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Abstract

Cilia, organelles that move to execute functions like fertilization and signal to execute functions 

like photoreception and embryonic patterning, are comprised of a core of nine-fold doublet 

microtubules overlain by a membrane. Distinct types of cilia display distinct membrane 

morphologies, ranging from simple domed cylinders to the invaginations and membrane disks of 

photoreceptor outer segments. Critical for the ability of cilia to signal, both the protein and the 

lipid compositions of ciliary membranes are differentiated from those of other cellular membranes. 

This specialization presents a unique challenge for the cell as, unlike other membrane-associated 

organelles, the ciliary membrane is contiguous with the surrounding plasma membrane. This 

distinct ciliary membrane is generated in concert with the multiple membrane remodeling events 

that comprise the process of ciliogenesis. Once the cilium is formed, control of ciliary membrane 

composition relies on discrete molecular machines, including a barrier to membrane proteins 

entering the cilium at a specialized region of the base of the cilium called the transition zone and a 

trafficking adaptor that controls G protein-coupled receptor (GPCR) localization to the cilium 

called the BBSome. The ciliary membrane can be further remodeled by the removal of membrane 

proteins by the release of ciliary extracellular vesicles that may function in intercellular 

communication, removal of unneeded proteins or ciliary disassembly. Here, we review the 

structures and transport mechanisms that control ciliary membrane composition, and discuss how 

membrane specialization enables the cilium to function as the antenna of the cell.

Introduction

The cilium is a microtubule-based cellular projection that can be motile, sensory or both. 

Motile cilia and flagella beat to propel the cell or move the surrounding milieu. (Although 

different in their waveforms, flagella and cilia are used interchangeably throughout this 

review.) Immotile cilia, called primary cilia, function as antennae to communicate the 
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external environment to the rest of the cell, although motile cilia can also have sensory 

functions. Emphasizing the generality of principles learned by studying the cilia of model 

organisms, the structure of cilia and, to at least some extent, mechanisms of ciliary signaling 

are conserved across the eukaryotic kingdoms, from unicellular organisms to animals. For 

example, all cilia are constructed atop mother centrioles, called basal bodies when associated 

with cilia. They have a skeleton, the ciliary axoneme, that is comprised of nine-fold 

microtubule doublets. And they are ensheathed by a membrane.

Cellular membranes are primarily comprised of amphipathic lipids. In aqueous solutions, the 

hydrophobic acyl groups of these amphipathic lipids associate with each other and the polar 

heads associate with water to generate lipid bilayers. All forms of life are made of cells 

surrounded by lipid bilayers, suggesting that one of the earliest steps in the evolution of life 

was to physically separate the cytoplasm from its surroundings with a plasma membrane 

[1,2]. As the last common eukaryotic ancestor is likely to have possessed a cilium, the 

evolution of the cilium was also probably an early step. Thus, the cilium and its membrane 

have had over a billion years over which to co-evolve and diversify into the highly 

specialized forms found in extant organisms.

Presumably, the ciliary membrane shares its biochemical origins with that of the plasma 

membrane: vesicles originating from the Golgi and recycling endosomes exocytose into the 

plasma membrane, or specialized proteins transfer lipids from the endoplasmic reticulum 

into the plasma membrane, and, subsequently, the ciliary membrane emerges from the 

plasma membrane through the process of ciliogenesis. As a consequence of the overlapping 

mechanisms of plasma and ciliary membrane biogenesis, proteins involved in some forms of 

polarized exocytosis, including RAB11, RAB8 and the exocyst, participate in ciliogenesis 

[3].

A common feature among all cilia regardless of their functions is that, in marked contrast to 

most other organelles, cilia are incompletely membrane-bounded. Instead, the ciliary 

membrane is contiguous with the plasma membrane, and the ciliary base is open to the 

cytosol. Access of cellular components to the cilium is occluded by the basal body and some 

specialized structures within the transition zone, a region of the axoneme near the ciliary 

base. Despite their contiguity and shared origins, the ciliary membrane has a distinct protein 

and lipid composition from that of the plasma membrane.

One important role for the ciliary membrane is that it provides the boundary across which 

select extracellular signals are communicated to the rest of the cell. For example, in the 

unicellular green algae Chlamydomonas reinhardtii, sexual reproduction is initiated by the 

flagella of the gametes of the two mating types adhering [4]. Adhesion between these 

flagella is enabled by the presence of complementary agglutinins specifically present in the 

flagellar membranes of the different mating types [5]. Agglutinin-mediated flagellar 

adhesion initiates intracellular signaling events leading to cellular fusion and sexual 

reproduction [6–9]. Thus, maintaining the distinct composition of the ciliary membrane is 

critical for the ability of cilia to transduce signals.
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In vertebrates, morphogens of the Hedgehog (Hh) family require cilia to pattern tissues 

including the limb buds and the neural tube [10]. Hh ligands bind to their transmembrane 

receptor Patched (PTCH1), a receptor that localizes to and functions at cilia [11,12]. 

Subsequently, PTCH1 is shuttled out of the ciliary membrane, and concomitantly, the seven-

pass transmembrane protein Smoothened (SMO) accumulates in the cilium to activate the 

downstream Hedgehog pathway [13]. Cilia are therefore required for and coordinate the 

signaling and trafficking events initiated by Hedgehog signals.

In this review, we focus on emerging studies of the ciliary membrane, how it is distinguished 

from other membranes, and how it participates in the specialized signaling functions of the 

cilium. We discuss the exquisite diversity of ciliary membrane morphologies, from that of 

the canonical primary cilium to the convoluted membrane of photoreceptor outer segments. 

We summarize current understanding of how several distinct molecular machines 

compromised in human ciliopathies coordinately control the composition of the ciliary 

membrane. Finally, we describe the extensive remodeling that occurs during cilia formation 

and the membrane remodeling that gives rise to ciliary extracellular vesicles.

Different types of cilia exhibit different membrane morphologies

Like the cells they adorn, ciliary membranes can adopt astoundingly different shapes. This 

diversity is perhaps nowhere on more prominent display than in C. elegans. In addition to 

the single cilia that are similar to those found on most mammalian cells, C. elegans neurons 

(e.g., ADF and ADL neurons) can possess pairs of cilia, at least superficially similar to the 

paired cilia found on mammalian tanycytes [14–17]. Even more impressively, other C. 
elegans neurons possess cilia with elaborate membrane extensions that have been compared 

to wings (AWA, AWB, AWC neurons), bags (BAG) or flaps (FLP).

In addition to tanycytes, other vertebrate cells can display cilia with diverse morphologies. 

As mentioned above, photoreceptor cells possess highly distended ciliary tips called outer 

segments. These outer segments are packed with Opsin-containing discs. While differences 

in the underlying ciliary axonemes are likely to contribute to these extreme morphologies, 

differences in the membrane surrounding the cilia are their most prominent features.

The specialization of ciliary membranes is also indicated by their distinct protein 

compositions. In Chlamydomonas species, different agglutinins within the plasma and 

ciliary membranes do not mix under most conditions, indicating that there are barriers 

between the plasma and ciliary membranes [18,19]. In mammals, diverse membrane-

associated proteins, including the aforementioned Hedgehog signal transduction pathway 

components PTCH1 and SMO and the Polycystic Kidney Disease-associated proteins PKD1 

and PKD2 can accumulate within the ciliary membrane [11,13,20,21]. Disruption of ciliary 

function can cause Hedgehog-associated developmental defects or kidney cysts [10,22,23], 

reflecting the intimate involvement of the ciliary environment in the function of these ciliary 

proteins. As there are no ribosomes, and therefore no translation, within the cilium, all 

ciliary proteins necessarily traffic there from elsewhere in the cell. Thus, targeted trafficking 

to and retention of membrane-associated proteins at the cilium are essential for the 

specialization of the ciliary membrane.
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Outside of the cilium, membrane lipids actively participate in transmembrane protein 

trafficking and retention. For example, different Golgi membranes can have different 

thicknesses, and complementarity between the length of protein transmembrane domains 

and the thickness of the membrane can help sort proteins to subdomains of the Golgi 

apparatus [24,25]. In other membranes, localization can depend on additional physical 

characteristics of the membrane and transmembrane domains, such as charge and 

amphipathicity [26].

The physical characteristics of the ciliary membrane are largely unknown although the 

trypanosome flagellar membrane is highly enriched in dehydroergosterol, a sterol that 

vertebrates do not make [27], and the membrane of photoreceptor outer segments contains 

high levels of unsaturated lipids [28–30]. In the C. elegans AFD neuron, an unsaturated 

lipid-GFP fusion does not localize to the cilium [31], suggesting that cilia may exclude 

certain lipids, just as they exclude certain proteins.

Arguing from first principles, the high curvature of the ciliary membrane may enrich conical 

lipids such as phosphatidylethanolamine in the inner leaflet, and enrich inverted conical 

lipids such as lysophosphatidylcholine in the outer leaflet (Figure 1). Active regulation of 

the abundance of conical and inverted conical lipids in the ciliary membrane may generate 

the diverse morphologies seen across different types of cilia. What lipids are found within 

ciliary membranes, whether different types of cilia contain different lipids, whether lipids 

help determine which proteins localize to the cilium and how they participate in ciliary 

signaling will be interesting questions to answer.

Different subdomains of the cilium have distinct membranes

The cilium consists of several functionally distinct subdomains associated with distinct 

subdomains of the ciliary membrane (Figure 2A). Surrounding the ciliary membrane of 

some cilia is the ciliary pocket, a membrane invagination that separates the ciliary membrane 

from the plasma membrane [32]. Like the ciliary membrane, the ciliary pocket is differently 

organized in different cell types. In fibroblasts, the ciliary pocket is a simple sheath around 

the cilium. In contrast, the ciliary pocket of frog outer segments, called the periciliary ridge 

complex, is a nine-fold symmetric series of ridges and grooves [33]. Newly-synthesized 

Opsin destined for the outer segments is first delivered to the periciliary ridge complex by 

vesicular transport, implicating ciliary pockets in trafficking of membrane-associated 

proteins to cilia [34].

Due to the absence of robust markers of the ciliary pocket, the boundary between the ciliary 

membrane and the ciliary pocket membrane has not been accurately defined. However, the 

boundary is presumably in the vicinity of the distal appendages, a ring of struts connecting 

the distal end of the basal body to the membrane at the base of the cilium. The nine-fold 

symmetric distal appendages project radially from the barrel of the basal body to contact the 

membrane [35]. Although several proteins that form the distal appendages have been 

identified, how the distal appendages attach to the membrane remains unknown [36,37].
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In addition to serving as membrane attachment anchors, distal appendages are docking sites 

for intraflagellar transport (IFT) machinery [38]. IFT is the primary means by which active 

transport from the basal body to the ciliary tip and back again occurs [39]. The distal 

appendages may serve as organizing sites for IFT complexes entering and/or leaving cilia. 

Interestingly, the mature sensory cilia in C. elegans lack basal bodies and distal appendages, 

suggesting that membrane compartmentalization between the ciliary membrane and the 

periciliary membrane can be achieved independent of both structures [17,40,41].

Although lacking basal bodies, nematode cilia do have a specialized domain surrounding the 

base of their cilia called the periciliary membrane compartment (PCMC). Perhaps 

analogously, mammalian MDCK cells have a domain of ordered lipids surrounding the 

ciliary base in which Galectin-3 localizes [42]. Other mammalian cells have a membrane 

domain at the ciliary base rich in PI(4,5)P2 [43,44]. Freeze-fracture electron microscopy has 

identified a ring of intramembranous particles called the ciliary bracelet surrounding the 

ciliary base [45,46]. How the PCMC, the ordered lipid domain, the PI(4,5)P2-rich domain, 

and the ciliary bracelet correspond to the ciliary pocket is not clear, but it is possible that 

each of these independent works describes different aspects of the same region.

Immediately distal to the distal appendages is a subcompartment of the cilium called the 

transition zone [47]. The transition zone is named for the most proximal region in which the 

triplet microtubules that comprise the basal body have transitioned into the doublet 

microtubules of the ciliary axoneme. Ultrastructurally, the transition zone is characterized by 

Y-shaped densities that bridge the microtubule axoneme to the surrounding ciliary 

membrane and rings of intramembranous particles called the ciliary necklace [48]. 

Interestingly, identification of sterol complexes in the ciliary membranes of motile cilia 

reveals that the transition zone is sterol poor, suggesting that even subdomains of the ciliary 

membrane may possess different lipid compositions [49].

At the distal end of the cilium is the ciliary tip, yet another specialized subdomain of the 

cilium. Activation of C. reinhardtii mating causes the flagellar tips to grow rapidly, revealing 

that this subdomain can be dynamically remodeled [6]. Similarly, in mammals, proteins 

involved in signal transduction, such as SUFU and the GLI transcription factors involved in 

Hedgehog signaling, increase their localization to the ciliary tip in response to pathway 

activation [50,51].

For decades, the gold standard by which distinct ciliary compartments have been defined has 

been electron microscopy. The ability of electron microscopy to resolve fine, electron-dense, 

features in a cellular context is offset by the difficulty in identifying the localization of 

specific proteins. The advent of super-resolution fluorescence microscopy has made the 

detection of specific proteins within the cilium at resolutions of 20–100 nm much more 

tractable. Using conventional immunofluorescence staining techniques, it is now possible to 

resolve multiple, distinct ciliary compartments with structured illumination microscopy 

(SIM). For example, SIM can resolve the ciliary membrane, transition zone, and ciliary 

pocket from the distal appendages (Figure 2B). Excitingly, SIM can also resolve the ciliary 

membrane from the axoneme, structures that differ in diameter by only ~100 nm (Figure 2B, 

left). Another type of superresolution microscopy, stochastic optical reconstruction 
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microscopy (STORM), can achieve even higher resolution (~20 nm) than SIM. The high 

resolution capabilities of STORM enable the detection of spatially distinct proteins within 

subdomains of cilia, such as the relative positions of distinct ciliopathy-associated 

complexes within the transition zone [52]. The complementary use of cellular electron 

microscopy and super-resolution fluorescence microscopy will enable further advancement 

in our understanding of how subdomains of the ciliary membrane differ from each other.

Ciliogenesis requires multiple steps of membrane remodelling

Ciliogenesis occurs in interphase. The two dominant models of ciliogenesis differ in the 

accompanying membrane remodeling events and in the cell types in which they occur 

(Figure 3). In the pathway that is thought to occur in polarized epithelial cells, the basal 

body docks directly to the plasma membrane [53]. Subsequently, the axoneme is built atop 

the basal body and the ciliary membrane expands to cover the nascent cilium. In the 

ciliogenesis pathway that is thought to occur in fibroblasts, the basal body distal appendages 

attach to small vesicles (the distal appendage vesicles, DAVs) [54]. The DAVs then fuse to 

form a single larger vesicle, the ciliary vesicle. Subsequently, the axoneme and the ciliary 

vesicle concomitantly extend to form the ciliary membrane, generating an internalized 

cilium. The outer surface of the large ciliary vesicle of an internalized cilium can then fuse 

with the plasma membrane to externalize the cilium.

Molecular determinants of membrane remodeling during ciliogenesis include membrane 

shaping proteins EHD1 and EHD3 [55]. Other proteins, including SNAP29, are required for 

the coalescence of the DAVs into the ciliary vesicle. Identifying additional molecular 

determinants of ciliary membrane remodeling is an active area of research.

Once the axoneme and ciliary membrane have extended, further membrane remodeling 

events are required in cilia with more complex membrane topographies, such as the outer 

segments of photoreceptor cells. Beyond outer segments, the molecular differences that 

underpin different modes of ciliogenesis and different membrane topographies are largely 

unknown.

After the completion of ciliogenesis, ciliary membranes may be reshaped by ciliary 

signaling. For example, cilia of a C. elegans neuron called AWB display an elongated 

morphology in the presence of nutrient-rich bacterial food. However, when fed an axenic, 

minimal medium, the morphology of the cilium changes to a fan-like shape, similar to the 

shape of cilia in nematodes mutant for chemosensory genes such as the guanylyl cyclase 

odr-1 and the cyclic nucleotide gated channel tax-4 [56]. Therefore, cilia membrane 

morphology can depend on the signaling state of the cilium.

Ciliary morphology is also determined by proteins that localize to the ciliary membrane or to 

the surrounding periciliary membrane. OSTA-1 is an organic solute transmembrane 

transporter in the PCMC of ciliated neurons of C. elegans that shapes sensory ciliary 

morphology and regulates trafficking of cargoes to the cilium [57]. In osta-1 mutants, the 

ciliary membrane displays altered branching and fanning, and select ciliary GPCRs are 

aberrantly enriched in the PCMC [57].
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Further emphasizing the relationship between membrane trafficking and ciliary membrane 

morphology, endocytosis regulators affect the morphology of the ciliary membrane. For 

example, endocytosis proteins AP-2, Clathrin, RAB-5 and Dynamin all localize to the 

PCMC, and nematodes with partially disrupted AP-2 function display enlarged PCMC, 

expanded ciliary membranes, and altered localization of ciliary membrane proteins [58].

In addition to endocytosis effectors, regulatory proteins such as kinases help shape ciliary 

membrane morphology. Cyclin-dependent kinase 20 (Cdk20, also known as Ccrk) mutant 

mice display neuroepithelial cilia that are swollen and short [59]. Cdk20 mutant mouse 

embryonic fibroblasts have attenuated Hedgehog signaling, reflected by reduced ciliary 

SMO upon pathway activation [59]. The role of CDK20 in controlling ciliary length and 

morphology is highly conserved across diverse species, as mutants in LF2, a C. reinhardtii 
homolog of Cdk20, also display bulbous cilia [60].

CDK20 biochemically interacts with the putative Rab-GAP Broad-minded (BROMI), and 

like those of Cdk20 mutants, neuroepithelial cilia of Bromi mutant mice show a shortened, 

bulbous morphology [61]. In zebrafish, Bromi is required for the proper apposition of the 

axoneme and ciliary membrane, suggesting that BROMI, and potentially CDK20, coordinate 

assembly of the axoneme and expansion of the ciliary membrane during ciliogenesis [61].

Together, the identification of these diverse regulators of ciliary membrane morphology 

demonstrate that the formation of the cilium involves extensive membrane remodeling, and 

after the cilium is formed the composition of the ciliary membrane must be precisely 

controlled to support signaling.

The transition zone controls ciliary membrane protein composition

The transition zone, described above, is a specialized region of the ciliary base critical for 

controlling the composition of the ciliary membrane. The transition zone is comprised of 

several protein complexes, including the NPHP complex, the CEP290 complex and the MKS 

complex, that form the border between the ciliary and plasma membranes. The MKS 

complex, named after the association of many of its components with a severe ciliopathy 

called Meckel syndrome (MKS), is essential for ciliogenesis in some tissues such as the 

node and the neural tube [62–65]. In other tissues, such as the limb bud, the MKS complex 

is not required for ciliogenesis, but is required for developmental patterning [62–65]. In the 

absence of the MKS complex, some membrane-associated proteins, such as ARL13B, 

PKD2, GPR161 and SMO, fail to accumulate within the ciliary membrane [62–67].

In addition to promoting the ciliary localization of certain membrane-associated proteins, the 

transition zone also limits the entry of plasma membrane-associated proteins. For example, 

in the absence of MKS components, such as TCTN-1, C. elegans cilia can no longer exclude 

a normally non-ciliary membrane protein [67,68]. Similarly, knockdown of MKS complex 

components in mammalian cells allows normally non-ciliary constructs such as GFP-

CEACAM1 to gain access to the ciliary membrane [63]. Thus, the MKS complex and, by 

extension, the transition zone are critical for delineating the ciliary membrane and the 

contiguous plasma membrane.
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Although it remains unclear how the transition zone separates the components of these two 

domains, the transition zone is a structural tether between the membrane and the underlying 

microtubules. In C. reinhardtii, loss of the transition zone component CEP290 causes the 

membrane to lose its close apposition with the axonemal microtubules [69]. In wild type C. 
reinhardtii, the transition zone membrane is resistant to detergent extraction, a feature also 

dependent on CEP290 [69,70]. These results suggest that CEP290 imparts, directly or 

indirectly, distinct biophysical characteristics to the transition zone membrane.

Unlike Chlamydomonas, loss of the C. elegans ortholog of CEP290 is not sufficient to cause 

detachment of the transition zone membrane from the axoneme, but loss of both an MKS 

and NPHP complex is, indicating that the MKS and NPHP complexes have overlapping 

roles in the connecting the ciliary membrane to microtubules [68,71].

Proteins and dextrans below about 70 kD bypass the transition zone to gain entry to the 

cilium, suggesting that molecular weight is one determinant by which the transition zone 

discriminates molecules [72–76]. Similarly, the transition zone may control the composition 

of the ciliary membrane by acting as a barrier to the diffusion of membrane proteins. A 

critical component of this diffusion barrier may be the Septin cytoskeleton, which acts as a 

protein diffusion barrier in other contexts [77]. Knockdown of SEPT2 reveals that it is 

important for transition zone formation, indicating an intimate relationship between Septins 

and dedicated transition zone components [63].

In addition to functions as a diffusion barrier, recent super-resolution microscopy has 

revealed that the transition zone is a point at which many ciliary membrane-associated 

proteins accumulate, suggesting that this may be a waypoint at which proteins’ credentials 

are checked before being allowed entry or turned away (Figure 4) [52,78].

Mutations in MKS components can cause, in addition to MKS, Joubert syndrome, a 

ciliopathy characterized by hypoplasia of the cerebellar vermis and brainstem abnormalities 

[79,80]. Cells from Joubert syndrome individuals show defects in the architecture of the 

transition zone and, most probably consequently, defects in the protein composition of the 

ciliary membrane [52]. We have proposed that at least some forms of Joubert syndrome are 

due to defective transition zones causing problems in ciliary signaling. How these defects in 

ciliary signaling disrupt the development of the cerebellum and brainstem remains to be 

elucidated. Changes in canonical and non-canonical Hedgehog signaling resulting in 

changes in patterning, cell proliferation and axon pathfinding may prove to cause the 

developmental changes underlying Joubert syndrome.

In addition to transmembrane proteins, peripheral membrane proteins that localize to the 

ciliary membrane must also surmount the transition zone. Ciliary prenylated and 

myristoylated proteins gain access to the cilium by the lipidated protein intraflagellar 

targeting (LIFT) system. LIFT requires proteins that bind and transport the lipidated cargo 

(e.g., PDE6D, UNC119), those that unload the cargo (e.g., small GTPase ARL13B), and 

those that direct the unloading specifically in the ciliary membrane (e.g., GTPase-activating 

protein RP2) [81–84].
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The transition zone controls the composition of the ciliary membrane, but it does not act 

alone. For example, components of the transition zone NPHP complex in C. elegans, and the 

MKS complex in mammals genetically interact with components of a complex called the 

BBSome, revealing a tight functional coupling between the transition zone and a cargo 

adaptor complex to support ciliogenesis, ciliary trafficking and signaling [67].

The BBSome cooperates with the TZ to control ciliary membrane protein 

composition

Bardet-Biedl syndrome (BBS) is an inherited syndromic ciliopathy characterized by retinal 

degeneration, kidney cysts, polydactyly and obesity [85]. Intimately involved in the control 

of membrane-associated protein localization to cilia is the BBSome, a complex of eight 

proteins associated with Bardet-Biedl syndrome (BBS) [86–88].

A key role for the BBSome is the control of the ciliary localization of select GPCRs. To do 

so, the BBSome is recruited to membranes by the small GTPase ARL6 which, when binding 

GTP, interacts with the BBS1 component of the BBSome [89,90]. In addition to its 

interaction with membranes through ARL6, the BBSome interacts with phosphoinositides 

[89]. Apart from the membrane, the BBSome associates with the IFT machinery to localize 

select cilia-associated GPCRs to cilia [87,89,91–97]. For example, BBS2 and BBS4 are 

required for the localization of the GPCR SSTR3 to cilia of hippocampal neurons [94]. 

Moreover, ARL6 and BBS4 are required for the ciliary localization of a normally non-ciliary 

protein (CD8α) fused to the ciliary targeting sequence of the third intracellular loop of 

SSTR3, providing evidence of a discrete ciliary targeting sequence that functions as a 

zipcode for BBSome-mediated ciliary delivery [89].

Somewhat confusingly, the BBSome is also required for the ciliary export of at least some 

proteins, including some GPCRs [67,97–101]. In C. reinhardtii, the BBSome itself is 

exported from flagella in a way that depends on the IFT-A component IFT139, and the 

BBSome component BBS4 limits the flagellar accumulation of a limited number of 

membrane-associated proteins [99,100]. Without BBS4 activity, for example, C. reinhardtii 
flagella accumulate Phospholipase D with consequent increases in DAG, a product of 

Phospholipase D [99]. Thus, similar to the role of PDE6D in controlling the ciliary 

phosphoinositide composition through regulation of INPP5E localization (as described in 

the next section), the BBSome indirectly controls ciliary lipid composition through 

regulation of the localization of an enzyme that hydrolyzes ciliary membrane lipids.

Recently, SSTR3, a GPCR whose ciliary localization depends on BBS2 and BBS4 in the 

mouse hippocampus, was found to exit the IMCD3 cilium in a manner dependent on BBS2, 

BBS4 and another BBS-associated protein, ARL6 [94,102,103]. How might the BBSome 

promote the exit of SSTR3 from IMCD3 cilia, but promote the ciliary localization of SSTR3 

in the hippocampus? Perhaps tagged SSTR3 expressed by IMCD3 cells and endogenous 

SSTR3 expressed by neurons traffic or ectocytose differently, or perhaps dynamic imaging 

reveals an involvement of BBSome proteins in ciliary exit that is missed by static snapshots.
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Another possible explanation for the apparently contradictory findings that BBS proteins 

participate in trafficking GPCR to cilia and promoting their exit from cilia is that they do 

both, but under different conditions. A few GPCRs localize to cilia in an activity-dependent 

manner. For example, Dopamine receptor 1 (D1) localizes to cilia of neurons in the central 

nervous system, but rapidly exits cilia upon binding to a pharmacologic agonist through a 

mechanism that requires BBS4 [97]. Similarly, GPR161 exits cilia upon activation of the 

Hedgehog pathway in a way that requires the BBSome [67,104,105]. It is tempting to 

speculate that, in the absence of activation, the BBSome promotes the ciliary localization of 

diverse client GPCRs and that an activation-dependent event, such as binding to β-

Arrestin-2, changes BBSome function to promote the ciliary exit of the very same GPCRs. 

Regardless, the phenotypes associated with BBS are presumably due to altered ciliary 

protein and lipid localization, disrupting multiple aspects of ciliary signaling.

Both the BBSome and the transition zone are complex macromolecular machines that 

function in the ciliary localization of membrane-associated proteins, but the transition zone 

is static whereas the BBSome is transported within the cilium by the IFT machinery. 

Knockdown of BBS1, 3 or 5 inhibits the ciliary localization of SMO [106] and knockout of 

BBS7 causes misaccumulation of SMO in cilia [107], but these effects on ciliary SMO 

activity may be minor as null mutations in mouse BBS-associated genes do not cause 

phenotypes associated with Hedgehog loss of function such as holoprosencephaly. Although 

absence of the BBSome does not dramatically disrupt ciliary localization of SMO, the 

presence of polydactyly in BBS-affected individuals and the effects of BBS-associated gene 

inhibition in zebrafish on fin patterning suggest that it can alter Hedgehog signaling 

[101,104,107–109]. Although loss of BBS-associated genes do not cause polydactyly in 

mice, they are expressed in the developing limb bud. Moreover, mutations in mouse Bbs1 or 

Bbs4 enhance the polydactyly seen in mutants affecting MKS complex components, 

demonstrating that they do have ancillary roles in mouse limb patterning and that the 

BBSome and the transition zone MKS complex genetically interact [67,108,110,111]. One 

scenario that may account for the disparate findings is if the transition zone actively 

recognizes BBSomes carrying inactive receptors to allow them to enter and BBSomes 

carrying activated receptors to allow them to exit [112]. Perhaps differential association with 

β-Arrestin-2 is one way in which activated receptors could be distinguished from inactive 

receptors [113]. Regardless, in addition to the membrane proteins that are localized 

specifically to the cilium by the transition zone and the BBSome, lipids themselves can be 

enriched in the cilium.

Phosphoinositide compartmentalization and consequences of aberrant 

composition

Phosphoinositides (PI) are phosphorylated lipids that confer distinct molecular identities to 

different cellular membranes [114]. For example, endosome and Golgi membranes possess 

PI(3)P and PI(4)P, respectively, whereas the plasma membrane possesses both PI(4)P and 

PI(4,5)P2 [115–118]. Differences in the types of phosphoinositides help compartmentalize 

signaling events within cells to different membranes. Crucial to maintaining the distinct 

phosphoinositide compositions of different membranes is their physical separation from 
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each other. In contrast to organelles such as endosomes and Golgi, the cilium possesses a 

membrane contiguous with that of the plasma membrane. Despite the lack of a physical 

separation, the ciliary membrane nevertheless maintains a distinct phosphoinositide 

composition with high levels of PI(4)P and low levels of PI(4,5)P2, relative to the plasma 

membrane [43,44].

How does the ciliary membrane maintain a unique lipid composition? One part of the 

answer is ciliary localization of lipid biosynthetic enzymes. In C. elegans, a 

phosphoinositide 5-phosphatase called CIL-1 localizes in the region of cilia and promotes 

ciliary localization of PKD-2, the ortholog of Polycystic kidney disease 2 (PKD2) [119]. In 

mammals, three phosphoinositide 5-phosphatases can localize to cilia, prominent among 

which is INPP5E. INPP5E converts PI(4,5)P2 into PI(4)P and, in the absence of INPP5E, 

ciliary levels of PI(4)P decrease and PI(4,5)P2, increase, revealing that INPP5E is critical for 

generating the distinct phosphoinositide composition of cilia [43,44].

In addition, a phosphoinositide 5-phosphatase paralog of INPP5E, OCRL, can localize to 

primary cilia [120,121]. Mutations in OCRL is associated with Lowe syndrome, a 

multisystem disorder characterized by eye, nervous system and renal dysfunction [122]. The 

cilia of fibroblasts derived from Lowe syndrome patients have increased levels of PI(4,5)P2 

and reduced levels of PI(4)P, suggesting that multiple phosphoinositide 5-phosphatases may 

have overlapping functions in controlling ciliary phosphoinositide composition.

For INPP5E and other phosphoinositide 5-phosphatases to generate the ciliary pool of 

PI(4)P, they must localize specifically to cilia. INPP5E is a peripheral membrane protein 

and, as discussed above for many other membrane-associated proteins, the ciliary 

localization of INPP5E depends on the transition zone MKS complex. The MKS complex 

localizes the small GTPase ARL13B to the cilium [62], and in conjunction with with 

PDE6D, ARL13B is itself critical for the ciliary localization of INPP5E [123–125]. Thus, it 

is likely that the transition zone MKS complex works through ARL13B to localize INPP5E 

to the cilium to generate the sharp boundary in phosphoinositide composition.

In wild type cells, the border between the ciliary PI(4)P domain and the PI(4,5)P2 domain is 

sharp, and how the sharpness of this border is maintained remains a question of interest. In 

addition to its role in directing the ciliary localization of INPP5E, there are two lines of 

evidence that raise the possibility that the transition zone may control the PI(4)P/PI(4,5)P2 

border directly. First, several transition zone components contain a C2 domain, or the related 

B9 domain, both of which can bind phospholipids [64,126]. Second, many other transition 

zone components are transmembrane proteins that may generate an “anchored protein 

picket.” Models of anchored transmembrane proteins suggest that collectively they can 

restrict the diffusion of phospholipids through steric hindrance and hydrodynamic slowing, 

forming picket fences to partition membrane lipids [127]. For example, in the axon initial 

segment, anchored, densely packed transmembrane proteins limit the free diffusion of 

phospholipids [128].

Although tempting to speculate that the transition zone may restrict the movement of lipids 

into or out of the cilium, thereby drawing the PI(4)P/PI(4,5)P2 border, the C2 domain of the 
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transition zone protein RPGRIP1 does not bind lipids [129]. These data raise the possibility 

that transition zone C2 domains instead function to facilitate protein-protein interactions. 

Adding to the complexity, beyond the transition zone affecting the distribution of 

phosphoinositides, INPP5E and phosphoinositides may reciprocally influence the 

composition of the transition zone [130]. Once established within cilia, phosphoinositides 

help control the distribution of ciliary proteins. The ciliary localization of TULP3, a Tubby-

family protein that binds PI(4,5)P2 [131], increases as ciliary PI(4,5)P2 increases and PI(4)P 

decreases, suggesting that ciliary TULP3 levels are restrained by wild type ciliary 

phosphoinositide composition [43,44]. In a PI(4,5)P2-dependent fashion, TULP3 binds to 

the IFT-A complex and helps deliver diverse membrane-associated proteins to cilia, 

including GPCRs and PKD2 [131–133]. However, when TULP3 encounters PI(4)P in cilia, 

it may disassociate from the membrane and release its cargo within the ciliary membrane 

[44,133]. Loss of function mutations affecting TULP3, components of the IFT-A complex, 

or the ciliary GPCR GPR161 cause misactivation of Hedgehog signaling [132,134–139]. As 

loss of INPP5E attenuates Hedgehog signaling, it is likely that INPP5E impinges on 

signaling by limiting ciliary PI(4,5)P2 levels, thereby limiting ciliary TULP3, IFT-A and 

GPR161 [43,44]. Thus, a protein complex at the ciliary base (the MKS complex) controls 

the ciliary localization of an enzyme (INPP5E) which determines the lipid composition of 

the ciliary membrane (phosphoinositides) to control the ciliary localization of a lipid sensor 

(TULP3) to regulate the levels of a protein that controls the signaling output of cilia 

(GPR161).

It is likely that other Tubby family members function in manners analogous to TULP3 as 

cell type-specific sensors of ciliary phosphoinositides. In support of this possibility, mutation 

of either the founding member of the family, TUBBY, or its paralog, TULP1, are associated 

with obesity and retinal degeneration, phenotypes also observed in ciliopathies [140–142]. 

TUBBY is expressed predominantly by the retina and brain, and, like TULP3, it is involved 

in localizing GPCRs to cilia [133,143]. It is possible that photoreceptor phosphoinositides 

are read out by TUBBY and TULP1 to promote the delivery of Rhodopsin to the outer 

segment, defects in which cause photoreceptor loss, and read out by TUBBY to promote the 

delivery of MC4R to the paraventricular nucleus cilium [144], defects in which cause 

obesity.

TUBBY family proteins are present in diverse ciliated organisms, including 

Chlamydomonas, Tetrahymena and Paramecia. These data suggest that TUBBY family 

proteins, and by extension, phosphoinositides have phylogenetically ancient roles in ciliary 

biology. Whether phosphoinositides help direct ciliary protein trafficking in protists, or 

whether they might play other roles such as allosteric regulators of ciliary protein function, 

determinants of ciliary membrane viscosity, or contributors to membrane electrostatics, has 

yet to be established. Other ciliary proteins, including a component of the BBSome, can bind 

phosphoinositides, raising the possibility that proteins other than TUBBY family members 

are involved in interpreting ciliary phospholipids [86,89].

In further support of the possibility that ciliary phosphoinositides are critical for ciliary 

signaling, INPP5E is important for oncogenic Hedgehog signaling [145]. Misactivation of 

the Hedgehog pathway in the cerebellar external granule layer causes medulloblastoma, the 
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most common pediatric brain cancer [146–148]. Medulloblastoma cells can be ciliated, and 

conditional deletion of Inpp5e in a mouse genetic model of Hedgehog-associated 

medulloblastoma promotes cilia loss and slows tumor progression [145,149]. Reduced 

INPP5E expression in human medulloblastoma patients is similarly associated with 

improved survival [145], but it is not known whether these differences are due to a direct 

effect on ciliary signaling.

Similar to genes encoding several transition zone components, mutations in human INPP5E 
are a cause of Joubert syndrome, and knockout of mouse Inpp5e results in phenotypes 

characteristic of ciliopathies, including cystic kidneys and polydactyly [130,150,151]. It will 

be interesting to assess whether, beyond phosphoinositides, additional ciliary lipids 

participate in ciliary signaling and the pathogenesis of ciliopathies.

With respect to the relationship between ciliary Hedgehog signaling and ciliary membrane 

lipid composition, cholesterol and cholesterol-derivatives such as oxysterols bind to 

Smoothened to modulate the Hedgehog transcriptional program [152–157]. Indeed, some of 

the developmental manifestations of SHH mutation are phenocopied by mutation of the 

cholesterol biosynthetic enzyme DHCR7 in Smith-Lemli-Opitz syndrome (SLOS), most 

notably holoprosencephaly. The most abundant oxysterol in the brain of a mouse genetic 

model of SLOS can inhibit Hedgehog signaling, and C. reinhardtii cilia contain an ergosterol 

which inhibits Hedgehog signal transduction by binding to Smoothened [158,159]. These 

data tantalizingly suggest that ciliary lipids may be the long-sought ligands that activate 

Smoothened downstream of Patched! Although it has yet to be determined if cilia contain 

cholesterol derivatives that stimulate the Hedgehog pathway, it is notable that the 

cerebrospinal fluid of medulloblastoma patients is enriched in an oxysterol that can activate 

Smoothened [160,161].

Ciliary-derived vesicles participate in diverse cellular functions.

Extracellular vesicles (ECVs) have emerged as a mechanism by which cells can 

communicate over long distances. Apart from the rest of the cell, cilia can be a source of 

ECVs with specialized critical functions. For example, in C. reinhardtii, ECVs released from 

flagella contain proteolytic enzymes that degrade the mother cell wall to release daughter 

cells (Figure 5) [162].

ECVs are also associated with animal cilia. In C. elegans, ECVs containing LOV-1 and 

PKD-2, the orthologs of PKD1 and PKD2, are released from sensory neurons [163]. These 

vesicles, most probably derived from the PCMC or ciliary membranes of select cilia, 

accumulate in the extracellular space surrounding cilia. Furthermore, a genetic screen for 

mutants that fail to localize PKD-2 to the cilium identified a key role for CIL-7, an 

invertebrate myristoylated protein, in ECV biogenesis [164]. Without CIL-7, ECVs 

accumulate in the extracellular space surrounding the ciliary base and the PCMC and fail to 

be released into the environment [164]. ECVs induce male tail chasing behavior, suggesting 

a role of the ECVs in intercellular communication [163]. Consistently, loss of CIL-7 also 

results in a defect in male mating behavior [164]. As the C. reinhardtii, flagellar membrane 
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glycoproteins are shed from the flagellar base [165], the ciliary base or the PCMC may to be 

an evolutionarily conserved source of ciliary ECVs.

In the vertebrate retina, the tip of each outer segment sheds ECVs derived from about six 

discs per day, removing Opsins with oxidized retinols [166]. These cilium-derived ECVs are 

taken up by the neighboring retinal pigmented epithelium where the retinol is reduced and 

transported back to the photoreceptor to regenerate function Opsins [166]. At the base of the 

outer segment, membrane discs are formed by membrane evagination and are retained 

within the outer segment and restrained from being shed by the disc-specific protein 

Peripherin [167,168]. The simultaneous processes of controlled vesicular shedding at the tip 

and membrane disc formation at the base allows continuous renewal of the outer segments. 

Defects in many steps of outer segment biogenesis and renewal result in retinal 

degeneration.

The source of ECVs in other mammalian tissues are more mysterious, but ECVs purified 

from urine contain many ciliary proteins, including PKD1 and PKD2, suggesting that 

nephron cilia may be a source of ECVs [169]. In cultured cells, these urinary ECVs interact 

with primary cilia of kidney epithelial cells, raising the possibility that they may be 

communicating to cilia [169]. In another context, primary cilia of neuroepithelial cells 

release ECVs containing Prominin-1 into neural tube fluid [170]. Whether these ECVs are 

involved in recycling degraded cellular components, as in the photoreceptor, or whether they, 

as in C. reinhardtii and C. elegans, are involved in triggering biological events, is not yet 

clear.

Similar to photoreceptor cells, cultured mammalian cells generate ECVs from their ciliary 

tips [103,171]. As Actin filaments are not prominent features in the cilium, it is a surprise 

that Actin-dependent events are deployed within the cilium to release ciliary ECVs from the 

tip. These ECVs are released in a signal-dependent manner and contain transmembrane 

signaling molecules such as the anorexigenic GPCR NPY2R [103]. Perhaps these ECVs are 

a way by which cilia discard ciliary membrane and associated proteins to terminate 

signaling. In this way, these cilia-derived ECVs may function analogously to retinal ECVs as 

garbage bins critical for maintaining ciliary homeostasis.

Parallel live imaging studies have shown that intraciliary PI(4,5)P2 and F-actin trigger ECV 

release from the ciliary tip to promote ciliary disassembly [171]. Thus, cilia-derived ECVs 

may also prepare for ciliary disassembly, an event that must occur before the initiation of 

mitosis so that the basal body can relocalize to the spindle pole. A non-mutually exclusive 

role for ECV release may therefore be to rapidly discard ciliary membrane and proteins to 

facilitate ciliary disassembly in preparation for mitosis [171].

Thus, ciliary ECVs may fall into at least two categories (Figure 5). Bioactive ciliary ECVs 

can perform cellular functions like degrading the C. reinhardtii cell wall or coordinating C. 
elegans male mating behavior, whereas bioinactive ciliary ECVs can help discard unneeded 

material from the cilium.
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Conclusion and future directions of ciliary membrane investigation

As an important interface with the rest of the world, the ciliary membrane is a fascinating 

example of how membrane specialization confers critical functions, allowing the cilium to 

function as the antenna for the cell. Essential for the signaling functions of cilia is precise 

control of ciliary membrane compartmentalization, composition and morphology. Different 

types of cilia exhibit diverse membrane morphologies, and the morphology and remodeling 

of ciliary membranes can be dynamically modified by signaling activity.

Ciliary signaling depends not just on proteins. Indeed, cilia have distinct membrane lipid 

compositions that work together with protein complexes, such as the BBSome, to create the 

complexity required for signaling diverse inputs to the cell body. For example, 

phosphoinositides enriched in the ciliary membrane promote the deposition of specific 

membrane signaling proteins in the cilium.

Highlighting the importance of both lipids and proteins, many ciliopathies are characterized 

by disruptions in the ciliary localization of both, with concomitant effects on ciliary 

signaling. Recent studies of vesicles derived from the ciliary membrane have shed light on 

novel functions of ECVs, and suggest that many secrets of how the ciliary membrane 

functions remain to be uncovered. These cilia-derived ECVs may play function in 

intercellular signaling, serve as a ciliary waste disposal system, or both.

Finding the answers to open questions about how the ciliary cilium functions will rely on 

disparate approaches, from genetic perturbations in model organisms to biochemical 

reconstitution of minimal systems. What lipids are found within ciliary membrane can be 

determined by biochemical fractionation and lipid mass spectrometry. How proteins and 

protein complexes shape membranes can be determined using biochemical reconstitution 

and transmission electron microscopy. Which proteins localize to the cilium or 

subcompartments within the cilium can be assessed using proximity-labeling proteomics and 

fluorescence microscopy, especially super-resolution microscopy. How ciliary proteins 

participate in ciliary signaling required for development and organismal behavior can be 

determined using genetically tractable model organisms. These diverse strategies will be key 

to the future work of uncovering the molecular mechanisms by which ciliary membranes 

form and function.
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Figure 1. 
Lipids can determine membrane curvature

Lipids are categorized as cylindrical, conical or inverse conical according to their shape in 

the membrane. Phosphatidylcholine, PC. Lysophosphatidylcholine, LPC. 

Phosphatidylethanolamine, PE.
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Figure 2. 
Compartmentalization of the ciliary membrane.

(A) The basal body (BB, dark grey) consists of nine-fold triplet microtubules. Doublet 

microtubules extend from the basal body to form the ciliary axoneme (Ax, light grey). Distal 

appendages (DA, black) project from the triplet microtubules at the distal end of the basal 

body. The transition zone (TZ, magenta) is a subdomain of the base of the cilium 

characterized by Y-shaped links between the ciliary membrane and doublet microtubules of 

the axoneme. The ciliary membrane (orange) ensheaths the axoneme. The ciliary pocket 
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membrane (cyan) surrounds the ciliary membrane and separates it from the plasma 

membrane (blue). The plasma membrane, ciliary pocket, and the ciliary membrane are 

continuous. Panels depict a twodimensional model of the cilium (top left) or top, side, and 

perspective views (Persp.) of a three dimensional model.

(B) SIM detection of the distal appendages (CEP164, magenta), the axoneme (acetylated 

Tubulin, red) and either the ciliary membrane (ARL13B, green), the transition zone 

(TCTN2, green), or the ciliary pocket (EHD, green). Immunofluorescence staining and SIM 

were performed according to protocols described in [52].
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Figure 3. 
Modes of ciliogenesis

In polarized epithelial cells, the basal body (dark grey) docks to the plasma membrane 

(blue), and then the axoneme (light grey) and ciliary membrane (orange) extend to form the 

mature cilium. In fibroblasts and retinal pigmented epithelial cells, distal appendage vesicles 

(DAVs, cyan) dock to the distal appendages (black). As transition zone proteins (magenta) 

are recruited to the distal end of the basal body, DAVs fuse together to form a single ciliary 

vesicle. Subsequently, the ciliary vesicle and axoneme extend. The internal membrane 

surface of the ciliary vesicle gives rise to the ciliary membrane (blue). The external 

membrane surface of the extended ciliary vesicle fuses with the plasma membrane to form a 

partially externalized cilium. Illustration depicts two-dimensional models (top) or three-

dimensional models (bottom) of ciliary features at each step of ciliogenesis.
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Figure 4. 
Models of compositional control for the ciliary membrane

A, The transition zone contains binding sites for select ciliary membrane proteins [52], and 

live imaging studies have shown that SMO pauses in the transition zone [78]. Thus, the 

transition zone may control the entry and exit of membrane-associated proteins from the 

cilium. B, The BBSome exports and imports ciliary membrane proteins such as GPCRs. C, 

A membrane diffusion barrier retains ciliary membrane proteins and excludes non-ciliary 
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membrane proteins. D, Intraflagellar transport complexes enrich or deplete proteins in the 

cilium by coordinating with BBSome-facilitated trafficking across the transition zone.
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Figure 5. 
Ciliary-derived extracellular vesicles

Vesicles derived from either the ciliary membrane (orange) or the periciliary membrane 

(cyan) may fall into at least two distinct categories. Bioactive vesicles have a role in cell-to-

cell communication in C. elegans or in cell wall digestion for the completion of mitosis in C. 
reinhardtii. Bioinactive vesicles have a role in signal disposal or ciliary disassembly in 

mammals.
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