bio7 -0.525 30.209 30.536
"biol -0.271 23.060 23.194
"bio7 -0.173 30.205 30.536
‘biol3 -0.178 86.000 95.262
‘0OC -0.229 0.000 1.003

var”2 represents quadratic feature
'var represents forward hinge feature
‘var represents reverse hinge feature
linearPredictorNormalizer: 15.142
densityNormalizer: 34.768
entropy: 4.561
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Table 3.24: Results of the conditional logistic mixed effects models as applied to all of
the movement points in 2010 (n = 56495) including two randomly generated predictor lay-
ers (Rand and Rand2) to evaluate the efficacy of the step-selection methodology employed

throughout.
2010 All Points coef exp(coef) se(coef) z p sig
Rand -0.00 1.00 0.009 -0.37  0.71
Rand2 -0.01 0.99 0.009 -1.15  0.25
Wet_Norm -0.85 0.43 0.023 -36.57 <2e-16 HFH*
Green_Norm 0.36 1.43 0.031 11.40 <2e-16 ***
Road_Dens Norm 0.03  1.03 0.004 6.16  T.le-10 ***
Risk_Norm -0.06 0.94 0.008 -7.56  3.9e-14 F**
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Figure 3.5: Supplementary Figure 1 Soil and bioclimatic variables used for the 2009 and
2010 predictive anthrax risk map based on the final MaxEnt model. Larger black points are
the locations of the carcasses used as presence locations for the model, whereas smaller gray
points are the 422 background locations used to parameterize the model.
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Figure 3.6: Supplementary Figure 2 Environmental variables used for the 2009 (left col-
umn) and 2010 (right column) predictive anthrax risk map based on the final MaxEnt model.
Larger black points are the presence locations and smaller gray points are the randomly gen-
erated background sampling points.

(a) Maximum NDVI 2007-2009 (b) Maximum NDVI 2008-2010
g g
g 0.7 g 0.7
§ 0.6 § 06
05 05
8 04 g 04
2 03 2 03
g 02 S 02
% 0.1 g 0.1
560000 580000 600000 620000 640000 660000 560000 580000 600000 620000 640000 660000
(¢) Minimum NDVT 2007-2009 (d) Minimum NDVT 2008-2010
§ g 0.2
2 00 2 0.0
S -0.2 3 -0.2
8 0 g -0
§ -06 g -06
560000 580000 600000 620000 640000 660000 560000 580000 600000 620000 640000 660000
(e) Range NDVT 2007-2009 (f) Range NDVT 2008-2010
10 10
§ 08 g 08
0.6 3 0.6
0.4 é 0.4
0.2 b 0.2

T T T T T T
560000 580000 600000 620000 640000 660000 560000 580000 600000 620000 640000 660000



60

Chapter 4

Movement mediates environmental
influences on infection dynamics of
anthrax in herbivores

Eric R. Dougherty Dana P. Seidel Colin J. Carlson Wayne M. Getz

4.1 Abstract

The relationship between environmental factors and epidemic dynamics is not always straightfor-
ward. In the case of indirectly transmitted pathogens, there might exist temporal or spatial lags
that obscure the link between heterogeneous environmental covariates and observed epidemiolog-
ical processes. Here I apply a simulation modeling framework to explore some of these potential
relationships, using a mechanistic movement model as an intermediary. Using a set of behaviorally-
contingent selection functions to guide the movement decisions of a simulated host animal, I cal-
culated the rate at which the agent contacts stationary infectious reservoirs distributed across a
focal region in Etosha National Park, Namibia. A non-linear regression model reveals an appar-
ent relationship between Wetness, one of the covariates incorporated into the selection function,
and the emergent contact rates. This, in turn, can be associated with the observed pattern of
anthrax-induced mortalities in Etosha. These results demonstrate the importance of movement as
a mediator of the exposure process in an anthrax-endemic system and suggests that environmental
heterogeneity may be directly related to temporal patterns in mortality.

4.2 Introduction

Though epidemic dynamics are often simplified using rates averaged at the population scale [57], the
transmission process underlying disease spread is highly dependent on various forms of heterogeneity
[102]. The influence of such heterogeneity has been recognized in both human [92] and wildlife
[125] populations, but the diversity of underlying causes of individual variance often makes precise
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measurement of contributing factors difficult. The impact of any one individual on the subsequent
dynamics of an epidemic arises from a complex combination of host and pathogen characteristics,
as well as the environment in which transmission occurs [92]. A variety of methods, often applied
during or after an epidemic, have demonstrated this variation in natural systems [108, 161].

One fundamental driver of heterogeneity in disease transmission is the variance in movement
behaviors among host individuals [144, 41]. Until recently, however, the tools available to observe
empirical movement trajectories did not offer fine enough resolution to describe individual het-
erogeneity beyond differences in space-use at landscape scales. Various analytical methods offer
insight into the behavioral underpinnings of movement behaviors [116, 46]. Further, the applica-
tion of habitat selection frameworks [17, 173] can be used to explore associations between these
specific behavioral states and various environmental covariates that might drive animal movement
decisions. In this way, novel approaches from the field of movement ecology [115] can be used to
reveal the role of environmental factors in driving heterogeneous movements, thereby giving rise to
particular infection dynamics at the population scale.

Though other investigations of the influence of landscape features and environmental factors on
disease dynamics have been undertaken (e.g., chronic wasting disease in mule deer [51, 66]; bovine
tuberculosis in African buffalo [38]; and chytridiomycosis in various amphibian species [159]), the
emphasis is often on broad-scale considerations of population structure. The mediating role of fine-
scale animal movement behavior, however, has been relatively unexplored. This trend may be due,
in part, to the difficulty associated with monitoring the movements of entire wildlife populations
[164]. However, with the expansion of computational power, agent-based models (ABMs) have
emerged as a useful tool for translating a set of general rules into emergent properties at broader
levels of analysis. Applying such models in the pattern-oriented modeling (POM; [65, 64]) frame-
work offers a means of validating the underlying components, lending credibility to the outputs of
the model. The flexibility of this framework has led to broad applications of ABMs even within
the ecological literature, including to questions in environmental resource management [16, 105],
examinations of evolutionary dynamics [37, 61, 62, 110], and considerations of individual animal
behaviors [160, 156].

ABMs have also increasingly been used to explore disease dynamics, with individual agents often
transitioning between the infectious stages normally indicative of a compartmental SIR model (e.g.,
susceptible, infectious, and recovered [4]). The general rule set of an ABM typically gives rise to
stochasticity, and thus heterogeneity, in behaviors such as movement. This makes ABMs ideal tools
for exploring the role of individual movement decisions in mediating disease dynamics. However, in
the few cases that have utilized ABMs to explore disease systems, individual movement dynamics
are often simplified to diffusion processes [141, 107] or highly generalized jumps between patches
[47, 126, 128]. Though other models have implemented more complex mechanistic movement rules
to govern agent trajectories (e.g., [13, 38, 149, 11, 112]), examples of such ABMs remain fairly
limited in disease ecology, and their applicability is frequently constrained by the specific nature of
pathogen transmission in the focal disease system.

Here I develop a mechanistic model of herbivore movement on an anthrax-endemic landscape
parameterized using empirical movement data from Etosha National Park in Namibia. Selection
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function outputs have not been deployed widely as the basis for an agent-based model, but I demon-
strate the utility of the framework in creating the rule set of the model. As anthrax is transmitted
primarily through environmental reservoirs [153, 151, 24], the exposure process is summarized by
an estimate of the contact rate between each agent and simulated infectious reservoirs distributed
on the landscape (representing concentrated anthrax spores deposited at carcass sites). Using this
model, T examine the influence of underlying environmental covariates in driving the exposure
process.

Study System

Anthrax, the acute disease caused by the bacterium Bacillus anthracis, remains a persistent threat
in many wildlife populations throughout the world [150, 79]. Though a variety of animal species
can contract the zoonotic disease, herbivores experience the highest mortality rates, while many
carnivores and scavengers exhibit resistance or tolerance [79, 27]. In some systems, anthrax out-
breaks are seasonally-driven, though there may exist inter-specific differences in the timing of the
peak of infections. For example, zebra in Etosha National Park in Namibia experience peaks in
infection during the warm wet season (February-April), whereas elephants are more likely to be
infected during the dry months of October-November [24]. A definitive explanation for these peaks
remains elusive, but a number of alternatives have been proposed, including nutritional stress,
heterogeneous soil ingestion rates [153], and complex coinfection dynamics [28, 29].

B. anthracis takes the form of reproducing vegetative cells in infected hosts and endospores
when in soil and ponded water environments [150, 77|, although some vegetative reproduction
may take place within the rhizosphere of vigorously growing grasses [137]. The spores are excep-
tionally resilient in the face of environmental stress, and allow the infectious agent to persist in
environmental reservoirs for extended periods of sub-optimal conditions [77]

Spores can enter the host organism through cutaneous lesions, by inhalation into the pulmonary
system, or via the gastrointestinal (GI) tract. Many ungulates consume substantial amounts of soil
in addition to vegetation during foraging bouts, and in doing so, may inadvertently ingest the
pathogen [153]. Limited evidence from necropsies suggests that GI infections are the most common
route of infection in herbivores [158] and will be the primary mechanism modeled here. Anthrax is
highly pathogenic in herbivores, and death may occur within a few days or up to two weeks after
contact with a lethal dose of B. anthracis spores [24].

Anthrax is endemic in the plains herbivores of Etosha National Park, Namibia, peaking in zebra,
springbok, and wildebeest during the rainy season and in elephants during the dry season [153, 91,
29]. Extensive carcass surveillance efforts in Etosha National Park, Namibia, between 1968 and
2011, conducted by The Etosha Ecological Institute [153, 9, 27|, were used to inform the densities
of anthrax infected carcasses considered in the simulation. In addition, empirical movement data
collected from Etosha National Park, were used to inform the mechanistic movement model giving
rise to the simulated trajectories. Specifically, the movement trajectories of nine zebra (Table 4.1)
were used to estimate a behaviorally-conditioned step-selection function (SSF; see Chapter 3),
which served as the basis for individual movement decisions.



63

4.3 Methods

Purpose

The simulation model consists of an agent moving across a heterogeneous landscape upon which
infectious reservoirs are distributed. A contact rate between an agent and these local infectious
zones (LIZs; [56]) is calculated for each individual path over the course of a single anthrax season
(defined as the five month period between February and June; [153]). By altering the environmental
covariate layers underlying animal movement decisions, I can examine the manner by which these
movements, a major contributor to individual heterogeneity, influence exposure dynamics. The
contact rate represents an epidemiologically-relevant metric that is applicable only within the scope
of the simulation and should not be presumed to correspond with empirical rates in the Etosha
system; even so, by examining various combinations of Greenness and Wetness inputs, I can examine
how the expected contact rate shifts based on external drivers.

This is not, in its current form, an agent-based model, per se. The movements of the indi-
vidual across the landscape depend only upon a predetermined selection map derived based on a
population-level selection function and the particular set of covariate layers used as the basis for the
simulation; there is no interaction between the individual and any other agents, nor is its behavior
influenced by any external, time-dependent variable. Rather, this approach is meant to offer greater
insight into a mean expected contact rate by reducing the influence of an anomalous path. Each of
these simulated paths can be seen as samples of a Monte Carlo process exploring infinite possible
alternative paths. By sampling 1000 times using each selection surface, a population-level contact
rate can be estimated based on Monte Carlo simulation. Observing how this rate shifts across a
set of alternative covariate layers will offer insight into the role of environmental heterogeneity in
the exposure process.

An overview of the methods carried out here is presented in Figure 4.1, and the caption offers
a detailed description of the visualization of the approach.

Environmental Covariate Layers

The Wetness and Greenness layers were both derived from six of the component bands of the
Landsat 4-5 Thematic Mapper satellite data using the equations from the previous chapter [32].
Relatively cloudless images (i.e., < 10%) from the 2009 and 2010 anthrax seasons were selected,
which resulted in a total of 8 possible sets of covariate layers (Table 4.2). Separate selection surfaces
were calculated for the foraging and directed movement behavioral states for each combination of
environmental input layers in Table 4.3. The Surface ID refers to the set of two selection surfaces
that formed the basis of the simulated movement trajectories described below.

These surfaces, which emerge from the population-wide selection functions, will differ based on
the input layers. By altering the Wetness and Greenness layers, the same overall selection pattern
(in terms of the coefficients of the selection function) will result in different surfaces as experienced
by the animal. To explore the role of environmental heterogeneity in the contact process, a range
of different Wetness and Greenness layers were obtained. Variation in the mean values of both
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covariates was observed across the anthrax seasons of 2009 and 2010, during which the mean
Wetness ranged between -20.9 (March 2009) and -73.46 (February 2010) and the mean Greenness
ranged from -8.6 (March 2009) to -37.1 (February 2010). It should be noted that February 2010
was somewhat anomalous, as February is normally when rainfall is highest, resulting in the highest
Wetness values (as observed in 2008 and 2009), and the area begins to dry out after that peak. Even
so, using these extreme values of mean Wetness and Greenness as well as two more months with
more moderate values (May 2009 and May 2010), enables the creation of a grid of environmental
covariates layers, and the Wetness and Greenness layers could be varied independently to determine
whether one of both of them influenced the contact process. The 16 combinations of Wetness and
Greenness layers can be seen in Table 4.3. All of the values were normalized based on the mean
and standard deviation of the Wetness and Greenness layers used to develop the population-wide
selection function.

Selection Map Derivation

Population-wide selection functions were calculated for the foraging and directed movement behav-
ioral states. This involved the aggregation of the movement trajectories from both 2009 and 2010.
A conditional logistic regression approach was applied to the ‘used and ‘available data extracted
using the methods outlined in the previous chapter. The coefficient values that emerged from this
analysis were then applied across all of the sets of simulations; the only aspects that differentiated
these sets of simulations were the two environmental input layers. For each of these pairs of environ-
mental covariate layers (Greenness and Wetness) incorporated into the selection surface, the values
were first normalized using the mean and standard deviation of the overall average covariate layers
used to derive the coefficients. The overall average Greenness and Wetness layers were calculated
by combining all of the Greenness and Wetness layers collected during the anthrax periods of 2009
and 2010.

Movement Model Parameterization

The movement model was informed by the empirical movement tracks collected in Etosha Na-
tional Park in 2009 and 2010. The trajectories, which were originally collected with short-interval
fixes (1 minute) in addition to the longer interval fixes (20 minute), were regularized using the
adehabitatLT package [23] in the R statistical computing environment (version 3.2.5) [133] such
that all relocations had a temporal separation of 20 minutes. After projecting the spatial data
(WGS84 UTM Zone 33S), all eleven paths were combined into a single data set, using an ID col-
umn to differentiate among the individuals. The final dataset used for subsequent analyses consisted
of 201,190 relocations.

These data were analyzed using a hidden Markov model (HMM), implemented through the
moveHMM package [109]. The HMM framework has grown in popularity as a method for extracting
latent behavioral states from movement data [123, 122]. The general form follows that of a basic
state-space model (SSM), consisting of a time series of vector-valued observations zj, ..., z7 and
an unobservable series of scalar-valued, discrete states S, ..., St that take on values from 1,..., V.
The movement data that forms the basis of the observations tend to take the form of a time
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series of locations on a Euclidean plane (z1,%1), ..., (z7,yr), and these positions are treated as
being measured without error. When the primary purpose of the HMM is to identify the latent
behavioral states, the bivariate series of step lengths (I;) and turning angles (¢;), each governed by
a set of parameters that can be vectorized as 6, tends to serve as the observations (z;) for fitting.
Traditionally, the step length distribution is governed by a gamma distribution and the turning
angle distribution by a circular vonMises distribution. For each latent state, the HMM returns
estimates of the parameters underlying these distributions: p and o of the gamma distributions
(which can be transformed into the conventional shape and rate parameters using g—z and %,
respectively), and the mean and concentration of the vonMises distributions.

The state process S; is dictated by a matrix of transition probabilities such that fyf’ ;= Pr(Si1 =
i|Sy = 7), where i,7 = 1,..., N. Often these probabilities are related to time-varying covariates via
multinomial logit-link functions (e.g., [43, 104, 109]), but in this case, the transition probability
matrix T' (whose (i, 7)™ element is 7; ;) is treated as constant across the time series of observations.
The likelihood can be expressed in terms of the set Z1., = {21, ..., 2.} as:

T-1

L(Z,0) = [ [ f(z11]214,0)

t=0

which is the likelihood of observing z;,1 conditional on the occurrence of the observed sequence
Z1.1, where the Markov property implies that f(zy1|21:4,0) = f(21+1|2¢,0). Given the first term
in the likelihood f(z1|zg, @), each subsequent value of f(z11|z,0) can be calculated using a re-
cursive scheme [122]. The parameters (@) that minimize —log[L(Z, )] are then obtained using an
appropriate optimization algorithm.

This behavioral state-space model was applied to the combined set of all 11 empirical movement
trajectories from Etosha National Park, irrespective of the year. The moveHMM package accepts the
number of latent states (V) as a user-defined input, so it is common practice to test alternatives and
select the model that results in the lowest AIC value. Both a two-state and three-state model were
fit to the data, and the built-in AIC function was used to determine the best-fitting model. The
three-state model was selected based on its AIC value. The estimated parameter values governing
the step length and turning angle distributions are displayed in Table 4.4. The names assigned to
each of the latent behavioral states (resting, foraging, and directed movement) were selected based
on the step length and turning angle distributions that characterized each. This interpretation
of the HMM results is one of many possibilities, but the names are intended only to ground the
sets of parameter estimates in simplified terms. The output of the HMM also includes a transition
probability matrix (I'; Table 4.5).

The estimates of the parameter values describing the step length and turning angle distribu-
tions for each state and the estimates of the transition matrix elements are all associated with some
uncertainty. The step length distribution and transition matrix were both incorporated into the
simulation model described below in an ad hoc fashion that stripped all estimates of their uncer-
tainties. However, to verify that the model was replicating some of the patterns observed in the
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empirical movement trajectories, hidden Markov models were applied to several simulated paths
and compared to HMMs from the real zebra tracks (see Pattern-Oriented Modeling below).

Simulation Approach

The simulation at each time step ¢ begins with the assignment of the agent to one of the three
behavioral states. This behavioral state was assessed by drawing upon the transition probability
matrix that emerged from the HMM described above (Table 4.5). Based on the state of the
individual at time ¢ — 1, a set of three probabilities was extracted from the matrix I', representing
the probability of moving from the current state into each of the other states, as well as the
probability of remaining in the same state. These probabilities served as the weights of a stochastic
draw to determine the behavioral state at time ¢. The same transition probability matrix governed
all of the simulations, without any variation over time.

Once the behavioral state (S;) was selected, a set of perceptual range radii were extracted from
a matrix guided by the step length distribution parameters estimated in the HMM (Table 4.6).
Using a randomly generated number from a uniform distribution (u;), it was determined whether
the perceptual range would be small, medium, or large for the step at time ¢. Because the standard
deviation of the gamma distribution is not easily interpretable, an alternative means of dividing the
step length distributions into three classes was needed. The use of several classes (as opposed to the
use of the same large perceptual range value for all steps within a particular behavioral state) served
to reduce the computational cost of each movement decision. The use of a uniform distribution
would result in approximately 33% of steps falling within each of the step size classes, but the
use of a normal distribution further reduces the probability of selecting the largest step size class,
thereby conferring computational benefits beyond the uniform breakpoints. Thus, boundaries were
delimited between the step size classes using the proportion of the normal distribution probability
density function (PDF) falling within one, two, and three standard deviations of the mean. These
correspond to 68%, 95%, and 99.7% of the probability density, respectively, and the radii associated
with the small, medium, and large steps are determined using the gamma distribution PDF at each
of those percentile values. In this way, 68% of the gamma PDF lies to the left of the small
radius value, 95% lies to the left of the medium radius, and 99.7% lies to the left of the large
radius (Figure 4.2). In practice, this means that the small perceptual range would be selected 68%
of the time (i.e., 0 <= u; < 0.68), the medium range would be selected 27% of the time (i.e.,
0.68 <= u; < 0.95) and a rare large range would be selected only 5% of the time (i.e., u; > 0.95).

The process of determining the next location of the agent at time ¢ involved the use of the
selection surfaces created at the initialization of the model. These surfaces did not change through-
out the course of the simulation, but each simulation scenario was associated with a unique set of
selection surfaces based on the Wetness and Greenness layers that served as inputs to the step se-
lection function. For each step, the perceptual range served as a buffer around the current position
of the individual; all of the raster cells whose center points fell within the perceptual range were
potential destinations of the individual. Let C, represent the set of M cell center points that fall
within the circular perceptual range with radius r. The movement process consisted of selecting
one of the points contained in C, = [m = 1,..., M| after weighting each of the m points by the
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suitability value (w,,) extracted from the appropriate selection surface (Figure 4.3). In this way,
the cell that was theoretically most suitable based on the underlying environmental features (i.e.,
w™*) would have the highest probability of being selected, but the individual was not guaranteed
to select that cell. This was because the selection process was stochastic rather than deterministic,
and all of the cells in C) had non-zero w unless they fell outside of the region of interest. In the
case of the resting state, during which the animal was not making a concerted movement decision,
a randomized selection map (as opposed to those generated using the step-selection function coef-
ficients) was used to guide the probabilistic selection of its next step. In most cases, the perceptual
range during the resting state was so small that only the current cell center would fall within the
boundary, resulting in the animal remaining in its current cell. In all cases, small error terms (two
values drawn from uniform distributions ranging between -14.99 and 14.99) were added to the x
and y coordinates of the destination cell so that the individual did not move from cell center to cell
center.

Infectious Reservoir Distribution

Locally infectious zones (LIZs), centered around the point locations at which an animal succumbs
to its infection, are the critical infectious components of the anthrax system [24, 153, 151]. Due
to the resilience of the B. anthracis spores, the area immediately surrounding an infected carcass
can contain infectious material for extended periods of time (on the order of multiple years) [10].
Subsequent visits by grazers to these LIZs may result in their infection when spores in the soil are
incidentally ingested along with vegetation [153]. During surveillance efforts in Etosha National
Park, the species of the carcass is recorded in addition to several other attributes. Based on this
information, the average yearly rate of carcass mortality, and the density of carcasses across the
landscape, a set of simulated LIZ sites was created for use in the model. Thus, the distribution of
LIZs proceeded according to the following steps: 1) map locations of carcass sites that exhibited
anthrax-positive soil samples in the two years after deposition; 2) construct a niche model of anthrax
risk based on these locations and a set of environmental covariate layers that did not serve as inputs
to the step-selection model (see previous chapter for more details); 3) use the resulting surface as
a set of weights to probabilistically distribute a set number of LIZs across the landscape for use in
the simulation approach.

Each simulated LIZ was identified in the model as either small (representing a springbok-sized
carcass), medium (representing a zebra or wildebeest carcass), or large (representing the occasional
elephant-sized carcass). The rates at which each of these occurred were based on the observed
proportions in the empirical carcass data from Etosha National Park (14.8% small, 82.7% medium,
and 2.5% large). Each LIZ was then assigned an initial mass (associated with the individual at the
time of its death) based on the size category to which it was designated. In addition, the age of the
LIZ (the number of years prior to the initialization of the model, up to three) was assigned, such
that the number of the LIZs on the landscape deposited each year was approximately equal and
reflected empirical observations in Etosha National Park (and considered with the error associated
with surveillance efforts; [9]). The carcass surveillance data enabled the initialization of the LIZ
layer by informing the likely density of carcasses (0.0135 carcasses/km?/year).
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The anthrax risk layer underlying the step-selection function, which was built based on the
empirical carcass data, also served as the basis for the placement of the simulated L1Zs k = {1, ..., z}.
In this way, the distribution of the LIZs was not random, but was weighted by the probability layer
constructed using a MaxEnt niche modeling approach (see Chapter 3 methods). The initial mass of
the carcass (By) and the time since death (Ay) were used to create a buffer around the central point
associated with the LIZ. The size of the buffer (S) of each LIZ was determined by the following
equation:

_ log(Bk) 2
4—-A
where pu=3(4—Ag) and o = 3(8k)

These polygons served as the synthesized LIZ layer for the calculation of the contact rate, described
below.

Though the anthrax season is likely long enough for some individuals who encountered infectious
carcass sites to succumb to the disease, such mortality events were not incorporated here. This was
deemed reasonable because freshly deposited carcasses have been reported to have repulsive effects
on live individuals [151], meaning that they would be unlikely to influence the subsequent contact
rates during the observation period.

Contact Rate Calculation

The two components used for the calculation of the contact rate across each simulated path were
the circular buffer polygons created at the locations of the LIZs and a set of linear buffers along
each of the steps during which the animal was in the foraging state. A 15 meter buffer was
created along the length of each step to account for some of the uncertainty that exists regarding
the actual path traversed between fixes. In addition, a buffer of this size can help incorporate
some of the existing information about ungulate foraging behavior at finer scales than the step-
selection function analysis. Using this buffer to count probable contacts implies that an animal
that gets close to a LIZ will probably go slightly off its most efficient trajectory in order to forage
in the immediate vicinity, where vegetation is likely to be of higher quality than the surrounding
area. Because of the uncertainty regarding the dose required to cause infection or death in a wild
ungulate, I considered only the probability of a transmission-enabling contact rather than the actual
probability of transmission itself.

A contact rate (C) between the agent and the LIZs distributed across the landscape can be
calculated simply as:

number of times the two sets of buffers overlap

~ total number of steps throughout anthrax season
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Despite using all of the steps during the time period of interest in the denominator, an effective
contact is only achieved when the animal forages at the site, so only those steps are used in
calculating the numerator (Figure 4.4).

Pattern-Oriented Modeling

Given that the movement of the individual across the landscape is based upon general rules ex-
tracted from empirical paths, it would be helpful to verify that the simulation is maintaining some
semblance of reality. The pattern-oriented modeling (POM; [65]) approach offers one means of
verifying that certain important aspects of the simulation match measured patterns. Certainly,
there are multiple mechanisms that might give rise to similar patterns, but the general principle
behind POM is that a model that is able to replicate empirical patterns should be considered as
theoretically plausible when more concrete means of validation are unavailable. Here, I compared
the mean step lengths emerging from a hidden Markov model conducted on eleven randomly se-
lected individual paths from the set of simulated paths on each surface to the mean step lengths
emerging from HMMs on the eleven empirical zebra paths. For each of the sixteen sets of simulated
paths, the means of these mean step length distribution were compared to the mean of the mean
step length distribution of the observed zebra using a two-tailed t-test.

4.4 Results

Selection Map Derivation

The population-wide step-selection functions created for the foraging and directed movement states
are displayed in Table 4.7. These coefficients served as the basis for all sixteen of the different
surfaces applied across the simulations, with only the input layers themselves being altered. These
distinct selection maps gave rise to theoretically unique simulated trajectories.

Infectious Reservoir Distribution

Based on the density calculated based on observed carcasses in Etosha National Park, a total of
282 LIZs were dispersed across the region of interest (Figure 4.5). The same set of LIZs were used
across all of the simulations. The LIZs in this simulation were relatively small, with infectious
radii ranging from about 1.2 meters (for the smallest carcasses, akin to a springbok) to nearly
13.3 meters (for the rare large carcasses, akin to elephants). These infectious sites occupied a
total area of approximately 32,351 m?, or about 0.032 km?. This means that the LIZs composed
approximately 0.00046% of the 6972 km? region of interest. Due to their probabilistic placement
according to the anthrax risk map, their distribution throughout this area was neither random nor
uniform. One means of measuring the distribution of points in space is the use of the measure J [90],
which is evaluated over a range of radii (). J is derived based on G (the nearest neighbor distance
distribution function) and F' (the empty space function of the process). J(r) values equal to 1
indicate a Poisson process at the scale of r, whereas values of J(r) smaller or larger than 1 indicate
clustering or regularity, respectively. In the case of the LIZs distributed across the landscape, all



70

of the J(r) values were less than 1, signifying substantial clustering in the point pattern (beyond
the scale of 150 meters; see Supplementary Figure 4.8).

Pattern-Oriented Modeling

To test for similarity between the simulated paths and the empirical paths, the outputs of hidden
Markov models conducted using individual paths were compared. For each path (eleven empirical
and eleven randomly selected simulated for each surface), the mean step sizes from the foraging and
directed movement states were extracted. Because the same empirical paths were used throughout
all of the comparisons, a distribution was built based on the mean and standard deviation across
all of the empirical trajectories. For the foraging state, this distribution had a mean of 142.2
meters and a standard deviation of 50.6 meters. For the directed movement state, the distribution
had a mean of 682.7 meters and a standard deviation of 184.4 meters. In Figure 4.6, 1000 random
samples were drawn from these distributions to create the gray histogram in the background of both
plots. The means evaluated for the eleven simulated paths from all sixteen surfaces were plotted
atop these histograms to compare the distributions visually. In addition, ¢-tests were conducted to
compare the means from the eleven empirical tracks to the eleven simulated tracks for each of the
surfaces. In all sixteen cases, the means from both the foraging steps and the directed movement
steps were not significantly different from the means during these two states as extracted from the
empirical paths (i.e., all of the p values were > 0.05; Table 4.8). These results indicate that the
simulated paths are likely being drawn from step length distributions that are similar to those that
underly the true step lengths observed in zebra in Etosha National Park.

Interpretation of Simulated Results

An ordinary linear regression model was built to determine whether any consistent trends emerged
regarding the role of the environmental covariates (Greenness and Wetness) in the exposure process.
The results indicate that neither variable is a significant predictor of mean contact rate across the
1000 simulations at the o = 0.05 level (Table 4.10) and the fit of the model is negligible (Adjusted
R? = —0.01). The inclusion of an interaction term between Greenness and Wetness resulted in a
model with similarly low explanatory power. When quadratic terms of both Wetness and Greenness
are added to the regression, the model fits the simulated mean contact rates much more closely
(Adjusted R? = 0.62; Figure 4.7), though only the Wetness components are significant predictors
of mean contact rate (Table 4.11). An additional set of carcass sites were distributed across the
landscape and the contact rates recalculated to evaluate the robustness of the results to alternative
LIZ distributions. The regression coefficients were nearly identical (Table 4.13) and the explanatory
power of the model was even greater than the model describing the contacting rates on the initial
set of LIZs (Adjusted R? = 0.71).

4.5 Discussion

A regression model containing quadratic terms proved to be highly explanatory of the pattern
of contact rates calculated across the simulations. This model revealed that moderate levels of
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Wetness were associated with the highest contact rates. The emergent pattern, whereby interme-
diate Wetness layers are associated with the highest simulated contact rates, matches the observed
pattern of anthrax-related mortalities (Figure 4.7). Though there may be some lag time between
exposure and death (and an additional lag before a carcass is observed), the time between infection
and death is estimated at approximately a week [24]. Thus, the date of observation of a carcass is
unlikely to be substantially different from the date of contact and exposure. Early in the anthrax
season, multi-year rainfall data suggests that relatively high mean Wetness is expected, and in turn,
relatively low contact rates. By the middle of the anthrax season, Wetness values achieve moderate
levels and give rise to relatively higher contact rates. Finally, as the anthrax season nears its end,
the landscape experiences very little rainfall, further reducing mean Wetness and resulting, once
again, in diminished contact rates.

By calculating the mean contact rates that emerge from an exhaustive set of combinations of
Wetness and Greenness surfaces, the results are removed from the actual progression of the anthrax
season from high rainfall (February and March) to low rainfall (April through June). In other words,
artificial scenarios in which high Wetness values were combined with low Greenness values can be
tested to determine whether one environmental component dominates the relationship with contact
rates. Despite these artificial pairings, the signal of changing Wetness on contact rates is evident.
Assuming that higher mean contact rates are correlated with higher rates of infection and, in turn,
mortality, it seems that the Wetness layer may be a reasonable predictor of anthrax-related deaths
throughout the anthrax season.

The results presented here provide a compelling link between environmental factors and epi-
demiological processes in the form of animal movement. By altering the attractiveness of different
portions of the landscape, certain combinations of Wetness and Greenness give rise to space use
patterns that result in higher contact rates between a host and a set of infectious reservoirs on
the landscape. Without the mechanistic movement model serving as the intermediary by which
environmental factors are reflected in epidemiological processes, the observed pattern of mortality
in Etosha National Park could remain a mystery. In this way, movement mediates the relationship
between environmental covariates (in this case, Wetness, which tends to vary in a linear fashion
over the course of the anthrax season) and epidemic dynamics (here, the peaks in both simulated
contact rate and observed anthrax-related mortalities in the middle of the anthrax season).

Another interesting pattern that may be supported by the results of this simulation exercise
are rates of sub-lethal exposure in ungulates in Etosha based on field investigations. Using serum
samples from 154 zebra revealed that 52%-87% exhibited some level of anti-anthrax antibody titres
[27], though the rate at which titres may wane over time is not known. Across all sixteen of
the simulated surfaces, the probability of encountering at least one LIZ over the course of the
anthrax season was approximately 51.1% (ranging from 44.4% to 56.2%). If one assumes that
titres are detectable for about a year after encountering a non-infectious dose, these contact rates
are quite close to the lower end of the observed rate. If, however, one assumes that titres last for
approximately three years, the proportion of animals in the population likely to exhibit anti-anthrax
antibodies would reflect the upper bound of the estimate (=~ 88.3%).

The general purpose underlying the simulation of movement trajectories is to extract general
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rules from empirical tracks and expand upon the limited sample size frequently associated with GPS
tracking studies. An alternative approach would involve simulating a large number of different sets
of LIZ distributions on the landscape and simply using the eleven empirical tracks to calculate
a distribution of contact rates. However, I decided to simulate both the movement trajectories
and LIZ sites in order to distance the results appropriately from the real life system so that the
contact rates calculated here would not be mistaken for true estimates of contact between zebra
and anthrax spores. In most wildlife disease systems, precise contact rates, whether generalized
over an entire host population or recorded for each individual separately, are only very rarely
calculated directly. The effort involved in the near-continuous monitoring of individuals normally
precludes such calculations (but see fairly extensive studies regarding tuberculosis transmission
among badgers and livestock; e.g., [134, 168]).

The goal of this exercise was explore the theoretical relationships between environmental co-
variates and epidemiological processes using a mechanistic movement model parameterized, in part,
on empirical movement trajectories. Simulation enabled estimates of the rates at which individuals
were likely to come into contact with an indirectly-transmitted pathogen within an environmental
reservoir across a range of environmental scenarios. The outputs of the simulation included a set
of movement trajectories (covering the five-month anthrax period at a temporal resolution of 20
minutes per fix) and the locations and sizes of LIZs across the landscape. Due to the limitations
of most field surveillance efforts, it is unlikely that a researcher would have the ability to map out
the exact locations of every infected carcass on the landscape (estimates from the Etosha system
based on a hierarchical model of distance sampling place the rate of detection at approximately
25%; [9]), so the simulation framework offered an alternative approach that enabled full knowledge
of the distribution of risk across the landscape.

Several of the complexities of infection dynamics, including considerations of heterogeneity in
dosages and immune responses, were excluded from this model. Instead, the emphasis was on po-
tential transmission events and a more readily measurable metric: the contact rate between a host
and an infectious reservoir represented by LIZ sites. Several additional variables and components
would be needed to consider more complete infection dynamics. Additional state variables would
include parameters defining agent immune systems and changing bacterial densities at LIZs. In-
fection and immune response components would also be required, which could account for altered
movement patterns in infected hosts and disease-induced mortality during and after the anthrax
season. Due to the lack of empirical data for parameterizing such variables and processes, the
model presented here was not extended in this manner.
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4.6 Tables

Table 4.1: Serial location data (collected every 20 minutes from 9 zebra) that were used for
parameterizing movement in the simulation model. Two of the individuals had movement
tracks that extended across two anthrax seasons (defined as the period from February through
June), so 11 paths were extracted from this data set.

Individual ID Number of Points Start Date End Date
AGO059 20,769 2009-04-20 2010-08-29
AGO061 17,196 2009-04-20 2010-03-03
AGO062 12,794 2009-04-20 2010-01-30
AGO063 25,721 2009-04-20 2010-04-30
AGO068 32,661 2009-04-20 2010-08-29
AG252 23,450 2009-10-06  2010-08-29
AG253 21,676 2009-10-06 2010-12-17
AG255 23,470 2009-10-06  2010-08-29
AG256 23,519 2009-10-06  2010-08-29

Table 4.2: All Landsat images with less than 10% cloud cover were treated as potential
environmental covariate layers. The eight dates displayed here indicate all of the dates
during the anthrax seasons of 2009 and 2010 that met that criterion. The four dates with
asterisks were selected because they offered the best range of Greenness and Wetness values
to explore the contact rate dynamics. The two extreme sets of values were selected as well
as two more moderate layers.

Layer Dates Greenness Value Wetness Value

2009-03-22* -8.62 -20.92
2009-04-23 -18.97 -21.98
2009-05-09 -19.82 -32.49
2009-05-25* -18.53 -33.98
2010-02-05* -37.14 -73.46
2010-04-10 -16.77 -22.82
2010-05-12 -23.25 -45.67
2010-05-28* -24.93 -43.82



74

Table 4.3: Mean Greenness and Wetness values for each of the sets of input layers used in
the simulations. The values are calculated across the region of interest in Etosha National
Park, and include the portion of the Etosha Pan included in that region. The sixteen sets
of layers form the basis of the grid of covariate layers over which the probabilities of contact
are compared to determine the role of these environmental factors in the exposure process.
In addition to the combinations that were used in the simulations, the overall mean values
used in the population-level selection function is presented.

Surface ID Greenness Value Greenness Date Wetness Value Wetness Date

1 -37.14 2010-02-05 -73.46 2010-02-05
2 -37.14 2010-02-05 -43.82 2010-05-28
3 -37.14 2010-02-05 -33.98 2009-05-25
4 -37.14 2010-02-05 -20.92 2009-03-22
5) -24.93 2010-05-28 -73.46 2010-02-05
6 -24.93 2010-05-28 -43.82 2010-05-28
7 -24.93 2010-05-28 -33.98 2009-05-25
8 -24.93 2010-05-28 -20.92 2009-03-22
9 -18.53 2009-05-25 -73.46 2010-02-05
10 -18.53 2009-05-25 -43.82 2010-05-28
11 -18.53 2009-05-25 -33.98 2009-05-25
12 -18.53 2009-05-25 -20.92 2009-03-22
13 -8.62 2009-03-22 -73.46 2010-02-05
14 -8.62 2009-03-22 -43.82 2010-05-28
15 -8.62 2009-03-22 -33.98 2009-05-25
16 -8.62 2009-03-22 -20.92 2009-03-22
Mean -21.00 -36.89

Table 4.4: Parameter estimates from the Hidden Markov Model.

State | Step Lengths (Gamma) Turning Angles (vonMises)
mu  sigma  zero-mass | mean concentration
Resting | 20.40 22.92 0.001 2.917 0.017
Foraging | 154.7 131.1 0.001 0.002 1.389
Directed | 739.5 262.9 0.0 -0.002 4.079

Table 4.5: Transition Probability Matrix (I') estimated from the combined dataset of all 11
empirical zebra tracks collected during the anthrax season in 2009 and 2010. This matrix
was used as the static basis for state transitions in the simulation.

State 1 (t+1) State 2 (t+1) State 3 (t+1)
State 1 (¢) 0.78 0.22 2.6e-10
State 2 (t) 0.16 0.75 0.08
State 3 (t) 0.01 0.23 0.76



1)

Table 4.6: The distance (in meters) used as the radius of the perceptual range of the simulant
based on their current behavioral state and whether they would be taking a small, medium,

or large step.

Small
Medium
Large

State 1
23
66
136

State 2 State 3

181
413
47

858
1420
2121

Table 4.7: Results of the conditional logistic mixed effects models as applied to foraging

points (n = 39,631) and directed movement points (n = 15,867) 20-minute fix intervals.

coef

Foraging exp(coef) se(coef) z P sig
Wetness (Sw) -0.15 0.86 0.025 -5.76 8.4e-09
Greenness (S¢) 0.22 1.25 0.030 747 8.le-14 Hx*
Road Density (frp) -0.00 1.00 0.005 -0.83 04

Anthrax Risk (Bar) -0.08 0.93 0.009  -8.32 <216
Directed coef  exp(coef) se(coef) z P sig
Wetness (Gw) -2.18 0.113 0.066 -33.21  <2e-16 ***
Greenness () -0.22  0.80 0.076 -2.91  0.004  **

Road Density (frp) 0.06 1.06 0.007 8.83 <216 ***
Anthrax Risk (far) 0.10 1.11 0.021 5.08 3.8e-07 ***
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Table 4.8: The results of the individual-level hidden Markov models applied to eleven ran-
domly selected simulated paths from each selection surface. The mean step sizes from both
the foraging and directed movement states are presented, as well as the p values from a
two-tailed t-test between these simulated paths and the eleven empirical trajectories.

Surface ID  Mean (Foraging) p (Foraging) Mean (Directed) p (Directed)

1 138 0.83 630 0.42
2 142 0.98 632 0.45
3 149 0.73 661 0.73
4 150 0.66 659 0.71
3 145 0.89 648 0.59
6 142 0.52 635 0.17
7 143 0.95 643 0.54
8 144 0.93 641 0.53
9 141 0.96 631 0.45
10 135 0.70 613 0.31
11 132 0.60 604 0.24
12 145 0.89 645 0.57
13 144 0.94 641 0.52
14 130 0.53 992 0.20
15 139 0.86 630 0.42

16 150 0.68 665 0.78
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Table 4.9: The mean number of contacts and contact rates emerging from the 1000 simulated
trajectories on each of the sixteen alternative selection surfaces. Also presented are the
standard deviation of the number of contacts, the number of simulations (out of 1000) that
resulted in zero contacts, and the maximum number of contact events observed in a single
simulated trajectory.

Surface ID Mean Rate St.Dev Zeros Max
1 217  2.0le-04  3.30 486 22

2 234 217e-04  3.37 464 21
3 217  2.01e-04  3.02 470 16
4 2.00 1.85e-04  3.38 256 22
) 2.08 1.92e-04  3.05 205 16
6 229 21204 3.18 459 21
7 229  212e-04  3.35 479 19
8 1.99 1.85e-04  3.23 041 20
9 2.14  1.98e-04  3.23 499 20
10 2.32  2.15e-04  3.30 452 22
11 250  2.18e-04  3.32 458 20
12 2.02 187e-04 3.24 523 20
13 229  212e-04 3.35 470 24
14 251 2.33e-04 3.42 438 20
15 212 1.97e-04  3.20 498 23
16 222 2.06e-04 3.61 929 29

Table 4.10: Ordinary Linear Regression of Wetness and Greenness onto mean contact rate

(R? = 0.12; Adjusted R? = —0.0101).

Estimate Std. Error t value D sig
(Intercept) 2.24 0.120 18.75  8.59e-11 ***
Greenness 0.004 0.004 1.16 0.27
Wetness -0.001 0.002 -0.71 0.49

Table 4.11: Non-linear regression including the quadratic terms for both Wetness and Green-

ness (R? = 0.72; Adjusted R? = 0.6181)

Estimate Std. Error t value D sig

(Intercept) 1.65 0.193 8.58  3.33e-06 ¥

Wetness  -3.59e-02  7.42e-03 -4.84  5.2e-04  FF*

Wetness?  -3.56e-04  7.54e-05 471 6.4e-04  Fk*
Greenness  1.58e-02 1.11e-02 1.43 0.18
Greenness? 2.54e-04  2.35e-04 1.08 0.30



4.7 Figures

Figure 4.1: Methods Overview: The first component of the approach is the derivation of
the selection maps (A). There were sixteen alternative environmental scenarios, each with

its own unique combination of Wetness and Greenness layers.
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Figure 4.1: (Continued from previous page.) The next component was the movement model
parameterization component (B) wherein a hidden Markov modeling (HMM) framework was
applied to the empirical movement trajectories. The HMM resulted in a set of parameter
estimates for the distributions underlying the step lengths (gamma) and turning angles (von-
Mises) during each of the behavioral states, as well as estimates of transition probabilities
between the states. Of these four outputs (selection surfaces, step length distribution pa-
rameter estimates, turning angle distribution parameter estimates, and estimated transition
probability matrix), all but the turning angle parameters were used in the simulation ap-
proach. This simulation approach (C) consisted of three primary actions, carried out in
sequence and then repeated over the course of the anthrax season. The first of these actions
was the assessment of the behavioral state (yellow circles). This action drew upon the tran-
sition matrix as the basis for a stochastic process in which the state of the agent at time
t was selected based on its state at time ¢ — 1. The next action was the perceptual range
construction (orange circles). This action drew upon the parameters estimates of the step
length distribution emerging from the HMM to determine the size of the radius over which
the agent would search for its next location. The final action was the weighting of the cells
within the perceptual range (red circles). This action drew upon the selection surfaces de-
rived at the start of the simulation for the scenario in question. Cells within the radius were
assigned weights based on the relative selection probabilities. The actual location of the next
step was determined using another stochastic selection procedure in which the probability
of cell being selected corresponded directly to the weight assigned to it. The behavioral
state and the location of the animal were recorded at each of the 10,800 time steps, and this
process was repeated 1000 times for each of the sixteen sets of selection surfaces.



80

Figure 4.2: Step Size Distributions: A schematic figure of the small, medium, and large
perceptual radii as dictated by the gamma distributions underlying the step lengths for each
behavioral state (Resting, Foraging, and Directed Movement). In each panel, a set of ran-
domly generated steps were drawn from the gamma distributions and subsequently colored
by the thresholds defined as the small, medium, and large perceptual range radii. These
distributions indicate the relative probabilities of selecting each of the different perceptual
range sizes based on the underlying step size distributions.
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Figure 4.3: Perceptual Range Schematic: An example graphic that demonstrates the
mechanistic movement process. Following the selection of a perceptual range radius, a buffer
(black circle) was constructed around the current position of the agent (red point). To
determine the next position, all of the cells whose center fell within the perceptual range
(black points) were considered, and weighted by the relative suitability as dictated by the
selection surface underlying the current behavioral state of the agent. Cells with larger
suitability values were therefore more likely to be selected for the next step, but were not
selected in a deterministic fashion.
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Figure 4.4: Contact Calculation Schematic: A schematic diagram of a single contact
event between a host and a LIZ. The line represents the inferred path of the individual moving
across the landscape, with each point along the path representing recorded positional fixes.
When the animal is in the foraging state, a buffer of 15 meters is constructed along the
linear path between consecutive points (red polygons). Note that the lines traversed during
periods in which the animal is not in the foraging state do not have buffers around them. If
the animal encounters a LIZ (blue circle) during a foraging period, indicated by an overlap
of the two polygons, it counts as a single contact event. In this case, one LIZ site is centered
along the path, but even a partial overlap would be counted as a contact because the animal
is assumed to leave its path slightly to investigate the high quality vegetation associated
with LIZ sites. Another LIZ was unexplored by the host animal, indicated by a lack of
overlap between the red foraging polygons and the blue circle nearer to the bottom left, so
no contacts were counted between them.
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Figure 4.5: Distribution of Local Infectious Zones (LIZs): A map of the region of inter-
est in Etosha National Park with the positions of the simulated local infectious zones mapped
and colored by the species of the carcass (green for small-bodied animals like springbok, red
for medium-sized animals like zebra, and blue for the relatively uncommon large-bodied
animal akin to an elephant.
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Figure 4.6: Foraging Step Size Distribution Comparison: As a means of comparing
the simulated tracks to the empirical tracks, the mean step lengths of both the foraging
and directed movement states were calculated using individual HMMs for the 11 empirical
tracks (red bar) and 11 randomly selected simulated paths from each of the 16 selection
surfaces. The results are illustrated here in the form of a box plot, where the thick black line
within each box represents the mean of the mean step lengths, the box itself extends from
-1 standard deviation to +1 standard deviation, and the additional whiskers extend to the
minimum and maximum values (if they are not contained by the box). The points represent
the actual calculated mean step length values for each individual with a small horizontal
offset to aid in visualizing the distribution.
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Figure 4.7: Contact Rate Trend in Relation to Anthrax Mortality Surveillance
Data: The upper panel represents the fitted non-linear regression curve across the tested
values of Wetness used in the simulations. The bottom panel presents a histogram of the
number of actual anthrax-induced mortalities observed between 1996 and 2009 based on the
probable month of death. The inset plot represents the mean rainfall data over the same
period, indicating that the anthrax season tends to range from wet in the early months to
dry in the later months.
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4.8 Supplementary Materials

Figure 4.8: Estimated J function for LIZ distribution at various scales (r): J(r) is
a measure of the spatial distribution of a point process. If J(r) is smaller than 1 within a
radius r of a given point when averaged across a set of points in a particular space (in this
case, the region of interest in Etosha National Park), then the points in this space are more
clustered than points placed at random (i.e., J(r) = 1) at the spatial scale of r. If J(r) is
greater than 1, then the points are more regular in the space than points placed at random.
Note a the distribution of points in a space can be random or regular at one spatial scale
(here, at radii less than about 150 meters), and clustered at other spatial scales (here, at all
radii greater than 150 meters).
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Table 4.12: The mean number of contacts and contact rates emerging from the 1000 simu-
lated trajectories on each of the sixteen alternative selection surfaces. Also presented are the
standard deviation of the number of contacts, the number of simulations (out of 1000) that
resulted in zero contacts, and the maximum number of contact events observed in a single
simulated trajectory.

Surface ID Mean Rate St.Dev Zeros Max
1 2.11  1.95e-04 3.21 512 22
2 2.36 2.18e-04 3.10 436 18
3 2.29  2.12e-04 3.19 479 19
4 2.02 1.87e-04 3.31 542 23
5 2.16 2.00e-04  3.27 504 20
6 2.44  2.26e-04  3.38 456 19
7 2.37  2.20e-04 3.42 478 21
8 2.03 1.88¢-04  3.39 555 18

9 226 2.09e-04  3.26 478 20
10 244 2.26e-04  3.29 434 18
11 231  2.14e-04  3.24 473 22
12 2.01 1.86e-04 3.09 246 20
13 232 2.15e-04  3.33 479 21
14 2.64 244e-04 347 429 16
15 2.19  2.03e-04  3.16 513 18
16 226 2.09-04 349 927 22

Table 4.13: Additional Non-linear regression including the quadratic terms for both Wetness
and Greenness (R? = (.7883; Adjusted R?> = (.7113) to demonstrate robustness across
alternative LIZ site distributions.

Estimate Std. Error t value D sig

(Intercept) 1.49 0.198 7.52  1.17e-05 ***

Wetness  -4.52¢-02  7.61e-03 -5.93  9.84e-05 F**

Wetness?  -4.48e-04  7.74e-05 S5.79  1.22e-04  kkx
Greenness  1.12e-02 1.14e-02 0.99 0.34
Greenness? 1.31e-04 2.41e-04 0.54 0.60
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Figure 4.9: Reanalysis of Contact Rate Trend in Relation to Anthrax Mortality
Surveillance Data: The upper panel represents the fitted non-linear regression curve across
the tested values of Wetness used in the simulations. The contact rates here are derived based
on a second set of LIZs distributed across the landscape. The bottom panel represents a
histogram of the number of anthrax-induced mortalities observed between 1996 and 2009
based on the probable month of death. The inset plot represents the mean rainfall data over
the same period, indicating that the anthrax season tends to range from wet in the early
months to dry in the later months.
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Chapter 5

Conclusion

Movement data represent seemingly inexhaustible sources of information, ranging from basic char-
acterizations of space usage to more detailed inferences about movement decisions and behaviors.
The constituent chapters of this dissertation were built upon a set of movement data points collected
nearly a decade prior to their analysis. In the intervening period, technological advancements have
led to dramatic improvements in the devices used to collect data on animal positions at increasingly
fine temporal scales [83]. In addition, numerous complementary datasets are commonly collected
in conjunction with movement data, offering the potential for a more comprehensive understanding
the motivations underling animal movement decisions [116]. The application of advanced com-
putational and statistical methods (e.g., machine learning algorithms [101, 12, 154, 21]) to these
datasets may enable the accurate classification of a more descriptive set of behavioral states, and
may even expose the fundamental movement elements (FMEs; [58]) that are often subsumed into
broader canonical activity modes (CAMs) when describing animal movements.

One of the fundamental limitations of the work presented here was the incomplete nature of
carcass surveillance data in Etosha National Park. Though we have an estimate of the magnitude
of the discrepancy between the available data and reality [9], there exists no method to approximate
the locations of these unobserved carcasses. Instead, assessments of exposure risk were conducted
based on entirely simulated systems or highly uncertain predictive surfaces that project statistical
associations between known carcass sites and environmental covariates (resulting in the delineation
of potential transmission zones; PTZs). While the first of these approaches offers ‘perfect’ knowledge
of the locally infectious zone (LIZ) sites, it displaces the empirical zebra movement paths from
reality, relegating them to rule-generators to guide agent movements across the simulated landscape.
The second approach allows for the analysis of empirical movement data, but only broad scale
estimates of risk can be used, potentially resulting in highly biased interpretations. Though both
approaches have their advantages and disadvantages and allow researchers to pose and answer
different questions, the truth of ungulate exposure to anthrax will remain elusive without more
comprehensive data on pathogen presence.

An important theme throughout much of the work on animal movement and disease trans-
mission is the role of scale. Decisions regarding the temporal scale at which data were originally
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collected, the spatial scale of remotely sensed or simulated data for use as predictors of movement,
and the spatiotemporal scale at which an analysis for movement data are ultimately conducted will
all influence the results and subsequent interpretations. Where data are available, analyses should
be conducted at multiple scales to determine the robustness of findings. Though both movement
and environmental data will have a lower bound in resolution, it is not necessarily the case that
using these lower bounds will result in the most accurate analyses. There are cases in which the
resolution of one data source will require that another dataset be coarsened in order to match.
For example, the temporal scale of the movement data used throughout this dissertation was a 20
minute fix rate, and much of the environmental data was remotely sensed at a spatial resolution
of 30 meters. If, however, the movement data were even finer, say a fix interval of 1 minute, it
could be worthwhile to coarsen the data for analysis if the animals tended to stay within a single
30 meter cell for many of their relocations. Depending on the question at hand, finer data might
not always be the optimal data. Similarly, collecting bioclimatic data at the scale of 1 meter may
not offer much more information than when it is collected at the scale of 30 meters or even 1 kilo-
meter. Considerations of scale will be integral to any spatiotemporal analysis, and results should
be examined for sensitivity to scale whenever possible [171].

Future Directions

Perhaps the most promising avenue for exploration is the role of behavior in disease dynamics.
Despite the proliferation of statistical methods for extracting behavior from movement trajecto-
ries, the practice remains substantially less common than other forms of movement analysis (see
Figure 1.1). The findings of Chapter 3 regarding the different selection patterns during the forag-
ing and directed movement states hint at the potential importance of such analyses in revealing
important dynamics with respect to the exposure process. It could be interesting to perform a
similar analysis on the springbok data, as they tend to browse for their forage rather than grazing
(like zebra). In theory, this could put them at a substantially lower risk of exposure than zebra,
so any differences between the behavioral states may be less apparent than those observed here.
In addition to exploring the potential selection patterns in other susceptible ungulate species, it
could be interesting to explore the role of memory in zebra movement. Though memory has been
linked (through mechanistic modeling) to stable home range emergence [113, 155, 49] and optimal
foraging patterns [106, 139], it has not been extensively explored in terms of navigating a ‘landscape
of disgust’ [163]. If zebra are indeed selecting against areas with high risk whilst foraging, a deeper
investigation into the potential mechanisms underlying that behavior should be performed.

Another logical direction for future inquiry would be explicit inclusion of some of the complex
factors underlying infection, rather than merely exposure. Given the numerous advancements in
remote camera trap technology and the promise of unmanned aerial vehicles (UAVs or drones; [2]),
it is not infeasible to conceive of a large-scale monitoring effort that paired the two technologies to
identify individuals that ultimately succumb to anthrax. Drones have been demonstrably useful in
wildlife monitoring efforts [74, 73] and offer access to areas too remote for human sampling efforts.
The development of a drone-based carcass surveillance program could aid in filling the data gap
implied by [9]. Once identified, remote camera traps could be set at carcass sites, as in [152].
Using novel classification methods developed to identify species [157] and individuals [26] from
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camera trap images, one could potentially create a dataset linking individuals visiting known (and
monitored) carcass sites to their eventual demise. This would offer the first insights into the actual
infection dynamics in a natural anthrax system. Due to the decreasing cost of GPS devices, it may
be feasible to track a larger portion of the zebra population as well, potentially even capturing the
movement trajectory of an animal that ultimately succumbs to anthrax infection. Such data could
shed light on the changes that an animal undergoes throughout the course of infection (as in [33]).
With more information on the nature of transmission, including the probability of contracting an
infection given an exposure of a certain length, it would be possible to augment agent-based models
like the one presented in Chapter 4 to capture that important aspect of disease. The inclusion of
the transmission and infection components to the model would enable the investigation of potential
mechanisms underlying the pattern of anthrax endemicity observed in Etosha National Park.
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