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lotte Werndl. Jim Weatherall and Chris Wüthrich deserve special gratitude for their detailed com-
ments, and David Malament similarly for providing invaluable copies of the most difficult-to-find
of the papers of Jürgen Ehlers, upon whose work I build.

My dissertation committee, and the faculty of the Department of Logic and Philosophy of Science
more generally, has my warmest thanks for their unflagging enthusiasm and support, and for my
transformation from a wayward intellectual outcast, straddling the interstices of the sciences and
humanities, into a scholar at home in his community and work. But above all, and in more and
deeper ways than any could have expected—academic, professional, and otherwise—my advisor,
Jim Weatherall, has been instrumental in this process. His empathy and wisdom, even at my nadir,
have been an inextinguishable beacon through the shoals for proposing, crafting, and defending a
dissertation.

Many others deserve special recognition here. Each has played, in their particular ways, such a
pivotal role in my intellectual and professional development that I cannot imagine myself apart
from their influence. Anyone familiar with scholarship in the philosophy of physics will recognize

vi



in this dissertation, and my work more broadly, the influence of David Malament. David has
indelibly shaped my approach to scholarship, modeling with humility and grace the gold standard
of clarity, force, and mastery to which I aspire. When I was an undergraduate studying physics at
Princeton, Hans Halvorson answered my searching inquiry about a senior thesis project, advising
me during my last year with patience and compassion. It was he who revealed the path into a
kind of philosophy of which I had been unaware, encouraging me to follow it. Many years before
that, David Scrofani at Staples High School in Westport, Connecticut, revealed a different and no
less important path into physics. In his class, through his enthusiastic instruction, I first caught
a glimpse of physics as a systematic, structured, and unified science, revealing the beautiful and
intricate subtlety of our world, the search for comprehension of which drives me to this day.

Finally, I would like to thank my family, especially my parents, for their unconditional love and
support of my intellectual pursuits. They have provided all and more I could have ever needed to
thrive, dream, and wonder.

vii



CURRICULUM VITAE

Samuel Craig Fletcher

APPOINTMENTS

Assistant Professor of Philosophy From August 2015
University of Minnesota, Twin Cities

Marie Curie Fellow July 2014 – August 2015
Munich Center for Mathematical Philosophy
Ludwig-Maximilians-Universität, München

EDUCATION

Doctor of Philosophy in Philosophy 2014
University of California, Irvine Irvine, California

Master of Arts in Philosophy 2012
University of California, Irvine Irvine, California

Master of Science in Statistics 2012
University of California, Irvine Irvine, California

Bachelor of Arts in Physics 2008
Princeton University Princeton, New Jersey

SELECTED HONORS AND AWARDS

Order of Merit Award for Outstanding Graduate Student Scholarship 2014
School of Social Sciences, University of California, Irvine

Graduate Research Fellowship 2010–14
National Science Foundation

Robert K. Clifton Memorial Book Prize 2009
University of Western Ontario

Maria Goeppert-Mayer Studentship 2008
American Physical Society

National Merit Scholarship 2004–08
National Merit Scholarship Corporation

viii



ABSTRACT OF THE DISSERTATION

Similarity and Spacetime: Studies in Intertheoretic Reduction and Physical Significance

By

Samuel Craig Fletcher

Doctor of Philosophy in Philosophy

University of California, Irvine, 2014

Professor James O. Weatherall, Chair

This dissertation explores in particular a few ways in which similarity bears on general relativity,

our best physical theory of space and time. The first way concerns the role of the concept of “phys-

icality” in theorizing and using spacetime models, which manifests in at least two different ways.

One is whether particular models are (or have properties that are) “physically unreasonable”—they

are deemed to be pathological or otherwise artifactual, and so must excluded from the theory. An-

other is whether particular properties of those models are “physically significant”—warranted to be

inferred about the properties of a physical system they represent. This distinction, which I draw in

more detail in chapter 2, separates these two senses of physicality, the former modal-metaphysical

and the latter inferential-epistemic. It is this latter that more intimately involves the notion of sim-

ilarity, particular notions of which can be encoded through the use of topology. I argue then that

there is no canonical topology on the models of general relativity. Rather, the choice of topology

must be nontrivially dependent on the context of investigation.

In chapter 3, I bring attention to another way in which similarity, as encoded in topology, can be

put to substantive use, namely in better understanding the nature of the reductive relationship be-

tween general relativity and its predecessor, the Newtonian theory of space, time, and gravitation.

In particular, I show how this relationship can be made both perfectly general—applying to any

situation the theories describe—and explanatory of the Newtonian theory’s success.
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Finally, in chapter 4, I explicate what I think are the deeper structural issues with certain examples

due to Robert Geroch that are intended to show a certain topology commonly used in the physics

literature in fact has several counterintuitive features. I show that there is in fact no topology that

meets a strong version of Geroch’s demands, but if those demands are weakened slightly, such a

topology may then be constructed, one that corresponds to a natural interpretation for spacetime

similarity in terms of certain classes of global observables.
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Chapter 1

Introduction: Why Spacetime and

Similarity?

Everyone is familiar with and makes use of the notion of similarity: wallabies are similar to kan-

garoos; navy blue is similar to ultramarine; there is a similar number of students (about 21,000)

enrolled at UC Riverside as there is at UC Santa Barbara; and so on. Its meaning is hardly univo-

cal, but it is nevertheless so central in everyday life that its use is typically unremarkable. Perhaps

it is then not too surprising that the use of similarity between scientific models, despite being so

essential to understanding certain parts of science, has largely been ignored by philosophers of

science.1 Indeed, even though its use is often informal, it has played an ineliminable role in some

of our most formalized scientific theories.

This dissertation explores in particular a few ways in which similarity bears on general relativity,

our best physical theory of space and time. The first way concerns the role of the concept of “phys-

icality” in theorizing and using spacetime models, which manifests in at least two different ways.

1By contrast, there has been much work on analogical (i.e., similarity-based) reasoning (Bartha 2013) and on
scientific representation, i.e., how models are similar to the targets they represent (Frigg and Hartmann 2012). The
focus here is on similarity between the models themselves.
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One is whether particular models are (or have properties that are) “physically unreasonable”—they

are deemed to be pathological or otherwise artifactual, and so must excluded from the theory. An-

other is whether particular properties of those models are “physically significant”—warranted to be

inferred about the properties of a physical system they represent. This distinction, which I draw in

more detail in chapter 2, separates these two senses of physicality, the former modal-metaphysical

and the latter inferential-epistemic. As I shall explain, it is this latter that more intimately involves

the notion of similarity.

The connection between physicality and similarity, though perhaps not immediately apparent,

arose from some of the most important developments in relativity theory’s golden era (roughly

1960–1975) concerning spacetime singularities. In the early history of the theory, singularities,

though not well understood, were strongly suspected to arise only as mathematical artifacts, or

at most under extraordinary conditions considered physically unrealistic. In the 1960s, however,

a series of results, whose apex is found in theorems by Hawking, Geroch, and Penrose, punc-

tured this conventional wisdom, showing that singularities could arise under much more general

circumstances that before thought.2 The questions that naturally arose from these developments

concerned the extent of these singularities’ prevalence. Are singular relativistic spacetimes—those

whose metrics are solutions to Einstein’s equation—exceptional or special (despite being seem-

ingly less exceptional than before), or are they commonplace? Are they distributed evenly among

spacetimes, or are they clustered together? These kinds of questions, however ambiguous, were

nonetheless seen as important enough for Geroch to ask in print:

Let us represent the collection of all solutions of Einstein’s equations diagrammatically

by a piece of paper. . . . Now blacken with a pencil all the points of this figure which

represent “singular solutions” in some appropriate sense. The question is: What does

the resulting figure look like? Is it mostly black with a few white points, a uniform

shade of gray (how dark?), or covered with black and white patches?

2See, e.g., Earman (1995, Ch.2) for some of this history.
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(Geroch 1970, p. 264)

Just as there are points on the paper more or less close to one another, the solutions (i.e., space-

times) represented by those points are taken to be more or less “close,” or similar, to one another.

The absolute shape of the figures should be of no consequence, only the “relative proximity” of

their points. Mathematically, this suggests using a topological space to represent the space of

spacetimes, a space equipped with a structure that determines edges and interiors of collections of

spacetimes:

How would we say that [the collection of universes] contains singular patches and

nonsingular patches? One possibility would be in terms of topology: one could in-

terpret a “patch” to mean the existence of a set with an interior. Thus, we might ask

whether the singular and nonsingular elements of [the collection of universes] form

sets with nonempty interior. That there are no gray regions in [this collection] could

be interpreted to mean that every point . . . lies either in one of the patches or on the

edge of one of the patches.3 (Geroch 1970, p. 268)

Intuitively, topology is “rubber sheet” geometry, in that topological properties are just those that are

preserved under continuous deformations—stretching and bending, but no tearing or puncturing.

Other authors echoed both the questions and the endorsement of topology:

The question naturally arises as to how prevalent these singular solutions are. Is it

true that “nearly all” physically reasonable, spatially closed cosmologies are singular?

And if a given space-time is singular, does it remain so under small perturbations of

the metric tensor (are the singularities stable, in other words)? What do we mean by

“perturbing the metric”?

3Geroch is restricting attention to “open” universes here, but that distinction is unimportant for the present discus-
sion.
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It is evident that the precise mathematical formulation of these questions proceeds

in the following manner: we must topologize the set of [relativistic spacetimes].

(Lerner 1972, p. 1–2)

A perturbation can be understood as a transformation that takes one spacetime to another that is

very similar to it. It is here the connection with physicality is made. There seems to be an abiding

conviction that stability is necessary for physical significance (the inferential-epistemic sense of

physicality):

It is a general feature of the description of physical systems by mathematics that only

conclusions which are stable, in an appropriate sense, are of physical interest. . . . To

obtain a precise notion of stability in general relativity we must say what “sufficiently

small perturbation” means, i.e., we must find a suitable topology on the space of solu-

tions of Einstein’s equations. (Geroch 1971, p. 70)

Similarly with Hawking: “the only properties of space-time that are physically significant are those

that are stable in some appropriate topology” (Hawking 1971, p. 395).

Hawking alludes to the issue I address explicitly in chapter 2, namely that there are infinitely

many different topologies one can place on the collection of all spacetimes, topologies that can

well differ in how they provide answers to questions of stability, hence physical significance. It

would be convenient if there were some canonical topology with respect to which all questions

should be answered. Against some suggestions that this convenience is (or should be) realized,

I argue that the choice of topology—that is, the choice of a particular notion of similarity—must

be nontrivially dependent on the context of investigation. This contextuality does not undermine

the fruitfulness of topology, which formalizes similarity in these theoretical enterprises, but rather

reveals that each topology captures something meaningful about how spacetimes are similar, hence

should be chosen justifiably, not (say) for mere technical convenience.
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The physics literature has, unfortunately, not been sufficiently sensitive to this point. Geroch (1970,

1971) has pointed out that the topology typically used to determine the stability of global space-

time properties has certain troublesome defects, yet there is no obvious candidate to replace it:

“We have an intuitive idea of what it means to say that ‘two metrics are close’, but to make this

idea precise turns out to be surprisingly difficult. . . . Unfortunately, we do not yet have a fully sat-

isfactory topology (on the space of metrics) with which to treat stability” (Geroch 1971, p. 70–1).

In chapter 4, I provide what I think are the deeper structural issues with this topology that underlie

Geroch’s examples, and show that there is in fact no topology that meets a strong version of his

demands. However, I show that if those demands are weakened slightly, such a topology may then

be constructed, one that corresponds to a natural interpretation for spacetime similarity in terms

of certain classes of global observables. This provides a satisfactory response to Geroch’s query

which, as far as I am aware, has gone unanswered for over 40 years.

Before that chapter, though, I bring attention to another way in which similarity, as encoded in

topology, can be put to substantive use, namely in better understanding the nature of the reductive

relationship between general relativity and its predecessor, the Newtonian theory of space, time,

and gravitation. Intertheoretic reduction has of course long been within the locus of core issues for

philosophers of science. Besides being of intrinsic philosophical and scientific interest, reductive

relationships between theories can also inform conceptions of emergence, scientific progress, the

(dis)continuity and unity of science, and the realism/antirealism debate. As important as these gen-

eral issues are, I do not address them directly in any sustained way in this dissertation. Again, this is

not because they are not important, but rather because I am concerned that much of the philosoph-

ical debate has proceeded without concrete and robust examples of relationships between actual

scientific theories.4 Rather than proceed completely from the top down, as it were, by only theo-

rizing the general form that reduction should take and exploring whether it applies to prospective

theory pairs, it seems more productive to work a bit from the bottom up, by reconstructing in detail

4I contend that nearly all discussion of traditional examples of reduction, such as that between the ideal gas law
and kinetic theory, does not meet sufficient standards of conceptual and technical rigor.
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the relationship that some working theories do have.

The case on which I focus is that between general relativity and Newtonian gravitation. Despite

often being cited as the paragon of a straightforward reductive relationship (Nickles 1973; Bat-

terman 1995), the results backing this claim are very narrow and often contain mathematically

ambiguous statements and inferences. Attempts to construct a more general account of their rela-

tionship, by understanding Newtonian gravitation as the limit of general relativity as the speed of

light approaches infinity, have foundered on the conceptual difficulties associated with understand-

ing the physical significance of what it means for a constant of nature to vary (and without bound).

In chapter 3, I build substantively on a framework originally developed by the physicist Jürgen

Ehlers (1981, 1988, 1991) to solve this interpretive problem while maintaining the generality of

the limiting approach—that is, without restriction to special classes of relativistic spacetimes. I

first present a framework, or metatheory, in which the models of both general relativity and New-

tonian gravitation are particular specializations. Placing a topology on this joint collection then

determines which sequences in the collection convergence. One can then say that general relativity

reduces to Newtonian gravitation just in case for every model of the latter, there is a sequence

of models of the former that converge to it. I suggest that the notion of similarity that should be

captured by a relevant topology is that of similarity of observable quantities. Thus a sequence of

spacetimes converging to another just means that certain classes of observables quantities in the

members of the sequence approach arbitrarily closely the values those observables would take in

the limit spacetime. Importantly, one can choose sequences of relativistic spacetimes such that the

speed of light as measured by any observer is the same in each model.

In line with my conclusions from chapter 2, I lastly question which topology could be appropriate

for these questions of reduction. In this case, the answer covaries with which class of observable

quantities one demands be well-approximated in the limit. Although I eschew trying to provide a

definitive and final answer, I do argue that the class so far considered in the literature—observables

defined at individual spacetime points—is unduly restrictive. For instance, there are many observ-

6



ables, such as the lengths of worldlines representing the time observers experience as they travel

though spacetime, that are defined on extended regions. Demanding that observables defined at

points to converge in a limit does not entail that those defined on regions do so as well. Thus a

different topology for convergence should be used than has been heretofore used implicitly in the

literature. By understanding that there are a variety of notions of similarity that could be used in un-

derstanding intertheoretic reduction in this sense, one begins to see new possibilities and potential

errors that were not before apparent.

Indeed, there are many further possible routes of investigation regarding similarity and spacetime

that this dissertation does not explore, ones pertinent both to conceptual issues within physics and

broader issues in the philosophy of science. Chapter 5 discusses some of these directions for future

research, some natural extensions of the chapters included and some wholly new.
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Chapter 2

Similarity, Topology, and Physical

Significance in Relativity Theory

2.1 Introduction

There are many reasons to consider notions of similarity in philosophy and, more specifically,

philosophy of science. They underlie Lewis’s famous system for counterfactual semantics, modal

logic, laws of nature and causation (1973; 1986). More recently, Halvorson (2012) has suggested

that similarity is salient for characterizing scientific theories formally: one cannot recover a theory

from its models unless one encodes the similarity amongst the models’ truth-valuations topologi-

cally. And in philosophy of physics, Manchak (2012) has remarked that placing a topology on the

models of general relativity can describe how different possible relativistic worlds (i.e., relativistic

spacetimes) are “nearby” one another.

This topological approach to similarity has been used by physicists working in mathematical rela-

tivity since the 1970s. In this context the notion of stability has been crucial. Roughly, a property

of an object O of a specified class (like mathematical models, solutions to a differential equation,
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etc.) is stable when all objects in that class sufficiently similar to O also have that property—the

name “stability” comes from the intuitive picture that the property is preserved under arbitrary

(but sufficiently small) perturbations. In this paper I am interested in exploring how this literature

connects similarity—in particular, stability—with judgments of physical significance. For exam-

ple, Hawking has asserted that “the only properties of space-time that are physically significant are

those that are stable in some appropriate topology”1 and that “[f]or physical purposes it is sufficient

to prove that a theorem holds generically” (1971, p. 395).

One attraction of Hawking’s proposal is that, given an “appropriate topology,” it would seem to

reduce part of a philosophical question to a technical question: in certain cases, instead of puzzling

over whether a property is “physically significant,” one instead may determine on which sets it is

unstable; instead of assessing the import of apparent isolated counterexamples to a theorem, one

simply proves that the theorem holds generically. Whether this reduction is successful, however,

depends first on justifying why there should be a connection between physical significance and

topological stability at all. Then, given a satisfactory justification, one must explicate what an

“appropriate topology” is supposed to be. After addressing the former query in §2.2, I focus on

the latter in the remainder. Since a choice of topology on spacetimes encodes particular ways in

which those spacetimes are similar, an appropriate topology is one that gets this notion of similarity

right. While it would greatly simplify matters if there were a canonical such topology, in §2.3–2.4

I consider two classes of topologies often considered in the literature and find them flawed for this

purpose. (The propositions I prove to argue this point may be of independent foundational interest.)

Against suggestions from some physicists, in §2.5 I suggest instead that there cannot be a canonical

topology, and that an “appropriate” topology must covary with the context of inquiry. Without a

canonical topology, however, stability itself does not directly settle any conceptual questions about

what is physically significant. Rather, whether a property counts as physically significant in a

model depends upon the prior choice of topology—how one considers models to be relevantly

similar.
1See also Geroch (1971, p. 70) and Hawking and Ellis (1973, p. 197).
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2.2 Similarity, Topology, and Physical Significance

What does it mean to say that a property is physically significant? There is not likely any straight-

forward univocal concept that wholly underlies the broad use of this phrase in the physics literature,

but it will suffice here to draw out some of its connections with epistemic warrant and stability.2

Physicists use mathematical models to represent physical phenomena, including past observations

and potential predictions. But they must be judicious in using models to make inferences about

phenomena, as models are often idealized or only approximate. “Physical significance” expresses

an aspect of this partial connection between models and phenomena. One says that a property of

a model of physical phenomena is physically significant to the degree to which one has warrant

to infer that property about the physical phenomena. For instance, one would say that the past

singularity of the standard cosmological model is physically significant to the extent that one can

infer about the actual universe that there is a past singularity, the Big Bang.

The connection with stability becomes evident in considering that the observed data used to build

such models, based on quantities like length, energy and position, are typically imprecise. Impre-

cise data usually yield imprecise models, or rather a range of models compatible with the data’s

imprecision. For convenience, however, scientists typically build a single model and represent the

imprecision in other ways. But the inferences warranted through that model must cohere with the

inferences one would have made through the range of models—that is, these inferences must be

compatible not just with the observed data, but also with the whole set of data values falling within

the measurements’ range of imprecision. Thus any inferences that crucially depend on perfectly

precise data will never be warranted. Requiring the stability of a property as a necessary condition

for its physical significance enforces this compatibility between imprecise data and the inferences

one draws: the only properties about phenomena one can infer from a model are those that all

arbitrarily similar models share.3

2I take myself to be making some tentative suggestions rather than undertaking any robust project of conceptual
analysis.

3Stability plays an analogous role in securing inference under idealization. Scientists often use idealized models to
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Returning to the example above, the data cosmologists have of the universe is imprecise, with a

range of compatible cosmological models, including the standard one and a neighborhood of mod-

els similar to it. The standard model has a past singularity, and so one may inquire whether one has

warrant to infer about the actual universe that there was a Big Bang. The requirement of stability

would demand for such an inference that some neighborhood of cosmological models similar to

the standard one also have a past singularity. For, one might argue, the data available is compatible

with at least some such neighborhood, and any inferences about the world one draws should not

depend on which data-compatible model one chooses. Things seem to turn out fortunately for the

conclusions of standard cosmology, as there is in fact a sense in which the past singularity of the

standard cosmological model is stable.4

It is important to contrast the epistemological character of physical significance as such with the

more metaphysical character of being “physically (un)reasonable” (Smeenk and Wüthrich 2011;

Manchak 2011; Earman 1995, ch. 3.4) or just plain “(un)physical” (Norton 2008, §3.2). Although

physicists do not usually explicitly distinguish these, they tend to say that a model is physically

unreasonable when they wish to exclude it as a genuine physical possibility countenanced by a

theory. By contrast, physical significance tends to refer to the warrant to infer properties of physical

phenomena from a model. There are interesting connections to explore between the physically

significant and the physically reasonable,5 but the following discussion shall focus on the former.

In order to apply the stability criterion for physical significance precisely, one should formalize

the notion of similarity it depends upon. Topology is a natural choice.6 A topology on a class of

objects determines notions of convergence and continuity, respectively, for sequences and param-

make inference more tractable. In these cases, one would like to infer properties of phenomena the de-idealized model
represents from those of the idealized model. Even if the idealization is not too severe, such an inference will not be
warranted unless the property in question is stable.

4Specifically, the property of the standard cosmological model that each inextendible timelike geodesic is past
incomplete is stable in the C2 open topology (Lerner 1973, theorem 6.1) introduced in §2.3.

5See, for example, Fletcher (2012, §3.1) for such connections in the case of excluding the indeterministic trajecto-
ries of Norton’s dome (2008).

6Many other choices, like uniform spaces, are strictly stronger than a topology, so one expects at least to reckon
with topological structure.
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eterized families of such objects, using its system of open neighborhoods to encode a weak sense

of similarity. A property P of an object O (or, more generally, of each of a set of objects {Oα}) is

then stable just in case there is an open set containing O (resp. {Oα}), all of whose members also

have P.7 Further, property P holds generically on a collection S when it holds on an open subset

of S that is dense in S . Density ensures that elements of S that do not have P do so unstably, and

openness ensures that elements that do have P do so stably.

However, if the collection of objects is infinite, as is the case with relativistic spacetimes, then

there will be infinitely many topologies one can place on the collection, topologies that can differ

regarding whether a property is stable or generic on a subcollection. How can one decide which

topology is appropriate?8 Perhaps there is in fact a canonical topology: a single choice of topology

over the collection of relativistic spacetimes that should apply whenever such a topology is needed.

Such a position had at one time been suggested by Geroch, who writes, “It is important, I feel, that

one settles on one (or possibly two) topologies in which to work rather than discovering a new

topology for each new theorem” (1970, p. 269),9 and more strongly by Lerner (1972, 1973) and

Lerner and Porter, who advocate for a particular choice: “if one regards all Lorentz metrics on M

as being on an equal (mathematical [sic] footing, it appears that the only acceptable choice for a

topology is the Whitney fine Ck topology” (1974, p. 1413). Those familiar with Lewis’s (1986)

influential (albeit controversial) analysis of comparative similarity for possible worlds based on

laws of nature and particular matters of fact might also wonder if a similar general analysis might

be given for relativistic spacetimes. In the remainder I investigate the viability of this canonicalism

about topologies over spacetime, considering Lerner’s choice in §2.3 and another initially plausible

7There is another related sense of stability associated with the initial value problem in general relativity: one says
that the evolution of initial data on a Cauchy surface is stable when its map into the evolved relativistic spacetime is
continuous (Hawking and Ellis 1973, p. 253). Because this requires considering only globally hyperbolic spacetimes,
here I focus on the “geometric” version of stability.

8While the same question arises for topologies on finite collections of objects, in that case one might hold out hope
to be able to decide by direct comparison.

9I do not attribute to him outright advocacy, since a careful reading reveals an admixture of methodological prag-
matism: “I think it is important [. . . ] to eventually settle on one or possibly two topologies with which to work. Hardly
any economy of thought results if there are hundreds of topologies in use” (1971, p. 73). Moreover, later writings indi-
cate a preference for the methodologically contextualist approach I take in §2.5: “The topology one chooses in practice
depends on what one wants the topology to do” (1985, pp. 175–6).

12



class of candidates in §2.4. In examining the problems each faces, the case against canonicalism

will emerge.

2.3 The Open Topologies

Recall that a relativistic spacetime is an ordered pair (M, gab), where M is a four-dimensional

smooth manifold10 and gab is a smooth Lorentzian metric on M, whose indices are abstract.11

Then the collection of objects to topologize consists of the Lorentzian metrics on a fixed manifold

M, which I denote L(M).12 The Whitney fine Ck topology, also called the Ck open topology, may

then be defined as follows. First, let hab be some smooth Riemannian (inverse) metric on M, and

define the “distance” function between the kth partial derivatives of two Lorentz metrics gab and

g′ab, relative to hab and at each point of M, as the scalar field

d(g, g′; h, k) =


[hruhsv(grs − g′rs)(guv − g′uv)]

1/2, k = 0,

[ha1b1 · · · hakbkhruhsv

⊗ ∇a1 · · · ∇ak(grs − g′rs)∇b1 · · · ∇bk(guv − g′uv)]
1/2,

k > 0,
(2.1)

where ∇ is the Levi-Civita derivative operator compatible with hab. I have omitted the abstract

indices in the arguments of d since they needlessly clutter the notation, and I will hereafter continue

to drop them when they will never be contracted.

The function d(g, g′; h, k) compares g and g′ at each point of M through the Euclidean distance

between the components of their kth order partial derivatives as determined by h. Then the sets of

10One also requires M to be connected, paracompact, and Hausdorff.
11That is, the super- and subscripts of tensor fields like gab label copies of vector spaces in which the fields reside.

See, e.g., Malament (2012, §1.4).
12One might of course also wish to compare spacetimes whose underlying manifolds are not diffeomorphic. Al-

though Hawking and Ellis (1973, p. 198) state that this can be done, to my knowledge no one has done so nontrivially
for all spacetimes.
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the form

Bk(g, ϵ; h) = {g′ : sup
M

d(g, g′; h, 0) < ϵ, . . . , sup
M

d(g, g′; h, k) < ϵ} (2.2)

constitute a basis for the Ck open topology, where g ranges over all Lorentz metrics, ϵ ranges over

all positive constants,13 and h ranges over all Riemannian (inverse) metrics. One can view these

basis elements as generalizations of the ϵ-balls familiar to metric spaces.

But how does one justify the Ck open topology as canonical? For instance, how should one choose

the right value of k? One way is to investigate examples of stability about which one has a strong

intuition, ruling out available topologies that do not meet them. For example, in discussing a

theorem proving the stability of the strong energy condition14 in the C2 open topology, Lerner

writes,

It should be pointed out that [this theorem] is not true in any of the weaker topologies

frequently used [. . . ]. If we agree that any reasonable topology [. . . ] should allow per-

turbations preserving the existence of non-zero rest mass, we may take this as further

evidence in favor of the [open] topologies. (Lerner 1973, p. 28)

Indeed, it seems that virtually all of the results regarding stability and genericity of global proper-

ties of spacetimes have used one of the open topologies. For example, the encyclopedic monograph

Global Lorentzian Geometry, which has an entire chapter on “stability of [geodesic] completeness

and incompleteness,” defines only the open topologies for these purposes (Beem et al. 1996, p. 63

& ch. 7).

However widely accepted, the universal appropriateness of the open topologies has not gone un-

questioned. Geroch (1970, 1971) has provided a pair of examples that illustrate some surprising

features of the C0 open topology in particular.15 His first example is a sequence that seems like it
13One can choose a different ϵ for each derivative order, but the resulting basis generates the same topology.
14This is the condition that for any timelike vector ξa at any point of M,

(
Tab − 1

2 Tgab

)
ξaξb ≥ 0, where Tab is the

stress-energy tensor and T is its trace. See Hawking and Ellis (1973, p. 95) or Malament (2012, p. 166).
15In fact, they work just as well for any of the Ck open topologies but I follow Geroch in presenting them in the C0
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should converge to Minkowski spacetime but in fact does not. Explicitly, the sequence of metrics

m
gab =

(
1 +

1
m2 + x2 + y2 + z2

)
(dat)(dbt) − (dax)(dbx) − (day)(dby) − (daz)(dbz) (2.3)

on R4, where t, x, y, z are scalar coordinate fields, does not converge as m → ∞ to the Minkowski

metric

ηab = (dat)(dbt) − (dax)(dbx) − (day)(dby) − (daz)(dbz), (2.4)

even though the “bump,” remaining centered at the coordinate origin, decreases in amplitude to

zero. This is because
m
g → η in the C0 open topology if and only if for every neighborhood of the

form B0(η, ϵ; h), we have
m
g ∈ B0(η, ϵ; h) for m sufficiently large. But one can always pick an h

growing sufficiently rapidly towards infinity that, for all m, supM d(η,
m
g; h, 0) = ∞.

Geroch’s second example is the one-parameter family

Λ = {λgab : λ > 0}, (2.5)

with a fixed gab on a non-compact M, which strikingly does not trace out a continuous curve in

the C0 open topology—indeed, it is everywhere discontinuous. To see this, note that the family is

continuous in the C0 open topology if and only if for every λ0 > 0 and every neighborhood of the

form B0(λ0g, ϵ; h), there is a positive open interval I ∋ λ0 such that {λgab : λ ∈ I} ⊆ B0(λ0g, ϵ; h).

But, as with the first example, one can pick an h growing sufficiently rapidly and without bound—

recall M is non-compact—so that for any δ , 0, supM d(λ0g, (λ0 + δ)g; h, 0) = ∞.

This example is particularly surprising because the elements of Λ have the same representational

capacities—each can represent precisely the same class of spacetimes, and one can interpret the

parameter λ as a mere change of units.16 In fact, one can prove quite general results regarding

context where the calculations are simplest.
16It also demonstrates that the open topologies, like the other topologies that I will consider, “over-represent”

the Lorentz metrics on M since in general they represent isometric spacetimes through distinct points. One can
compensate for this defect somewhat by ensuring one constructs only invariant topologies (Geroch 1970, pp. 281–2),
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the conditions under which a sequence converges or a family is continuous in the open topologies.

Specifically, the following is sketched by Golubitsky and Guillemin (1973, pp. 43–4):

Proposition 2.3.1. Let g, {ng}n∈N be Lorentz metrics on a non-compact manifold M. Then
n
g→ g in

the open Ck topology on L(M) iff there is a compact C ⊂ M such that:

1. for sufficiently large n,
n
g|M−C = g|M−C; and

2.
n
g| int(C) → g| int(C) in the open Ck topology on L(int(C)).

In other words, a sequence converges in the Ck open topology just in case its elements eventually

equal the limit point everywhere except at most on (the interior of) a compact set, a criterion of

convergence even stronger than uniform! One can then use this proposition to prove (see §2.6.1) a

necessary condition for a family of Lorentz metrics to be continuous.

Proposition 2.3.2. Suppose that L(M) is given the Ck open topology, with M non-compact. If

f : R → L(M) is continuous, then for every x0, x1 ∈ R, there is some compact C ⊂ M such that

f (x0)|M−C = f (x1)|M−C.

Thus any pair from a continuous one-parameter family of Lorentz metrics must always be equal

everywhere except at most on a compact set. Intuitively, one might picture the difference between

the members of such a pair as a “bump in a rug” that the function f pushes around. Although the

bump may be bigger or smaller, wider or narrower, it always has compact support. This is clearly a

quite restricted class of continuous families. For example, because any two distinct members from

the scale family of metrics given by eq. 2.5 are equal nowhere, proposition 2.3.2 ensures that this

family is everywhere discontinuous.

One might object that the discussion of canonicalism was motivated by considering the connection

of stability with physical significance, but Geroch’s examples and propositions 2.3.1 and 2.3.2 bear

ones for which the pushforward map induced by any element of the diffeomorphism group of M acts on L(M) as a
homeomorphism. Indeed, all of the topologies considered in this paper are invariant in this way.
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on convergence and continuity. Why should problems with the latter bear on the use of topology

for the former? Two responses are on offer. First, if a canonicalist would maintain this objection

while affirming that continuity and convergence are worthy of investigation,17 she would already

concede her position in suggesting that different purposes—stability, as opposed to convergence

and continuity—may require different topologies. Second, convergence, continuity and stability

are all interdependent, each determined by a topology’s lattice of open sets. Recall, for instance,

that the stability of a property depends on the existence of a certain open set. Thus it is in a sense

easier for a property to be stable in a finer topology, since there are more open sets available that

could be witnesses to stability. In particular, if a property is stable on a certain set in a given

topology T , it is stable in every topology finer than T . Recall as well that the convergence of a

sequence depends on certain aspects of every open neighborhood of its purported limit point. Thus

it is in a sense easier for a sequence to converge in a coarser topology, since there are fewer open

sets that must fulfill the proper role. In particular, if a sequence converges in a given topology T ,

it converges in every topology coarser than T .

Geroch’s examples and propositions 2.3.1 and 2.3.2 therefore suggest that there are more open sets

in the open topologies than one might have initially thought, which would perhaps make stability

too easily achieved. For example, if a property is stable for g in the C0 open topology on L(M)

for non-compact M, then it obtains on some basic neighborhood B0(g, ϵ; h). However, for any

g′ ∈ B0(g, ϵ; h) distinct from g on a non-compact set, by choosing h′ = Ωh/d(g, g′; h, 0) for some

unbounded Ω, there is no ϵ′ for which g′ ∈ B0(g, ϵ′; h′). But one might think that whether g′ can

be sufficiently close to g, for some standard of sufficiency, should not depend on the choice of h,

which is simply a device for comparing g and g′. That the open topologies do have this dependence

is ultimately what is responsible for propositions 2.3.1 and 2.3.2.18

17Lerner (1972, 1973) is aware of Geroch’s examples and propositions 2.3.1 and 2.3.2, but concludes from them
that one must give up talking about continuity and convergence. Considering that topology is typically introduced
(in part) in the first place to treat continuity and convergence, a more measured response would be to reject the open
topologies as canonical.

18Like with Geroch’s examples, eqs. 2.3 and 2.5, this dependence applies for all the open topologies. I’ve only
presented the C0 case to illustrate it economically.
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2.4 Continuity in the Geometric Sense and the Compact-Open

Topologies

Given the problems that the open topologies face, one might very well abandon Lerner’s suggestion

and investigate other possible choices for a canonical topology. One idea comes from Geroch

(1969), who has proposed a way of interpreting certain limiting relations entirely geometrically

through the continuity (smoothness, etc.) of certain fields. Roughly, in the simplest case of a one-

parameter family, one constructs a 5-dimensional manifold from the 4-dimensional manifolds of

the family “stacked” by their identifying parameter.

More precisely, suppose that one is given a family of metrics { t
gab}t∈R on a fixed manifold M.19

LetM be a manifold diffeomorphic to M × R and let ψ(t) : M → M be a family of embeddings

defined, using this diffeomorphism, by p 7→ (p, t). Thus the field t̃ : M → R defined by (p, t) 7→

t is smooth and labels the 4-dimensional hypersurfaces foliating M by their parameter value t.

Then one can define a symmetric field Γab onM with signature (+,−,−,−, 0) by stipulating that

(Γab)|(p,t) = (ψ(t)
p )∗(

t
gab). In other words, Γab is the field that on each t̃-constant hypersurface is just

the pushforward of the inverse Lorentz metric
t
gab. One can find a fixed derivative operator ∇ that

is compatible with Γab and ∇at̃, i.e., ∇aΓ
bc = 0 and ∇b∇a t̃ = 0, and that makes these two fields

orthogonal, i.e., Γab∇at̃ = 0.20

Now, for each p ∈ M the points ψ(t)(p) for all t form a smooth curve and the collection of all

such curves for all p form a congruence onM that indicates which points on different t̃-constant

hypersurfaces are counterparts. Thus there is a vector field τa onM tangent to the curves of this

congruence satisfying τa∇at̃ = 1. This allows one at last to define a unique symmetric field Γab

19Geroch does not require that the metrics be defined on diffeomorphic manifolds, but I can confine attention to that
case here.

20For those familiar with the geometrized formulation of Newtonian gravitation, ∇a t̃ functions much like the tempo-
ral metric and Γab like the spatial metric, except that the latter is Lorentzian instead of Riemannian and only assumed
to be smooth on each t̃-constant hypersurface. I would like to thank Jim Weatherall for emphasizing this point to me.
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such that Γabτ
a = 0 and ΓabΓ

bc = δc
a − τc∇at̃.21 With this construction in place, we can say that

the family
t
gab on M is continuous in the geometric sense when the corresponding field Γab is

continuous everywhere onM. (Analogous definitions would apply to smoothness, etc.) One can

similarly define the limit of a sequence of metrics by embedding the sequence in a one-parameter

family.

A great appeal of this proposal is that it uses the natural, widely accepted geometrical formulation

of a relativistic spacetime to do the work of choosing the canonical topology. On its face it does

not seem to involve the kind of arbitrary decisions used in selecting an open topology. It turns out

that the topology determined by all the families continuous in the geometric sense is well-known:

Proposition 2.4.1. A family of Lorentz metrics { t
g}t∈R is continuous in the geometric sense iff it is

continuous in the C0 compact-open topology.22

(For a proof, see §2.6.2.) A basis for the Ck compact-open topologies, for any non-negative integer

k, may be written as sets of the form

Bk(g, ϵ; h,C) = {g′ : sup
C

d(g, g′; h, 0) < ϵ, . . . , sup
C

d(g, g′; h, k) < ϵ}, (2.6)

where g ranges over all Lorentz metrics, ϵ ranges over all positive constants, h ranges over all

Riemannian (inverse) metrics,23 and C ranges over all compact subsets of M. The essential dif-

ference between the open and the compact-open topologies is that the former “control” behavior

everywhere on the manifold whereas the latter do so only on compact subsets.

Notably, one can show that, unlike with the open topologies, the sequence defined by eq. 2.3

converges to the Minkowski metric and the family defined by eq. 2.5 is continuous relative to the

21This also parallels the construction of the covariant spatial metric in geometrized Newtonian gravitation. Cf. fn. 20
and Malament (2012, p. 254, proposition 4.1.12).

22In particular, the C0 compact-open topologies are the final topologies respectively associated with the families
continuous in the geometric sense, the finest topologies on L(M) that make those families continuous.

23Strictly speaking, letting h range is superfluous, as the same topology is generated through a single choice (Geroch
1970, p. 280 fn.).
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Ck compact-open topologies. These topologies are also attractive for having a number of other

interesting features. First, they coincide with the topology of Ck compact convergence—that is, a

sequence of metrics
n
g → g on M just when it and its partial derivatives to order k (with respect to

the Levi-Civita derivative operator compatible with an arbitrary Riemannian metric on M) do so

uniformly on each compact C ⊆ M (Munkres 2000, p. 283, theorem 46.2).24 Second, if a sequence

of Ck metrics
n
g converges to g, then g is guaranteed to be at least Ck as well (Munkres 2000, p. 284,

corollary 46.6). Third, there is a close connection with homotopy. One can show that a family of

Lorentz metrics is continuous in the Ck compact-open topology if and only if it traces out a Ck

path in L(M). So, in a way, the Ck compact-open topology encodes which Lorentz metrics can be

continuously (to order k) deformed into one another.25

Like with the open topologies, however, Geroch has criticized the general appropriateness of the

compact-open topologies, contending that they rule counterintuitively on the sequence of metrics

m
g′ab =

(
1 +

m
1 + (x − m)2

)
(dat)(dbt) − (dax)(dbx) − (day)(dby) − (daz)(dbz) (2.7)

on R4, where t, x, y, z are natural scalar coordinate fields.26 “The ‘bump’ in the metrics becomes

larger as it recedes to infinity,” he writes, but the “sequence does approach Minkowski space in

the [C0 compact-open] topology (because the metrics become Minkowskian in every compact

set)” (1971, p. 71). In other words, since d(η,
m
g′; h, 0) is continuous for any choice of (smooth)

Riemannian h, its supremum is bounded on any compact set and will become as small as one

likes for sufficiently large m. However, “[i]ntuitively, we would not think of this sequence as

approaching Minkowski space” (1971, p. 71) (or presumably any spacetime at all). Thus he takes

the C0 compact-open topology to be too coarse.

24The compact-open topology coincides with the topology of compact convergence on a function space when the
range of the functions is a metrizable space (Munkres 2000, p. 285–6), and the bundle of Lorentz tensors over M,
being a finite-dimensional manifold, is metrizable.

25Equivalently, the family is continuous in the Ck compact-open topology just when the k-jets of the family belong
to the same path component.

26The formula for the first term is garbled in Geroch (1971, p. 71), but appears without error in Geroch (1970,
p. 280).
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This example is less convincing than his examples for the open topology. It is instructive to com-

pare eq. 2.7 with the sequence of Taylor expansions of a real function like sin(x). For any particular

finite-order expansion, one can find a sufficiently large x such that the expansion, evaluated at this

x, differs from sin(x) by as much as one wishes. But if one fixes some compact region of R, then

the Taylor series converges uniformly on that region. Similarly, the sequence given by eq. 2.7

converges to Minkowski spacetime because the C0 compact-open topology corresponds with the

topology of compact convergence. Just as the compact convergence of Taylor expansions seems

perfectly reasonable, it is not clear why the same cannot be said in the case of sequences of Lorentz

metrics.

However, there are other counterintuitive features of the compact-open topologies that bear even

more directly on stability. For example, consider Hawking’s theorem (Hawking and Ellis 1973,

p. 198, proposition 6.4.9):

Theorem 2.4.2 (Hawking). The existence of a global time function on a relativistic spacetime is

equivalent to stable causality, an absence of closed causal curves that is stable in the open C0

topology.

If one of the compact-open topologies were to be canonical, one would want to know whether

Hawking’s theorem holds with respect to it as well. It turns out that it does not, and spectacu-

larly so. In fact, according to the compact-open topologies, spacetimes generically contain closed

timelike curves.

Proposition 2.4.3. Chronology violating spacetimes are generic in L(M) in any of the Ck compact-

open topologies.27

Corollary 2.4.4. No Lorentz metric is stably causal in any of the Ck compact-open topologies on

L(M).28

27This slightly improves statements by Hawking (1971, p. 396–7) and Hawking and Ellis (1973, p. 198), who advert
without proof to the density of chronology violating spacetimes in L(M) in any of the Ck compact-open topologies.

28Cf. proposition 5.1 of Manchak (2012), who shows that each Lorentz metric is homotopic to one that violates
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In particular, according to the compact-open topologies, not only does Minkowski spacetime fail

to be stably causal despite its global time function, it turns out that not having closed timelike

curves is not physically significant! In other words, one would never have warrant to infer from

a model of relativistic spacetime that the physical situation it represents does not permit a form

of time travel.29 An alternative but equivalent definition of stable causality brings out why: a

spacetime (M, g) is stably causal with respect to the C0 open topology just when there is a metric

g′ for which there are no closed causal curves and whose light cones everywhere lie outside those

of g. By contrast, when stable causality is defined with respect to the C0 compact-open topology,

the light cones of g′ need only lie outside of those of g on a compact subset of M, leaving the rest

unconstrained and ripe for the sprouting of closed causal curves.

By contrast, if (M, g) already contains a closed timelike curve γ : I → M, then one can pick a

local basis element Bk(g, ϵ; h,C) from any compact-open topology so that γ[I] ⊆ C and ϵ is small

enough so that, for any g′ ∈ Bk(g, ϵ; h,C), γ is still g′-timelike.

Proposition 2.4.5. Every spacetime containing a closed timelike curve does so stably in any of the

Ck compact-open topologies.

Thus one always has warrant to infer from spacetimes with closed timelike curves that they rep-

resent the possibility for a type of time travel. One ought also, for some relativistic spacetime

models without closed timelike curves, have warrant to infer that they do not represent this pos-

sibility. That this never occurs under the compact-open topologies militates against taking any of

them as canonical.

chronology. As alluded to above, there is a close connection between homotopy and the compact-open topologies: the
Ck homotopy classes correspond with the path components of the Ck compact-open topologies.

29This result does not state that one can have no inductive evidence for certain global properties, as one might
interpret proposition 2 of Manchak (2011, p. 414). Rather, it states that even if one had data for the whole universe,
however imprecise, and fit that data to a relativistic spacetime, one could never conclude that there were no closed
timelike curves in the universe if one takes any compact-open topology as canonical.
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2.5 Methodological Contextualism

Any canonical topology on L(M) should have the ability to properly distinguish which sequences

converge, which families are continuous, and which properties are stable or generic. But as the

previous two sections laid out, the two main classes of topologies in the literature fall short of

these goals. The open topologies, advocated by Lerner, seem too fine to treat convergence and

continuity. The compact-open topologies, naturally suggested through continuity in the geometric

sense, seem too coarse for stable causality because their neighborhoods control behavior only on

compact sets. Of course, that Geroch’s examples do evince genuine problems for the former can

well be challenged, and one may decide, according to one’s inclinations, to bite the bullets of

propositions 2.3.1 and 2.3.2, or 2.4.3, but this does not completely resolve the issue of how to

choose the canonical topology. Proponents of a canonical topology must decide without being ad

hoc on which counterintuitive results to accept and are obliged to provide an explanation as to why

the intuitive features thereby denied do not have the significance they seemed to.

The considerations already raised for the canonicalist can be cast in terms of a no-go result. Given

some manifold M, proposition 2.4.1 entails that the C0 compact-open topology on L(M) is the

finest topology in which all the one-parameter families continuous in the geometric sense are con-

tinuous. (See fn. 22.) But it follows from corollary 2.4.4 that no Lorentz metric is stably causal in

the C0 compact-open topology or any topology coarser than it. So if there is some Lorentz met-

ric on M that admits of a global time function, Hawking’s theorem fails for it in such a topology.

(Without the existence of such a metric, Hawking’s theorem is vacuous.) This yields the following.

Proposition 2.5.1. If there is some Lorentz metric on M that admits of a global time function, then

there is no topology on L(M) relative to which both

1. all one-parameter families continuous in the geometric sense are continuous, and

2. Hawking’s theorem holds.
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One might object that asking for such compatibility is too much; perhaps there is hope for com-

patibility with a weakened version of Hawking’s theorem, in which one demands the existence of

a global time function just in case the spacetime is stably causal when restricted to compact sets

(or rather their interiors). But this fails, too.

Corollary 2.5.2. Suppose TM is a topology on L(M), for any M, that makes continuous all the

one-parameter families continuous in the geometric sense. Then, for any g ∈ L(M) there is no

compact C ⊆ M such that g| int(C) is stably causal in the topology Tint(C) on L(int(C)).

Because there are no subsets of M with the desired property, the analog of Hawking’s theorem fails

(as there remain many spacetimes with global time functions).30 This is just one of a possibly large

family of “no-go” results that the canonicalist must face.

But reminding oneself of the way these topologies are used suggests that one need not pick any

canonical topology at all. Examining the consequences of adopting one topology over another

is a part of the process of deciding which topology will be relevant for a given type of problem.

Hawking has emphasized as much: “A given property may be stable or generic in some topologies

and not in others. Which of these topologies is of physical interest will depend on the nature

of the property under consideration” (1971, p. 396). Indeed, Geroch’s later writings (see fn. 9)

have indicated the same. If different topologies correspond to different ways one can specify how

spacetimes are similar, it is not surprising that different topologies would be natural choices for

different kinds of questions if those questions bear upon different kinds of properties. It thus seems

best to accept a kind of methodological contextualism, where the best choice of topology is the

one that captures, as best as one can manage, at least the properties relevant to the type of question

at hand, ones that relevantly similar spacetimes should share. Thus, in contrast to the canonicalist,

I would demand that particular choices of topology must be justified relative to a context as much

30In fact, the stated weakening of stable causality with respect to the C0 open topology is known to be equivalent
to non-total imprisonment, the condition that no future-inextendible causal curve eventually enters but does not leave
some compact subset of spacetime (Minguzzi 2009, theorem 1). That non-total imprisonment is much weaker than
stable causality reveals that finding a weakening of stable causality that preserves Hawking’s theorem is a subtle matter.
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as one feasibly can.

Methodological contextualism about topologies—at least in the sense of allowing oneself to pick

the most appropriate topology for a given application instead of deciding on one in advance—

would make all the above worries associated with picking a canonical topology moot. But the

contextualist fortunately still has the resources to choose reasonable topologies—resources not

so different from the canonicalists, but without the demand to select a single topology for all

purposes. One will expect that similar questions will tend to demand similar topologies, so the

process of justification need not be started afresh each time. In particular, one should arrive at a

particular choice of topology through reflective equilibrium, balancing the demands of the current

understanding of what different topologies capture physically and what notions of similarity one

is trying to capture with the implications of new mathematical results, as the many examples and

propositions of §2.3–2.4 did for the open and compact-open topologies. These new results may

then change one’s intuitions, which in turn may suggest further results to investigate. The more

one can accumulate these kinds of facts, the more there will be relevant data at hand for a particular

type of inquiry so that one can make a sharper, better justified conceptual decision regarding which

topology to use. Sometimes this will lead one to reject initially promising and intuitive choices,

and sometimes it will reinforce them. One need not postulate that this reflective equilibrium lead

to a stable limit; even if one has accumulated many results in favor of using a particular topology

for some narrow type of inquiry, one should still be open to new facts and connections that will

disturb one’s equilibrium.31

Nevertheless, more work needs to be done characterizing how particular choices of topology may

be appropriate for a given kind of question. Consider again, for example, Hawking’s stability

criterion for physical significance. Per the discussion at the end of §2.3, one might expect that

some topologies fine enough for the stability of some properties—like the open topologies—are

too fine for certain sequences to converge, or vice versa—like the compact-open topologies. So

31One can find this dynamic and non-teleological conception of reflective equilibrium in the literature on moral
theorizing as well (Schroeter 2004).
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the topologies that might be natural candidates for inquiries about physical significance through

stability may be different from those for inquiries about continuity or convergence.32 At least in the

case of stability, one may be able to characterize classes of properties to which particular topologies

are (in)sensitive, or the range of topologies in which interesting properties, like stable causality,

behave as one might expect. The usual classification of spacetime properties into local and global

(Manchak 2011, p. 413) is too coarse for these purposes.33 Part of the difficulty in answering this

question for stability—indeed, for any inquiry—stems from the small variety of topologies used

in the literature.34 Theorems about the stability and genericity of global properties generally use

the open topologies (e.g., see Hawking and Ellis (1973, p. 198), Lerner (1973), and Beem et al.

(1996, ch. 7)). Theorems about the stability of Cauchy developments use variants on the coarser

compact-open topologies (see Hawking (1971, p. 398–9) and Hawking and Ellis (1973, p. 252–

254)). Theorems concerning the convergence of relativistic spacetimes to Newtonian spacetimes

(e.g., Malament (1986b)) have (implicitly) used a point-open topology, which is even coarser.35

It turns out that there is a simple modification to the C0 open topology that makes the one-

parameter families defined by eq. 2.5 everywhere continuous while, unlike the compact-open

topology, still preventing the sequence defined by eq. 2.7 from converging. Take the basis ele-

ments of the C0 open topology (eq. 2.2), but restricted only to bounded pairs (g, h), ones for which

supM d(g, λg; h, 0) < ∞ for any positive λ. This prohibits choosing any h that grows too rapidly,

eliminating the open neighborhoods of each Lorentzian g that forced eq. 2.5 to be everywhere

32I do not preclude there being different contexts in which the same kind of question ultimately demands a different
topology. There may very well be different inquiries into physical significance, for example, that are best served by
different choices.

33This classification takes a property P of a spacetime (M, g) to be local if and only if all spacetimes locally isometric
to (M, g) also have P, and global otherwise. Thus both the topology of M and the existence of a closed timelike curve
are global properties, whereas only the latter has any hope of having an analog to proposition 2.4.3.

34One pocket of innovation in this regard has been the community working on causal set theory, one proposal for
a theory of quantum gravity. (For an introduction, see Henson (2009, 2012).) They have proposed topologies on
L(M) that treat the conformal and causal structure of spacetime separately, although some (Bombelli and Meyer 1989)
suffer problems similar to those of the open topologies, and others (Noldus 2002) are restricted to globally hyperbolic
spacetimes, hence are inappropriate for studying, e.g., the stability of causality conditions. A fuller discussion of these,
however, lies outside the scope of this paper.

35The point-open topologies are defined similarly to the compact-open topologies (eq. 2.6), but require that the
suprema be taken over only finitely many points in each basis element instead of over compact sets.
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discontinuous. One can show, moreover, that this topology lies between the open and compact-

open topologies in coarseness. However the sequence defined by eq. 2.3 still does not converge to

Minkowski spacetime according to this topology, so it still would not rule in the intuitively “right”

way according to Geroch.

But if further refinements are found that produce a topology satisfying Geroch’s desiderata, might

that topology end up being satisfactory for all demands? If I allow for the possibility that the

methods available for picking an appropriate topology may eventually single out a unique choice,

or perhaps very few, to what extent is methodological contextualism really distinguished from a

slightly liberalized canonicalism? The answer is methodological. The two positions are not distinct

because of differing ends—whether to use one topology or many—but because of their differing

means: what grounds we might have to prefer one topology over another, and how those grounds

need to be articulated. A canonicalist holds that because there are definitive reasons always to

choose a single topology (or perhaps very few), there is no further reason to say why that choice

is appropriate for a given type of inquiry. By contrast, the contextualist takes the relevant reasons

to be provided by the type of problem at hand, not in advance, and that they should therefore be

articulated and reasonably defended. It bears emphasizing that the latter does not deny that there

can be principled reasons to pick out a certain topology, only that those reasons can ever be given

in enough generality to preclude attention to the details of the type of situation at hand. We indeed

be may be lucky for the sake of our economy of thought if a few topologies are always appropriate,

but we should not obstruct the development of new ones if they fit particular purposes better.
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2.6 Proofs of Propositions

2.6.1 Continuity and the open topologies

Proposition 2.6.1 (2.3.2). Suppose that L(M) is given the Ck open topology, with M non-compact.

If f : R → L(M) is continuous, then for every x0, x1 ∈ R, there is some compact C ⊂ M such that

f (x0)|M−C = f (x1)|M−C.36

Proof. The case where f is a constant function is immediate, so suppose otherwise and pick arbi-

trary distinct x0, x1 ∈ R, assuming without loss of generality that x0 < x1. I claim that, given any

r ∈ [x0, x1], there is an open (relative to [x0, x1]) interval Ir ⊆ [x0, x1], containing r, such that for

any q ∈ Ir, there is some compact C(r, q) ⊂ M for which f (r)|M−C(r,q) = f (q)|M−C(r,q). For suppose

otherwise, and consider any sequence of intervals I1
r ⊃ I2

r ⊃ . . . such that In
r ⊆ [x0, x1] for each n

and
∩∞

n=1 In
r = {r}. One can then construct by induction a sequence of metrics that converges to

f (r). For the base step, let I s1
r = I1

r and note that there is some q1 ∈ I s1
r distinct from r such that

f (r)|M−C , f (q1)|M−C for any compact C ⊂ M. (Such a q1 , r exists because f is continuous.)

For the inductive step, suppose I sn
r is given so that there is some qn ∈ I sn

r distinct from r such

that f (r)|M−C , f (qn)|M−C for any compact C ⊂ M. Then pick some I sn+1
r such that sn+1 > sn and

qn < I sn+1
r , noting that there is some qn+1 ∈ I sn+1

r distinct from r such that f (r)|M−C , f (qn+1)|M−C

for any compact C ⊂ M. The induction is complete, so by construction the sequence qn → r as

n→ ∞, and for each n, f (r)|M−C , f (qn)|M−C for any compact C ⊂ M. But because f is continuous,

it follows that f (qn) → f (r) as n → ∞ (Munkres 2000, p. 130, theorem 21.3), and by proposi-

tion 2.3.1, this implies in turn that there is a compact C ⊂ M for which f (r)|M−C = f (qn)|M−C for

sufficiently large n, which is a contradiction.

Next, note that the {Ir : r ∈ [x0, x1]} form an open cover of [x0, x1] (relative to [x0, x1]). The

interval is compact, so by definition there is some finite subcover {Iri : i = 1, . . . ,m}, each of

36This proposition may be generalized to families of Lorentz metrics parameterized by any path-connected space.
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whose elements has, for all q ∈ Iri , an associated compact C(ri, q) ⊂ M for which f (ri)|M−C(ri,q) =

f (q)|M−C(ri,q). One may assume, without loss of generality, that r1 < . . . < rm and that, because the

interval is one-dimensional, no point of [x0, x1] is included in more than two of the Iri . Thus pick

any qi ∈ Iri ∩ Iri+1 for i = 1, . . . ,m − 1 and put q0 = x0 and qm = x1. Let C =
∪

i=1,...,m C(ri, qi−1) ∪

C(ri, qi) and observe that

f (x0)|M−C = f (q0)|M−C = f (r1)|M−C = f (q1)|M−C = · · ·

= f (qm−1)|M−C = f (rm)|M−C = f (qm)|M−C = f (x1)|M−C.

Since C is compact and x0, x1 were arbitrary, the proof is complete. �

2.6.2 Equivalence of continuity in the geometric sense and compact-open

continuity

To prove proposition 2.4.1, it will be helpful to use the bundles of Lorentz tensors over M and

degenerate metrics over M × R, denoted L̂(M) and Γ̂(M,R), respectively. The desired equivalence

is essentially a corollary of the following (adapted from Munkres (2000, p. 287, Theorem 46.11)).

Lemma 2.6.2. Let X and Y be topological spaces, and give the set of continuous functions from X

to Y, denoted C(X,Y), the (C0) compact-open topology. If f : X × Z → Y is continuous, then so

is the induced function F : Z → C(X,Y) defined by the equation (F(z))(x) = f (x, z). The converse

holds if X is locally compact37 and Hausdorff.

Proposition 2.6.3 (2.4.1). A family of Lorentz metrics { t
g}t∈R on M is continuous in the geometric

sense iff it is continuous in the C0 compact-open topology.38

Proof. Let ψ(t)
p : M → M × R be the embeddings that define the 5-dimensional metric Γab, which

37A topological space is locally compact when each point has a compact neighborhood.
38Using jet bundles (Golubitsky and Guillemin 1973, ch. 2.2–2.3), this proposition may be generalized to any Ck

compact-open topology and families of Lorentz metrics parameterized by any smooth manifold.
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corresponds to a cross-section Γ̃ of a bundle Γ̂(M,R) of 5-dimensional metrics. The bundle ho-

momorphism ϕ : Γ̂(M,R) → L̂(M) defined by ϕ(Γ̃′|(p,t)) = (ψ(t)
p )∗(Γ′ab), for any local section Γ̃′ at

(p, t) ∈ M × R, is smooth because by definition the ψ(t)
p are jointly smooth in p and t. Thus, if the

family
t
gab is continuous in the geometric sense, f = ϕ ◦ Γ̃ : M ×R→ L̂(M) is continuous. Lemma

2.6.2 then entails that the map F : R → C(M, L̂(M)) defined by F : t 7→
t
ĝ, where

t
ĝ is the cross-

section of L̂(M) corresponding to
t
gab, is continuous when its range is given the C0 compact-open

topology.

Conversely, suppose that the family
t
gab is continuous in the C0 compact-open topology, i.e., that

F : R → C(M, L̂(M)) defined above is continuous. Since M is locally compact and Hausdorff,

lemma 2.6.2 entails that f : M × R → L̂(M) is continuous. Thus (
t
gab)|p is jointly continuous in t

and p. Note that Γab is continuous when, for any smooth field αab on M × R, αabΓ
ab is continuous.

Now, for any (p, t) ∈ M × R, (αabΓ
ab)|ψ(t)(p) = (ψ(t)

p )∗(αab)
t
gab; by assumption (ψ(t)

p )∗(αab) is smooth;

and
t
gab is continuous because its inverse is. Thus Γab is continuous, so Γab must be so as well by

construction. �

2.6.3 Stable causality and the compact-open topologies

The proof of proposition 2.4.3 uses proposition 2.4.5, but because the latter is a straightforward

computation, the order of presentation follows that of the main text. First, a lemma is required

allowing one to “interpolate” between any spacetime and a chronology-violating region of Gödel

spacetime.39

Lemma 2.6.4. Let (M, g) and (R4, g′) be two spacetimes. For any open S ⊂ M and any open

R ⊂ R4 with compact closure, there is a spacetime (M, g′) such that g′|M−S = g|M−S and g′|R is

isometric to g′|U for some U ⊂ S .40

39For more on the properties of Gödel spacetime, see Malament (2012, ch. 3.1).
40Following Manchak (2012), one can use this lemma to answer affirmatively a question posed by Stein (1970,

p. 594) about whether it is always possible to continuously deform a spacetime into one containing a closed timelike
curve.
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Proof. Pick a chart (V, φ) of M such that V ⊆ S and φ[V] is an open ball of radius 4, i.e., φ[V] =

BR4(0⃗, 4) = {x⃗ ∈ R4 : ∥x⃗∥ < 4}, where ∥ · ∥ is the Euclidean norm on the coordinates x⃗ ∈ R4.

For brevity, define Ai = φ−1[BR4(0⃗, i)] for i = 1, 2, 3, and let r be a scalar field on V defined by

r|p = ∥φ(p)∥. Finally, let ψ : R4 → V be a diffeomorphism such that ψ[R] ⊆ A1 and define

U = ψ[R].

Because all Lorentz metrics on R4 are homotopic (Finkelstein and Misner 1959), ψ∗(g′) is homo-

topic to g|V , considering V as a submanifold. Thus there is some continuous function f : [0, 1] →

L(V) such that f (0) = ψ∗(g′) and f (1) = g|V . One can then define the continuous Lorentz metric

γ|p =



g|p, p ∈ M − A3,

f (r|p − 2)|p, p ∈ A3 − A2,

[ψ∗(g′)]|p, p ∈ A2.

In order to produce the desired smooth metric g′, one can convolve γ with an appropriate positive,

symmetric mollifier on the region V − A1. In more detail, define w : R → R to be the smooth

function

w(x) =


ce−1/(1−x2), |x| < 1

0, |x| ≥ 1,

where c is a positive constant chosen so that
∫
R

w(x)dx = 1. Further, define W : Rn × [0,∞) → R

as the jointly smooth function W(x⃗, ϵ) = ϵ−nw(∥x⃗∥/ϵ), where W(x⃗, 0) = limδ→0 W(x⃗, δ) is the Dirac

delta, the convergence being understood in the distributional sense. Now, one can express γ in

terms of its matrix components γαβ(x⃗) determined by the chart (V, φ), allowing one to define on

φ[V − A1] for some fixed ϵ the new components

γ̃αβ(x⃗) =
∫
φ[int(V−A1)]

W(x⃗ − y⃗, eϵc−1w(∥x⃗∥ − 5/2))γαβ(⃗y)dy⃗, (2.8)
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which are smooth on φ[V − A1].41 Moreover, for sufficiently small ϵ, the γ̃αβ approximate the γαβ

arbitrarily well on V − A1.42 Therefore such γ̃αβ are the components of a smooth Lorentz metric

γ̃ on V − A1. Note that, in the integrand of eq. 2.8 the function W becomes the Dirac delta for

∥x⃗∥ ≥ 7/2 and ∥x⃗∥ ≤ 3/2, so on the points of V corresponding to these coordinate regions, γ̃ is

equal to g and ψ∗(g′), respectively. We can define at last

g′|p =



g|p, p ∈ M − V,

γ̃|p, p ∈ V − A1,

[ψ∗(g′)]|p, p ∈ A1.

By construction, g′|M−S = g|M−S since M − S ⊆ M − V and g′|U is isometric to g′|R since g′|A1
=

[ψ∗(g′)]|A1 and U = ψ[R] ⊆ A1. �

Proposition 2.6.5 (2.4.3). Chronology violating spacetimes are generic in L(M) for every compact-

open topology.

Proof. Every spacetime with a compact M contains timelike curves (Hawking and Ellis 1973,

p. 189, proposition 6.4.2), so suppose M is non-compact. Select any neighborhood N(g) of an

arbitrary g, which must contain a set of the form Bk(g, ϵ; h,C). Letting S = M − C, by lemma

2.6.4 there is some g′ ∈ N(g) such that g′|U is isometric to a chronology violating region of

Gödel spacetime for some U ⊂ M − C. By proposition 2.6.6, there is an open neighborhood

of g′ consisting only of chronology violating metrics. Let Ak(g,N(g), Bk) be the union of all

such open neighborhoods determined by the choices of g, N(g), and Bk(g, ϵ; h,C), and consider

A =
∪

g
∪

N(g)
∪

Bk
Ak(g,N(g), Bk). By construction, every neighborhood N(g) of each g contains

an element of A, i.e., A is dense in L(M); A is open, being the union of open sets; and A contains

only chronology violating spacetimes. So by definition the chronology violating spacetimes are

41This follows essentially from theorem 2.6 of Oden and Reddy (1976, p. 48–49).
42Theorem 2.7 of (Oden and Reddy 1976, p. 49) shows that, for the case where the integrand contains W(x⃗ − y⃗, δ)

with a fixed δ, the analog of eq. 2.8 would converge to γαβ as δ→ 0 in Lp(φ[int(V−A1)])-norm. As before (cf. footnote
41), allowing δ to smoothly vary introduces no new complications.
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generic in L(M). �

Proposition 2.6.6 (2.4.5). If the spacetime (M, g) contains a closed timelike curve, then g is stably

chronology violating in every compact-open topology.

Proof. Fix any Riemannian metric hab and note that one can write gab = hamµ
mhbnµ

m−hab for some

smooth vector field µa (Hawking and Ellis 1973, p. 39). One can thus express that γ : I → M is a

closed g-timelike curve with unit tangent vector ξa as the condition that |habξ
aµb||γ[I] > (habξ

aξb)1/2
|γ[I].

Pick

ϵ = inf
γ[I]

min

1,
(
|habξ

aµb|
(habξaξb)1/2 − 1

)2
 ,

and consider any g′ ∈ B0(g, ϵ; h,C), where γ[I] ⊆ C. Writing g′ab = hamµ
′mhbnµ

′m − hab, γ is

g′-timelike just in case |habξ
aµ′b||γ[I] > (habξ

aξb)1/2
|γ[I]. Now, one can calculate that

hamhbn(gab − g′ab)(gmn − g′mn) = hamhbn(µaµb − µ′aµ′b)(µmµn − µ′mµ′n) = [hab(µa − µ′a)(µb − µ′b)]2,

so putting ηa = µ′a − µa yields that supC habη
aηb < ϵ. (The remaining calculations involve fields

defined on γ[I], so the subscript indicating as much will be omitted.) It follows from this inequality

and the Cauchy-Schwartz inequality that

|habξ
aηb| ≤ (habξ

aξb)1/2(habη
aηb)1/2 < (ϵhabξ

aξb)1/2 ≤ (habξ
aξb)1/2, (2.9)

where the last inequality uses the fact that, by definition, ϵ ≤ 1. Then the reverse triangle inequality

entails that

|habξ
aµ′b| = |habξ

a(µb + ηb)| ≥
∣∣∣|habξ

aµb| − |habξ
aηb|

∣∣∣ = |habξ
aµb| − |habξ

aηb|,

where the last equality follows since |habξ
aµb| > (habξ

aξb)1/2 > |habξ
aηb| by the hypothesis and
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equation 2.9. Applying this equation again along with the definition of ϵ yields that

|habξ
aµ′b| > |habξ

aµb| − (ϵhabξ
aξb)1/2 ≥ |habξ

aµb| − (habξ
aξb)1/2

∣∣∣∣∣∣ |habξ
aµb|

(habξaξb)1/2 − 1

∣∣∣∣∣∣ = (habξ
aξb)1/2.

Thus γ is g′-timelike, but g′ was arbitrary so each element of B0(g, ϵ; h,C) contains a closed

timelike curve. Since B0(g, ϵ; h,C) is open in every Ck compact-open topology, g must be sta-

bly chronology violating in each. �

Corollary 2.6.7 (2.4.4). Suppose TM is a topology on L(M), for any M, that makes continuous all

the one-parameter families continuous in the geometric sense. Then, for any g ∈ L(M) there is no

compact C ⊆ M such that g| int(C) is stably causal in the topology Tint(C) on L(int(C)).

Proof. Consider an arbitrary g ∈ L(M) and a compact C ⊆ M. By corollary 2.4.4, g| int(C) is not

stably causal in the C0 compact-open topology on L(int(C)). But if TM makes continuous all the

one-parameter families continuous in the geometric sense, it follows from proposition 2.4.1 that

it is no finer that the C0 compact-open topology, hence g| int(C) is not stably causal in the topology

Tint(C) on L(int(C)) either. �
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Chapter 3

On the Reduction of General Relativity to

Newtonian Gravitation

3.1 Introduction

In physics the concept of reduction is often used to describe how features of one theory can be

approximated by those of another under specific circumstances. In such circumstances physicists

say the former theory reduces to the latter, and often the reduction will induce a simplification of

the features in question. (By contrast, the standard terminology in philosophy is to say that the less

encompassing, approximating theory reduces the more encompassing theory being approximated.)

Accounts of reductive relationships aspire to generality, as broader accounts provide a more sys-

tematic understanding of the relationships between theories and which features are relevant under

which circumstances.

Thus reduction is naturally taken to be physically explanatory. Reduction can be more explanatory

in other ways as well: sometimes the simpler theory is an older, predecessor of the theory being

reduced. These latter “theories emeriti” are retained for their simplicity and other pragmatic virtues
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despite being acknowledged as incorrect.1 Under the right circumstances, one incurs sufficiently

little error in using the older theory. Reduction explains why these older, admittedly false (!)

theories can still be enormously successful and, indeed, explanatory themselves.

Despite the philosophical and scientific importance of reduction, it is astounding that so few reduc-

tive relationship in physics are understood with any detail. It is often stated that relativity theory

reduces to Newtonian theory, but supposed demonstrations of this fact are almost always extremely

specific, not coming close to the level of generality to which an account of reduction aspires, which

is to describe the relationship between the collections of all possibilities each theories allows. In-

deed, much discussion of the Newtonian limit of relativity theory (e.g., Batterman (1995)) has

focused on the “low velocity limit.” For example, the relativistic formula for the three-momentum

p of a particle of mass m becomes the classical formula in the limit as the magnitude of its velocity

v (as measured in some fixed frame) becomes small compared with the speed of light c:

p =
mv√

1 − (v/c)2
= mv

(
1 − 1

2
(v/c)2 − 1

8
(v/c)4 − 1

16
(v/c)6 + · · ·

)
≈

v/c≪1
mv. (3.1)

Similar formulas may be produced for other point quantities. Another class of narrow demonstra-

tions concerns gravitation sufficiently far from an isolated source. In those cases, the trajectories

of massive test particles far from the source will approximately follow trajectories according to a

Newtonian gravitational potential (relative to a fixed reference frame).2

But it is not often explicitly recognized that even the collection of all point quantity formulas,

such as eq. 3.1, along with trajectories of test particles far from an isolated massive body, together

constitute only a small fragment of relativity theory. In particular, they say nothing about the na-

ture of gravitation in other circumstances, or exactly how the connection between matter, energy,

and spacetime geometry differs between relativistic and classical spacetimes.3 Insofar as one is

1The concept and terminology are adapted from Belot (2005).
2These latter cases usually involve invoking mathematically questionable assumptions, and treat Newtonian grav-

itation as a theory with a preferred set of global inertial coordinates. Wald (1984, Ch. 4.4, p. 74) is one of the few
authors who makes these issues the least bit explicit.

3Cf. the comments of Roger Jones paraphrased by Batterman (1995, p. 198–199n1).
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interested in the general account of the reduction of one theory to another, these particular limit

relations and series expansions cannot be understood to be a reduction of relativity theory to clas-

sical physics in any strict sense. Even the operationally minded would be interested in an account

of how arbitrary relativistic observables can be approximated by their Newtonian counterparts.

One way to do so—to organize in a relatively succinctly the relationships between arbitrary rela-

tivistic observables and their classical counterparts—is to provide a sense in which the relativistic

spacetimes themselves, and fields defined on them, reduce to classical spacetimes (and their coun-

terpart fields), as all spacetime observables are defined in these terms. This way of understanding

the Newtonian limit of relativity theory has been recognized virtually since the former’s begin-

ning (Minkowski 1952), where it was observed that as the light cones of spacetime flatten out in

Minkowski spacetime, hyperboloids of constant coordinate time become hyperplanes in the limit.

This geometric account has since been developed further by Ehlers (1981, 1986, 1988, 1991, 1997,

1998) and others (e.g., Künzle (1976); Malament (1986a,b)) for general, curved spacetimes.

But the nature and interpretation of this limit has sat uneasily with many. The image of the widen-

ing light cones seems to suggest an interpretation in which the speed of light c→ ∞. In one of the

first discussions of this limiting type of reduction relation in the philosophical literature, Nickles

(1973) considered this interpretation and pointed out some of its conceptual problems: what is

the significance of letting a constant vary, and how is such variation to be interpreted physically?

Rohrlich (1989) suggested that “c → ∞” can only be interpreted counterfactually, which is to

say that it corresponds literally to a sequence of relativistic worlds whose speeds of light grow

without bound. Thus interpreted, the limit only serves to connect the mathematical structure of

relativistic spacetime with that of classical spacetime. It cannot explain the success of Newtonian

physics, since such an explanation “specifies what quantity is to be neglected relative to what other

quantity” (Rohrlich 1989, p. 1165) in determining the relative accuracy of classical formulas as

approximations to the outcomes of observations.

The purpose of this paper is to develop and provide an interpretation of the geometrical limiting
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account that could in fact meet the explanatory demand required of it. It is thus both perfectly gen-

eral and explanatory.4 To explicate how it works, I first present a unified framework for classical

and relativistic spacetimes in §3.2. The models of each are instantiations of a more general “frame

theory” that makes explicit the conceptual and technical continuity between the two. To define the

limit of a sequence of spacetimes, however, one needs more structure than just the collection of all

spacetime models. As I point out in §3.3, one way to obtain this structure is by putting a topol-

ogy on this collection. The key interpretative move, as explicated in §3.4, exploits the freedom of

each spacetime to represent many different physical situations through the representation of dif-

ferent physical magnitudes. To illustrate this move I describe three classes of examples, involving

Minkowski, Schwarzschild, and cosmological (FLRW) spacetimes, that I also show have Newto-

nian limits in the sense defined here, with respect to a certain topology. (It still remains an open

question—though I conjecture it to be true—whether every Newtonian spacetime is an appropriate

limit of relativistic spacetimes.)

The choice of topology, though, can make a significant difference to the evaluation of a potential

reduction. In particular, whether the Newtonian limit of a particular sequence of spacetimes ex-

ists at all can depend on the choice of topology, which is not determined automatically from the

spacetime theories themselves. I indicate in §3.5 one way to understand this dependence, which is

that a choice of topology corresponds with a choice of the class of observables that one demands

must converge. Requiring that more observables converge in the limit leads in general to more

stringent convergence criteria, thus a finer topology. In light of this, I argue for a slightly more

stringent criterion than has been used by other authors so that observables depending on compact

sets of spacetime, such as the proper times along (bounded segments of) timelike curves, also con-

verge. Finally, in §3.6, I summarize what topical and methodological conclusions I think can be

drawn about these results for gravitation and philosophy of science, and indicate how they might

be applied more generally to other reduction relations of a similar limiting type.5

4In fact, one can use the methods developed here to describe counterfactual limits—where the speed of light does
grow—and even hybrid factual/counterfactual limits of a sort, but that shall not be my focus here.

5One might wonder whether the limit falls under the Nagelian theory of reduction (Nagel 1961), according to
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3.2 Ehlers’s Frame Theory

The conceptual unification of relativistic and classical spacetimes that the frame theory affords

requires some preliminaries. In particular, one must recast the empirical content of Newtonian

gravitation, a theory of flat spacetime with a gravitational potential, in the language of Newton-

Cartan theory, which describes gravitation through a curved connection.6 Both formulations of

Newtonian gravitation share the following structure: a quintuple (M, tab, sab,∇,T ab), where M is a

four-dimensional smooth manifold of (possible) coincidence events;7 tab and sab, which are called

the temporal and spatial metrics, respectively, are smooth symmetric tensor fields on M with re-

spective signatures (+, 0, 0, 0) and (0,+,+,+); ∇ is a torsion-free derivative operator compatible

with tab and sab, i.e., such that ∇atbc = 0 and ∇asbc = 0; and T ab, called the stress-energy tensor, is

a smooth symmetric field on M representing various matter fields. The latter contracted with the

temporal metric defines the mass density field ρ = T abtab. Moreover, one requires tab and sab to be

orthogonal in the sense that tabsbc = 0.

The temporal and spatial metrics determine, respectively, the (proper) times elapsed along curves

representing the possible paths of massive particles and the (proper) lengths of “spatial” paths.

More precisely, call some vector ξa ∈ TpM timelike when tabξ
aξb > 0 and spacelike when there

exists a covector ξa at p satisfying sabξaξb > 0 and sabξa = ξ
b. Most treatments of spacetime ge-

ometry do not go into detail about the relations between dimensional quantities and the numerical

values produced in calculations, but here it is important to be explicit about them. Given a fixed

set of units, there is a freedom in choosing which numerical values for length and times repre-

which a reduction is a derivation of the laws of one theory from another. It is not my intent to engage at length with
this theory, but its applicability here turns on whether one takes the existence of a mathematical limit of a theory’s
models to be a (component of a) derivation. Although Nagel (1970) later considered allowing a broader sense of
derivation than just logical deduction, and others (e.g., Rohrlich (1988)) have suggested that limits provide a way of
logically deducing one mathematical framework from another, a detailed account of limits as derivations is still not
yet forthcoming.

6For more details, see Malament (2012, Ch. 4). Ehlers (1998) argues that it should be called the Cartan-Friedrichs
theory, since Cartan (1923, 1924) and Friedrichs (1927) bear most responsibility for formulating it, but I will follow
the standard terminology here.

7Throughout I shall also assume that all manifolds are connected and Hausdorff.
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sent one such unit that is correlated with the parameterization of timelike and spacelike curves.

The standard convention is to parameterize them so that their tangent vectors are normalized with

magnitude 1, but in what follows it will be helpful to relax this. Tangent vectors of curves remain

normalized, but their magnitude may not be 1.

Specifically, parameterize every timelike curve—i.e., every curve whose tangent vector ξa is always

timelike—so that α = (tabξ
aξb)1/2 at each point of the curve is constant, hence represents a unit of

time. Quantities with the dimension of time are then expressed in multiples of this magnitude. For

example, suppose the chosen temporal unit is seconds. If α = 3, then a timelike curve of length 6

would represent 2 second. Thus, given any timelike vector ζa at a point and a parameterization of

timelike curves determining α, the vector’s temporal magnitude is ∥ζa∥ = α−1(tabζ
aζb)1/2. Thus if

ζa is the tangent vector to a timelike curve, it always has temporal magnitude 1.

Similarly, one parameterizes every spacelike curve—i.e., every curve whose tangent vector ξa is

always spacelike—so that the quantity β = (sabξaξb)1/2 at each point of the curve is constant,

hence represents a unit of distance. (Proposition 4.1.1 of Malament (2012, p. 255) guarantees

that the choice of covector ξa makes no difference.) Thus, given any spacelike vector ζa at a

point and a parameterization of spacelike curves determining β, the vector’s spatial magnitude is

∥ζa∥ = β−1(sabζaζb)1/2. Thus if ζa is the tangent vector to a spacelike curve, it always has spatial

magnitude 1.

These dimensional considerations extend to the computation of proper lengths of timelike and

spacelike curves. The temporal length of a timelike curve γ : I → M with tangent vector ξa is

given by
∫

I
∥ξa∥ds = α−1

∫
I
(tabξ

aξb)1/2ds. Similarly, the spatial length of a spacelike curve γ is∫
I
∥ξa∥ds = β−1

∫
I
(sabξaξb)1/2ds. Thus while the integrals in the formulas for both temporal and

spatial length are invariant under reparameterization of γ, a change in α or β does change their

numerical value. Although this extra flexibility in representing dimensional quantities may seem

like a gratuitous complication, it will be essential in describing the interpretation of the Newtonian

limit in §3.4.
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So far the definitions and structures described apply to models of both standard Newtonian grav-

itation and Newton-Cartan theory. Models of the former require in addition that ∇ be flat and

postulate a further smooth scalar field, the gravitational potential ϕ, that satisfies Poisson’s equa-

tion, sab∇a∇bϕ = 4πρ.8 The potential determines the gravitational force incurred by a test particle

with mass m to be msab∇bϕ. By contrast, instead of having a gravitational potential, Newton-

Cartan theory allows ∇ to be curved, and the trajectories of massive particles in a Newton-Cartan

spacetime follow geodesics according to the curvature determined by

Rab = 4πρtab, (3.2)

the “geometrized” Poisson’s equation.9 There is nevertheless a systematic relationship between the

former and a subset of models of the latter, captured in part by the following proposition adapted

from Malament (2012, Prop. 4.2.1).

Proposition 3.2.1. Let (M, tab, sab,∇,T ab) be a classical spacetime with ∇ flat, and let ϕ be a

smooth scalar field satisfying Poisson’s equation, sab∇a∇bϕ = 4πρ, where ρ = T abtab. Then there

is a unique derivative operator ∇′ such that:

1. (M, tab, sab,∇′,T ab) is a classical (Newton-Cartan) spacetime;

2. for all timelike curves γ in M, ξn∇′nξa = 0 iff ξn∇nξ
a = sab∇bϕ, where ξa is the tangent vector

field to γ; and

3. the Ricci curvature R′ab associated with ∇′ satisfies eq. 3.2, the “geometrized” Poisson’s

equation, i.e., R′ab = 4πρtab.10

The biconditional second on the list states that a timelike curve is a geodesic according to ∇′—i.e.,

its acceleration vanishes—just in case its acceleration according to ∇ is given by the acceleration
8I have chosen units for mass so that numerically the gravitational constant G = 1.
9See the following footnote for the justification of this name.

10One can show that R′ab = (smn∇m∇nϕ)tab, so the “geometrized” Poisson’s equation holds iff Poisson’s equation
holds.
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due to gravity. Thus every classical spacetime with a gravitational potential can be “geometrized”

to form an empirically equivalent Newton-Cartan spacetime. Under certain conditions the converse

holds as well,11 although this “de-geometrization” is unique only up to a gauge transformation of

the potential ϕ (as one might expect). Thus there is a robust sense in which a subclass of models

of Newton-Cartan theory is equivalent to the models of Newtonian gravitation (Weatherall 2012),

so in what follows it will suffice to consider the reduction of models of general relativity to models

of Newton-Cartan theory.

Models of the frame theory are very similar to models of classical spacetimes. They consist too in

quintuples (M, tab, sab,∇,T ab), where M is a four-dimensional smooth manifold, tab and sab are the

symmetric temporal and spatial metrics, ∇ is a torsion-free derivative operator compatible with the

metrics, and T ab is the symmetric stress-energy tensor.12 However, one does not impose a signature

on the metrics or require that they be orthogonal. Instead, one only requires that tabsbc = −κδc
a for

some real constant κ, called the model’s causality constant. The suggestive notation makes it clear

that a model of Newton-Cartan theory counts as a model of the frame theory with causality constant

κ = 0.13

Models of general relativity are models of the frame theory, too. To see why, recall that a relativistic

spacetime is a pair (M, gab), where M is (again) a four-dimensional smooth manifold and gab is a

smooth Lorentzian metric on M, i.e., a symmetric invertible tensor field with signature (+,−,−,−).

The temporal metric tab for a relativistic spacetime is just gab, while the spatial metric sab is given

by −κgab, and these define temporal and spatial lengths in the same way. The causality constant is

typically fixed as κ = c−2, where c is the speed of light, and ∇ is the Levi-Civita derivative operator

11One can always de-geometrize a model of Newton-Cartan theory for which R[a c]
(b d) = 0, but the resulting gravita-

tional force may not be expressible in terms of a gravitational potential. For the latter to be possible, there must be no
“global rotation” in a sense that can be made precise. (See Malament (2012, Ch. 4.5).)

12Ehlers also included a cosmological constant Λ, which I’ve assumed to vanish for simplicity since including it
does not introduce any new conceptual subtleties.

13This formulation is slightly more general than that of Ehlers, who introduces some restrictions to make the models
of the general frame theory more easily interpretable in physical terms at the expense of slightly further technical
complication.
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Specialization
Frame theory Newton-Cartan theory General Relativity

manifold M M M
temp. metric symmetric tab tab has sig. (+, 0, 0, 0) tab = gab has sig. (+,−,−,−)
spatial metric symmetric sab sab has sig. (0,+,+,+) sab = −κgab

derivative torsion-free ∇ torsion-free ∇ torsion-free ∇
compatibility ∇atbc = 0 ∇atbc = 0 ∇agbc = 0

∇asbc = 0 ∇asbc = 0
causality tabsbc = −κδc

a κ = 0 κ = c−2 > 0
stress-energy T ab T ab T ab = 1

8πκ2 (samsbn − 1
2 sabsmn)Rmn

field equation Rab = 8π(Tab − 1
2Ttab) Rab = 8π(Tab − 1

2Ttab)

Table 3.1: The components and conditions thereon of models of the frame theory, and the condi-
tions under which these models specialize to those of Newton-Cartan theory and general relativity.

compatible with gab. If one then defines the stress-energy tensor as

T ab =
1

8π
(gamgbn − 1

2
gabgmn)Rmn =

1
8πκ2 (samsbn − 1

2
sabsmn)Rmn, (3.3)

where Rmn is the Ricci curvature associated with ∇, then Einstein’s equation, Rab = 8π(Tab− 1
2Tgab),

is satisfied, where Tab = T mntamtbn and T = T mntmn. Although Einstein’s equation and eq. 3.2, the

“geometrized” Poisson’s equation, appear to be different, the latter is actually a special case of

Einstein’s equation understood in a suitably generalized sense for any model of the frame theory.

Note that ρ = T , so using the fact that for a model of Newton-Cartan theory T mntamtbn = T mntmntab,14

one can rewrite eq. 3.2 as

Rab = 4πρtab = 8π(T mntmntab −
1
2

T mntmntab)

= 8π(T mntamtbn −
1
2

T mntmntab) = 8π(Tab −
1
2

Ttab).

The last expression is formally identical to Einstein’s equation when κ > 0 and the temporal metric

is the Lorentz metric, i.e., when tab = gab. All these relationships are summarized in table 3.1.

Although the representation in the frame theory of classical and relativistic spacetimes requires

14Locally there is always a covector field ta such that tab = tatb (Malament 2012, p. 250), so at any point, tamtbn =

tatmtbtn = tmntab.
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nothing further, introducing a certain redundancy in the latter will prove enormously useful. As

described so far, the causality constant for all relativistic spacetimes (M, gab) is a single fixed

number. Now we let this number vary, hence consider the triples (M, gab, κ), with κ ∈ (0,∞),

where all of the geometrical structure is otherwise the same. The advantage of this factor is that,

combined with an appropriate choice of α, β, one is able to interpret the a family of relativistic

spacetimes (M,
λ
gab,

λ
κ) with a Newtonian limit as all agreeing on the speed of light.

To see this, it is illuminating to compare the function of κ with constant conformal factors. Multi-

plying the Lorentz metric of a relativistic spacetime with such a factor is commonly interpreted as a

“change of units.” This can be understood in the terminology introduced so far by noting that a pa-

rameterization of timelike and spacelike curves with tangent vectors ξa determine α = (ξaξbtab)1/2

and β = (ξaξbsab)1/2, respectively, so (keeping the parameterization of curves the same) the map

gab 7→ Ω2gab for some Ω > 0 induces the map α 7→ αΩ and β 7→ β/Ω. (Recall that tab = gab and

sab = −κgab, so gab 7→ Ω2gab induces the map sab 7→ Ω−2sab.) If Ω = 1000, then a timelike curve

that previously represented 1s would after the mapping represent .001s or 1ms.

The role of allowing for different values of the causality constant κ is similar to that for constant

conformal factors, but with more flexibility. Application of constant conformal factors transforms

both α and β, but varying the causality constant κ only transforms β. In particular, the map κ 7→ ω2κ,

with ω > 0, induces α 7→ α and β 7→ ωβ. In other words, as the causality constant varies, the

values of spatial magnitudes change but those of temporal magnitudes stay the same. For example,

if ω = 1000, then the spatial length of a spacelike curve that was originally 1m would become

.001m, or 1mm. With both constant conformal factors and varying κ one can thus transform α and

β independently, although it will only be necessary to vary κ in considering the Newtonian limit.
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3.3 The Newtonian Limit

Before developing how limits can be interpreted in this approach, one must first determine what,

mathematically, a limit of a family of spacetimes is supposed to be in the first place. One way

to formalize this is to put a topology on the models of the frame theory, or at least the subclass

of those models that represents relativistic and classical spacetimes. In particular, if O0 and Oλ,

with λ ∈ (0, 1], are models of the frame theory, then limλ→0 Oλ = O0 if and only if for any open

neighborhood N of O0, there is some λ0 such that Oλ ∈ N for all λ < λ0. Because these models

consist in quintuples of the form (M, tab, sab,∇,T ab), it is natural to consider product topologies

on them, i.e., topologies whose open sets consist of the Cartesian products of the open sets of

the topologies on the temporal and spatial metrics, derivative operators, and stress-energy tensors,

and then restrict to the subspace of those objects that satisfy the constraints of the frame theory,

namely the causality and compatibility conditions and Einstein’s equation, and its natural subspace

topology.

Although Ehlers was not completely explicit about the choice of topology for the frame theory,

preferring to describe the Newtonian limit directly as a kind of pointwise convergence, one can

reconstruct in topological terms the particular convergence condition he (and others) used in dis-

cussing the Newtonian limit of spacetimes. To do so requires some preliminaries. First, let hab be

some smooth Riemannian metric on M, and define the “distance” function between the kth partial

derivatives of two symmetric tensors tab, t′ab, relative to hab and at each point of M, as the scalar

field

d(t, t′; h, k) =


[hruhsv(trs − t′rs)(tuv − t′uv)]

1/2, k = 0,

[ha1b1 · · · hakbkhruhsv

⊗ ∇̄a1 · · · ∇̄ak(trs − t′rs)∇̄b1 · · · ∇̄bk(tuv − t′uv)]
1/2,

k > 0,
(3.4)

where ⊗ is the tensor product and ∇̄ is the Levi-Civita derivative operator compatible with hab.

(I will omit the abstract indices of tensors when they appear as arguments so as not to clutter
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the notation needlessly.) A particular choice of hab provides a standard of comparison for the

components of the kth order derivatives of tab and t′ab via d(t, t′; h, k), which is in fact a true distance

function (i.e., a metric) at each point of M.

One defines the distance function similarly for symmetric contravariant tensors, replacing hab with

hab. (One can add requisite copies of hab and its inverse to extend the definition of d to any

tensor fields.) The case of derivative operators requires only a bit more attention. One can relate

any derivative operator ∇ on M to ∇̄ through a symmetric connection field Ca
bc, denoted ∇ =

(∇̄,Ca
bc).

15 Then one can define the kth-order distance between two derivative operators ∇ and ∇′

as d(∇,∇′; h, k) = d(C,C′; h, k), the kth-order distance between their connection fields, using 2k+2

copies of hab and k + 1 copies of hab.

Finally, consider the set S of tensor fields on M that one wishes to topologize—the cases of inter-

est will be the temporal metrics, the spatial metrics, the stress-energy tensors, and the derivative

operators (or rather their connection fields) associated with classical and relativistic spacetimes.

Then sets of the form

Bk(t, ϵ; h, p) = {t′ ∈ S : d(t, t′; h, 0)|p < ϵ, . . . , d(t, t′; h, k)|p < ϵ} (3.5)

constitute a basis for the Ck point-open topology on S , where t ranges over tensor fields in S , ϵ

ranges over all positive constants,16 and p ranges over all points of M. (One can show that any

single choice of hab will do, as ranging over Riemannian metrics adds no new open sets.) One can

view these basis elements as generalizations of the ϵ-balls familiar to metric spaces. And given

finitely many spaces of tensor fields with their respective point-open topologies, the product point-

open topology on the Cartesian product of those spaces is just the topology whose open sets are

Cartesian products of the open sets of the respective topologies.

15∇ = (∇̄,Ca
bc) means that for every smooth tensor field αa1...ar

b1...bs
on M, (∇m − ∇̄m)αa1...ar

b1...bs
= αa1...ar

nb2...bs
Cn

mb1
+ · · · +

αa1...ar
b1...bs−1nCn

mbs
− αna2...ar

b1...bs
Ca1

mn − · · · − αa1...ar−1n
b1...bs

Car
mn.

16One could choose a different ϵ for each derivative order, but the resulting basis generates the same topology.
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This particular description of the point-open topologies with an auxiliary Riemannian metric hab

will make plain their similarities with another class of topologies, the compact-open topologies,

which I consider in §3.5. But on its own one might wonder if introducing hab is really necessary.

The following proposition shows in a sense that it is not and exhibits the connection between the

point-open topologies and the notion of pointwise convergence used in the literature. (One can find

an explicit formulation of this notion in Malament (1986b, p. 192).)

Proposition 3.3.1. A family of tensor fields
λ

ϕa
bc on M, with λ ∈ (0, a) for some a > 0, converges to a

tensor field ϕa
bc as λ→ 0 in the Ck point-open topology iff for all points p ∈ M, limλ→0(

0
ψbc

a

λ

ϕa
bc)|p =

(
0
ψbc

a ϕ
a
bc)|p for all tensors

0
ψbc

a at p and, for all positive i ≤ k, limλ→0(
i
ψbcd1...di

a ∇d1 · · · ∇di

λ

ϕa
bc)|p =

(
i
ψbcd1...di

a ∇d1 · · · ∇diϕ
a
bc)|p for all tensors

i
ψbcd1...di

a at p.17

(Unless otherwise stated, proofs of all propositions may be found in the appendix.) Analogous

results hold for tensor fields of other index structures. The proposition states that a sequence of

tensor fields
λ

ϕ on M converges to a tensor field ϕ in the Ck point-open topology just in case the

all the sequences of real numbers formed by contracting the tensor field and its derivatives up to

order k with any other tensor field ψ at a point converge, for all points in M. In other words, the

point-open topology defines a notion of pointwise convergence.

With that definition in place, we are ready to state Ehlers’s definition of a Newtonian limit of a

family of relativistic spacetimes:

Newtonian Limit (Ehlers) Let (M,
λ
tab,

λ
sab,

λ

∇,
λ

T ab), with λ ∈ (0, a) for some a > 0, be a one-

parameter family of models of general relativity that share the same underlying manifold

M. Then (M, tab, sab,∇,T ab) is said to be a Newtonian limit of the family when it is a model

of Newton-Cartan theory and limλ→0(
λ
tab,

λ
sab,

λ

∇,
λ

T ab) = (tab, sab,∇,T ab) in the C2 point-open

17Topological spaces that are completely determined by their convergent sequences are called sequential. I do not
know if the point-open topologies are sequential; if they are not, then there are other topologies that would also describe
the convergence condition used in the literature. But in any case, the point-open topologies are clearly sufficient to do
so, allowing one to clarify the significance of the relevant convergence condition.
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product topology.18

In practice, to prove that a family of relativistic spacetimes has a Newtonian limit, one usually just

needs show that limλ→0(
λ
tab,

λ
sab,

λ

T ab) = (tab, sab,T ab) since a theorem of Malament (1986b, p. 194)

guarantees that, if the family is at least twice differentiable in λ, convergence of the temporal and

spatial metrics entails convergence of their associated derivative operators,19 and convergence of

the stress-energy then ensures that the “geometrized” Poisson’s equation (3.2) holds in the limit

(Malament 1986b, p. 197).20 The convergence of each of these three fields must be checked, for

the convergence of one does not in general imply the convergence of any others.

Now, since there are infinitely many topologies one can place on the collections of tensor fields on

a fixed manifold and good reason to believe that there is no canonical topology on these collections

(see ch. 2), one may wonder why the C2 point-open topology is an appropriate choice here. The

choice of k = 2 reflects the fact that one needs the Riemann curvature tensor of a spacetime, which

is defined in terms of twice repeated covariant differentiation, to converge in order to guarantee that

the geometrized Poisson’s equation will hold in the limit. But one may still question further why

the point-open topology (of some flavor or other) is appropriate. I return to this important question

in §3.5, but for now take the Newtonian limit condition as given. Let us consider the mathematics

of the Newtonian limit through the simple example of a family
λ
ηab of Minkowskian spacetimes

with causality constant
λ
κ = λ that has Galilean spacetime as its Newtonian limit. Using standard

18One actually only requires C1 point-open convergence of derivative operators and C0 point-open convergence
of stress-energy, since the definition of the associated connection fields for the former already involves first-order
derivatives and the definition of the stress-energy (eq. 3.3) involves the Ricci tensor, hence second-order derivatives.

19The same theorem ensures that R[a c]
(b d) = 0 also holds for the Newtonian limit, which is required for the limit

Newton-Cartan model to be equivalent to a model of Newtonian gravitation. (See fn. 11.)
20Technically, Malament’s results posit that the classical limit spacetime is temporally orientable, but this assump-

tion can be relaxed without consequence.
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global coordinate fields t, x, y, z, the temporal and spatial metrics of this family may be written as

λ
tab =

λ
ηab = (dat)(dbt) − λ(dax)(dbx) − λ(day)(dby) − λ(daz)(dbz), (3.6)

λ
sab = −λληab

= −λ
(
∂

∂t

)a (
∂

∂t

)b

+

(
∂

∂x

)a (
∂

∂x

)b

+

(
∂

∂y

)a (
∂

∂y

)b

+

(
∂

∂z

)a (
∂

∂z

)b

, (3.7)

while the temporal and spatial metrics of Galilean spacetime may be written as

tab = (dat)(dbt), (3.8)

sab =

(
∂

∂x

)a (
∂

∂x

)b

+

(
∂

∂y

)a (
∂

∂y

)b

+

(
∂

∂z

)a (
∂

∂z

)b

. (3.9)

The stress-energy
λ

T ab vanishes for all λ. A straightforward calculation shows that for every ϵ > 0,

Riemannian h, p ∈ M and k ∈ {0, 1, 2}, there is a sufficiently small λ > 0 such that d(t,
λ
t; h, k) < ϵ,

i.e., limλ→0
λ
tab = tab in the C2 point-open topology; similarly, limλ→0

λ
sab = sab in this topology,

verifying that Galilean spacetime is in fact the Newtonian limit of the Minkowskian family (as the

derivative operators are flat for all λ).

This does not, of course, show that general relativity as a whole reduces to Newtonian gravitation

as a whole, which would require attention to whether each Newtonian spacetime is the limit of

a sequence or family of relativistic spacetimes. The point here is rather that the definition of the

Newtonian Limit provides a precise sense in which the question of reduction can be answered

definitively, and that there are particular examples (here and in §3.4.1–3.4.3) where that answer is

affirmative.
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3.4 Interpretation of the Newtonian Limit

As mathematical objects, the models of the frame theory are completely well-defined, and it is

a mathematical matter whether a particular family, parameterized by λ, has a Newtonian limit.

According to proposition 3.3.1, the existence of such a limit as λ → 0 means that, given some

ϵ > 0 and some finite set of spacetime points, the values in any basis of the components of the

temporal and spatial metrics, connection, and stress-energy (and their partial derivatives to second

order) of members of the family can be approximated at those points within ϵ by those of the

Newtonian limit spacetime for sufficiently small λ.

One can thus understand the Newtonian limit through its connection with the observables of the

frame theory (or at least of its specialization to GR and Newton-Cartan theory). Now, there is

some controversy regarding just what quantities count as observables in spacetime theories. Some

of it arises in the context of the constrained Hamiltonian formalism (e.g., Rovelli (1991)) and so is

exogenous to my concerns here. There is also the difficulty, by no means unique to these theories,

that evenly remotely realistic representations of actual measurements with experimental appara-

tuses are too complicated to model in detail. Thus any tractable discussion of observables must

proceed at some level of abstraction. In particular, I shall assume that one can represent observ-

ables with scalar fields that are definable from the temporal and spatial metrics, the connection,

and the stress-energy (and their derivatives), along with tetrad fields associated with (the world-

lines of) observers. These will be (continuous functions of) the kinds of quantities considered in

proposition 3.3.1. Elliptically, one can then speak of tensor fields as observables in the sense that

their collections of components, relative to some tetrad field, are observable scalar fields. Note that

I only take this to be a necessary condition for observability; some tensor fields so definable, e.g.,

very high order derivatives of the Riemann curvature, may exceed the boundaries of idealization

reasonable for the inquiry at hand. But considering a slightly broad class of tensor fields will nev-

ertheless serve the present needs, for proposition 3.3.1 ensures that any observables falling within

such a class and defined at finitely many points will be well-approximated in the limit.
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Recall now that the outcome of an observation is typically a dimensional quantity, i.e., one involv-

ing time, length, etc. Hence in determining the convergence of observables one must consider the

parameterizations of curves, insofar as they define α and β, which make the numerical values of

observables physically meaningful. The key is to choose them to vary with λ in such a way as to

make the speed of light in each model of the family (M,
λ
gab,

λ
κ) the same. A convenient such choice

is α(λ) = 1 and β(λ) =
λ
κ−1/2.21 In other words, one retains the same parameterization for timelike

curves but linearly reparameterizes spacelike curves so that their tangent vectors ξa are mapped

as ξa 7→ λ
κξa. Parameterizing α, β, κ in this way is somewhat analogous to having renormalization

group transformations on the relativistic spacetime models, where the time and distance scales (in

general) are set only by the arbitrary choice of units, but their ratio is constrained by the speed of

light. Indeed, for the above choices turns out that the speed of light in each of the models (M,
λ
gab,

λ
κ)

will be the same, identically 1. Note that the element of a given such family may well be isomet-

ric. All the members of the Minkowskian family defined by eqs. 3.6 and 3.7, for example, are flat

complete spacetimes on R4, and under the above choices for α(λ) and β(λ), the speed of light in

each of them is the same.

Nevertheless, if (M,
λ
gab,

λ
κ) has a Newtonian limit as λ → 0, then observables definable at points

in M that are continuous in λ will converge in the limit as well. In other words, given some such

observable and an acceptable margin of error ϵ > 0, that observable will be approximated within

that error by its Newtonian counterpart for sufficiently small λ. Instead of corresponding necessar-

ily to different relativistic worlds, the members of (M,
λ
gab,

λ
κ) for such λ correspond to a range of

physical conditions under which the Newtonian approximation is valid. Exactly what these con-

ditions will be in specific cases will depend on the observable considered and the specification of

the convergent family. But the general schema for determining them is roughly the same in most

cases.22

21This is not the only choice of units that will yield the factual interpretation—any in which α(λ)/β(λ) =
λ
κ1/2 will

do, but for simplicity I consider just the choice described.
22The description given will suffice when considering an observable definable from just one of the temporal metric,

spatial metric, or stress-energy. The complications encountered for others add no new conceptual difficulty, however.
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First, pick a tetrad { iea}3i=0 at a point and an observable definable there that converges in the limit.

The former encodes the frame of an observer at that point; if the observer is represented by a

timelike worldline that intersects the point, the timelike component will typically be the worldline’s

tangent vector. It also determines an inverse Riemann metric hab =
∑3

i=0
i
ea i

eb. Second, compute the

value of the observable for the spacetime (M,
λ
gab,

λ
κ) as well as the limit point, using the choices

α(λ) = 1 and β(λ) =
λ
κ−1/2 for both. The absolute value of their difference will in general depend

on λ. Third, pick some suitable maximum ϵ > 0 for this difference, and compute the bound on

λ below which the difference is below ϵ. This bound will in general depend not just on ϵ but on

other quantities representing physical magnitudes that appear in the difference. Finally, consider

any open neighborhood of the limit point whose intersection with the convergent family consists

in exactly those members whose parameter λ is below this bound. It represents precisely those

constraints on the aforementioned physical magnitudes under which the formula for the observable

under consideration may be approximated, within ϵ, by its Newtonian counterpart.

Conversely, one can also work from a choice of open neighborhood of the limit point to conditions

under which certain observables will be well-approximated by their values in the Newtonian limit.

If one such neighborhood is a strict subset of another, its members in general correspond to better

approximation by the Newtonian limit point, hence typically to more restricted physical circum-

stances. In many cases, the intersection of these “smaller” open sets with the convergent family

will yield members with smaller values of λ.

To illustrate the schema, I will consider a variety of observables drawn from three convergent

families of relativistic spacetimes: relative velocity and three-momenta of massive particles and

light rays in a Minkowskian family, the acceleration of a static observer in a Schwarzschildian

family, and the mass-energy and average radial acceleration in a cosmological (FLRW) family. In

most cases I will also calculate them for different choices of α and β to illustrate the role they play.
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3.4.1 Relative Velocity and Momentum in a Minkowskian Family

Consider an observer in the Minkowskian spacetimes introduced above (eqs. 3.6 and 3.7) whose

worldline has tangent vector

µa =

(
∂

∂t

)a

,

at a point q and who will measure at that point the three-momentum p of a particle of known mass

m with tangent vector
λ

ξa =
1

√
1 − λv2

[(
∂

∂t

)a

+ v
(
∂

∂x

)a]
, (3.10)

where 0 ≤ v < 1. The coefficients for both tangent vectors have been chosen so that they each have

magnitude 1, i.e., so that α(λ) = 1. Further, parameterize spacelike curves so that β(λ) = λ−1/2

so to make the speed of light constant throughout the family. To calculate the speed and three-

momentum of the particle relative to the observer, one can decompose
λ

ξa into its components

collinear and orthogonal to µa:

µa =


λ
ηbcµ

b
λ

ξc

λ
ηbcµ

bµc

 µa +

λξa −


λ
ηbcµ

b
λ

ξc

λ
ηbcµ

bµc

 µa

 = (
λ
ηbcµ

b
λ

ξc)µa + (
λ

ξa − (
λ
ηbcµ

b
λ

ξc)µa).

The relative speed is given by the ratio of the magnitude of the spatial component to that of the

temporal component, which are given respectively by

∥
λ

ξa − (
λ
ηbcµ

b
λ

ξc)µa∥ = (β(λ))−1[
λ
sad(

λ

ξa − (
λ
ηbcµ

b
λ

ξc)
λ
µa)(

λ

ξd − (
λ
ηe fµ

e
λ

ξ f )
λ
µd)]1/2

= λ1/2[−λ−1 ληad(
λ

ξa − (
λ
ηbcµ

b
λ

ξc)µa)(
λ

ξd − (
λ
ηe fµ

e
λ

ξ f )µd)]1/2

= ((
λ
ηbcµ

b
λ

ξc)2 − 1)1/2, (3.11)

∥(ληbcµ
b
λ

ξc)µa∥ = (α(λ))−1[
λ
tad(

λ
ηbcµ

b
λ

ξc)µa(
λ
ηe fµ

e
λ

ξ f )µd]1/2 = |ληbcµ
b
λ

ξc|. (3.12)
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Thus the speed of the particle is given by

((
λ
ηabµ

a
λ

ξb)2 − 1)1/2

|ληabµ
a
λ

ξb|
=

(
1 − 1

(ηabξaµb)2

)1/2

=
√
λv

and the magnitude of its three-momentum by

p = m(
λ
ηabµ

a
λ

ξb)2 − 1)1/2 =
m
√
λv

√
1 − λv2

.

As remarked in the introduction, one can approximate this momentum by the classical formula of

the product of the mass with the speed, p = m
√
λv, which is indeed the measured momentum in

the Newtonian limit, if λv2—hence just λ for a fixed v—is sufficiently small. Thus choosing some

allowed error ϵ > 0 entails there is some δ > 0, depending on v, such that |p − m
√
λv| < ϵ when

λ < δ. This condition will be satisfied for the members of the Minkowskian family that lie in a

certain neighborhood of the limiting Galilean spacetime. For simplicity, let

hab =

(
∂

∂t

)a (
∂

∂t

)b

+

(
∂

∂x

)a (
∂

∂x

)b

+

(
∂

∂y

)a (
∂

∂y

)b

+

(
∂

∂z

)a (
∂

∂z

)b

be the (inverse) Riemannian metric constructed from the tetrad compatible with the standard global

coordinates t, x, y, z on (R4,
λ
ηab, λ). (An analogous calculation can be performed for Rieman-

nian metrics constructed from other tetrads.) Then the intersection of the open neighborhood

B0(s, δ; h, q) of the Galilean spatial metric sab with the spatial metrics of the Minkowskian family

yields {λsab : 0 < λ < δ}, exactly those spatial metrics for which measurements of the particle’s

three-momentum will be within the allowed error of the classical formula. One can show the anal-

ogous neighborhood for the temporal metrics will be B0(t, 3δ; h, q)—the factor of 3 comes from

the dimension of space.

One can also calculate the speed that any observer will measure of a light ray at q. The value will

differ depending on the choices of α(λ) and β(λ), which I shall demonstrate below. I shall also per-
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form the calculation of this value for the Minkowskian family, but it generalizes straightforwardly

to any spacetime. To begin, consider a family of
λ
ηab-null vectors

λ
νa representing the trajectories of

light rays at q. These will not in general be collinear because they must lie along the light cone,

which is (eventually) widening as λ → 0. The speed that the observer with tangent vector µa at

q will assign to the light ray will be the ratio of the spatial magnitude of the component of
λ
νa or-

thogonal to µa to the temporal magnitude of the component of
λ
νa collinear to µa, just like with the

speed of the massive particle. Now suppose we set α(λ) = β(λ) = 1. So after decomposing
λ
νa into

these components via
λ
νa = (

λ
ηbcµ

bλνc)µa + (
λ
νa − (

λ
ηbcµ

bλνc)µa), one can calculate the spatial (eq. 3.11)

and temporal (eq. 3.12) magnitudes

∥λνa − (
λ
ηbcµ

bλνc)µa∥ = (β(λ))−1[
λ
sad(

λ
νa − (

λ
ηbcµ

bλνc)
λ
µa)(

λ
νd − (

λ
ηe fµ

eλν f )
λ
µd)]1/2

= [−λ−1 ληad(
λ
νa − (

λ
ηbcµ

bλνc)µa)(
λ
νd − (

λ
ηe fµ

eλν f )µd)]1/2

= λ−1/2|ληbcµ
bλνc|1/2,

∥(ληbcµ
bλνc)µa∥ = (α(λ))−1[

λ
tad(

λ
ηbcµ

bλνc)µa(
λ
ηe fµ

eλν f )µd]1/2 = |ληbcµ
bλνc|.

Thus the observer will determine the speed of a light ray with tangent vector
λ
νa to be λ−1/2, the ratio

of the magnitude of the spatial component to that of the temporal component of
λ
νa (relative to µa).

Since the choice of this observer was arbitrary, arbitrary observers in the spacetimes (M,
λ
ηab, λ)

will measure larger and larger speeds of light as λ → 0. On the other hand, if one uses instead

β(λ) =
λ
κ−1/2 = λ−1/2 while retaining α(λ) = 1, the above calculation yields a speed of 1 for the

speed of light independently of λ. In other words, in this interpretation all observers will always

measure the speed of light to be the same fixed value.23

To see this significance of these calculations, it may be illuminating to focus on the tangent space

at q and consider the relative velocity that a certain observer passing through that point would

attribute to particles with various other tangent vectors. (See figure 3.1 for an illustration.) When

23Note that, for Newton-Cartan theory, one does not usually countenance particles (massive or otherwise) whose
trajectories are not timelike. Nevertheless one can still consider the behavior of the “relative speed” observable in the
limit regardless of the choices of α and β. (Cf. Weatherall (2011, p. 430, fn. 16).)
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Figure 3.1: Depicted are four vectors (labeled 0, 1, 2, and 3) at some point q, along with the light
cones associated with the λ = 1 member and some λ < 1 member from a family of relativistic
spacetimes with κ = λ. The vi(λ) are the speeds that an observer at q with tangent vector pro-
portional to vector 0 would measure of a particle whose worldline at q has (co-directed) tangent
vector proportional to vector i. For the figure labeled “counterfactual,” α(λ) = β(λ) = 1, and the
relative speed corresponding to each vector does not change, but as λ→ 0 the speed of a light ray
increases, and more vectors become timelike. For the figure labeled “factual,” on the other hand,
α(λ) = 1 and β(λ) = λ−1/2, and as λ→ 0 the relative speed of each vector decreases, but the speed
of a light ray stays the same. More vectors become timelike on for these choices of α and β, too,
but as λ becomes sufficiently small their speeds relative to vector 0 also decrease.

α(λ) = β(λ) = 1, as the light cone widens, the velocity she would attribute to particles with a given

tangent vector (up to normalization) would remain the same, but she would count more and more

vectors as timelike. She would still attribute a fixed speed to a particle whose tangent vector was

initially null for λ = 1 but became timelike as the cone widened. By contrast she would judge the

speed of a light ray whose tangent vector must lie along the widening cone to be larger than that of

a light ray for λ = 1. By contrast, when α(λ) = 1 but β(λ) = λ−1/2, as the light cone widens, more

and more vectors count as timelike, but particles with null tangent vectors are always measured

with the same speed. Accordingly, a particle with a fixed tangent vector at q not comoving with

the observer will be attributed smaller and smaller relative velocities as the light cone widens.

(Only particles comoving with the observer maintain the same (vanishing) measured velocity as

the cone widens.) Heuristically, one can interpret v/c becoming small as λ → 0 as v being fixed

but c → ∞, or as c being fixed but v → 0. Of course, these remarks bear only on relative velocity

observables at individual points. Other observables deserve their own treatment, to some of which

56



I turn presently.

3.4.2 Acceleration in a Schwarzschildian Family

Consider a family of Schwarzschildian spacetimes, whose temporal (hence Lorentz) metrics are

given in the standard spherical coordinates t, r, θ, ϕ as

λ
tab =

λ
gab = (1 − 2Mλ/r)(dat)(dbt) −

(
λ

1 − 2Mλ/r

)
(dar)(dbr)

− λr2[(daθ)(dbθ) + sin2 θ(daϕ)(dbϕ)],

where da denotes the exterior derivative and M the mass of the black hole. For present purposes I

will be concerned with the “external” region of the spacetime, i.e., that for which r > 2Mλ. When

restricted to this region, the family (M,
λ
tab, λ) has as a Newtonian limit the spacetime associated

with a point mass (Ehlers 1981, 1991, 1997). (Note that the Schwarzschild radius, 2Mλ, vanishes

in the limit.) Thus one can evaluate in this family the conditions under which various observables

may be approximated by their Newtonian counterparts.

In particular, consider a static observer, i.e., one whose tangent vector at some point p is given by

the unit vector
λ
µa =

1
√

1 − 2Mλ/r

(
∂

∂t

)a

. (3.13)

Such an observer is always accelerating, for she maintains her position (with respect to the static

coordinates) despite the gravitational “attraction” of the black hole. When will the acceleration

she experiences be approximated by that she would experience if she were in the gravitational

field of a Newtonian point mass? Let
λ

∇ be the covariant derivative operator associated with the

spacetime (M,
λ
tab, λ), let ∇ be that associated with the Newtonian limit spacetime, and let ∇̄ be that
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compatible with the (flat) Riemannian metric

hab = (dat)(dbt) + (dar)(dbr) + r2[(daθ)(dbθ) + sin2(daϕ)(dbϕ)]

arising from the standard coordinates and according to which the observer’s worldline is a geodesic.

(Again, one can perform analogous calculations with respect to Riemannian metrics constructed

from other observers.) In both the Schwarzschildian family and its Newtonian limit spacetime,

the observer’s acceleration is completely radial, i.e., proportional to (∂/∂r)a. Thus the quantity of

interest will be the difference in magnitude of these accelerations. The acceleration in the family

is given by
λ
µb

λ

∇b
λ
µa =

λ
µb∇̄b

λ
µa − λ

µb λµc
λ

Ca
bc = −

λ
µb λµc

λ

Ca
bc,

where
λ

∇ = (∇̄,
λ

Ca
bc). Using the standard result (see, e.g., Malament (2012, p. 78)) that

λ

Ca
bc =

1
2
λ
gad(∇̄d

λ
tbc − ∇̄b

λ
tdc − ∇̄c

λ
tdb),

one can compute that

−λµb λµc
λ

Ca
bc =

M
r2

(
∂

∂r

)a

,

the spatial magnitude of which is then given by

λ
a = ∥ − λ

µb λµc
λ

Ca
bc∥ = (β(λ))−1[

λ
sad(−λµb λµc

λ

Cabc)(−
λ
µb λµc

λ

Cdbc)]1/2

= (β(λ))−1[−λ−1 λgab(−λµb λµc
λ

Ca
bc)(−

λ
µb λµc

λ

Cd
bc)]

1/2

=
M/r2

β(λ)
√

1 − 2Mλ/r
. (3.14)

Because these observables are continuous in λ and are functions of tensors that converge in the

Newtonian limit, their limiting values must match their corresponding values in the limit. Indeed,
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a similar calculation for the Newtonian limit spacetime yields

a = ∥ − µbµcCa
bc∥ = (β(λ))−1M/r2. (3.15)

When β(λ) = 1, the magnitude of the acceleration in the Schwarzschildian family approaches that

of its Newtonian limit spacetime as λ→ 0. When β(λ) = λ−1/2, eq. 3.15 still approximates eq. 3.14

when 2Mλ/r, i.e., the ratio of the Schwarzschild radius to the radial distance of the observer, is

sufficiently small. For fixed M, one can interpret this as a sufficiently large r, or for a fixed r, as a

sufficiently small M. In other words, given some allowed error ϵ > 0, there is some δ > 0, such

that when the ratio of the Schwarzschild radius to the radial distance of the observer is less than

it, the magnitude of the acceleration experienced by the observer can be approximated within ϵ by

the formula for its Newtonian counterpart. (The calculations showing this are identical to the one

for relative velocity in §3.4.1.)

3.4.3 Mass-Energy and Average Radial Acceleration in a Cosmological (FLRW)

Family

Consider a family of spatially flat cosmological (FLRW) spacetimes, whose temporal (hence

Lorentz) metrics are given in Cartesian coordinates as

λ
tab =

λ
gab = (dat)(dbt) − λa2[(dax)(dbx) + (day)(dby) + (daz)(dbz)], (3.16)

where the cosmological scale factor a > 0 depends only on t and is normalized so that a|t=0 = 1.

The stress-energy tensor has the form of that of a perfect fluid with density ρ and pressure p, both
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of which also only depend on t:24

λ

T ab = (ρ + λp)
(
∂

∂t

)a (
∂

∂t

)b

+ p
λ
sab. (3.17)

The family (R4,
λ
tab, λ) has, as λ → 0, a Newtonian limit representing a homogeneous universe

(Ehlers 1988, 1997). Thus observables that are continuous functions in λ will converge to their

Newtonian counterparts as well.

Consider, for example, an observer whose tangent vector at some point is given by

λ

ξa =
1

√
1 − λa2v2

[(
∂

∂t

)a

+ v
(
∂

∂x

)a]
, (3.18)

with 0 ≤ v < a−1. What mass-energy density
λ
ρ would the observer measure? Under what circum-

stances can it be approximated by its corresponding Newtonian observable, the mass density ρ?

For the relativistic family, one can calculate

λ
ρ =

λ
tac

λ
tbd

λ

T ab
λ

ξc
λ

ξd =
ρ + λp

1 − λa2v2 − λp =
ρ + λa2v2

1 − λa2v2 , (3.19)

which yields limλ→0
λ
ρ = ρ as expected. Clearly there will only be a discrepancy from ρ when

the observer is not comoving with the fluid, i.e., when v > 0, but for any ϵ > 0 one can find a

sufficiently small λ such that |λρ − ρ| < ϵ. The bound for this will depend on a2v2, so under the

factual interpretation, one can interpret the smallness of λ to be the smallness of a relative to v, or

vice versa.

One can also examine the limiting behavior of another observable, sometimes called the average

radial acceleration (ARA), which measures (in a sense) the average tidal forces that a small cluster

of massive test particles undergoing geodesic motion would experience. To calculate it, one must

24One may also require them to satisfy various energy condition or equations of state, but these play no role in the
calculations below.
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first invert eq. 3.3 to yield the Ricci tensor

λ

Rab = 8π(
λ
tam

λ
tbn −

1
2
λ
tab

λ
tmn)

λ

T mn = 8π(ρ + λp)(dat)(dbt) − 4π(ρ − λp)
λ
tab, (3.20)

where I have substituted in eq. 3.17. Now, suppose that the observer with tangent vector
λ

ξa at some

point is undergoing geodesic motion in a neighborhood of that point, and pick a smooth tetrad field

whose timelike component is the observer’s tangent vector field and whose spacelike components

vanish when Lie derived by that field. The ARA is then defined as the average of the magnitudes of

the relative acceleration between the observer and “infinitesimally close” observers “connected” by

a spacelike component, for each of the three components. It turns out that the ARA is independent

of the choice of these spacelike components and can be determined from the observer’s tangent

vector and the Ricci tensor (Malament 2012, p. 165–6):25

ARA = − 1
3β(λ)

λ

Rab

λ

ξa
λ

ξb = − 1
3β(λ)

(
8π(ρ + λp)
1 − λa2v2 − 4π(ρ − λp)

)
= − 4π

3β(λ)

(
ρ + 3λp + λa2v2(ρ − λp)

1 − λa2v2

)
. (3.21)

Because the ARA is composed from tensorial fields that have a Newtonian limit and is continuous

in λ, its limiting value as λ→ 0 must be the value it takes on in the Newtonian limit model. Indeed,

when β(λ) = 1, this value is −4πρ/3, just as expected (Malament 2012, p. 281). Under the factual

interpretation, the conditions under which eq. 3.21 may be approximated by its Newtonian formula

are somewhat complicated, but roughly, this will be when λa2v2 is much less than 1 and p is much

less than ρ, i.e., when the relative velocity of the observer to the integral curves of the cosmic fluid

is sufficiently small and the pressure is small compared to the mass density.

25The factor of β arises because one is averaging the magnitudes of components of acceleration vectors, which are
spacelike.
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3.5 Topology and Observables

We can now return to the question I posed after the definition of the Newtonian limit: why use

the point-open topology? As I have argued in chapter 2, there is no canonical topology for the

spacetime metrics, so this choice must be justified relative to the nature of the investigation. In

light of the foregoing discussion of the factual interpretation of the limit, it is clear that a choice

of topology corresponds with a set of relevant observables that one requires be well-approximated

by the Newtonian limit spacetime. In the case of the C2 point-open topology, the observables are

scalar point quantities at finitely many points arising from contraction of the temporal and spatial

metrics, the stress-energy tensor, and their derivatives to second order.

At least this much seems warranted, since we do measure, at least in some idealized sense, rel-

ativistic point observables that we can approximate with their classical counterparts.26 But our

experiments and observations are not confined to points: there are many observables correspond-

ing more generally to extended compact regions for whose classical approximations one should

account as well. These may include continuous measurements of point quantities, such as the

momentum flux over time, integrated observables, such as the proper time along a worldline, and

analogous quantities over areas and volumes in spacetime.

To see why any point-open topology is insufficient to take these kinds of observables into account,

consider the following family of relativistic temporal metrics on R4 restricted to temporal coordi-

nates in the range [0, 1]:

(
λ
tab)|t−1[0,1] = (1 + λ−3t(1 − t)1/λ)(dat)(dbt) − λ(dax)(dbx) − λ(day)(dby) − λ(daz)(dbz), (3.22)

where 0 < λ ≤ 1. Restricted to the strip [0, 1] × R3, the relativistic family (R4,
λ
tab, λ) has the

“Galilean” spacetime ([0, 1] × R3, tab, sab,∇, 0) (cf. eqs. 3.8,3.9) as its Newtonian limit in the C2

26A topology’s system of open sets must be closed under arbitrary union and finite intersection, so any topology
characterized by the sufficient approximation of a class of observables is sensitive as well to finite conjunctions and
arbitrary disjunctions of well-approximations of those observables.
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Figure 3.2: Log-plot of the conformal “bump” in eq. 3.22 as a function of t-coordinate. At λ =
1/1000, it is sharply peaked near t = 0 and nearly vanishing elsewhere.

point-open topology. (The members of this family have many smooth extensions to the whole

spacetime, but which extension one chooses is immaterial for my purposes here as long as the

extensions for the whole family also have a Newtonian limit.) The limit exists because, for every

point p with t-coordinate within [0, 1] and any ϵ > 0, one can find a sufficiently small λ such

that d(t,
λ
t; h, i)|p < ϵ for i = 0, 1, 2, and similarly for the spatial metric. (The exponential term

(1 − t)1/λ dominates as λ → 0.) But one cannot find any λ such that the distance function will

be uniformly bounded by ϵ for all t ∈ [0, 1]. This is because as λ → 0, the “bump” in the metric

moves toward t = 0, becoming more localized but also taller. (See fig. 3.2.) Consequently there

will be observables, depending on the values the metric takes on intervals containing a point with

t = 0, that do not converge in the Newtonian limit.

For example, consider a timelike curve passing through the region with t-coordinate in [0, 1] and

with tangent vector everywhere proportional to ( ∂
∂t )

a. Since the lengths of timelike curves are

invariant under reparameterization, the proper time elapsed along the curve between temporal co-
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ordinates t = 0 and t = 1 according to
λ
tab is given by

∫ 1

0

λtab

(
∂

∂t

)a (
∂

∂t

)b1/2

dt = 1 +
1

λ(2λ2 + 3λ + 1)
, (3.23)

whereas the same quantity according to the Galilean temporal metric (dat)(dbt) is just 1. The former

diverges as λ → 0, meaning that there are no experimental contexts in which observations adhere

to their classical formulas within some ranges of error. Because these observations include mea-

surable quantities, such as proper time, the point-open topology is evidently too coarse to capture

the demand that the Newtonian limit point of a family of relativistic spacetimes can approximate

standard observables that depend on extended (but compact) regions.

Requiring the convergence of more kinds of observables corresponds with introducing more open

sets into the topology on temporal and spatial metrics, i.e., requiring convergence in a finer topol-

ogy. There is a natural such choice to supplant the point-open topology, one that is defined quite

similarly but controls convergence uniformly on compacta instead of pointwise. A basis for the

Ck compact-open topology on the smooth tensor fields in some set S may be written as sets of the

form

Bk(t, ϵ; h,C) = {t′ ∈ S : sup
C

d(t, t′; h, 0) < ϵ, . . . , sup
C

d(t, t′; h, k) < ϵ}, (3.24)

where, much as with the point-open topologies, t ranges over all tensor fields in S , ϵ ranges over all

positive constants, and C ranges over all compact subsets of M. The compact-open topologies have

many nice properties (§2.4), the most important of which for this context is that the sequence given

by eq. 3.22 does not converge—it is sensitive to the fact that the lengths of some timelike curves

diverge in the λ → 0 limit. Besides what’s already been said, one can see this as a consequence

of the following proposition that gives convergence conditions for the compact-open topologies

analogous to those for the point-open topologies.

Proposition 3.5.1. A family of tensor fields
λ

ϕa
bc on M, with λ ∈ (0, a) for some a > 0, converges

to a tensor field ϕa
bc as λ → 0 in the Ck compact-open topology iff for all compacta C ⊆ M,
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limλ→0 supC(
0
ψbc

a

λ

ϕa
bc) = supC(

0
ψbc

a ϕ
a
bc) for all tensor fields

0
ψbc

a on C and, for each positive i ≤ k,

limλ→0 supC(
i
ψbcd1...di

a ∇d1 · · · ∇di

λ

ϕa
bc) = supC(

i
ψbcd1...di

a ∇d1 · · · ∇diϕ
a
bc) for all tensor fields

i
ψbcd1...di

a on C.

Moreover, the Ck compact-open topology is the unique topology with this property.

Analogous results hold for tensor fields of other index structures. One can interpret the proposition

as showing just how the compact-open topologies formalize a notion of uniform convergence of

observables defined on compacta.27

Although the sequence given by eq. 3.22 does not converge in any compact-open topology, the

Minkowskian family given by eqs. 3.6 and 3.7 does still have Galilean spacetime as its Newtonian

limit. In light of these considerations, I propose modifying Ehlers’s definition of the Newtonian

limit to require convergence in the C2 compact-open topology:28

Newtonian Limit (Revised) Let (M,
λ
tab,

λ
sab,

λ

∇,
λ

T ab), with λ ∈ (0, a) for some a > 0, be a one-

parameter family of models of general relativity that share the same underlying manifold M.

Then (M, tab, sab,∇,T ab) is said to be a Newtonian limit of the family when it is a model of

Newton-Cartan theory and limλ→0(
λ
tab,

λ
sab,

λ

∇,
λ

T ab) = (tab, sab,∇,T ab) in the C2 compact-open

product topology.

This characterization depends, of course, on considering as relevant all and only observables sub-

sisting on compact regions of spacetime. Thus one need not be too insistent that this is the sole

“right” topology to characterize the Newtonian limit, for this class of observables may very well

be too expansive or too meager for certain contexts. For example, one might want to consider ob-

servables associated not just with compact regions of spacetime, but also with non-compact curves
27There is a slightly coarser topology than the compact-open that prevents eq. 3.23 from converging, in which one

replaces the distance function (eq. 3.4) with the L2 norm. The essential point I want to make, which would still stand
under this proposal, is that one needs to use a topology that is sensitive (in some appropriate way) to observables
defined on extended regions.

28This is not a significant departure from Ehlers. Although he effectively stated the definition of the Newtonian limit
using the C2 point-open topology (i.e., “pointwise convergence”), he did on occasion discuss compact observables,
such as proper time, in which case he referred to locally uniform convergence. This mode of convergence is equivalent
to compact convergence for locally compact spaces. Since every finite-dimensional manifold is locally compact, the
corresponding topology is the compact-open topology.
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with finite proper length, as arise in singular spacetimes. (Consider starting a stopwatch and then

throwing it into a black hole.)

Another case of interest in this regard is whether one should include some global (non-compact)

observables, especially in the context of cosmological models. This case is less clear because even

in cosmology, it is not obvious that one can have experimental access to observables depending on

(data on) non-compact sets, without which it seems one cannot determine the global structure of

virtually all spacetimes of interest.29 In any case, it is harder to find an even plausible topology to

encode such global observables. The most common topologies chosen in the literature to control

the global behavior of smooth tensor fields in a collection S are the Ck open topologies, a basis for

which may be given as sets of the form

Bk(t, ϵ; h) = {t′ ∈ S : sup
M

d(t, t′; h, 0) < ϵ, . . . , sup
M

d(t, t′; h, k) < ϵ}, (3.25)

where t ranges over all tensor fields in S , ϵ ranges over all positive constants, and (importantly) h

ranges over all Riemannian metrics. One can show that, when M is compact, the open topologies

are identical to the compact-open topologies. But when M is non-compact, in contrast to the point-

open and compact-open topologies, different choices of h in general generate different collections

of open sets. One is thus obliged to consider all possible choices of h because, as an arbitrary

smoothly varying choice of basis at each point, no particular choice corresponds with anything

physically meaningful in a spacetime model. And in this case, the convergence condition for the

open topologies is not as similar to those for the compact-open and point-open topologies as one

might have expected:30

Proposition 3.5.2. Let g, {ng}n∈N be tensor fields on a non-compact manifold M. Then
n
g→ g in the

open Ck topology iff there is a compact C ⊂ M such that:

29In particular, if a spacetime is not causally bizarre, then it is observationally indistinguishable from a spacetime
that has holes and is extendible, anisotropic, and not globally hyperbolic. See Manchak (2011) and references cited
therein.

30For a proof sketch, see Golubitsky and Guillemin (1973, p. 43–44).
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1. for sufficiently large n,
n
g|M−C = g|M−C; and

2.
n
g|C → g|C in the compact-open Ck topology.

Thus the mere fact that the temporal and spatial metrics of a relativistic spacetimes differ in signa-

ture from those of a Newton-Cartan spacetime is sufficient to entail the following negative result:

Corollary 3.5.3. No family of relativistic spacetimes on a non-compact manifold has a Newtonian

limit in any open topology.

3.6 Conclusions

One can draw a number of topical and methodological conclusions from the above discussion. In

§3.2, I described how one can give a unified description of both general relativity and Newton-

Cartan theory under the banner of Ehlers’s frame theory. It is only superficially an example of a

unification in the traditional sense in philosophy of science, for the theories thereby “unified” do

not have different domains but in fact concern the same phenomena: one (general relativity) is a

successor to the other (Newtonian gravitation) and improves upon it. Thus the frame theory should

perhaps more properly be called a metatheory, since it provides a common terminology for and

exhibits the conceptual continuity between Newtonian and relativistic gravitation (Ehlers 1981,

1986, 1988, 1998).

Even considered as a metatheory, it is not without philosophical interest. It reveals that, if only

in retrospective rational reconstruction, the transition to relativity theory from Newtonian physics

involves much more conceptual continuity than is usually emphasized. This kind of claim is of

interest for structural realists, who are keen to find the structural continuity between old and new

theories. Metatheories like the frame theory prove just the technical apparatus needed to draw a

comparison. Certain critics of structural realism, both to its right (realists) and otherwise, would
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also find the frame theory of interest, for they can point to the rather minimal structure that relativity

and Newtonian theory share, skeptical that something so meager commits one to much at all,

ontologically. More generally, the methodology used here, in which the models of two theories of

the same (or at least overlapping) subject matter are united in a common framework (that is to be

given a topology), does not require in any essential way that the theories under consideration be

physical theories—any sufficiently mathematized theories will do. Thus it could also prospectively

apply to certain theories of, say, economics, climate science, or population ecology.

Coming back concerns more internal to the conceptual structure of physics, once the frame theory

is constructed, one can place a topology on its space of models, thereby defining a convergence

condition and making precise what it means to take a limit within that space. In §3.3, I proved

how the convergence condition used in the literature can be understood topologically and used this

reconstruction to define the Newtonian limit of a family of models of general relativity. The reduc-

tion relation (under the factual interpretation) may then be understood as supporting an explanation

of why Newtonian gravitation was successful by providing the conditions under which its models

successfully approximate those of general relativity. Because the pattern of providing a unifying

framework for models of the two theories and then topologizing those models does not appear in

principle to depend on anything topically specific to gravitation, it might be applied fruitfully to

other reduction relations. It may even serve as a general pattern for how one can explain the suc-

cess of one (sufficiently mathematized) theory from another. Of course, further case studies must

be pursued to test the viability of this hint.

A longstanding obstacle to physically interpreting the geometrical methods used to define the New-

tonian limit is the ambiguous conceptual status of letting the limiting parameter be the value of a

fixed physical constant, namely the speed of light. I attempted to clarify the nature of the limit in

§3.4 by showing through explication and example how it may be interpreted so that the speed of

light is in fact the same in all models. This makes the geometric limit, already completely gen-

eral in its capability to capture properties and observable of interest, appropriate for showing how
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models of classical spacetime can approximate relativistic spacetimes in specified observational

contexts. In some ways, the geometric Newtonian limit subsumes the older, more limited local ap-

proximation methods (like the “low velocity limit”) more commonly used, although I do not expect

this way of approaching approximations to supplant traditional methods. Rather, I see one of the

primary upshots of this section to be a general way to understand reductive limiting relationships

between theories that are usually described in terms of the elimination of a constant of nature.

In §3.5 I returned to a question broached in §3.3 about the definition of the Newtonian limit:

why pick the C2 point-open topology? Indicating how the choice of topology corresponds with a

class of observables one demands be well-approximated in the Newtonian limit, I argued that the

point-open topology is not fine enough—it allows too many convergent sequences of spacetimes,

including ones in which observables one would think should converge do not, such as the proper

time measured along a compact timelike worldline. These observables depend on data on compact

sets, so I tentatively suggest using the C2 compact-open topology instead. This allows one to

recover the convergence of observables depending on data on compact sets. An even finer class

of topologies seemingly attuned to global features, the open topologies, however allows for no

sequences of relativistic spacetimes with a Newtonian limit. This exhibits the fact that whether

a particular sequence converges (or is “singular”) depends on the choice of topology. How we

understand the relationships theories have with each other depends on what features we take to

be important in judging the similarities of their models. Choosing a topology implicitly picks out

such features, but the significance of these choices in understanding limiting relationships has been

unduly neglected.

3.7 Proofs of Propositions

Proposition 3.7.1 (3.3.1). A family of tensor fields
λ

ϕa
bc on M, with λ ∈ (0, a) for some a > 0,

converges to a tensor field ϕa
bc as λ → 0 in the Ck point-open topology iff for all points p ∈ M,
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limλ→0(
0
ψbc

a

λ

ϕa
bc)|p = (

0
ψbc

a ϕ
a
bc)|p for all tensors

0
ψbc

a at p and, for all positive i ≤ k, limλ→0(
i
ψbcd1...di

a ∇d1 · · · ∇di

λ

ϕa
bc)|p =

(
i
ψbcd1...di

a ∇d1 · · · ∇diϕ
a
bc)|p for all tensors

i
ψbcd1...di

a at p.

Proof. Consider the case k = 0, as the others can be treated similarly, and fix some Riemannian

metric hab on M. First suppose that limλ→0
λ

ϕa
bc = ϕ

a
bc in the C0 point-open topology, and consider

some tensor ψbc
a at an arbitrary p ∈ M. In the basis for the tangent and cotangent spaces at p that

makes hab and hab the identity matrices,

|ψbc
a (

λ

ϕa
bc − ϕa

bc)||p =
∣∣∣∣∣∣∣

3∑
α,β,γ=0

ψβγα (
λ

ϕαβγ − ϕαβγ)
∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣

3∑
α,β,γ=0

(ψβγα )2

∣∣∣∣∣∣∣
1/2 ∣∣∣∣∣∣∣

3∑
α,β,γ=0

(
λ

ϕαβγ − ϕαβγ)2

∣∣∣∣∣∣∣
1/2

= d(ψ, 2ψ; h, 0)|pd(ϕ,
λ

ϕ; h, 0)|p,

using the Cauchy-Schwarz inequality. Since d(ψ, 2ψ; h, 0)|p is constant with respect to λ, by hy-

pothesis we have that limλ→0 |ψbc
a (

λ

ϕa
bc − ϕa

bc)||p = 0.

For the reverse direction, assume instead that for all p ∈ M and all tensors of the form ψbc
a at

p, limλ→0 |ψbc
a (

λ

ϕa
bc − ϕa

bc)||p = 0. In particular choosing ψbc
a to vanish in all but one component

shows that that each component of
λ

ϕa
bc converges to each component of ϕa

bc. Since d(ϕ,
λ

ϕ; h, 0)|p =

|∑3
α,β,γ=0(

λ

ϕαβγ−ϕαβγ)2|1/2 is a continuous function in each
λ

ϕαβγ−ϕαβγ and d(ϕ, ϕ; h, 0)|p = 0, by definition

limλ→0
λ

ϕa
bc = ϕ

a
bc in the C0 point-open topology. �

Proposition 3.7.2 (3.5.2). A family of tensor fields
λ

ϕa
bc on M, with λ ∈ (0, a) for some a > 0,

converges to a tensor field ϕa
bc as λ → 0 in the Ck compact-open topology iff for all compacta

C ⊆ M, limλ→0 supC(
0
ψbc

a

λ

ϕa
bc) = supC(

0
ψbc

a ϕ
a
bc) for all tensor fields

0
ψbc

a on C and, for each positive

i ≤ k, limλ→0 supC(
i
ψbcd1...di

a ∇d1 · · · ∇di

λ

ϕa
bc) = supC(

i
ψbcd1...di

a ∇d1 · · · ∇diϕ
a
bc) for all tensor fields

i
ψbcd1...di

a

on C. Moreover, the Ck compact-open topology is the unique topology with this property.

Proof. The proof of the biconditional is analogous to that of proposition 3.3.1. To prove unique-

ness, it suffices to prove that the Ck compact-open topology is first-countable, i.e., it has a countable
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local neighborhood base (Willard 1970, Corollary 10.5, p. 71). Fix a Riemannian h, and let Ci ⊂ M

for 1 ≤ i < ∞ be a sequence of compacta such that
∪∞

i=1 Ci = M. I claim that, for each tensor

field α, Bk(α, 1/n; h,
∪n

i=1 Ci) for 1 ≤ n < ∞ is a countable local basis at α if M is non-compact.

For consider some open neighborhood of α, which by definition must contain a set of the form

Bk(α, ϵ; h,C) for some ϵ > 0 and compact C ⊂ M. Let m = max{arg minn 1/n < ϵ, arg minn C ⊆∪n
i=1 Ci}. Then clearly Bk(α, 1/m; h,

∪m
i=1 Ci) ⊆ Bk(α, ϵ; h,C). If M is compact, then similarly for

any set of the form Bk(α, ϵ; h,C), Bk(α, 1/m; h,M) ⊆ Bk(α, ϵ; h,C) with m = arg minn 1/n < ϵ, so

Bk(α, 1/n; h, M) for 1 ≤ n < ∞ is a countable local basis at α. �
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Chapter 4

Global Spacetime Similarity

4.1 Introduction

A topology on a collection of mathematical objects formalizes a precise notion of similarity

amongst them. It determines which sequences of such objects converge, which parameterized

families vary continuously, and which properties of subcollections are generic or are stable un-

der sufficiently small perturbations. When these objects are spacetimes, examining which limits

of sequences and families of spacetimes converge yields both a way to construct new ones and

further understanding of the relationships between them, such as how Newtonian spacetimes can

be understood as certain limits of relativistic spacetimes (ch. 3). A topology on the collection of

spacetimes also provides a framework for addressing questions of the genericness and stability,

hence physical significance, of acausalities and singularities (Geroch 1970, 1971; Hawking 1971;

Lerner 1973).

Of course, there are always many topologies from which to choose, each capturing a slightly differ-

ent type of similarity. Typically, though, one does not begin an investigation with a predetermined

topology in hand, but rather with certain intuitions, examples, and other desiderata a desired notion
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of similarity should respect. One then attempts to formalize that notion with a choice of topology.

But when such topologies are introduced, insufficient attention is usually paid to justifying how

they respect the relevant desiderata, that is, how they really do capture the relevant notion of sim-

ilarity. Ignoring this demand can lead to counterintuitive and misleading conclusions, such as it

being generic for a spacetime to contain closed timelike curves (prop. 2.4.3).

One notable exception to this omission has been Geroch (1970, 1971), who argues that no instance

of either of the two most commonly used topologies, the compact-open and open topologies,1

meets the demands on convergence and continuity imposed by three simple examples. In the next

section I discuss his examples and interpret his desiderata as a demand for a topology that captures

a notion of global similarity analogous to the topology of uniform convergence for real functions

of a single variable. In this light the unsuitability of the compact-open topologies is manifest,

as they correspond to topologies of uniform convergence on compacta.2 The failure of the open

topologies is more subtle, however, since it straightforwardly is a topology of uniform convergence

in the mathematical sense. The key to comprehending this failure is the algebraic structure of the

Lorentz metrics, understood as a subset of the twice-covariant smooth tensor fields on a manifold,

which together form a real vector space of uncountable dimension under pointwise addition. My

diagnosis is that the force of Geroch’s examples comes from their implicit demand to make vector

addition and scalar multiplication in this space continuous, a demand that the open topologies do

not in general satisfy. Indeed, the topology of uniform convergence on an infinite-dimensional

vector space is not necessarily compatible with the space’s linear structure.

Next, I articulate a sense in which these demands cannot be jointly met. That is, I show that there

is no topology that both satisfies Geroch’s desiderata and is compatible with the linear structure

of the Lorentz metrics (as a subset of the twice-covariant smooth tensor fields). The heart of
1I follow here the terminology of Hawking (1971); Hawking and Ellis (1973). Geroch (1970, 1971) calls the

compact-open and open topologies the coarse and fine topologies, respectively. (Caution: Hawking (1971) defines
a class of fine topologies that are not in general homeomorphic to the open topologies.) The open topologies are
sometimes called the Whitney topologies by mathematicians (Golubitsky and Guillemin 1973).

2I assume the fixed spacetime manifold under consideration is non-compact, as most cases of interest are. Other-
wise the compact-open and open topologies coincide.
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this incompatibility is the fact that every topology compatible with the linear structure of a space

must be translation-invariant: roughly put, the neighborhood structure must look the same at every

point. I shall argue that, properly interpreted, one of Geroch’s examples requires that whether a

“perturbation” (in a sense that I make precise) of a certain Lorentz metric is “small” or “large” must

depend on that metric in such a way as to make the same perturbation small for some metrics and

large for others. But if the neighborhood structure at every point is the same, then a perturbation

that is small for one metric must be small for all others. Thus if the twice-covariant smooth tensor

fields on a manifold are given any translation-invariant topology, the subspace topology it induces

on the Lorentz metrics cannot satisfy Geroch’s desiderata.

Fortunately there is a way to satisfy Geroch’s desiderata if one weakens the requirement of com-

patibility slightly. To do so, I construct the global topology on the Lorentz metrics, which divides

them into an (uncountably) infinite number of uniform components, each corresponding to dif-

ferent “asymptotic behavior” (in a sense that I make precise). This topology does makes scalar

multiplication continuous, but vector addition will not be so in general. However, through transla-

tion the subspace topology on each uniform component induces a topology on the whole space of

twice-covariant smooth tensor fields that does make vector addition everywhere continuous, hence

does make the space a topological vector space. In other words, “within” each uniform component

the linear operations are continuous. The construction of the global topologies may be of mathe-

matical interest on its own, for it requires almost no details specific to general relativity. Indeed,

it can be used to construct a global topology on the cross-sections of any seminorm bundle, i.e., a

smoothly varying seminorm on the fibers of some vector bundle. For instance, each of the temporal

and spatial metrics with which Newtonian spacetimes are equipped can be understood as smoothly

varying seminorms on the tangent bundle of the underlying manifold (Malament 2012, p. 250–4).3

In addition to these technical properties, the global topologies also have a natural physical inter-

pretation. They encode similarity amongst spacetimes as similarity of values of globally defined

3There is only an indirect sense in which the Newtonian spatial metric, as a symmetric (2, 0)-tensor field, assigns
a length to the spacelike component of a vector at a point, but the length it does assign is unique (Malament 2012,
Prop. 4.1.1).
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quantities that are measurable, in a precise sense, with bounded precision. This contrasts with

the analogous characterization of the open topologies, which also encode similarity of values of

globally defined observables, but allow for measurement apparatuses of arbitrary precision.

Before concluding with some open questions concerning invariant and geometrical properties of

the global topologies, I discuss their application to our understanding of the stability and generic-

ness of global properties of spacetimes. How do results proved using the open topology fare with

the global topologies? I show that for virtually any theorem concerning the stability and generic-

ness of conformally invariant properties with respect to an open topology, there is a counterpart

with respect to the analogous global topology that also holds. In particular, the counterpart of

Hawking’s theorem, expressing the equivalance of stable causality and the existence of a global

time function, holds with respect to the global topology. But it remains an open question whether

and which theorems concerning the stability of other properties, such as geodesic (in)completeness,

have counterparts that hold in the global topologies.

4.2 Geroch’s Complaint

In what follows, M will always denote some smooth, paracompact, Hausdorff manifold of dimen-

sion n ≥ 2, gab some smooth Lorentz metric on M, and hab some (inverse of a) smooth Riemannian

metric on M, where the indices are abstract. When these metric fields appear in contexts where

their indices will not be contracted, I will often relax the notation by dropping the indices. The

collections of all such Lorentzian and Riemannian metrics will be denoted L(M) and R(M), re-

spectively.
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4.2.1 Preliminaries

The basic idea for topologies on the Lorentzian g considered in this paper is that one can divide the

task of measuring the similarity of each pair g, g′ into two parts: first, that of encoding their relevant

differences at each point of M into a real number in some systematic way, and second, evaluating

the variability of the resulting scalar field in some way over regions of M. The differences between

the topologies considered arise ultimately from different choices of how to implement these two

tasks. But one feature they all share is the use of the Riemannian h to define a norm in every fiber

of each tensor bundle T r
s M → M, i.e, a real function νp of the (r, s)-tensors Ka1···ar

b1···bs
at p ∈ M with

the following properties:

Homogeneous For any α ∈ R, νp(αKa1···ar
b1···bs

) = |α|νp(Ka1···ar
b1···bs

).

Subadditive For any (r, s)-tensor K̂a1···ar
b1···bs

at p, νp(Ka1···ar
b1···bs

+ K̂a1···ar
b1···bs

) ≤ νp(Ka1···ar
b1···bs

) + νp(K̂a1···ar
b1···bs

)

Separating If νp(Ka1···ar
b1···bs

) = 0, then Ka1···ar
b1···bs

is the zero tensor.

It will turn out while the choice of norm will not matter substantively to the results in the sequel,

the Frobenius norm offers certain computational advantages.4

Definition 4.2.1. For any (r, s)-tensor Ka1···ar
b1···bs

at p ∈ M, define the h-fiber norm of Ka1···ar
b1···bs

as

|Ka1···ar
b1···bs
|h = |Ka1···ar

b1···bs
Kc1···cr

d1···ds
ha1c1 · · · harcr h

b1d1 · · · hbsds |1/2, (4.1)

for r, s > 0, and with no copies of h and its inverse when, respectively, r = 0 and s = 0.

Note that the h-fiber norm of a scalar is just the absolute value of that scalar, hence independent of

the choice of h. Now, because h is positive definite, one can choose a (co)basis for the (co)tangent

4This choice is also the unique lp norm on a tensor space that allows one to construct an inner product from the
norm according to the polarization identity, but this fact will not play a role in this paper.
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space at p in which the matrix representation of h|p is the identity. It then follows immediately

from the definition of the h-fiber norm that:

Proposition 4.2.2. For every p ∈ M and each non-negative r and s, the h-fiber norm is a norm

on the (r, s)-tensors at p, namely the Frobenius norm with respect to the basis in which h is the

identity.

An example that will be central in the sequel will be the h-fiber norm of the difference of two

Lorentz metrics g and g′:

|g − g′|h = [(gab − g′ab)(gcd − g′cd)hachbd]1/2

at each p ∈ M. This (and indeed any h-fiber norm) defines a scalar field on M whose evaluation is

the concern of the second aforementioned task in measuring the similarity between g and g′. All

the topologies considered also share a common approach to this task.

Definition 4.2.3. Let | · |h be some h-fiber norm on M and let S ⊆ M be nonempty. Then for any

(r, s)-tensor field Ka1···ar
b1···bs

, define its (h, S )-uniform norm as

∥Ka1···ar
b1···bs
∥h,S = sup

S
|Ka1···ar

b1···bs
|h. (4.2)

More generally, one could consider an (h, S )-Lp norm,

(∫
S

(
|Ka1···ar

b1···bs
|h
)p

dV
)1/p

,

where V is the volume measure determined by h,5 but I will restrict attention to the uniform (p = ∞)

case here.6

5The case p = 2 is used in applications to the Cauchy problem in general relativity (Hawking and Ellis 1973,
Ch. 7.4).

6Technically, the p = ∞ case uses the essential supremum, but this is equal to the supremum for continuous
functions.
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It will be absolutely central to the sequel that, in general, the (h, S )-uniform norm for some tensor

fields is infinite.

Proposition 4.2.4. For every nonnegative integer r and s, each (h, S )-uniform norm is an extended

norm on the vector space of continuous (r, s)-tensor fields on M, i.e., it is a homogeneous, subad-

ditive, and separating function whose range is [0,∞].

Proof. Immediate from proposition 4.2.2 and the subadditivity of the supremum. �

4.2.2 The Compact-Open and Open Topologies

Using the above framework, all topologies under consideration render two tensor fields similar,

roughly speaking, when their values and partial derivatives up to kth order are sufficiently similar

at points of some S ⊆ M. This can be captured for smooth (r, s)-tensor fields K through an analog

to the ϵ-ball notion of similarity familiar from metric spaces, with the relevant distance function

defined from an (h, S )-norm:

Bk(K, ϵ; h, S ) = {K′ ∈ Γr
s : ∀ j ≤ k, ∥∇(k)K − ∇(k)K′∥h,S < ϵ}, (4.3)

where Γr
s denotes the collections of smooth (r, s)-tensors on M, ∇(k)K the field ∇c1 · · · ∇ck K

a1···ar
b1···bs

,

and ∇ the Levi-Civita derivative operator compatible with h. The topologies that will be under

consideration here are all determined by a suitable collection of such ϵ-balls as a subbasis, i.e.,

a topology’s open sets will be generated through finite intersection and arbitrary unions of these

ϵ-balls.7 In particular, a Ck topology on Γr
s generated in this way is determined by the appropriate

choice of quadruples (K, ϵ; h, S ). Letting P(M) denote the power set of M and R(M) the smooth

Riemannian metrics on M, these collections may be called definitional subbases:

Definition 4.2.5. A collection of quadruples Ξ ⊆ Γr
s × (0,∞) × R(M) × P(M) is a definitional

7In some circumstances they form a basis, which generates the topology only through finite intersection.
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subbasis for a topology on Γr
s when

∪
π1[Ξ] = Γr

s, where π1 : (K, ϵ; h, S ) 7→ K is the projection

onto the first component.

Indeed, the Ck compact-open and open topologies can be defined this way. Letting C denote the

collection of all compact subsets of M,

Definition 4.2.6. The definitional subbasis for the Ck compact-open topology on Γr
s is ΞCO =

Γr
s × (0,∞) × R(M) × C.

Definition 4.2.7. The definitional subbasis for the Ck open topology on Γr
s is ΞO = Γ

r
s × (0,∞) ×

R(M) × {M}.8

The C∞ compact-open topology on Γr
s is generated from the union of the Ck compact-open topolo-

gies for all k, and similarly for the open topologies. Also, if M is compact, the Ck compact-open

topology coincides with the Ck open topology. Otherwise, the Ck compact-open topology is strictly

coarser than the Ck open topology, i.e, the system of open sets of the former is strictly contained in

the system of the latter. For j < k, the C j compact-open topology is also strictly coarser than the

Ck compact-open topology, and similarly for the open topologies. Finally, the compact-open and

open topologies on the smooth Lorentz metrics on M, denoted L(M), are just the relevant subspace

topologies on Γ0
2.

4.2.3 Geroch’s Examples

Geroch (1970, 1971) uses three examples—two sequences and a single one-parameter family of

Lorentz metrics—to illustrate his claim that each of the Ck compact-open topologies is too coarse

while each of the Ck open topologies is too fine. Of course, a topology can only be too coarse or

fine for a particular purpose. There are good reasons to believe that there is no canonical topology

8This topology is called open since replacing {M} with the collection of all open subsets of M generates the same
topology.

79



on the space of smooth Lorentz metrics, so particular choices of topology must be well adapted

to the constraints on a notion of similarity relevant for the context at hand (ch. 2). I shall argue

that one can thus interpret these examples as illustrating the inadequacy of these topologies for

encoding a notion of global similarity.

Let t, x, y, z be scalar coordinate fields on R4. Geroch’s two sequences of metrics on this manifold

are

m
gab =

(
1 +

m
1 + (x − m)2

)
(dat)(dbt) − (dax)(dbx) − (day)(dby) − (daz)(dbz), (4.4)

m
g′ab =

(
1 +

1
m2 + x2 + y2 + z2

)
(dat)(dbt) − (dax)(dbx) − (day)(dby) − (daz)(dbz), (4.5)

where d is the exterior derivative.9 His one-parameter family is simply

{λgab : λ > 0}, (4.6)

for some arbitrary fixed Lorentz metric gab on any non-compact M. Regarding eq. 4.4, Geroch

writes that “The ‘bump’ in the metrics becomes larger as it recedes to infinity,” but the “sequence

does approach Minkowski space in the [compact-open] topology (because the metrics become

Minkowskian in every compact set).” However, “[i]ntuitively, we would not think of this sequence

as approaching Minkowski space” (Geroch 1971, p. 71).

On the other hand, with respect to any open topology the sequence defined by eq. 4.5 does not

converge to the Minkowski metric even though “[t]he ‘bump’ in the metrics remains centered at

the origin and decreases in amplitude” to zero (Geroch 1970, p. 280). Perhaps more surprisingly,

the family defined in eq. 4.6 does not trace out a continuous curve in the open topology. In fact,

it is everywhere discontinuous since the induced subspace topology on this set is discrete (Geroch

1971, p. 71). This is particularly striking since each member of this family can represent precisely

9The formula for the first term of eq. 4.4 is garbled in Geroch (1971), but appears without error in Geroch (1970,
p. 280).
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the same physical spacetimes.10

But the compact-open topologies do determine that the sequence defined in eq. 4.5 converges to

Minkowski spacetime and that the family defined in eq. 4.6 is continuous, while according to the

open topologies the sequence defined in eq. 4.4 does not converge. Thus the compact-open and

open topologies are obverses on these examples, each intuitively ruling wrongly on the ones the

other rules rightly. The former is too coarse because it permits too many sequences to converge,

while the latter is too fine because it permits too few sequences to converge (and too few continuous

families).

4.2.4 Diagnosis and Desiderata

But what, more precisely, is undergirding these intuitions? In the first place, as Geroch alludes, the

compact-open topology coincides with the topology of compact convergence—that is, a sequence

of metrics
m
g → g on M just when its elements converge uniformly on each compact C ⊆ M

(Willard 1970, p. 284, Theorem 43.6a). This is similar to the sense in which the kth-order Taylor

expansion of a real function such as sin(x) converges to it as k → ∞. (For any particular finite-

order expansion, one can find a sufficiently large x such that the expansion, evaluated at x, differs

from sin(x) by as much as one wishes. But if one fixes some compact neighborhood region of R,

then the Taylor series converges uniformly on that neighborhood.) It seems, then, that Geroch is

searching for a topology that compares two metrics across the whole (non-compact) spacetime, not

just on compacta. This would generate the analog to uniform convergence for real functions.

Yet the open topologies are topologies of uniform convergence in the usual way the latter are

defined.11 In the present context, however, where the space of functions to topologize are smooth

10One might thus object there is no problem here, since after taking the quotient of the space of Lorentz metrics by
the isometry relation the family becomes a point. Such a strategy does not help with the non-convergence of eq. 4.5,
however, since no two elements of that sequence are isometric.

11This is for the same reason as the fact that the compact-open topology coincides with the topology of uniform
convergence on compacta. (See the previous footnote.)
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sections of a vector bundle over a non-compact manifold, Geroch’s examples are evidence that the

criteria for convergence and continuity that the open topologies require is much too strong. The

following propositions (respectively adapted from propositions 2.3.1 and 2.3.2) make this precise.

Proposition 4.2.8. Let K, {
m
K}m∈N be tensor fields on M. Then

m
K → K in the Ck open topology iff

there is a compact C ⊆ M such that:

1. for sufficiently large m,
m
K |M−C = K|M−C; and

2.
m
K | int(C) → K| int(C) in the Ck open topology.

Proposition 4.2.9. A family {
λ

K}λ∈I of tensor fields on M is continuous in the Ck open topology only

if for every λ1, λ2 ∈ I, there is some compact C ⊆ M such that
λ1

K |M−C =
λ2

K |M−C.

In light of these propositions, the open topologies would in a sense be appropriate if the sections

under consideration had only compact support. But this restriction is clearly inappropriate for

Lorentz metrics (as they are everywhere non-degenerate).12

One way to capture the essential insight of Geroch’s latter two examples is that in addition to

requiring a topology that is “sensitive” to differences across all of M—that is, demanding that the

last component of each member of its defining subbasis should be M—one should also require

that the topology respect the linear structure of the Lorentz metrics. Each class of (r, s)-tensor

fields (indeed, any vector bundle) on M forms a real vector space, with vector addition defined

pointwise on M and scalar multiplication acting fiberwise.13 As a subset of the smooth (0, 2)-tensor

fields, the Lorentz metrics inherit this algebraic structure.14 Demanding the continuity of the one-
12Hawking has expressed doubt that another class of topologies, which he calls the fine topologies and which

requires two metrics (and their derivatives to order k) to be equal outside of a compact set to be similar, is as “physical”
as the open topology “since to establish that two metrics actually coincide outside some compact set would require an
exact measurement which is not physically possible” (Hawking 1971, p. 397). But this is exactly what is required to
establish that a sequence of metrics converges in one of the open topologies, so if one accepts this line of reasoning,
one must also reject the open topologies on the same grounds.

13They also form a module over the ring of continuous real scalar fields on M, but this fact will play no role in what
follows.

14The Lorentz metrics themselves are not a vector space, as they are not closed under scalar multiplication (consider
negative scalars) or vector addition. Nevertheless, what’s important is that these operations be continuous on the
domain of Lorentz metrics on which they are defined.
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parameter family exhibited in eq. 4.6 matches exactly the requirement that scalar multiplication

be continuous; the sequence defined in eq. 4.5 suggests the requirement that vector addition be

continuous as well.15

There is no paradox that the open topologies do not make the vector space operations continu-

ous, for the topology of uniform convergence for a vector space need not be compatible with its

linear structure, i.e., make it into a topological vector space, as illustrated through the following

proposition (adapted from (Schechter 1997, Theorem 26.29, p. 705)):

Proposition 4.2.10. A topology on a vector space V makes it into a (locally convex) topological

vector space if and only if the topology

1. is translation-invariant, i.e., each translation map v 7→ u + v for a fixed u ∈ V is a homeo-

morphism of V, and

2. has a 0-neighborhood base consisting of ϵ-balls generated from some collection of semi-

norms, i.e., a collection of homogeneous and subadditive (but not necessarily separating)

functions.

Both the open and compact-open topologies are translation-invariant. But the open topologies

have 0-neighborhoods bases generated from the collection of the (h,M)-uniform norms, which are

extended norms (hence extended seminorms)—they assign infinite length to some tensor fields.

Thus they are not compatible with the linear structure of Γr
s for any r, s > 0. The compact-open

topologies, meanwhile, have 0-neighborhood bases generated from the (h,C)-uniform norms for a

compact C, which are in fact norms (hence seminorms) because the h-fiber norms, as continuous

real functions on M, are always bounded on compacta.

15At least for “small” vectors. See the discussion at the end of this section motivating the Ck global topologies
constructed in the next section.
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4.3 The Global Topologies

4.3.1 Motivation: The Problem with Translation-Invariance

Intuitively, a sequence should converge just when it eventually becomes arbitrarily similar to a

limit point. The open topologies determine that eq. 4.5 fails that criterion essentially because they

allow any choice of Riemannian metric h in their definitional subbasis ΞCO. When M is non-

compact, there will always be some h-fiber norm that “blows up” sufficiently rapidly “at infinity.”

More precisely, given any two tensors K and K′ of the same rank that differ outside of each compact

subset of M, there will always be some (h,M)-uniform norm of their difference that will be infinite.

This explains why the open topology has the convergence condition that it does: only when K and

K′ differ on a compact set will each (h,M)-uniform norm assign a finite value to their difference

(by the extreme value theorem).

Now, Geroch characterizes the sequence defined by eq. 4.5 as one where the “bump” flattens

further and further as the sequence progresses. The open topologies do not capture this since there

are some h-fiber norms for which |mg − η|h does not flatten but is in fact unbounded on R4. (Here

η is the Minkowski metric.) A natural response, which (Geroch 1970, p. 288) has suggested, is

to restrict the choices of h to be used in the definitional subbasis. (Such a restriction should also

not be ad hoc. One could easily fix a single choice of h, but this would be completely arbitrary.

Moreover, it would not be an invariant topology in the sense articulated below.)

But before attempting such a response, it will be helpful to reflect on why Geroch’s claim that

eq. 4.5 should converge seems plausible in the first place. The difference between the Minkowksi

metric and the mth term in the sequence is

m
g′ab − ηab = (m2 + x2 + y2 + z2)−1(dat)(dbt). (4.7)
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This difference will be everywhere small only according to an h-fiber norm that is well adapted to

the chosen coordinates, which are in turn well adapted to the limit point, the Minkowskian metric.

That is, if

hab =

(
∂

∂t

)a (
∂

∂t

)b

+

(
∂

∂x

)a (
∂

∂x

)b

+

(
∂

∂y

)a (
∂

∂y

)b

+

(
∂

∂z

)a (
∂

∂z

)b

, (4.8)

then |mg′ − η|h = (m2 + x2 + y2 + z2)−1 and ∥mg′ − η∥h,M = m−2, which vanishes as m→ ∞.

But if the example were modified slightly the result would be different. Consider the sequence

m
g′′ab =

(
et +

1
m2 + x2 + y2 + z2

)
(dat)(dbt) − (dax)(dbx) − (day)(dby) − (daz)(dbz) (4.9)

on R4 with plausible limit point

η′ab = et(dat)(dbt) − (dax)(dbx) − (day)(dby) − (daz)(dbz). (4.10)

Their difference is the same tensor as that for the analogous case introduced by Geroch, eq. 4.7.

But the (inverse) Riemannian metric well adapted to η′ is

h′ab = e−t

(
∂

∂t

)a (
∂

∂t

)b

+

(
∂

∂x

)a (
∂

∂x

)b

+

(
∂

∂y

)a (
∂

∂y

)b

+

(
∂

∂z

)a (
∂

∂z

)b

, (4.11)

which yields that |mg′′ − η′|h′ = e−t/(m2 + x2 + y2 + z2), hence is unbounded. Thus even though
m
g′ − η = m

g′′ − η′, the former sequence is taken to converge while the latter is not.

This observation poses a dilemma for Geroch’s suggestion that one should try to find a topology

intermediate between the compact-open and open topologies by means of some definitional sub-

basis (Γ0
2,R+,R′, {M}), where R′ ⊂ R(M), that respects the linear structure of Γ0

2. By proposition

4.2.10, such a topology must be translation-invariant. But any translation-invariant topology on Γ0
2

must arrive at the same answer as to whether the sequences
m
g′ and

m
g′′ converge. This is in conflict

with the above conclusion that the
m
g′ but not the

m
g′′ should converge.
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I would like to suggest that one can still satisfy a weakened form of Geroch’s desiderata by giving

up translation invariance and a topology fully compatible with linear structure. As I adumbrated

in the introduction, one can still retain a weakened form of these features, in which the Lorentz

metrics are partitioned into components, each of which is itself a subset of a topological vector

space. In other words, “within” each of these components, scalar multiplication and vector addition

are continuous, so Geroch’s desiderata are satisfied for “small” but not “large” perturbations—

those that lie in the same component as as the unperturbed metric. This is made precise in the next

subsection.

4.3.2 The Definition and Position of the Global Topologies

First, one can extend the notion of a fiber norm in the following way. Given any non-degenerate16

metric f and any (r, s)-tensor field K on M, define the f -fiber norm of K to be

|Ka1···ar
b1···bs
| f = |Ka1···ar

b1···bs
Kc1···cr

d1···ds
fa1c1 · · · farcr f b1d1 · · · f bsds |1/2, (4.12)

and the ( f , S )-uniform norm of K for any S ⊆ M to be ∥K∥ f ,S = supS |K| f . Note that if K is a scalar

field then its fiber norm (hence the uniform norm over any set as well) is independent of the choice

of f .

Next, for any p ∈ M, define kerr,s( f|p) = {K ∈ Γr
s : (|K| f )|p = 0} and kerr,s( f|S ) =

∪
p∈S kerr,s( f|p).

These sets, respectively called the kernels of f at p and S , are empty for positive and negative

definite metrics but non-empty for metrics of indefinite signature. Finally, let

K r
s ( f , S ) = span({K ∈ Γr

s − kerr,s( f|S ) : ∥K∥ f ,S < ∞}). (4.13)

This set consists of all the linear combinations of (r, s)-tensor fields on M that are nowhere in the
16A metric is non-degenerate when it has an inverse at every point. With a bit more work the present framework can

very likely be extended to degenerate metrics as well.
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kernel of f at S and are bounded with respect to the ( f , S )-uniform norm. Finally:

Definition 4.3.1. Two metrics f , f ′ are norm-equivalent on S , denoted f|S ≍ f ′|S , when K r
s ( f , S ) =

K r
s ( f ′, S ) for all (r, s).

Metrics that are norm-equivalent on S agree regarding which tensor fields are bounded on S . By

definition, norm-equivalence on S is an equivalence relation, hence partitions the metrics on M

into equivalence classes [ f|S ] = { f ′ : f|S ≍ f ′|S }.17 (When S = M, I shall omit reference to it,

writing [ f ] = { f ′ : f|M ≍ f ′|M} and calling them (simply) the metrics norm-equivalent to f .)

Of course, to determine whether two metrics f , f ′ are norm-equivalent on S , one does not need to

check that the collections of tensor fields they determine by eq. 4.13 for each r, s are respectively

equal. It is enough to do so on appropriate subcollections:

Proposition 4.3.2. Let BK r
s( f , S ) ⊂ K r

s ( f , S ) denote a collection of tensor fields that spans Γr
s.

Then two metrics f , f ′ are norm-equivalent on S if and only if BK r
s′( f , S ) = BK r

s′( f ′, S ) or

BK r′
s ( f , S ) = BK r′

s ( f ′, S ) for some r, s > 0.

Thus the values that the ( f , S )-uniform norm assigns to vector fields essentially determines which

norm-equivalence class it belongs to. In particular, it is their asymptotic behavior that norm-

equivalence encodes. One can make this precise by adopting the following definition:

Definition 4.3.3. Let K,K′ be two smooth tensor fields and f be a metric. K and K′ are mutually

bounding to order k with respect to f on S ⊆ M when there are constants c, c′ > 0 such that

c|∇( j)K| f ≤ |∇( j)K′| f ≤ c′|∇( j)K| f everywhere on S for each j ≤ k, where ∇ is the Levi-Civita

derivative operator compatible with f .18

17One may also partition the metrics into classes that are projectively and affinely equivalent, each of which take
on particularly simple forms. Further, norm-equivalence is refined by projective equivalence, which in turn is refined
by affine equivalence. Nevertheless, I conjecture that replacing norm-equivalence by one of the latter two in the
definition of the gloabl topologies (eq. 4.14) yields the same topology, and that no equivalence that strictly refines
norm equivalence does so.

18Sometimes the notation K′ ∈ Θ(K) is used for an analogous notion in computer science, especially the analysis
of algorithms, although its origins are in analytic number theory.
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Note that mutual boundedness is a symmetric relation, for if there are constants c, c′ > 0 such that

c|∇( j)K| f ≤ |∇( j)K′| f ≤ c′|∇( j)K| f everywhere on some S , then c′−1|∇( j)K′| f ≤ |∇( j)K| f ≤ c−1|∇( j)K| f

everywhere on S . There is a close connection between norm-equivalence and the mutual bound-

edness of metrics:19

Proposition 4.3.4. Two metrics f , f ′ are norm-equivalent on some S ⊆ M if and only if they are

mutually bounding to order 0 on S with respect to every metric f ′′.

Proof. Suppose that f|S ≍ f ′|S and let f ′′ be arbitrary. Because f ′′ and f are metrics, the field

Ω = 1/| f ′′| f is well-defined on S . Since then |Ω f ′′| f = 1 on S , Ω f ′′ ∈ K0
2 ( f , S ), hence by

assumptionΩ f ′′ ∈ K0
2 ( f ′, S ). By definition ∥Ω f ′′∥ f ′ ≥ |Ω f ′′| f ′ = Ω| f ′′| f ′ , so | f ′′| f ′ ≤ ∥Ω f ′′∥ f ′ | f ′′| f .

A similar argument returns that | f ′′| f ≤ ∥Ω′ f ′′∥ f | f ′′| f ′ for Ω′ = 1/| f ′′| f ′ . Combining the two then

yields (∥Ω′ f ′′∥ f )−1| f ′′| f ≤ | f ′′| f ′ ≤ ∥Ω f ′′∥ f ′ | f ′′| f . Finally, note that | f ′′| f = | f | f ′′ and | f ′′| f ′ = | f ′| f ′′ ,

recalling that f ′′ was arbitrary.

Conversely, suppose that f , f ′ are mutually bounding to order 0 with respect to every metric f ′′.

Then by definition there are constants c, c′ > 0 such that c| f ′′| f ≤ | f ′′| f ′ ≤ c′| f ′′| f . Hence if

f ′′ ∈ K0
2 ( f , S ), then f ′′ ∈ K0

2 ( f ′, S ) and vice versa. A similar argument yields the analogous

conclusion for the inverses of f . Since these together are tensor fields whose basis components in

each index span the corresponding (co-)tangent space at every point of S , proposition 4.3.2 and

the definition of norm-equivalence yield that f|S ≍ f ′|S . �

Two tensor fields that are mutually bounding to order k with respect to some metric need not be

mutually bounding to any higher order. (For instance, consider any field with support on R2, and

the conformally related field obtained through the factor 1 + a sin(x2) for 0 < |a| < 1.) Thus there

is a sense in which the above proposition is tight.20

19This has been anticipated in the notation for norm-equivalence, which has been adapted from Hardy and Wright
(1979, §1.6)

20It does suggest, though, investigating equivalence relations defined through analogs of proposition 4.3.4 formed
by replacing “0” with some positive integer. Would such a relation have any interesting physical significance?
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We are now ready to describe the Ck global topologies, using the definitional subbasis21

ΞG = {(g, ϵ; h, S ) ∈ L(M) × (0,∞) × R(M) × {M} : h ≍ g}. (4.14)

In fact, the neighborhoods Bk(g, ϵ; h,M) defined by ΞG form a (local) basis for the global Ck topol-

ogy on L(M). Showing this will be crucial in proving many facts about the global topology, but it

requires a pair of preliminary propositions.

Proposition 4.3.5. If g′ ∈ Bk(g, ϵ; h,M) with (g, ϵ; h,M) ∈ ΞG, then h ≍ g′.

Proof. Let g′ be given, and recall from the proof of proposition 4.2.2 that, at any p ∈ M, the h-fiber

norm (|g− g′|h)|p = ∥(gαβ)|p − (g′αβ)|p∥F is just the Frobenius norm with respect to the basis in which

the matrix representation of h|p is the identity. Thus

(|g′|h)|p = ∥(g′αβ)|p∥F

≤ ∥(gαβ)|p∥F + ∥(g′αβ)|p − (gαβ)|p∥F = (|g|h)|p + (|g − g′|h)|p

by the triangle inequality. Since ∥g∥h < ∞ and ∥g−g′∥h < ϵ by hypothesis, we have that h ≍ g′. �

Next we need some information about the geometric structure of the Riemannian metrics in each

[ f ].

Proposition 4.3.6. For any smooth, non-degenerate metric f , the set [ f ]∩R(M) is a (blunt) convex

cone, i.e., if hab, h′ab ∈ [ f ] and c, c′ > 0, then chab + c′h′ab ∈ [ f ].

Proof. It suffices to show that hab + h′ab ∈ [ f ] for any hab, h′ab ∈ [ f ]. Recall again from the proof of

proposition 4.2.2 that, at any p ∈ M, we can express (|g|h+h′)|p = ∥G(h+h′, p)∥F , where G(h+h′, p)

is the matrix representing the components of g|p in the basis in which the matrix representation of

21Cf. the construction of the Banach space Bk in Lerner and Porter (1974), which however only yields neighbor-
hoods of the Minkowski metric.
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(hab + h′ab)|p is the identity. Note that for any real matrix A of rank r, ∥A∥F ≤ tr(
√

AT A) ≤
√

r∥A∥F ,

where AT is the transpose of A. So

(|g|h+h′)|p ≤ tr(G(h + h′, p)) = ((hab + h′ab)gab)|p

≤ 2 max{(habgab)|p, (h′abgab)|p} = 2 max{tr(G(h, p)), tr(G(h′, p))}

≤ 2
√

n max{∥G(h, p)∥F , ∥G(h′, p)∥F} = 2
√

n max{(|g|h)|p, (|g|h′)|p}

using in the second line the fact that ( 1
2 (hab + h′ab)αab)|p ≤ max{(habαab)|p, (h′abαab)|p} for any αab

at p. The rightmost-hand side is bounded by hypothesis, so since p was arbitrary, the conclusion

follows. �

Proposition 4.3.7. For a given g, the sets Bk(g, ϵ; h,M), ranging over ϵ > 0 and h ∈ [g], form a

local basis at g. Ranging over g as well, they form a basis.

Proof. To show that the sets Bk(g, ϵ; h,M), with (g, ϵ; h,M) ∈ ΞG, form a basis, it suffices to show

that if g′′ ∈ Bk(g, ϵ; h,M) ∩ Bk(g′, ϵ′; h′,M) for arbitrary Bk(g, ϵ; h,M) and Bk(g′, ϵ′; h′,M), then

there is some other Bk(g′′, ϵ′′; h′′,M) such that Bk(g′′, ϵ′′; h′′,M) ⊆ Bk(g, ϵ; h,M)∩Bk(g′, ϵ′; h′,M).

So let some such Bk(g, ϵ; h,M) and Bk(g′, ϵ′; h′,M) be given and pick any g′′ in their intersection.

Put h′′ab = hab + h′ab and

ϵ′′ = min{ϵ − ∥g − g′′∥h,M, ϵ′ − ∥g′ − g′′∥h′,M}

Note that g′′ ∈ Bk(g, ϵ; h,M) by hypothesis, so proposition 4.3.5 entails that h ≍ g′′. Similar

reasoning gives that h′ ≍ g′′, so by proposition 4.3.6, hab + h′ab ∈ [g′′]. Thus Bk(g′′, ϵ′′; h′′,M) is

well-defined.
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Now consider any g′′′ ∈ Bk(g′′, ϵ′′; h′′,M). By definition, ∥g′′ − g′′′∥h+h′ < ϵ − ∥g − g′′∥h, hence

ϵ > ∥g′′ − g′′′∥h+h′,M + ∥g − g′′∥h,M > ∥g′′ − g′′′∥h,M + ∥g − g′′∥h,M

≥ sup
M

[|g′′ − g′′′|h + |g − g′′|h
] ≥ ∥g − g′′′∥h,M,

using the fact that ∥g′′ − g′′′∥h+h′,M > ∥g′′ − g′′′∥h,M in the first line and the triangle inequality

for the supremum and then the h-fiber norm in the second. Therefore g′′′ ∈ Bk(g, ϵ; h,M) and a

similar argument shows that g′′′ ∈ Bk(g′, ϵ′; h′,M). Hence Bk(g′′, ϵ′′; h′′,M) ⊆ Bk(g, ϵ; h,M) ∩

Bk(g′, ϵ′; h′,M) since g′′′ was arbitrary.

To show that the sets Bk(g, ϵ; h,M), ranging only over ϵ and h ∈ [g], form a local basis at g, it

suffices to show that, for every basic open neighborhood Bk(g′, ϵ′; h′,M) ∋ g such that h′ ≍ g′,

there is some Bk(g, ϵ; h,M) ⊆ Bk(g′, ϵ′; h,M) such that h ≍ g. So consider some particular such

Bk(g′, ϵ′; h′,M) and put h = h′ and ϵ = ϵ′ − ∥g − g′∥h′,M. By proposition 4.3.5, h ≍ g′. Now, for an

arbitrary g′′ ∈ Bk(g, ϵ; h,M), ∥g− g′′∥h,M < ϵ′ − ∥g− g′∥h′,M, so applying similar reasoning as above

yields that ∥g − g′′∥h′,M < ϵ′, i.e., g′′ ∈ Bk(g′, ϵ′; h′,M), hence Bk(g, ϵ; h,M) ⊆ Bk(g′, ϵ′; h′,M). �

Now, the definitional subbases for the compact-open and open topologies, ΞCO and ΞO, respec-

tively, are plainly closely related—the only difference between them is in their fourth component.

Despite initial appearances, there is a definitional subbasis Ξ′CO generating the compact-open topol-

ogy that is plainly closely related to ΞG, also differing only in its fourth component.

Proposition 4.3.8. The definitional subbasis Ξ′CO = {(g, ϵ; h,C) : g ∈ L(M), ϵ ∈ (0,∞),C ∈

C, h|C ≍ g|C} generates the compact-open topology; in fact, Ξ′CO = ΞCO.

Proof. Let any g ∈ L(M), C ∈ C, K ∈ Γr
s, and h ∈ R(M) be given. Since C is compact, the con-

tinuous scalar fields |K| f and |K|h are both bounded on C (Willard 1970, Theorem 17.13, p. 123),

hence K r
s ( f ,C) = Γr

s = K r
s (h,C) and by definition R(M) ⊆ [g|C]. �
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Thus the global topologies can be understood as a natural variation on the compact-open topologies

that controls similarity across M in just the same way as the open topologies.

4.3.3 Properties of the Global Topologies

Note that the global topologies are indeed topologies for L(M) since [g] ∩ R(M) is non-empty for

each g. In particular, for any h ∈ R(M) and g ∈ L(M), h/|g|h ≍ g. Further, they are diffeomorphism-

invariant (Geroch 1970, p. 281–2), in the sense that for any element ψ of the diffeomorphism group

of M, the pushforward ψ∗ acts as a homeomorphism on the Lorentz metrics equipped with a global

topology. To see this, first note that

|ψ∗g|ψ∗h = [ψ∗(ham)ψ∗(hbn)ψ∗(gab)ψ∗(gmn)]1/2

= [ψ∗(hamhbngabgmn)]1/2 = [hamhbngabgmn]1/2 = |g|h,

so h ≍ g if and only if ψ∗h ≍ ψ∗g. Using similar reasoning, ψ∗[Bk(g, ϵ; h,M)] = Bk(ψ∗g, ϵ;ψ∗h,M).

Thus the preimage of every basis element is open, meaning ψ∗ is continuous, hence acts as a

homeomorphism.

The C0 global topology rules in the “right” way on Geroch’s three examples. First, the sequence

defined by eq. 4.4 does not converge to the Minkowski metric η. To see why, consider

hab =

(
∂

∂t

)a (
∂

∂t

)b

+

(
∂

∂x

)a (
∂

∂x

)b

+

(
∂

∂y

)a (
∂

∂y

)b

+

(
∂

∂z

)a (
∂

∂z

)b

,

noting that ∥η∥h = 2, so h ≍ η. This choice yields that

∥η − m
g∥h = sup

M

m
1 + (x − m)2 = m,

which cannot be as small as one wishes for sufficiently large m. Hence
m
g does not converge to the
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Minkowski metric.

Second, the sequence defined by eq. 4.5 does converge to the Minkowski metric. To see why, let

hab = α

(
∂

∂t

)a (
∂

∂t

)b

+ β1

(
∂

∂x

)a (
∂

∂x

)b

+ β2

(
∂

∂y

)a (
∂

∂y

)b

+ β3

(
∂

∂z

)a (
∂

∂z

)b

+ · · · (4.15)

be any Riemannian metric in [η] in coordinates determined by η. (Note that h need not be diagonal

in these coordinates.) Since η ∈ K2
0 (η, M), by definition η ∈ K2

0 (h,M), hence

∞ > ∥η∥h,M = sup
M

(habhcdηacηbd)1/2 = sup
M

(α2 + β2
1 + β

2
2 + β

2
3)1/2 > sup

M
|α|. (4.16)

Consequently

∥η − m
g′∥h,M = sup

M

|α|
m2 + x2 + y2 + z2 ≤

supM |α|
m2 ,

whose right-hand side is finite and can be made as small as one wishes by choosing a sufficiently

large m. Hence
m
g′ → η as m → ∞. Third, and finally, by similar calculations one can show that

the family {λgab : λ > 0} is continuous in the C0 global topology.

We can now use these facts and proposition 4.3.7 to show that each Ck global topology lies strictly

between the Ck compact-open and Ck open topologies for non-compact manifolds. (Since the

compact-open and open topologies coincide when M is compact, clearly the global topologies do

as well.)

Proposition 4.3.9. For M non-compact, the Ck global topology on L(M) is strictly finer that the

Ck compact-open topology and strictly coarser than the Ck open topology.

Proof. Since ΞG ⊂ ΞO, each basic neighborhood of the Ck global topology is a basic neighborhood

of the Ck open topology, but the former makes every family of the form {λgab : λ > 0} is continuous,

while the latter does not. Thus the Ck global topology is strictly coarser than the Ck open topology.

Next let an arbitrary B(g, ϵ; h,C) be given, and pick any h′ ∈ [g] ∩ R(M). Define Ω = |g|h′/|g|h and
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put h′′ab = Ωhab/ infC Ω. Since

∥g∥h′′,M = sup
M

(h′′amh′′bngabgmn)1/2 =
∥g∥h′,M
infC Ω

< ∞,

we have that h′′ ≍ g, so Bk(g, ϵ; h′′,M) is a basic neighborhood of the Ck global topology. Now,

for any g′ ∈ Bk(g, ϵ; h′′,M),

ϵ > ∥g − g′∥h′′,M ≥ ∥g − g′∥h′′,C =
supC(Ω|g − g′|h)

infC Ω
≥

(
supC Ω

infC Ω

)
sup

C
|g − g′|h ≥ ∥g − g′∥h,C,

thus g′ ∈ B(g, ϵ; h,C). Since g′ was arbitrary, we have Bk(g, ϵ; h′′,M) ⊆ B(g, ϵ; h,C), so by the

Hausdorff criterion (Willard 1970, Theorem 4.8, p. 35), the Ck compact-open topology is coarser

than the Ck global topology.

Lastly, for the sake of contradiction, suppose that every basic neighborhood of the Ck global topol-

ogy Bk(g, ϵ; h,M) contains a basic neighborhood of the Ck compact-open topology, Bk(g, ϵ′; h′,C).

Consider g′ = (1 + ρ/|g|h)g, where ρ is a smooth positive scalar field such that

sup
C
ρ < ϵ′

(
sup

C

|g|h′
|g|h

)−1

,

but supM ρ does not exist, i.e., is infinite. Note that

∥g − g′∥h′,C = sup
C
ρ
|g|h′
|g|h
≤ (sup

C
ρ)

(
sup

C

|g|h′
|g|h

)
< ϵ′,

so g′ ∈ Bk(g, ϵ′; h′,C). But |g − g′|h = ρ, which is unbounded on M, hence a contradiction.

Thus by the Hausdorff criterion the Ck global topology is not coarser than the Ck compact-open

topology. �

Because the global topologies are generated from a collection of norms, the corresponding col-

lection of metrics (defined by d(g, g′; h) = ∥g − g′∥h) in fact define a uniform structure on L(M).
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Instead of digressing into the details of the theory of uniform spaces—that is, sets endowed with

uniform structure—the following definition relevant to the present investigation may be abstracted

from that theory.

Definition 4.3.10. A pair of points x, x′ in a space X whose topology is generated from the ϵ-balls

B(x, ϵ; dα) of a collection of metrics {dα} is said to be uniformly connected when for every ϵ > 0

and metric dα, there is a finite sequence B(y1, ϵ; dα), . . . ,B(yn, ϵ; dα) such that x ∈ B(y1, ϵ; dα),

x′ ∈ B(yn, ϵ; dα), and B(yi, ϵ; dα) ∩ B(y j, ϵ; dα) , ∅ if |i − j| = 1. The space X is uniformly

connected when each pair of its points is connected.22

Such a space is locally uniformly connected when every point has a local neighborhood basis

consisting of sets that are uniformly connected (in the subspace topology).

Proposition 4.3.11. Each Bk(g, ϵ; h,M) (with h ≍ g) is uniformly connected in the Ck global

topology.

Proof. Let some such Bk(g, ϵ; h,M) be given and consider some arbitrary h′ ≍ g, ϵ′ > 0, and

g′ ∈ Bk(g, ϵ; h,M). Since then ∥g − g′∥h′ < ∞, pick some positive c < ϵ′/∥g − g′∥h′ , so that

∥cg − cg′∥h′ < ϵ′. Further, note that ∥g − cg∥h′ = |1 − c| · ∥g∥h′ and ∥g′ − cg′∥h′ = |1 − c| · ∥g′∥h′

are both finite, so put N = ⌊1 + ∥g − cg∥h′/ϵ′⌋, N′ = ⌊1 + ∥g′ − cg′∥h′/ϵ′⌋, C = ∥g − cg∥h′/N, and

C′ = ∥g′ − cg′∥h′/N′. The families Λ = {g − λg : λ ∈ [0, c]} and Λ′ = {g′ − λg′ : λ ∈ [0, c]} can

then be covered by neighborhoods of the form Bk(g − nCg, ϵ′; h′,M) and Bk(g′ − n′C′g′, ϵ′; h′,M),

respectively, with n ∈ {0, . . . ,N} and n′ ∈ {0, . . . ,N′}. This shows that g and g′ are uniformly

connected, but since g′ was arbitrary and uniform connection is an equivalence relation, each pair

of elements in Bk(g, ϵ; h,M) is uniformly connected. �

Combining propositions 4.3.11 and 4.3.9 immediately yields the following.

22Sometimes this property is called uniform chain connectedness (Mrówka and Pervin 1964), in analogy with the
chain connectedness for general topological spaces, although this latter property is strictly weaker than (topological)
connectedness (Willard 1970, Theorem 26.15, p. 195).
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Corollary 4.3.12. Each Ck global topology is locally uniformly connected.

Despite being locally uniformly connected, the global topologies are not uniformly connected. In

fact, they have uncountably many uniform components that can be described using the following

lemma.

Proposition 4.3.13. Given g, g′ ∈ L(M), g ≍ g′ if and only if there are constants ϵ, ϵ′ > 0 and

h, h′ ∈ R(M) such that h ≍ g, h′ ≍ g′, and Bk(g, ϵ; h,M) ∩ Bk(g′, ϵ′; h′,M) , ∅.

Proof. Suppose that g ≍ g′. Pick any h ∈ [g] ∩ R(M), noting that h ≍ g′ by transitivity, and then

pick any ϵ > ∥g − g′∥h,M. Hence g′ ∈ Bk(g, ϵ; h,M), so arbitrarily setting ϵ′ = ϵ and h′ = h yields

that Bk(g, ϵ; h, M) ∩ Bk(g′, ϵ′; h′,M) , ∅.

Conversely, suppose that h ≍ g, h′ ≍ g′, and g′′ ∈ Bk(g, ϵ; h,M) ∩ Bk(g′, ϵ′; h′,M). By proposition

4.3.5, h ≍ g′′ and h′ ≍ g′′, hence by transitivity g ≍ g′. �

Proposition 4.3.14. The uniformly connected components of the Ck global topology on L(M) have

the following properties:

1. they are identical with the norm-equivalence classes [ f ] ∩ L(M);

2. through translation each such component (under the subspace topology) generates a locally

convex topological vector space on Γ0
2 (and similarly on Γ2

0 for the inverse metrics) com-

patible with the original topology on the component, in the sense that taking the subspace

topology again returns the original topology.

Proof. 1. Let G(g) =
∪

ϵ>0 Bk(g, ϵ; h,M) for each g ∈ L(M). Now, by proposition 4.3.13, g′ - g

if and only if G(g) ∩ G(g′) = ∅. So G(g) = [g]. Further, since any pair of elements of G(g)

is in Bk(g, ϵ; h,M) for some finite ϵ > 0, proposition 4.3.11 entails that Gk(g) is uniformly

connected. Thus they are the maximal uniformly connected components.
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2. Since the Lorentz metrics span Γ0
2, a topology on the latter is generated from each uniform

component as the final topology induced from the translation maps. Moreover, these are gen-

erated from the (g, M)-uniform norms, so by proposition 4.2.10 the resulting locally convex

topology is compatible with the linear structure of Γ0
2. The local bases for each g in the same

component are generated from the same collections of norms, so the translation maps add

no new open neighborhoods to the Lorentz metrics (modulo elements that are not Lorentz

metrics).

�

Although the topology that each uniform component generates is locally convex, it bears remarking

that the collection L(M) is not itself a convex set, for in general the set {λgab + (1 − λ)g′ab : λ ∈

[0, 1]} 1 L(M) for arbitrary g, g′ ∈ L(M).

Lastly, one can characterize the global topologies in terms of similarity of observable quantities,

the fields definable on M in terms of g and any collection of frame fields whose (g,M)-uniform

norm is bounded.

Proposition 4.3.15. A family of tensor fields
λ

ϕa
bc on corresponding spacetimes (M,

λ
g), with λ ∈

(0, a) for some a > 0, converges to a tensor field ϕa
bc on a spacetime (M, g) in the Ck global

topology iff limλ→0 supM(
λ

ϕa
bc

0
ψbc

a ) = supM ϕ
a
bc

0
ψbc

a for every tensor field
0
ψbc

a ∈ K2
1 (g,M), and for each

positive j ≤ k, limλ→0 supM(
j
ψ

bcd1···d j
a ∇d j · · · ∇d1

λ

ϕa
bc) = supM

j
ψ

bcd1···d j
a ∇d j · · · ∇d1ϕ

a
bc for every tensor

field
j
ψ

bcd1···d j
a . Moreover, the Ck global topology is the unique topology with this property.

Proof. Analogous to that of proposition 3.5.2. �

Analogous propositions hold for tensor fields ϕ of other ranks. One can interpret any particular ψ

field as determining a kind of local system of rods and clocks by which the ϕ fields are measured.

The restriction on the former amounts to the requirement that they do not get arbitrarily long and
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rapid, corresponding to arbitrary precision at infinity, percentage-wise. In a word, then, a field

converges in the Ck global topology just in case all observers with bounded precision agree that

their measurements converge to those they would make of the limit field. It is instructive to contrast

this description with that for the Ck open topologies:

Proposition 4.3.16. A family of tensor fields
λ

ϕa
bc on corresponding spacetimes (M,

λ
g), with λ ∈

(0, a) for some a > 0, converges to a tensor field ϕa
bc on a spacetime (M, g) in the Ck open topol-

ogy iff there is some compact C ⊆ M such that (
λ

ϕa
bc)|M\C = (ϕa

bc)|M\C for sufficiently small λ,

limλ→0 supC(
λ

ϕa
bc

0
ψbc

a ) = supC ϕ
a
bc

0
ψbc

a for every tensor field
0
ψbc

a ∈ K2
1 (g), and for each positive j ≤ k,

limλ→0 supM(
j
ψ

bcd1···d j
a ∇d j · · · ∇d1

λ

ϕa
bc) = supC

j
ψ

bcd1···d j
a ∇d j · · · ∇d1ϕ

a
bc for every tensor field

j
ψ

bcd1···d j
a .

Proof. Apply proposition 4.2.8 and the proof of proposition 3.3.1. �

Again, analogous propositions hold for tensor fields ϕ of other ranks. In contrast to proposition

4.3.15, the ψ fields by which the convergence of ϕ is determined are unrestricted, but in balance

with that weakening a much stronger condition is placed on the suprema, namely that they equal

the limit point except for a bounded region. This makes sense, for if observers are allowed to have

arbitrary precision at infinity, the only way a field can converge is if there is no difference between

it and its limit point outside of a bounded region.

4.4 Conclusions and Prospects

Geroch has remarked that finding an appropriate topology is surprisingly difficult, and at times

has expressed some measure of doubt regarding whether there even is such a topology. Instead

of reading his demand as one for a canonical topology, one can see him searching for a particular

topology with certain properties. The construction of the global topologies meet that goal: it

is sensitive to globally defined properties but retains enough continuity for the linear operations
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defined on L(M) to capture one’s intuitive judgments regarding the convergence and continuity of

his examples.

A natural query to then pose regards whether, and which, theorems in the literature that use the

open topologies have analogs using their global topology counterparts that are more physically

relevant in light of the problems with the former. Much work remains to be done for this query,

but it turns out that at least certain types of theorems carry over exactly. Recall that a property P

is conformally invariant when P holds of g if and only if for every scalar field Ω > 0, P holds for

Ωg.

Proposition 4.4.1. A conformally invariant property P of a spacetime g is stable (resp. dense) on

some S ⊆ L(M) in the Ck global topology if and only if it is stable (resp. dense) on S in the Ck

open topology.

Proof. For stability, it suffices to show the above equivalence holds when S = g, a point. One

direction follows immediately from proposition 4.3.9, so suppose that some conformally invariant

property of g is stable in the Ck open topology, i.e., there is some Bk(g, ϵ; h,M) all of whose

elements have that property. Let Ω = 1/|g|h, one can express Bk(g, ϵ; h,M) = {g′ : ∥Ω−1g −

Ω−1g′∥Ωh < ϵ}. Because P is conformally invariant, it must hold on the set Bk(Ωg, ϵ; h,M) =

{g′ : ∥g − g′∥Ωh < ϵ} = Bk(g, ϵ;Ωh,M), which is a basic open neighborhood of g in the Ck global

topology since |g|Ωh = 1 implies that g ≍ Ωh.

For denseness, as before, one direction follows immediately from proposition 4.3.9, so suppose

that some conformally invariant property P of g is dense in some S ⊆ L(M) in the Ck global

topology, i.e., for every g ∈ S there is some Bk(g, ϵ; h,M) with h ≍ g that contains an element

g′ with P. Now consider any basic neighborhood Bk(g, ϵ′; h′,M) in the Ck open topology. Using

the same reasoning as above, one can conclude that it contains an element with property P if

Bk(Ω′g, ϵ′; h′,M) = Bk(g, ϵ′;Ω′h′,M) does so as well for some scalar field Ω′ > 0. Picking Ω′ =
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max{ϵ′′/2|g|h′ , ϵ′′/2|g′|h′}, where ϵ′′ ∈ (0, ϵ′), yields that

|g − g′|Ω′h′ ≤ |g|Ω′h′ + |g′|Ω′h′ = Ω|g|h′ + Ω|g′|h′ ≤ ϵ′′/2 + ϵ′′/2 < ϵ′.

Hence ∥g − g′∥Ω′h′ < ϵ′, meaning g′ ∈ Bk(g, ϵ′;Ω′h′,M). �

Recall that (Hawking 1969) showed that the existence of a global time function, a smooth scalar

field strictly increasing on each future-directed timelike curve, is equivalent to stable causality, i.e.,

the stability of the property of having no closed causal curves in the C0 open topology.23 We thus

have the following:

Corollary 4.4.2. Hawking’s theorem holds for the C0 global topology, i.e., a spacetime admits of

a global time function if and only if it is stable in the C0 global topology.

There are many properties, such as being singular, not covered by proposition 4.4.1. Geodesic

(in)completeness, for instance, is sometimes but not always stable (Beem et al. 1996, Ch. 7.1), and

I suspect one can find examples thereof for which the open and global topologies render different

judgments. Again, in light of the open topologies’ many problems, the global topologies seem a

better choice for formulating these kinds of questions regarding global properties.

Of course, I have not shown that the global topologies are the unique topologies meeting Ge-

roch’s desiderata. While I have given several characterizations of their structure, proving that they

have further invariant characteristics, such as being “maximal” or “minimal” in some relevant way,

would further illuminate their status. For instance, one might try to make precise and then inves-

tigate a sense in which the global topologies might make linear operations defined on L(M) “as

continuous as they could be” (perhaps subject to some other constraints).

23See also Hawking and Ellis (1973, Propopsition 6.4.9, p. 198–201). These early results actually only proved that
the existence of a continuous time function follows from stable causality; the extension to smoothness remained a folk
theorem until surprisingly recently. See Minguzzi and Sánchez (2008, §3.8.3) and references therein for part of this
story.
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Another related direction to pursue concerns the fact that both the compact-open and open topolo-

gies have natural formulations in terms of fiber bundle theory. Recall that each Lorentz metric

corresponds to a smooth cross-section of a (0, 2)-tensor bundle over M, and its derivatives to cross-

sections of the appropriate jet bundle. Given an open set of the total space of the bundle, one can

define a basis element for the open topology as the set of Lorentz metrics whose corresponding

cross-sections’ images lie in that open set. One can define a subbasis element for the compact-open

topology similarly except one considers the cross-sections’ images restricted to compacta of M.

I suspect that the global topologies can be given a natural fiber bundle formulation. Like in the

present investigation, this would require attention to the algebraic structure of the sections, and so

may require something like the principle bundle formalism.
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Chapter 5

Conclusions and Beyond

In this dissertation, I have explored just a few of the bearings that notions of similarity have on

scientific theorizing and practice. The notion of similarity amongst spacetimes can be formal-

ized through topology, and brought to bear on questions concerning the stability and genericness

of spacetime properties, hence concerning their physical significance. But, I argued (ch. 2), be-

cause there is no canonical notion of similarity, such a notion must be chosen in consonance with

the context of inquiry. Canonicalists about topology—those in opposition to this methodological

contextualism—must face the horns of a no-go result, and either reject the significance of Hawk-

ing’s theorem or of continuity in the geometric sense.1

I showed as well in chapter 3 that similarity helps resolve an old issue about the relationship

between general relativity and Newtonian gravitation. Building on work by Ehlers, I exhibited a

framework for understanding a reduction relation between them that is both perfectly general and

explanatory of Newtonian gravitation’s success. In particular, a sequence of relativistic spacetimes

reduces to a Newtonian spacetime just when it converges to it in an appropriate topology. Once

one sees the role that topology plays in defining the convergence (hence reduction) relation, one

1Canonicalists attracted by one of the global topologies must reject the latter, that all families of spacetimes con-
tinuous in the geometric sense are in fact continuous.
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is led, in light of the conclusions of chapter 2, to consider which topology is most appropriate for

understanding this relation. It turns out that the choice of topology can be understood to align with

a choice regarding which observable quantities must be well-approximated in the limit. Once this

is clear, it becomes manifest that one must modify the topology that has been implicitly used in the

literature regarding the reduction relation to include observables defined beyond points, like the

lengths of curves.

Finally, in chapter 4 I addressed the question of global similarity that Geroch (1971) raises: al-

though the open topologies have been used to capture such a notion, in fact they are not so well

adapted to the task. My diagnosis of this failure is that they are not sensitive to the algebraic

structure of the Lorentz metrics. Although a topology completely meeting Geroch’s demands does

not exist, I argue, there is a topology that meets a slight weakening of them. I then prove a series

of propositions to justify various aspects of the interpretation of these new global topologies, and

venture slightly into examining which propositions using them have analogs with those using the

open topologies.

These are only a few applications of similarity. To illustrate how broad this project could continue

to be, I have collected together a number of further topics, some of which are extensions of those

treated in the above chapters. These are organized roughly by the chapter of which they are largely

an extension, although there is some overlap that I note when it occurs. The last section concerns

a few applications not immediately related to these.
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5.1 Similarity, Topology, and Physical Significance in Relativ-

ity Theory

5.1.1 Stronger Results in Support of Methodological Contextualism

One of the arguments I made for methodological contextualism regarding the choice of topology

on the models of general relativity relied on certain technical results that I proved. In particular, I

showed that there is no topology with respect to which both (1) all the one-parameter families of

spacetimes continuous in the geometric sense are continuous, and (2) Hawking’s theorem holds.

Since the latter is an important result and the former formalized a very intuitive conception of

continuity, this result shows that a proponent of the opposing canonicalism must either reject the

physical relevance of Hawking’s theorem, or of continuity in the geometric sense.

Such a proponent might do so on the grounds that, despite the intuitiveness of continuity in the

geometric sense, it does not play a sufficiently significant role in the actual application of relativity

theory. A rejoinder to this retrenchment could then consist in finding a different, widely used prop-

erty to feature in a no-go theorem. One possibility involves the stability of initial-value evolution

in general relativity. Without going into technical detail, one says that the evolution of initial data

on a Cauchy surface is stable when its map into the evolved relativistic spacetime is continuous

(Hawking and Ellis 1973, Ch. 7). Intuitively, this means that small changed in the evolved space-

time result from small changes in the initial data defined on this surface. This, of course, requires

a topology on relativistic spacetimes (and on Cauchy surfaces). I conjecture that “continuity in the

geometric sense” in my no-go theorem can be replaced with “stability of initial-value evolution.”

I conjecture as well that one could perform an analogous substitution into the following proposition

(whose proof is analogous to that of proposition 2.5.1):

Proposition 5.1.1. Any topology on L(M) with respect to which all the one-parameter families
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continuous in the geometric sense are continuous also determines that chronology-violating space-

times are dense.

This would be an especially puzzling result for the canonicalist to explain (away), as spacetimes

that have initial-value formulations do not have closed timelike curves. It would thus show that

the kind of perturbations that small changes in the initial values generate are very special, as any

evolved spacetime would be arbitrarily similar to another spacetime without an initial value for-

mulation.

5.1.2 Interpreting Topologies Over Spacetimes

If one accepts that the choice of topology on the collection of spacetimes should depend on the

context of investigation, a natural question to ask is exactly how that dependence should manifest.

When it comes to the stability, density, and genericness of certain properties, there is an intuition

that the point-open, compact-open, and global topologies are sensitive only to certain properties.

To capture this intuition, one could try to prove analogs of proposition 2.4.3, which asserts the

genericness of chronology violation according to the compact-open topologies, for whole classes

of spacetime properties and for other topologies. For example, it seems roughly that the point-open

topologies would rule as generic any property definable on the complement of any local region, and

that the compact-open topologies would rule in the same way properties definable on co-compact

sets. If correct, such propositions would require a refinement of the usual partition of spacetime

properties into local and global (and indeed a modification of the class of global properties, which

are usually taken to be the compliment of the local properties).

Another aspect of interpretation is the use of the ( f , S )-uniform norm (where, recall, f is some

metric and S ⊆ M). This yields that similarity is measured in terms of maximal dissimilarity.

One could instead use the ( f , S )-Lp norm to measure similarity (arguably) in terms of average
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dissimilarity, i.e., for any tensor field K on S ,

∥K∥ f ,S ,p =

(∫
S
|K|pf dV f

)1/p

(5.1)

where (as before) |K| f is the f -fiber norm of K and integration is with respect to the volume element

defined by f . When the S consist of compact sets, this norm is often used in the context of the

initial value problem in general relativity (Hawking and Ellis 1973, Ch. 7.4). The case where

S = M for a non-compact M would, of course, require more work along the lines developed for

the global topologies.

A third aspect of interpretation is the choice of order of the topology, viz. how many derivatives

of the metric should be relevant for measuring similarity. Accordingly, Beem et al. (1996, Remark

3.14) have suggested the following interpretations for first three orders of the open topology:

1. Closeness in the zeroth order open topology means similarity of light cones.

2. Closeness in the first order open topology means similarity of geodesic systems.

3. Closeness in the second order open topology means similarity of curvature tensors.

The suggestion for the second order seems right to me, but the suggestion for the first order is

ambiguous and that for the zeroth order incorrect. In the first place, what is a “geodesic system”

and what would it mean for two of them to be similar? Given a pair of spacetimes, this could

mean that the geodesics in one are curves of sufficiently bounded acceleration in the other. Or

it could refer to similarity of connection fields, or of geodesic sprays. Regarding the suggestion

for the interpretation of the zeroth order topology, two conformally equivalent metrics will not

be “close” if the relevant conformal factor is not unity outside of a compact set (on account of

propositions 2.3.1 and 2.3.2 consideration). Since conformally equivalent metrics have the same

light cone structure, it is clear that the suggested interpretation neglects the volumetric structure
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of the spacetime metric. It remains to clarify these interpretations and see how (if at all), once

corrected, they may be extended to other classes of topologies besides the open ones.

Finally, a fourth aspect concerns alternative characterizations of the topologies that reveal new

angles on their interpretation. Already in the second and third main chapters I characterized the

point-open and compact-open topologies, and the global and open topologies, respectively, in terms

of similarity of observable quantities. The point-open, compact-open, and open topologies have

entirely geometric formulations using the formalism of fiber bundles, and it remains to be seen

whether the global topologies can be given such a formulation as well. Yet another reformulation

that eschews the uniform norm instead uses effectively continuously varying ϵ-balls. In a bit more

detail, one considers a topology generated from sets of the form {g′ ∈ L(M) : (|g − g′|h)|S < δ|S },

with g ranging over all of L(M), h and S over some collection of Riemannian metrics and subsets

of M, respectively, and δ : M → (0,∞) ranging over some collection of continuous fields. Again,

appropriate choices of these collections yield equivalent formulations of the point-open, compact-

open, and open topologies, and it remains to be seen whether this is so for the global topologies

also.

5.1.3 Stability and Physicality

A much broader, multifaceted project stemming from the work in chapter 2 concerns the stability

principle suggested independently by Hawking (1971, p. 395), Geroch (1971, p. 70), and Hawking

and Ellis (1973, p. 197). The brief form in which they present it elicits several questions. First,

what is its history? Here I can make only a few schematic remarks. One finds an expression of the

principle in Duhem (1954, p. 143), who stresses that

a mathematical deduction is of no use to the physicist so long as it is limited to as-

serting that a given rigorously true proposition has for its consequence the rigorous

accuracy of some such other proposition. To be useful to the physicist, it must still be
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proved that the second proposition remains approximately exact when the first is only

approximately true. . . . Such are the rigorous conditions that we are bound to impose

on mathematical deduction if we wish this absolutely precise language to be able to

translate without betraying the physicist’s idiom, for the terms of this latter idiom are

and always will be vague and inexact like the perceptions which they are to express.

A thorough discussion of this point occupies the whole of Part II, Ch. 3 of The Aim and Struc-

ture of Physical Theory, where Duhem explicitly cites Hadamard for a mathematical basis for his

interpretation of the role of approximation. Hadamard, as early as 1898, had defined a system of

differential equations to be well-posed just in case, given some appropriate set of initial data, there

is a unique evolution that varies continuously with the initial data.2 Otherwise, the problem is called

ill-posed. There was a sense that only well-posed systems could represent real physical processes,3

a sense which perhaps has precedent even in Leibniz’s Law of Continuity and beyond. Tracing this

history, besides being of independent interest, could inform the philosophical understanding of the

stability principle and its justification.

Second, how does the stability principle compare with other notions in the literature? For instance,

what is the relationship of this notion of stability with the so-called stability dogma4 in dynamical

systems theory, and with notions of robustness in modeling? Such a comparison will show more

clearly that the stability principle has connections to ideas already in the philosophy of science

literature, but that it is also novel and perhaps in some senses more general than certain of them. A

natural follow-up question would be to ask what are the implications of accepting the principle for

the epistemology of modeling? I can see already a number of such implications that could sustain

further discussion:
2See, e.g., Hadamard (1923).
3The astute reader may notice here that the import has shifted to the modal-metaphysical (what’s possible) from

the inferential-epistemological (what we have warrant to infer). Was it thus Duhem’s phenomenological influence that
drove the shift to epistemology?

4For a discussion, see, e.g., Schmidt (2011).
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• What we have warrant to infer is interdependent on what we think is possible, and how we

think those possibilia are similar.

• In general there will be properties of the world that models describe that, in principle, one

will never have warrant to infer.

• Accounts of scientific theories must thus distinguish between the modal possibilities for

which a theory allows and the possibilities about the world one can infer.5

Do these implications hold in general for scientific modeling, or are they restricted to cases in

which the models are sufficiently mathematized?

Third, what is the status of the principle and its assumptions? Are there arguments for it, or other

assumptions that imply it? Or is a contingent a priori principle, one that must be presupposed for or

is mutually constitutive of certain kinds of scientific inquiry?6 At issue, essentially, is whether there

are plausible examples in conflict with the stability principle, or whether the principle follows from

some very basic epistemological assumptions or observations. One plausible example of the former

are so-called inverse problems, like inferring the structure of a medium from measurements of

waves on its boundary. (They are inverses to the perhaps more traditional problem of knowing the

structure of the medium and then predicting how the waves will propagate.) Many inverse problems

are ill-conditioned in the sense that the inferences made (e.g., the structure of the medium) does

not depend continuously on the data. Yet practitioners often employ “regularization” methods to

transform or alter the problem at hand into one in which this dependence is continuous. Much work

needs to be done to sort out the status of this field of applied mathematics vis-à-vis the stability

principle.

5Does this pose a problem for inferentialist conceptions of scientific theories, according to which a theory is just a
certain collection of inferences that are (conditionally) warranted?

6For example, one might think that a kind of discreteness must be presupposed in order to enter into the activity of
counting. For more examples and explication, see Chang (2008).
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On the other hand, one might want to show that the stability principle follows from certain assump-

tions about:

1. the fundamental imprecision (relative to some justified topology) of data, or more generally

of a model’s representation of the world;

2. the continuity (?) of the map from data (or representation) into the space of models under

consideration; and

3. the kinds of claims about the world that can be warranted from models thereof.

Does such an argument succeed? What, in turn, is the status of these assumptions?

5.2 On the Reduction of General Relativity to Newtonian Grav-

itation

5.2.1 The Completeness of Reduction

The framework I developed in chapter 3 provides a way to understand the relationship between

classical and relativistic gravitational theory that is both perfectly general—not confined to special

cases of the theory—and explanatory of the classical theory’s success. This framework collected

together the models of general relativity and Newtonian gravitation, and took particular reductions

to consist in sequences of models of general relativity that converge to a model of Newtonian

gravitation, under an appropriately chosen topology. I also exhibited particular simple examples of

this reduction, such as a sequence of Minkowskian spacetimes that reduce to Galilean spacetime.

But it still remains to be demonstrated that this reduction is complete—that for every model of

Newtonian gravitation, there is some sequence of models of general relativity that converges to it.
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I conjecture that this can in fact be proved. Such a proof would be, to my knowledge, the first

perfectly general rigorous demonstration of this reduction relation for gravitational theories.

Another important question is to determine which topologies are relevant for formulating this re-

duction. Since these topologies track certain classes of observable quantities, this question reduces

to that of deciding which observables need be well-approximated in the limit. I suggested one

emendation for the assumed answer that these are point-observables, pointing out that the lengths

of curves, defined on compact regions, should be included as well. But should one include other,

say, globally defined observables as well?

5.2.2 Models, Laws, Reduction, Emergence

The framework I developed for reduction in the case of gravitation is essentially model-based: it

is a relationship between models of one theory and sequences of models of another, all collected

together in a common space endowed with a topology. Yet traditional discussions of intertheoretic

reduction have concerned the relationship between the laws of the pair of theories of interest,

which has led to a voluminous literature analyzing, e.g., the minutiae of how the (mostly theoretic)

terms of the two theories are to be related. By contrast, the approach I develop avoids these kinds

of problems. Nevertheless, insofar as one is concerned with the relationship of the laws of the

theory, one might wonder if reduction of models bears on reduction of laws (and vice versa). I

conjecture that there is in fact a close connection between the two, the exploration of which might

also illuminate the recently rekindled debate on the nature (semantic or syntactic?) of scientific

theories.

I see question not just as a way to connect more clearly with the existing literature on intertheo-

retic reduction, but also as a way to understand in precise terms the many lawlike approximations

employed in relativity theory. For example, applications to much astrophysical modeling and to

gravitational waves require a so-called linear approximation of the Einstein equation interrelating
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the presence of matter with spacetime curvature. But what does it even mean for one equation to

approximate another in the first place? Is this linearized gravity itself really an intermediate theory

lying between Newtonian and relativistic gravitation, with its own class of models? I believe the

techniques developed in this dissertation could be applied to better understand the nature of such

linear approximations and their broader relationship to spacetime theory.

More generally, because these techniques do not in principle depend on the models in questions

being models of spacetimes or even of physical phenomena, they could be extended to other suf-

ficiently mathematized theories. In particular, in the mathematical sciences they could provide a

more formal account of reduction and emergence advocated by Butterfield (2011).7 One can un-

derstand reduction to be a kind of approximation, spelled out as above with limits of sequences

of models of one theory converging to models of another. One can then understand a property

of a model in the limit theory to be emergent just when it is definable in the limit theory but not

in the limiting theory. For example, having a well-defined notion of absolute simultaneity would

be emergent in Newtonian gravitation with respect to general relativity. There is good reason to

believe this account would capture much of the usage of the terms “reduction” and “emergence”

in the physics literature. Because of its dependence on the choice of topology, it also highlights

a crucial observation that is often overlooked, namely that whether one theory reduces to another

depends essentially on the features of the theories we deem relevant to compare.

7I demur from Butterfield in classifying this notion of reduction as Nagelian, since I do not see any substantial
sense in which the models of the limit theory are derived from those of the limiting theory: one must postulate them
both in order to formulate the limit at all.
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5.3 Global Spacetime Similarity

5.3.1 Exploring and Expanding the Global Topologies

I argued in chapter 4 that the global topologies that I constructed were a suitable replacement for

the open topologies: they are “sensitive” to differences between spacetimes across the whole un-

derlying manifold, while avoiding the problems of the latter. Thus, although the conditions that

I interpreted Geroch (1971) to demand cannot be all satisfied, a weakened version of them can.

Yet virtually all of the propositions proved in the literature concerning stability and genericness

of spacetime properties have used one of the open topologies, so it remains to check which have

analogs with respect to the global topologies. I was able to prove that results concerning the sta-

bility and density of conformal properties do carry over, but the status of many other significant

results remain. (Are there general results one can prove for other classes besides conformal prop-

erties?) Of particular interest are the results of Williams (1984) and others concerning stability of

geodesic incompleteness.8 (Note that if a property is unstable with respect to the Ck open topology,

it must be unstable with respect to the Ck global topology.) Are standard cosmological models still

stably singularity-free according to the global topologies?

Other interesting topics include extending and exploring further properties of the global topologies.

I developed these topologies under the assumption that the basic objects were smooth manifolds

with a non-degenerate metric, but I conjecture that my construction may be naturally extended

to certain other spacetime theories using degenerate metrics, such as Newton-Cartan theory, the

“geometrized” analog of Newtonian gravitation. This would allow one to have a notion of global

spacetime similarity for classical spacetimes, and also to consider whether general relativity re-

duces to Newtonian gravitation with respect to the (say, C2) global topology. (Notably, this reduc-

tion always fails for the open topologies.) As an example of an exploration of further properties,

one may observe that the point-open, compact-open, and open topologies all have a canonical

8See Beem et al. (1996, Ch. 7) for a review.
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uniform structure associated with them, which one can interpret as providing a way to order the

“sizes” of neighborhoods of different points, without necessarily providing a numerical value for

this size.9 It remains to be seen whether there is a canonical such uniform structure for the global

topologies, or whether there is no canonical choice but a range of choices that, perhaps, must also

be decided according to methodological contextualism.

5.3.2 Approximate Global Symmetries

In physical cosmology one typically considers models of the universe that homogeneous and

isotropic—at any given time, the distribution of matter is the same everywhere and appears the

same in every direction. Homogeneity and isotropy are introduced to give the spacetime a high

degree of symmetry, thus simplifying the analysis of the spacetime dramatically. Indeed, the con-

clusion that there was a Big Bang—a past singularity for all observers—rests (at least in part)

on this analysis. But, needless to say, as one looks around, one can see that these assumptions

are not strictly true (and thankfully so). Yet there is a sense that, on “large enough scales,” these

assumptions are approximately true. But what is this supposed to mean? And if the symmetries

these assumptions introduce are broken, if only “slightly”, can one still draw similar conclusions

about the universe? There are many questions here regarding idealization, symmetry, and model-

ing. But answers to nearly all them will presuppose some notion of approximate symmetry yet to

be elucidated.

In relativity theory, a spacetime symmetry is given by a Killing vector field, local flows along

which generate a one-parameter family of isometries. Given a prospective symmetry, then, one can

consider the one-parameter family of mappings induced by its local flow and the corresponding

one-parameter family of spacetimes thus generated. One can then characterize the “degree” to

which the symmetry holds by the collection of basic open neighborhoods of the original spacetime

9In the cases at hand, there is in fact no such numerical value; the corresponding topologies are non-metrizable.
For more on uniform structures, see, e.g., Willard (1970, Ch. 9).
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that contain this family. If one is considering the symmetry as a global symmetry, one can use

the global topology; for local symmetries, one might use instead the compact-open topology. (If

the global topology admits of a canonical uniform structure, as discussed above, then one can

give a bit more structure to the notion of the degree of approximation.) One consequence of

this account of approximate symmetry is that, in some sense, the degree of approximation will

ultimately be observer dependent: given some fixed standard, some will consider a certain (non-

exact) approximate symmetry good and others bad. The benefit of introducing the machinery of

topology is that one can make absolutely precise within a unified treatment the degree to which

any given observer will judge the symmetry to be approximate. In the case of cosmology, where

the observers of interest are nearly all (approximately!) co-moving with the matter content of

the universe, nearly all observers of interest (with about the same standards) will agree on which

symmetries holds approximately.

5.4 Further Topics

5.4.1 Topologies on All Spacetimes

All of the topologies considered are on spacetimes with the same underlying manifold, but there

are many situations in which one might want to compare the similarity of spacetimes with different

underlying manifolds (though of the same dimension). Hawking and Ellis (1973, p. 198) state that

this can be done so that the resulting space is connected, but I have not yet seen a demonstration

of this claim. Indeed, although some work has been done to produce a tractable such topology

(Bombelli 2000; Noldus 2004), and although the topic remains of mathematical interest (Sormani

2012), no approach has been clearly successful. Since a topology on a space can be characterized

by the collection of continuous maps into that space,10 one might adapt the technique of Geroch

10In particular, the final topology on a space X induced from a collection of maps ψi : Yi → X, where the Yi are
topological spaces, is the finest topology on X making each of the ψi continuous.
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(1969) discussed in the second chapter and consider one-parameter families of spacetimes “pasted

together,” without assuming they share the same underlying manifold. The topology one then

choses for the resulting 5-manifold may then induce a topology on the spacetimes, just as choosing

the (5-)manifold topology when the underlying spacetimes shared the same manifold yielded the

compact-open topology. Of course, a host of subtle technical issues remain to be solved before this

intuition can be implemented with full rigor.

5.4.2 Semantics for Scientific Counterfactuals

Lewis (1973) famously gave a semantics for counterfactual statements in terms of similarity of

possible worlds. One of the main points of criticism of his account, however, was that it said little

regarding what similarity was supposed to amount to. Later, admitting that similarity was ulti-

mately contextual, he made a proposal in terms of minimizing the scope and scale of “miracles”—

worlds in which the laws of nature are violated. This might (arguably) be a plausible proposal

for everyday discourse, where there is only at most a vague restriction on what is possible or not.

But it cannot suffice for scientific counterfactuals, where the possibilities, even those not actually

realized, are described by models of some theory. Incredibly, the uniform structures canonically

associated with many of the topologies considered in this dissertation satisfy Lewis’s axioms for

a similarity relation among possible worlds. In other words, as uniform spaces, the models of

gravitational theory form a collection of worlds with a three-place similarity relation (taken as “x

is more similar to y than it is to z”) that ground the semantics for counterfactual statements for

spacetimes.11 Developing a modal logic internal to a scientific theory has a certain appeal, for

it eliminates much of the need for extravagant modal metaphysics to enumerate and distinguish

possibilities. In addition, it might be applied to answer concrete scientific questions in cosmology

11One point of dispute between Lewis and Stalnaker regarding possible worlds was the co-called Limit Assumption:
for every world and every antecedent of a counterfactual conditional entertainable in that world, there is effectively
some (not necessarily unique) possible world most similar to it. Stalnaker upheld it always, while Lewis said it could
fail in many cases of interest. The similarity relations under consideration defined by uniform structures generically
violate the Limit Assumption.
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involving fine-tuning, e.g., “If these constants of nature or initial conditions were only a little bit

different, then the universe would be radically different.” As far I understand, this would be a novel

approach to questions of fine-tuning.
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