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ABSTRACT
In this paper, we introduce tools to verify the satisfaction of tempo-

ral logic specifications using the until operator for hybrid dynamical

systems. Hybrid dynamical systems are given in terms of differen-

tial and difference inclusions, which capture the continuous and

discrete dynamics (or events), respectively. For such systems, condi-

tional invariance and eventual conditional invariance are employed

to characterize dynamical properties associated with the until op-

erators. Sufficient conditions for the satisfaction of temporal logic

specifications involving the until operator are provided by guaran-

teeing properties of the data defining the systems and the existence

of barrier functions or Lyapunov-like functions. Examples illustrate

the results throughout the paper.

CCS CONCEPTS
• Theory of computation → Logic and verification; Modal
and temporal logics; Linear logic; • Computer systems organi-
zation→ Embedded and cyber-physical systems.

KEYWORDS
Linear temporal logic, until operator, forward invariance, condi-

tional invariance, hybrid systems.
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1 INTRODUCTION
Linear Temporal logic (LTL) is a useful language to express complex

temporal properties of dynamical systems. By combining a set

of propositions and a set of temporal and logical operators, the

required task that the system needs to achieve is formulated as a

single (temporal logic) formula. LTL provides a general framework

to analyze complex tasks in dynamical systems that go beyond the

classical control tasks such as convergence, stability, safety, etc; see,

e.g., [7, 15, 28, 31].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7018-9/20/04. . . $15.00

https://doi.org/10.1145/3365365.3382223

LTL was introduced for the verification of computer programs

[23]. LTL provides a unified approach to specify and certify behav-

iors of programs, in particular, invariance and eventuality. In recent

years, LTL has been introduced for dynamical systems with various

applications in modeling, analysis, design, and control of systems.

In [29], the proposed approach employs LTL for motion and task

planning of multi-agent systems. Assigned tasks including safety

constraints are formulated as LTL formulas and, in their setting,

such formulas are verified in real-time so that each agent avoids all

obstacles while performing their tasks. In [3], the authors formulate

a desired property of a physical plant by using co-safe LTL (sc-LTL),

which is a fragment of LTL, and propose a hybrid barrier certifi-

cate to verify the satisfaction of sc-LTL specifications. Furthermore,

extensions based on LTL have appeared in the literature, such as

metric temporal logic (MTL) [14, 26], signal temporal logic (STL)

[25], and alternating-time temporal logic (ATL*) [1].

A widely used approach to ensure specifications for dynamical

systems consists in constructing a transition system that terminates

only when the solution (or trajectory) of the dynamical system sat-

isfies the required specification; see, e.g., [11, 13, 20]. This approach

is typical in model checking and software verification methods

[4, 10]. It is to be noted that such an approach works well on finite

horizon specifications; namely, when the formula needs to be ver-

ified within a bounded amount of time. However, this approach

does not provide any guarantees when the formula is satisfied at

unknown large times. As an example, we can consider temporal

logic specifications (formulas) involving the until operator. Such

formulas may require arbitrarily long time to be certified. In fact,

as pointed out in [22], model-checking-based approaches for certi-

fying formulas using the until operator may require exponential

time.

The until operator is one of the basic (yet very powerful) opera-

tors in LTL language. In particular, the until operator has strong and
weak versions, named as strong until (Us ) and weak until (Uw );

see, e.g., [5]. For example, given two propositions p and q, the satis-
faction of the formula pUsq implies that p is true until q happens

to be true, and q must become true eventually. For the weak version,

the satisfaction of the formula pUwq implies that p is true until q
happens to be true; however, q is not required to become true if p
is true forever. Verifying formulas involving (strong) until opera-

tors suggests that one has to show that a given proposition needs

to remain satisfied until another proposition becomes satisfied. A

simple but concrete application where the until operator is useful

concerns autonomous navigation problems in constrained environ-

ments [6, 30]. In such applications, mobile vehicles typically need

to navigate their environment without colliding with obstacles and

following a particular sequence of tasks. For instance, consider the

https://doi.org/10.1145/3365365.3382223
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situation where the vehicle needs to exit a room only via its exit

door while avoiding an obstacle in the center of the room. In such

setting, the vehicle needs to remain in the room without touching

the obstacle until reaching the exit door. Such a temporal behavior

can be expressed in terms of an LTL formula involving the until

operator.

In this paper, the required dynamical behavior for the solutions

to a hybrid system to satisfy temporal logic formulas involving

the until operator are presented. For this purpose, we employ two

properties: 1) conditional invariance, namely, the property that the

solutions to the system remain in a set if they start from a (likely

different) set; and 2) eventual conditional invariance, which con-

sists of the solutions reaching a set in finite time when they start

from a (likely different) set. These properties are used to formulate

sufficient conditions that use minimal information about solutions,

yet guarantee the satisfaction of temporal logic formulas involving

until operators. For the weak until operator, we present sufficient

conditions using barrier functions tailored to conditional invariance

for hybrid systems. These conditions use those in [19]. Furthermore,

we propose original sufficient conditions to certify eventual condi-

tional invariance for hybrid systems. Those conditions extend the

ones proposed in [16] for continuous-time systems. Moreover, they

are shown to be useful to formulate sufficient conditions that verify

formulas involving the strong until operator.

The remainder of this paper is organized as follows. Hybrid

systems, LTL for hybrid systems, and invariance notions are intro-

duced in Section 2. The characterizations of until operators using

invariance properties are presented in Section 3.1. The sufficient

conditions to guarantee invariance notions for hybrid systems and

the satisfaction of LTL formulas involving until operators for hybrid

systems are presented in Section 3.2 and Section 3.3, respectively.

Academic examples are provided to illustrate the results.

Notation. Let R≥0 := [0,∞) and N := {0, 1, . . . ,∞}. For x ,
y ∈ Rn , x⊤ denotes the transpose of x , |x | the Euclidean norm

of x , |x |K := infy∈K |x − y | defines the distance between x and

the nonempty set K , and ⟨x ,y⟩ = x⊤y denotes the inner product

between x and y. For a set K ⊂ Rn , we use int(K ) to denote its

interior, ∂K to denote its boundary, K to denote its closure, and

U (K ) to denote any open neighborhood of K . For a set O ⊂ Rn ,
K \O denotes the subset of elements of K that are not in O . By C1,

we denote the set of continuously differentiable functions. Finally,

F : Rm ⇒ Rn denotes a set-valued map associating each element

x ∈ Rm to a subset F (x ) ⊂ Rn .

2 PRELIMINARIES
2.1 Hybrid Systems
Following the modeling framework proposed in [8], we consider

hybrid systems modeled by general hybrid inclusions of the form

H :

{
x ∈ C ẋ ∈ F (x )
x ∈ D x+∈ G (x ),

(1)

with the state variable x ∈ Rn , the flow set C ⊂ Rn , the jump set

D ⊂ Rn , and the flow and jump maps, respectively, F : Rn ⇒ Rn

and G : Rn ⇒ Rn .

A hybrid arc ϕ is defined on a hybrid time domain denoted

dom ϕ ⊂ R≥0 × N. The hybrid arc ϕ is parameterized by an or-

dinary time variable t ∈ R≥0 and a discrete jump variable j ∈
N. A hybrid time domain dom ϕ is such that for each (T , J ) ∈

dom ϕ, dom ϕ ∩ ([0,T ] × {0, 1, . . . , J }) = ∪J−1j=0

(
[tj , tj+1] × {j}

)
for

a sequence

{
tj
} J+1
j=0

, such that tj+1 ≥ tj and t0 = 0. Note that

the structure of a hybrid time domain dom ϕ is such that, given

(t , j ), (t ′, j ′) ∈ dom ϕ, t + j ≤ t ′ + j ′ if t ≤ t ′ and j ≤ j ′.

Definition 2.1 (Concept of solutions to H ). A hybrid arc
ϕ : dom ϕ → Rn is a solution toH if
(S0) ϕ (0, 0) ∈ C ∪ D;
(S1) for all j ∈ N such that I j :=

{
t : (t , j ) ∈ dom ϕ

}
has nonempty

interior, t 7→ ϕ (t , j ) is absolutely continuous and

ϕ (t , j ) ∈ C for all t ∈ int (I j ),
˙ϕ (t , j ) ∈ F (ϕ (t , j )) for almost all t ∈ I j ;

(S2) for all (t , j ) ∈ dom ϕ such that (t , j + 1) ∈ dom ϕ,

ϕ (t , j ) ∈ D, ϕ (t , j + 1) ∈ G (ϕ (t , j )).

A solution ϕ toH is said to be maximal if there is no solution ϕ ′

to H such that ϕ (t , j ) = ϕ ′(t , j ) for all (t , j ) ∈ dom ϕ with dom ϕ
a proper subset of dom ϕ ′. It is said to be trivial if dom ϕ contains

only one element. Finally, it is said to be complete if its domain is

unbounded. The systemH is said to be complete if the domain of

each maximal solution is unbounded.

For convenience, we define the range of a solution ϕ to H as

rge ϕ = {x ∈ Rn : x = ϕ (t , j ), (t , j ) ∈ dom ϕ}. We use SH (x ) to

denote the set of maximal solutions toH starting from x ∈ C ∪ D.
Given a set K ⊂ Rn , R (K ) denotes the reachable set from K for

all hybrid time. Furthermore, for a given closed set Q ⊂ Rn , the
function TQ : SH (Rn \Q ) 7→ R≥0 is given by, for each solution ϕ
toH from Rn \Q

TQ (ϕ) :=




∞ if R (ϕ (0, 0)) ∩Q = ∅
min

ϕ (t, j )∈Q
(t, j )∈dom ϕ

t + j otherwise. (2)

Given a solution ϕ to H starting from Rn \ Q , the function TQ
provides (when finite) the first hybrid time at which the solution ϕ
reaches the set Q . If the solution never reaches Q , the function TQ
is set to infinity. See [8] for more details about hybrid dynamical

systems.

2.2 Linear Temporal Logic and Until Operators
Linear Temporal Logic (LTL) provides a framework to specify and

to formulate desired properties for dynamical systems [27]. In this

section, we introduce syntax and semantics of LTL.

Definition 2.2 (Atomic Proposition). An atomic proposition
p is a statement on the system state x that, for each x , p (x ) is either
True (1 or ⊤) or False (0 or ⊥).

Definition 2.3 (Logical Operators).

• ¬ is the negation operator
• ∨ is the disjuction operator
• ∧ is the conjunction operator
• ⇒ is the implication operator
• ⇔ is the equivalence operator
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Definition 2.4 (Temporal Operators).

• # is the next operator
• 3 is the eventually operator
• 2 is the always operator
• Us is the strong until operator
• Uw is the weak until operator

A proposition p is treated as a (single-valued) function of x ,
that is, as the function x 7→ p (x ). The set of all possible atomic

propositions is denoted by P. For simplicity, we consider the case

of state-dependent atomic propositions with no inputs. That is, for

a given hybrid systemH , consider a solution ϕ toH and (t , j ) ∈
dom ϕ. When a proposition p is True at (t , j ), i.e., p (ϕ (t , j )) = 1,

it is denoted by (ϕ, (t , j )) ⊨ p; whereas if p is False at (t , j ), it is
written as (ϕ, (t , j )) ⊭ p.

Moreover, an LTL formula is a sentence consisting of atomic

propositions and operators of LTL. When an LTL formula f is

satisfied by a solution ϕ to a hybrid systemH at (t , j ) ∈ dom ϕ, it
is denoted by (ϕ, (t , j )) ⊨ f ; however, when f is not satisfied by a

solution ϕ at (t , j ), it is denoted by (ϕ, (t , j )) ⊭ f .
Let p,q ∈ P be two atomic propositions. Given a solution ϕ to

H and (t , j ) ∈dom ϕ, the semantics of LTL is based on a set of basic

operators yielding to the following basic formulas:

(ϕ, (t , j )) ⊨ ¬p ⇔ (ϕ, (t , j )) ⊭ p (3a)

(ϕ, (t , j )) ⊨ p ∨ q ⇔ (ϕ, (t , j )) ⊨ p or (ϕ, (t , j )) ⊨ q (3b)

(ϕ, (t , j )) ⊨ #p ⇔ (ϕ, (t , j + 1)) ⊨ p and (t , j + 1) ∈ dom ϕ (3c)

(ϕ, (t , j )) ⊨ p ∧ q ⇔ (ϕ, (t , j ))⊨p and (ϕ, (t , j ))⊨q (3d)

(ϕ, (t , j )) ⊨ 2p ⇔ (ϕ, (t ′, j ′)) ⊨ p (3e)

∀ (t ′, j ′) ∈ dom ϕ, t ′ + j ′ ≥ t + j

(ϕ, (t , j )) ⊨ 3p ⇔ ∃(t ′, j ′) ∈ dom ϕ, t ′ + j ′ ≥ t + j s.t. (3f)

(ϕ, (t ′, j ′)) ⊨ p.

In the following, we introduce strong and weak versions of the

until operator studied in this paper.

Definition 2.5 (Strong until operator). Given two atomic
propositions p,q ∈ P, a solution (t , j ) 7→ ϕ (t , j ) to a hybrid system
H satisfies the formula

f := pUs q (4)

at (t , j ) ∈ dom ϕ if there exists (t ′, j ′) ∈ dom ϕ such that t ′ + j ′ ≥
t + j and ϕ (t ′, j ′) satisfies q; and ϕ (t ′′, j ′′) satisfies p for all t + j ≤
(t ′′, j ′′) < t ′ + j ′. In other words,

(ϕ, (t , j )) ⊨ pUsq ⇔ ∃ (t
′, j ′) ∈ dom ϕ, t ′ + j ′ ≥ t + j s.t.

(ϕ, (t ′, j ′)) ⊨ q; and
∀ (t ′′, j ′′) ∈ dom ϕ s.t.
t + j ≤ t ′′ + j ′′< t ′ + j ′, (ϕ, (t ′′, j ′′)) ⊨ p.

Definition 2.6 (Weak until operator). Given two atomic
propositions p,q ∈ P, a solution (t , j ) 7→ ϕ (t , j ) to H satisfies the
formula

f := pUw q (5)

at (t , j ) ∈ dom ϕ if

1) ϕ (t ′, j ′) satisfies p for all (t ′, j ′) ∈ dom ϕ such that t ′ + j ′ ≥
t + j; or

2) there exists (t ′, j ′) ∈ dom ϕ such that t ′ + j ′ ≥ t + j and
ϕ (t ′, j ′) satisfies q; and ϕ (t ′′, j ′′) satisfies p for all (t ′′, j ′′)
such that t + j ≤ t ′′ + j ′′ < t ′ + j ′.

In other words,

(ϕ, (t , j )) ⊨ pUwq ⇔ (ϕ, (t ′, j ′)) ⊨ p
∀ (t ′, j ′) ∈ dom ϕ s.t. t ′ + j ′ ≥ t + j, or
(ϕ, (t , j )) ⊨ pUsq.

2.3 Invariance Notions
In this section, we introduce the invariance notions that will play a

key role in the proposed sufficient infinitesimal conditions to verify

LTL formulas using until operators for hybrid systems.

Definition 2.7 (Forward (pre-)Invariance). A set K is said
to be forward pre-invariant for H if, for each solution ϕ ∈ SH (K ),
rge ϕ ⊂ K . A set K is said to be forward invariant for H if it is
forward pre-invariant for H and, for every x ∈ K , every solution
ϕ ∈ SH (K ) is complete.

Definition 2.8 (Conditional Invariance). A set K ⊂ Rn is
said to be conditionally invariant with respect to a set Ko ⊂ K forH
if, for each solution ϕ ∈ SH (Ko ), ϕ (t , j ) ∈ K for all (t , j ) ∈ dom ϕ.

Remark 2.9. Note that when Ko = K , conditional invariance of K
with respect to Ko is equivalent to forward pre-invariance of Ko .

Next, we introduce the definition of safety.

Definition 2.10 (Safety). A hybrid systemH is said to be safe
with respect to (Xo ,Xu ), where Xu ⊂ Rn denotes the unsafe set and
Xo ⊂ R

n \Xu denotes the initial set, if each solution ϕ toH from Xo
satisfies rge ϕ ⊂ Rn \ Xu .

Remark 2.11. Conditional invariance of K with respect to Ko is
equivalent to safety with respect to (Ko ,Xu ), where Xu := Rn \ K
defines the region of the state space that the solutions toH must avoid
when starting from the set of initial conditions Ko [17].

Next, inspired by the ideas in [16] for continuous-time systems

with maximal solutions that are complete, we introduce the follow-

ing eventual conditional invariance notion. This notion plays an

important role when formulating a characterization of the strong

until operator via conditional invariance.

Definition 2.12 (Eventual Conditional Invariance). Given
two sets Ko ,K ⊂ Rn , the set K is said to be eventually conditionally

invariant with respect to Ko for H if every maximal solution ϕ ∈
SH (Ko ) is such that TK (ϕ) < ∞ and

• ϕ (t , j ) ∈ K for every (t , j ) ∈ dom ϕ such that t + j ≥ TK (ϕ).

SinceH can have maximal solutions that are not complete, we

introduce the following pre-eventual conditional invariance notion

which, compared to Definition 2.12, requires that only the complete

solutions toH must reach the set K .

Definition 2.13 (pre-Eventual Conditional Invariance).

Given two sets Ko ,K ⊂Rn , K is said to be pre-eventually condition-

ally invariant with respect to Ko for H if every complete solution
ϕ ∈ SH (Ko ) is such that TK (ϕ) < ∞ and

• ϕ (t , j ) ∈ K for every (t , j ) ∈ dom ϕ such that t + j ≥ TK (ϕ).
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3 MAIN RESULTS
In this section, as a first step, we characterize the until operators

using the previously mentioned invariance notions. Then, we pro-

pose infinitesimal characterizations of the considered invariance

notions. The latter will allow us to provide sufficient infinitesimal

conditions to verify LTL formulas with until operators for hybrid

systems.

Our results are valid for the general class of hybrid systemsH

satisfying the following mild assumption:

(SA) The systemH is such that F is outer semicontinuous, nonempty,

and locally bounded with convex images on C . Furthermore,

the jump map G is nonempty on D.

We notice that the hybrid basic conditions in [8, Chapter 6] further

require the sets C and D to be closed and the jump map G to be

locally bounded. Our conditions in (SA) are less restrictive than the

hybrid basic conditions.

3.1 Characterization of Until Operators Using
Invariance Notions

To propose necessary and sufficient conditions for the satisfaction

of the LTL formulas in (4) and (5) using set-invariance notions, we

introduce the following sets where the atomic propositions p and q
are satisfied, respectively:

P := {x ∈ Rn : p (x ) = 1} and Q := {x ∈ Rn : q(x ) = 1}. (6)

With the sets P and Q as in (6), when a solution ϕ to H satisfies

pUwq at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p∨q, we have the following
cases:

1) ϕ starts and remains in the set P for all hybrid time; or

2) ϕ starts and remains in the set P up to when ϕ reaches Q .
After ϕ reaches Q , ϕ may leave P ∪Q or stay in P ∪Q ; or

3) ϕ starts from the set Q .

Remarkably, these properties can be assured using the conditional

invariance notion in Definition 2.8. In fact, notice that based on

items 1) - 3), the solution needs to either remain in P or remain

in P ∪ Q for some time. Such a property coincides with condi-

tional invariance of P ∪Q with respect to P \Q for the following

auxiliary system Hm : given a closed set Q and a hybrid system

H = (C, F ,D,G ), we consider the systemHm = (Cm , Fm ,Dm ,Gm )
given by

Fm (x ) := F (x ) ∀x ∈ Cm := C \Q

Gm (x ) :=

{
x if x ∈ Q

G (x ) otherwise

∀x ∈ Dm := D ∪Q .
(7)

The intuition behind the construction of the systemHm is as fol-

lows. The systemHm is used to characterize the behavior of the

system H outside the set Q . Indeed, the solutions to H are the

solutions to Hm (and vice versa) up to when they reach (if they

do) the set Q . Furthermore, the solutions toHm starting from an

initial condition in Q are purely discrete solutions that remain at

the initial condition.

Example 3.1 (Timer). Consider a hybrid systemH = (C, F ,D,G )
modeling a constantly evolving timer with the state x ∈ R and

F (x ) := 1 ∀x ∈ C := [0, 1],
G (x ) := 0 ∀x ∈ D := {x ∈ R : x = 1}.

Define two atomic propositions p and q such that

p (x ) :=

{
1 if x ∈ [1/2, 1)
0 otherwise

and

q(x ) :=

{
1 if x = 1

0 otherwise.

The sets P andQ in (6) and the systemHm in (7) are given byQ = D,
P = [1/2, 1), and

Fm (x ) := 1 ∀x ∈ Cm := [0, 1),
Gm (x ) := x ∀x ∈ Dm := D = Q .

We notice that each solution to Hm from P flows in P and reaches
the set Q . Once this solution reaches Q , it jumps according to the
jump map Gm (x ) = x for all x ∈ Q = D and cannot flow. Hence,
the solutions to Hm starting from P \ Q never leave the set P ∪ Q ,
which concludes that the set Q ∪ P is conditionally invariant with
respect to P \ Q for Hm . However, conditional invariance of Q ∪ P
with respect to P \Q does not hold for systemH since once a solution
toH reaches Q , it jumps outside P ∪Q . Furthermore, we also notice
that the formula f = pUwq is satisfied for every maximal solution ϕ
toH at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨q since the solutions toH
starting from P \Q remain in P until reaching the jump set D = Q .

Theorem 3.2 (Weak Until vs Conditional Invariance). Con-
sider a hybrid system H = (C, F ,D,G ). Given two atomic propo-
sitions p and q, let the sets P and Q be given as in (6) and let the
systemHm be as in (7). The formula f = pUwq is satisfied for every
maximal solution ϕ toH at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨ q if
and only if P ∪Q is conditionally invariant with respect to P \Q for
Hm .

Sketch of Proof. (⇒) Suppose that f = pUwq is satisfied at

(t , j ) = (0, 0) for everymaximal solutionϕ toH such that (ϕ, (0, 0)) ⊨
p ∨ q. Then, we need to show that each solution ψ to Hm start-

ing from P \ Q stays in P ∪ Q for all (t , j ) ∈ domψ . Recall that
TQ (·) is introduced in (2). For every maximal solution ψ to Hm
with ψ (0, 0) ∈ P \ Q , we consider a solution ϕ to H such that

ϕ (0, 0) = ψ (0, 0) and

ψ (t , j ) = ϕ (t , j ) ∀(t , j ) ∈ domψ s.t. t + j ≤ TQ (ψ ) = TQ (ϕ). (8)

• By construction ofHm , both systemsH andHm have the

same data in (C ∪ D) \Q . Hence, a solution ϕ satisfying (8)

with respect toψ always exists.

• By definition of the Uw operator, we conclude that ϕ (t , j )
satisfies p or q for all (t , j ) ∈ dom ϕ such that t + j = TQ (ϕ),
which implies that ϕ (t , j ) ∈ P ∪Q for all (t , j ) ∈ dom ϕ such

that t + j ≤ TQ (ϕ).

Furthermore, one of the following must hold:

• When TQ (ϕ) < ∞, the solutionψ toHm remains equal to its

value when it reaches the set Q for the first time; and thus,

we conclude thatψ (t , j ) ∈ P ∪Q for all (t , j ) ∈ domψ .
• When TQ (ϕ) = ∞, the solution ϕ satisfies ϕ (t , j ) ∈ P \
Q for all (t , j ) ∈ dom ϕ by definition of the Uw operator.

Furthermore, since both systemsH andHm have the same

data in (C ∪ D) \Q , it follows that ϕ (t , j ) = ψ (t , j ) ∈ P \Q
for all (t , j ) ∈ dom ϕ = domψ .
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In either case, each solutionψ toHm starting from P \Q stays in

P ∪Q for all (t , j ) ∈ domψ . Hence, P ∪Q is conditionally invariant

with respect to P \Q forHm .

(⇐) Now, suppose that P ∪ Q is conditionally invariant with

respect to P \Q forHm . We show that, for each solution ϕ toH

such that ϕ (0, 0) ∈ P \Q , ϕ stays in P ∪Q for all (t , j ) ∈ dom ϕ such

that t + j ≤ TQ (ϕ).

• Letψ be a maximal solution toHm such thatψ (t , j ) = ϕ (t , j )
for all (t , j ) ∈ dom ϕ such that t + j ≤ TQ (ϕ); the solutionψ
toHm always exists since the systemsH andHm share the

same data outside the set Q .
• Since P∪Q is conditionally invariant with respect to P \Q for

Hm , we conclude thatψ (t , j ) ∈ P ∪Q for all (t , j ) ∈ domψ .
Therefore, ϕ (t , j ) ∈ P ∪ Q for all (t , j ) ∈ dom ϕ such that

t + j ≤ TQ (ϕ). □

The bouncing ball example in [8, Example 1.1] illustrates Theo-

rem 3.2.

Example 3.3 (Bouncing Ball). Consider a hybrid systemH =
(C, F ,D,G ) modeling a ball bouncing vertically on the ground, with
the state x = (x1,x2) ∈ R

2 and the data

F (x ) :=

[
x2
−γ

]
∀x ∈ C := {x ∈ R2 : x1 ≥ 0}

G (x ) :=

[
0

−λx2

]
∀x ∈ D := {x ∈ R2 : x1 = 0,x2 ≤ 0},

where x1 denotes the height above the surface and x2 is the vertical
velocity. The parameter γ > 0 is the gravity coefficient and λ ∈ (0, 1)
is the restitution coefficient. Let ε > 0 and define atomic propositions
p and q such that

p (x ) :=

{
1 if x1 ∈ [0, ε] and x2 ≤ 0

0 otherwise,

and

q(x ) :=

{
1 if x1 ≥ 0 and x2 > 0

0 otherwise.

The sets P and Q in (6) and the systemHm in (7) are given by P =
[0, ε] × R≥0, Q = R≥0 × R>0, and

Fm (x ) = F (x ) ∀x ∈ Cm = R≥0 × R≤0

Gm (x ) =

{
x if x ∈ R≥0 × R>0
G (x ) if x ∈ {0} × R≤0

∀x ∈ Dm ,

where Dm = ({0} × R≤0) ∪ (R≥0 × R>0).
We notice that each solution to Hm from P \ {0} flows in P and

reaches the setQ after jumping from the set {0}×R≤0 ⊂ Dm . However,
the solution starting from the origin is a constant discrete solution that
remains in the set P and never reaches Q . Once the solutions reach
Q , they jump according to the jump map Gm (x ) = x for all x ∈ Q .
Hence, the solutions toHm starting from P \Q = P never leave the set
P ∪Q , which concludes that the set Q ∪ P is conditionally invariant
with respect to P \Q forHm . Hence, using Proposition 3.8, we conclude
that the formula f = pUwq is satisfied for every maximal solution
ϕ toH at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨ q.

Next, we consider the definition of the Us operator. With the

same sets P and Q in (6), to assure that a solution ϕ toH satisfies

pUsq at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨ q,

1) ϕ starts and remains in the set P until reaching the set Q at

TQ (ϕ) < ∞; or
2) ϕ starts from the set Q .

Note that pUwq is less restrictive than pUsq. When pUwq is sat-

isfied for all solutions ϕ toH with (ϕ, (0, 0)) ⊨ p∨q, solutions with
(ϕ, (0, 0)) ⊨ p may satisfy p for all future hybrid time. Due to this,

compared to Theorem 3.2, the following result for the satisfaction of

pUsq requires additional conditions to guarantee that there exists

(t , j ) ∈ dom ϕ such that ϕ (t , j ) satisfies q. Such a property consists

of Q being eventually conditionally invariant with respect to the

set P \Q forHm in (7).

Theorem 3.4 (Strong Until vs Weak Until + Eventual Con-

ditional Invariance). Consider a hybrid systemH = (C, F ,D,G ).
Given two atomic propositions p and q, let the sets P andQ be given in
(6) and let the systemHm be as in (7). The formula f = pUsq is satis-
fied for every solution ϕ toH at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨q
if and only if

1) the formula pUwq is satisfied for every solution ϕ to H at
(t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨ q (see Theorem 3.2); and

2) The set Q is eventually conditionally invariant with respect to
P \Q forHm .

Sketch of Proof. (⇒) Suppose that f = pUsq is satisfied at

(t , j ) = (0, 0) for every solution toH such that (ϕ, (0, 0)) ⊨ p ∨ q.

• By definition, the aforementioned fact implies that f =
pUwq is satisfied at (t , j ) = (0, 0) for every solution to H

such that (ϕ, (0, 0)) ⊨ p ∨ q.
• We show that the set Q is eventually conditionally invariant

with respect to P \Q forHm . Indeed, for every solutionψ
to Hm with ψ (0, 0) ∈ P \ Q , we consider a solution ϕ to

H such that ϕ (0, 0) = ψ (0, 0) and ψ (t , j ) = ϕ (t , j ) for all
(t , j ) ∈ domψ such that t + j ≤ TQ (ψ ) = TQ (ϕ). In fact, such

a solution ϕ always exists since both H and Hm have the

same data outside the setQ . By definition of theUs operator,

we conclude that ϕ (t , j ) ∈ P ∪Q for all (t , j ) ∈ dom ϕ such

that t+j ≤ TQ (ϕ) and thatTQ (ϕ) < ∞. Hence,ψ (t , j ) ∈ P∪Q
for all (t , j ) ∈ domψ such that t+j ≤ TQ (ψ ) and TQ (ψ ) < ∞.

(⇐) Suppose that the formula pUwq is satisfied for every so-

lution ϕ to H at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨ q. This fact
implies that, using Theorem 3.2, the solutions toHm starting from

P \Q remain in the set P ∪Q .

• When additionally Q is eventually conditionally invariant

with respect to P \Q forHm , we conclude that the solutions

toHm starting from P \Q remain in the set P ∪Q and reach

the set Q .
• We show that, for each solution ϕ toH such that ϕ (0, 0) ∈
P \Q , ϕ stays in P ∪Q for all (t , j ) ∈ dom ϕ such that t + j ≤
TQ (ϕ), and TQ (ϕ) < ∞. Let ϕ be a solution toH . Since both

H and Hm share the same data outside the set Q , there
always exists a solutionψ toHm such thatψ (t , j ) = ϕ (t , j )
for all (t , j ) ∈ dom ϕ provided that t + j ≤ TQ (ϕ) = TQ (ψ ).
Since we already know that ψ (t , j ) ∈ P ∪ Q for all (t , j ) ∈
domψ , we conclude that ϕ (t , j ) ∈ P ∪Q for all (t , j ) ∈ dom ϕ
provided that t + j ≤ TQ (ϕ). □

The bouncing ball example in Example 3.3 is used to illustrate

Theorem 3.4.
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Example 3.5 (Bouncing ball). Consider the systemH = (C, F ,D,G )
in Example 3.3 while replacing the atomic proposition p therein by p̃
such that

p̃ (x ) :=

{
p (x ) if x , 0

0 otherwise.

Hence, the set P̃ , according to (6), is given by P̃ = P \ {0}. We already
showed, in Example 3.3, that the formula f = pUwq is satisfied for
every maximal solution ϕ to H at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨
p ∨ q. Furthermore, since the solutions not starting from the origin
will never reach the origin, we conclude that f = p̃Uwq is also
satisfied for every maximal solution ϕ to H at (t , j ) = (0, 0) with
(ϕ, (0, 0)) ⊨ p̃∨q. Furthermore, we also showed that all the solutions to
Hm starting from P̃ \Q = P̃ reachQ , which concludes that the setQ is
eventually conditionally invariant with respect to P̃ \Q forHm . Hence,
using Theorem 3.4, we conclude that f = p̃Usq is satisfied for every
maximal solution ϕ toH at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p̃ ∨ q.

Example 3.6 (Thermostat). Consider a hybrid system H =

(C, F ,D,G )modeling a thermostat system, with the state x := (h, z) ∈
R2 and

F (x ) :=
[
0 − z + z0 + z△h

]⊤
∀x ∈ C := C0 ∪C1

G (x ) :=
[
1 − h z

]⊤
∀x ∈ D := D0 ∪ D1,

where
C0 := {x ∈ X : h = 0, z ≥ zmin}, C1 := {x ∈ X : h = 1, z ≤ zmax},

D0 := {x ∈ X : h = 0, z ≤ zmin}, D1 := {x ∈ X : h = 1, z ≥ zmax}.

The variable h denotes the state of the heater, i.e., h = 1 implies the
heater is on and h = 0 implies the heater is off. the variable z is the
room temperature, z0 denotes the room temperature when the heater is
off, and z△ denotes the capacity of the heater to raise the temperature
such that

z0 < zmin < zmax < z0 + z△ . (9)

Define two atomic propositions p and q such that

p (x ) :=

{
1 if x ∈ {1} × (−∞, zmax]

0 otherwise (10)

and

q(x ) :=

{
1 if x = {0} × [zmax,+∞)
0 otherwise. (11)

The sets P and Q in (6) and the systemHm in (7) are given by P =
{1} × (−∞, zmax], Q = {0} × [zmax,+∞), and

Fm (x ) = F (x ) ∀x ∈ Cm = C\Q

Gm (x ) =



x if x =
[
0 [zmax,+∞)

]⊤

G (x ) if x ∈ D
∀x ∈ Dm .

We notice that each solution to Hm from P \ Q flows in P and
reaches the set Q after jumping from {[0 zmax]

⊤} ⊂ Dm . Once the
solutions reach Q , they jump according to the jump map Gm (x ) = x
for all x ∈ Q and they cannot flow. Hence, the solutions toHm starting
from P \Q = P never leave the set P ∪Q , which concludes that the
set Q ∪ P is conditionally invariant with respect to P \ Q and Q is
eventually conditionally invariant with respect to P \Q forHm . Hence,
using Theorems 3.2 and 3.4, we conclude that the formula f = pUsq
is satisfied for every maximal solution ϕ toH at (t , j ) = (0, 0) with
(ϕ, (0, 0)) ⊨ p ∨ q.

3.2 Sufficient Conditions for Forward
Invariance Notions

In this section, we present sufficient conditions to guarantee the

different invariance notions in Section 2.3. First, we recall the suf-

ficient conditions for invariance notions using a barrier function

in [18, 19] for hybrid systems. Then, we propose new sufficient

conditions for eventual conditional invariance for hybrid systems

inspired from [16] in the setting of continuous-time systems. Below,

the concept of the tangent cone
1
to a set is used; see [8, Definition

5.12]. The tangent cone at a point x ∈ Rn of a set C ⊂ Rn given by

TC (x ) :=

{
v ∈ Rn : lim inf

h→0
+

|x + hv |C
h

= 0

}
. (12)

We also recall the equivalence [2, Page 122]

v ∈TC (x ) ⇔

∃ {hi }i ∈N → 0
+
and {vi }i ∈N → v : x + hivi ∈ C ∀i ∈ N. (13)

Furthermore, for the given sets Xo ,Xu ⊂ R
n
with Xo ∩ Xu = ∅,

we recall from [18] the notion of a barrier function candidate with

respect to (Xo ,Xu ) forH .

Definition 3.7 (Barrier Function Candidate). ConsiderH =
(C, F ,D,G ). Given setsXo andXu ⊂ Rn withXo∩Xu = ∅, a function
B : Rn→R is said to be a barrier function candidate with respect to
(Xo ,Xu ) forH if{

B (x ) ≤ 0 ∀x ∈ Xo
B (x ) > 0 ∀x ∈ (C ∪ D) ∩ Xu .

(14)

In the following, we recall a result on safety for hybrid systems

[18, Theorem 3.2] to derive sufficient conditions for conditional

invariance for hybrid systems. Given two setsXo ,Xu , the conditions

given below provide sufficient conditions to verify that Rn \ Xu is

conditionally invariant with respect to Xo forH .

Proposition 3.8 (Conditional Invariance). Consider a hybrid
system H = (C, F ,D,G ) satisfying (SA). Let two sets Xo and Xu
such that Xo , Rn \ Xu ⊂ C ∪ D. The set Rn \ Xu is conditionally
invariant with respect toXo forH if there exists a C1 barrier function
candidate B with respect to (Xo ,Xu ) forH as in (14) such that K :=

{x ∈ C ∪ D : B (x ) ≤ 0} is closed and the following hold:
1)
〈
∇B (x ),η

〉
≤ 0 for all x ∈ (U (∂K ) \ K ) ∩ C and all η ∈

F (x ) ∩TC (x ); and
2) B (η) ≤ 0 for all x ∈ D ∩ K and all η ∈ G (x ); and
3) G (D ∩ K ) ⊂ C ∪ D.

According to Remark 2.9, when Xo = R
n \ Xu , conditional

invariance of Rn \ Xu with respect to Xo reduces to forward pre-

invariance of the set K := Xo . In the next statement, we recall from

[19, Theorem 1 and Proposition 2] sufficient conditions for forward

invariance using barrier functions.

Proposition 3.9 (Forward Invariance). Consider a hybrid sys-
temH = (C, F ,D,G ) satisfying (SA). Let K be a closed set such that
K ⊂ C ∪ D. The set K is forward pre-invariant forH if there exists a
C1 barrier function candidate B with respect to (K ,Rn \K ) forH as
in (14) such that the following hold:

1
This tangent cone is also known as the contingent cone, or the Bouligand tangent

cone.
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1)
〈
∇B (x ),η

〉
≤ 0 for all x ∈ C ∩ (U (∂K ) \ K ) and all η ∈

F (x ) ∩TC (x ).
2) B (η) ≤ 0 for all x ∈ D ∩ K and all η ∈ G (x ).
3) G (D ∩ K ) ⊂ (C ∪ D).

Furthermore, the set K is forward invariant for H if the following
additional conditions hold:

4) No maximal solution toH starting from K has a finite time
escape within C ∩ K .

5) Every maximal solution from (∂C ∩ K ) \ D is nontrivial.

Remark 3.10. One can guarantee that the solutions toH do not
have a finite escape time 2 inside the set K ∩C when, for example, the
setK∩C is compact or when the flowmap F has a global linear growth
on K ∩C . Furthermore, according to [19, Proposition 3], the existence
of a nontrivial solution starting from each point in (K ∩ ∂C ) \ D can
be proved by verifying the following infinitesimal condition.

F (x ) ∩TK∩C (x ) , ∅ ∀x ∈ U (xo ) ∩ (K ∩ ∂C ) and

∀xo ∈ (K ∩ ∂C ) \ D.
(15)

In the following, inspired by [16, Theorem 3.4], we propose

sufficient conditions for pre-eventual conditional invariance for

hybrid systems.

Theorem 3.11 (pre-Eventual Conditional Invariance). Con-
sider a hybrid system H = (C, F ,D,G ) and two sets Ko ,K ⊂ Rn .
Then, the set K is pre-eventually conditionally invariant with respect
to the set Ko forH if the following properties hold:

1a) There exist a C1 function v : Rn → R and a locally Lipschitz
function fc : R→ R such that〈
∇v (x ),η

〉
≤ fc (v (x )) ∀η ∈ F (x ) ∩TC (x ), ∀x ∈ C ,

v (η) ≤ v (x ) ∀η ∈ G (x ), ∀x ∈ D. (16)

1b) There exists r1 > 0 such that

S1 := {x ∈ C : v (x ) < r1} ⊂ K , (17)

and the solutions to ẏ = fc (y) starting from v (Ko ) converge
to (−∞, r1] in finite time.3

2a) There exist a C1 function w : Rn → R and a function fd :

R→ R such that〈
∇w (x ),η

〉
≤ 0 ∀η ∈ F (x ) ∩TC (x ), ∀x ∈ C ,

w (η) ≤ fd (w (x )) ∀η ∈ G (x ), ∀x ∈ D. (18)

2b) There exists r2 > 0 such that

S2 := {x ∈ D : w (x ) < r2} ⊂ K (19)

and the solutions to z+ = fd (z) starting fromw (Ko ) converge
to (−∞, r2] in finite time.

Sketch of Proof. According to the definition of pre-eventual con-

ditional invariance, we need to show that for each complete solu-

tion ϕ to H starting from Ko , TK (ϕ) < ∞ and ϕ (t , j ) ∈ K for all

(t , j ) ∈ dom ϕ such that t + j ≥ TK (ϕ).
Consider a complete solution ϕ toH starting from ϕ (0, 0) ∈ Ko .

Let y be the maximal solution to ẏ = fc (y) starting from y (0) =
v (ϕ (0, 0)) ∈ v (Ko ) and let z be the complete solution to the system

z+ = fd (z) starting from z (0) = w (ϕ (0, 0)) ∈ w (Ko ).

2
A solution has finite escape time inside a given set if the solution diverges while

remaining inside the set within a bounded (hybrid) time domain; see [12, Chapter 3].

3
The solutions to ẏ = fc (y ) fromv (Ko ) exist at least until they reach the set (−∞, r1].

• Using Lemmas A.1, A.2, and A.3 under (16), we conclude

that v (ϕ (t , j )) ≤ y (t ) for all (t , j ) ∈ dom ϕ; on the other

hand, under (18), we conclude that w (ϕ (t , j )) ≤ z (j ) for all
(t , j ) ∈ dom ϕ.
• Since the solution y starting from v (Ko ) will converge to
(−∞, r1] in finite time and the solution z starting fromw (Ko )
will converge to (−∞, r2] in finite time, we conclude the

existence of (ty , jz ) ∈ R≥0 ×N such that y (t ) ∈ (−∞, r1] for
all t ≥ ty and z (j ) ∈ (−∞, r2] for all j ≥ jz .
• Since the solution ϕ is complete, ({ty } × N) ∩ dom ϕ , ∅;
hence,

v (ϕ (t , j )) ≤ r1 ∀t ≥ ty : (t , j ) ∈ dom ϕ

or (R≥0 × {jz }) ∩ dom ϕ , ∅; hence,

w (ϕ (t , j )) ≤ r2 ∀j ≥ jz : (t , j ) ∈ dom ϕ.

As a consequence, we conclude that, for all (t , j ) ∈ dom ϕ
such that t + j ≥ ty + jz , it follows that ϕ (t , j ) ∈ K . □

Remark 3.12. It is important to notice that, in Theorem 3.11, it
is possible to conclude pre-eventual conditional invariance of K with
respect toKo using only condition 1) (or only condition 2), respectively)
provided that we have the knowledge that the solutions from Ko reach
the set K only via flowing (or only jumping, respectively). Indeed, in
many applications of hybrid systems, the state variable is composed
of both continuous and discrete variables, see the thermostat hybrid
model in Example 3.6. Furthermore, when the setsKo andK are defined
only in terms of the continuous state variables (respectively, only in
terms of the discrete state variables), it is possible to conclude that the
solutions from Ko reach the set K only by flowing (respectively, only
by jumping).

Remark 3.13. In Theorem 3.11, one could think of unifying condi-
tions 1) and 2) as follows:〈

∇v (x ),η
〉
≤ fc (v (x )) ∀η ∈ F (x ) ∩TC (x ), ∀x ∈ C ,

v (η) ≤ fd (v (x )) ∀η ∈ G (x ), ∀x ∈ D, (20)

where the functions fc and fd are defined in Theorem 3.11. Further-
more, one could think of concluding the pre-enventually conditionally
invariant of K with respect to Ko by showing that the set (−∞, r ] is
pre-enventually conditionally invariant with respect to v (Ko ) for the
reduced system given by

ẏ = fc (y) y ∈ v (C )
y+ = fd (y) y ∈ v (D). (21)

Such a comparison-based reasoning is very useful to analyze purely
continuous-time or purely discrete-time systems. In general, a key
step for such a reasoning to hold consists in showing that (20) and
(21) imply that

v (ϕ (t , j )) ≤ y (t , j ) (t , j ) ∈ dom ϕ. (22)

However, (22) does not necessarily hold under (20) and (21) due to
the possible mismatch in the instant of jumps between the solutions
ϕ toH and y to (21). It holds, however, if we replace the inequalities
in (20) by equalities (the latter is in general very restrictive). As a
consequence, the comparison arguments, in general, do not extend
directly to the context of hybrid systems. Hence, it would be interesting
to investigate a general version of the comparison lemma for hybrid
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systems as it would simplify considerably the conditions in Theorem
3.11. This direction will pursued in future work.

Example 3.14. Consider a hybrid systemH = (C, F ,D,G ) with
the state x = (x1,x2) ∈ R

2 and the data

F (x ) :=
[
−x1 − x2
−x2 + x1

]
∀x ∈ C := {x ∈R2 : x1 ≥ 0, x2 ≥−1, x1 ≥x2}

G (x ) :=
[

0

−x2

]
∀x ∈ D := {x ∈R2 : x1 = 0, x2 ≤ 0}.

Consider the sets Ko and K given by Ko = [0, 1] × (−∞,−1] and
K = R≥0 × [−1/2,+∞). Next, to conclude that the set K is pre-
eventually conditionally invariant with respect to the set Ko forH ,
will show that the conditions in Theorem 3.11 are satisfied. Indeed,
for the candidate v (x ) = −|x |2, we conclude that for fc (y) := −2y,
item 1a) holds. Furthermore, we notice that v (Ko ) = (−∞,−1] and
that for, r1 = 1/2, (17) holds trivially since S1 = ∅. Finally, for the
system ẏ = fc (y) = −2y, it is easy to see that the solutions starting
from v (Ko ) = (−∞,−1] reach the set (−∞, 1/2]. Hence, item 1b) is
satisfied.

On the other hand, for the candidatew (x ) = −x2 and for

fd (z) :=

{
−z if z ∈ w (D)
z otherwise,

we conclude that item 2a) holds since −ẋ2 = x2 − x1 ≤ 0 for all
x ∈ C and, for all x ∈ D, w (G (x )) = −w (x ). Finally, item 2b) holds
for r2 = 1/2 and the solutions to z+ = fd (z) starting from [1,+∞)
reaches (−∞, 1/2].

Remark 3.15. As we illustrated in Example 3.14, once we propose
the candidate functions v andw , we find the functions fc , fd and the
constants r1, r2 such that the conditions in Theorem 3.11 hold. That
is, for a particular expression of the data of the hybrid system and
the sets Ko and K , we can automate the process of generating the
functions and parameters satisfying the conditions in Theorem 3.11
as in [21, 24].

Remark 3.16. It is important to notice that the conditions in item
1) in Theorem 3.11 can be removed when the following hold:
• The set K is forward pre-invariant forH .
• The solutions to H starting from Ko achieve the necessary
amount of jumps such that the solutions to z+ = fd (z) from
w (Ko ) reach (−∞, r2].

In the following, we propose sufficient conditions for eventual

conditional invariance for hybrid systems.

Theorem 3.17 (Eventual Conditional Invariance). Consider
a hybrid systemH = (C, F ,D,G ). Consider two setsKo ,K ⊂ Rn such
that Ko ⊂ C ∪D and K is pre-eventually conditionally invariant with
respect to Ko . Then, the set K is eventually conditionally invariant
with respect to the set Ko forH if the following property holds:
• There exists a set S ⊂ C ∪ D ∪ K such that Ko ∪ K ⊂ S and S
is forward invariant forHm = (Cm , Fm ,Dm ,Gm ) in (7).

Sketch of Proof. Since the set K is pre-eventually conditionally

invariant with respect to the set Ko forH , to complete the proof, it

remains only to show that the solutions toH starting from Ko \ K
always reach the set K . Proceeding by contradiction, assume the

existence of a maximal solution ϕ toH starting from Ko \ K that

never reaches the set K . We notice that each solution toH starting

from Ko \ K is a solution to Hm provided that it does not reach

the set K . Hence, since the set S is forward invariant forHm , we

conclude that the solution ϕ is complete. The aforementioned fact

contradicts the fact that K is pre-eventually conditionally invariant

with respect to the set Ko forH . □

Example 3.18. We reconsider the hybrid system in Example 3.14.
It is easy to see that the set S := Ko ∪K is forward invariant forHm .
Indeed, all the solutions toHm starting from Ko flow in Ko until they
reach K . Once in K they reduce the constant discrete solutions that
are complete.

3.3 Sufficient Conditions for Until Operators
Due to the equivalence we provide in Section 3.1, sufficient condi-

tions that guarantee the needed invariance properties of the sets

guarantee the satisfaction of the formulas in (4) and (5).

Theorem 3.19 (Weak Until). Consider a hybrid system H =
(C, F ,D,G ) satisfying (SA). Given atomic propositions p and q, let
the sets P and Q be as in (6) such that P ⊂ C ∪ D. Then, the formula
f = pUwq is satisfied for each solution ϕ toH at (t , j ) = (0, 0) with
(ϕ, (0, 0)) ⊨ p ∨ q if there exists a C1 barrier function candidate B
with respect to the sets (P \Q,Rn \ (P ∪Q )) for H as in (14) such
that K := {x ∈ C ∪ D ∪ Q : B (x ) ≤ 0} is closed and the following
hold:

1) For all x ∈ (C \ Q ) ∩ (U (∂K ) \ K ),
〈
∇B (x ),η

〉
≤ 0 for all

η ∈ F (x ) ∩TC\Q (x ).
2) For all x ∈ K ∩ (D \Q ), B (η) ≤ 0 for all η ∈ G (x ).
3) For all x ∈ K ∩ (D \Q ), G (x ) ⊂ C ∪ D ∪Q .

Sketch of Proof. Let the systemHm = (Cm , Fm ,Dm ,Gm ) be as
in (7). Since K = {x ∈ C ∪ D ∪ Q } : B (x ) ≤ 0} and the barrier

function candidate B satisfies

B (x ) ≤ 0 ∀x ∈ P \Q

B (x ) > 0 ∀x ∈ (C ∪ D) \ (P ∪Q ) = (C ∪ D ∪Q ) \ (P ∪Q ),

we conclude that B is a barrier candidate with respect to (P \Q,Rn \
(P ∪Q )) forHm . Furthermore, item 1) implies that

〈
∇B (x ),η

〉
≤ 0

for all x ∈ (U (∂K ) \ K ) ∩ Cm and all η ∈ F (x ) ∩ TCm (x ). Item 2)

implies that B (η) ≤ 0 for all x ∈ K ∩ (D \ Q ) and all η ∈ Gm (x ).
When x ∈ K ∩ Q , Gm (x ) = x and B (x ) ≤ 0; and thus, B (η) ≤ 0

for all x ∈ K ∩ (D ∪ Q ) and all η ∈ Gm (x ). Item 3) implies that

Gm (K ∩ (D \Q )) ⊂ Cm ∪Dm . Furthermore,Gm (K ∩Q ) = K ∩Q ⊂
Cm ∪ Dm . Hence, Gm (K ∩ Dm ) ⊂ Cm ∪ Dm . Therefore, using

Proposition 3.8, we conclude that P ∪Q is conditionally invariant

with respect to P\Q forHm . Hence, using Theorem 3.2, we conclude

that the formula f = pUwq is satisfied for each solution ϕ toH at

(t , j ) = (0, 0). □

Example 3.20 (Bouncing ball). We reconsider the bouncing-
ball hybrid model in Example 3.3 in order to confirm the conclusions
therein using Theorem 3.19. Indeed, consider the barrier candidate
B (x ) := x1 − ε . It is easy to see that B is a barrier candidate with
respect to (P \Q,Rn \ (P∪Q )) forH . Furthermore, for all x ∈ C \Q =
R≥0 × R≤0, we have ⟨∇B (x ), F (x )⟩ = x2 ≤ 0; hence, item 1) holds.
Furthermore, for all x ∈ K ∩ D = D, B (G (x )) = B (x ) ≤ 0; hence,
item 2) holds. Finally, for all x ∈ D, G (x ) ∈ {0} × R≥0 ⊂ C ; hence,
item 3) holds. As a consequence, using Theorem 3.19, we conclude
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that the formula f = pUwq is satisfied for each solution ϕ toH at
(t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨ q.

Example 3.21 (Thermostat). We reconsider the thermostat hy-
brid model in Example 3.6 in order to show that the formula f =
pUwq is satisfied for each solution ϕ to H at (t , j ) = (0, 0) with
(ϕ, (0, 0)) ⊨ p ∨ q using Theorem 3.19. Indeed, consider the bar-
rier candidate B (x ) := (2h − 1) (z − zmax). It is easy to see that B
is a barrier candidate with respect to (P \ Q,Rn \ (P ∪ Q )) for H .
Furthermore, for all x ∈ C \ Q = ({1} × R) ∪ ({0} × (−∞, zmax)),
we have ⟨∇B (x ), F (x )⟩ = (2h − 1) (−z + z0 + z△h) ≤ 0 under (9);
hence, item 1) holds. Furthermore, for all x ∈ K ∩ D = [1 zmax]

⊤,
B (G (x )) = B ([0 zmax]

⊤) ≤ 0; hence, item 2) holds. Finally, for
all x ∈ D, G (x ) ∈ C ; hence, item 3) holds. As a consequence, using
Theorem 3.19, we conclude that the formula f = pUwq is satisfied
for each solution ϕ toH at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨ q.

Theorem 3.22 (Strong Until). Consider a hybrid systemH =
(C, F ,D,G ) satisfying (SA). Given atomic propositions p and q, let
the sets P and Q as in (6) such that P ⊂ C ∪ D. Then, the formula
f = pUsq is satisfied for each solution ϕ toH at (t , j ) = (0, 0) with
(ϕ, (0, 0)) ⊨ p ∨ q if the following hold:

1) The formula pUwq is satisfied for each solution ϕ to H at
(t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨ q.

2) There exist a C1 function v : Rn → R, a locally Lipschitz
function fc : R → R, and a constant r1 > 0 such that the
following hold:

2.1)
〈
∇v (x ),η

〉
≤ fc (v (x )) for all η ∈ F (x ) ∩TC\Q (x ) and for

all x ∈ (C ∩ P ) \Q ;
2.2) v (η) ≤ v (x ) for all η ∈ G (x ) and all x ∈ D ∩ P ;
2.3) S1 := {x ∈ C ∩ P : v (x ) < r1} ⊂ Q and the solutions to

ẏ = fc (y) starting from v (P \ Q ) converge to (−∞, r1] in
finite time.

3) There exist a C1 function w : Rn → R, fd : R → R, and
r2 > 0 such that the following hold:

3.1)
〈
∇w (x ),η

〉
≤ 0 for all η ∈ F (x ) ∩ TC\Q (x ) and all x ∈

(C ∩ P ) \Q ;
3.2) w (η) ≤ fd (w (x )) for all η ∈ G (x ) and all x ∈ D ∩ P ;
3.3) S2 := {x ∈ D ∩ P : w (x ) < r2} ⊂ Q and the solutions to

z+ = fd (z) starting fromw (P \Q ) converge to (−∞, r2] in
finite time.

4) No maximal solution starting from P has a finite time escape
within P ∩ (C \Q ) and every maximal solution from (P ∩∂C ) \
(D ∪Q ) is nontrivial.

Sketch of Proof. Let the systemHm = (Cm , Fm ,Dm ,Gm ) be as
in (7). Using item 1) and Theorem 3.2, we conclude that Q ∪ P is

conditionally invariant with respect to P \Q forHm . Furthermore,

since the solutions starting from Q are discrete, we conclude that

P ∪ Q is forward pre-invariant for Hm . Next, under item 4) and

using Proposition 3.9, we conclude that P ∪Q is forward invariant

for Hm . As a last step using items 2) and 3), we show that Q is

pre-eventually conditionally invariant with respect to P \ Q for

Hm .

Indeed, consider the hybrid system H
′

m = (Cm ∩ P , Fm ,Dm ∩

(P ∪Q ),Gm ) which is the restriction ofHm to P ∪Q . Using The-

orem 3.11 for H
′

m under items 2) and 3) we conclude that Q is

pre-eventually conditionally invariant with respect to P \Q forH
′

m .

However, the solutions toH
′

m are the solutions toHm since P∪Q is

forward invariant forHm . Hence,Q is pre-eventually conditionally

invariant with respect to P \Q forHm . □

Example 3.23 (Thermostat). We reconsider the thermostat hy-
brid model in Example 3.6 in order to show that the formula f =
pUsq is satisfied for each solution ϕ to H at (t , j ) = (0, 0) with
(ϕ, (0, 0)) ⊨ p ∨ q using Theorem 3.22. Indeed, we already showed
in Example 3.21 that the formula f = pUwq is satisfied for each
solution ϕ to H at (t , j ) = (0, 0) with (ϕ, (0, 0)) ⊨ p ∨ q; item 1) is
satisfied. Furthermore, for the candidatev (x ) = zmax−z, we conclude
that for fc (y) := −y − a for some a ∈ (0, zmax − zo − z△ ), items 2.1)
and 2.2) hold. The constant a always exists under (9). Furthermore,
we notice thatv (P \Q ) = v (P ) = [0,+∞) and that, for r1 = 0, the in-
clusion in item 2.3) holds trivially since S1 = ∅. Finally, for the system
ẏ = fc (y) = −y − a, it is easy to see that the solutions starting from
v (Ko ) = [0,+∞) reach the set (−∞, 0]. Hence, item 2.3) is satisfied.
On the other hand, for the candidatew (x ) = q and for

fd (z) :=

{
1 − z if z ∈ w (D)
z otherwise,

we conclude that items 3.1) and 3.2) hold since q̇ = 0 for all x ∈ C
and, for all x ∈ D,w (G (x )) = 1 −w (x ). Furthermore, for r2 = 0 the
inclusion in item 3.3) holds trivially since S2 = ∅. Finally, the solutions
to z+ = fd (z) starting from {1} reach (−∞, 0]; hence, item 3.3) holds.
Finally, in order to conclude item 4), we notice that F is linear; hence,
there is no possibility of finite-time escape inside C . Moreover, the
solution starting from C \ D are nontrivial.

4 CONCLUSION
In this paper, tools are introduced for certifying temporal logic

specifications involving until operators for hybrid systems. For

such systems, equivalence relationships are established between

the satisfaction of formulas having until operators and some of

the invariance notions studied in control literature. In particular,

conditional invariance and eventual conditional invariance notions

are revisited in this paper in the context of hybrid systems. Further-

more, sufficient conditions certifying these invariance properties

are proposed. As a consequence, sufficient conditions (not involv-

ing the computation of the systems’ solutions) guaranteeing the

satisfaction of temporal logic specifications with the until operators

are proposed. Future research direction may include the relaxation

of the proposed sufficient conditions for the eventual conditional

invariance notion along the lines of Remark 3.13. Furthermore, an-

other extension consists in the analysis proposed in this paper to

handle more complex specifications where the until operator is

involved in addition to other operators as in [9].
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A APPENDIX
The following result is a version of the well-known comparison

Lemma that can be found in [12, Lemma 3.4].

Lemma A.1. Consider the scalar differential equation given by

u̇ = f (t ,u), u (t0) = u0, (23)

where for all t ≥ 0 and all u ∈ S ⊂ R, f (t ,u) is continuous in t and
locally Lipschitz inu. Furthermore, let [t0,T ) be the maximal interval,
T can be infinity, of existence of the solution u (t ). Moreover, suppose
that u (t ) ∈ S for all t ∈ [t0,T ).

On the other hand, let v (t ) be a continuous function such that
v (t0) ≤ u0, v (t ) ∈ S for all t ∈ [t0,T ), and its upper right-hand
derivative D+v (t ) satisfies the following differential inequality, for
almost all t ∈ [t0,T ),

D+v (t ) := lim sup

s→0
+

v (t + s ) −v (t )

s
≤ f (t ,v (t )). (24)

Then, v (t ) ≤ u (t ) for all t ∈ [t0,T ).

Lemma A.2. Assume that the function t 7→ v (t ) in Lemma A.1
satisfies v (t ) = v (x (t )) for all t ∈ [t0,T ) with t 7→ x (t ) a solution to
the system

ẋ ∈ F (x ) ∀x ∈ C ⊂ Rn ,

and v ∈ C1, it follows that, for almost all t ∈ [t0,T ),

D+v (t ) = v̇ (t ) = ⟨∇v (x (t )), ẋ (t )⟩.

Proof. Since the solution x is absolutely continuous, it follows

that ẋ (t ) exists for almost all t ∈ [t0,T ). Furthermore, since v ∈ C1.
Hence, v̇ (t ) exists for almost all t ∈ [t0,T ). Let t ∈ [t0,T ) such that

v̇ (t ) exists, then, by definition of the time derivative, we conclude

that

v̇ (t ) = lim

s→0

v (t + s ) −v (t )

s
= lim sup

s→0
+

v (t + s ) −v (t )

s
= D+v (t ).

Furthermore, using the classical chain rule for composition of dif-

ferentiable functions, we conclude that

v̇ (t ) = ⟨∇v (x (t )), ẋ (t )⟩.

□

Lemma A.3. Let x : [t0,T ) → R
n be a solution to the following

constrained differential inclusion

ẋ ∈ F (x ) ∀x ∈ C ⊂ Rn .

Then, for almost all t ∈ [t0,T ),

ẋ (t ) ∈ TC (x (t )).

Proof. Let t ∈ [t0,T ) such that ẋ (t ) exists; thus, ẋ (t ) ∈ F (x (t , j )).
Furthermore, let a sequence {tn }n∈N ⊂ (t0,T − t ) such that tn → 0.

That is, for vn (t ) := (x (tn ) − x (t ))/tn , we have limn vn (t ) = ẋ (t )
and at the same time x (t ) + tnvn (t ) = x (tn ) ∈ C . Hence, using (13),
we conclude that ẋ (t ) ∈ TC (x (t )). □
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