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Abstract
Predicting the three dimensional native state structure of a protein from its
primary sequence is an unsolved grand challenge in molecular biology. Two
main computational approaches have evolved to obtain the structure from the
protein sequence -  methods and template-based modeling - ab initio/de novo
both of which typically generate multiple possible native state structures. Model
quality assessment programs (MQAP) validate these predicted structures in
order to identify the correct native state structure. Here, we propose a MQAP
for assessing the quality of protein structures based on the distances of
consecutive Cα atoms. We hypothesize that the root-mean-square deviation of
the distance of consecutive Cα (RDCC) atoms from the ideal value of 3.8 Å,
derived from a statistical analysis of high quality protein structures (top100H
database), is minimized in native structures. Based on tests with the top100H
set, we propose a RDCC cutoff value of 0.012 Å, above which a structure can
be filtered out as a non-native structure. We applied the RDCC discriminator on
decoy sets from the Decoys 'R' Us database to show that the native structures
in all decoy sets tested have RDCC below the 0.012 Å cutoff. While most decoy
sets were either indistinguishable using this discriminator or had very few
violations, all the decoy structures in the fisa decoy set were discriminated by
applying the RDCC criterion. This highlights the physical non-viability of the fisa
decoy set, and possible issues in benchmarking other methods using this set.
The source code and manual is made available at 

 and permanently available on https://github.com/sanchak/mqap
.10.5281/zenodo.7134
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Introduction
The structure of a protein is a veritable source of information about 
its physiological relevance in the cellular context1. In spite of rapid 
technical advances in crystallization techniques, the number of pro-
tein sequences known far exceeds the known structures. There are 
essentially two different computational approaches to predict protein 
structures from its primary sequence: 1) Template based methods 
(TBM) which are based on features obtained from the database of 
known protein structures2–4 and 2) ab initio or de novo methods which 
are based on the intrinsic laws governing atomic interactions and are 
applicable in the absence of a template structure with significant 
sequence homology5,6. While at present TBM methods fare much 
better than the de novo approaches, the requirement of a known 
template protein can sometimes be a constraining factor. Both these 
methods typically generate multiple possibilities for the native struc-
ture of a given sequence. Selecting the best candidate from the set of 
putative structures is an essential aspect that is performed by model 
quality assessment programs (MQAP).

MQAPs can be classified as energy based, consensus based or 
knowledge based. The refinement of structures based on modeling 
of atomic interactions in energy based methods, such as molecular 
dynamic simulations, are subject to limited sampling of possible 
conformations due to large run times, and force field inaccuracies 
due to the approximations involved in describing the dynamics of 
large multi-atomic systems7–10. Consensus methods are based on 
the principle that sub-structures of the native structure are likely 
to feature frequently in a set of near-native structures11–14. These 
methods are currently the best performing amongst MQAPs13, but 
are prone to be computationally intensive due structure-to-structure 
comparison of all models14, and are of limited use when the number 
of possible structures is small15. Knowledge based methods rely on 
the assignment of an empirical potential (also known as statisti-
cal potential) from the frequency of residue contacts in the known 
structures of native proteins16,17. In statistical physics, for a system 
in thermodynamic equilibrium, the accessible states are populated 
with a frequency which depends on the free energy of the state and 
is given by the Boltzmann distribution. The Boltzmann hypothesis 
states that if the database of known native protein structures is  
assumed to be a statistical system in thermodynamic equilibrium, 
specific structural features would be populated based on the free 

energy of the protein conformational state. Sippl argued using 
a converse logic that the frequencies of occurrence of structural  
features such as interatomic distances in the database of known 
protein structures could determine a free energy (potential of mean 
force) for a given protein conformation, and thus be used to discrim-
inate the native structure18,19. A crucial aspect in applying statistical  
potentials is the proper characterization of the reference state20. The 
application of such empirical energy functions to predict and assess 
protein structures, while quite popular, are vigorously debated21,22, 
and several approaches for using statistical potentials for protein 
structure prediction been described to date20,23–26.

Here, we propose a new statistical potential based MQAP for assess-
ing the quality of protein structures based on the distances of 
consecutive Ca atoms - Protein structure quality assessing based 
on Distance profile of backbone atoms (PROQUAD). We first  
propose a statistical potential based on the distance of consecutive 
Ca distances. In a set of high quality protein structures (top100H27), 
we demonstrate that the distance between consecutive Ca atoms 
are distributed normally with a mean of 3.8 Å and standard devia-
tion of 0.04 Å. Based on this observation, the reference state for our 
statistical potential calculations is defined as one where all con-
secutive Ca atoms are 3.8 Å apart. We propose a scoring function 
which measures the deviation of consecutive Ca atoms from 3.8 Å, 
and hypothesize that this score is minimized in native structures. 
Based on the top100H database, we chose a cutoff of 0.012 Å for 
this scoring function to identify non-native states. We show that all 
the decoy structures from the fisa decoy set taken from the Decoys 
‘R’ Us database28 are distinguished using this discriminator. It has 
been previously proposed that native structures have constrained 
interatomic distances29. Interatomic distances, and other metrics, 
have been combined in several such methods - Molprobity (http://
molprobity.biochem.duke.edu/), PROSA (https://prosa.services.
came.sbg.ac.at/prosa.php) and the WHATIF server (http://swift.
cmbi.ru.nl/whatif)30–32. These identify possible anomalies in a given 
protein structure. While Molprobity and WHATIF identified steric 
clashes in the decoy structure in fisa, distance checks between con-
secutive Ca are not part of checks in these methods, and they failed 
to detect the consecutive Ca atoms anomaly in the fisa decoy set.

Thus, we propose a simple and fast discriminator for protein struc-
ture quality based on the distance profiles of consecutive backbone Ca  
atoms that identifies decoy structures that are physically nonviable.

Results and discussion
The frequency distribution of the distance of consecutive Ca atoms 
in ~100 proteins in the top100H database (a database consisting of 
high quality structures)27 shows that the distance between consecu-
tive Ca atoms are distributed normally with a mean of 3.8 Å and 
standard deviation of 0.04 Å (Figure 1a). Out of 16,162 pairs of 
consecutive Ca atom distances, 14,281 (88%) were spaced 3.8 Å 
apart, 1297 (8%) were spaced 3.9 Å apart and 553 (3%) were spaced 
3.7 Å apart. Only 31 (0.1%) pairs of consecutive Ca atom distances 
had values different than these (highest being 4 Å and the lowest  
being 2.9 Å). It would be interesting to correlate these distance devi-
ant residue pairs to structural or functional aspects of the protein - It 
is well worth examining every outlier and either correcting it if  
possible, giving up gracefully if it really cant be improved (more 

            Amendments from Version 2

We have implemented the following changes to add data in 
accordance with comments from Dr Rafael Najmanovich: 

1). We obtained a set of PDB structures from the PISCES database 
(http://dunbrack.fccc.edu/PISCES.php) - they have a precompiled 
set of structures below a certain resolution and with a certain homology 
cut-off.

2). We have binned the structures based on resolution into different 
sets.

3). We have plotted the frequency distribution of the RDCC for 
each of these sets and display them in a new figure (Figure 1e).

Incidentally, and as expected, we could not detect any correlation 
based on RDCC and the resolution of the protein structure.

See referee reports

REVISED
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Figure 1. Root-mean-square deviation of the distance of consecutive Ca (RDCC) atoms from the ideal value of 3.8 Å. (a) Probability 
distribution (P(x)) for the distance of consecutive Ca in ~100 proteins in the top100H database. (b) RDCC in ~100 high quality structures 
from the top100H database. (c) Variation in specificity based on the cutoff value. We choose 0.012 Å as the cutoff for filtering out non-native 
structures. (d) RDCC in I-TASSER CASP8 decoy suite. (e) RDCC for protein structures based on the resolution.

often true at low resolution), or celebrating the significance of why 
it is being held in an unfavorable conformation33.

The cis confirmations of peptide bonds are mostly responsible 
for these deviations. For example, in the protein concanavalin B 
(PDBID:1CNV), there are four violation of the 3.8 Å constraint: 
Ile33/Ser34 - 4 Å, Ser34/Phe35 - 3 Å, Pro56/Ser57 - 4 Å and Trp265/
Asn266 - 3.4 Å. These all these deviations are noted in the PDB file 
as footnotes, mentioning that ‘peptide bond deviates significantly 
from trans conformation’34. Another example is the Glu223-Asp24 

violation in PBDid:1ADS, which is between two cis prolines (as 
noted in the PDB file)35. However, these conformations are rare and 
not expected to occur frequently in a protein structure.

Figure 1b plots the root-mean-square deviation of the distance of 
consecutive Ca (RDCC) for these ~100 proteins. All structures 
in the top100H database have low RDCC values, barring three 
proteins (PDBids: 2ER7, 1XSO and 4PTP), which had multiple 
conformations for some residues, and were excluded from the pro-
cessing. This validates our hypothesis that RDCC is minimized in 
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RDCC for the hg_structral and fisa decoy sets from the Decoys ‘R’ 
Us database. All 500 decoy structures in each protein structure in 
the fisa decoy set are discriminated by applying the RDCC criterion. 
Figure 3 shows the superimposition of the native structure and the 
first decoy structure (AXPROA00-MIN) for a protein (PDBid:1FC2) 
taken from the fisa decoy set. The distance between Ile12/Ca and 
Leu13/Ca atoms is 3.8 Å and 4.1 Å in the native and the decoy 
structures, respectively. According to our hypothesis, a 4.1 Å dis-
tance between consecutive Ca atoms is typically unfeasible in 
protein structures, and their occurrence should be relatively rare. 
The presence of such deviations throughout the protein structures 
categorizes it as a non-native structure. MolProbity30 and ProSA31 
are two programs used as a pre-processing step for structures used 
in CASP38. MolProbity was able to discriminate the decoy structure 
(AXPROA00-MIN) from the native structure (PDBid:1FC2) using 
a metric called the ClashScore (the number of serious steric over-
laps) and the Cb deviations39. PROSA was unable to discriminate 
between the decoy and the native structures, reporting equivalent 
Zscores of -4.12 and -5.28, respectively. The WHATIF server report 
also reports steric clashes in the decoy structures (Data File 1). None 
of the above mentioned methods use a metric similar to the RDCC 
proposed in this paper, and thus did not report the abnormal dis-
tance between consecutive Cα atoms in the decoy structure.

The hg_structal and misfold decoy sets are indistinguishable using 
this distance discriminator, while only a few decoy structures failed in 
the 4state_reduced decoy set. This relationship between RDCC and 
proteins structure quality is therefore not an equivalence relationship. 
In propositional calculus, a relationship is equivalent if ‘A’ implies ‘B’ 
and ‘B’ implies ‘A’. A high RDCC implies a low quality structure, but 
a low quality structure does not necessitate a high RDCC. We there-
fore suggest the usage of the RDCC measure as a first pass to rule out 
the non-native contacts prior to applying other discriminators.

The model quality assessment program (MQAP) used to choose the 
best structure from the multiple closely related structures generated 

native structures. Hence, structures that have a RDCC value more 
than a user specified threshold can be pruned out as structures with 
low quality or non-native structures.

We evaluated the results using the measures of specificity (the abil-
ity of a test to identify negative results) which is defined as:

		  specificity
TN

FP TN
=

+                                                   
(1)

(TN = true negatives, FP = false positives). The specificity variation 
with the cutoff chosen is shown in Figure 1c. We choose 0.012 Å as 
the cutoff value for RDCC, which has a specificity of 1. We also plot 
the RDCC of the 121 testcases (Figure 1d) in the I-TASSER decoy 
set - http://zhanglab.ccmb.med.umich.edu/casp8/decoys36. Only 
five sets have RDCC values above the 0.012 Å threshold: T0492 
- 0.013 Å, T0476 - 0.014 Å, T0419 - 0.025 Å, T0470 - 0.051 Å, 
T0423 - 0.09 Å. Some of these are the result of erroneous resi-
due numbering in the CASP8 I-TASSER decoy set. For example, 
Ala24 is mistakenly numbered as Ala19 in T0423 (PDBid:3D01, 
identified by doing a BLAST search). Correcting this numbering 
results in a RDCC of 0.002 Å. Similarly, T0470 (PDBid:3DJB) has 
a correct RDCC of 0.001 Å, since Ser112 is mistakenly numbered 
as Ser101.

Figure 1e plots the frequency distribution of RDCC values of pro-
tein structures based on their resolution. The RDCC values are 
much lower than the 0.012 Å cutoff proposed. The non homologous 
structures (20% identity cutoff) are obtained from the PISCES data-
base (http://dunbrack.fccc.edu/PISCES.php). Certain outliers have 
been removed - for example, PDBid:2JLI mentions a ‘cleaved pep-
tide bond between N263 and P264’. The distance between the Ca 
atoms of N263 and P264 in this protein is 9.4 Å. Table 1 shows the 
mean and standard deviation for these sets, and demonstrates that 
the RDCC values are independent of the resolution of the structure 
under consideration.

We have applied this cutoff on decoy sets from the Decoys ‘R’ Us  
database28. The first protein (the native structure) in all decoy sets 
has RDCC below the 0.012 Å cutoff (Figure 1c). Figure 2 shows the 

Figure 2. Root-mean-square deviation (RMSD) of the distance of 
consecutive Ca (RDCC) atoms from the ideal value of 3.8 Å in decoy 
sets. The hg_structal and misfold decoy sets are indistinguishable 
using the distance discriminator, unlike the fisa decoy set. We have 
shown ~25 decoy structures from the fisa set, but the values apply to 
all the decoys (more than 500). The first protein (the native structure) 
in each set has RDCC below the 0.012 Å cutoff.

Table 1. Mean and standard deviation (SD) of RDCC values 
for structures based on resolution. The number N signifies the 
number of protein structures analzyed that have resolution less 
than the specified number, but more than the previous one. For 
example, there are 165 protein with less than 1 Å resolution, 
and 682 proteins which have more than 1 Å but less than 1.5 Å 
resolution, and so on.

Resolution(Å) N Mean RDCC(10-3 Å) SD(10-3 Å)

1.0 165 3.0 4.3

1.5 682 1.9 2.7

2.5 422 2.2 2.6

2.0 753 1.8 2.8

3.0 269 2.2 2.5
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this criterion. It has been previously shown that the fisa decoy set 
violates the van der Waals term57. We propose a fast complementary 
method to identify this transgression. It is also an interesting fact 
that most consensus methods will fare poorly in the fisa decoy set, 
since the majority of sub-structures are incorrect in all the decoy 
sets. Therefore, the fisa decoy set consists of physically nonviable 
structures and one should exercise caution when benchmarking 
other methods using this decoy set58.

Data File 1: WHATIF server report

1 Data File

http://dx.doi.org/10.6084/m9.figshare.813320

Materials and methods
The set of proteins Φ

proteins
 consists of the native structure P

1
 and M-1 

decoys structures (Equation 2). We ignore the first x=IgnoreNTerm 
and last y=IgnoreCTerm pairs of residues in the protein structure to 
exclude the terminals (Equation 3). For every consecutive pair of 
residues in the structure we calculate the distance between the consec-
utive Cα atoms (Res

n 
(Cα) and Res

n+1 
(Cα)), and its deviation from 

the ideal value of 3.8 Å. The square of the summation of these devia-
tions is then normalized based on the number of pairs processed, and 
results in the CADistScore. We hypothesize that CADistScoreP1 is 
minimum in a native structure (Equation 4). Algorithm 1 shows the 

pseudocode for the function that generates the CADistScore.

by structure prediction programs is of critical importance. We have in 
the past used electrostatic congruence to detect a promiscuous serine 
protease scaffold in alkaline phosphatases40 and a phosphoinositide-
specific phospholipase C from Bacillus cereus41, and a scaffold 
recognizing a b-lactam (imipenem) in a cold-active Vibrio alkaline 
phosphatase42,43. However, continuum models44 that compute poten-
tial differences and pK

a
 values from charge interactions in proteins45 

are sensitive to the spatial arrangement of the atoms in the structure. 
Thus, an incorrect model will generate an inaccurate electrostatic 
profile of the peptide46. It is thus possible to functionally characterize 
a protein from its sequence by applying such in silico tools subse-
quent to the protein structure prediction and MQAPs tools47.

The estimation of the model quality by MQAPs is achieved by for-
malizing a scoring function48, referred to as a knowledge-based or 
statistical potential, constructed from the database of known struc-
tures, assuming that the distribution of the structural features obtained 
from these structures follows the Boltzmann distribution20,23,24,26. The 
validity of statistical potential and the method to choose a proper 
reference frame in such models are still widely debated21,22. Meth-
ods that use consensus values from numerous models outperform 
other MQAP methods11–14, and are ‘very useful for structural meta-
predictors’49. It has been shown that many of the MQAP programs 
perform considerably better when different statistical metrics are 
combined50–53. The state of the art methods for predicting structures54 
and MQAPs38,49,55 are evaluated by researchers every two years.

Here, we propose a discriminator (RDCC) based on the distance 
of consecutive Cα atoms in the peptide structure. The discrimina-
tor is independent of the database of structures56, and is thus an 
absolute discriminator. Our proposed RDCC criterion is satisfied in 
high quality protein structures taken from the top100H database. As 
a specific application, we show that all decoy structures in the fisa 
decoy set from the Decoys ‘R’ Us database Cα atoms do not satisfy 

Figure 3. Superimposition of the native structure and a decoy 
structure (AXPROA00-MIN) for a protein (PDBid:1FC2) taken 
from the fisa decoy set. The native structure is in red, and the 
decoy structure is in green. The structures are superimposed using 
MUSTANG58. The distance between Ile12/Ca and Leu13/Cα atoms is 
3.8 Å and 4.1 Å in the native and the decoy structures, respectively.

Algorithm 1: AssessCADist()

Input: P1 : Protein under consideration

Input: IgnoreNTerm: Ignore this number of residues in the N 
Terminal

Input: IgnoreCTerm: Ignore this number of residues in the C 
Terminal

Output: CADistScore: Score indicating deviation of successive 
Ca atoms from 3.8 Å

begin

	 CADistScore = 0 ; NumberCompared = 0 ; N = 
NumberOfResidues(P1);

	 for p ← IgnoreNTerm to N – IgnoreCTerm do

		  q = p + 1 ;

		  CADist = Distance(p, q, Ca, Ca)

		  NumberCompared = NumberCompared + 1 ;

		  diff = absolute(CADist – 3.8 Å) ;

		  CADistScore = CADistScore + diff * diff;

	 end

	 /* Normalize */

	 CADistScore = sqrt(CADistScore/ ( NumberCompared * 
NumberCompared));

	 return (CADistScore);

end

Φ proteins MP P P= { , }1 2

                                                            
(2)

Φ proteins MP P P= { , }1 2

                                                            
(2)
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CADistScore

dist s C s C
Pi n x

N y

n n=
−= +

− −
+∑ 1

1
1

23 8( ( ( ), ( )) . )

(

Re Reα
NN y x− − − 2 2)

α

 

(3)

	 [ ]( )∀ = <i M CADistScore CADistScoreP Pi2 1
           (4)

In order to validate our hypothesis on known structures, we applied 
our discriminator to the top100H database (a database consisting 
of high quality structures)27 - http://kinemage.biochem.duke.edu/
databases/top100.php. In order to benchmark model quality assess-
ment programs, we used decoy sets from the Decoys ‘R’ Us data-
base28 - http://dd.compbio.washington.edu/. Each set has several 
structures that are supposed to be ranked worse than the native 
structure.

Structural superimposition has been done using MUSTANG59. Pro-
tein structures were rendered by PyMol (http://www.pymol.org/). 

The source code and manual is made available at https://github.
com/sanchak/mqap.
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