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Abstract 

The acquisition of word meaning is often partially 
attributed to fast mapping. However, recent research 
suggests that fast mapping and word learning may 
represent distinct components of language acquisition. 
Here we examine their interaction with a Hebbian 
Normalized Recurrence Network, a connectionist 
architecture that captures both online processing and 
long-term statistical learning. After training on a small 
lexicon, the model performed well above chance on a 
fast mapping task. Careful analyses of the weight 
changes, however, suggest that the fast mapping task can 
be solved with minimal learning. Thus, this model not 
only captures both long-term learning and online 
processes, but also provides unique insights regarding 
the relationship between fast mapping and word learning 
and that the two should be carefully distinguished. 

Fast Mapping and Word Learning 
In early childhood, children learn words at very impressive 
rates; typically saying their first word between 10-14-
months-of-age, around 300 words by their second birthday 
and over 60,000 words by their fifth birthday (Carey, 1978). 
Young children also solve word learning problems with 
remarkable ease. When presented with two familiar objects, 
one novel object and a novel name, a child can correctly 
pick the novel object as the referent of a novel name (Carey, 
1978; Carey & Bartlett, 1978). This ability, known as “fast 
mapping” is often cited as evidence of children’s word 
learning proficiency. However, recent empirical and 
computational findings suggest that although fast mapping 
may be important to word learning, selecting a novel object 
in response to a novel name is not coextensive with learning 
the novel name. 

In the literature, fast mapping and word learning are 
often discussed as if they are the same thing (see, for 
example, Behrend, Scofield, & Kleinknecht, 2001). We 
argue, however, that fast mapping and word learning 
represent distinct, though subtly related components of word 
recognition and learning.  First, the child must select the 
referent in the moment (fast mapping). Second, the child 
must encode the name-object mapping such that it can be 
recalled after a delay (complete word learning). The extant 
literature reinforces this distinction as studies either test 
children’s ability to make the initial mapping, or to 
remember mappings after a delay, typically with some 
additional review (see, Horst & Samuelson, submitted). 
While we have argued that these are potentially logically 

independent processes (Horst & Samuelson, submitted), the 
present computational model suggests a subtle integration. 
Specifically, the model confirms that fast mapping and word 
learning represent two distinct, but related, time scales and 
that fast mapping can, in fact, lead to word learning. Thus, 
we argue that fast mapping and word learning are related 
but not coextensive, as previously argued in the literature. 

In making the initial mapping, the child is faced with a 
very specific problem: given a series of objects and a name, 
the child must determine which object should be associated 
with that name. In other words, which object is the referent 
of the name. To solve this problem, the child engages in 
probabilistic constraint satisfaction. That is, the child 
determines the most probable and optimal solution to this 
problem, given present constraints. In the case of making 
the initial mapping, the constraints include both the present 
input, which are the objects and name presented, and the 
child’s own developmental history, which includes a 
vocabulary of known names. Thus, the problem solving 
required for fast mapping is done in real-time as the child 
determines the most likely solution (object) to a specific 
problem (unknown referent). Further, the real-time aspect of 
fast mapping does not necessarily require learning on the 
part of the child. However, as we will show, the repetition 
of these real-time dynamics change the constraints for the 
next time the novel referent is presented and eventually, 
with enough repetitions, fast mapping can lead to word 
learning. 

Thus, the process of quickly mapping a novel name to a 
referent emerges in the moment, while the process of 
encoding a robust representation of this link unfolds over a 
longer time scale (for a similar argument see also Capone & 
McGregor, in press; Carey, 1978). Recent empirical data 
underscores this hypothesized distinction between fast 
referent mapping and word learning. 

Supporting Empirical Data 
Horst & Samuelson (submitted) found that twenty-four-
month-old children were able to fast map as many as eight 
new words in a single session, but did not retain these words 
over a five minute delay. On each fast mapping trial, 
children were presented with two familiar objects and one 
novel object. On half of the trials they were asked to get a 
familiar object (e.g., “can you get the car?”), on the other 
half of the trials were asked, (e.g., “can you get the 
blicket?”). Overall, children were excellent at selecting both 
the familiar and novel referents (see Figure 1A). Five 
minutes later children were tested for retention of the fast-
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Figure 2: The Hebbian Normalized Recurrence Network 
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Figure 1: Results from Horst & Samuelson (submitted) 

Experiment 1. 
 

mapped names. Children were presented with two 
previously seen novel objects and one novel target. As 
Figure 1B shows, they were unable to determine the 
referents of the previously fast mapped names. 

Follow-up experiments revealed that children’s 
difficulty in retaining the name-object mappings was not 
due to the number of names presented in the session or to 
the number of fast mapping trials. Specifically, in a second 
experiment all but one of the novel name fast mapping trials 
was replaced with a filler trial (e.g., “can you get the one 
you like the best?”). In a third experiment the number of 
trials was reduced such that each child was presented with 
only three fast mapping trials: two familiar name trials and a 
single novel name trial. Both of these experiments 
replicated the general effect of Experiment 1: excellent 
referent selection but no retention—and will these children 
only retained four names. This finding is consistent with the 
literature, which indicates that children are able to retain 
name-object mappings if they are reviewed prior to the 
retention trials (see for example, Goodman, McDonough, & 
Brown, 1998). Thus, only when the objects were explicitly 
named and singled out by the experimenter do children 
show any retention and the retention they show is quite 
limited,  

These findings suggest that although children are 
excellent at selecting the referent in a fast mapping task, 
they do not learn the name-object mappings in the moment. 
Children are able to select the novel object in response to 
the novel name, but are not able to encode the name, the 
object and their link strongly enough to survive a delay. 
This evidence supports the distinction of fast mapping and 
word learning as two distinct time scales in language 
acquisition. 

These results suggest a number of conflicting 
interpretations. First, it is entirely possible that fast mapping 
and word learning are completely independent and 
unrelated. However, the alternative, more subtle 
interpretation, is that perhaps word leaning is a slow 
incremental process (one too slow to be seen on a single 
trial), but online fast mapping processes enable it to look 

much quicker. To examine this latter hypothesis, we 
simulated these data with a Hebbian Normalized Recurrent 
Network (HNRN, McMurray & Spivey, 1999). 

The Hebbian Normalized Recurrent Network  
The Hebbian Normalized Recurrent Network (HNRN) is 
based on a simple interactive architecture (Normalized 
Recurrence) in which multiple sources of probabilistic 
inputs are integrated and compete (in real-time) to arrive at 
an optimal integration.  This has been shown to solve a large 
number of graded constraint satisfaction problems (c.f. 
Spivey & Dale, 2004) including high-dimensional 
categorization and visual search. Thus, the Normalized 
Recurrence architecture is ideal for capturing the fast 
mapping task, in which a child is presented with inputs (a 
novel name and several objects) and must also select a 
referent given a variety of graded constraints.  

McMurray and Spivey (1999) added a form of 
unsupervised Hebbian learning to the HNRN in order to 
incorporate sensitivity to statistical regularities in the 
constraint satisfaction.  This provides the sort of slow 
learning mechanism that may allow for long term word 
learning. This learning is fundamentally associative in 
nature is a realistic mechanism for children’s early 
vocabulary acquisition.  Smith (2000) and Samuelson 
(2002) have explicitly demonstrated benefits for associative 
learning in word learning. Moreover, while this associative 
scheme has been criticized as insufficient given the large 
number of visual competitors in the child’s environment, 
McMurray, Horst, Toscano and Samuelson (in press) 
present simulations that suggest that HNRN can learn words 
even with 90% of the lexicon visually copresent. 
 Thus, HNRN has the potential to capture both the short 
time-scales of fast-mapping behaviors and the long time-
scales of word learning. It presents an ideal architecture in 
which to explore these two components of acquisition. 

The HNRN Word Learner 
Our model of word learning consists of two input 

layers: an auditory (word) layer and a visual (object) layer 
(Figure 2). Each input layer was created with 15 localized 
input units, that is, each unit in the auditory input layer 
represents one name and each unit in the visual input layer 
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represents one object. The network also includes one layer 
consisting of 90 decision/integration units. While this is 
more decision units than would be ultimately needed for the 
task, it ensures that initially (when weights were random) 
the model will be generally likely to choose different 
decision units for different inputs as a function of the 
degrees of freedom available. 

Activation from these two input layers is sent 
concurrently over a series of learnable weights to the layer 
of decision/integration units. Here, activation accumulates 
such that the activation of a decision unit is the sum of its 
previous activation (dx), the weighted (wxz) activation of the 
auditory input (az) units and the weighted (uxz) activation of 
the visual input units (vz, Equation 1). 
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The activation of decision units is squared and 

normalized to sum to one. This implements a form of 
competition that is equivalent to lateral inhibition, in which 
each unit inhibits all other units in that layer as a function its 
proportion of the total activation.  

Activation is then fed back to the input layers using a 
similar accumulator scheme. Here, however, activation from 
the decision layer is multiplied by the input array 
(preventing input nodes with no bottom-up support from 
being activated solely as the result of feedback, Equation 2).  
That is, the activation of an auditory unit is the sum of its 
previous activation (ay) and the product of its previous 
activation and the weighted activation (wzy) of the decision 
units (dz). Likewise, the activation of a visual unit is the sum 
of its previous activation (vy) and the product of its previous 
activation and the weighted activation (uzy) of the decision 
units (dz). 
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The activation of inputs is then normalized so that the 

activations of the units sum to 1.  
Activation continues to cycle from the input layers to 

the decision layer and back until the activation at the 
decision layer settles (the derivative approaches 1e-10).   

Typically, the competition amongst decision units 
(implemented by squared-normalization) ensures that a 
single decision unit will be active when the model settles. 
Crucially, on each cycle (during both training and testing) 
weights are changed using a modified Hebbian learning rule 
(Equation 3). Here, η represents the learning rate and is 
typically very small (~5e-005). This rule ensures that the 
model will behave in one of three ways. First, when both an 
input unit (e.g., auditory unit) and a decision unit are active 
the connecting weights will increase in strength. Second, 

when an input unit is active while the corresponding 
decision unit is inactive, or when the decision unit is active 
and the input unit is inactive, the weights will slightly 
decrease. Finally, when neither the input unit nor the 
decision units are active, there will be no change to those 
connection weights. Importantly, this latter fact preserves 
plasticity in the weights for new names and objects (for a 
similar learning rule, see Grossberg, 1988). 
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Simulation 1 
The first simulation of the HNRN (described above) was 
trained on a small lexicon and then tested in a fast mapping 
task. The goal of this simulation was twofold. First, we 
sought to determine if the architecture of the model could 
exhibit fast mapping behavior. Second, and more 
importantly, we sought to determine the extent of learning 
that occurred during fast mapping. We reasoned that it 
would be possible to solve the problem of fast mapping with 
minimal learning, but that if fast mapping and word learning 
are related time scales of language acquisition that some 
learning should occur on each fast mapping trial. 

Vocabulary Acquisition Phase 
To simulate fast mapping we first needed a vocabulary of 
known names and objects. Thus, we trained 20 simulations 
on an initial vocabulary of five words for 5000 epochs and 
then presented the fast mapping and retention trials 
described below. Before the vocabulary acquisition phase 
began, the connection strength of all input units to the 
decision units was set to random values between 0 and .2. 

On each cycle during this acquisition phase, one of the 
training words was randomly selected and its activation was 
set to 1. Next, the object that corresponded to that word was 
selected along with a variable number (on average 3) of 
visual competitors and their activation was normalized to 1. 
The activation from both layers spread to the decision layer 
and back to the inputs. Activation continued to cycle in this 
way until the model settled. Learning occurred throughout 
this cycling allowing the network to learn which name 
referred to which object. 

Each of the 20 networks differed in a) the initial 
random weight matrix, b) the particular order of words, and 
c) the visual competitors for a given word on any trial.  This 
created sizeable differences in performance. 

Fast Mapping Trials 
After vocabulary acquisition, the networks were presented 
with a three-alternative fast mapping task analogous to the 
Horst and Samuelson (submitted) task. On each fast 
mapping trial, one auditory unit (from the novel set) and 
exactly three object units were active: two trained object 
units and one object unit that was never activated during the 
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Figure 3: Results from Simulation 1 
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Figure 4: Weights Changes to the HNRN 

vocabulary acquisition phase (i.e., a novel object). The 
networks were presented with five novel fast mapping trials, 
which were randomly intermixed with five fast mapping 
trials in which the referent was a known object, as an 
additional control. After each trial, the networks’ success 
was evaluated by determining whether the most active 
visual unit corresponded to the most active auditory unit. 

Importantly—and unlike many other connectionist 
simulations—learning continued throughout testing. 
Allowing the networks to continue learning during the test 
phase more accurately reflects the situation for children, 
who do not know to “stop learning.” More importantly, the 
goal of the simulation was to determine how much learning 
(if any) could occur on the fast mapping trials. This was 
determined (post learning) by an analysis of the weight 
matrix. 

Retention Trials 
After the fast mapping trials, the networks were 

presented with five retention trials, analogous to those used 
in the Horst and Samuelson (submitted) task. On each 
retention trial, one name unit and exactly three object units 
were active: two object units that were activated previously 
during the fast mapping trials but not during the acquisition 
phase and one object unit that was never activated during 
the fast mapping trials or the acquisition phase (i.e., a novel 
foil object). Again, if the network settled on the object unit 
that corresponded to the activated name, this trial was 
scored as a correct response. Learning remained on during 
the retention trials. 

Results 
Results are depicted in Figure 3. Overall, the networks 

were exceptionally accurate on the novel name fast mapping 
trials Mnovel = .75, SD = .22, t(19) = 8.40, p < .0001, two-
tailed and the known name fast mapping trials, Mknown = .85, 
SD = .14, t(19) = 16.32, p < .0001, two-tailed. However, 
despite settling on the correct object unit during the fast 
mapping trials, the networks did not settle on the correct 
object units during the retention trials, Mretention = .39, SD = 
.19, t(19) = 1.42, ns. Thus, the networks showed the same 
pattern of results as the children in the empirical studies. 

To gain a better understanding of the processes 
underlying fast mapping and word learning, specifically the 
differences in learning, the changes in the weight matrices 
during acquisition and testing were analyzed. That is, we 
assessed the amount of weight change (learning) for 
connections between decision units and known or novel 
names (the localist flavor of the input arrays allowed the 
weight matrix to be portioned out in this way quite simply). 
For each portion of each weight matrix the root mean 
squared (RMS) difference of the weights at two points in 
time was calculated.  

We calculated the difference between the initial state 
and the state at the end of the acquisition phase 
(RMSacquisition), that is, the weight change while the system 
was learning the known names. Next we calculated the 
difference between the end of the acquisition phase and the 
end of the fast mapping trials (RMStesting), that is, the weight 
change while the system was fast mapping the novel names. 
If fast mapping represented true word learning, then the 
quantity of weight change during fast mapping should be 
similar to that seen in the acquisition phase. 

The results of these analyses are depicted in Figure 4. 
The RMS deviation was averaged across both the auditory 
and visual units for each portion of the matrix (known 
items, novel items and foil items, which were held out). 
Clearly, learning did occur during the fast mapping trials 
(Novel RMStesting = 1.95e-6, SD = 2.24e-7, Figure 4A). 
However, although the lion’s share of the weight changes 
during the fast mapping trials affected the connections 
between the novel units and decision units, this change 
remained only a fraction of the change that occurred for the 
known names during the vocabulary acquisition phase 
(Known RMSacquisition = .76, SD = .03, Figure 4B). Note the 
large difference in scale used in the two panels. 
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Figure 5: Results from Simulation 2 

 Discussion 
Overall, the HNRN captured the empirical results and 

simulated both the moment-by-moment time scale of fast 
mapping and the more gradual time scale of word learning. 
In addition, the analyses of the weight matrices provide 
insight into the processes underlying both fast mapping and 
word learning. Specifically, these results suggest that a 
single fast mapping experience in and of itself does not 
constitute complete word learning. Moreover, the ability to 
select the same object in a novel context, as in the retention 
trials, is not gained over the course of a single trial. 
However, learning does occur on each fast mapping trial, 
although this learning is insufficient to create a robust 
enough representation of the name-object link to withstand 
further testing.  

Clearly, then, learning does occur during fast mapping, 
though it is minimal compared to the amount of learning 
necessary for names to become “known words.” This 
suggests that word learning is a slow, incremental process, 
and fast mapping is too quick to constitute complete word 
learning. However, because learning does occur during fast 
mapping, it is possible that fast mapping, when repeated, 
can lead to complete word learning. We tested this 
possibility in a second simulation. Specifically, we provided 
additional training on the novel items after the retention task 
and then retested the networks on the fast mapping and 
retention task. This allowed us to confirm that a novel name 
can become a known name with sufficient training.  

Simulation 2 
We created 20 additional models and ran them through 
training and testing from Simulation 1. In this simulation, 
however, after the last retention trial the networks engaged 
in a second acquisition phase in which the five units that had 
served as the novel names were trained for 3000 epochs. 
Following this second learning phase, the networks were 
presented with a second set of fast mapping and retention 
trials as before. 

Results 
The results are depicted in Figure 5. After the first 

learning phase, the networks performed as in Simulation 1. 
That is, they correctly settled on the referent on both the 
novel name Mnovel = .74, SD = .21, t(19) = 8.89, p < .0001, 
two-tailed, and the known name trials, Mknown = .88, SD = 
.15, t(19) = 16.31, p < .0001, two-tailed. And, as observed 
previously, the networks did not retain the name-object 
mappings, Mretention = .34, SD = .24, t(19) = .18, ns. In 
contrast, after the second acquisition phase the networks 
accurately settled on the correct referent in both the fast 
mapping and retention trials (all p’s < 0001). As can be 
clearly seen, the networks significantly improved in 
accuracy on between the first and second sets of retention 
trials, t(19) = 3.69, p < .01, two-tailed. 

Again we examined the weight changes at different 
points in time: between the initial state and after the 
vocabulary acquisition phase, after the vocabulary 
acquisition phase to after the fast mapping trials and after 
the fast mapping trials to after the second acquisition phase. 

We found the same pattern of results as in Simulation 1 for 
weight changes after the acquisition phase and after the fast 
mapping trials (Novel RMStesting = 2.0e-6, SD = .3e-8; Novel 
RMSacquisition = .08, SD = .006). In addition, the weights 
continued to change during the second acquisition phase 
(Novel RMSacquisition2 = .13, SD = .005). Clearly, the amount 
of learning that occurred for the novel items during the 
second acquisition phase was still less than that of the 
known items during the first acquisition phase (Known 
RMSacquisition = .73, SD = .04). However, this is not 
surprising given that some learning had occurred during the 
fast mapping trials, and the networks were trained for 200 
fewer epochs during the second acquisition phase. 
Importantly, these data replicate the findings that the 
network can fast map novel names and that minimal 
learning occurs on each fast mapping trial. These data also  
show that the network is able to continue learning until 
novel names become known names. 

Discussion 
The goal of Simulation 2 was to test whether repeated 

fast mapping can lead to complete word learning. Because 
minimal learning did occur during fast mapping in 
Simulation 1, we reasoned that more complete word 
learning could arise from many, many fast mapping trials. 
Indeed, Simulation 2 confirmed that, with sufficient 
exposure, the network can come to treat novel names 
similarly to known names. After the second acquisition 
phase, there was no statistical difference in the networks’ 
ability to select the referent in response to names acquired in 
the first or second acquisition phase. This indicates that with 
enough fast mapping complete word learning can occur. 

Conclusions 
The goal of these simulations was to shed light on the 

processes that govern fast mapping and word learning by 
capturing both time scales and investigating the learning 
processes that support them. Overall, the Hebbian 
Normalized Recurrent Network yielded the same pattern of 
results as found in the empirical studies. Further, the HNRN 
simulated both the moment-by-moment time scale of fast 
mapping and the more gradual time scale of word learning 
while showing that the two are subtly and importantly 
interrelated. The analyses of the weight matrices underscore 
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this relationship. These analyses suggest that while learning 
does occur on each fast mapping trial, this learning is 
insufficient to create a robust enough representation of the 
name-object link to withstand further testing. That is, fast 
mapping in and of itself is not compete word learning and 
the ability to select the correct referent during a fast 
mapping trial does not promise the ability to select the same 
object in a novel context, as that of the retention trials. 

Simulation 2 deepens our understanding of these 
processes by demonstrating that when provided with a 
review of the name-object mappings, that is, when provided 
with sufficient exposure, representations can be encoded 
robustly enough to withstand testing in a novel context. Put 
another way, a known name is a novel name that has been 
fast-mapped many, many times. 

Taken together then, these simulations along with the 
supporting empirical results indicate that fast mapping and 
word learning represent two distinct, but related, 
components in vocabulary acquisition, and point to a 
promising future direction for a more complete 
understanding of these processes.  
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