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  The online version of this paper contains supplemental material.   

    Introduction 
 At the leading edge of motile cells, increased assembly of a 

branched actin fi lament network is a driving force for mem-

brane protrusion ( Pollard and Borisy, 2003 ). Key events acting 

synergistically to generate this actin network are fi lament sever-

ing to increase the abundance of actin free barbed ends ( Carlsson, 

2006 ), and fi lament nucleation and branching by the Arp2/3 

complex ( Pollard, 2007 ). Regulation of Arp2/3 complex nucle-

ating activity by Rho family GTPases and nucleation-promoting 

factors of the Wiskott-Aldrich syndrome protein (WASP) fam-

ily has been extensively studied ( Goley and Welch, 2006 ; 

 Stradal and Scita, 2006 ). Less is known about control of actin 

fi lament severing in motile cells. Although actin free barbed 

ends act as nuclei for fi lament assembly and can be generated 

by Arp2/3 complex nucleating activity and by uncapping barbed 

ends of preexisting fi laments ( Condeelis, 2001 ), fi lament sev-

ering by the actin-binding protein cofi lin generates a rapid in-

crease in free barbed ends in motile cells and is critical for 

membrane protrusion ( Chan et al., 2000 ;  Ghosh et al., 2004 ; 

 Mouneimne et al., 2004 ). 

 All eukaryotes express one or more members of the actin-

depolymerizing factor (ADF)/cofi lin family, including three 

isoforms in mammals: ADF, nonmuscle cofi lin, and muscle co-

fi lin. In motile cells, cofi lin promotes actin fi lament dynamics 

by increasing fi lament disassembly at the rear of actin networks, 

presumably to recycle actin monomers ( Maciver et al., 1998 ; 

 Blanchoin et al., 2000 ), and by severing fi laments at the leading 

edge to generate new free barbed ends for nucleation by the 

Arp2/3 complex ( Ichetovkin et al., 2002 ;  van Rheenen et al., 

2007 ). To sever fi laments, cofi lin binds F-actin at two sites, an 

N-terminal  “ G-site ”  and a C-terminal  “ F-site ”  ( Pope et al., 2000 ). 

Dephosphorylation of a conserved Ser3 in cofi lin by the phos-

phatases slingshot ( Niwa et al., 2002 ) or chronophin ( Gohla et al., 

2005 ) promotes actin binding at the G-site (for review see 

 Bamburg and Wiggan, 2002 ). Although dephosphorylation of Ser3 

is necessary for cofi lin activity, it is not suffi cient ( Song et al., 

2006 ). Additional mechanisms, including dissociation of bound 

 N
ewly generated actin free barbed ends at the 

front of motile cells provide sites for actin fi la-

ment assembly driving membrane protrusion. 

Growth factors induce a rapid biphasic increase in actin 

free barbed ends, and we found both phases absent in 

fi broblasts lacking H +  effl ux by the Na-H exchanger 

NHE1. The fi rst phase is restored by expression of mutant 

cofi lin-H133A but not unphosphorylated cofi lin-S3A. 

Constant pH molecular dynamics simulations and nuclear 

magnetic resonance (NMR) reveal pH-sensitive structural 

changes in the cofi lin C-terminal fi lamentous actin binding 

site dependent on His133. However, cofi lin-H133A re-

tains pH-sensitive changes in NMR spectra and severing 

activity in vitro, which suggests that it has a more complex 

behavior in cells. Cofi lin activity is inhibited by phospho-

inositide binding, and we found that phosphoinositide bind-

ing is pH-dependent for wild-type cofi lin, with decreased 

binding at a higher pH. In contrast, phosphoinositide 

binding by cofi lin-H133A is attenuated and pH insensi-

tive. These data suggest a molecular mechanism whereby 

cofi lin acts as a pH sensor to mediate a pH-dependent 

actin fi lament dynamics.
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et al., 1998 ;  Chen et al., 2004 ), and in wounded fi broblasts, in-

creased pH i  is necessary for ADF- and cofi lin-regulated actin 

dynamics ( Bernstein et al., 2000 ). H +  effl ux mechanisms at the 

leading edge of motile cells have been speculated ( Bailly and 

Jones, 2003 ;  Bernstein and Bamburg, 2004 ) but have not been 

confi rmed to spatially regulate cofi lin activity. 

 We fi nd here that H +  effl ux by the mammalian Na-H ex-

changer NHE1 promotes a cofi lin-dependent increase in actin 

free barbed ends in response to migratory cues. NHE1 catalyzes 

phosphotidylinositol-4,5-bisphosphate (PI(4,5)P2) ( Yonezawa 

et al., 1990 ;  Ojala et al., 2001 ;  Gorbatyuk et al., 2006 ;  van 

Rheenen et al., 2007 ) or an increase in intracellular pH (pH i ), 

presumably by deprotonation of His133 in the F-site ( Pope et al., 

2004 ), may be necessary, which suggests that cofi lin acts as a 

coincidence detector with its activation, requiring several inde-

pendent regulatory events. The activity of cofi lin in most species 

is recognized to be pH sensitive. Cofi lin activity in vitro in-

creases at neutral and higher pH ( Hawkins et al., 1993 ;  Maciver 

 Figure 1.    H+ effl ux by NHE1 is necessary for 
de novo actin fi lament assembly.  (A) Cortical 
F-actin at the leading edge of migrating WT 
and E266I cells after wounding of a confl uent 
monolayer. At the indicated times, cells were 
fi xed and labeled with rhodamine-phalloidin, 
and F-actin at the leading-edge was quantifi ed 
in acquired images by using NIH Image. Data 
are expressed relative to the abundance of 
F-actin in WT cells immediately after wound-
ing and represent means  ±  SEM of 40 to 50 
cells for each condition analyzed in two cell 
preparations. Signifi cant differences in F-actin 
abundance in WT and E266I cells are indi-
cated for each time point. (B) Representative 
images of WT and E266I cells labeled with 
rhodamine-phalloidin at the indicated times 
after wounding. Bar, 7.5  μ m. (C) Total F-actin 
in WT and E266I cells in the absence and 
presence of 50 ng/ml PDGF for the indicated 
times. Data are expressed relative to the abun-
dance of F-actin in quiescent WT cells (t = 0) 
and represent means  ±  SEM of three separate 
cell preparations.   
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Conversely, the abundance of cortical F-actin before wounding 

(not depicted) and immediately after wounding ( Fig. 1 A ) was 

similar in E266I and WT cells. De novo increases in F-actin in 

quiescent subconfl uent cells treated with 50 ng/ml PDGF were 

also attenuated in E266I cells compared with WT cells ( Fig. 1 C ). 

With PDGF, pH i  increases in WT cells from 7.15  ±  0.03 at quies-

cence to 7.47  ±  0.05, but pH i  in E266I cells does not change and 

is 7.03  ±  0.05 in the absence and presence of PDGF ( Frantz et al., 

2007 ). Like confl uent cells, the abundance of F-actin in quiescent 

E266I cells was similar to WT cells. However, with 50 ng/ml 

PDGF, total F-actin increased signifi cantly in WT cells at 1 min 

(P  <  0.05), 3 min (P  <  0.05), and 6 min (P  <  0.01) but not in E266I 

cells (P  >  0.1 at 1, 3, and 6 min;  Fig. 1 C ). These data suggest that 

H +  effl ux by NHE1 is not necessary for steady-state F-actin abun-

dance but is required for a rapid increase in actin fi lament assem-

bly in response to migratory cues. 

 H +  effl ux by NHE1 is necessary for biphasic 
actin free barbed end formation 
 The assembly of new actin fi laments is enhanced by severing of 

existing fi laments to increase the abundance of actin free barbed 

ends ( Falet et al., 2002 ;  Mouneimne et al., 2004 ;  Carlsson, 

2006 ). In motile epithelial cells ( Mouneimne et al., 2004 ), macro-

phages ( Cox et al., 1996 ), and  Dictyostelium  cells ( Hall et al., 

1989 ), the generation of new free barbed ends is biphasic. WT 

fi broblasts treated with PDGF also had a biphasic increase in 

the number of actin free barbed ends ( Fig. 2, A and B ). A rapid 

and transient fi rst phase was maximal at 1 min, with a twofold 

increase, and returned to near control levels at 2 min. A second 

phase included a maximal increase at 3 min that was smaller 

than the fi rst phase, and at 4 min, the number of actin free barbed 

ends was at control levels. The maximal increase in free barbed 

end formation was at  � 0.5  μ m of the submembranous region 

(Fig. S1 A, available at http://www.jcb.org/cgi/content/full/

jcb.200804161/DC1). In quiescent cells, the number of actin 

free barbed ends was similar in WT and E266I cells. However, 

in E266I cells, there was no increase in free barbed ends with 

PDGF, and at 1 and 3 min, the abundance of free barbed ends 

was signifi cantly less than in WT cells (P  <  0.001 and P  <  0.01, 

respectively;  Fig. 2, A and B ). Hence, H +  effl ux is not necessary 

for the number of actin free barbed ends at steady state but is 

necessary for increased formation in response to PDGF. 

 We also found a pH-dependent regulation of actin free 

barbed ends in NHE1-defi cient PS120 cells stably expressing the 

system N1 transporter (SN1 cells). SN1 is a plasma membrane 

amino acid transporter expressed in the central nervous system 

that couples uptake of extracellular glutamine with effl ux of intra-

cellular H +  effl ux. When expressed in PS120 cells, SN1 is uni-

formly localized along the plasma membrane, and H +  effl ux 

is dependent on the concentration of extracellular glutamine 

( Chaudhry et al., 1999 ). Although short-term (4 h) incubation 

with extracellular glutamine between 1 and 400  μ M does not 

change the pH i  of WT cells ( Srivastava et al., 2008 ), it signifi -

cantly increased the pH i  of SN1 cells ( Fig. 2 C ). With 1  μ M gluta-

mine, pH i  was 7.06  ±  0.03 and similar to E266I cells; with 25  μ M 

glutamine, pH i  was 7.18  ±  0.02 and similar to quiescent WT cells; 

and with 400  μ M glutamine, pH i  was 7.38  ±  0.04 and similar to 

an electroneutral exchange of extracellular Na +  for intracellular 

H + , and its activity increases in response to migratory cues, in-

cluding monolayer wounding ( Frantz et al., 2007 ), growth factors 

( Putney et al., 2002 ;  Frantz et al., 2007 ), and integrin engagement 

( Schwartz et al., 1991 ;  Tominaga and Barber, 1998 ). In motile 

fi broblasts ( Denker and Barber, 2002 ) and  Dictyostelium discoi-
deum  cells ( Patel and Barber, 2005 ), NHE1 localizes at the distal 

margin of membrane protrusions, and its H +  effl ux is necessary 

for directed migration of mammalian fi broblasts ( Denker and 

Barber, 2002 ), leukocytes ( Ritter et al., 1998 ), and epithelial 

( Klein et al., 2000 ;  Reshkin et al., 2000 ) and melanoma cells 

( Stock et al., 2005 ), and for chemotaxis of  Dictyostelium  cells 

( Patel and Barber, 2005 ). In  Dictyostelium  cells with a targeted 

deletion of  nhe1 , actin fi lament assembly in response to a chemo-

attractant is attenuated ( Patel and Barber, 2005 ). 

 Our current fi ndings indicate that motile fi broblasts ex-

pressing a mutant NHE1 lacking H +  effl ux have attenuated 

de novo actin fi lament assembly and no increase in actin free 

barbed ends compared with fi broblasts expressing wild-type 

(WT) NHE1. A rapid fi rst phase of actin free barbed end forma-

tion was restored by expression of pH-insensitive  Acanth-
amoeba castellanii  actophorin or mutant cofi lin-H133A but not 

by unphosphorylated cofi lin-S3A. Computational modeling, nu-

clear magnetic resonance (NMR) spectroscopy, and functional 

studies revealed the signifi cance of His133 in pH-sensitive co-

fi lin activity and actin free barbed end formation. However, 

purifi ed cofi lin-H133A retained pH-sensitive conformational 

changes and severing activity. We found that PI(4,5)P2 bind-

ing to WT cofi lin is pH sensitive, with increased binding at pH 

7.5, compared with pH 6.5, but PI(4,5)P2 binding to cofi lin-

H133A is pH-insensitive, with binding similar to WT at pH 7.5. 

Although pH and PI(4,5)P2 regulate cofi lin activity, our data in-

dicate that these two controls are related and suggest that 

pH-dependent PI(4,5)P2 binding by cofi lin regulates actin-

 severing activity. Additionally, our fi ndings support an emerging 

( Lee et al., 2005 ;  Frantz et al., 2007 ) role for pH-sensitive His 

switches in phosphoinositide binding. 

 Results 
 H +  effl ux by NHE1 is necessary for 
increased actin fi lament assembly in 
response to migratory cues 
 In mammalian fi broblasts ( Denker and Barber, 2002 ) and in  Dic-
tyostelium  cells ( Patel and Barber, 2005 ), H +  effl ux by NHE1 is 

necessary for effi cient directed migration. In chemotaxing  Dic-
tyostelium  cells, NHE1 also is necessary to suppress lateral pseu-

dopods and to promote de novo actin assembly at the cell front 

( Patel and Barber, 2005 ). We asked whether NHE1 regulates 

actin filament assembly in motile fibroblasts by using NHE1-

defi cient cells stably expressing WT NHE1 (WT cells) or a mu-

tant NHE1 containing an isoleucine substitution for glutamine 

266 that lacks H +  effl ux (E266I cells;  Denker et al., 2000 ). WT 

and E266I cells at the edge of a wounded monolayer had a time-

dependent increase in cortical F-actin after wounding; however, 

at all time points, the abundance of F-actin was signifi cantly 

lower in E266I cells compared with WT cells ( Fig. 1, A and B ). 
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but not suffi cient in the absence of PDGF to increase actin free 

barbed end formation. Moreover, because SN1 is not clustered at 

lamellipodia like NHE1, these data suggest that the abundance of 

cortical free barbed ends can be regulated by global increases in 

pH i  and that local changes may not be necessary. 

 The fi rst but not second phase of increased free barbed 

ends in epithelial cells treated with growth factors is generated 

predominantly by severing activity of cofi lin ( Mouneimne et al., 

2004 ), which is recognized to be pH-dependent ( Bamburg and 

Wiggan, 2002 ). Because the pH i  of 7 in E266I cells treated with 

growth factors is signifi cantly lower than the pH i  of 7.5 in WT 

PDGF-stimulated WT cells. In three SN1 cell preparations, PDGF 

induced a biphasic increase in actin free barbed ends with 400  μ M 

glutamine, with signifi cant increases at 1 min (P  >  0.001) and 

3 min (P  >  0.01); with 25  μ M glutamine, there was a signifi cant 

increase at 1 min (P  >  0.05) but not at 3 min ( Fig. 2 D ). In two 

SN1 cell preparations incubated with 1  μ M glutamine, there was 

no increase in free barbed ends with PDGF ( Fig. 2 D ). However, 

decreasing extracellular glutamine from 400 to 1  μ M had no ef-

fect on the relative number of free barbed ends in the absence of 

PDGF. In addition to confi rming pH dependence, data with SN1 

cells indicate that increasing pH i  from  � 7 to  � 7.4 is necessary 

 Figure 2.    H +  effl ux is necessary for biphasic actin free barbed end formation.  (A) Actin free barbed ends in the zone between 0 and 0.66  μ m inside the 
plasma membrane in the absence and presence of PDGF for the indicated times. Data are expressed relative to the number of free barbed ends in quiescent 
WT cells (t = 0; arbitrary units of fl uorescence intensity) and represent means  ±  SEM of four cell preparations, with at least 15 cells scored at each time point 
for each cell preparation. The relative free barbed end number was signifi cantly greater in WT cells compared with E266I cells at 30 and 90 s (P  <  0.001) 
and at 180 s (P  <  0.01). (B) Representative images of WT and E266I in the absence (0 min) and presence of PDGF (1 and 3 min) used for measuring actin 
free barbed ends. Bar, 10  μ m. (C) Steady-state pH i  in SN1 cells maintained for 4 h in glutamine-free DME supplemented with the indicated concentrations 
of glutamine. Data represent means  ±  SEM of three cell preparations, with signifi cant differences in glutamine-dependent pH i  indicated. (D) Relative barbed 
end number in SN1 cells maintained in the indicated concentrations of glutamine in the absence and presence of PDGF. Data represent the means  ±  SEM 
of three cell preparations of SN1 cells maintained in 400 and 25  μ M glutamine, and the mean of two cell preparations of SN1 cells maintained in 1  μ M 
glutamine. Indicated are signifi cant differences in PDGF- and glutamine-dependent increases in free barbed ends.   
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effect on the relative number of free barbed ends in the absence 

of PDGF (9.97  ±  1.90 and 8.42  ±  1.06 with and without acto-

phorin, respectively) and nearly restored the number of free 

barbed ends in the fi rst phase to values in WT cells (P  >  0.1; 

E266I at 1 min compared with WT at 1 min,  n  = 3), but had no 

effect on attenuated free barbed end formation in the second 

phase ( Fig. 3, A and B ). 

 Cofi lin activity also increases with dephosphorylation of 

Ser3 ( Bamburg and Wiggan, 2002 ). Transient expression of 

human cofi lin-S3A in WT cells had no effect on the number 

of free barbed ends in the absence of PDGF (11.15  ±  1.48 

and 10.72  ±  0.89 with and without cofi lin-S3A, respectively; 

cells ( Yan et al., 2001 ;  Frantz et al., 2007 ), we speculated that 

cofi lin-induced free barbed end formation might be inhibited at 

the lower pH i  of E266I cells. Although most species of cofi lin 

are activated by pH  >  7, the activity of  A. castellanii  cofi lin acto-

phorin is pH-insensitive ( Maciver et al., 1998 ). The number of 

free barbed ends in WT fi broblasts expressing actophorin was 

not signifi cantly different in the absence of PDGF (10.42  ±  2.13 

arbitrary units) compared with untransfected (control) WT cells 

(9.56  ±  1.85;  Fig. 3, A and B ; P  >  0.5;  n  = 3). With PDGF, there 

was a twofold and 1.5-fold increase in barbed ends at 1 and 3 

min, respectively, that was similar to increases in cells without 

actophorin ( Fig. 3, A and B ). In E266I cells, actophorin had no 

 Figure 3.    Expression of actophorin but not cofi lin-S3A restores the fi rst phase of free barbed end formation in E266I cells.  (A) Relative barbed end number 
in the absence and presence of PDGF for the indicated times in WT and E266I cells transiently expressing actophorin. Data are expressed relative to the 
abundance of barbed ends in quiescent untransfected WT cells and represent means  ±  SEM of three independent cell preparations, as described in  Fig. 2 . 
(B) Representative images of WT and E266I expressing actophorin used for measuring actin free barbed ends. (C) Relative barbed end number in the ab-
sence and presence of PDGF for the indicated times in WT and E266I cells transiently expressing cofi lin-S3A. Data are expressed relative to the abundance 
of barbed ends in quiescent untransfected WT cells and represent means  ±  SEM of three cell preparations. (D) Representative images of WT and E266I 
expressing cofi lin S3A used for measuring actin free barbed ends. Bars, 10  μ m.   
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left) and also showed that at higher pH values, deprotonation of 

His133, the only histidine in human cofi lin, weakens the inter-

action with Asp98, which instead tends to interact with Lys96 

( Fig. 4 B , right). In the absence of a structure for cofi lin bound 

to F-actin, the relationship of this pH-dependent conformational 

change to pH-dependent binding to F-actin is uncertain, but the 

His133 protonation state change and accompanying conforma-

tional changes could in principle modulate binding affi nity at 

the F-site. Other conformational changes accompanying the 

change in pH are relatively minor, occurring primarily in the 

immediate vicinity of His133, as well as  � 1 and  � 4. 

 We also used NMR to monitor pH-dependent changes in 

cofi lin. Comparison of 2D  15 N heteronuclear single quantum 

coherence (HSQC) spectra of recombinant human cofi lin at pH 

6.5 and 7.5 showed chemical shift changes for residues in the 

vicinity of His133, which indicates changes in their chemical 

environments (Fig. S2 B). These fi ndings are again consistent 

with chemical shift perturbations reported previously ( Pope 

P  >  0.1;  n  = 3) and increased the number free barbed ends in the 

fi rst phase but not the second phase compared with untransfected 

cells ( Fig. 3, C and D ). In E266I cells, cofi lin-S3A also had no 

effect on the number of free barbed ends in the absence of 

PDGF or on attenuated fi rst and second phases of free barbed 

end formation with PDGF ( Fig. 3, C and D ). Consistent with 

these fi ndings, immunoblotting cell lysates indicated that total 

and phosphorylated cofi lin in WT and E266I cells were similar 

in the absence of PDGF, and at 3 min of PDGF treatment, phos-

phorylated cofi lin decreased  � 47% in WT cells and  � 50% in 

E266I cells (Fig. S1, B and C). Hence, H +  effl ux by NHE1 is not 

necessary for cofi lin expression or the regulated dephosphoryla-

tion of cofi lin. Although cofi lin-S3A has been found to be con-

stitutively active in cells ( Moriyama et al., 1996 ;  Zebda et al., 

2000 ;  Ghosh et al., 2004 ), previous studies used cells with nor-

mal pH i  homeostasis. Our data suggest a pH-dependent activa-

tion of cofi lin for generating actin free barbed ends that is 

distinct from regulation by dephosphorylation of S3. 

 Structural models for regulation of cofi lin 
by phosphorylation and by pH 
 To understand how phosphorylation and pH independently regu-

late cofi lin-severing activity, we performed a series of molecular 

dynamics (MD) simulations. First, we performed explicit solvent 

MD on human cofi lin, starting from the NMR structure ( Pope 

et al., 2004 ), with Ser3 either phosphorylated or unphosphory-

lated. In the simulation of phosphorylated Ser3, the N-terminal 

portion interacted with the longest helix in the protein ( � 4), which 

forms part of the G-site implicated in binding to both G-actin and 

F-actin ( Fig. 4 A , left). In particular, pSer3 forms salt-bridging 

interactions with Lys126 and Lys127 (Fig. S2 A, available at 

http://www.jcb.org/cgi/content/full/jcb.200804161/DC1). Other 

than this newly identifi ed interaction, the overall structure of 

cofi lin largely remains unperturbed. In contrast, the N terminus 

of unphosphorylated cofi lin remained unstructured ( Fig. 4 A , 

right), which is in agreement with the experimental structure. 

These results appear to be broadly consistent with existing func-

tional data showing that phosphorylation of Ser3 abrogates bind-

ing of G-actin and with structural data from  Pope et al. (2004)  

that indicate signifi cant chemical shift perturbations in cofi lin-

S3D compared with WT cofi lin.  Gorbatyuk et al. (2006)  also 

described chemical shift perturbations in the N terminus as well 

as  � 4 upon phosphorylation of chick cofi lin by LIM kinase. 

These results are inconsistent, however, with data on actophorin 

( Blanchoin et al., 2000 ), where the phosphorylated residue is 

located at the immediate N terminus (Ser1). In that case, the 

protein structure was solved crystallographically in both the 

phosphorylated and unphosphorylated forms; pSer1 was not vi-

sualized in the electron density, and little conformational change 

was seen in the rest of the protein. 

 To understand how increased pH might modulate cofi lin 

activity independent of unphosphorylated Ser3, constant pH 

MD (CpHMD) simulations were performed on human cofi lin at 

pH values between 6 and 8. The solution structure of human co-

fi lin determined by NMR spectroscopy suggests that at pH 6, a 

solvent-exposed salt bridge forms between His133 and Asp98 

( Pope et al., 2004 ). Our data corroborated this fi nding ( Fig. 4 B , 

 Figure 4.    Structural models of cofi lin regulation.  The structures shown 
are representative snapshots from MD simulations. (A, left) When Ser3 
is phosphorylated, it is predicted to form strong ionic interactions with 
Lys126 and Lys127, which orders the N terminus and partially occludes 
the G-site for interacting with actin. (A, right) When Ser3 is not phos-
phorylated, the N terminus remains unstructured and fl exible. (B) Varying 
pH between 6.5 and 8 does not introduce any major perturbations in the 
tertiary structure. However, His133 is predicted to be protonated at lower 
pH, forming a salt bridge with Asp98 (left). At a higher pH (8), His133 is 
unprotonated, and Asp98 instead interacts with Lys96 (right). At interme-
diate values of pH, the dynamics smoothly interpolate between these two 
extremes (not depicted).   
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E266I cells may be necessary for the fi rst phase of free barbed 

end formation with PDGF. Additionally,  Pope et al. (2004)  pre-

dict that His133 has an upshifted  pKa  of 7.4, although this could 

not be measured directly because of absence of signals from 

His133 in NMR spectra. We confi rmed that expression of a mu-

tant cofi lin-H133A in E266I cells restored the fi rst but not sec-

ond phase of free barbed end formation. Compared with vector 

controls, WT cells expressing WT cofi lin and cofi lin-H133A 

had similar biphasic increases in the number of free barbed ends 

with PDGF, although the relative increase with WT cofi lin was 

signifi cantly greater than with cofi lin-H133A ( Fig. 5, A and B ; 

et al., 2004 ). Collectively, our simulation and NMR results, in 

combination with prior structural and biochemical data, support 

a model in which phosphorylation of Ser3 blocks binding to 

actin at the G-site, whereas protonation of His133 modulates 

binding at the F-site. 

 Cofi lin H133A restores the fi rst phase of 
free barbed end formation in E266I cells 
but retains pH dependence 
 On the basis of structural data, we speculated that deprotonation 

of His133 at the pH i  of 7.5 in WT cells but not at the pH i  of 7 in 

 Figure 5.    Cofi lin H133A restores the fi rst phase of free barbed formation and de novo actin fi lament assembly in E266I cells.  (A) Relative abundance of 
barbed ends in the absence and presence of PDGF for the indicated times in WT and E266I cells transiently expressing WT cofi lin or cofi lin-H133A. Data 
are expressed relative to the abundance of barbed ends in quiescent vector-transfected WT cells and represent means  ±  SEM of three independent transfec-
tions, with at least 15 cells scored at each time point for each cell preparation. (B) Representative images of WT and E266I expressing cofi lin-H133A used 
for measuring actin free barbed ends. Bar, 10  μ m. (C) Cortical F-actin at the leading-edge of wounded WT and E266I cells transfected with vector, WT 
cofi lin, or cofi lin-H133A. Cells were fi xed at the indicated times and labeled with rhodamine-phalloidin, and F-actin at the leading-edge was quantifi ed 
using National Institutes of Health Image. Data are expressed relative to the abundance of F-actin in vector-transfected WT cells immediately after wounding 
(initial) and represent means  ±  SEM of 20 to 30 cells for from two representative cell preparations.   
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 Figure 6.    NMR spectra and severing activity for WT and H133A cofi lin.  (A) Comparison of  15 N-HSQC spectra for the H133A mutant at pH 6.5 (red) and 
7.5 (blue). Selected residue assignments are shown. These spectra show that peaks corresponding to several residues show chemical shift changes on 
changing the pH, which suggests that one or more side chains titrating in a physiological range are still present in the mutant. (B) Comparison of  15 N-HSQC 
spectra for WT and H133A at pH 6 (selected residue assignments are shown). The H133A mutation introduces some structural changes but the protein 
remains well folded. (C) Superposition of MD snapshots for WT (green) and H133A (pink) cofi lin at pH 6.5. (D, top) Quantifi cation of F-actin severing 
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by WT cofi lin and cofi lin H133A at indicated pH. Each bar represents the percent increase in the number of fi laments 4 min after treatment with cofi lin, 
expressed as means  ±  SEM. (bottom) Sample images of F-actin severing by WT cofi lin and cofi lin H133A at indicated pH. The fi laments were observed 
before (as 0 min) and 4 min after incubation with cofi lin. Bar, 2  μ m.   

 

P  <  0.05;  n  = 3). Expressing WT cofi lin in E266I cells did not 

restore free barbed end formation in either fi rst or second phases, 

and the number of free barbed ends in both phases was not 

signifi cantly different compared with quiescent cells (P  >  0.1; 

 n  = 3;  Fig. 5 A ). However, in E266I cells expressing cofi lin-

H133A, the number of free barbed ends in the fi rst phase was 

restored to that of WT cells expressing WT cofi lin or cofi lin-

H133A, but the number of free barbed ends at quiescence and in 

the second phase were unchanged compared with untransfected 

cells (P  >  0.1;  n  = 3). Additionally, cofi lin-H133A but not WT 

cofi lin partially restored an increase in cortical F-actin in E266I 

cells at the edge of a wounded monolayer ( Fig. 5 C ). 

 NMR was used to follow pH-dependent changes in 

the chemical environments of residues in H133A cofi lin. 2D 

 15 N-HSQC spectra of H133A cofi lin at pH 6.5 and 7.5 showed 

that the mutant adopts a fold very similar to WT ( Fig. 6, A and B ). 

MD simulations of cofi lin-H133A are consistent with this ob-

servation, with major conformational differences largely confi ned 

to the fl exible loops ( Fig. 6 C ). For H133A, similar pH-dependent 

chemical shift changes or broadening of NMR signals, as seen 

in the WT protein, were also observed for residues in the  vicinity 

of Ala133 (His133). These changes indicate the presence of 

one or more residues, probably in addition to His133, that 

titrate in a physiological range. 

 The NMR results suggested that cofi lin-H133A may have 

a similar pH-dependent activity toward F-actin compared with 

WT. To determine whether cofi lin-H133A retains pH-sensitive 

F-actin severing activity similar to the WT protein, a light mi-

croscope severing assay was used that allows direct observation 

of severing in vitro ( Ichetovkin, et al., 2000 ,  2002 ). The results 

clearly indicate that cofi lin-H133A exhibits pH-sensitive sever-

ing of F-actin that is indistinguishable from WT ( Fig. 6 D ). 

H133A had minimal severing activity at pH 6 but a 25- to 30-

fold increased activity at pH 7. 

 Deprotonation of His133 attenuates 
PI(4,5)P2 binding 
 In vitro, PI(4,5)P2 and F-actin competitively bind to cofi lin 

( Yonezawa et al., 1990 ) and actophorin ( Van Troys et al., 2000 ). 

In epithelial cells, activation of phospholipase C � , which hy-

drolyzes PI(4,5)P2, is necessary for the cofi lin-dependent fi rst 

phase of actin free barbed end formation ( Mouneimne et al., 2004 ), 

and in fi broblasts, PDGF induces an increase in phospholipase 

C �  activity ( Margolis et al., 1990 ) and hydrolysis of PI(4,5)P2 

( McNamee et al., 1993 ). In cells, F ö rster resonance energy transfer 

analysis of the interaction between cofi lin and PI(4,5)P2 dem-

onstrates that cofi lin is bound to PI(4,5)P2 and is released and 

activated in response to EGF stimulation by PI(4,5)P2 hydroly-

sis ( van Rheenen et al., 2007 ). Although NMR experiments im-

plicate His133 in binding the PI(4,5)P2 head group ( Gorbatyuk 

et al., 2006 ), whether the protonation state of His133 regulates 

PI(4,5)P2 binding has not been reported. We used computational 

docking experiments to suggest a plausible model of interaction 

between PI(4,5)P2 and cofi lin. When the head group of PI(4,5)P2 

is docked to this site with His133 doubly protonated, the terminal 

phosphates interact closely with the His133 side chain ( Fig. 7 A ). 

When His133 is neutral, the head group does not dock in this 

pose and instead interacts with Lys125 (Fig. S3 B). This residue 

is part of a small group of residues (Ile124-Lys125-Lys126-

Lys127-Leu128-Thr129) that had observed NMR spectral per-

turbations when bound to PI(4,5)P2 for a K132A/H133A double 

mutant ( Gorbatyuk et al., 2006 ). The three cationic residues 

(Lys125, Lys126, and Lys127) may represent a secondary inter-

action site for the PI(4,5)P2 head group. Similarly, PI(4,5)P2 

binds to yeast cofi lin, where Lys132 and His133 are absent, but 

residues Arg109 and Arg110, which are equivalent to Lys125 

and Lys126, are important for binding PI(4,5)P2 ( Ojala et al., 

2001 ). These results, in combination with the previous NMR 

studies with short-chain PI(4,5)P2 constructs ( Gorbatyuk et al., 

2006 ), suggest that deprotonation of His133 might decrease 

binding but not abolish it entirely. 

 We used liposome sedimentation with purifi ed recombi-

nant rat cofi lin to show pH-dependent PI(4,5)P2 binding to WT 

cofi lin but not cofi lin-H133A ( Fig. 7, B and C ). For WT cofi lin, 

the dissociation constant ( K  d ) at pH 6.5 was 14.87  μ M and rela-

tively similar to that of 19.87  μ M at pH 7.5. However, maxi-

mum specifi c binding (Bmax) was 2.5-fold greater at pH 6.5 

(32.94%) compared with pH 7.5 (12.87%). Consistent with our 

docking model, which indicates that His133 interacts with the 

head group of PI(4,5)P2, PI(4,5)P2 binding by cofi lin-H133A at 

pH 6.5 was not signifi cantly different compared with binding by 

WT cofi lin at pH 7.5, and was pH-insensitive ( Fig. 7 D ). For 

H133A, Bmax was 21.65% and 18.13% at pH 6.5 and 7.5, 

respectively, although  K  d  values were relatively similar, with 

21.65  μ M at pH 6.5 and 18.13  μ M at pH 7.5. These data indicate 

that higher maximum PI(4,5)P2 binding is conferred by proton-

ation of His133, and they suggest that pH-dependent cofi lin ac-

tivity in cells is determined in part by PI(4,5)P2 binding. 

 Discussion 
 Increased pH i  is an evolutionarily conserved but poorly understood 

mechanism promoting cytoskeleton assemblies and cell move-

ment. Earlier work on the fertilization of sea urchin eggs ( Begg and 

Rebhun, 1979 ), the acrosomal reaction in echinoderm sperm 

( Tilney et al., 1978 ), and the motility of nematode sperm cells 

( King et al., 1994 ;  Italiano et al., 1999 ) suggests that transient in-

creases in pH i  are necessary for de novo assembly of cytoskeletal 

fi laments. A necessary role for increased pH i  in directed migration 

has been shown in  Dictyostelium  cells ( Van Duijn and Inouye, 1991 ) 

and in different mammalian cell types ( Ritter et al., 1998 ;  Klein 

et al., 2000 ;  Reshkin et al., 2000 ;  Denker and Barber, 2002 ;  Stock 

et al., 2005 ). In growing plant pollen tubes, increased pH i  at the 

distal cortex also promotes F-actin assembly at the tube tip ( Lovy-

Wheeler et al., 2006 ). Our understanding of how pH i  regulates 

cytoskeleton dynamics and cell movement, however, is limited. 
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not been experimentally confi rmed in other cell types. In  Dic-
tyostelium  cells, the fi rst phase of F-actin assembly is attenuated 

but not eliminated by inhibition of Rac1B ( Park et al., 2004 ), 

RasG ( Sasaki et al., 2004 ), and  Dd NHE1 ( Patel and Barber, 

2005 ). The second phase is thought to drive membrane protru-

sion. In  Dictyostelium  cells, the second phase is also dependent 

on  Dd NHE1 and on increased abundance of PI(3,4,5)P3 at the 

cell front, which is regulated by phosphoinositide 3-kinases 

(PI3-kinases) and the PI3-phosphatase PTEN. Inhibiting PI3-

kinases suppresses the second phase of actin polymerization, 

but the fi rst phase is retained ( Funamoto et al., 2001 ;  Chen et al., 

2003 ). However, several fi ndings challenge the role of increased 

PI(3,4,5)P3 in regulating actin kinetics. First, a gene knockout strain 

in  Dictyostelium  lacking PTEN and all fi ve type-1 PI3-kinases 

 Our current data indicate that H +  effl ux by NHE1 is neces-

sary for increased assembly of actin fi laments in response to 

monolayer wounding and growth factors. We previously found 

that increased actin fi lament assembly in response to chemo-

attractant is also attenuated in  Dd nhe1-null  Dictyostelium  cells 

( Patel and Barber, 2005 ). In activated platelets ( Falet et al., 

2005 ) and in motile neutrophils ( Norgauer et al., 1994 ), epithe-

lial cells ( Chan et al., 1998 ), macrophages ( Cox et al., 1996 ), 

and  Dictyostelium  cells ( Hall et al., 1989 ;  Chen et al., 2003 ; 

 Postma et al., 2003 ), de novo actin fi lament assembly is bipha-

sic, although the regulation and function of each phase is not 

completely understood. The rapid and transient fi rst phase is 

necessary for spatially localizing where membrane protrusions 

occur in tumor cells ( Mouneimne et al., 2006 ), although this has 

 Figure 7.    Binding of PI(4,5)P2 to cofi lin is pH dependent and mediated by His133 protonation.  (A) Docking model of potential mode of interaction between 
the PI(4,5)P2 head group and cofi lin, when His133 is doubly protonated. (B) Docking models for PI(4,5)P2 and WT (top) and H133A (bottom) cofi lin at 
pH 6.5 and 8. Residues Lys132 and His133 are shown in green; residues Lys125, Lys126, and Lys127 are shown in magenta, considered an alternative 
PIP2 binding site; and residues Phe15 and Leu99 are shown in blue. (C) The percentage of specifi c binding of lipid micelles containing 20  μ M PI(4,5)P2 
to the indicated concentrations of WT cofi lin at pH 6.5 and 7.5. The abundance of cofi lin in centrifuged pellets was normalized to nonspecifi c binding 
with lipid micelles in the absence of PI(4,5)P2 and calculated relative to the sum of cofi lin in supernatant and pellet. Data are representative of two bind-
ing preparations.  K  d  values were relatively pH-independent but Bmax was twofold greater at pH 6.5 compared with pH 7.5. (D) Binding of lipid micelles 
containing 20  μ M PI(4,5)P2 to 3  μ M WT cofi lin or cofi lin-H133A at the indicated pH values. Data are expressed as percent of PI(4,5)P2 binding at pH 6.5 
and represent means  ±  SEM of three binding preparations.   
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phorylated cofi lin at the plasma membrane would be inactive 

when bound to PI(4,5)P2. Moreover, cofi lin can only bind to 

tropomyosin-free actin fi laments, which are only present at the 

plasma membrane interface with the cytoplasm, further restricting 

the location of F-actin severing by cofi lin ( DesMarais et al., 2002 ). 

 Our data support a mechanism whereby pH-dependent co-

fi lin activity in cells is determined primarily by regulating cofi lin 

binding to PI(4,5)P2. We predict that, at the lower pH i  of resting 

cells, cofi lin activity is inhibited by greater maximum binding to 

PI(4,5)P2. Increased pH i  with migratory cues lowers the abun-

dance of PI(4,5)P2 bound to cofi lin, and, with dephosphoryla-

tion of S3, increases cofi lin activity. Our fi nding that protonation 

of cofi lin His133 increases PI(4,5)P2 binding is signifi cant for 

two reasons. First, for activation of cofi lin, it suggests that in-

creased pH and release of PI(4,5)P2 are biochemically linked. 

Although pH and PI(4,5)P2 are recognized regulators of cofi lin 

activity ( Bailly and Jones, 2003 ), pH-dependent binding of 

PI(4,5)P2 to cofi lin has not been shown. However, we speculate 

that pH-dependent release of PI(4,5)P2 would not be suffi cient 

as a coincidence activator of cofi lin without dephosphorylation 

of S3. In SN1 cells, increased actin free barbed ends required a 

higher pH and growth factor. 

 Second, of general signifi cance is an emerging theme of 

pH-dependent phosphoinositide binding at sites containing his-

tidine residues. Phosphoinositide binding to FYVE domains is 

pH-sensitive and regulated by a histidine switch ( Lee et al., 

2005 ). Additionally, we recently showed pH-sensitive PI(4,5)P2 

binding to the guanine nucleotide exchange factor Dbs (Dbl ’ s 

big sister), which contains a His (H843) in the predicted phos-

phoinositide-binding site ( Frantz et al., 2007 ). In contrast, PI(4,5)P2 

binding to the guanine nucleotide exchange factor intersectin, 

which binds phosphoinositides at a charged Lys/Arg cluster, is 

pH-insensitive. The PI(4,5)P2 binding site in actophorin lacks a 

His ( Van Troys et al., 2000 ), which could contribute to the pH-

insensitive activity of  A. castellanii  cofi lin. A review of phos-

phoinositide-binding domains in the PDB indicates that although 

binding sites containing charged Lys/Arg-rich clusters are the 

most prevalent, many of these domains contain a His within 

predicted phosphoinositide-binding sites. As recently suggested 

( Gorbatyuk et al., 2006 ), phosphoinositide binding is a likely 

negative regulator of most proteins that cap or sever actin fi la-

ments. We predict that if phosphoinositides bind at His residues 

in these proteins, binding and protein function may be pH-

sensitive. Additionally, the hydrolysis of PI(4,5)P2 by PLC, 

which is required for the full release and activation of cofi lin in 

vivo ( van Rheenen et al., 2007 ), would be facilitated by the 

weakened binding of cofi lin to PIP2 resulting from a local in-

crease in pH in the presence of activated NHE1. 

 Materials and methods 
 Cell culture 
 NHE1-defi cient PS120 fi broblasts stably expressing WT NHE1 (WT cells), 
or a mutant NHE1 lacking ion translocation (E266I cells;  Denker et al., 
2000 ), or stably expressing SN1 ( Chaudhry et al., 1999 ) have been de-
scribed previously. Cells were maintained in DME-H21 medium supple-
mented with 5% FBS and penicillin-streptomycin (growth medium) at 5% 
CO 2 . For experiments with wounded cells, fi broblasts plated on glass cov-
erslips were grown to confl uence, wounded with a P1000 pipette tip, and 

retains actin assembly ( Hoeller and Kay, 2007 ). Second, a re-

dundant phospholipase A2 pathway regulates actin kinetics in-

dependent of PI3-kinase activity ( Chen et al., 2007 ;  van Haastert 

et al., 2007 ). Third, mutant cells that lack a second phase of 

actin kinetics have decreased ( Denker and Barber, 2002 ) or in-

creased ( Patel and Barber, 2005 ) PI(3,4,5)P3. 

 The generation of new free barbed ends is necessary for 

increased actin fi lament assembly ( Condeelis, 2001 ;  Falet et al., 

2002 ;  Carlsson, 2006 ) and has biphasic kinetics in response to 

migratory cues ( Mouneimne et al., 2004 ). We used different 

fi broblast models expressing an inactive NHE1-E266I or the SN1 

glutamine-H +  transporter to show that H +  effl ux is necessary for 

both phases of free barbed end formation in fi broblasts, with the 

fi rst but not the second phase being dependent on pH-sensitive 

cofi lin activity. In epithelial cells, cofi lin activity is also neces-

sary for the fi rst phase of free barbed end formation, but the 

second phase is dependent on PI3-kinase activity ( Mouneimne 

et al., 2004 ), like the second phase of actin assembly in amoe-

boid cells. Although migrating E266I cells have decreased and 

mislocalized PI(3,4,5)P3 ( Denker and Barber, 2002 ), whether 

this contributes to the absence of the second phase of free barbed 

end formation is uncertain. In  Dd nhe1-null  Dictyostelium  cells, 

which lack a second phase of actin fi lament assembly, the abun-

dance of PI(3,4,5)P3 is increased, which suggests that NHE1 

regulation of the second phase may be mediated by mechanisms 

independent of PI(3,4,5)P3. 

 The ability of cofi lin-H133A but not cofi lin-S3A to re-

store the fi rst phase of actin free barbed end formation in E266I 

cells indicates the importance of coincidence regulation for co-

fi lin activity that requires S3 dephosphorylation and increased 

pH i . Coincidence regulation has also been suggested by previ-

ous work on the solution structure of cofi lin ( Pope et al., 2004 ) 

and by our computational modeling and NMR data. These data 

indicate distinct mechanisms for modulating actin binding that 

are determined by Ser3 dephosphorylation in the N terminus 

and by pH sensing in the C terminus. Changes in pH have little 

effect on the overall structure and dynamics of cofi lin. Rather, 

lowered pH likely inhibits interactions with actin at the F-site 

by directly modulating the binding affi nity at that site through 

the change in His133 charge, and through localized conforma-

tional changes. In contrast, we propose that phosphorylation of 

Ser3 inhibits binding to the G-site by steric occlusion, specifi -

cally by ionic interactions between pSer3 and Lys126, and Lys127. 

Little conformational change is predicted in the remainder of 

the structure, which is consistent with previous NMR work on 

human cofi lin-S3D ( Pope et al., 2004 ) and chick cofi lin-pSer3 

( Gorbatyuk et al., 2006 ). 

 Coincidence regulation by protons suggests that global 

changes in pH i  may be suffi cient for spatially restricted regula-

tion, and that local pH i  changes may not be necessary. Our data 

with SN1 cells support this possibility because SN1 is not local-

ized at membrane protrusions like NHE1. In activated fi bro-

blasts ( Dawe et al., 2003 ) and platelets ( Falet et al., 2005 ), 

dephosphorylated cofi lin is restricted to the distal cortex, which 

would spatially limit a second activation step by increased pH i . 

Additionally, because PI(4,5)P2 and F-actin competitively bind 

cofi lin ( Van Troys et al., 2000 ;  Yonezawa et al., 1990 ), dephos-
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 Cofi lin immunoblotting 
 Quiescent cells in 6-well plates were treated with 50 ng/ml PDGF for the in-
dicated times and lysed in a modifi ed RIPA buffer (50 mM Tris-HCl, 135 mM 
NaCl, 3 mM KCl, 1% NP-40, protease inhibitors, 1 mM EGTA, 5 mM NaF, 
10 mM sodium pyrophosphate, and 1 mM sodium vanadate, pH 7.4), then 
lysates were centrifuged at 850  g  for 5 min to obtain a postnuclear super-
natant. Equal amounts of protein were separated by SDS-PAGE, transferred to 
PVDF membranes, and immunoblotted with antibodies to cofi lin or phospho-
cofi lin (1:1,000; Cell Signaling Technology), or  � -actin (C4; 1:10,000; 
Millipore). Immunoblots were analyzed by using NIH Image. 

 Recombinant cofi lin purifi cation 
 Mutant cofi lin-H133A and cofi lin-S3A were generated using the Quick-
Change Site-Directed Mutagenesis kit (Agilent Technologies) by using the 
following primers: forward 5 �  – 3 � : GAAACTGACAGGAATCAAGGCCG A-
ATTACAAGCTAACTGC; reverse 5 �  – 3 � : GCAGTTAGCTTGTAATTCGGCCT-
TGATTCCTGTCAGTTTC. A C-terminal Myc tag was added by PCR using 
the following primers: forward 5 �  – 3 � : ATGGCCTCTGGTGTGGCTG for WT 
cofi lin and ATGGCCGCTGGTGTGGCTG for S3A cofi lin; reverse 5 �  – 3 � : 
TCACAGATCTTCTTCTGAGATGAGTTTTTGTTCCAAAGGCTTGCCCT CC A GGGA. 

 DNA subcloned into pET15b (EMD) was used to transform Rosetta 
BL21 DE3 bacteria cells, which were grown in Luria broth (LB) media with 
100  μ g/ml ampicillin and 35  μ g/ml chloramphenicol at 30 ° C. For  15 N-
labeled protein, LB was replaced by minimal medium at pH 7.4 (1 ×  M9 
salts, 2 mM MgSO 4 , 100  μ M CaCl 2 , 1 ×  MEM vitamin mix [Invitrogen], 
1 g/liter  15 N-H 4 Cl [Sigma-Aldrich], 1 g/liter Isogrow  15 N 13 C [Sigma-
 Aldrich], 0.5 mg/liter biotin, and 20 mg/liter FeCl 2 ). Cells were grown at 
30 ° C, and protein expression was induced by the addition of 1 mM IPTG. 
Cells were collected by centrifugation, suspended in buffer A (50 mM 
NaH 2 PO 4 , pH 8, 300 mM NaCl, and 5 mM imidazole, pH 8), and lysed 
using a microfl uidizer (Microfl uidics). Lysates were applied to Talon resin 
columns (BD), columns were washed in buffer A with 20 mM imidazole, 
and protein was eluted with buffer A containing 300 mM imidazole in 
fractions of 0.5 ml. 20  μ l of each fraction was separated by SDS-PAGE and 
visualized by Coomassie staining, and fractions containing cofi lin were 
pooled and buffer exchanged by dialysis against thrombin cleavage buffer 
(10 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 2.5 mM CaCl 2 ). The His tag 
of purifi ed cofi lin was cleaved using the Thrombin Cleavage Capture kit 
(EMD). Buffer was then exchange by dialysis to NMR storage buffer (10 
mM sodium phosphate buffer, 25 mM NaCl, 1 mM DTT, 0.2 mM EGTA, 
and 1 mM NaN 3 , pH 6.0) or to freeze storage buffer (10 mM Tris, pH 7.5, 
1 mM NaN 3 , 5 mM DTT, and 10% glycerol) for storage at  � 80 ° C. Protein 
was quantifi ed by SDS-PAGE or on a spectrofl uorometer. 

 MD simulations 
 To study the effects of phosphorylation, we used explicit solvent MD. The 
20 initial structures were taken from the NMR structure 1Q8G from the Pro-
tein Data Bank. For each one of these 20 structures of the cofi lin, we per-
formed two different simulations: with Ser3 unphosphorylated and with 
Ser3 phosphorylated. The calculations were done with GROMACS (ver-
sion 3.2.1; GNU General Public License) using the GROMOS96 force 
fi eld for pSer. All systems were solvated with the SPC water model in a pe-
riodic cubic cell. The solvated systems were subject to 2,500 steps of steep-
est descent minimization to prepare the system for the MD simulations. The 
equilibration of the systems was done in two parts: the fi rst part consisted 
of 50 ps of dynamics in which the temperature was raised from 0 to 300 K. 
The second part of the equilibration consisted of 1 ns with an NPT ensem-
ble. Once the systems were equilibrated, we calculated one additional 
nanosecond in the NPT ensemble at 300 K using a thermostat (Berendsen) 
and particle mesh Ewald (PME) for the Coulombic interactions. The results 
from the 20 simulations starting from different NMR models were very simi-
lar, and we show one representative result. 

 Constant pH MD simulations were performed using the AMBER 8 
suite of programs ( Case et al., 2005 ). The AMBER parm99 force fi eld 
( Wang et al., 2000 ) and generalized Born solvation model ( Onufriev 
et al., 2004 ) were used. First, the system was energy minimized using six 
consecutive rounds of 800 steps of the steepest descent algorithm followed 
by 1,200 steps of the conjugate gradient algorithm, giving a total of 
12,000 steps. Harmonic restraints applied to the  �  carbons were slowly 
relaxed from 25 to 1 kcal/mol/ Å  2  by the end of the energy minimization 
step. To save computational time, a 15- Å  cutoff for nonbonded interactions 
was used. The equilibration period in the MD simulations consisted of three 
stages. In the fi rst one, the system was gradually heated from 100 K to 300 K 
for 30 ps at 100 K intervals, followed by 70 ps at 300 K. The remaining 
restraints were gradually reduced to zero in this stage. The second stage 
consisted of 50 ps of unrestrained equilibration. Finally, in the third stage, 

maintained at 5% CO 2  in growth medium for 15 min. For experiments with 
subconfl uent cells, cells were plated on glass coverslips at  � 75% confl u-
ence, maintained for 24 h in DME containing 0.2% FBS (quiescent cells), 
and treated for the indicated times with 50 ng/ml PDGF-BB (Roche). For 
expression of WT and mutant cofi lin or actophorin, cells were cotrans-
fected with cherry-red histone pJAG 285 by electroporation (Amaxa Bio-
systems Nucleofector kit; Lonza), plated on glass coverslips in growth 
medium for 24 h, then transferred to DME containing 0.2% FBS for 24 h 
before using. SN1 cells were maintained in glutamine-free DME in the ab-
sence of FBS and supplemented with the indicated concentrations of gluta-
mine 4 h before use. 

 F-actin abundance 
 Wounded monolayers plated on glass coverslips were fi xed in 3.7% formal-
dehyde for 20 min, permeabilized in 0.1% Triton X-100, incubated with rho-
damine-phalloidin (1:500; Invitrogen) in PBS for 30 min, and processed for 
imaging with mounting medium containing 50% glycerol and  N -propyl gal-
late. Images were collected at room temperature using a microscope (Axio-
phot; Carl Zeiss, Inc.) and a Plan-neofl uar 100 ×  objective with 1.3 numerical 
aperture (Carl Zeiss, Inc.) adapted with a computer-driven cooled charge-
coupled device Spot camera (RT slider model 2.3.0) and Spot advanced 
4.1.5 acquisition software (Diagnostic Instruments, Inc.). Images were ac-
quired in the linear range of the detector ’ s response at a sensitivity such that 
none of the pixels in the image were saturated. F-actin at the leading edge 
was quantifi ed using National Institutes of Health (NIH) Image software. For 
each cell, a line perpendicular to the wound edge was drawn bisecting the 
nucleus and extending to the leading-edge membrane. Fluorescence inten-
sity was determined in an area from the membrane to 5  μ m within the cortex, 
and four pixels to the left and right of the perpendicular line. For total F-actin, 
untransfected subconfl uent cells in the absence and presence of PDGF were 
fi xed and labeled with rhodamine-phalloidin as described previously. After 
washing, the rhodamine dye was extracted in methanol at  � 20 ° C, and fl uor-
escence intensity was measured at Ex 554 and Em 575 using a SpectraMax 
M5 (MDS Analytical Devices). Cortical F-actin in transfected cells was deter-
mined as described for wound-edge cells. 

 Actin free barbed ends assay 
 The number of actin free barbed ends was determined by a modifi cation of 
previously described methods ( Chan et al., 1998 ). Quiescent cells plated in 
MatTek tissues culture dishes (MatTek Corporation) were treated with 50 ng/ml 
PDGF for the indicated times and permeabilized in buffer containing 
biotin – G-actin. 20  μ g biotin – G-actin (Cytoskeleton, Inc.) in 100  μ l of dilution 
buffer (1 mM Hepes, pH 7.5, 0.2 mM MgCL 2 , and 0.2 mM ATP) was centri-
fuged at 100,000  g  for 20 min to remove aggregates. The mixture was di-
luted to a fi nal concentration of 0.02 g/liter in permeabilizing buffer (5 mM 
KCl, 137 mM NaCl, 4 mM NaHCO 3 , 0.4 mM KH 2 PO 4 , 1.1 mM Na 2 HPO 4 , 
2 mM MgCl 2 , 5 mM Pipes, pH 7.2, 2 mM EGTA, and 5.5 mM glucose) con-
taining 0.04 g/liter saponin and 1% BSA. After permeabilizing cells for 45 s 
at 37 ° C in the presence of biotin – G-actin, the reaction was stopped by 
adding permeabilizing buffer without saponin and BSA, and cells were fi xed 
for 5 min with 3.7% formaldehyde in permeabilizing buffer. Cells were then 
incubated for 10 min with permeabilizing buffer containing 0.1 M glycine; 
blocked for 20 min in TBS buffer containing 1% BSA, 1% FBS, and 5  μ g/ml 
phalloidin; and incubated for 1 h with FITC- or rhodamine-conjugated anti-
biotin antibody (1:50; Jackson ImmunoResearch Laboratories) and washed 
with TBS buffer containing 1% BSA. Coverslips from MatTek dishes were 
mounted with 0.1 M  N -propyl gallate in 50% glycerol in TBS, pH 7.5, for 
imaging. Images for all experiments were collected using identical settings 
within the linear range of the detector ’ s response and at a sensitivity such that 
none of the pixels in the image were saturated. Digital images were then lin-
early converted in NIH Image and analyzed using macro analysis as de-
scribed previously ( Mouneimne et al., 2004 ). In brief, the software averages 
the fl uorescence intensity in 29 consecutive annuli of 0.22  μ m, beginning 
1.1  μ m outside the cell periphery and extending inside the cell. Fluorescence 
intensity versus distance from the cell periphery was used to determine the 
number of cortical free barbed ends. Mean intensities of three annuli 
(0 – 0.22, 0.22 – 0.44, and 0.44 – 0.66  μ m inside the cell were used to determine 
the number of free barbed ends. 

 pH i  
 pH i  was determined in cells loaded with the fl uorescent H + -sensitive dye 
2,7-biscarboxyethyl-5(6)-carboxyfl uorescein (BCECF; Invitrogen) as de-
scribed previously ( Denker et al., 2000 ). Ratios of BCECF fl uorescence at 
Ex 490/Em 530 and Ex 440/Em 530 were converted to pH i  by calibrat-
ing with 10  μ M nigericin in 105 mM KCl. 
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lected by centrifugation at 100,000  g  for 60 min. Supernatants and pel-
lets were analyzed by SDS-PAGE and Coomassie staining. The amount of 
protein on the gel was determined by densitometry analysis by using NIH 
Image. Specifi c binding was calculated as the abundance of protein 
bound to vesicles containing PI(4,5)P2 minus binding to vesicles in the 
absence of PI(4,5)P2. The abundance of protein bound to vesicles in the 
absence of PI(4,5)P2 was minimal and pH-independent. pH-dependent 
dissociation constants were calculated from transformations of binding 
curves using GraphPad Prism 5 software (GraphPad Prism). Binding at 
pH 6.5 and 7.5 was also determined by incubating 20  μ M PI(4,5)P2 
with 3  μ M of recombinant WT cofi lin or cofl in-H133A. To correct for vari-
ations in lipid vesicle preparations, data were expressed relative to bind-
ing at pH 6.5 for each determination. 

 Statistical analysis 
 Data were analyzed with GraphPad Prism software using an unpaired 
 t  test with 95% confi dence intervals. The sample size represented the num-
ber of separate cell preparations, except for analysis of F-actin after mono-
layer wounding, which included data obtained from 40 – 60 cells in two 
separate cell preparations. 

 Online supplemental material 
 Fig. S1 shows spatially localized cortical actin free barbed end formation 
and the time-dependent phosphorylation of cofi lin in cells treated with PDGF. 
Fig. S2 shows predicted and measured structural changes in cofi lin with in-
creasing pH within the physiological range. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200804161/DC1. 
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