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The interchange of  the ‘limit of  an integral’ with the ‘integral of  a limit’ for sequenc-
es of  functions is crucial in relevant applications, such as Fourier series for decom-
posing periodic functions into sinusoidal components, and Fubini’s theorem for 
changing the order of  integration of  multivariable functions. This expository paper 
reviews three classical results in real analysis for cases where the limit of  an integral 
RI �D�VHTXHQFH�RI �IXQFWLRQV�HTXDOV�WKH�LQWHJUDO�RI �WKH�OLPLWLQJ�IXQFWLRQ������0RQR-
tone Convergence Theorem, (2) Uniform Convergence Theorem, and the broad-
est result, (3) Dominated Convergence Theorem. While proofs of  (2) are typically 
studied in undergraduate analysis, the proofs of  (1) and (3) are usually reserved for 
graduate-level measure theory, where they are taught in a more general context. 
The purpose of  this paper is to summarize and adapt W. A. J. Luxembourg’s un-
dergraduate-friendly proof  [7] of  (3) Arzel`a’s Dominated Convergence Theorem, 
to demonstrate the nontrivial direction of  (1) Monotone Convergence Theorem 
for Riemann Integrals. Our aim is to demystify the hidden logic involved in these 
well-established theorems, making them more accessible for undergraduate analysis.
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IN T R O D U C T IO N  

The conditions for when a limit may be interchanged with an integral played a crucial role in the development of Fourier 

Series and Real Analysis. Consider the heat equation ப୳ԛ
ப୲

= பమ௧
பమ௫మ

ԛ subject to the constraints 0)ݑ, (ݐ = ,1)ݑ and ݐ for all (ݐ

,ݔ)ݑ 0) = ,ݔ)ݑ ,for some “well-behaved” function ݂. Here (ݔ)݂  represents the temperature of a circular rod of unit length (ݐ

at position ݔ א [0,1] and time ݐ ൒ 0. Fourier’s novel solution to this equation, which was awarded the Académie des Sciences 

Grand Prix [5], is 

However, as shown by Cauchy [2] and discussed by Dieudonné [4], rigorously verifying the proposed solution involves 

exchanging the order of limits with integrals.  

As another example, consider the well-known argument justifying the series expansion of log(1 + |ݐ| For a real number .(ݔ <

1, the geometric series  σ (െݐ)௡ԛஶ
௡ୀ଴ converges to ଵ

ଵԛାԛ௧
. Integrating from 0 to ݔ, where |ݔ| < 1, yields: 

The seemingly intuitive, but unjustified, step in this derivation is the interchange between the integral and the limit in (1.3). 

This paper provides an overview of three conditions for when we may interchange limits with integrals of sequences of 

functions: (1) a monotone sequence of functions, (2) a uniformly converging sequence of functions, and (3) the weakest 
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condition, a dominated sequence of functions. First, we shall recall some basic definitions. We consider the bounded closed 

interval [ܽ, ܾ] for real numbers ܽ < ܾ. We use Գ to denote the set of natural numbers and Թ to denote the set of real 

numbers.  

Definition 1.1. A sequence of functions ௡݂ԛ: [ܽ, ܾ] ՜ Թ is said to be: 

(i) Monotone if and only if either ௡݂ାଵ(ݔ) ൒ ݂n (ݔ) for every ݔ א [ܽ, ܾ] and ݊ א Գ (monotone increasing), or ௡݂(ݔ) ൒ ௡݂+1(ݔ)

for every ݔ א [ܽ, ܾ] and ݊ א Գ (monotone decreasing).

(ii) Uniformly convergent if and only if there exists some ݂: [ܽ, ܾ] ՜ Թ such that ௡݂ ՜ ԛ݂ pointwise, and for every ƥ�!�0 there

exists an ܰ א Գ such that | ௡݂(ݔ) െ |(ݔ)݂ < ݔ for all ߝ א [ܽ, ܾ] and ݊ ൒ ܰ.

(iii) Dominated if and only if there exists a positive, real ܯ such that | ௡݂(ݔ)| ൑ ݔ for every ܯ א [ܽ, ܾ].

One could weaken conditions (1) and (3) to “uniformly monotone” and “uniformly bounded,” conveying the notions of 

sequences of functions that eventually behave in a monotone or bounded manner, that is, for all sufficiently large indices.  The 

advantage of such an approach is the insight that conditions for when a limit may be interchanged with an integral require 

some form of “uniformity.” The cost, however, is lengthier proofs. For example, proofs involving the limiting behavior of 

uniformly monotone sequences are mostly the same for monotone sequences, but with the added step of taking a sufficiently 

large ݉-tail subsequence to ensure monotonicity. By acknowledging uniformity here, we hope to provide the reader with this 

insight while maintaining the simplicity of the original conditions. 

In section two, we review the Uniform Convergence Theorem, usually taught as an exercise in undergraduate analysis, and the 

easy direction of the Monotone Convergence Theorem. In section three, we follow Luxemburg’s proof [8] of the Dominated 

Convergence Theorem intended for undergraduate-level analysis. In the fourth section, we adapt his ideas to present a proof 

of the challenging direction of the Monotone Convergence Theorem. Finally, in the conclusion, we highlight the importance 

of understanding the logic underlying these proofs and their utility for computer-verified mathematics. Although the digital 

formalization of real analysis has largely been achieved, it seems to lack undergraduate-friendly proofs of the Dominated 

Convergence Theorem for Riemann Integrals. This paper aims to take the first steps towards bridging this gap by elucidating 

the logic underpinning these paper-pen proofs. 
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IN T E G R ALS  O F  MO N O T O N E  A N D  UN IF O R M LY  C O N V E R G E N T  SE QU E N C E S 

We partially prove the result that limits can be interchanged with integrals for monotone sequences. The full result borrows 

the set-up in Luxemburg’s paper. We prove the easy direction for now and save the other as Theorem 4.1. 

Our paper is based on Darboux integrals defined as upper and lower rectangular estimates over partitions of [ܽ, ܾ] by taking 

suprema and infima. By convention ࣜ[ܽ, ܾ], Թ[ܽ, ܾ], and ࣝ[ܽ, ܾ] represent, respectively, the family of bounded, Riemann 

integrable, and continuous real-valued functions on [ܽ, ܾ]. 

Theorem 2.1 (Monotone Convergence Theorem, Part 1). Let ݂, ௡݂ א ࣬[ܽ, ܾ] with ௡݂ ՜ ݂ pointwise and suppose ௡݂ is monotone 

increasing. Then, the sequence ׬ ௡݂ԛ
௕
௔ converges and, moreover, 

Proof. Since ௡݂(ݔ) ൑ ௡݂ାଵ(ݔ) for all ݔ א [ܽ, ܾ] and ݊ א Գ, by monotony of integration, 

It follows from induction 

and, consequently, the result follows.  

Example 2.1, by Bradley [1], provides a remarkable application of this theorem to produce a family of non-trivial results. 

Example 2.1. For ݂ א ࣬[0, 1] nonnegative, we show 
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Note that the sequence of functions ݊ log ቀ1 + ݂ൗ݊ ቁ = log ቀ1 + ݂ൗ݊ ቁ
௡

converges to log൫݁௙൯ = ݂. Moreover, since ݂ is

nonnegative, the sequence (1 + ݂/݊)௡ is monotone increasing. As the logarithm is an increasing function, it follows that 

log ቀ1 + ݂ൗ݊ ቁ
௡

 is also monotone increasing, and thus Theorem 2.1 applies. Indeed, after proving Theorem 4.1, we can

strengthen this example with equality. 
We now turn our attention to the classical result found in calculus textbooks: the limit can be interchanged with an integral 

under uniform convergence. 

Theorem 2.2 (Uniform Convergence Theorem). Let ௡݂ א ܴ[ܽ, ܾ] converge uniformly to ݂: [ܽ, ܾ] ՜ Թ. Then ݂ א ࣬[ܽ, ܾ] and, 

moreover, 

Proof. Fix ƥ�!�0 and choose ܰ א Գ such that | ௡݂(ݔ)െ |(ݔ)݂ < க
(௕ି௔) for all ݔ and ݊ ൒ ܰ. In particular, ே݂(ݔ) െ க

(௕ି௔) <

(ݔ)݂ < ே݂(ݔ) + க
(௕ି௔) for all ݔ, and as ே݂ is bounded it follows ݂ is bounded. Thus, ݂ possesses lower and upper integrals, 

and 

As ƥ�!�0 is arbitrary, ׬ ௡݂
௕
௔ ՜ ׬ ݂௕௔

തതതതത and ׬ ௡݂
௕
௔ ՜ ׬ ݂௕௔ , so ݂ is Riemann integrable on [ܽ, ܾ] and ׬ ௡݂

௕
௔  converges to the 

common value ׬ ݂௕௔ .  

Pointwise convergence is not a strong enough condition to justify the interchange of limit with integral, as shown by Example 

2.2.  
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Example 2.2. Define the sequence of functions on [0, 1] by ଵ݂(ݔ) = 1 and 

FIGURE 2.1 Graphs of the first four terms of the sequence of functions ௡݂(ݔ). 

As illustrated by Figure 2.1, each function represents an isosceles triangle with height ݊ and base 2/݊ and, thus, has unit area. 

However, ௡݂ converges pointwise to the zero function and, thus, we have the disagreement lim
௡՜ஶ

׬ ௡݂
ଵ
଴ ് ׬  ݂ଵ଴ . 

AR ZE L À’S  DO M I N A T E D  CO N V E R G E N C E  TH E O R E M 

Uniform convergence is a sufficient condition for interchanging a limit with an integral; however, Dominated Convergence 

Theorem weakens the condition. We follow W. A. J. Luxemburg’s proof [8] of Arzelà’s Dominated Convergence Theorem. 

We set the stage for his main arguments by proving Lemmas 3.1 and 3.2. 
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Lemma 3.1 (Dini’s Uniform Convergence Theorem). Let ݃௡,݃ א ,ܽ]ܥ ܾ] where ݃௡ ՜ ݃ pointwise and ݃௡ is monotone. Then the 

convergence is uniform. 

Proof. It is enough to show a monotone decreasing sequence ௡݂ א ,ܽ]ܥ ܾ] that converges pointwise to 0, converges uniformly. 

We can transform the general problem ݃௡ ՜ ݃ by putting ௡݂ ؔ ݃௡ െ ݃ or ௡݂ ؔ ݃ െ ݃௡, whichever ensures the sequence of 

functions ௡݂ monotonically decreases. 

Given ƥ�!�0, first define ܰ: [ܽ, ܾ] ՜ Գ and then ߜ: [ܽ, ܾ] ՜ Թ by: 

Observe that ܰ(ݔ) is well-defined since the pointwise convergence of ௡݂(ݔ) guarantees the corresponding set of natural 

numbers is nonempty. Using continuity of ே݂(௫) at ݔ guarantees (ݔ)ߜ is well-defined by completeness, since the 

corresponding set of real numbers is bounded and nonempty. In fact, this supremum is also an element of the set and, thus, is 

the maximum. 

For each ݔ א [ܽ, ܾ], since { ௡݂}௡אԳ is decreasing and nonnegative, 

for every ݊ ൒ ݐ and (ݔ)ܰ א ࣜఋ(௫)(ݔ) ת [ܽ, ܾ]. The idea is the family of open intervals {ࣜఋ(௫)(ݔ):ݔ א [ܽ, ܾ]} is an open cover 

of [ܽ, ܾ], and thus by compactness contains a finite subcover, say {ࣜఋ(௫భ)(ݔଵ), . . . ,ࣜఋ(௫೙)(ݔ௡)} for some ݊ א  Գ and 

,ଵݔ . . . , ௡ݔ א [ܽ, ܾ]. By taking ܰ ؔ max {ܰ(ݔଵ), . .   .criterion as shown by Figure 3.1 ܰ,ߝ we can solve our current ,{(௡ݔ)ܰ.
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FIGURE 3.1 Any ݐ א [ܽ, ܾ] belongs to an open interval ࣜఋ(ईೖ)(ݔ௞) for some ݇ א
 ܰ. Since any ݊ ൒  ܰ is greater than or equal to ܰ(ݔ௞), we can use an instance of 
(1) to estimate | ௡݂(ݐ)|  < .ߝ 

Remark. We explicitly construct ܰ(ݔ) and (ݔ)ߜ, and, therefore, avoid accidental applications of the axiom of choice. Notice 

our comment that the supremum is the maximum in the definition of (ݔ)ߜ is not superficial. It is precisely this topological 

property we use in our proof. 

The condition ݃ א ,ܽ]ܥ ܾ] in the theorem is needed. For example, consider ݃௡(ݔ) =׷  ௡ defined on [0, 1]. The sequenceݔ 

monotonically decreases to the discontinuous function ݃(ݔ) =׷  1 if ݔ =  1 and ݃(ݔ) =׷ 0 otherwise. The convergence, 

however, is not uniform. 

Lemma 3.2. For all nonnegative ݂ א  ࣜ[ܽ, ܾ] and ƥ�!�0, there exists ݃ א ,ܽ]ܥ ܾ] such that 0 ൑ (ݔ)݃   ൑ א ݔ for all (ݔ)݂   [ܽ, ܾ] 

and 

Proof. Fix nonnegative ݂ א ࣜ[ܽ, ܾ] and ƥ�!�0. By definition of lower integral, there must be a partition ܲ =׷ ,଴ݔ}  . . . ,  ௡} ofݔ

[ܽ, ܾ], where ܽ = ଴ݔ < ʀʀ ʀ < ௡ݔ  =  ܾ and
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Using this partition, define a step function ݏ on [ܽ, ܾ] by 

where [ݔ௜ିଵ,ݔ௜] is the first interval from the partition which contains ݔ. 

By design, 0 ൑ (ݔ)ݏ ൑ ׬ and (ݔ)݂ ௕௔ݏ =  by connecting lines ݏ We can define ݃ as a continuous extension of .(݂,ܲ)ܮ 

between its steps (see Figure 3.2) to ensure: 

(1) 0 ൑ (ݔ)݃   ൑ א ݔ for every (ݔ)ݏ   [ܽ, ܾ], by adjusting the points for which ݃ breaks into a line, and

(2) the magnitude of the integral underneath the lines is in total less than 2/ߝ by adjusting their widths to be as small as

needed.

FIGURE 3.2. The blue graph (ݔ)ݏ represents the step function and the brown graph 
 is its continuous approximation as used in the proof of Lemma 3.2. Since there (ݔ)݃
are finitely many jumps, we can make the total shaded area smaller than 2/ߝ while 
preserving the inequality 0 ൑ (ݔ)݃   ൑ א ݔ for all (ݔ)݂   [ܽ, ܾ]. 

This is possible since the lines are bounded and have at most ݊ +  1 steps. Thus 0 ൑ (ݔ)݃   ൑ (ݔ)ݏ   ൑  and (ݔ)݂ 
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The stage is set; we are ready for Luxemburg’s main proof from [8]. 

Theorem 3.1. (Dominated Convergence Theorem). Let ௡݂,݂ א  ࣬[ܽ, ܾ] where ௡݂ ՜ ݂ pointwise and ௡݂ is dominated. Then 

Proof. Without loss of generality, we may assume ௡݂ Ⱥ�0 pointwise and that there is some ܯ א  Թ such that 0 ൑ ௡݂(ݔ) ൑  ܯ 

for all ݔ א [ܽ, ܾ]. We can always redefine a new sequence of functions | ௡݂ െ ݂|, and apply the implication 

to recover a proof for the original problem. 

Set ݌௡(ݔ) =׷  sup௞ஹ௡ ௞݂(ݔ) for all א ݔ  [ܽ, ܾ] and ݊ א  Գ; note this is well-defined since for א ݔ  [ܽ, ܾ] fixed, the sequence 

௡݂(ݔ) is bounded by ܯ. Moreover, observe that ݌௡ monotonically decreases to 0 and 0 ൑  ௡݂(ݔ) ൑  .݊ and ݔ for all (ݔ)௡݌ 

The key technique used in this proof, which we will show in the next section, involves constructing a sequence of continuous 

functions ݄௡ such that: 

Note that ݌௡ is lower integrable because it is bounded by ܯ, so condition (2) is sensible. While (1) and (2) are clearly implied 

by Lemma 3.2, the “magic step” is (3). We reveal in the next section how Luxemburg constructs such a sequence. 

By Lemma 3.1, we conclude that ׬ ݄௡ԛ = ԛͲ௕
௔ . Since 

Three Classical Theorems on Interchanging 
Limits 

14� | UNIVERSITY OF CALIFORNIA, RIVERSIDE 



in the limit we have 

As ƥ�!�0 is arbitrary, lim
௡՜ஶ

׬ ௡݂ԛ = ԛͲ௕
௔  and our proof is complete. 

This theorem provides an efficient means for computing limits of integrals. 

Example 3.1. Consider lim
௡՜ஶ

׬ sin(ݔଶ/݊)ଵ
଴  .Without the theorem, we would struggle to find a closed-form anti-derivative .ݔ݀

But it is easy to check the sequence of functions sin(ݔଶ/݊) is dominated and converges pointwise to 0. Thus, the limit 

computes to 0. 

FU LL  MO N O T O N E  CO N V E R G E N C E  TH E O R E M  F O R  IN T E G R A LS  

We return to the study of monotone sequences and aim to extend Theorem 2.1 to the full Monotone Convergence Theorem. 

Our proof adapts Luxemburg’s justification of the “magic step” employed in Theorem 3.1. 

Theorem 4.1 (Monotone Convergence for Riemann Integrals Part 2). Let ݂, ௡݂ א  ࣬[ܽ, ܾ] with ௡݂ ՜ ݂ pointwise and suppose ௡݂ is 

monotone decreasing. Then 

Proof. Without loss of generality, we may assume ݂ monotonically decreases to 0 and, therefore, is nonnegative. We can 

redefine a new sequence of functions by ௡݂ ՜ ݂, which monotonically decreases to 0 and show instead lim
௡՜ஶ

׬ ௡݂ԛ ൑ ԛ0௕
௔ . 

Fix ƥ�!�0. Its is enough to construct a sequence ݄௡ א ,ܽ]ܥ ܾ] such that: 
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For once constructed, by Lemma 3.1 it follows lim
௡՜ஶ

׬ ݄௡ԛ = ԛͲ௕
௔ , and, therefore, lim

௡՜ஶ
׬ ௡݂ԛ ൑ ԛߝ௕
௔ . As ƥ�!�0 is arbitrary, the 

proof is finished. 

By Lemma 3.2, we form a sequence ݃௡ א ,ܽ]ܥ ܾ] such that 0 ൑  ݃௡  ൑  ௡݂ and ׬ ௡݂  െ  Ԫ 2௡  ൗ ൑ ׬  ݃௡ԛ
௕
௔

௕
௔ for all ݊. Now for 

each ݊, define ݄௡ =׷  min{݃ଵ, . . . ,݃௡}. It is easy to verify that ݄௡ is a sequence of continuous functions which satisfies 

properties (1) and (3); the challenge is demonstrating (2). 

It is clear that ׬௔
௕
ଵ݂  െ ൑ ߝ  ׬  ݄ଵ

௕
௔ , so it remains to show ׬௔

௕
௡݂  െ ൑ ߝ  ׬  ݄௡

௕
௔  for ݊ ൒  2.  From ݄௡ being defined as a 

minimum, it follows 

Note that the final inequality comes from ݃௞  ൑  ௞݂ for all ݇ and the sequence ௞݂ monotonically decreasing. So, by taking the 

lower integral, we have 

Since ׬௔
௕ ௡݂  - Ԫ 2௡  ൗ ൑ ׬  ݃௡

௕
௔ , it follows 

as desired.  

Remark. While the process of generating ݃௡ suggests the use of axiom of countable choice, we can avoid it. By reinserting the 

mechanism of how each ݃ was obtained in the proof of Lemma 3.2, we can constructively generate the sequence ݃௡. This 

method of obtaining ݄௡, by taking the minimum of ݃ଵ, . . . ,݃௡ is the “magic step” omitted earlier in Theorem 3.1. 
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Both parts of monotone convergence, i.e. Theorems 2.1 and 4.1, prove Monotone Convergence Theorem for integrals in 

general. 

Corollary 4.1 (Monotone Convergence Theorem). Let f, ௡݂ א ࣬[ܽ, ܾ] with ௡݂ Ⱥ�I�SRLQWZLVH�DQG� ௡݂ monotone. Then 

Proof. When ௡݂ LV�PRQRWRQLFDOO\�LQFUHDVLQJ��WKHQ�î ௡݂ is monotonically decreasing so Theorem 4.1 proves the missing 

inequality 

Similarly, when ௡݂ is monotonically decreasing, Theorem 2.1 proves 

Corollary 4.2 is an interesting generalization of this result for sequences of integrable functions which need not fully converge 

pointwise. 

Corollary 4.2 (Fatou’s Lemma). Let ௡݂ א ࣬[ܽ, ܾ] and suppose, for ݔ א [ܽ, ܾ]  fixed, the sequence ௡݂(ݔ) is bounded so that limit superiors 

exist. Given lim
௡՜ஶ

sup ௡݂ א   ࣬ [ܽ, ܾ]and sup௞ஹ௡ ௞݂ א  ࣬[ܽ, ܾ], then 

Proof. Observe that sup௞ஹ௡ ௞݂ is a decreasing sequence of functions and converges pointwise to lim
௡՜ஶ

 sup ௡݂. Thus 

where the equality comes from Theorem 4.1 and the inequality comes from the observation that ௡݂ ��sup௞ஹ௡ ௞݂ for all ݊. 
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The inequality in Fatou’s Lemma cannot be strengthened. 

Example 4.1. Define a sequence of functions on [0, 1] by 

Observe that all integrals vanish, i.e. ׬ ௡݂
ଵ
଴ = 0 for all ݊. However, for fixed ݊, the suprema sup

௫א[௔.௕]
௡݂ (ݔ) = 1. 

Thus lim
௡՜ஶ

sup׬ ௡݂ = 0 ௕
௔ and ׬ lim

௡՜ஶ
ଵ
଴ sup ௡݂ = 1. 

CO N C L U S IO N 

Understanding when a limit and integral commute is important for grasping the scope of various techniques in calculus. We 

have re-proven three classical theorems on the interplay of limits with integrals: (1) Monotone Convergence Theorem, (2) 

Uniform Convergence Theorem, and (3) Dominated Convergence Theorem. While (2) was a familiar exercise, we have shown 

how the methods used by Luxemburg’s proof of (3) can be adapted to prove (1). We have explicitly discussed the hidden logic 

underlying these proofs in the hopes of demystifying them and making them more accessible to undergraduate students in real 

analysis. Our goal, albeit modest, is to help strengthen foundations and foster enthusiasm for more advanced topics in 

measure theory. 

A benefit of demystification is its application to the formalization of mathematics through digital proof systems such as Lean 

[6]. Founded on Thierry Coquand’s pioneering work [3] on the calculus of constructions, Lean is an interactive theorem 

prover for mathematicians to write and check proofs. Through the improvements of AI technologies and proof automation, 

we believe computer-verified mathematics will become more mainstream in the near future. By presenting proofs written 

closer to the axiomatic level, computer scientists, mathematicians, and logicians may find it easier to transport them into Lean. 

Our paper is a humble attempt in this direction. 
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